xref: /freebsd/contrib/llvm-project/clang/lib/Parse/ParseExpr.cpp (revision 65f8467e3351c38a9d57b538b85cf6c5fab5818e)
1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 ///
9 /// \file
10 /// Provides the Expression parsing implementation.
11 ///
12 /// Expressions in C99 basically consist of a bunch of binary operators with
13 /// unary operators and other random stuff at the leaves.
14 ///
15 /// In the C99 grammar, these unary operators bind tightest and are represented
16 /// as the 'cast-expression' production.  Everything else is either a binary
17 /// operator (e.g. '/') or a ternary operator ("?:").  The unary leaves are
18 /// handled by ParseCastExpression, the higher level pieces are handled by
19 /// ParseBinaryExpression.
20 ///
21 //===----------------------------------------------------------------------===//
22 
23 #include "clang/Parse/Parser.h"
24 #include "clang/AST/ASTContext.h"
25 #include "clang/AST/ExprCXX.h"
26 #include "clang/Basic/PrettyStackTrace.h"
27 #include "clang/Parse/RAIIObjectsForParser.h"
28 #include "clang/Sema/DeclSpec.h"
29 #include "clang/Sema/ParsedTemplate.h"
30 #include "clang/Sema/Scope.h"
31 #include "clang/Sema/TypoCorrection.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include <optional>
34 using namespace clang;
35 
36 /// Simple precedence-based parser for binary/ternary operators.
37 ///
38 /// Note: we diverge from the C99 grammar when parsing the assignment-expression
39 /// production.  C99 specifies that the LHS of an assignment operator should be
40 /// parsed as a unary-expression, but consistency dictates that it be a
41 /// conditional-expession.  In practice, the important thing here is that the
42 /// LHS of an assignment has to be an l-value, which productions between
43 /// unary-expression and conditional-expression don't produce.  Because we want
44 /// consistency, we parse the LHS as a conditional-expression, then check for
45 /// l-value-ness in semantic analysis stages.
46 ///
47 /// \verbatim
48 ///       pm-expression: [C++ 5.5]
49 ///         cast-expression
50 ///         pm-expression '.*' cast-expression
51 ///         pm-expression '->*' cast-expression
52 ///
53 ///       multiplicative-expression: [C99 6.5.5]
54 ///     Note: in C++, apply pm-expression instead of cast-expression
55 ///         cast-expression
56 ///         multiplicative-expression '*' cast-expression
57 ///         multiplicative-expression '/' cast-expression
58 ///         multiplicative-expression '%' cast-expression
59 ///
60 ///       additive-expression: [C99 6.5.6]
61 ///         multiplicative-expression
62 ///         additive-expression '+' multiplicative-expression
63 ///         additive-expression '-' multiplicative-expression
64 ///
65 ///       shift-expression: [C99 6.5.7]
66 ///         additive-expression
67 ///         shift-expression '<<' additive-expression
68 ///         shift-expression '>>' additive-expression
69 ///
70 ///       compare-expression: [C++20 expr.spaceship]
71 ///         shift-expression
72 ///         compare-expression '<=>' shift-expression
73 ///
74 ///       relational-expression: [C99 6.5.8]
75 ///         compare-expression
76 ///         relational-expression '<' compare-expression
77 ///         relational-expression '>' compare-expression
78 ///         relational-expression '<=' compare-expression
79 ///         relational-expression '>=' compare-expression
80 ///
81 ///       equality-expression: [C99 6.5.9]
82 ///         relational-expression
83 ///         equality-expression '==' relational-expression
84 ///         equality-expression '!=' relational-expression
85 ///
86 ///       AND-expression: [C99 6.5.10]
87 ///         equality-expression
88 ///         AND-expression '&' equality-expression
89 ///
90 ///       exclusive-OR-expression: [C99 6.5.11]
91 ///         AND-expression
92 ///         exclusive-OR-expression '^' AND-expression
93 ///
94 ///       inclusive-OR-expression: [C99 6.5.12]
95 ///         exclusive-OR-expression
96 ///         inclusive-OR-expression '|' exclusive-OR-expression
97 ///
98 ///       logical-AND-expression: [C99 6.5.13]
99 ///         inclusive-OR-expression
100 ///         logical-AND-expression '&&' inclusive-OR-expression
101 ///
102 ///       logical-OR-expression: [C99 6.5.14]
103 ///         logical-AND-expression
104 ///         logical-OR-expression '||' logical-AND-expression
105 ///
106 ///       conditional-expression: [C99 6.5.15]
107 ///         logical-OR-expression
108 ///         logical-OR-expression '?' expression ':' conditional-expression
109 /// [GNU]   logical-OR-expression '?' ':' conditional-expression
110 /// [C++] the third operand is an assignment-expression
111 ///
112 ///       assignment-expression: [C99 6.5.16]
113 ///         conditional-expression
114 ///         unary-expression assignment-operator assignment-expression
115 /// [C++]   throw-expression [C++ 15]
116 ///
117 ///       assignment-operator: one of
118 ///         = *= /= %= += -= <<= >>= &= ^= |=
119 ///
120 ///       expression: [C99 6.5.17]
121 ///         assignment-expression ...[opt]
122 ///         expression ',' assignment-expression ...[opt]
123 /// \endverbatim
124 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) {
125   ExprResult LHS(ParseAssignmentExpression(isTypeCast));
126   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
127 }
128 
129 /// This routine is called when the '@' is seen and consumed.
130 /// Current token is an Identifier and is not a 'try'. This
131 /// routine is necessary to disambiguate \@try-statement from,
132 /// for example, \@encode-expression.
133 ///
134 ExprResult
135 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) {
136   ExprResult LHS(ParseObjCAtExpression(AtLoc));
137   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
138 }
139 
140 /// This routine is called when a leading '__extension__' is seen and
141 /// consumed.  This is necessary because the token gets consumed in the
142 /// process of disambiguating between an expression and a declaration.
143 ExprResult
144 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) {
145   ExprResult LHS(true);
146   {
147     // Silence extension warnings in the sub-expression
148     ExtensionRAIIObject O(Diags);
149 
150     LHS = ParseCastExpression(AnyCastExpr);
151   }
152 
153   if (!LHS.isInvalid())
154     LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__,
155                                LHS.get());
156 
157   return ParseRHSOfBinaryExpression(LHS, prec::Comma);
158 }
159 
160 /// Parse an expr that doesn't include (top-level) commas.
161 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) {
162   if (Tok.is(tok::code_completion)) {
163     cutOffParsing();
164     Actions.CodeCompleteExpression(getCurScope(),
165                                    PreferredType.get(Tok.getLocation()));
166     return ExprError();
167   }
168 
169   if (Tok.is(tok::kw_throw))
170     return ParseThrowExpression();
171   if (Tok.is(tok::kw_co_yield))
172     return ParseCoyieldExpression();
173 
174   ExprResult LHS = ParseCastExpression(AnyCastExpr,
175                                        /*isAddressOfOperand=*/false,
176                                        isTypeCast);
177   return ParseRHSOfBinaryExpression(LHS, prec::Assignment);
178 }
179 
180 /// Parse an assignment expression where part of an Objective-C message
181 /// send has already been parsed.
182 ///
183 /// In this case \p LBracLoc indicates the location of the '[' of the message
184 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating
185 /// the receiver of the message.
186 ///
187 /// Since this handles full assignment-expression's, it handles postfix
188 /// expressions and other binary operators for these expressions as well.
189 ExprResult
190 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc,
191                                                     SourceLocation SuperLoc,
192                                                     ParsedType ReceiverType,
193                                                     Expr *ReceiverExpr) {
194   ExprResult R
195     = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc,
196                                      ReceiverType, ReceiverExpr);
197   R = ParsePostfixExpressionSuffix(R);
198   return ParseRHSOfBinaryExpression(R, prec::Assignment);
199 }
200 
201 ExprResult
202 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) {
203   assert(Actions.ExprEvalContexts.back().Context ==
204              Sema::ExpressionEvaluationContext::ConstantEvaluated &&
205          "Call this function only if your ExpressionEvaluationContext is "
206          "already ConstantEvaluated");
207   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast));
208   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
209   return Actions.ActOnConstantExpression(Res);
210 }
211 
212 ExprResult Parser::ParseConstantExpression() {
213   // C++03 [basic.def.odr]p2:
214   //   An expression is potentially evaluated unless it appears where an
215   //   integral constant expression is required (see 5.19) [...].
216   // C++98 and C++11 have no such rule, but this is only a defect in C++98.
217   EnterExpressionEvaluationContext ConstantEvaluated(
218       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
219   return ParseConstantExpressionInExprEvalContext(NotTypeCast);
220 }
221 
222 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) {
223   EnterExpressionEvaluationContext ConstantEvaluated(
224       Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
225   ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast));
226   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional));
227   return Actions.ActOnCaseExpr(CaseLoc, Res);
228 }
229 
230 /// Parse a constraint-expression.
231 ///
232 /// \verbatim
233 ///       constraint-expression: C++2a[temp.constr.decl]p1
234 ///         logical-or-expression
235 /// \endverbatim
236 ExprResult Parser::ParseConstraintExpression() {
237   EnterExpressionEvaluationContext ConstantEvaluated(
238       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
239   ExprResult LHS(ParseCastExpression(AnyCastExpr));
240   ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr));
241   if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) {
242     Actions.CorrectDelayedTyposInExpr(Res);
243     return ExprError();
244   }
245   return Res;
246 }
247 
248 /// \brief Parse a constraint-logical-and-expression.
249 ///
250 /// \verbatim
251 ///       C++2a[temp.constr.decl]p1
252 ///       constraint-logical-and-expression:
253 ///         primary-expression
254 ///         constraint-logical-and-expression '&&' primary-expression
255 ///
256 /// \endverbatim
257 ExprResult
258 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) {
259   EnterExpressionEvaluationContext ConstantEvaluated(
260       Actions, Sema::ExpressionEvaluationContext::Unevaluated);
261   bool NotPrimaryExpression = false;
262   auto ParsePrimary = [&] () {
263     ExprResult E = ParseCastExpression(PrimaryExprOnly,
264                                        /*isAddressOfOperand=*/false,
265                                        /*isTypeCast=*/NotTypeCast,
266                                        /*isVectorLiteral=*/false,
267                                        &NotPrimaryExpression);
268     if (E.isInvalid())
269       return ExprError();
270     auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) {
271         E = ParsePostfixExpressionSuffix(E);
272         // Use InclusiveOr, the precedence just after '&&' to not parse the
273         // next arguments to the logical and.
274         E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr);
275         if (!E.isInvalid())
276           Diag(E.get()->getExprLoc(),
277                Note
278                ? diag::note_unparenthesized_non_primary_expr_in_requires_clause
279                : diag::err_unparenthesized_non_primary_expr_in_requires_clause)
280                << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(")
281                << FixItHint::CreateInsertion(
282                    PP.getLocForEndOfToken(E.get()->getEndLoc()), ")")
283                << E.get()->getSourceRange();
284         return E;
285     };
286 
287     if (NotPrimaryExpression ||
288         // Check if the following tokens must be a part of a non-primary
289         // expression
290         getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
291                            /*CPlusPlus11=*/true) > prec::LogicalAnd ||
292         // Postfix operators other than '(' (which will be checked for in
293         // CheckConstraintExpression).
294         Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) ||
295         (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) {
296       E = RecoverFromNonPrimary(E, /*Note=*/false);
297       if (E.isInvalid())
298         return ExprError();
299       NotPrimaryExpression = false;
300     }
301     bool PossibleNonPrimary;
302     bool IsConstraintExpr =
303         Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary,
304                                           IsTrailingRequiresClause);
305     if (!IsConstraintExpr || PossibleNonPrimary) {
306       // Atomic constraint might be an unparenthesized non-primary expression
307       // (such as a binary operator), in which case we might get here (e.g. in
308       // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore
309       // the rest of the addition expression). Try to parse the rest of it here.
310       if (PossibleNonPrimary)
311         E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr);
312       Actions.CorrectDelayedTyposInExpr(E);
313       return ExprError();
314     }
315     return E;
316   };
317   ExprResult LHS = ParsePrimary();
318   if (LHS.isInvalid())
319     return ExprError();
320   while (Tok.is(tok::ampamp)) {
321     SourceLocation LogicalAndLoc = ConsumeToken();
322     ExprResult RHS = ParsePrimary();
323     if (RHS.isInvalid()) {
324       Actions.CorrectDelayedTyposInExpr(LHS);
325       return ExprError();
326     }
327     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc,
328                                        tok::ampamp, LHS.get(), RHS.get());
329     if (!Op.isUsable()) {
330       Actions.CorrectDelayedTyposInExpr(RHS);
331       Actions.CorrectDelayedTyposInExpr(LHS);
332       return ExprError();
333     }
334     LHS = Op;
335   }
336   return LHS;
337 }
338 
339 /// \brief Parse a constraint-logical-or-expression.
340 ///
341 /// \verbatim
342 ///       C++2a[temp.constr.decl]p1
343 ///       constraint-logical-or-expression:
344 ///         constraint-logical-and-expression
345 ///         constraint-logical-or-expression '||'
346 ///             constraint-logical-and-expression
347 ///
348 /// \endverbatim
349 ExprResult
350 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) {
351   ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause));
352   if (!LHS.isUsable())
353     return ExprError();
354   while (Tok.is(tok::pipepipe)) {
355     SourceLocation LogicalOrLoc = ConsumeToken();
356     ExprResult RHS =
357         ParseConstraintLogicalAndExpression(IsTrailingRequiresClause);
358     if (!RHS.isUsable()) {
359       Actions.CorrectDelayedTyposInExpr(LHS);
360       return ExprError();
361     }
362     ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc,
363                                        tok::pipepipe, LHS.get(), RHS.get());
364     if (!Op.isUsable()) {
365       Actions.CorrectDelayedTyposInExpr(RHS);
366       Actions.CorrectDelayedTyposInExpr(LHS);
367       return ExprError();
368     }
369     LHS = Op;
370   }
371   return LHS;
372 }
373 
374 bool Parser::isNotExpressionStart() {
375   tok::TokenKind K = Tok.getKind();
376   if (K == tok::l_brace || K == tok::r_brace  ||
377       K == tok::kw_for  || K == tok::kw_while ||
378       K == tok::kw_if   || K == tok::kw_else  ||
379       K == tok::kw_goto || K == tok::kw_try)
380     return true;
381   // If this is a decl-specifier, we can't be at the start of an expression.
382   return isKnownToBeDeclarationSpecifier();
383 }
384 
385 bool Parser::isFoldOperator(prec::Level Level) const {
386   return Level > prec::Unknown && Level != prec::Conditional &&
387          Level != prec::Spaceship;
388 }
389 
390 bool Parser::isFoldOperator(tok::TokenKind Kind) const {
391   return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true));
392 }
393 
394 /// Parse a binary expression that starts with \p LHS and has a
395 /// precedence of at least \p MinPrec.
396 ExprResult
397 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) {
398   prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(),
399                                                GreaterThanIsOperator,
400                                                getLangOpts().CPlusPlus11);
401   SourceLocation ColonLoc;
402 
403   auto SavedType = PreferredType;
404   while (true) {
405     // Every iteration may rely on a preferred type for the whole expression.
406     PreferredType = SavedType;
407     // If this token has a lower precedence than we are allowed to parse (e.g.
408     // because we are called recursively, or because the token is not a binop),
409     // then we are done!
410     if (NextTokPrec < MinPrec)
411       return LHS;
412 
413     // Consume the operator, saving the operator token for error reporting.
414     Token OpToken = Tok;
415     ConsumeToken();
416 
417     if (OpToken.is(tok::caretcaret)) {
418       return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or));
419     }
420 
421     // If we're potentially in a template-id, we may now be able to determine
422     // whether we're actually in one or not.
423     if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater,
424                         tok::greatergreatergreater) &&
425         checkPotentialAngleBracketDelimiter(OpToken))
426       return ExprError();
427 
428     // Bail out when encountering a comma followed by a token which can't
429     // possibly be the start of an expression. For instance:
430     //   int f() { return 1, }
431     // We can't do this before consuming the comma, because
432     // isNotExpressionStart() looks at the token stream.
433     if (OpToken.is(tok::comma) && isNotExpressionStart()) {
434       PP.EnterToken(Tok, /*IsReinject*/true);
435       Tok = OpToken;
436       return LHS;
437     }
438 
439     // If the next token is an ellipsis, then this is a fold-expression. Leave
440     // it alone so we can handle it in the paren expression.
441     if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) {
442       // FIXME: We can't check this via lookahead before we consume the token
443       // because that tickles a lexer bug.
444       PP.EnterToken(Tok, /*IsReinject*/true);
445       Tok = OpToken;
446       return LHS;
447     }
448 
449     // In Objective-C++, alternative operator tokens can be used as keyword args
450     // in message expressions. Unconsume the token so that it can reinterpreted
451     // as an identifier in ParseObjCMessageExpressionBody. i.e., we support:
452     //   [foo meth:0 and:0];
453     //   [foo not_eq];
454     if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
455         Tok.isOneOf(tok::colon, tok::r_square) &&
456         OpToken.getIdentifierInfo() != nullptr) {
457       PP.EnterToken(Tok, /*IsReinject*/true);
458       Tok = OpToken;
459       return LHS;
460     }
461 
462     // Special case handling for the ternary operator.
463     ExprResult TernaryMiddle(true);
464     if (NextTokPrec == prec::Conditional) {
465       if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
466         // Parse a braced-init-list here for error recovery purposes.
467         SourceLocation BraceLoc = Tok.getLocation();
468         TernaryMiddle = ParseBraceInitializer();
469         if (!TernaryMiddle.isInvalid()) {
470           Diag(BraceLoc, diag::err_init_list_bin_op)
471               << /*RHS*/ 1 << PP.getSpelling(OpToken)
472               << Actions.getExprRange(TernaryMiddle.get());
473           TernaryMiddle = ExprError();
474         }
475       } else if (Tok.isNot(tok::colon)) {
476         // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
477         ColonProtectionRAIIObject X(*this);
478 
479         // Handle this production specially:
480         //   logical-OR-expression '?' expression ':' conditional-expression
481         // In particular, the RHS of the '?' is 'expression', not
482         // 'logical-OR-expression' as we might expect.
483         TernaryMiddle = ParseExpression();
484       } else {
485         // Special case handling of "X ? Y : Z" where Y is empty:
486         //   logical-OR-expression '?' ':' conditional-expression   [GNU]
487         TernaryMiddle = nullptr;
488         Diag(Tok, diag::ext_gnu_conditional_expr);
489       }
490 
491       if (TernaryMiddle.isInvalid()) {
492         Actions.CorrectDelayedTyposInExpr(LHS);
493         LHS = ExprError();
494         TernaryMiddle = nullptr;
495       }
496 
497       if (!TryConsumeToken(tok::colon, ColonLoc)) {
498         // Otherwise, we're missing a ':'.  Assume that this was a typo that
499         // the user forgot. If we're not in a macro expansion, we can suggest
500         // a fixit hint. If there were two spaces before the current token,
501         // suggest inserting the colon in between them, otherwise insert ": ".
502         SourceLocation FILoc = Tok.getLocation();
503         const char *FIText = ": ";
504         const SourceManager &SM = PP.getSourceManager();
505         if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) {
506           assert(FILoc.isFileID());
507           bool IsInvalid = false;
508           const char *SourcePtr =
509             SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid);
510           if (!IsInvalid && *SourcePtr == ' ') {
511             SourcePtr =
512               SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid);
513             if (!IsInvalid && *SourcePtr == ' ') {
514               FILoc = FILoc.getLocWithOffset(-1);
515               FIText = ":";
516             }
517           }
518         }
519 
520         Diag(Tok, diag::err_expected)
521             << tok::colon << FixItHint::CreateInsertion(FILoc, FIText);
522         Diag(OpToken, diag::note_matching) << tok::question;
523         ColonLoc = Tok.getLocation();
524       }
525     }
526 
527     PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(),
528                               OpToken.getKind());
529     // Parse another leaf here for the RHS of the operator.
530     // ParseCastExpression works here because all RHS expressions in C have it
531     // as a prefix, at least. However, in C++, an assignment-expression could
532     // be a throw-expression, which is not a valid cast-expression.
533     // Therefore we need some special-casing here.
534     // Also note that the third operand of the conditional operator is
535     // an assignment-expression in C++, and in C++11, we can have a
536     // braced-init-list on the RHS of an assignment. For better diagnostics,
537     // parse as if we were allowed braced-init-lists everywhere, and check that
538     // they only appear on the RHS of assignments later.
539     ExprResult RHS;
540     bool RHSIsInitList = false;
541     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
542       RHS = ParseBraceInitializer();
543       RHSIsInitList = true;
544     } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional)
545       RHS = ParseAssignmentExpression();
546     else
547       RHS = ParseCastExpression(AnyCastExpr);
548 
549     if (RHS.isInvalid()) {
550       // FIXME: Errors generated by the delayed typo correction should be
551       // printed before errors from parsing the RHS, not after.
552       Actions.CorrectDelayedTyposInExpr(LHS);
553       if (TernaryMiddle.isUsable())
554         TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
555       LHS = ExprError();
556     }
557 
558     // Remember the precedence of this operator and get the precedence of the
559     // operator immediately to the right of the RHS.
560     prec::Level ThisPrec = NextTokPrec;
561     NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
562                                      getLangOpts().CPlusPlus11);
563 
564     // Assignment and conditional expressions are right-associative.
565     bool isRightAssoc = ThisPrec == prec::Conditional ||
566                         ThisPrec == prec::Assignment;
567 
568     // Get the precedence of the operator to the right of the RHS.  If it binds
569     // more tightly with RHS than we do, evaluate it completely first.
570     if (ThisPrec < NextTokPrec ||
571         (ThisPrec == NextTokPrec && isRightAssoc)) {
572       if (!RHS.isInvalid() && RHSIsInitList) {
573         Diag(Tok, diag::err_init_list_bin_op)
574           << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get());
575         RHS = ExprError();
576       }
577       // If this is left-associative, only parse things on the RHS that bind
578       // more tightly than the current operator.  If it is left-associative, it
579       // is okay, to bind exactly as tightly.  For example, compile A=B=C=D as
580       // A=(B=(C=D)), where each paren is a level of recursion here.
581       // The function takes ownership of the RHS.
582       RHS = ParseRHSOfBinaryExpression(RHS,
583                             static_cast<prec::Level>(ThisPrec + !isRightAssoc));
584       RHSIsInitList = false;
585 
586       if (RHS.isInvalid()) {
587         // FIXME: Errors generated by the delayed typo correction should be
588         // printed before errors from ParseRHSOfBinaryExpression, not after.
589         Actions.CorrectDelayedTyposInExpr(LHS);
590         if (TernaryMiddle.isUsable())
591           TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
592         LHS = ExprError();
593       }
594 
595       NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator,
596                                        getLangOpts().CPlusPlus11);
597     }
598 
599     if (!RHS.isInvalid() && RHSIsInitList) {
600       if (ThisPrec == prec::Assignment) {
601         Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists)
602           << Actions.getExprRange(RHS.get());
603       } else if (ColonLoc.isValid()) {
604         Diag(ColonLoc, diag::err_init_list_bin_op)
605           << /*RHS*/1 << ":"
606           << Actions.getExprRange(RHS.get());
607         LHS = ExprError();
608       } else {
609         Diag(OpToken, diag::err_init_list_bin_op)
610           << /*RHS*/1 << PP.getSpelling(OpToken)
611           << Actions.getExprRange(RHS.get());
612         LHS = ExprError();
613       }
614     }
615 
616     ExprResult OrigLHS = LHS;
617     if (!LHS.isInvalid()) {
618       // Combine the LHS and RHS into the LHS (e.g. build AST).
619       if (TernaryMiddle.isInvalid()) {
620         // If we're using '>>' as an operator within a template
621         // argument list (in C++98), suggest the addition of
622         // parentheses so that the code remains well-formed in C++0x.
623         if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater))
624           SuggestParentheses(OpToken.getLocation(),
625                              diag::warn_cxx11_right_shift_in_template_arg,
626                          SourceRange(Actions.getExprRange(LHS.get()).getBegin(),
627                                      Actions.getExprRange(RHS.get()).getEnd()));
628 
629         ExprResult BinOp =
630             Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(),
631                                OpToken.getKind(), LHS.get(), RHS.get());
632         if (BinOp.isInvalid())
633           BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
634                                              RHS.get()->getEndLoc(),
635                                              {LHS.get(), RHS.get()});
636 
637         LHS = BinOp;
638       } else {
639         ExprResult CondOp = Actions.ActOnConditionalOp(
640             OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(),
641             RHS.get());
642         if (CondOp.isInvalid()) {
643           std::vector<clang::Expr *> Args;
644           // TernaryMiddle can be null for the GNU conditional expr extension.
645           if (TernaryMiddle.get())
646             Args = {LHS.get(), TernaryMiddle.get(), RHS.get()};
647           else
648             Args = {LHS.get(), RHS.get()};
649           CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(),
650                                               RHS.get()->getEndLoc(), Args);
651         }
652 
653         LHS = CondOp;
654       }
655       // In this case, ActOnBinOp or ActOnConditionalOp performed the
656       // CorrectDelayedTyposInExpr check.
657       if (!getLangOpts().CPlusPlus)
658         continue;
659     }
660 
661     // Ensure potential typos aren't left undiagnosed.
662     if (LHS.isInvalid()) {
663       Actions.CorrectDelayedTyposInExpr(OrigLHS);
664       Actions.CorrectDelayedTyposInExpr(TernaryMiddle);
665       Actions.CorrectDelayedTyposInExpr(RHS);
666     }
667   }
668 }
669 
670 /// Parse a cast-expression, unary-expression or primary-expression, based
671 /// on \p ExprType.
672 ///
673 /// \p isAddressOfOperand exists because an id-expression that is the
674 /// operand of address-of gets special treatment due to member pointers.
675 ///
676 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
677                                        bool isAddressOfOperand,
678                                        TypeCastState isTypeCast,
679                                        bool isVectorLiteral,
680                                        bool *NotPrimaryExpression) {
681   bool NotCastExpr;
682   ExprResult Res = ParseCastExpression(ParseKind,
683                                        isAddressOfOperand,
684                                        NotCastExpr,
685                                        isTypeCast,
686                                        isVectorLiteral,
687                                        NotPrimaryExpression);
688   if (NotCastExpr)
689     Diag(Tok, diag::err_expected_expression);
690   return Res;
691 }
692 
693 namespace {
694 class CastExpressionIdValidator final : public CorrectionCandidateCallback {
695  public:
696   CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes)
697       : NextToken(Next), AllowNonTypes(AllowNonTypes) {
698     WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes;
699   }
700 
701   bool ValidateCandidate(const TypoCorrection &candidate) override {
702     NamedDecl *ND = candidate.getCorrectionDecl();
703     if (!ND)
704       return candidate.isKeyword();
705 
706     if (isa<TypeDecl>(ND))
707       return WantTypeSpecifiers;
708 
709     if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate))
710       return false;
711 
712     if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period))
713       return true;
714 
715     for (auto *C : candidate) {
716       NamedDecl *ND = C->getUnderlyingDecl();
717       if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND))
718         return true;
719     }
720     return false;
721   }
722 
723   std::unique_ptr<CorrectionCandidateCallback> clone() override {
724     return std::make_unique<CastExpressionIdValidator>(*this);
725   }
726 
727  private:
728   Token NextToken;
729   bool AllowNonTypes;
730 };
731 }
732 
733 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse
734 /// a unary-expression.
735 ///
736 /// \p isAddressOfOperand exists because an id-expression that is the operand
737 /// of address-of gets special treatment due to member pointers. NotCastExpr
738 /// is set to true if the token is not the start of a cast-expression, and no
739 /// diagnostic is emitted in this case and no tokens are consumed.
740 ///
741 /// \verbatim
742 ///       cast-expression: [C99 6.5.4]
743 ///         unary-expression
744 ///         '(' type-name ')' cast-expression
745 ///
746 ///       unary-expression:  [C99 6.5.3]
747 ///         postfix-expression
748 ///         '++' unary-expression
749 ///         '--' unary-expression
750 /// [Coro]  'co_await' cast-expression
751 ///         unary-operator cast-expression
752 ///         'sizeof' unary-expression
753 ///         'sizeof' '(' type-name ')'
754 /// [C++11] 'sizeof' '...' '(' identifier ')'
755 /// [GNU]   '__alignof' unary-expression
756 /// [GNU]   '__alignof' '(' type-name ')'
757 /// [C11]   '_Alignof' '(' type-name ')'
758 /// [C++11] 'alignof' '(' type-id ')'
759 /// [GNU]   '&&' identifier
760 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7]
761 /// [C++]   new-expression
762 /// [C++]   delete-expression
763 ///
764 ///       unary-operator: one of
765 ///         '&'  '*'  '+'  '-'  '~'  '!'
766 /// [GNU]   '__extension__'  '__real'  '__imag'
767 ///
768 ///       primary-expression: [C99 6.5.1]
769 /// [C99]   identifier
770 /// [C++]   id-expression
771 ///         constant
772 ///         string-literal
773 /// [C++]   boolean-literal  [C++ 2.13.5]
774 /// [C++11] 'nullptr'        [C++11 2.14.7]
775 /// [C++11] user-defined-literal
776 ///         '(' expression ')'
777 /// [C11]   generic-selection
778 /// [C++2a] requires-expression
779 ///         '__func__'        [C99 6.4.2.2]
780 /// [GNU]   '__FUNCTION__'
781 /// [MS]    '__FUNCDNAME__'
782 /// [MS]    'L__FUNCTION__'
783 /// [MS]    '__FUNCSIG__'
784 /// [MS]    'L__FUNCSIG__'
785 /// [GNU]   '__PRETTY_FUNCTION__'
786 /// [GNU]   '(' compound-statement ')'
787 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
788 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
789 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
790 ///                                     assign-expr ')'
791 /// [GNU]   '__builtin_FILE' '(' ')'
792 /// [GNU]   '__builtin_FUNCTION' '(' ')'
793 /// [GNU]   '__builtin_LINE' '(' ')'
794 /// [CLANG] '__builtin_COLUMN' '(' ')'
795 /// [GNU]   '__builtin_source_location' '(' ')'
796 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
797 /// [GNU]   '__null'
798 /// [OBJC]  '[' objc-message-expr ']'
799 /// [OBJC]  '\@selector' '(' objc-selector-arg ')'
800 /// [OBJC]  '\@protocol' '(' identifier ')'
801 /// [OBJC]  '\@encode' '(' type-name ')'
802 /// [OBJC]  objc-string-literal
803 /// [C++]   simple-type-specifier '(' expression-list[opt] ')'      [C++ 5.2.3]
804 /// [C++11] simple-type-specifier braced-init-list                  [C++11 5.2.3]
805 /// [C++]   typename-specifier '(' expression-list[opt] ')'         [C++ 5.2.3]
806 /// [C++11] typename-specifier braced-init-list                     [C++11 5.2.3]
807 /// [C++]   'const_cast' '<' type-name '>' '(' expression ')'       [C++ 5.2p1]
808 /// [C++]   'dynamic_cast' '<' type-name '>' '(' expression ')'     [C++ 5.2p1]
809 /// [C++]   'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1]
810 /// [C++]   'static_cast' '<' type-name '>' '(' expression ')'      [C++ 5.2p1]
811 /// [C++]   'typeid' '(' expression ')'                             [C++ 5.2p1]
812 /// [C++]   'typeid' '(' type-id ')'                                [C++ 5.2p1]
813 /// [C++]   'this'          [C++ 9.3.2]
814 /// [G++]   unary-type-trait '(' type-id ')'
815 /// [G++]   binary-type-trait '(' type-id ',' type-id ')'           [TODO]
816 /// [EMBT]  array-type-trait '(' type-id ',' integer ')'
817 /// [clang] '^' block-literal
818 ///
819 ///       constant: [C99 6.4.4]
820 ///         integer-constant
821 ///         floating-constant
822 ///         enumeration-constant -> identifier
823 ///         character-constant
824 ///
825 ///       id-expression: [C++ 5.1]
826 ///                   unqualified-id
827 ///                   qualified-id
828 ///
829 ///       unqualified-id: [C++ 5.1]
830 ///                   identifier
831 ///                   operator-function-id
832 ///                   conversion-function-id
833 ///                   '~' class-name
834 ///                   template-id
835 ///
836 ///       new-expression: [C++ 5.3.4]
837 ///                   '::'[opt] 'new' new-placement[opt] new-type-id
838 ///                                     new-initializer[opt]
839 ///                   '::'[opt] 'new' new-placement[opt] '(' type-id ')'
840 ///                                     new-initializer[opt]
841 ///
842 ///       delete-expression: [C++ 5.3.5]
843 ///                   '::'[opt] 'delete' cast-expression
844 ///                   '::'[opt] 'delete' '[' ']' cast-expression
845 ///
846 /// [GNU/Embarcadero] unary-type-trait:
847 ///                   '__is_arithmetic'
848 ///                   '__is_floating_point'
849 ///                   '__is_integral'
850 ///                   '__is_lvalue_expr'
851 ///                   '__is_rvalue_expr'
852 ///                   '__is_complete_type'
853 ///                   '__is_void'
854 ///                   '__is_array'
855 ///                   '__is_function'
856 ///                   '__is_reference'
857 ///                   '__is_lvalue_reference'
858 ///                   '__is_rvalue_reference'
859 ///                   '__is_fundamental'
860 ///                   '__is_object'
861 ///                   '__is_scalar'
862 ///                   '__is_compound'
863 ///                   '__is_pointer'
864 ///                   '__is_member_object_pointer'
865 ///                   '__is_member_function_pointer'
866 ///                   '__is_member_pointer'
867 ///                   '__is_const'
868 ///                   '__is_volatile'
869 ///                   '__is_trivial'
870 ///                   '__is_standard_layout'
871 ///                   '__is_signed'
872 ///                   '__is_unsigned'
873 ///
874 /// [GNU] unary-type-trait:
875 ///                   '__has_nothrow_assign'
876 ///                   '__has_nothrow_copy'
877 ///                   '__has_nothrow_constructor'
878 ///                   '__has_trivial_assign'                  [TODO]
879 ///                   '__has_trivial_copy'                    [TODO]
880 ///                   '__has_trivial_constructor'
881 ///                   '__has_trivial_destructor'
882 ///                   '__has_virtual_destructor'
883 ///                   '__is_abstract'                         [TODO]
884 ///                   '__is_class'
885 ///                   '__is_empty'                            [TODO]
886 ///                   '__is_enum'
887 ///                   '__is_final'
888 ///                   '__is_pod'
889 ///                   '__is_polymorphic'
890 ///                   '__is_sealed'                           [MS]
891 ///                   '__is_trivial'
892 ///                   '__is_union'
893 ///                   '__has_unique_object_representations'
894 ///
895 /// [Clang] unary-type-trait:
896 ///                   '__is_aggregate'
897 ///                   '__trivially_copyable'
898 ///
899 ///       binary-type-trait:
900 /// [GNU]             '__is_base_of'
901 /// [MS]              '__is_convertible_to'
902 ///                   '__is_convertible'
903 ///                   '__is_same'
904 ///
905 /// [Embarcadero] array-type-trait:
906 ///                   '__array_rank'
907 ///                   '__array_extent'
908 ///
909 /// [Embarcadero] expression-trait:
910 ///                   '__is_lvalue_expr'
911 ///                   '__is_rvalue_expr'
912 /// \endverbatim
913 ///
914 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind,
915                                        bool isAddressOfOperand,
916                                        bool &NotCastExpr,
917                                        TypeCastState isTypeCast,
918                                        bool isVectorLiteral,
919                                        bool *NotPrimaryExpression) {
920   ExprResult Res;
921   tok::TokenKind SavedKind = Tok.getKind();
922   auto SavedType = PreferredType;
923   NotCastExpr = false;
924 
925   // Are postfix-expression suffix operators permitted after this
926   // cast-expression? If not, and we find some, we'll parse them anyway and
927   // diagnose them.
928   bool AllowSuffix = true;
929 
930   // This handles all of cast-expression, unary-expression, postfix-expression,
931   // and primary-expression.  We handle them together like this for efficiency
932   // and to simplify handling of an expression starting with a '(' token: which
933   // may be one of a parenthesized expression, cast-expression, compound literal
934   // expression, or statement expression.
935   //
936   // If the parsed tokens consist of a primary-expression, the cases below
937   // break out of the switch;  at the end we call ParsePostfixExpressionSuffix
938   // to handle the postfix expression suffixes.  Cases that cannot be followed
939   // by postfix exprs should set AllowSuffix to false.
940   switch (SavedKind) {
941   case tok::l_paren: {
942     // If this expression is limited to being a unary-expression, the paren can
943     // not start a cast expression.
944     ParenParseOption ParenExprType;
945     switch (ParseKind) {
946       case CastParseKind::UnaryExprOnly:
947         assert(getLangOpts().CPlusPlus && "not possible to get here in C");
948         [[fallthrough]];
949       case CastParseKind::AnyCastExpr:
950         ParenExprType = ParenParseOption::CastExpr;
951         break;
952       case CastParseKind::PrimaryExprOnly:
953         ParenExprType = FoldExpr;
954         break;
955     }
956     ParsedType CastTy;
957     SourceLocation RParenLoc;
958     Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/,
959                                isTypeCast == IsTypeCast, CastTy, RParenLoc);
960 
961     // FIXME: What should we do if a vector literal is followed by a
962     // postfix-expression suffix? Usually postfix operators are permitted on
963     // literals.
964     if (isVectorLiteral)
965       return Res;
966 
967     switch (ParenExprType) {
968     case SimpleExpr:   break;    // Nothing else to do.
969     case CompoundStmt: break;  // Nothing else to do.
970     case CompoundLiteral:
971       // We parsed '(' type-name ')' '{' ... '}'.  If any suffixes of
972       // postfix-expression exist, parse them now.
973       break;
974     case CastExpr:
975       // We have parsed the cast-expression and no postfix-expr pieces are
976       // following.
977       return Res;
978     case FoldExpr:
979       // We only parsed a fold-expression. There might be postfix-expr pieces
980       // afterwards; parse them now.
981       break;
982     }
983 
984     break;
985   }
986 
987     // primary-expression
988   case tok::numeric_constant:
989     // constant: integer-constant
990     // constant: floating-constant
991 
992     Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope());
993     ConsumeToken();
994     break;
995 
996   case tok::kw_true:
997   case tok::kw_false:
998     Res = ParseCXXBoolLiteral();
999     break;
1000 
1001   case tok::kw___objc_yes:
1002   case tok::kw___objc_no:
1003     Res = ParseObjCBoolLiteral();
1004     break;
1005 
1006   case tok::kw_nullptr:
1007     if (getLangOpts().CPlusPlus)
1008       Diag(Tok, diag::warn_cxx98_compat_nullptr);
1009     else
1010       Diag(Tok, getLangOpts().C2x ? diag::warn_c17_compat_nullptr
1011                                   : diag::ext_c_nullptr);
1012 
1013     Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken());
1014     break;
1015 
1016   case tok::annot_primary_expr:
1017   case tok::annot_overload_set:
1018     Res = getExprAnnotation(Tok);
1019     if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set)
1020       Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get());
1021     ConsumeAnnotationToken();
1022     if (!Res.isInvalid() && Tok.is(tok::less))
1023       checkPotentialAngleBracket(Res);
1024     break;
1025 
1026   case tok::annot_non_type:
1027   case tok::annot_non_type_dependent:
1028   case tok::annot_non_type_undeclared: {
1029     CXXScopeSpec SS;
1030     Token Replacement;
1031     Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement);
1032     assert(!Res.isUnset() &&
1033            "should not perform typo correction on annotation token");
1034     break;
1035   }
1036 
1037   case tok::kw___super:
1038   case tok::kw_decltype:
1039     // Annotate the token and tail recurse.
1040     if (TryAnnotateTypeOrScopeToken())
1041       return ExprError();
1042     assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super));
1043     return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1044                                isVectorLiteral, NotPrimaryExpression);
1045 
1046   case tok::identifier:
1047   ParseIdentifier: {    // primary-expression: identifier
1048                         // unqualified-id: identifier
1049                         // constant: enumeration-constant
1050     // Turn a potentially qualified name into a annot_typename or
1051     // annot_cxxscope if it would be valid.  This handles things like x::y, etc.
1052     if (getLangOpts().CPlusPlus) {
1053       // Avoid the unnecessary parse-time lookup in the common case
1054       // where the syntax forbids a type.
1055       const Token &Next = NextToken();
1056 
1057       // If this identifier was reverted from a token ID, and the next token
1058       // is a parenthesis, this is likely to be a use of a type trait. Check
1059       // those tokens.
1060       if (Next.is(tok::l_paren) &&
1061           Tok.is(tok::identifier) &&
1062           Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) {
1063         IdentifierInfo *II = Tok.getIdentifierInfo();
1064         // Build up the mapping of revertible type traits, for future use.
1065         if (RevertibleTypeTraits.empty()) {
1066 #define RTT_JOIN(X,Y) X##Y
1067 #define REVERTIBLE_TYPE_TRAIT(Name)                         \
1068           RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \
1069             = RTT_JOIN(tok::kw_,Name)
1070 
1071           REVERTIBLE_TYPE_TRAIT(__is_abstract);
1072           REVERTIBLE_TYPE_TRAIT(__is_aggregate);
1073           REVERTIBLE_TYPE_TRAIT(__is_arithmetic);
1074           REVERTIBLE_TYPE_TRAIT(__is_array);
1075           REVERTIBLE_TYPE_TRAIT(__is_assignable);
1076           REVERTIBLE_TYPE_TRAIT(__is_base_of);
1077           REVERTIBLE_TYPE_TRAIT(__is_bounded_array);
1078           REVERTIBLE_TYPE_TRAIT(__is_class);
1079           REVERTIBLE_TYPE_TRAIT(__is_complete_type);
1080           REVERTIBLE_TYPE_TRAIT(__is_compound);
1081           REVERTIBLE_TYPE_TRAIT(__is_const);
1082           REVERTIBLE_TYPE_TRAIT(__is_constructible);
1083           REVERTIBLE_TYPE_TRAIT(__is_convertible);
1084           REVERTIBLE_TYPE_TRAIT(__is_convertible_to);
1085           REVERTIBLE_TYPE_TRAIT(__is_destructible);
1086           REVERTIBLE_TYPE_TRAIT(__is_empty);
1087           REVERTIBLE_TYPE_TRAIT(__is_enum);
1088           REVERTIBLE_TYPE_TRAIT(__is_floating_point);
1089           REVERTIBLE_TYPE_TRAIT(__is_final);
1090           REVERTIBLE_TYPE_TRAIT(__is_function);
1091           REVERTIBLE_TYPE_TRAIT(__is_fundamental);
1092           REVERTIBLE_TYPE_TRAIT(__is_integral);
1093           REVERTIBLE_TYPE_TRAIT(__is_interface_class);
1094           REVERTIBLE_TYPE_TRAIT(__is_literal);
1095           REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr);
1096           REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference);
1097           REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer);
1098           REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer);
1099           REVERTIBLE_TYPE_TRAIT(__is_member_pointer);
1100           REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable);
1101           REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible);
1102           REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible);
1103           REVERTIBLE_TYPE_TRAIT(__is_nullptr);
1104           REVERTIBLE_TYPE_TRAIT(__is_object);
1105           REVERTIBLE_TYPE_TRAIT(__is_pod);
1106           REVERTIBLE_TYPE_TRAIT(__is_pointer);
1107           REVERTIBLE_TYPE_TRAIT(__is_polymorphic);
1108           REVERTIBLE_TYPE_TRAIT(__is_reference);
1109           REVERTIBLE_TYPE_TRAIT(__is_referenceable);
1110           REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr);
1111           REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference);
1112           REVERTIBLE_TYPE_TRAIT(__is_same);
1113           REVERTIBLE_TYPE_TRAIT(__is_scalar);
1114           REVERTIBLE_TYPE_TRAIT(__is_scoped_enum);
1115           REVERTIBLE_TYPE_TRAIT(__is_sealed);
1116           REVERTIBLE_TYPE_TRAIT(__is_signed);
1117           REVERTIBLE_TYPE_TRAIT(__is_standard_layout);
1118           REVERTIBLE_TYPE_TRAIT(__is_trivial);
1119           REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable);
1120           REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible);
1121           REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable);
1122           REVERTIBLE_TYPE_TRAIT(__is_unbounded_array);
1123           REVERTIBLE_TYPE_TRAIT(__is_union);
1124           REVERTIBLE_TYPE_TRAIT(__is_unsigned);
1125           REVERTIBLE_TYPE_TRAIT(__is_void);
1126           REVERTIBLE_TYPE_TRAIT(__is_volatile);
1127 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait)                                     \
1128   REVERTIBLE_TYPE_TRAIT(RTT_JOIN(__, Trait));
1129 #include "clang/Basic/TransformTypeTraits.def"
1130 #undef REVERTIBLE_TYPE_TRAIT
1131 #undef RTT_JOIN
1132         }
1133 
1134         // If we find that this is in fact the name of a type trait,
1135         // update the token kind in place and parse again to treat it as
1136         // the appropriate kind of type trait.
1137         llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known
1138           = RevertibleTypeTraits.find(II);
1139         if (Known != RevertibleTypeTraits.end()) {
1140           Tok.setKind(Known->second);
1141           return ParseCastExpression(ParseKind, isAddressOfOperand,
1142                                      NotCastExpr, isTypeCast,
1143                                      isVectorLiteral, NotPrimaryExpression);
1144         }
1145       }
1146 
1147       if ((!ColonIsSacred && Next.is(tok::colon)) ||
1148           Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren,
1149                        tok::l_brace)) {
1150         // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1151         if (TryAnnotateTypeOrScopeToken())
1152           return ExprError();
1153         if (!Tok.is(tok::identifier))
1154           return ParseCastExpression(ParseKind, isAddressOfOperand,
1155                                      NotCastExpr, isTypeCast,
1156                                      isVectorLiteral,
1157                                      NotPrimaryExpression);
1158       }
1159     }
1160 
1161     // Consume the identifier so that we can see if it is followed by a '(' or
1162     // '.'.
1163     IdentifierInfo &II = *Tok.getIdentifierInfo();
1164     SourceLocation ILoc = ConsumeToken();
1165 
1166     // Support 'Class.property' and 'super.property' notation.
1167     if (getLangOpts().ObjC && Tok.is(tok::period) &&
1168         (Actions.getTypeName(II, ILoc, getCurScope()) ||
1169          // Allow the base to be 'super' if in an objc-method.
1170          (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) {
1171       ConsumeToken();
1172 
1173       if (Tok.is(tok::code_completion) && &II != Ident_super) {
1174         cutOffParsing();
1175         Actions.CodeCompleteObjCClassPropertyRefExpr(
1176             getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc);
1177         return ExprError();
1178       }
1179       // Allow either an identifier or the keyword 'class' (in C++).
1180       if (Tok.isNot(tok::identifier) &&
1181           !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) {
1182         Diag(Tok, diag::err_expected_property_name);
1183         return ExprError();
1184       }
1185       IdentifierInfo &PropertyName = *Tok.getIdentifierInfo();
1186       SourceLocation PropertyLoc = ConsumeToken();
1187 
1188       Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName,
1189                                               ILoc, PropertyLoc);
1190       break;
1191     }
1192 
1193     // In an Objective-C method, if we have "super" followed by an identifier,
1194     // the token sequence is ill-formed. However, if there's a ':' or ']' after
1195     // that identifier, this is probably a message send with a missing open
1196     // bracket. Treat it as such.
1197     if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression &&
1198         getCurScope()->isInObjcMethodScope() &&
1199         ((Tok.is(tok::identifier) &&
1200          (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) ||
1201          Tok.is(tok::code_completion))) {
1202       Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr,
1203                                            nullptr);
1204       break;
1205     }
1206 
1207     // If we have an Objective-C class name followed by an identifier
1208     // and either ':' or ']', this is an Objective-C class message
1209     // send that's missing the opening '['. Recovery
1210     // appropriately. Also take this path if we're performing code
1211     // completion after an Objective-C class name.
1212     if (getLangOpts().ObjC &&
1213         ((Tok.is(tok::identifier) && !InMessageExpression) ||
1214          Tok.is(tok::code_completion))) {
1215       const Token& Next = NextToken();
1216       if (Tok.is(tok::code_completion) ||
1217           Next.is(tok::colon) || Next.is(tok::r_square))
1218         if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope()))
1219           if (Typ.get()->isObjCObjectOrInterfaceType()) {
1220             // Fake up a Declarator to use with ActOnTypeName.
1221             DeclSpec DS(AttrFactory);
1222             DS.SetRangeStart(ILoc);
1223             DS.SetRangeEnd(ILoc);
1224             const char *PrevSpec = nullptr;
1225             unsigned DiagID;
1226             DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ,
1227                                Actions.getASTContext().getPrintingPolicy());
1228 
1229             Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1230                                       DeclaratorContext::TypeName);
1231             TypeResult Ty = Actions.ActOnTypeName(getCurScope(),
1232                                                   DeclaratorInfo);
1233             if (Ty.isInvalid())
1234               break;
1235 
1236             Res = ParseObjCMessageExpressionBody(SourceLocation(),
1237                                                  SourceLocation(),
1238                                                  Ty.get(), nullptr);
1239             break;
1240           }
1241     }
1242 
1243     // Make sure to pass down the right value for isAddressOfOperand.
1244     if (isAddressOfOperand && isPostfixExpressionSuffixStart())
1245       isAddressOfOperand = false;
1246 
1247     // Function designators are allowed to be undeclared (C99 6.5.1p2), so we
1248     // need to know whether or not this identifier is a function designator or
1249     // not.
1250     UnqualifiedId Name;
1251     CXXScopeSpec ScopeSpec;
1252     SourceLocation TemplateKWLoc;
1253     Token Replacement;
1254     CastExpressionIdValidator Validator(
1255         /*Next=*/Tok,
1256         /*AllowTypes=*/isTypeCast != NotTypeCast,
1257         /*AllowNonTypes=*/isTypeCast != IsTypeCast);
1258     Validator.IsAddressOfOperand = isAddressOfOperand;
1259     if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) {
1260       Validator.WantExpressionKeywords = false;
1261       Validator.WantRemainingKeywords = false;
1262     } else {
1263       Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren);
1264     }
1265     Name.setIdentifier(&II, ILoc);
1266     Res = Actions.ActOnIdExpression(
1267         getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren),
1268         isAddressOfOperand, &Validator,
1269         /*IsInlineAsmIdentifier=*/false,
1270         Tok.is(tok::r_paren) ? nullptr : &Replacement);
1271     if (!Res.isInvalid() && Res.isUnset()) {
1272       UnconsumeToken(Replacement);
1273       return ParseCastExpression(ParseKind, isAddressOfOperand,
1274                                  NotCastExpr, isTypeCast,
1275                                  /*isVectorLiteral=*/false,
1276                                  NotPrimaryExpression);
1277     }
1278     if (!Res.isInvalid() && Tok.is(tok::less))
1279       checkPotentialAngleBracket(Res);
1280     break;
1281   }
1282   case tok::char_constant:     // constant: character-constant
1283   case tok::wide_char_constant:
1284   case tok::utf8_char_constant:
1285   case tok::utf16_char_constant:
1286   case tok::utf32_char_constant:
1287     Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope());
1288     ConsumeToken();
1289     break;
1290   case tok::kw___func__:       // primary-expression: __func__ [C99 6.4.2.2]
1291   case tok::kw___FUNCTION__:   // primary-expression: __FUNCTION__ [GNU]
1292   case tok::kw___FUNCDNAME__:   // primary-expression: __FUNCDNAME__ [MS]
1293   case tok::kw___FUNCSIG__:     // primary-expression: __FUNCSIG__ [MS]
1294   case tok::kw_L__FUNCTION__:   // primary-expression: L__FUNCTION__ [MS]
1295   case tok::kw_L__FUNCSIG__:    // primary-expression: L__FUNCSIG__ [MS]
1296   case tok::kw___PRETTY_FUNCTION__:  // primary-expression: __P..Y_F..N__ [GNU]
1297     Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind);
1298     ConsumeToken();
1299     break;
1300   case tok::string_literal:    // primary-expression: string-literal
1301   case tok::wide_string_literal:
1302   case tok::utf8_string_literal:
1303   case tok::utf16_string_literal:
1304   case tok::utf32_string_literal:
1305     Res = ParseStringLiteralExpression(true);
1306     break;
1307   case tok::kw__Generic:   // primary-expression: generic-selection [C11 6.5.1]
1308     Res = ParseGenericSelectionExpression();
1309     break;
1310   case tok::kw___builtin_available:
1311     Res = ParseAvailabilityCheckExpr(Tok.getLocation());
1312     break;
1313   case tok::kw___builtin_va_arg:
1314   case tok::kw___builtin_offsetof:
1315   case tok::kw___builtin_choose_expr:
1316   case tok::kw___builtin_astype: // primary-expression: [OCL] as_type()
1317   case tok::kw___builtin_convertvector:
1318   case tok::kw___builtin_COLUMN:
1319   case tok::kw___builtin_FILE:
1320   case tok::kw___builtin_FUNCTION:
1321   case tok::kw___builtin_LINE:
1322   case tok::kw___builtin_source_location:
1323     if (NotPrimaryExpression)
1324       *NotPrimaryExpression = true;
1325     // This parses the complete suffix; we can return early.
1326     return ParseBuiltinPrimaryExpression();
1327   case tok::kw___null:
1328     Res = Actions.ActOnGNUNullExpr(ConsumeToken());
1329     break;
1330 
1331   case tok::plusplus:      // unary-expression: '++' unary-expression [C99]
1332   case tok::minusminus: {  // unary-expression: '--' unary-expression [C99]
1333     if (NotPrimaryExpression)
1334       *NotPrimaryExpression = true;
1335     // C++ [expr.unary] has:
1336     //   unary-expression:
1337     //     ++ cast-expression
1338     //     -- cast-expression
1339     Token SavedTok = Tok;
1340     ConsumeToken();
1341 
1342     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(),
1343                              SavedTok.getLocation());
1344     // One special case is implicitly handled here: if the preceding tokens are
1345     // an ambiguous cast expression, such as "(T())++", then we recurse to
1346     // determine whether the '++' is prefix or postfix.
1347     Res = ParseCastExpression(getLangOpts().CPlusPlus ?
1348                                   UnaryExprOnly : AnyCastExpr,
1349                               /*isAddressOfOperand*/false, NotCastExpr,
1350                               NotTypeCast);
1351     if (NotCastExpr) {
1352       // If we return with NotCastExpr = true, we must not consume any tokens,
1353       // so put the token back where we found it.
1354       assert(Res.isInvalid());
1355       UnconsumeToken(SavedTok);
1356       return ExprError();
1357     }
1358     if (!Res.isInvalid()) {
1359       Expr *Arg = Res.get();
1360       Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(),
1361                                  SavedKind, Arg);
1362       if (Res.isInvalid())
1363         Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(),
1364                                          Arg->getEndLoc(), Arg);
1365     }
1366     return Res;
1367   }
1368   case tok::amp: {         // unary-expression: '&' cast-expression
1369     if (NotPrimaryExpression)
1370       *NotPrimaryExpression = true;
1371     // Special treatment because of member pointers
1372     SourceLocation SavedLoc = ConsumeToken();
1373     PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc);
1374 
1375     Res = ParseCastExpression(AnyCastExpr, /*isAddressOfOperand=*/true);
1376     if (!Res.isInvalid()) {
1377       Expr *Arg = Res.get();
1378       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg);
1379       if (Res.isInvalid())
1380         Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(),
1381                                          Arg);
1382     }
1383     return Res;
1384   }
1385 
1386   case tok::star:          // unary-expression: '*' cast-expression
1387   case tok::plus:          // unary-expression: '+' cast-expression
1388   case tok::minus:         // unary-expression: '-' cast-expression
1389   case tok::tilde:         // unary-expression: '~' cast-expression
1390   case tok::exclaim:       // unary-expression: '!' cast-expression
1391   case tok::kw___real:     // unary-expression: '__real' cast-expression [GNU]
1392   case tok::kw___imag: {   // unary-expression: '__imag' cast-expression [GNU]
1393     if (NotPrimaryExpression)
1394       *NotPrimaryExpression = true;
1395     SourceLocation SavedLoc = ConsumeToken();
1396     PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc);
1397     Res = ParseCastExpression(AnyCastExpr);
1398     if (!Res.isInvalid()) {
1399       Expr *Arg = Res.get();
1400       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg,
1401                                  isAddressOfOperand);
1402       if (Res.isInvalid())
1403         Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg);
1404     }
1405     return Res;
1406   }
1407 
1408   case tok::kw_co_await: {  // unary-expression: 'co_await' cast-expression
1409     if (NotPrimaryExpression)
1410       *NotPrimaryExpression = true;
1411     SourceLocation CoawaitLoc = ConsumeToken();
1412     Res = ParseCastExpression(AnyCastExpr);
1413     if (!Res.isInvalid())
1414       Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get());
1415     return Res;
1416   }
1417 
1418   case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU]
1419     // __extension__ silences extension warnings in the subexpression.
1420     if (NotPrimaryExpression)
1421       *NotPrimaryExpression = true;
1422     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
1423     SourceLocation SavedLoc = ConsumeToken();
1424     Res = ParseCastExpression(AnyCastExpr);
1425     if (!Res.isInvalid())
1426       Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get());
1427     return Res;
1428   }
1429   case tok::kw__Alignof:   // unary-expression: '_Alignof' '(' type-name ')'
1430     if (!getLangOpts().C11)
1431       Diag(Tok, diag::ext_c11_feature) << Tok.getName();
1432     [[fallthrough]];
1433   case tok::kw_alignof:    // unary-expression: 'alignof' '(' type-id ')'
1434   case tok::kw___alignof:  // unary-expression: '__alignof' unary-expression
1435                            // unary-expression: '__alignof' '(' type-name ')'
1436   case tok::kw_sizeof:     // unary-expression: 'sizeof' unary-expression
1437                            // unary-expression: 'sizeof' '(' type-name ')'
1438   case tok::kw_vec_step:   // unary-expression: OpenCL 'vec_step' expression
1439   // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')'
1440   case tok::kw___builtin_omp_required_simd_align:
1441     if (NotPrimaryExpression)
1442       *NotPrimaryExpression = true;
1443     AllowSuffix = false;
1444     Res = ParseUnaryExprOrTypeTraitExpression();
1445     break;
1446   case tok::ampamp: {      // unary-expression: '&&' identifier
1447     if (NotPrimaryExpression)
1448       *NotPrimaryExpression = true;
1449     SourceLocation AmpAmpLoc = ConsumeToken();
1450     if (Tok.isNot(tok::identifier))
1451       return ExprError(Diag(Tok, diag::err_expected) << tok::identifier);
1452 
1453     if (getCurScope()->getFnParent() == nullptr)
1454       return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn));
1455 
1456     Diag(AmpAmpLoc, diag::ext_gnu_address_of_label);
1457     LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(),
1458                                                 Tok.getLocation());
1459     Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD);
1460     ConsumeToken();
1461     AllowSuffix = false;
1462     break;
1463   }
1464   case tok::kw_const_cast:
1465   case tok::kw_dynamic_cast:
1466   case tok::kw_reinterpret_cast:
1467   case tok::kw_static_cast:
1468   case tok::kw_addrspace_cast:
1469     if (NotPrimaryExpression)
1470       *NotPrimaryExpression = true;
1471     Res = ParseCXXCasts();
1472     break;
1473   case tok::kw___builtin_bit_cast:
1474     if (NotPrimaryExpression)
1475       *NotPrimaryExpression = true;
1476     Res = ParseBuiltinBitCast();
1477     break;
1478   case tok::kw_typeid:
1479     if (NotPrimaryExpression)
1480       *NotPrimaryExpression = true;
1481     Res = ParseCXXTypeid();
1482     break;
1483   case tok::kw___uuidof:
1484     if (NotPrimaryExpression)
1485       *NotPrimaryExpression = true;
1486     Res = ParseCXXUuidof();
1487     break;
1488   case tok::kw_this:
1489     Res = ParseCXXThis();
1490     break;
1491   case tok::kw___builtin_sycl_unique_stable_name:
1492     Res = ParseSYCLUniqueStableNameExpression();
1493     break;
1494 
1495   case tok::annot_typename:
1496     if (isStartOfObjCClassMessageMissingOpenBracket()) {
1497       TypeResult Type = getTypeAnnotation(Tok);
1498 
1499       // Fake up a Declarator to use with ActOnTypeName.
1500       DeclSpec DS(AttrFactory);
1501       DS.SetRangeStart(Tok.getLocation());
1502       DS.SetRangeEnd(Tok.getLastLoc());
1503 
1504       const char *PrevSpec = nullptr;
1505       unsigned DiagID;
1506       DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(),
1507                          PrevSpec, DiagID, Type,
1508                          Actions.getASTContext().getPrintingPolicy());
1509 
1510       Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
1511                                 DeclaratorContext::TypeName);
1512       TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
1513       if (Ty.isInvalid())
1514         break;
1515 
1516       ConsumeAnnotationToken();
1517       Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1518                                            Ty.get(), nullptr);
1519       break;
1520     }
1521     [[fallthrough]];
1522 
1523   case tok::annot_decltype:
1524   case tok::kw_char:
1525   case tok::kw_wchar_t:
1526   case tok::kw_char8_t:
1527   case tok::kw_char16_t:
1528   case tok::kw_char32_t:
1529   case tok::kw_bool:
1530   case tok::kw_short:
1531   case tok::kw_int:
1532   case tok::kw_long:
1533   case tok::kw___int64:
1534   case tok::kw___int128:
1535   case tok::kw__ExtInt:
1536   case tok::kw__BitInt:
1537   case tok::kw_signed:
1538   case tok::kw_unsigned:
1539   case tok::kw_half:
1540   case tok::kw_float:
1541   case tok::kw_double:
1542   case tok::kw___bf16:
1543   case tok::kw__Float16:
1544   case tok::kw___float128:
1545   case tok::kw___ibm128:
1546   case tok::kw_void:
1547   case tok::kw_auto:
1548   case tok::kw_typename:
1549   case tok::kw_typeof:
1550   case tok::kw___vector:
1551 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
1552 #include "clang/Basic/OpenCLImageTypes.def"
1553   {
1554     if (!getLangOpts().CPlusPlus) {
1555       Diag(Tok, diag::err_expected_expression);
1556       return ExprError();
1557     }
1558 
1559     // Everything henceforth is a postfix-expression.
1560     if (NotPrimaryExpression)
1561       *NotPrimaryExpression = true;
1562 
1563     if (SavedKind == tok::kw_typename) {
1564       // postfix-expression: typename-specifier '(' expression-list[opt] ')'
1565       //                     typename-specifier braced-init-list
1566       if (TryAnnotateTypeOrScopeToken())
1567         return ExprError();
1568 
1569       if (!Actions.isSimpleTypeSpecifier(Tok.getKind()))
1570         // We are trying to parse a simple-type-specifier but might not get such
1571         // a token after error recovery.
1572         return ExprError();
1573     }
1574 
1575     // postfix-expression: simple-type-specifier '(' expression-list[opt] ')'
1576     //                     simple-type-specifier braced-init-list
1577     //
1578     DeclSpec DS(AttrFactory);
1579 
1580     ParseCXXSimpleTypeSpecifier(DS);
1581     if (Tok.isNot(tok::l_paren) &&
1582         (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace)))
1583       return ExprError(Diag(Tok, diag::err_expected_lparen_after_type)
1584                          << DS.getSourceRange());
1585 
1586     if (Tok.is(tok::l_brace))
1587       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1588 
1589     Res = ParseCXXTypeConstructExpression(DS);
1590     break;
1591   }
1592 
1593   case tok::annot_cxxscope: { // [C++] id-expression: qualified-id
1594     // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse.
1595     // (We can end up in this situation after tentative parsing.)
1596     if (TryAnnotateTypeOrScopeToken())
1597       return ExprError();
1598     if (!Tok.is(tok::annot_cxxscope))
1599       return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1600                                  isTypeCast, isVectorLiteral,
1601                                  NotPrimaryExpression);
1602 
1603     Token Next = NextToken();
1604     if (Next.is(tok::annot_template_id)) {
1605       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next);
1606       if (TemplateId->Kind == TNK_Type_template) {
1607         // We have a qualified template-id that we know refers to a
1608         // type, translate it into a type and continue parsing as a
1609         // cast expression.
1610         CXXScopeSpec SS;
1611         ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
1612                                        /*ObjectHasErrors=*/false,
1613                                        /*EnteringContext=*/false);
1614         AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1615         return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr,
1616                                    isTypeCast, isVectorLiteral,
1617                                    NotPrimaryExpression);
1618       }
1619     }
1620 
1621     // Parse as an id-expression.
1622     Res = ParseCXXIdExpression(isAddressOfOperand);
1623     break;
1624   }
1625 
1626   case tok::annot_template_id: { // [C++]          template-id
1627     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
1628     if (TemplateId->Kind == TNK_Type_template) {
1629       // We have a template-id that we know refers to a type,
1630       // translate it into a type and continue parsing as a cast
1631       // expression.
1632       CXXScopeSpec SS;
1633       AnnotateTemplateIdTokenAsType(SS, ImplicitTypenameContext::Yes);
1634       return ParseCastExpression(ParseKind, isAddressOfOperand,
1635                                  NotCastExpr, isTypeCast, isVectorLiteral,
1636                                  NotPrimaryExpression);
1637     }
1638 
1639     // Fall through to treat the template-id as an id-expression.
1640     [[fallthrough]];
1641   }
1642 
1643   case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id
1644     Res = ParseCXXIdExpression(isAddressOfOperand);
1645     break;
1646 
1647   case tok::coloncolon: {
1648     // ::foo::bar -> global qualified name etc.   If TryAnnotateTypeOrScopeToken
1649     // annotates the token, tail recurse.
1650     if (TryAnnotateTypeOrScopeToken())
1651       return ExprError();
1652     if (!Tok.is(tok::coloncolon))
1653       return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast,
1654                                  isVectorLiteral, NotPrimaryExpression);
1655 
1656     // ::new -> [C++] new-expression
1657     // ::delete -> [C++] delete-expression
1658     SourceLocation CCLoc = ConsumeToken();
1659     if (Tok.is(tok::kw_new)) {
1660       if (NotPrimaryExpression)
1661         *NotPrimaryExpression = true;
1662       Res = ParseCXXNewExpression(true, CCLoc);
1663       AllowSuffix = false;
1664       break;
1665     }
1666     if (Tok.is(tok::kw_delete)) {
1667       if (NotPrimaryExpression)
1668         *NotPrimaryExpression = true;
1669       Res = ParseCXXDeleteExpression(true, CCLoc);
1670       AllowSuffix = false;
1671       break;
1672     }
1673 
1674     // This is not a type name or scope specifier, it is an invalid expression.
1675     Diag(CCLoc, diag::err_expected_expression);
1676     return ExprError();
1677   }
1678 
1679   case tok::kw_new: // [C++] new-expression
1680     if (NotPrimaryExpression)
1681       *NotPrimaryExpression = true;
1682     Res = ParseCXXNewExpression(false, Tok.getLocation());
1683     AllowSuffix = false;
1684     break;
1685 
1686   case tok::kw_delete: // [C++] delete-expression
1687     if (NotPrimaryExpression)
1688       *NotPrimaryExpression = true;
1689     Res = ParseCXXDeleteExpression(false, Tok.getLocation());
1690     AllowSuffix = false;
1691     break;
1692 
1693   case tok::kw_requires: // [C++2a] requires-expression
1694     Res = ParseRequiresExpression();
1695     AllowSuffix = false;
1696     break;
1697 
1698   case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')'
1699     if (NotPrimaryExpression)
1700       *NotPrimaryExpression = true;
1701     Diag(Tok, diag::warn_cxx98_compat_noexcept_expr);
1702     SourceLocation KeyLoc = ConsumeToken();
1703     BalancedDelimiterTracker T(*this, tok::l_paren);
1704 
1705     if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept"))
1706       return ExprError();
1707     // C++11 [expr.unary.noexcept]p1:
1708     //   The noexcept operator determines whether the evaluation of its operand,
1709     //   which is an unevaluated operand, can throw an exception.
1710     EnterExpressionEvaluationContext Unevaluated(
1711         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
1712     Res = ParseExpression();
1713 
1714     T.consumeClose();
1715 
1716     if (!Res.isInvalid())
1717       Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(),
1718                                       T.getCloseLocation());
1719     AllowSuffix = false;
1720     break;
1721   }
1722 
1723 #define TYPE_TRAIT(N,Spelling,K) \
1724   case tok::kw_##Spelling:
1725 #include "clang/Basic/TokenKinds.def"
1726     Res = ParseTypeTrait();
1727     break;
1728 
1729   case tok::kw___array_rank:
1730   case tok::kw___array_extent:
1731     if (NotPrimaryExpression)
1732       *NotPrimaryExpression = true;
1733     Res = ParseArrayTypeTrait();
1734     break;
1735 
1736   case tok::kw___is_lvalue_expr:
1737   case tok::kw___is_rvalue_expr:
1738     if (NotPrimaryExpression)
1739       *NotPrimaryExpression = true;
1740     Res = ParseExpressionTrait();
1741     break;
1742 
1743   case tok::at: {
1744     if (NotPrimaryExpression)
1745       *NotPrimaryExpression = true;
1746     SourceLocation AtLoc = ConsumeToken();
1747     return ParseObjCAtExpression(AtLoc);
1748   }
1749   case tok::caret:
1750     Res = ParseBlockLiteralExpression();
1751     break;
1752   case tok::code_completion: {
1753     cutOffParsing();
1754     Actions.CodeCompleteExpression(getCurScope(),
1755                                    PreferredType.get(Tok.getLocation()));
1756     return ExprError();
1757   }
1758 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
1759 #include "clang/Basic/TransformTypeTraits.def"
1760     // HACK: libstdc++ uses some of the transform-type-traits as alias
1761     // templates, so we need to work around this.
1762     if (!NextToken().is(tok::l_paren)) {
1763       Tok.setKind(tok::identifier);
1764       Diag(Tok, diag::ext_keyword_as_ident)
1765           << Tok.getIdentifierInfo()->getName() << 0;
1766       goto ParseIdentifier;
1767     }
1768     goto ExpectedExpression;
1769   case tok::l_square:
1770     if (getLangOpts().CPlusPlus11) {
1771       if (getLangOpts().ObjC) {
1772         // C++11 lambda expressions and Objective-C message sends both start with a
1773         // square bracket.  There are three possibilities here:
1774         // we have a valid lambda expression, we have an invalid lambda
1775         // expression, or we have something that doesn't appear to be a lambda.
1776         // If we're in the last case, we fall back to ParseObjCMessageExpression.
1777         Res = TryParseLambdaExpression();
1778         if (!Res.isInvalid() && !Res.get()) {
1779           // We assume Objective-C++ message expressions are not
1780           // primary-expressions.
1781           if (NotPrimaryExpression)
1782             *NotPrimaryExpression = true;
1783           Res = ParseObjCMessageExpression();
1784         }
1785         break;
1786       }
1787       Res = ParseLambdaExpression();
1788       break;
1789     }
1790     if (getLangOpts().ObjC) {
1791       Res = ParseObjCMessageExpression();
1792       break;
1793     }
1794     [[fallthrough]];
1795   default:
1796   ExpectedExpression:
1797     NotCastExpr = true;
1798     return ExprError();
1799   }
1800 
1801   // Check to see whether Res is a function designator only. If it is and we
1802   // are compiling for OpenCL, we need to return an error as this implies
1803   // that the address of the function is being taken, which is illegal in CL.
1804 
1805   if (ParseKind == PrimaryExprOnly)
1806     // This is strictly a primary-expression - no postfix-expr pieces should be
1807     // parsed.
1808     return Res;
1809 
1810   if (!AllowSuffix) {
1811     // FIXME: Don't parse a primary-expression suffix if we encountered a parse
1812     // error already.
1813     if (Res.isInvalid())
1814       return Res;
1815 
1816     switch (Tok.getKind()) {
1817     case tok::l_square:
1818     case tok::l_paren:
1819     case tok::plusplus:
1820     case tok::minusminus:
1821       // "expected ';'" or similar is probably the right diagnostic here. Let
1822       // the caller decide what to do.
1823       if (Tok.isAtStartOfLine())
1824         return Res;
1825 
1826       [[fallthrough]];
1827     case tok::period:
1828     case tok::arrow:
1829       break;
1830 
1831     default:
1832       return Res;
1833     }
1834 
1835     // This was a unary-expression for which a postfix-expression suffix is
1836     // not permitted by the grammar (eg, a sizeof expression or
1837     // new-expression or similar). Diagnose but parse the suffix anyway.
1838     Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens)
1839         << Tok.getKind() << Res.get()->getSourceRange()
1840         << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(")
1841         << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation),
1842                                       ")");
1843   }
1844 
1845   // These can be followed by postfix-expr pieces.
1846   PreferredType = SavedType;
1847   Res = ParsePostfixExpressionSuffix(Res);
1848   if (getLangOpts().OpenCL &&
1849       !getActions().getOpenCLOptions().isAvailableOption(
1850           "__cl_clang_function_pointers", getLangOpts()))
1851     if (Expr *PostfixExpr = Res.get()) {
1852       QualType Ty = PostfixExpr->getType();
1853       if (!Ty.isNull() && Ty->isFunctionType()) {
1854         Diag(PostfixExpr->getExprLoc(),
1855              diag::err_opencl_taking_function_address_parser);
1856         return ExprError();
1857       }
1858     }
1859 
1860   return Res;
1861 }
1862 
1863 /// Once the leading part of a postfix-expression is parsed, this
1864 /// method parses any suffixes that apply.
1865 ///
1866 /// \verbatim
1867 ///       postfix-expression: [C99 6.5.2]
1868 ///         primary-expression
1869 ///         postfix-expression '[' expression ']'
1870 ///         postfix-expression '[' braced-init-list ']'
1871 ///         postfix-expression '[' expression-list [opt] ']'  [C++2b 12.4.5]
1872 ///         postfix-expression '(' argument-expression-list[opt] ')'
1873 ///         postfix-expression '.' identifier
1874 ///         postfix-expression '->' identifier
1875 ///         postfix-expression '++'
1876 ///         postfix-expression '--'
1877 ///         '(' type-name ')' '{' initializer-list '}'
1878 ///         '(' type-name ')' '{' initializer-list ',' '}'
1879 ///
1880 ///       argument-expression-list: [C99 6.5.2]
1881 ///         argument-expression ...[opt]
1882 ///         argument-expression-list ',' assignment-expression ...[opt]
1883 /// \endverbatim
1884 ExprResult
1885 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) {
1886   // Now that the primary-expression piece of the postfix-expression has been
1887   // parsed, see if there are any postfix-expression pieces here.
1888   SourceLocation Loc;
1889   auto SavedType = PreferredType;
1890   while (true) {
1891     // Each iteration relies on preferred type for the whole expression.
1892     PreferredType = SavedType;
1893     switch (Tok.getKind()) {
1894     case tok::code_completion:
1895       if (InMessageExpression)
1896         return LHS;
1897 
1898       cutOffParsing();
1899       Actions.CodeCompletePostfixExpression(
1900           getCurScope(), LHS, PreferredType.get(Tok.getLocation()));
1901       return ExprError();
1902 
1903     case tok::identifier:
1904       // If we see identifier: after an expression, and we're not already in a
1905       // message send, then this is probably a message send with a missing
1906       // opening bracket '['.
1907       if (getLangOpts().ObjC && !InMessageExpression &&
1908           (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
1909         LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(),
1910                                              nullptr, LHS.get());
1911         break;
1912       }
1913       // Fall through; this isn't a message send.
1914       [[fallthrough]];
1915 
1916     default:  // Not a postfix-expression suffix.
1917       return LHS;
1918     case tok::l_square: {  // postfix-expression: p-e '[' expression ']'
1919       // If we have a array postfix expression that starts on a new line and
1920       // Objective-C is enabled, it is highly likely that the user forgot a
1921       // semicolon after the base expression and that the array postfix-expr is
1922       // actually another message send.  In this case, do some look-ahead to see
1923       // if the contents of the square brackets are obviously not a valid
1924       // expression and recover by pretending there is no suffix.
1925       if (getLangOpts().ObjC && Tok.isAtStartOfLine() &&
1926           isSimpleObjCMessageExpression())
1927         return LHS;
1928 
1929       // Reject array indices starting with a lambda-expression. '[[' is
1930       // reserved for attributes.
1931       if (CheckProhibitedCXX11Attribute()) {
1932         (void)Actions.CorrectDelayedTyposInExpr(LHS);
1933         return ExprError();
1934       }
1935       BalancedDelimiterTracker T(*this, tok::l_square);
1936       T.consumeOpen();
1937       Loc = T.getOpenLocation();
1938       ExprResult Length, Stride;
1939       SourceLocation ColonLocFirst, ColonLocSecond;
1940       ExprVector ArgExprs;
1941       bool HasError = false;
1942       PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get());
1943 
1944       // We try to parse a list of indexes in all language mode first
1945       // and, in we find 0 or one index, we try to parse an OpenMP array
1946       // section. This allow us to support C++2b multi dimensional subscript and
1947       // OpenMp sections in the same language mode.
1948       if (!getLangOpts().OpenMP || Tok.isNot(tok::colon)) {
1949         if (!getLangOpts().CPlusPlus2b) {
1950           ExprResult Idx;
1951           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
1952             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
1953             Idx = ParseBraceInitializer();
1954           } else {
1955             Idx = ParseExpression(); // May be a comma expression
1956           }
1957           LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1958           Idx = Actions.CorrectDelayedTyposInExpr(Idx);
1959           if (Idx.isInvalid()) {
1960             HasError = true;
1961           } else {
1962             ArgExprs.push_back(Idx.get());
1963           }
1964         } else if (Tok.isNot(tok::r_square)) {
1965           if (ParseExpressionList(ArgExprs)) {
1966             LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1967             HasError = true;
1968           }
1969         }
1970       }
1971 
1972       if (ArgExprs.size() <= 1 && getLangOpts().OpenMP) {
1973         ColonProtectionRAIIObject RAII(*this);
1974         if (Tok.is(tok::colon)) {
1975           // Consume ':'
1976           ColonLocFirst = ConsumeToken();
1977           if (Tok.isNot(tok::r_square) &&
1978               (getLangOpts().OpenMP < 50 ||
1979                ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) {
1980             Length = ParseExpression();
1981             Length = Actions.CorrectDelayedTyposInExpr(Length);
1982           }
1983         }
1984         if (getLangOpts().OpenMP >= 50 &&
1985             (OMPClauseKind == llvm::omp::Clause::OMPC_to ||
1986              OMPClauseKind == llvm::omp::Clause::OMPC_from) &&
1987             Tok.is(tok::colon)) {
1988           // Consume ':'
1989           ColonLocSecond = ConsumeToken();
1990           if (Tok.isNot(tok::r_square)) {
1991             Stride = ParseExpression();
1992           }
1993         }
1994       }
1995 
1996       SourceLocation RLoc = Tok.getLocation();
1997       LHS = Actions.CorrectDelayedTyposInExpr(LHS);
1998 
1999       if (!LHS.isInvalid() && !HasError && !Length.isInvalid() &&
2000           !Stride.isInvalid() && Tok.is(tok::r_square)) {
2001         if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) {
2002           LHS = Actions.ActOnOMPArraySectionExpr(
2003               LHS.get(), Loc, ArgExprs.empty() ? nullptr : ArgExprs[0],
2004               ColonLocFirst, ColonLocSecond, Length.get(), Stride.get(), RLoc);
2005         } else {
2006           LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc,
2007                                                 ArgExprs, RLoc);
2008         }
2009       } else {
2010         LHS = ExprError();
2011       }
2012 
2013       // Match the ']'.
2014       T.consumeClose();
2015       break;
2016     }
2017 
2018     case tok::l_paren:         // p-e: p-e '(' argument-expression-list[opt] ')'
2019     case tok::lesslessless: {  // p-e: p-e '<<<' argument-expression-list '>>>'
2020                                //   '(' argument-expression-list[opt] ')'
2021       tok::TokenKind OpKind = Tok.getKind();
2022       InMessageExpressionRAIIObject InMessage(*this, false);
2023 
2024       Expr *ExecConfig = nullptr;
2025 
2026       BalancedDelimiterTracker PT(*this, tok::l_paren);
2027 
2028       if (OpKind == tok::lesslessless) {
2029         ExprVector ExecConfigExprs;
2030         SourceLocation OpenLoc = ConsumeToken();
2031 
2032         if (ParseSimpleExpressionList(ExecConfigExprs)) {
2033           (void)Actions.CorrectDelayedTyposInExpr(LHS);
2034           LHS = ExprError();
2035         }
2036 
2037         SourceLocation CloseLoc;
2038         if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) {
2039         } else if (LHS.isInvalid()) {
2040           SkipUntil(tok::greatergreatergreater, StopAtSemi);
2041         } else {
2042           // There was an error closing the brackets
2043           Diag(Tok, diag::err_expected) << tok::greatergreatergreater;
2044           Diag(OpenLoc, diag::note_matching) << tok::lesslessless;
2045           SkipUntil(tok::greatergreatergreater, StopAtSemi);
2046           LHS = ExprError();
2047         }
2048 
2049         if (!LHS.isInvalid()) {
2050           if (ExpectAndConsume(tok::l_paren))
2051             LHS = ExprError();
2052           else
2053             Loc = PrevTokLocation;
2054         }
2055 
2056         if (!LHS.isInvalid()) {
2057           ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(),
2058                                     OpenLoc,
2059                                     ExecConfigExprs,
2060                                     CloseLoc);
2061           if (ECResult.isInvalid())
2062             LHS = ExprError();
2063           else
2064             ExecConfig = ECResult.get();
2065         }
2066       } else {
2067         PT.consumeOpen();
2068         Loc = PT.getOpenLocation();
2069       }
2070 
2071       ExprVector ArgExprs;
2072       auto RunSignatureHelp = [&]() -> QualType {
2073         QualType PreferredType = Actions.ProduceCallSignatureHelp(
2074             LHS.get(), ArgExprs, PT.getOpenLocation());
2075         CalledSignatureHelp = true;
2076         return PreferredType;
2077       };
2078       if (OpKind == tok::l_paren || !LHS.isInvalid()) {
2079         if (Tok.isNot(tok::r_paren)) {
2080           if (ParseExpressionList(ArgExprs, [&] {
2081                 PreferredType.enterFunctionArgument(Tok.getLocation(),
2082                                                     RunSignatureHelp);
2083               })) {
2084             (void)Actions.CorrectDelayedTyposInExpr(LHS);
2085             // If we got an error when parsing expression list, we don't call
2086             // the CodeCompleteCall handler inside the parser. So call it here
2087             // to make sure we get overload suggestions even when we are in the
2088             // middle of a parameter.
2089             if (PP.isCodeCompletionReached() && !CalledSignatureHelp)
2090               RunSignatureHelp();
2091             LHS = ExprError();
2092           } else if (LHS.isInvalid()) {
2093             for (auto &E : ArgExprs)
2094               Actions.CorrectDelayedTyposInExpr(E);
2095           }
2096         }
2097       }
2098 
2099       // Match the ')'.
2100       if (LHS.isInvalid()) {
2101         SkipUntil(tok::r_paren, StopAtSemi);
2102       } else if (Tok.isNot(tok::r_paren)) {
2103         bool HadDelayedTypo = false;
2104         if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get())
2105           HadDelayedTypo = true;
2106         for (auto &E : ArgExprs)
2107           if (Actions.CorrectDelayedTyposInExpr(E).get() != E)
2108             HadDelayedTypo = true;
2109         // If there were delayed typos in the LHS or ArgExprs, call SkipUntil
2110         // instead of PT.consumeClose() to avoid emitting extra diagnostics for
2111         // the unmatched l_paren.
2112         if (HadDelayedTypo)
2113           SkipUntil(tok::r_paren, StopAtSemi);
2114         else
2115           PT.consumeClose();
2116         LHS = ExprError();
2117       } else {
2118         Expr *Fn = LHS.get();
2119         SourceLocation RParLoc = Tok.getLocation();
2120         LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc,
2121                                     ExecConfig);
2122         if (LHS.isInvalid()) {
2123           ArgExprs.insert(ArgExprs.begin(), Fn);
2124           LHS =
2125               Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs);
2126         }
2127         PT.consumeClose();
2128       }
2129 
2130       break;
2131     }
2132     case tok::arrow:
2133     case tok::period: {
2134       // postfix-expression: p-e '->' template[opt] id-expression
2135       // postfix-expression: p-e '.' template[opt] id-expression
2136       tok::TokenKind OpKind = Tok.getKind();
2137       SourceLocation OpLoc = ConsumeToken();  // Eat the "." or "->" token.
2138 
2139       CXXScopeSpec SS;
2140       ParsedType ObjectType;
2141       bool MayBePseudoDestructor = false;
2142       Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr;
2143 
2144       PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS);
2145 
2146       if (getLangOpts().CPlusPlus && !LHS.isInvalid()) {
2147         Expr *Base = OrigLHS;
2148         const Type* BaseType = Base->getType().getTypePtrOrNull();
2149         if (BaseType && Tok.is(tok::l_paren) &&
2150             (BaseType->isFunctionType() ||
2151              BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) {
2152           Diag(OpLoc, diag::err_function_is_not_record)
2153               << OpKind << Base->getSourceRange()
2154               << FixItHint::CreateRemoval(OpLoc);
2155           return ParsePostfixExpressionSuffix(Base);
2156         }
2157 
2158         LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc,
2159                                                    OpKind, ObjectType,
2160                                                    MayBePseudoDestructor);
2161         if (LHS.isInvalid()) {
2162           // Clang will try to perform expression based completion as a
2163           // fallback, which is confusing in case of member references. So we
2164           // stop here without any completions.
2165           if (Tok.is(tok::code_completion)) {
2166             cutOffParsing();
2167             return ExprError();
2168           }
2169           break;
2170         }
2171         ParseOptionalCXXScopeSpecifier(
2172             SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2173             /*EnteringContext=*/false, &MayBePseudoDestructor);
2174         if (SS.isNotEmpty())
2175           ObjectType = nullptr;
2176       }
2177 
2178       if (Tok.is(tok::code_completion)) {
2179         tok::TokenKind CorrectedOpKind =
2180             OpKind == tok::arrow ? tok::period : tok::arrow;
2181         ExprResult CorrectedLHS(/*Invalid=*/true);
2182         if (getLangOpts().CPlusPlus && OrigLHS) {
2183           // FIXME: Creating a TentativeAnalysisScope from outside Sema is a
2184           // hack.
2185           Sema::TentativeAnalysisScope Trap(Actions);
2186           CorrectedLHS = Actions.ActOnStartCXXMemberReference(
2187               getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType,
2188               MayBePseudoDestructor);
2189         }
2190 
2191         Expr *Base = LHS.get();
2192         Expr *CorrectedBase = CorrectedLHS.get();
2193         if (!CorrectedBase && !getLangOpts().CPlusPlus)
2194           CorrectedBase = Base;
2195 
2196         // Code completion for a member access expression.
2197         cutOffParsing();
2198         Actions.CodeCompleteMemberReferenceExpr(
2199             getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow,
2200             Base && ExprStatementTokLoc == Base->getBeginLoc(),
2201             PreferredType.get(Tok.getLocation()));
2202 
2203         return ExprError();
2204       }
2205 
2206       if (MayBePseudoDestructor && !LHS.isInvalid()) {
2207         LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS,
2208                                        ObjectType);
2209         break;
2210       }
2211 
2212       // Either the action has told us that this cannot be a
2213       // pseudo-destructor expression (based on the type of base
2214       // expression), or we didn't see a '~' in the right place. We
2215       // can still parse a destructor name here, but in that case it
2216       // names a real destructor.
2217       // Allow explicit constructor calls in Microsoft mode.
2218       // FIXME: Add support for explicit call of template constructor.
2219       SourceLocation TemplateKWLoc;
2220       UnqualifiedId Name;
2221       if (getLangOpts().ObjC && OpKind == tok::period &&
2222           Tok.is(tok::kw_class)) {
2223         // Objective-C++:
2224         //   After a '.' in a member access expression, treat the keyword
2225         //   'class' as if it were an identifier.
2226         //
2227         // This hack allows property access to the 'class' method because it is
2228         // such a common method name. For other C++ keywords that are
2229         // Objective-C method names, one must use the message send syntax.
2230         IdentifierInfo *Id = Tok.getIdentifierInfo();
2231         SourceLocation Loc = ConsumeToken();
2232         Name.setIdentifier(Id, Loc);
2233       } else if (ParseUnqualifiedId(
2234                      SS, ObjectType, LHS.get() && LHS.get()->containsErrors(),
2235                      /*EnteringContext=*/false,
2236                      /*AllowDestructorName=*/true,
2237                      /*AllowConstructorName=*/
2238                      getLangOpts().MicrosoftExt && SS.isNotEmpty(),
2239                      /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) {
2240         (void)Actions.CorrectDelayedTyposInExpr(LHS);
2241         LHS = ExprError();
2242       }
2243 
2244       if (!LHS.isInvalid())
2245         LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc,
2246                                             OpKind, SS, TemplateKWLoc, Name,
2247                                  CurParsedObjCImpl ? CurParsedObjCImpl->Dcl
2248                                                    : nullptr);
2249       if (!LHS.isInvalid()) {
2250         if (Tok.is(tok::less))
2251           checkPotentialAngleBracket(LHS);
2252       } else if (OrigLHS && Name.isValid()) {
2253         // Preserve the LHS if the RHS is an invalid member.
2254         LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(),
2255                                          Name.getEndLoc(), {OrigLHS});
2256       }
2257       break;
2258     }
2259     case tok::plusplus:    // postfix-expression: postfix-expression '++'
2260     case tok::minusminus:  // postfix-expression: postfix-expression '--'
2261       if (!LHS.isInvalid()) {
2262         Expr *Arg = LHS.get();
2263         LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(),
2264                                           Tok.getKind(), Arg);
2265         if (LHS.isInvalid())
2266           LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(),
2267                                            Tok.getLocation(), Arg);
2268       }
2269       ConsumeToken();
2270       break;
2271     }
2272   }
2273 }
2274 
2275 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/
2276 /// vec_step and we are at the start of an expression or a parenthesized
2277 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the
2278 /// expression (isCastExpr == false) or the type (isCastExpr == true).
2279 ///
2280 /// \verbatim
2281 ///       unary-expression:  [C99 6.5.3]
2282 ///         'sizeof' unary-expression
2283 ///         'sizeof' '(' type-name ')'
2284 /// [GNU]   '__alignof' unary-expression
2285 /// [GNU]   '__alignof' '(' type-name ')'
2286 /// [C11]   '_Alignof' '(' type-name ')'
2287 /// [C++0x] 'alignof' '(' type-id ')'
2288 ///
2289 /// [GNU]   typeof-specifier:
2290 ///           typeof ( expressions )
2291 ///           typeof ( type-name )
2292 /// [GNU/C++] typeof unary-expression
2293 /// [C2x]   typeof-specifier:
2294 ///           typeof '(' typeof-specifier-argument ')'
2295 ///           typeof_unqual '(' typeof-specifier-argument ')'
2296 ///
2297 ///         typeof-specifier-argument:
2298 ///           expression
2299 ///           type-name
2300 ///
2301 /// [OpenCL 1.1 6.11.12] vec_step built-in function:
2302 ///           vec_step ( expressions )
2303 ///           vec_step ( type-name )
2304 /// \endverbatim
2305 ExprResult
2306 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok,
2307                                            bool &isCastExpr,
2308                                            ParsedType &CastTy,
2309                                            SourceRange &CastRange) {
2310 
2311   assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual, tok::kw_sizeof,
2312                        tok::kw___alignof, tok::kw_alignof, tok::kw__Alignof,
2313                        tok::kw_vec_step,
2314                        tok::kw___builtin_omp_required_simd_align) &&
2315          "Not a typeof/sizeof/alignof/vec_step expression!");
2316 
2317   ExprResult Operand;
2318 
2319   // If the operand doesn't start with an '(', it must be an expression.
2320   if (Tok.isNot(tok::l_paren)) {
2321     // If construct allows a form without parenthesis, user may forget to put
2322     // pathenthesis around type name.
2323     if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2324                       tok::kw__Alignof)) {
2325       if (isTypeIdUnambiguously()) {
2326         DeclSpec DS(AttrFactory);
2327         ParseSpecifierQualifierList(DS);
2328         Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
2329                                   DeclaratorContext::TypeName);
2330         ParseDeclarator(DeclaratorInfo);
2331 
2332         SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation());
2333         SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation);
2334         if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) {
2335           Diag(OpTok.getLocation(),
2336                diag::err_expected_parentheses_around_typename)
2337               << OpTok.getName();
2338         } else {
2339           Diag(LParenLoc, diag::err_expected_parentheses_around_typename)
2340               << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(")
2341               << FixItHint::CreateInsertion(RParenLoc, ")");
2342         }
2343         isCastExpr = true;
2344         return ExprEmpty();
2345       }
2346     }
2347 
2348     isCastExpr = false;
2349     if (OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
2350         !getLangOpts().CPlusPlus) {
2351       Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo()
2352                                           << tok::l_paren;
2353       return ExprError();
2354     }
2355 
2356     Operand = ParseCastExpression(UnaryExprOnly);
2357   } else {
2358     // If it starts with a '(', we know that it is either a parenthesized
2359     // type-name, or it is a unary-expression that starts with a compound
2360     // literal, or starts with a primary-expression that is a parenthesized
2361     // expression.
2362     ParenParseOption ExprType = CastExpr;
2363     SourceLocation LParenLoc = Tok.getLocation(), RParenLoc;
2364 
2365     Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/,
2366                                    false, CastTy, RParenLoc);
2367     CastRange = SourceRange(LParenLoc, RParenLoc);
2368 
2369     // If ParseParenExpression parsed a '(typename)' sequence only, then this is
2370     // a type.
2371     if (ExprType == CastExpr) {
2372       isCastExpr = true;
2373       return ExprEmpty();
2374     }
2375 
2376     if (getLangOpts().CPlusPlus ||
2377         !OpTok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual)) {
2378       // GNU typeof in C requires the expression to be parenthesized. Not so for
2379       // sizeof/alignof or in C++. Therefore, the parenthesized expression is
2380       // the start of a unary-expression, but doesn't include any postfix
2381       // pieces. Parse these now if present.
2382       if (!Operand.isInvalid())
2383         Operand = ParsePostfixExpressionSuffix(Operand.get());
2384     }
2385   }
2386 
2387   // If we get here, the operand to the typeof/sizeof/alignof was an expression.
2388   isCastExpr = false;
2389   return Operand;
2390 }
2391 
2392 /// Parse a __builtin_sycl_unique_stable_name expression.  Accepts a type-id as
2393 /// a parameter.
2394 ExprResult Parser::ParseSYCLUniqueStableNameExpression() {
2395   assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) &&
2396          "Not __builtin_sycl_unique_stable_name");
2397 
2398   SourceLocation OpLoc = ConsumeToken();
2399   BalancedDelimiterTracker T(*this, tok::l_paren);
2400 
2401   // __builtin_sycl_unique_stable_name expressions are always parenthesized.
2402   if (T.expectAndConsume(diag::err_expected_lparen_after,
2403                          "__builtin_sycl_unique_stable_name"))
2404     return ExprError();
2405 
2406   TypeResult Ty = ParseTypeName();
2407 
2408   if (Ty.isInvalid()) {
2409     T.skipToEnd();
2410     return ExprError();
2411   }
2412 
2413   if (T.consumeClose())
2414     return ExprError();
2415 
2416   return Actions.ActOnSYCLUniqueStableNameExpr(OpLoc, T.getOpenLocation(),
2417                                                T.getCloseLocation(), Ty.get());
2418 }
2419 
2420 /// Parse a sizeof or alignof expression.
2421 ///
2422 /// \verbatim
2423 ///       unary-expression:  [C99 6.5.3]
2424 ///         'sizeof' unary-expression
2425 ///         'sizeof' '(' type-name ')'
2426 /// [C++11] 'sizeof' '...' '(' identifier ')'
2427 /// [GNU]   '__alignof' unary-expression
2428 /// [GNU]   '__alignof' '(' type-name ')'
2429 /// [C11]   '_Alignof' '(' type-name ')'
2430 /// [C++11] 'alignof' '(' type-id ')'
2431 /// \endverbatim
2432 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() {
2433   assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof,
2434                      tok::kw__Alignof, tok::kw_vec_step,
2435                      tok::kw___builtin_omp_required_simd_align) &&
2436          "Not a sizeof/alignof/vec_step expression!");
2437   Token OpTok = Tok;
2438   ConsumeToken();
2439 
2440   // [C++11] 'sizeof' '...' '(' identifier ')'
2441   if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) {
2442     SourceLocation EllipsisLoc = ConsumeToken();
2443     SourceLocation LParenLoc, RParenLoc;
2444     IdentifierInfo *Name = nullptr;
2445     SourceLocation NameLoc;
2446     if (Tok.is(tok::l_paren)) {
2447       BalancedDelimiterTracker T(*this, tok::l_paren);
2448       T.consumeOpen();
2449       LParenLoc = T.getOpenLocation();
2450       if (Tok.is(tok::identifier)) {
2451         Name = Tok.getIdentifierInfo();
2452         NameLoc = ConsumeToken();
2453         T.consumeClose();
2454         RParenLoc = T.getCloseLocation();
2455         if (RParenLoc.isInvalid())
2456           RParenLoc = PP.getLocForEndOfToken(NameLoc);
2457       } else {
2458         Diag(Tok, diag::err_expected_parameter_pack);
2459         SkipUntil(tok::r_paren, StopAtSemi);
2460       }
2461     } else if (Tok.is(tok::identifier)) {
2462       Name = Tok.getIdentifierInfo();
2463       NameLoc = ConsumeToken();
2464       LParenLoc = PP.getLocForEndOfToken(EllipsisLoc);
2465       RParenLoc = PP.getLocForEndOfToken(NameLoc);
2466       Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack)
2467         << Name
2468         << FixItHint::CreateInsertion(LParenLoc, "(")
2469         << FixItHint::CreateInsertion(RParenLoc, ")");
2470     } else {
2471       Diag(Tok, diag::err_sizeof_parameter_pack);
2472     }
2473 
2474     if (!Name)
2475       return ExprError();
2476 
2477     EnterExpressionEvaluationContext Unevaluated(
2478         Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2479         Sema::ReuseLambdaContextDecl);
2480 
2481     return Actions.ActOnSizeofParameterPackExpr(getCurScope(),
2482                                                 OpTok.getLocation(),
2483                                                 *Name, NameLoc,
2484                                                 RParenLoc);
2485   }
2486 
2487   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2488     Diag(OpTok, diag::warn_cxx98_compat_alignof);
2489 
2490   EnterExpressionEvaluationContext Unevaluated(
2491       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
2492       Sema::ReuseLambdaContextDecl);
2493 
2494   bool isCastExpr;
2495   ParsedType CastTy;
2496   SourceRange CastRange;
2497   ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok,
2498                                                           isCastExpr,
2499                                                           CastTy,
2500                                                           CastRange);
2501 
2502   UnaryExprOrTypeTrait ExprKind = UETT_SizeOf;
2503   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2504     ExprKind = UETT_AlignOf;
2505   else if (OpTok.is(tok::kw___alignof))
2506     ExprKind = UETT_PreferredAlignOf;
2507   else if (OpTok.is(tok::kw_vec_step))
2508     ExprKind = UETT_VecStep;
2509   else if (OpTok.is(tok::kw___builtin_omp_required_simd_align))
2510     ExprKind = UETT_OpenMPRequiredSimdAlign;
2511 
2512   if (isCastExpr)
2513     return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2514                                                  ExprKind,
2515                                                  /*IsType=*/true,
2516                                                  CastTy.getAsOpaquePtr(),
2517                                                  CastRange);
2518 
2519   if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof))
2520     Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo();
2521 
2522   // If we get here, the operand to the sizeof/alignof was an expression.
2523   if (!Operand.isInvalid())
2524     Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(),
2525                                                     ExprKind,
2526                                                     /*IsType=*/false,
2527                                                     Operand.get(),
2528                                                     CastRange);
2529   return Operand;
2530 }
2531 
2532 /// ParseBuiltinPrimaryExpression
2533 ///
2534 /// \verbatim
2535 ///       primary-expression: [C99 6.5.1]
2536 /// [GNU]   '__builtin_va_arg' '(' assignment-expression ',' type-name ')'
2537 /// [GNU]   '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')'
2538 /// [GNU]   '__builtin_choose_expr' '(' assign-expr ',' assign-expr ','
2539 ///                                     assign-expr ')'
2540 /// [GNU]   '__builtin_types_compatible_p' '(' type-name ',' type-name ')'
2541 /// [GNU]   '__builtin_FILE' '(' ')'
2542 /// [GNU]   '__builtin_FUNCTION' '(' ')'
2543 /// [GNU]   '__builtin_LINE' '(' ')'
2544 /// [CLANG] '__builtin_COLUMN' '(' ')'
2545 /// [GNU]   '__builtin_source_location' '(' ')'
2546 /// [OCL]   '__builtin_astype' '(' assignment-expression ',' type-name ')'
2547 ///
2548 /// [GNU] offsetof-member-designator:
2549 /// [GNU]   identifier
2550 /// [GNU]   offsetof-member-designator '.' identifier
2551 /// [GNU]   offsetof-member-designator '[' expression ']'
2552 /// \endverbatim
2553 ExprResult Parser::ParseBuiltinPrimaryExpression() {
2554   ExprResult Res;
2555   const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo();
2556 
2557   tok::TokenKind T = Tok.getKind();
2558   SourceLocation StartLoc = ConsumeToken();   // Eat the builtin identifier.
2559 
2560   // All of these start with an open paren.
2561   if (Tok.isNot(tok::l_paren))
2562     return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII
2563                                                          << tok::l_paren);
2564 
2565   BalancedDelimiterTracker PT(*this, tok::l_paren);
2566   PT.consumeOpen();
2567 
2568   // TODO: Build AST.
2569 
2570   switch (T) {
2571   default: llvm_unreachable("Not a builtin primary expression!");
2572   case tok::kw___builtin_va_arg: {
2573     ExprResult Expr(ParseAssignmentExpression());
2574 
2575     if (ExpectAndConsume(tok::comma)) {
2576       SkipUntil(tok::r_paren, StopAtSemi);
2577       Expr = ExprError();
2578     }
2579 
2580     TypeResult Ty = ParseTypeName();
2581 
2582     if (Tok.isNot(tok::r_paren)) {
2583       Diag(Tok, diag::err_expected) << tok::r_paren;
2584       Expr = ExprError();
2585     }
2586 
2587     if (Expr.isInvalid() || Ty.isInvalid())
2588       Res = ExprError();
2589     else
2590       Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen());
2591     break;
2592   }
2593   case tok::kw___builtin_offsetof: {
2594     SourceLocation TypeLoc = Tok.getLocation();
2595     auto OOK = Sema::OffsetOfKind::OOK_Builtin;
2596     if (Tok.getLocation().isMacroID()) {
2597       StringRef MacroName = Lexer::getImmediateMacroNameForDiagnostics(
2598           Tok.getLocation(), PP.getSourceManager(), getLangOpts());
2599       if (MacroName == "offsetof")
2600         OOK = Sema::OffsetOfKind::OOK_Macro;
2601     }
2602     TypeResult Ty;
2603     {
2604       OffsetOfStateRAIIObject InOffsetof(*this, OOK);
2605       Ty = ParseTypeName();
2606       if (Ty.isInvalid()) {
2607         SkipUntil(tok::r_paren, StopAtSemi);
2608         return ExprError();
2609       }
2610     }
2611 
2612     if (ExpectAndConsume(tok::comma)) {
2613       SkipUntil(tok::r_paren, StopAtSemi);
2614       return ExprError();
2615     }
2616 
2617     // We must have at least one identifier here.
2618     if (Tok.isNot(tok::identifier)) {
2619       Diag(Tok, diag::err_expected) << tok::identifier;
2620       SkipUntil(tok::r_paren, StopAtSemi);
2621       return ExprError();
2622     }
2623 
2624     // Keep track of the various subcomponents we see.
2625     SmallVector<Sema::OffsetOfComponent, 4> Comps;
2626 
2627     Comps.push_back(Sema::OffsetOfComponent());
2628     Comps.back().isBrackets = false;
2629     Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2630     Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken();
2631 
2632     // FIXME: This loop leaks the index expressions on error.
2633     while (true) {
2634       if (Tok.is(tok::period)) {
2635         // offsetof-member-designator: offsetof-member-designator '.' identifier
2636         Comps.push_back(Sema::OffsetOfComponent());
2637         Comps.back().isBrackets = false;
2638         Comps.back().LocStart = ConsumeToken();
2639 
2640         if (Tok.isNot(tok::identifier)) {
2641           Diag(Tok, diag::err_expected) << tok::identifier;
2642           SkipUntil(tok::r_paren, StopAtSemi);
2643           return ExprError();
2644         }
2645         Comps.back().U.IdentInfo = Tok.getIdentifierInfo();
2646         Comps.back().LocEnd = ConsumeToken();
2647       } else if (Tok.is(tok::l_square)) {
2648         if (CheckProhibitedCXX11Attribute())
2649           return ExprError();
2650 
2651         // offsetof-member-designator: offsetof-member-design '[' expression ']'
2652         Comps.push_back(Sema::OffsetOfComponent());
2653         Comps.back().isBrackets = true;
2654         BalancedDelimiterTracker ST(*this, tok::l_square);
2655         ST.consumeOpen();
2656         Comps.back().LocStart = ST.getOpenLocation();
2657         Res = ParseExpression();
2658         if (Res.isInvalid()) {
2659           SkipUntil(tok::r_paren, StopAtSemi);
2660           return Res;
2661         }
2662         Comps.back().U.E = Res.get();
2663 
2664         ST.consumeClose();
2665         Comps.back().LocEnd = ST.getCloseLocation();
2666       } else {
2667         if (Tok.isNot(tok::r_paren)) {
2668           PT.consumeClose();
2669           Res = ExprError();
2670         } else if (Ty.isInvalid()) {
2671           Res = ExprError();
2672         } else {
2673           PT.consumeClose();
2674           Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc,
2675                                              Ty.get(), Comps,
2676                                              PT.getCloseLocation());
2677         }
2678         break;
2679       }
2680     }
2681     break;
2682   }
2683   case tok::kw___builtin_choose_expr: {
2684     ExprResult Cond(ParseAssignmentExpression());
2685     if (Cond.isInvalid()) {
2686       SkipUntil(tok::r_paren, StopAtSemi);
2687       return Cond;
2688     }
2689     if (ExpectAndConsume(tok::comma)) {
2690       SkipUntil(tok::r_paren, StopAtSemi);
2691       return ExprError();
2692     }
2693 
2694     ExprResult Expr1(ParseAssignmentExpression());
2695     if (Expr1.isInvalid()) {
2696       SkipUntil(tok::r_paren, StopAtSemi);
2697       return Expr1;
2698     }
2699     if (ExpectAndConsume(tok::comma)) {
2700       SkipUntil(tok::r_paren, StopAtSemi);
2701       return ExprError();
2702     }
2703 
2704     ExprResult Expr2(ParseAssignmentExpression());
2705     if (Expr2.isInvalid()) {
2706       SkipUntil(tok::r_paren, StopAtSemi);
2707       return Expr2;
2708     }
2709     if (Tok.isNot(tok::r_paren)) {
2710       Diag(Tok, diag::err_expected) << tok::r_paren;
2711       return ExprError();
2712     }
2713     Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(),
2714                                   Expr2.get(), ConsumeParen());
2715     break;
2716   }
2717   case tok::kw___builtin_astype: {
2718     // The first argument is an expression to be converted, followed by a comma.
2719     ExprResult Expr(ParseAssignmentExpression());
2720     if (Expr.isInvalid()) {
2721       SkipUntil(tok::r_paren, StopAtSemi);
2722       return ExprError();
2723     }
2724 
2725     if (ExpectAndConsume(tok::comma)) {
2726       SkipUntil(tok::r_paren, StopAtSemi);
2727       return ExprError();
2728     }
2729 
2730     // Second argument is the type to bitcast to.
2731     TypeResult DestTy = ParseTypeName();
2732     if (DestTy.isInvalid())
2733       return ExprError();
2734 
2735     // Attempt to consume the r-paren.
2736     if (Tok.isNot(tok::r_paren)) {
2737       Diag(Tok, diag::err_expected) << tok::r_paren;
2738       SkipUntil(tok::r_paren, StopAtSemi);
2739       return ExprError();
2740     }
2741 
2742     Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc,
2743                                   ConsumeParen());
2744     break;
2745   }
2746   case tok::kw___builtin_convertvector: {
2747     // The first argument is an expression to be converted, followed by a comma.
2748     ExprResult Expr(ParseAssignmentExpression());
2749     if (Expr.isInvalid()) {
2750       SkipUntil(tok::r_paren, StopAtSemi);
2751       return ExprError();
2752     }
2753 
2754     if (ExpectAndConsume(tok::comma)) {
2755       SkipUntil(tok::r_paren, StopAtSemi);
2756       return ExprError();
2757     }
2758 
2759     // Second argument is the type to bitcast to.
2760     TypeResult DestTy = ParseTypeName();
2761     if (DestTy.isInvalid())
2762       return ExprError();
2763 
2764     // Attempt to consume the r-paren.
2765     if (Tok.isNot(tok::r_paren)) {
2766       Diag(Tok, diag::err_expected) << tok::r_paren;
2767       SkipUntil(tok::r_paren, StopAtSemi);
2768       return ExprError();
2769     }
2770 
2771     Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc,
2772                                          ConsumeParen());
2773     break;
2774   }
2775   case tok::kw___builtin_COLUMN:
2776   case tok::kw___builtin_FILE:
2777   case tok::kw___builtin_FUNCTION:
2778   case tok::kw___builtin_LINE:
2779   case tok::kw___builtin_source_location: {
2780     // Attempt to consume the r-paren.
2781     if (Tok.isNot(tok::r_paren)) {
2782       Diag(Tok, diag::err_expected) << tok::r_paren;
2783       SkipUntil(tok::r_paren, StopAtSemi);
2784       return ExprError();
2785     }
2786     SourceLocExpr::IdentKind Kind = [&] {
2787       switch (T) {
2788       case tok::kw___builtin_FILE:
2789         return SourceLocExpr::File;
2790       case tok::kw___builtin_FUNCTION:
2791         return SourceLocExpr::Function;
2792       case tok::kw___builtin_LINE:
2793         return SourceLocExpr::Line;
2794       case tok::kw___builtin_COLUMN:
2795         return SourceLocExpr::Column;
2796       case tok::kw___builtin_source_location:
2797         return SourceLocExpr::SourceLocStruct;
2798       default:
2799         llvm_unreachable("invalid keyword");
2800       }
2801     }();
2802     Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen());
2803     break;
2804   }
2805   }
2806 
2807   if (Res.isInvalid())
2808     return ExprError();
2809 
2810   // These can be followed by postfix-expr pieces because they are
2811   // primary-expressions.
2812   return ParsePostfixExpressionSuffix(Res.get());
2813 }
2814 
2815 bool Parser::tryParseOpenMPArrayShapingCastPart() {
2816   assert(Tok.is(tok::l_square) && "Expected open bracket");
2817   bool ErrorFound = true;
2818   TentativeParsingAction TPA(*this);
2819   do {
2820     if (Tok.isNot(tok::l_square))
2821       break;
2822     // Consume '['
2823     ConsumeBracket();
2824     // Skip inner expression.
2825     while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end,
2826                       StopAtSemi | StopBeforeMatch))
2827       ;
2828     if (Tok.isNot(tok::r_square))
2829       break;
2830     // Consume ']'
2831     ConsumeBracket();
2832     // Found ')' - done.
2833     if (Tok.is(tok::r_paren)) {
2834       ErrorFound = false;
2835       break;
2836     }
2837   } while (Tok.isNot(tok::annot_pragma_openmp_end));
2838   TPA.Revert();
2839   return !ErrorFound;
2840 }
2841 
2842 /// ParseParenExpression - This parses the unit that starts with a '(' token,
2843 /// based on what is allowed by ExprType.  The actual thing parsed is returned
2844 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type,
2845 /// not the parsed cast-expression.
2846 ///
2847 /// \verbatim
2848 ///       primary-expression: [C99 6.5.1]
2849 ///         '(' expression ')'
2850 /// [GNU]   '(' compound-statement ')'      (if !ParenExprOnly)
2851 ///       postfix-expression: [C99 6.5.2]
2852 ///         '(' type-name ')' '{' initializer-list '}'
2853 ///         '(' type-name ')' '{' initializer-list ',' '}'
2854 ///       cast-expression: [C99 6.5.4]
2855 ///         '(' type-name ')' cast-expression
2856 /// [ARC]   bridged-cast-expression
2857 /// [ARC] bridged-cast-expression:
2858 ///         (__bridge type-name) cast-expression
2859 ///         (__bridge_transfer type-name) cast-expression
2860 ///         (__bridge_retained type-name) cast-expression
2861 ///       fold-expression: [C++1z]
2862 ///         '(' cast-expression fold-operator '...' ')'
2863 ///         '(' '...' fold-operator cast-expression ')'
2864 ///         '(' cast-expression fold-operator '...'
2865 ///                 fold-operator cast-expression ')'
2866 /// [OPENMP] Array shaping operation
2867 ///       '(' '[' expression ']' { '[' expression ']' } cast-expression
2868 /// \endverbatim
2869 ExprResult
2870 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr,
2871                              bool isTypeCast, ParsedType &CastTy,
2872                              SourceLocation &RParenLoc) {
2873   assert(Tok.is(tok::l_paren) && "Not a paren expr!");
2874   ColonProtectionRAIIObject ColonProtection(*this, false);
2875   BalancedDelimiterTracker T(*this, tok::l_paren);
2876   if (T.consumeOpen())
2877     return ExprError();
2878   SourceLocation OpenLoc = T.getOpenLocation();
2879 
2880   PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc);
2881 
2882   ExprResult Result(true);
2883   bool isAmbiguousTypeId;
2884   CastTy = nullptr;
2885 
2886   if (Tok.is(tok::code_completion)) {
2887     cutOffParsing();
2888     Actions.CodeCompleteExpression(
2889         getCurScope(), PreferredType.get(Tok.getLocation()),
2890         /*IsParenthesized=*/ExprType >= CompoundLiteral);
2891     return ExprError();
2892   }
2893 
2894   // Diagnose use of bridge casts in non-arc mode.
2895   bool BridgeCast = (getLangOpts().ObjC &&
2896                      Tok.isOneOf(tok::kw___bridge,
2897                                  tok::kw___bridge_transfer,
2898                                  tok::kw___bridge_retained,
2899                                  tok::kw___bridge_retain));
2900   if (BridgeCast && !getLangOpts().ObjCAutoRefCount) {
2901     if (!TryConsumeToken(tok::kw___bridge)) {
2902       StringRef BridgeCastName = Tok.getName();
2903       SourceLocation BridgeKeywordLoc = ConsumeToken();
2904       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2905         Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc)
2906           << BridgeCastName
2907           << FixItHint::CreateReplacement(BridgeKeywordLoc, "");
2908     }
2909     BridgeCast = false;
2910   }
2911 
2912   // None of these cases should fall through with an invalid Result
2913   // unless they've already reported an error.
2914   if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) {
2915     Diag(Tok, OpenLoc.isMacroID() ? diag::ext_gnu_statement_expr_macro
2916                                   : diag::ext_gnu_statement_expr);
2917 
2918     checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin);
2919 
2920     if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) {
2921       Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope));
2922     } else {
2923       // Find the nearest non-record decl context. Variables declared in a
2924       // statement expression behave as if they were declared in the enclosing
2925       // function, block, or other code construct.
2926       DeclContext *CodeDC = Actions.CurContext;
2927       while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) {
2928         CodeDC = CodeDC->getParent();
2929         assert(CodeDC && !CodeDC->isFileContext() &&
2930                "statement expr not in code context");
2931       }
2932       Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false);
2933 
2934       Actions.ActOnStartStmtExpr();
2935 
2936       StmtResult Stmt(ParseCompoundStatement(true));
2937       ExprType = CompoundStmt;
2938 
2939       // If the substmt parsed correctly, build the AST node.
2940       if (!Stmt.isInvalid()) {
2941         Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(),
2942                                        Tok.getLocation());
2943       } else {
2944         Actions.ActOnStmtExprError();
2945       }
2946     }
2947   } else if (ExprType >= CompoundLiteral && BridgeCast) {
2948     tok::TokenKind tokenKind = Tok.getKind();
2949     SourceLocation BridgeKeywordLoc = ConsumeToken();
2950 
2951     // Parse an Objective-C ARC ownership cast expression.
2952     ObjCBridgeCastKind Kind;
2953     if (tokenKind == tok::kw___bridge)
2954       Kind = OBC_Bridge;
2955     else if (tokenKind == tok::kw___bridge_transfer)
2956       Kind = OBC_BridgeTransfer;
2957     else if (tokenKind == tok::kw___bridge_retained)
2958       Kind = OBC_BridgeRetained;
2959     else {
2960       // As a hopefully temporary workaround, allow __bridge_retain as
2961       // a synonym for __bridge_retained, but only in system headers.
2962       assert(tokenKind == tok::kw___bridge_retain);
2963       Kind = OBC_BridgeRetained;
2964       if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc))
2965         Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain)
2966           << FixItHint::CreateReplacement(BridgeKeywordLoc,
2967                                           "__bridge_retained");
2968     }
2969 
2970     TypeResult Ty = ParseTypeName();
2971     T.consumeClose();
2972     ColonProtection.restore();
2973     RParenLoc = T.getCloseLocation();
2974 
2975     PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get());
2976     ExprResult SubExpr = ParseCastExpression(AnyCastExpr);
2977 
2978     if (Ty.isInvalid() || SubExpr.isInvalid())
2979       return ExprError();
2980 
2981     return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind,
2982                                         BridgeKeywordLoc, Ty.get(),
2983                                         RParenLoc, SubExpr.get());
2984   } else if (ExprType >= CompoundLiteral &&
2985              isTypeIdInParens(isAmbiguousTypeId)) {
2986 
2987     // Otherwise, this is a compound literal expression or cast expression.
2988 
2989     // In C++, if the type-id is ambiguous we disambiguate based on context.
2990     // If stopIfCastExpr is true the context is a typeof/sizeof/alignof
2991     // in which case we should treat it as type-id.
2992     // if stopIfCastExpr is false, we need to determine the context past the
2993     // parens, so we defer to ParseCXXAmbiguousParenExpression for that.
2994     if (isAmbiguousTypeId && !stopIfCastExpr) {
2995       ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T,
2996                                                         ColonProtection);
2997       RParenLoc = T.getCloseLocation();
2998       return res;
2999     }
3000 
3001     // Parse the type declarator.
3002     DeclSpec DS(AttrFactory);
3003     ParseSpecifierQualifierList(DS);
3004     Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3005                               DeclaratorContext::TypeName);
3006     ParseDeclarator(DeclaratorInfo);
3007 
3008     // If our type is followed by an identifier and either ':' or ']', then
3009     // this is probably an Objective-C message send where the leading '[' is
3010     // missing. Recover as if that were the case.
3011     if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) &&
3012         !InMessageExpression && getLangOpts().ObjC &&
3013         (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) {
3014       TypeResult Ty;
3015       {
3016         InMessageExpressionRAIIObject InMessage(*this, false);
3017         Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3018       }
3019       Result = ParseObjCMessageExpressionBody(SourceLocation(),
3020                                               SourceLocation(),
3021                                               Ty.get(), nullptr);
3022     } else {
3023       // Match the ')'.
3024       T.consumeClose();
3025       ColonProtection.restore();
3026       RParenLoc = T.getCloseLocation();
3027       if (Tok.is(tok::l_brace)) {
3028         ExprType = CompoundLiteral;
3029         TypeResult Ty;
3030         {
3031           InMessageExpressionRAIIObject InMessage(*this, false);
3032           Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3033         }
3034         return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc);
3035       }
3036 
3037       if (Tok.is(tok::l_paren)) {
3038         // This could be OpenCL vector Literals
3039         if (getLangOpts().OpenCL)
3040         {
3041           TypeResult Ty;
3042           {
3043             InMessageExpressionRAIIObject InMessage(*this, false);
3044             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3045           }
3046           if(Ty.isInvalid())
3047           {
3048              return ExprError();
3049           }
3050           QualType QT = Ty.get().get().getCanonicalType();
3051           if (QT->isVectorType())
3052           {
3053             // We parsed '(' vector-type-name ')' followed by '('
3054 
3055             // Parse the cast-expression that follows it next.
3056             // isVectorLiteral = true will make sure we don't parse any
3057             // Postfix expression yet
3058             Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3059                                          /*isAddressOfOperand=*/false,
3060                                          /*isTypeCast=*/IsTypeCast,
3061                                          /*isVectorLiteral=*/true);
3062 
3063             if (!Result.isInvalid()) {
3064               Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3065                                              DeclaratorInfo, CastTy,
3066                                              RParenLoc, Result.get());
3067             }
3068 
3069             // After we performed the cast we can check for postfix-expr pieces.
3070             if (!Result.isInvalid()) {
3071               Result = ParsePostfixExpressionSuffix(Result);
3072             }
3073 
3074             return Result;
3075           }
3076         }
3077       }
3078 
3079       if (ExprType == CastExpr) {
3080         // We parsed '(' type-name ')' and the thing after it wasn't a '{'.
3081 
3082         if (DeclaratorInfo.isInvalidType())
3083           return ExprError();
3084 
3085         // Note that this doesn't parse the subsequent cast-expression, it just
3086         // returns the parsed type to the callee.
3087         if (stopIfCastExpr) {
3088           TypeResult Ty;
3089           {
3090             InMessageExpressionRAIIObject InMessage(*this, false);
3091             Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
3092           }
3093           CastTy = Ty.get();
3094           return ExprResult();
3095         }
3096 
3097         // Reject the cast of super idiom in ObjC.
3098         if (Tok.is(tok::identifier) && getLangOpts().ObjC &&
3099             Tok.getIdentifierInfo() == Ident_super &&
3100             getCurScope()->isInObjcMethodScope() &&
3101             GetLookAheadToken(1).isNot(tok::period)) {
3102           Diag(Tok.getLocation(), diag::err_illegal_super_cast)
3103             << SourceRange(OpenLoc, RParenLoc);
3104           return ExprError();
3105         }
3106 
3107         PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get());
3108         // Parse the cast-expression that follows it next.
3109         // TODO: For cast expression with CastTy.
3110         Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr,
3111                                      /*isAddressOfOperand=*/false,
3112                                      /*isTypeCast=*/IsTypeCast);
3113         if (!Result.isInvalid()) {
3114           Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc,
3115                                          DeclaratorInfo, CastTy,
3116                                          RParenLoc, Result.get());
3117         }
3118         return Result;
3119       }
3120 
3121       Diag(Tok, diag::err_expected_lbrace_in_compound_literal);
3122       return ExprError();
3123     }
3124   } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) &&
3125              isFoldOperator(NextToken().getKind())) {
3126     ExprType = FoldExpr;
3127     return ParseFoldExpression(ExprResult(), T);
3128   } else if (isTypeCast) {
3129     // Parse the expression-list.
3130     InMessageExpressionRAIIObject InMessage(*this, false);
3131     ExprVector ArgExprs;
3132 
3133     if (!ParseSimpleExpressionList(ArgExprs)) {
3134       // FIXME: If we ever support comma expressions as operands to
3135       // fold-expressions, we'll need to allow multiple ArgExprs here.
3136       if (ExprType >= FoldExpr && ArgExprs.size() == 1 &&
3137           isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) {
3138         ExprType = FoldExpr;
3139         return ParseFoldExpression(ArgExprs[0], T);
3140       }
3141 
3142       ExprType = SimpleExpr;
3143       Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(),
3144                                           ArgExprs);
3145     }
3146   } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing &&
3147              ExprType == CastExpr && Tok.is(tok::l_square) &&
3148              tryParseOpenMPArrayShapingCastPart()) {
3149     bool ErrorFound = false;
3150     SmallVector<Expr *, 4> OMPDimensions;
3151     SmallVector<SourceRange, 4> OMPBracketsRanges;
3152     do {
3153       BalancedDelimiterTracker TS(*this, tok::l_square);
3154       TS.consumeOpen();
3155       ExprResult NumElements =
3156           Actions.CorrectDelayedTyposInExpr(ParseExpression());
3157       if (!NumElements.isUsable()) {
3158         ErrorFound = true;
3159         while (!SkipUntil(tok::r_square, tok::r_paren,
3160                           StopAtSemi | StopBeforeMatch))
3161           ;
3162       }
3163       TS.consumeClose();
3164       OMPDimensions.push_back(NumElements.get());
3165       OMPBracketsRanges.push_back(TS.getRange());
3166     } while (Tok.isNot(tok::r_paren));
3167     // Match the ')'.
3168     T.consumeClose();
3169     RParenLoc = T.getCloseLocation();
3170     Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3171     if (ErrorFound) {
3172       Result = ExprError();
3173     } else if (!Result.isInvalid()) {
3174       Result = Actions.ActOnOMPArrayShapingExpr(
3175           Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges);
3176     }
3177     return Result;
3178   } else {
3179     InMessageExpressionRAIIObject InMessage(*this, false);
3180 
3181     Result = ParseExpression(MaybeTypeCast);
3182     if (!getLangOpts().CPlusPlus && Result.isUsable()) {
3183       // Correct typos in non-C++ code earlier so that implicit-cast-like
3184       // expressions are parsed correctly.
3185       Result = Actions.CorrectDelayedTyposInExpr(Result);
3186     }
3187 
3188     if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) &&
3189         NextToken().is(tok::ellipsis)) {
3190       ExprType = FoldExpr;
3191       return ParseFoldExpression(Result, T);
3192     }
3193     ExprType = SimpleExpr;
3194 
3195     // Don't build a paren expression unless we actually match a ')'.
3196     if (!Result.isInvalid() && Tok.is(tok::r_paren))
3197       Result =
3198           Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get());
3199   }
3200 
3201   // Match the ')'.
3202   if (Result.isInvalid()) {
3203     SkipUntil(tok::r_paren, StopAtSemi);
3204     return ExprError();
3205   }
3206 
3207   T.consumeClose();
3208   RParenLoc = T.getCloseLocation();
3209   return Result;
3210 }
3211 
3212 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name
3213 /// and we are at the left brace.
3214 ///
3215 /// \verbatim
3216 ///       postfix-expression: [C99 6.5.2]
3217 ///         '(' type-name ')' '{' initializer-list '}'
3218 ///         '(' type-name ')' '{' initializer-list ',' '}'
3219 /// \endverbatim
3220 ExprResult
3221 Parser::ParseCompoundLiteralExpression(ParsedType Ty,
3222                                        SourceLocation LParenLoc,
3223                                        SourceLocation RParenLoc) {
3224   assert(Tok.is(tok::l_brace) && "Not a compound literal!");
3225   if (!getLangOpts().C99)   // Compound literals don't exist in C90.
3226     Diag(LParenLoc, diag::ext_c99_compound_literal);
3227   PreferredType.enterTypeCast(Tok.getLocation(), Ty.get());
3228   ExprResult Result = ParseInitializer();
3229   if (!Result.isInvalid() && Ty)
3230     return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get());
3231   return Result;
3232 }
3233 
3234 /// ParseStringLiteralExpression - This handles the various token types that
3235 /// form string literals, and also handles string concatenation [C99 5.1.1.2,
3236 /// translation phase #6].
3237 ///
3238 /// \verbatim
3239 ///       primary-expression: [C99 6.5.1]
3240 ///         string-literal
3241 /// \verbatim
3242 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) {
3243   assert(isTokenStringLiteral() && "Not a string literal!");
3244 
3245   // String concat.  Note that keywords like __func__ and __FUNCTION__ are not
3246   // considered to be strings for concatenation purposes.
3247   SmallVector<Token, 4> StringToks;
3248 
3249   do {
3250     StringToks.push_back(Tok);
3251     ConsumeStringToken();
3252   } while (isTokenStringLiteral());
3253 
3254   // Pass the set of string tokens, ready for concatenation, to the actions.
3255   return Actions.ActOnStringLiteral(StringToks,
3256                                     AllowUserDefinedLiteral ? getCurScope()
3257                                                             : nullptr);
3258 }
3259 
3260 /// ParseGenericSelectionExpression - Parse a C11 generic-selection
3261 /// [C11 6.5.1.1].
3262 ///
3263 /// \verbatim
3264 ///    generic-selection:
3265 ///           _Generic ( assignment-expression , generic-assoc-list )
3266 ///    generic-assoc-list:
3267 ///           generic-association
3268 ///           generic-assoc-list , generic-association
3269 ///    generic-association:
3270 ///           type-name : assignment-expression
3271 ///           default : assignment-expression
3272 /// \endverbatim
3273 ExprResult Parser::ParseGenericSelectionExpression() {
3274   assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected");
3275   if (!getLangOpts().C11)
3276     Diag(Tok, diag::ext_c11_feature) << Tok.getName();
3277 
3278   SourceLocation KeyLoc = ConsumeToken();
3279   BalancedDelimiterTracker T(*this, tok::l_paren);
3280   if (T.expectAndConsume())
3281     return ExprError();
3282 
3283   ExprResult ControllingExpr;
3284   {
3285     // C11 6.5.1.1p3 "The controlling expression of a generic selection is
3286     // not evaluated."
3287     EnterExpressionEvaluationContext Unevaluated(
3288         Actions, Sema::ExpressionEvaluationContext::Unevaluated);
3289     ControllingExpr =
3290         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
3291     if (ControllingExpr.isInvalid()) {
3292       SkipUntil(tok::r_paren, StopAtSemi);
3293       return ExprError();
3294     }
3295   }
3296 
3297   if (ExpectAndConsume(tok::comma)) {
3298     SkipUntil(tok::r_paren, StopAtSemi);
3299     return ExprError();
3300   }
3301 
3302   SourceLocation DefaultLoc;
3303   SmallVector<ParsedType, 12> Types;
3304   ExprVector Exprs;
3305   do {
3306     ParsedType Ty;
3307     if (Tok.is(tok::kw_default)) {
3308       // C11 6.5.1.1p2 "A generic selection shall have no more than one default
3309       // generic association."
3310       if (!DefaultLoc.isInvalid()) {
3311         Diag(Tok, diag::err_duplicate_default_assoc);
3312         Diag(DefaultLoc, diag::note_previous_default_assoc);
3313         SkipUntil(tok::r_paren, StopAtSemi);
3314         return ExprError();
3315       }
3316       DefaultLoc = ConsumeToken();
3317       Ty = nullptr;
3318     } else {
3319       ColonProtectionRAIIObject X(*this);
3320       TypeResult TR = ParseTypeName(nullptr, DeclaratorContext::Association);
3321       if (TR.isInvalid()) {
3322         SkipUntil(tok::r_paren, StopAtSemi);
3323         return ExprError();
3324       }
3325       Ty = TR.get();
3326     }
3327     Types.push_back(Ty);
3328 
3329     if (ExpectAndConsume(tok::colon)) {
3330       SkipUntil(tok::r_paren, StopAtSemi);
3331       return ExprError();
3332     }
3333 
3334     // FIXME: These expressions should be parsed in a potentially potentially
3335     // evaluated context.
3336     ExprResult ER(
3337         Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3338     if (ER.isInvalid()) {
3339       SkipUntil(tok::r_paren, StopAtSemi);
3340       return ExprError();
3341     }
3342     Exprs.push_back(ER.get());
3343   } while (TryConsumeToken(tok::comma));
3344 
3345   T.consumeClose();
3346   if (T.getCloseLocation().isInvalid())
3347     return ExprError();
3348 
3349   return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc,
3350                                            T.getCloseLocation(),
3351                                            ControllingExpr.get(),
3352                                            Types, Exprs);
3353 }
3354 
3355 /// Parse A C++1z fold-expression after the opening paren and optional
3356 /// left-hand-side expression.
3357 ///
3358 /// \verbatim
3359 ///   fold-expression:
3360 ///       ( cast-expression fold-operator ... )
3361 ///       ( ... fold-operator cast-expression )
3362 ///       ( cast-expression fold-operator ... fold-operator cast-expression )
3363 ExprResult Parser::ParseFoldExpression(ExprResult LHS,
3364                                        BalancedDelimiterTracker &T) {
3365   if (LHS.isInvalid()) {
3366     T.skipToEnd();
3367     return true;
3368   }
3369 
3370   tok::TokenKind Kind = tok::unknown;
3371   SourceLocation FirstOpLoc;
3372   if (LHS.isUsable()) {
3373     Kind = Tok.getKind();
3374     assert(isFoldOperator(Kind) && "missing fold-operator");
3375     FirstOpLoc = ConsumeToken();
3376   }
3377 
3378   assert(Tok.is(tok::ellipsis) && "not a fold-expression");
3379   SourceLocation EllipsisLoc = ConsumeToken();
3380 
3381   ExprResult RHS;
3382   if (Tok.isNot(tok::r_paren)) {
3383     if (!isFoldOperator(Tok.getKind()))
3384       return Diag(Tok.getLocation(), diag::err_expected_fold_operator);
3385 
3386     if (Kind != tok::unknown && Tok.getKind() != Kind)
3387       Diag(Tok.getLocation(), diag::err_fold_operator_mismatch)
3388         << SourceRange(FirstOpLoc);
3389     Kind = Tok.getKind();
3390     ConsumeToken();
3391 
3392     RHS = ParseExpression();
3393     if (RHS.isInvalid()) {
3394       T.skipToEnd();
3395       return true;
3396     }
3397   }
3398 
3399   Diag(EllipsisLoc, getLangOpts().CPlusPlus17
3400                         ? diag::warn_cxx14_compat_fold_expression
3401                         : diag::ext_fold_expression);
3402 
3403   T.consumeClose();
3404   return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(),
3405                                   Kind, EllipsisLoc, RHS.get(),
3406                                   T.getCloseLocation());
3407 }
3408 
3409 /// ParseExpressionList - Used for C/C++ (argument-)expression-list.
3410 ///
3411 /// \verbatim
3412 ///       argument-expression-list:
3413 ///         assignment-expression
3414 ///         argument-expression-list , assignment-expression
3415 ///
3416 /// [C++] expression-list:
3417 /// [C++]   assignment-expression
3418 /// [C++]   expression-list , assignment-expression
3419 ///
3420 /// [C++0x] expression-list:
3421 /// [C++0x]   initializer-list
3422 ///
3423 /// [C++0x] initializer-list
3424 /// [C++0x]   initializer-clause ...[opt]
3425 /// [C++0x]   initializer-list , initializer-clause ...[opt]
3426 ///
3427 /// [C++0x] initializer-clause:
3428 /// [C++0x]   assignment-expression
3429 /// [C++0x]   braced-init-list
3430 /// \endverbatim
3431 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs,
3432                                  llvm::function_ref<void()> ExpressionStarts,
3433                                  bool FailImmediatelyOnInvalidExpr,
3434                                  bool EarlyTypoCorrection) {
3435   bool SawError = false;
3436   while (true) {
3437     if (ExpressionStarts)
3438       ExpressionStarts();
3439 
3440     ExprResult Expr;
3441     if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
3442       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
3443       Expr = ParseBraceInitializer();
3444     } else
3445       Expr = ParseAssignmentExpression();
3446 
3447     if (EarlyTypoCorrection)
3448       Expr = Actions.CorrectDelayedTyposInExpr(Expr);
3449 
3450     if (Tok.is(tok::ellipsis))
3451       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
3452     else if (Tok.is(tok::code_completion)) {
3453       // There's nothing to suggest in here as we parsed a full expression.
3454       // Instead fail and propogate the error since caller might have something
3455       // the suggest, e.g. signature help in function call. Note that this is
3456       // performed before pushing the \p Expr, so that signature help can report
3457       // current argument correctly.
3458       SawError = true;
3459       cutOffParsing();
3460       break;
3461     }
3462     if (Expr.isInvalid()) {
3463       SawError = true;
3464       if (FailImmediatelyOnInvalidExpr)
3465         break;
3466       SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch);
3467     } else {
3468       Exprs.push_back(Expr.get());
3469     }
3470 
3471     if (Tok.isNot(tok::comma))
3472       break;
3473     // Move to the next argument, remember where the comma was.
3474     Token Comma = Tok;
3475     ConsumeToken();
3476     checkPotentialAngleBracketDelimiter(Comma);
3477   }
3478   if (SawError) {
3479     // Ensure typos get diagnosed when errors were encountered while parsing the
3480     // expression list.
3481     for (auto &E : Exprs) {
3482       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
3483       if (Expr.isUsable()) E = Expr.get();
3484     }
3485   }
3486   return SawError;
3487 }
3488 
3489 /// ParseSimpleExpressionList - A simple comma-separated list of expressions,
3490 /// used for misc language extensions.
3491 ///
3492 /// \verbatim
3493 ///       simple-expression-list:
3494 ///         assignment-expression
3495 ///         simple-expression-list , assignment-expression
3496 /// \endverbatim
3497 bool Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr *> &Exprs) {
3498   while (true) {
3499     ExprResult Expr = ParseAssignmentExpression();
3500     if (Expr.isInvalid())
3501       return true;
3502 
3503     Exprs.push_back(Expr.get());
3504 
3505     // We might be parsing the LHS of a fold-expression. If we reached the fold
3506     // operator, stop.
3507     if (Tok.isNot(tok::comma) || NextToken().is(tok::ellipsis))
3508       return false;
3509 
3510     // Move to the next argument, remember where the comma was.
3511     Token Comma = Tok;
3512     ConsumeToken();
3513     checkPotentialAngleBracketDelimiter(Comma);
3514   }
3515 }
3516 
3517 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x).
3518 ///
3519 /// \verbatim
3520 /// [clang] block-id:
3521 /// [clang]   specifier-qualifier-list block-declarator
3522 /// \endverbatim
3523 void Parser::ParseBlockId(SourceLocation CaretLoc) {
3524   if (Tok.is(tok::code_completion)) {
3525     cutOffParsing();
3526     Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type);
3527     return;
3528   }
3529 
3530   // Parse the specifier-qualifier-list piece.
3531   DeclSpec DS(AttrFactory);
3532   ParseSpecifierQualifierList(DS);
3533 
3534   // Parse the block-declarator.
3535   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
3536                             DeclaratorContext::BlockLiteral);
3537   DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3538   ParseDeclarator(DeclaratorInfo);
3539 
3540   MaybeParseGNUAttributes(DeclaratorInfo);
3541 
3542   // Inform sema that we are starting a block.
3543   Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope());
3544 }
3545 
3546 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks
3547 /// like ^(int x){ return x+1; }
3548 ///
3549 /// \verbatim
3550 ///         block-literal:
3551 /// [clang]   '^' block-args[opt] compound-statement
3552 /// [clang]   '^' block-id compound-statement
3553 /// [clang] block-args:
3554 /// [clang]   '(' parameter-list ')'
3555 /// \endverbatim
3556 ExprResult Parser::ParseBlockLiteralExpression() {
3557   assert(Tok.is(tok::caret) && "block literal starts with ^");
3558   SourceLocation CaretLoc = ConsumeToken();
3559 
3560   PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc,
3561                                 "block literal parsing");
3562 
3563   // Enter a scope to hold everything within the block.  This includes the
3564   // argument decls, decls within the compound expression, etc.  This also
3565   // allows determining whether a variable reference inside the block is
3566   // within or outside of the block.
3567   ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope |
3568                                   Scope::CompoundStmtScope | Scope::DeclScope);
3569 
3570   // Inform sema that we are starting a block.
3571   Actions.ActOnBlockStart(CaretLoc, getCurScope());
3572 
3573   // Parse the return type if present.
3574   DeclSpec DS(AttrFactory);
3575   Declarator ParamInfo(DS, ParsedAttributesView::none(),
3576                        DeclaratorContext::BlockLiteral);
3577   ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition);
3578   // FIXME: Since the return type isn't actually parsed, it can't be used to
3579   // fill ParamInfo with an initial valid range, so do it manually.
3580   ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation()));
3581 
3582   // If this block has arguments, parse them.  There is no ambiguity here with
3583   // the expression case, because the expression case requires a parameter list.
3584   if (Tok.is(tok::l_paren)) {
3585     ParseParenDeclarator(ParamInfo);
3586     // Parse the pieces after the identifier as if we had "int(...)".
3587     // SetIdentifier sets the source range end, but in this case we're past
3588     // that location.
3589     SourceLocation Tmp = ParamInfo.getSourceRange().getEnd();
3590     ParamInfo.SetIdentifier(nullptr, CaretLoc);
3591     ParamInfo.SetRangeEnd(Tmp);
3592     if (ParamInfo.isInvalidType()) {
3593       // If there was an error parsing the arguments, they may have
3594       // tried to use ^(x+y) which requires an argument list.  Just
3595       // skip the whole block literal.
3596       Actions.ActOnBlockError(CaretLoc, getCurScope());
3597       return ExprError();
3598     }
3599 
3600     MaybeParseGNUAttributes(ParamInfo);
3601 
3602     // Inform sema that we are starting a block.
3603     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3604   } else if (!Tok.is(tok::l_brace)) {
3605     ParseBlockId(CaretLoc);
3606   } else {
3607     // Otherwise, pretend we saw (void).
3608     SourceLocation NoLoc;
3609     ParamInfo.AddTypeInfo(
3610         DeclaratorChunk::getFunction(/*HasProto=*/true,
3611                                      /*IsAmbiguous=*/false,
3612                                      /*RParenLoc=*/NoLoc,
3613                                      /*ArgInfo=*/nullptr,
3614                                      /*NumParams=*/0,
3615                                      /*EllipsisLoc=*/NoLoc,
3616                                      /*RParenLoc=*/NoLoc,
3617                                      /*RefQualifierIsLvalueRef=*/true,
3618                                      /*RefQualifierLoc=*/NoLoc,
3619                                      /*MutableLoc=*/NoLoc, EST_None,
3620                                      /*ESpecRange=*/SourceRange(),
3621                                      /*Exceptions=*/nullptr,
3622                                      /*ExceptionRanges=*/nullptr,
3623                                      /*NumExceptions=*/0,
3624                                      /*NoexceptExpr=*/nullptr,
3625                                      /*ExceptionSpecTokens=*/nullptr,
3626                                      /*DeclsInPrototype=*/std::nullopt,
3627                                      CaretLoc, CaretLoc, ParamInfo),
3628         CaretLoc);
3629 
3630     MaybeParseGNUAttributes(ParamInfo);
3631 
3632     // Inform sema that we are starting a block.
3633     Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope());
3634   }
3635 
3636 
3637   ExprResult Result(true);
3638   if (!Tok.is(tok::l_brace)) {
3639     // Saw something like: ^expr
3640     Diag(Tok, diag::err_expected_expression);
3641     Actions.ActOnBlockError(CaretLoc, getCurScope());
3642     return ExprError();
3643   }
3644 
3645   StmtResult Stmt(ParseCompoundStatementBody());
3646   BlockScope.Exit();
3647   if (!Stmt.isInvalid())
3648     Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope());
3649   else
3650     Actions.ActOnBlockError(CaretLoc, getCurScope());
3651   return Result;
3652 }
3653 
3654 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals.
3655 ///
3656 ///         '__objc_yes'
3657 ///         '__objc_no'
3658 ExprResult Parser::ParseObjCBoolLiteral() {
3659   tok::TokenKind Kind = Tok.getKind();
3660   return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind);
3661 }
3662 
3663 /// Validate availability spec list, emitting diagnostics if necessary. Returns
3664 /// true if invalid.
3665 static bool CheckAvailabilitySpecList(Parser &P,
3666                                       ArrayRef<AvailabilitySpec> AvailSpecs) {
3667   llvm::SmallSet<StringRef, 4> Platforms;
3668   bool HasOtherPlatformSpec = false;
3669   bool Valid = true;
3670   for (const auto &Spec : AvailSpecs) {
3671     if (Spec.isOtherPlatformSpec()) {
3672       if (HasOtherPlatformSpec) {
3673         P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star);
3674         Valid = false;
3675       }
3676 
3677       HasOtherPlatformSpec = true;
3678       continue;
3679     }
3680 
3681     bool Inserted = Platforms.insert(Spec.getPlatform()).second;
3682     if (!Inserted) {
3683       // Rule out multiple version specs referring to the same platform.
3684       // For example, we emit an error for:
3685       // @available(macos 10.10, macos 10.11, *)
3686       StringRef Platform = Spec.getPlatform();
3687       P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform)
3688           << Spec.getEndLoc() << Platform;
3689       Valid = false;
3690     }
3691   }
3692 
3693   if (!HasOtherPlatformSpec) {
3694     SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc();
3695     P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required)
3696         << FixItHint::CreateInsertion(InsertWildcardLoc, ", *");
3697     return true;
3698   }
3699 
3700   return !Valid;
3701 }
3702 
3703 /// Parse availability query specification.
3704 ///
3705 ///  availability-spec:
3706 ///     '*'
3707 ///     identifier version-tuple
3708 std::optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() {
3709   if (Tok.is(tok::star)) {
3710     return AvailabilitySpec(ConsumeToken());
3711   } else {
3712     // Parse the platform name.
3713     if (Tok.is(tok::code_completion)) {
3714       cutOffParsing();
3715       Actions.CodeCompleteAvailabilityPlatformName();
3716       return std::nullopt;
3717     }
3718     if (Tok.isNot(tok::identifier)) {
3719       Diag(Tok, diag::err_avail_query_expected_platform_name);
3720       return std::nullopt;
3721     }
3722 
3723     IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc();
3724     SourceRange VersionRange;
3725     VersionTuple Version = ParseVersionTuple(VersionRange);
3726 
3727     if (Version.empty())
3728       return std::nullopt;
3729 
3730     StringRef GivenPlatform = PlatformIdentifier->Ident->getName();
3731     StringRef Platform =
3732         AvailabilityAttr::canonicalizePlatformName(GivenPlatform);
3733 
3734     if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) {
3735       Diag(PlatformIdentifier->Loc,
3736            diag::err_avail_query_unrecognized_platform_name)
3737           << GivenPlatform;
3738       return std::nullopt;
3739     }
3740 
3741     return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc,
3742                             VersionRange.getEnd());
3743   }
3744 }
3745 
3746 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) {
3747   assert(Tok.is(tok::kw___builtin_available) ||
3748          Tok.isObjCAtKeyword(tok::objc_available));
3749 
3750   // Eat the available or __builtin_available.
3751   ConsumeToken();
3752 
3753   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3754   if (Parens.expectAndConsume())
3755     return ExprError();
3756 
3757   SmallVector<AvailabilitySpec, 4> AvailSpecs;
3758   bool HasError = false;
3759   while (true) {
3760     std::optional<AvailabilitySpec> Spec = ParseAvailabilitySpec();
3761     if (!Spec)
3762       HasError = true;
3763     else
3764       AvailSpecs.push_back(*Spec);
3765 
3766     if (!TryConsumeToken(tok::comma))
3767       break;
3768   }
3769 
3770   if (HasError) {
3771     SkipUntil(tok::r_paren, StopAtSemi);
3772     return ExprError();
3773   }
3774 
3775   CheckAvailabilitySpecList(*this, AvailSpecs);
3776 
3777   if (Parens.consumeClose())
3778     return ExprError();
3779 
3780   return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc,
3781                                                 Parens.getCloseLocation());
3782 }
3783