1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Provides the Expression parsing implementation. 11 /// 12 /// Expressions in C99 basically consist of a bunch of binary operators with 13 /// unary operators and other random stuff at the leaves. 14 /// 15 /// In the C99 grammar, these unary operators bind tightest and are represented 16 /// as the 'cast-expression' production. Everything else is either a binary 17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are 18 /// handled by ParseCastExpression, the higher level pieces are handled by 19 /// ParseBinaryExpression. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "clang/Parse/Parser.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/Basic/PrettyStackTrace.h" 26 #include "clang/Parse/RAIIObjectsForParser.h" 27 #include "clang/Sema/DeclSpec.h" 28 #include "clang/Sema/ParsedTemplate.h" 29 #include "clang/Sema/Scope.h" 30 #include "clang/Sema/TypoCorrection.h" 31 #include "llvm/ADT/SmallVector.h" 32 using namespace clang; 33 34 /// Simple precedence-based parser for binary/ternary operators. 35 /// 36 /// Note: we diverge from the C99 grammar when parsing the assignment-expression 37 /// production. C99 specifies that the LHS of an assignment operator should be 38 /// parsed as a unary-expression, but consistency dictates that it be a 39 /// conditional-expession. In practice, the important thing here is that the 40 /// LHS of an assignment has to be an l-value, which productions between 41 /// unary-expression and conditional-expression don't produce. Because we want 42 /// consistency, we parse the LHS as a conditional-expression, then check for 43 /// l-value-ness in semantic analysis stages. 44 /// 45 /// \verbatim 46 /// pm-expression: [C++ 5.5] 47 /// cast-expression 48 /// pm-expression '.*' cast-expression 49 /// pm-expression '->*' cast-expression 50 /// 51 /// multiplicative-expression: [C99 6.5.5] 52 /// Note: in C++, apply pm-expression instead of cast-expression 53 /// cast-expression 54 /// multiplicative-expression '*' cast-expression 55 /// multiplicative-expression '/' cast-expression 56 /// multiplicative-expression '%' cast-expression 57 /// 58 /// additive-expression: [C99 6.5.6] 59 /// multiplicative-expression 60 /// additive-expression '+' multiplicative-expression 61 /// additive-expression '-' multiplicative-expression 62 /// 63 /// shift-expression: [C99 6.5.7] 64 /// additive-expression 65 /// shift-expression '<<' additive-expression 66 /// shift-expression '>>' additive-expression 67 /// 68 /// compare-expression: [C++20 expr.spaceship] 69 /// shift-expression 70 /// compare-expression '<=>' shift-expression 71 /// 72 /// relational-expression: [C99 6.5.8] 73 /// compare-expression 74 /// relational-expression '<' compare-expression 75 /// relational-expression '>' compare-expression 76 /// relational-expression '<=' compare-expression 77 /// relational-expression '>=' compare-expression 78 /// 79 /// equality-expression: [C99 6.5.9] 80 /// relational-expression 81 /// equality-expression '==' relational-expression 82 /// equality-expression '!=' relational-expression 83 /// 84 /// AND-expression: [C99 6.5.10] 85 /// equality-expression 86 /// AND-expression '&' equality-expression 87 /// 88 /// exclusive-OR-expression: [C99 6.5.11] 89 /// AND-expression 90 /// exclusive-OR-expression '^' AND-expression 91 /// 92 /// inclusive-OR-expression: [C99 6.5.12] 93 /// exclusive-OR-expression 94 /// inclusive-OR-expression '|' exclusive-OR-expression 95 /// 96 /// logical-AND-expression: [C99 6.5.13] 97 /// inclusive-OR-expression 98 /// logical-AND-expression '&&' inclusive-OR-expression 99 /// 100 /// logical-OR-expression: [C99 6.5.14] 101 /// logical-AND-expression 102 /// logical-OR-expression '||' logical-AND-expression 103 /// 104 /// conditional-expression: [C99 6.5.15] 105 /// logical-OR-expression 106 /// logical-OR-expression '?' expression ':' conditional-expression 107 /// [GNU] logical-OR-expression '?' ':' conditional-expression 108 /// [C++] the third operand is an assignment-expression 109 /// 110 /// assignment-expression: [C99 6.5.16] 111 /// conditional-expression 112 /// unary-expression assignment-operator assignment-expression 113 /// [C++] throw-expression [C++ 15] 114 /// 115 /// assignment-operator: one of 116 /// = *= /= %= += -= <<= >>= &= ^= |= 117 /// 118 /// expression: [C99 6.5.17] 119 /// assignment-expression ...[opt] 120 /// expression ',' assignment-expression ...[opt] 121 /// \endverbatim 122 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) { 123 ExprResult LHS(ParseAssignmentExpression(isTypeCast)); 124 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 125 } 126 127 /// This routine is called when the '@' is seen and consumed. 128 /// Current token is an Identifier and is not a 'try'. This 129 /// routine is necessary to disambiguate \@try-statement from, 130 /// for example, \@encode-expression. 131 /// 132 ExprResult 133 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) { 134 ExprResult LHS(ParseObjCAtExpression(AtLoc)); 135 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 136 } 137 138 /// This routine is called when a leading '__extension__' is seen and 139 /// consumed. This is necessary because the token gets consumed in the 140 /// process of disambiguating between an expression and a declaration. 141 ExprResult 142 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) { 143 ExprResult LHS(true); 144 { 145 // Silence extension warnings in the sub-expression 146 ExtensionRAIIObject O(Diags); 147 148 LHS = ParseCastExpression(false); 149 } 150 151 if (!LHS.isInvalid()) 152 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__, 153 LHS.get()); 154 155 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 156 } 157 158 /// Parse an expr that doesn't include (top-level) commas. 159 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) { 160 if (Tok.is(tok::code_completion)) { 161 Actions.CodeCompleteExpression(getCurScope(), 162 PreferredType.get(Tok.getLocation())); 163 cutOffParsing(); 164 return ExprError(); 165 } 166 167 if (Tok.is(tok::kw_throw)) 168 return ParseThrowExpression(); 169 if (Tok.is(tok::kw_co_yield)) 170 return ParseCoyieldExpression(); 171 172 ExprResult LHS = ParseCastExpression(/*isUnaryExpression=*/false, 173 /*isAddressOfOperand=*/false, 174 isTypeCast); 175 return ParseRHSOfBinaryExpression(LHS, prec::Assignment); 176 } 177 178 /// Parse an assignment expression where part of an Objective-C message 179 /// send has already been parsed. 180 /// 181 /// In this case \p LBracLoc indicates the location of the '[' of the message 182 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating 183 /// the receiver of the message. 184 /// 185 /// Since this handles full assignment-expression's, it handles postfix 186 /// expressions and other binary operators for these expressions as well. 187 ExprResult 188 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc, 189 SourceLocation SuperLoc, 190 ParsedType ReceiverType, 191 Expr *ReceiverExpr) { 192 ExprResult R 193 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc, 194 ReceiverType, ReceiverExpr); 195 R = ParsePostfixExpressionSuffix(R); 196 return ParseRHSOfBinaryExpression(R, prec::Assignment); 197 } 198 199 ExprResult 200 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) { 201 assert(Actions.ExprEvalContexts.back().Context == 202 Sema::ExpressionEvaluationContext::ConstantEvaluated && 203 "Call this function only if your ExpressionEvaluationContext is " 204 "already ConstantEvaluated"); 205 ExprResult LHS(ParseCastExpression(false, false, isTypeCast)); 206 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 207 return Actions.ActOnConstantExpression(Res); 208 } 209 210 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) { 211 // C++03 [basic.def.odr]p2: 212 // An expression is potentially evaluated unless it appears where an 213 // integral constant expression is required (see 5.19) [...]. 214 // C++98 and C++11 have no such rule, but this is only a defect in C++98. 215 EnterExpressionEvaluationContext ConstantEvaluated( 216 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 217 return ParseConstantExpressionInExprEvalContext(isTypeCast); 218 } 219 220 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) { 221 EnterExpressionEvaluationContext ConstantEvaluated( 222 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 223 ExprResult LHS(ParseCastExpression(false, false, NotTypeCast)); 224 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 225 return Actions.ActOnCaseExpr(CaseLoc, Res); 226 } 227 228 /// Parse a constraint-expression. 229 /// 230 /// \verbatim 231 /// constraint-expression: [Concepts TS temp.constr.decl p1] 232 /// logical-or-expression 233 /// \endverbatim 234 ExprResult Parser::ParseConstraintExpression() { 235 // FIXME: this may erroneously consume a function-body as the braced 236 // initializer list of a compound literal 237 // 238 // FIXME: this may erroneously consume a parenthesized rvalue reference 239 // declarator as a parenthesized address-of-label expression 240 ExprResult LHS(ParseCastExpression(/*isUnaryExpression=*/false)); 241 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr)); 242 243 return Res; 244 } 245 246 bool Parser::isNotExpressionStart() { 247 tok::TokenKind K = Tok.getKind(); 248 if (K == tok::l_brace || K == tok::r_brace || 249 K == tok::kw_for || K == tok::kw_while || 250 K == tok::kw_if || K == tok::kw_else || 251 K == tok::kw_goto || K == tok::kw_try) 252 return true; 253 // If this is a decl-specifier, we can't be at the start of an expression. 254 return isKnownToBeDeclarationSpecifier(); 255 } 256 257 bool Parser::isFoldOperator(prec::Level Level) const { 258 return Level > prec::Unknown && Level != prec::Conditional && 259 Level != prec::Spaceship; 260 } 261 262 bool Parser::isFoldOperator(tok::TokenKind Kind) const { 263 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true)); 264 } 265 266 /// Parse a binary expression that starts with \p LHS and has a 267 /// precedence of at least \p MinPrec. 268 ExprResult 269 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) { 270 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(), 271 GreaterThanIsOperator, 272 getLangOpts().CPlusPlus11); 273 SourceLocation ColonLoc; 274 275 auto SavedType = PreferredType; 276 while (1) { 277 // Every iteration may rely on a preferred type for the whole expression. 278 PreferredType = SavedType; 279 // If this token has a lower precedence than we are allowed to parse (e.g. 280 // because we are called recursively, or because the token is not a binop), 281 // then we are done! 282 if (NextTokPrec < MinPrec) 283 return LHS; 284 285 // Consume the operator, saving the operator token for error reporting. 286 Token OpToken = Tok; 287 ConsumeToken(); 288 289 if (OpToken.is(tok::caretcaret)) { 290 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or)); 291 } 292 293 // If we're potentially in a template-id, we may now be able to determine 294 // whether we're actually in one or not. 295 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater, 296 tok::greatergreatergreater) && 297 checkPotentialAngleBracketDelimiter(OpToken)) 298 return ExprError(); 299 300 // Bail out when encountering a comma followed by a token which can't 301 // possibly be the start of an expression. For instance: 302 // int f() { return 1, } 303 // We can't do this before consuming the comma, because 304 // isNotExpressionStart() looks at the token stream. 305 if (OpToken.is(tok::comma) && isNotExpressionStart()) { 306 PP.EnterToken(Tok, /*IsReinject*/true); 307 Tok = OpToken; 308 return LHS; 309 } 310 311 // If the next token is an ellipsis, then this is a fold-expression. Leave 312 // it alone so we can handle it in the paren expression. 313 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) { 314 // FIXME: We can't check this via lookahead before we consume the token 315 // because that tickles a lexer bug. 316 PP.EnterToken(Tok, /*IsReinject*/true); 317 Tok = OpToken; 318 return LHS; 319 } 320 321 // In Objective-C++, alternative operator tokens can be used as keyword args 322 // in message expressions. Unconsume the token so that it can reinterpreted 323 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support: 324 // [foo meth:0 and:0]; 325 // [foo not_eq]; 326 if (getLangOpts().ObjC && getLangOpts().CPlusPlus && 327 Tok.isOneOf(tok::colon, tok::r_square) && 328 OpToken.getIdentifierInfo() != nullptr) { 329 PP.EnterToken(Tok, /*IsReinject*/true); 330 Tok = OpToken; 331 return LHS; 332 } 333 334 // Special case handling for the ternary operator. 335 ExprResult TernaryMiddle(true); 336 if (NextTokPrec == prec::Conditional) { 337 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 338 // Parse a braced-init-list here for error recovery purposes. 339 SourceLocation BraceLoc = Tok.getLocation(); 340 TernaryMiddle = ParseBraceInitializer(); 341 if (!TernaryMiddle.isInvalid()) { 342 Diag(BraceLoc, diag::err_init_list_bin_op) 343 << /*RHS*/ 1 << PP.getSpelling(OpToken) 344 << Actions.getExprRange(TernaryMiddle.get()); 345 TernaryMiddle = ExprError(); 346 } 347 } else if (Tok.isNot(tok::colon)) { 348 // Don't parse FOO:BAR as if it were a typo for FOO::BAR. 349 ColonProtectionRAIIObject X(*this); 350 351 // Handle this production specially: 352 // logical-OR-expression '?' expression ':' conditional-expression 353 // In particular, the RHS of the '?' is 'expression', not 354 // 'logical-OR-expression' as we might expect. 355 TernaryMiddle = ParseExpression(); 356 } else { 357 // Special case handling of "X ? Y : Z" where Y is empty: 358 // logical-OR-expression '?' ':' conditional-expression [GNU] 359 TernaryMiddle = nullptr; 360 Diag(Tok, diag::ext_gnu_conditional_expr); 361 } 362 363 if (TernaryMiddle.isInvalid()) { 364 Actions.CorrectDelayedTyposInExpr(LHS); 365 LHS = ExprError(); 366 TernaryMiddle = nullptr; 367 } 368 369 if (!TryConsumeToken(tok::colon, ColonLoc)) { 370 // Otherwise, we're missing a ':'. Assume that this was a typo that 371 // the user forgot. If we're not in a macro expansion, we can suggest 372 // a fixit hint. If there were two spaces before the current token, 373 // suggest inserting the colon in between them, otherwise insert ": ". 374 SourceLocation FILoc = Tok.getLocation(); 375 const char *FIText = ": "; 376 const SourceManager &SM = PP.getSourceManager(); 377 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) { 378 assert(FILoc.isFileID()); 379 bool IsInvalid = false; 380 const char *SourcePtr = 381 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid); 382 if (!IsInvalid && *SourcePtr == ' ') { 383 SourcePtr = 384 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid); 385 if (!IsInvalid && *SourcePtr == ' ') { 386 FILoc = FILoc.getLocWithOffset(-1); 387 FIText = ":"; 388 } 389 } 390 } 391 392 Diag(Tok, diag::err_expected) 393 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText); 394 Diag(OpToken, diag::note_matching) << tok::question; 395 ColonLoc = Tok.getLocation(); 396 } 397 } 398 399 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(), 400 OpToken.getKind()); 401 // Parse another leaf here for the RHS of the operator. 402 // ParseCastExpression works here because all RHS expressions in C have it 403 // as a prefix, at least. However, in C++, an assignment-expression could 404 // be a throw-expression, which is not a valid cast-expression. 405 // Therefore we need some special-casing here. 406 // Also note that the third operand of the conditional operator is 407 // an assignment-expression in C++, and in C++11, we can have a 408 // braced-init-list on the RHS of an assignment. For better diagnostics, 409 // parse as if we were allowed braced-init-lists everywhere, and check that 410 // they only appear on the RHS of assignments later. 411 ExprResult RHS; 412 bool RHSIsInitList = false; 413 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 414 RHS = ParseBraceInitializer(); 415 RHSIsInitList = true; 416 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional) 417 RHS = ParseAssignmentExpression(); 418 else 419 RHS = ParseCastExpression(false); 420 421 if (RHS.isInvalid()) { 422 // FIXME: Errors generated by the delayed typo correction should be 423 // printed before errors from parsing the RHS, not after. 424 Actions.CorrectDelayedTyposInExpr(LHS); 425 if (TernaryMiddle.isUsable()) 426 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 427 LHS = ExprError(); 428 } 429 430 // Remember the precedence of this operator and get the precedence of the 431 // operator immediately to the right of the RHS. 432 prec::Level ThisPrec = NextTokPrec; 433 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 434 getLangOpts().CPlusPlus11); 435 436 // Assignment and conditional expressions are right-associative. 437 bool isRightAssoc = ThisPrec == prec::Conditional || 438 ThisPrec == prec::Assignment; 439 440 // Get the precedence of the operator to the right of the RHS. If it binds 441 // more tightly with RHS than we do, evaluate it completely first. 442 if (ThisPrec < NextTokPrec || 443 (ThisPrec == NextTokPrec && isRightAssoc)) { 444 if (!RHS.isInvalid() && RHSIsInitList) { 445 Diag(Tok, diag::err_init_list_bin_op) 446 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get()); 447 RHS = ExprError(); 448 } 449 // If this is left-associative, only parse things on the RHS that bind 450 // more tightly than the current operator. If it is left-associative, it 451 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as 452 // A=(B=(C=D)), where each paren is a level of recursion here. 453 // The function takes ownership of the RHS. 454 RHS = ParseRHSOfBinaryExpression(RHS, 455 static_cast<prec::Level>(ThisPrec + !isRightAssoc)); 456 RHSIsInitList = false; 457 458 if (RHS.isInvalid()) { 459 // FIXME: Errors generated by the delayed typo correction should be 460 // printed before errors from ParseRHSOfBinaryExpression, not after. 461 Actions.CorrectDelayedTyposInExpr(LHS); 462 if (TernaryMiddle.isUsable()) 463 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 464 LHS = ExprError(); 465 } 466 467 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 468 getLangOpts().CPlusPlus11); 469 } 470 471 if (!RHS.isInvalid() && RHSIsInitList) { 472 if (ThisPrec == prec::Assignment) { 473 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists) 474 << Actions.getExprRange(RHS.get()); 475 } else if (ColonLoc.isValid()) { 476 Diag(ColonLoc, diag::err_init_list_bin_op) 477 << /*RHS*/1 << ":" 478 << Actions.getExprRange(RHS.get()); 479 LHS = ExprError(); 480 } else { 481 Diag(OpToken, diag::err_init_list_bin_op) 482 << /*RHS*/1 << PP.getSpelling(OpToken) 483 << Actions.getExprRange(RHS.get()); 484 LHS = ExprError(); 485 } 486 } 487 488 ExprResult OrigLHS = LHS; 489 if (!LHS.isInvalid()) { 490 // Combine the LHS and RHS into the LHS (e.g. build AST). 491 if (TernaryMiddle.isInvalid()) { 492 // If we're using '>>' as an operator within a template 493 // argument list (in C++98), suggest the addition of 494 // parentheses so that the code remains well-formed in C++0x. 495 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater)) 496 SuggestParentheses(OpToken.getLocation(), 497 diag::warn_cxx11_right_shift_in_template_arg, 498 SourceRange(Actions.getExprRange(LHS.get()).getBegin(), 499 Actions.getExprRange(RHS.get()).getEnd())); 500 501 LHS = Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(), 502 OpToken.getKind(), LHS.get(), RHS.get()); 503 504 } else { 505 LHS = Actions.ActOnConditionalOp(OpToken.getLocation(), ColonLoc, 506 LHS.get(), TernaryMiddle.get(), 507 RHS.get()); 508 } 509 // In this case, ActOnBinOp or ActOnConditionalOp performed the 510 // CorrectDelayedTyposInExpr check. 511 if (!getLangOpts().CPlusPlus) 512 continue; 513 } 514 515 // Ensure potential typos aren't left undiagnosed. 516 if (LHS.isInvalid()) { 517 Actions.CorrectDelayedTyposInExpr(OrigLHS); 518 Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 519 Actions.CorrectDelayedTyposInExpr(RHS); 520 } 521 } 522 } 523 524 /// Parse a cast-expression, or, if \p isUnaryExpression is true, 525 /// parse a unary-expression. 526 /// 527 /// \p isAddressOfOperand exists because an id-expression that is the 528 /// operand of address-of gets special treatment due to member pointers. 529 /// 530 ExprResult Parser::ParseCastExpression(bool isUnaryExpression, 531 bool isAddressOfOperand, 532 TypeCastState isTypeCast, 533 bool isVectorLiteral) { 534 bool NotCastExpr; 535 ExprResult Res = ParseCastExpression(isUnaryExpression, 536 isAddressOfOperand, 537 NotCastExpr, 538 isTypeCast, 539 isVectorLiteral); 540 if (NotCastExpr) 541 Diag(Tok, diag::err_expected_expression); 542 return Res; 543 } 544 545 namespace { 546 class CastExpressionIdValidator final : public CorrectionCandidateCallback { 547 public: 548 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes) 549 : NextToken(Next), AllowNonTypes(AllowNonTypes) { 550 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes; 551 } 552 553 bool ValidateCandidate(const TypoCorrection &candidate) override { 554 NamedDecl *ND = candidate.getCorrectionDecl(); 555 if (!ND) 556 return candidate.isKeyword(); 557 558 if (isa<TypeDecl>(ND)) 559 return WantTypeSpecifiers; 560 561 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate)) 562 return false; 563 564 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period)) 565 return true; 566 567 for (auto *C : candidate) { 568 NamedDecl *ND = C->getUnderlyingDecl(); 569 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND)) 570 return true; 571 } 572 return false; 573 } 574 575 std::unique_ptr<CorrectionCandidateCallback> clone() override { 576 return llvm::make_unique<CastExpressionIdValidator>(*this); 577 } 578 579 private: 580 Token NextToken; 581 bool AllowNonTypes; 582 }; 583 } 584 585 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse 586 /// a unary-expression. 587 /// 588 /// \p isAddressOfOperand exists because an id-expression that is the operand 589 /// of address-of gets special treatment due to member pointers. NotCastExpr 590 /// is set to true if the token is not the start of a cast-expression, and no 591 /// diagnostic is emitted in this case and no tokens are consumed. 592 /// 593 /// \verbatim 594 /// cast-expression: [C99 6.5.4] 595 /// unary-expression 596 /// '(' type-name ')' cast-expression 597 /// 598 /// unary-expression: [C99 6.5.3] 599 /// postfix-expression 600 /// '++' unary-expression 601 /// '--' unary-expression 602 /// [Coro] 'co_await' cast-expression 603 /// unary-operator cast-expression 604 /// 'sizeof' unary-expression 605 /// 'sizeof' '(' type-name ')' 606 /// [C++11] 'sizeof' '...' '(' identifier ')' 607 /// [GNU] '__alignof' unary-expression 608 /// [GNU] '__alignof' '(' type-name ')' 609 /// [C11] '_Alignof' '(' type-name ')' 610 /// [C++11] 'alignof' '(' type-id ')' 611 /// [GNU] '&&' identifier 612 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7] 613 /// [C++] new-expression 614 /// [C++] delete-expression 615 /// 616 /// unary-operator: one of 617 /// '&' '*' '+' '-' '~' '!' 618 /// [GNU] '__extension__' '__real' '__imag' 619 /// 620 /// primary-expression: [C99 6.5.1] 621 /// [C99] identifier 622 /// [C++] id-expression 623 /// constant 624 /// string-literal 625 /// [C++] boolean-literal [C++ 2.13.5] 626 /// [C++11] 'nullptr' [C++11 2.14.7] 627 /// [C++11] user-defined-literal 628 /// '(' expression ')' 629 /// [C11] generic-selection 630 /// '__func__' [C99 6.4.2.2] 631 /// [GNU] '__FUNCTION__' 632 /// [MS] '__FUNCDNAME__' 633 /// [MS] 'L__FUNCTION__' 634 /// [MS] '__FUNCSIG__' 635 /// [MS] 'L__FUNCSIG__' 636 /// [GNU] '__PRETTY_FUNCTION__' 637 /// [GNU] '(' compound-statement ')' 638 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 639 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 640 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 641 /// assign-expr ')' 642 /// [GNU] '__builtin_FILE' '(' ')' 643 /// [GNU] '__builtin_FUNCTION' '(' ')' 644 /// [GNU] '__builtin_LINE' '(' ')' 645 /// [CLANG] '__builtin_COLUMN' '(' ')' 646 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 647 /// [GNU] '__null' 648 /// [OBJC] '[' objc-message-expr ']' 649 /// [OBJC] '\@selector' '(' objc-selector-arg ')' 650 /// [OBJC] '\@protocol' '(' identifier ')' 651 /// [OBJC] '\@encode' '(' type-name ')' 652 /// [OBJC] objc-string-literal 653 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 654 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3] 655 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 656 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3] 657 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 658 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 659 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 660 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 661 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1] 662 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1] 663 /// [C++] 'this' [C++ 9.3.2] 664 /// [G++] unary-type-trait '(' type-id ')' 665 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO] 666 /// [EMBT] array-type-trait '(' type-id ',' integer ')' 667 /// [clang] '^' block-literal 668 /// 669 /// constant: [C99 6.4.4] 670 /// integer-constant 671 /// floating-constant 672 /// enumeration-constant -> identifier 673 /// character-constant 674 /// 675 /// id-expression: [C++ 5.1] 676 /// unqualified-id 677 /// qualified-id 678 /// 679 /// unqualified-id: [C++ 5.1] 680 /// identifier 681 /// operator-function-id 682 /// conversion-function-id 683 /// '~' class-name 684 /// template-id 685 /// 686 /// new-expression: [C++ 5.3.4] 687 /// '::'[opt] 'new' new-placement[opt] new-type-id 688 /// new-initializer[opt] 689 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 690 /// new-initializer[opt] 691 /// 692 /// delete-expression: [C++ 5.3.5] 693 /// '::'[opt] 'delete' cast-expression 694 /// '::'[opt] 'delete' '[' ']' cast-expression 695 /// 696 /// [GNU/Embarcadero] unary-type-trait: 697 /// '__is_arithmetic' 698 /// '__is_floating_point' 699 /// '__is_integral' 700 /// '__is_lvalue_expr' 701 /// '__is_rvalue_expr' 702 /// '__is_complete_type' 703 /// '__is_void' 704 /// '__is_array' 705 /// '__is_function' 706 /// '__is_reference' 707 /// '__is_lvalue_reference' 708 /// '__is_rvalue_reference' 709 /// '__is_fundamental' 710 /// '__is_object' 711 /// '__is_scalar' 712 /// '__is_compound' 713 /// '__is_pointer' 714 /// '__is_member_object_pointer' 715 /// '__is_member_function_pointer' 716 /// '__is_member_pointer' 717 /// '__is_const' 718 /// '__is_volatile' 719 /// '__is_trivial' 720 /// '__is_standard_layout' 721 /// '__is_signed' 722 /// '__is_unsigned' 723 /// 724 /// [GNU] unary-type-trait: 725 /// '__has_nothrow_assign' 726 /// '__has_nothrow_copy' 727 /// '__has_nothrow_constructor' 728 /// '__has_trivial_assign' [TODO] 729 /// '__has_trivial_copy' [TODO] 730 /// '__has_trivial_constructor' 731 /// '__has_trivial_destructor' 732 /// '__has_virtual_destructor' 733 /// '__is_abstract' [TODO] 734 /// '__is_class' 735 /// '__is_empty' [TODO] 736 /// '__is_enum' 737 /// '__is_final' 738 /// '__is_pod' 739 /// '__is_polymorphic' 740 /// '__is_sealed' [MS] 741 /// '__is_trivial' 742 /// '__is_union' 743 /// '__has_unique_object_representations' 744 /// 745 /// [Clang] unary-type-trait: 746 /// '__is_aggregate' 747 /// '__trivially_copyable' 748 /// 749 /// binary-type-trait: 750 /// [GNU] '__is_base_of' 751 /// [MS] '__is_convertible_to' 752 /// '__is_convertible' 753 /// '__is_same' 754 /// 755 /// [Embarcadero] array-type-trait: 756 /// '__array_rank' 757 /// '__array_extent' 758 /// 759 /// [Embarcadero] expression-trait: 760 /// '__is_lvalue_expr' 761 /// '__is_rvalue_expr' 762 /// \endverbatim 763 /// 764 ExprResult Parser::ParseCastExpression(bool isUnaryExpression, 765 bool isAddressOfOperand, 766 bool &NotCastExpr, 767 TypeCastState isTypeCast, 768 bool isVectorLiteral) { 769 ExprResult Res; 770 tok::TokenKind SavedKind = Tok.getKind(); 771 auto SavedType = PreferredType; 772 NotCastExpr = false; 773 774 // This handles all of cast-expression, unary-expression, postfix-expression, 775 // and primary-expression. We handle them together like this for efficiency 776 // and to simplify handling of an expression starting with a '(' token: which 777 // may be one of a parenthesized expression, cast-expression, compound literal 778 // expression, or statement expression. 779 // 780 // If the parsed tokens consist of a primary-expression, the cases below 781 // break out of the switch; at the end we call ParsePostfixExpressionSuffix 782 // to handle the postfix expression suffixes. Cases that cannot be followed 783 // by postfix exprs should return without invoking 784 // ParsePostfixExpressionSuffix. 785 switch (SavedKind) { 786 case tok::l_paren: { 787 // If this expression is limited to being a unary-expression, the parent can 788 // not start a cast expression. 789 ParenParseOption ParenExprType = 790 (isUnaryExpression && !getLangOpts().CPlusPlus) ? CompoundLiteral 791 : CastExpr; 792 ParsedType CastTy; 793 SourceLocation RParenLoc; 794 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/, 795 isTypeCast == IsTypeCast, CastTy, RParenLoc); 796 797 if (isVectorLiteral) 798 return Res; 799 800 switch (ParenExprType) { 801 case SimpleExpr: break; // Nothing else to do. 802 case CompoundStmt: break; // Nothing else to do. 803 case CompoundLiteral: 804 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of 805 // postfix-expression exist, parse them now. 806 break; 807 case CastExpr: 808 // We have parsed the cast-expression and no postfix-expr pieces are 809 // following. 810 return Res; 811 case FoldExpr: 812 // We only parsed a fold-expression. There might be postfix-expr pieces 813 // afterwards; parse them now. 814 break; 815 } 816 817 break; 818 } 819 820 // primary-expression 821 case tok::numeric_constant: 822 // constant: integer-constant 823 // constant: floating-constant 824 825 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope()); 826 ConsumeToken(); 827 break; 828 829 case tok::kw_true: 830 case tok::kw_false: 831 Res = ParseCXXBoolLiteral(); 832 break; 833 834 case tok::kw___objc_yes: 835 case tok::kw___objc_no: 836 return ParseObjCBoolLiteral(); 837 838 case tok::kw_nullptr: 839 Diag(Tok, diag::warn_cxx98_compat_nullptr); 840 return Actions.ActOnCXXNullPtrLiteral(ConsumeToken()); 841 842 case tok::annot_primary_expr: 843 assert(Res.get() == nullptr && "Stray primary-expression annotation?"); 844 Res = getExprAnnotation(Tok); 845 ConsumeAnnotationToken(); 846 if (!Res.isInvalid() && Tok.is(tok::less)) 847 checkPotentialAngleBracket(Res); 848 break; 849 850 case tok::kw___super: 851 case tok::kw_decltype: 852 // Annotate the token and tail recurse. 853 if (TryAnnotateTypeOrScopeToken()) 854 return ExprError(); 855 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super)); 856 return ParseCastExpression(isUnaryExpression, isAddressOfOperand); 857 858 case tok::identifier: { // primary-expression: identifier 859 // unqualified-id: identifier 860 // constant: enumeration-constant 861 // Turn a potentially qualified name into a annot_typename or 862 // annot_cxxscope if it would be valid. This handles things like x::y, etc. 863 if (getLangOpts().CPlusPlus) { 864 // Avoid the unnecessary parse-time lookup in the common case 865 // where the syntax forbids a type. 866 const Token &Next = NextToken(); 867 868 // If this identifier was reverted from a token ID, and the next token 869 // is a parenthesis, this is likely to be a use of a type trait. Check 870 // those tokens. 871 if (Next.is(tok::l_paren) && 872 Tok.is(tok::identifier) && 873 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) { 874 IdentifierInfo *II = Tok.getIdentifierInfo(); 875 // Build up the mapping of revertible type traits, for future use. 876 if (RevertibleTypeTraits.empty()) { 877 #define RTT_JOIN(X,Y) X##Y 878 #define REVERTIBLE_TYPE_TRAIT(Name) \ 879 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \ 880 = RTT_JOIN(tok::kw_,Name) 881 882 REVERTIBLE_TYPE_TRAIT(__is_abstract); 883 REVERTIBLE_TYPE_TRAIT(__is_aggregate); 884 REVERTIBLE_TYPE_TRAIT(__is_arithmetic); 885 REVERTIBLE_TYPE_TRAIT(__is_array); 886 REVERTIBLE_TYPE_TRAIT(__is_assignable); 887 REVERTIBLE_TYPE_TRAIT(__is_base_of); 888 REVERTIBLE_TYPE_TRAIT(__is_class); 889 REVERTIBLE_TYPE_TRAIT(__is_complete_type); 890 REVERTIBLE_TYPE_TRAIT(__is_compound); 891 REVERTIBLE_TYPE_TRAIT(__is_const); 892 REVERTIBLE_TYPE_TRAIT(__is_constructible); 893 REVERTIBLE_TYPE_TRAIT(__is_convertible); 894 REVERTIBLE_TYPE_TRAIT(__is_convertible_to); 895 REVERTIBLE_TYPE_TRAIT(__is_destructible); 896 REVERTIBLE_TYPE_TRAIT(__is_empty); 897 REVERTIBLE_TYPE_TRAIT(__is_enum); 898 REVERTIBLE_TYPE_TRAIT(__is_floating_point); 899 REVERTIBLE_TYPE_TRAIT(__is_final); 900 REVERTIBLE_TYPE_TRAIT(__is_function); 901 REVERTIBLE_TYPE_TRAIT(__is_fundamental); 902 REVERTIBLE_TYPE_TRAIT(__is_integral); 903 REVERTIBLE_TYPE_TRAIT(__is_interface_class); 904 REVERTIBLE_TYPE_TRAIT(__is_literal); 905 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr); 906 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference); 907 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer); 908 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer); 909 REVERTIBLE_TYPE_TRAIT(__is_member_pointer); 910 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable); 911 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible); 912 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible); 913 REVERTIBLE_TYPE_TRAIT(__is_object); 914 REVERTIBLE_TYPE_TRAIT(__is_pod); 915 REVERTIBLE_TYPE_TRAIT(__is_pointer); 916 REVERTIBLE_TYPE_TRAIT(__is_polymorphic); 917 REVERTIBLE_TYPE_TRAIT(__is_reference); 918 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr); 919 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference); 920 REVERTIBLE_TYPE_TRAIT(__is_same); 921 REVERTIBLE_TYPE_TRAIT(__is_scalar); 922 REVERTIBLE_TYPE_TRAIT(__is_sealed); 923 REVERTIBLE_TYPE_TRAIT(__is_signed); 924 REVERTIBLE_TYPE_TRAIT(__is_standard_layout); 925 REVERTIBLE_TYPE_TRAIT(__is_trivial); 926 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable); 927 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible); 928 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable); 929 REVERTIBLE_TYPE_TRAIT(__is_union); 930 REVERTIBLE_TYPE_TRAIT(__is_unsigned); 931 REVERTIBLE_TYPE_TRAIT(__is_void); 932 REVERTIBLE_TYPE_TRAIT(__is_volatile); 933 #undef REVERTIBLE_TYPE_TRAIT 934 #undef RTT_JOIN 935 } 936 937 // If we find that this is in fact the name of a type trait, 938 // update the token kind in place and parse again to treat it as 939 // the appropriate kind of type trait. 940 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known 941 = RevertibleTypeTraits.find(II); 942 if (Known != RevertibleTypeTraits.end()) { 943 Tok.setKind(Known->second); 944 return ParseCastExpression(isUnaryExpression, isAddressOfOperand, 945 NotCastExpr, isTypeCast); 946 } 947 } 948 949 if ((!ColonIsSacred && Next.is(tok::colon)) || 950 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren, 951 tok::l_brace)) { 952 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 953 if (TryAnnotateTypeOrScopeToken()) 954 return ExprError(); 955 if (!Tok.is(tok::identifier)) 956 return ParseCastExpression(isUnaryExpression, isAddressOfOperand); 957 } 958 } 959 960 // Consume the identifier so that we can see if it is followed by a '(' or 961 // '.'. 962 IdentifierInfo &II = *Tok.getIdentifierInfo(); 963 SourceLocation ILoc = ConsumeToken(); 964 965 // Support 'Class.property' and 'super.property' notation. 966 if (getLangOpts().ObjC && Tok.is(tok::period) && 967 (Actions.getTypeName(II, ILoc, getCurScope()) || 968 // Allow the base to be 'super' if in an objc-method. 969 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) { 970 ConsumeToken(); 971 972 if (Tok.is(tok::code_completion) && &II != Ident_super) { 973 Actions.CodeCompleteObjCClassPropertyRefExpr( 974 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc); 975 cutOffParsing(); 976 return ExprError(); 977 } 978 // Allow either an identifier or the keyword 'class' (in C++). 979 if (Tok.isNot(tok::identifier) && 980 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) { 981 Diag(Tok, diag::err_expected_property_name); 982 return ExprError(); 983 } 984 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo(); 985 SourceLocation PropertyLoc = ConsumeToken(); 986 987 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName, 988 ILoc, PropertyLoc); 989 break; 990 } 991 992 // In an Objective-C method, if we have "super" followed by an identifier, 993 // the token sequence is ill-formed. However, if there's a ':' or ']' after 994 // that identifier, this is probably a message send with a missing open 995 // bracket. Treat it as such. 996 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression && 997 getCurScope()->isInObjcMethodScope() && 998 ((Tok.is(tok::identifier) && 999 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) || 1000 Tok.is(tok::code_completion))) { 1001 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr, 1002 nullptr); 1003 break; 1004 } 1005 1006 // If we have an Objective-C class name followed by an identifier 1007 // and either ':' or ']', this is an Objective-C class message 1008 // send that's missing the opening '['. Recovery 1009 // appropriately. Also take this path if we're performing code 1010 // completion after an Objective-C class name. 1011 if (getLangOpts().ObjC && 1012 ((Tok.is(tok::identifier) && !InMessageExpression) || 1013 Tok.is(tok::code_completion))) { 1014 const Token& Next = NextToken(); 1015 if (Tok.is(tok::code_completion) || 1016 Next.is(tok::colon) || Next.is(tok::r_square)) 1017 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope())) 1018 if (Typ.get()->isObjCObjectOrInterfaceType()) { 1019 // Fake up a Declarator to use with ActOnTypeName. 1020 DeclSpec DS(AttrFactory); 1021 DS.SetRangeStart(ILoc); 1022 DS.SetRangeEnd(ILoc); 1023 const char *PrevSpec = nullptr; 1024 unsigned DiagID; 1025 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ, 1026 Actions.getASTContext().getPrintingPolicy()); 1027 1028 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 1029 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), 1030 DeclaratorInfo); 1031 if (Ty.isInvalid()) 1032 break; 1033 1034 Res = ParseObjCMessageExpressionBody(SourceLocation(), 1035 SourceLocation(), 1036 Ty.get(), nullptr); 1037 break; 1038 } 1039 } 1040 1041 // Make sure to pass down the right value for isAddressOfOperand. 1042 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 1043 isAddressOfOperand = false; 1044 1045 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we 1046 // need to know whether or not this identifier is a function designator or 1047 // not. 1048 UnqualifiedId Name; 1049 CXXScopeSpec ScopeSpec; 1050 SourceLocation TemplateKWLoc; 1051 Token Replacement; 1052 CastExpressionIdValidator Validator( 1053 /*Next=*/Tok, 1054 /*AllowTypes=*/isTypeCast != NotTypeCast, 1055 /*AllowNonTypes=*/isTypeCast != IsTypeCast); 1056 Validator.IsAddressOfOperand = isAddressOfOperand; 1057 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) { 1058 Validator.WantExpressionKeywords = false; 1059 Validator.WantRemainingKeywords = false; 1060 } else { 1061 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren); 1062 } 1063 Name.setIdentifier(&II, ILoc); 1064 Res = Actions.ActOnIdExpression( 1065 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren), 1066 isAddressOfOperand, &Validator, 1067 /*IsInlineAsmIdentifier=*/false, 1068 Tok.is(tok::r_paren) ? nullptr : &Replacement); 1069 if (!Res.isInvalid() && Res.isUnset()) { 1070 UnconsumeToken(Replacement); 1071 return ParseCastExpression(isUnaryExpression, isAddressOfOperand, 1072 NotCastExpr, isTypeCast); 1073 } 1074 if (!Res.isInvalid() && Tok.is(tok::less)) 1075 checkPotentialAngleBracket(Res); 1076 break; 1077 } 1078 case tok::char_constant: // constant: character-constant 1079 case tok::wide_char_constant: 1080 case tok::utf8_char_constant: 1081 case tok::utf16_char_constant: 1082 case tok::utf32_char_constant: 1083 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope()); 1084 ConsumeToken(); 1085 break; 1086 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2] 1087 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU] 1088 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS] 1089 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS] 1090 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS] 1091 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS] 1092 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU] 1093 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind); 1094 ConsumeToken(); 1095 break; 1096 case tok::string_literal: // primary-expression: string-literal 1097 case tok::wide_string_literal: 1098 case tok::utf8_string_literal: 1099 case tok::utf16_string_literal: 1100 case tok::utf32_string_literal: 1101 Res = ParseStringLiteralExpression(true); 1102 break; 1103 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1] 1104 Res = ParseGenericSelectionExpression(); 1105 break; 1106 case tok::kw___builtin_available: 1107 return ParseAvailabilityCheckExpr(Tok.getLocation()); 1108 case tok::kw___builtin_va_arg: 1109 case tok::kw___builtin_offsetof: 1110 case tok::kw___builtin_choose_expr: 1111 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type() 1112 case tok::kw___builtin_convertvector: 1113 case tok::kw___builtin_COLUMN: 1114 case tok::kw___builtin_FILE: 1115 case tok::kw___builtin_FUNCTION: 1116 case tok::kw___builtin_LINE: 1117 return ParseBuiltinPrimaryExpression(); 1118 case tok::kw___null: 1119 return Actions.ActOnGNUNullExpr(ConsumeToken()); 1120 1121 case tok::plusplus: // unary-expression: '++' unary-expression [C99] 1122 case tok::minusminus: { // unary-expression: '--' unary-expression [C99] 1123 // C++ [expr.unary] has: 1124 // unary-expression: 1125 // ++ cast-expression 1126 // -- cast-expression 1127 Token SavedTok = Tok; 1128 ConsumeToken(); 1129 1130 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(), 1131 SavedTok.getLocation()); 1132 // One special case is implicitly handled here: if the preceding tokens are 1133 // an ambiguous cast expression, such as "(T())++", then we recurse to 1134 // determine whether the '++' is prefix or postfix. 1135 Res = ParseCastExpression(!getLangOpts().CPlusPlus, 1136 /*isAddressOfOperand*/false, NotCastExpr, 1137 NotTypeCast); 1138 if (NotCastExpr) { 1139 // If we return with NotCastExpr = true, we must not consume any tokens, 1140 // so put the token back where we found it. 1141 assert(Res.isInvalid()); 1142 UnconsumeToken(SavedTok); 1143 return ExprError(); 1144 } 1145 if (!Res.isInvalid()) 1146 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(), 1147 SavedKind, Res.get()); 1148 return Res; 1149 } 1150 case tok::amp: { // unary-expression: '&' cast-expression 1151 // Special treatment because of member pointers 1152 SourceLocation SavedLoc = ConsumeToken(); 1153 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc); 1154 Res = ParseCastExpression(false, true); 1155 if (!Res.isInvalid()) 1156 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1157 return Res; 1158 } 1159 1160 case tok::star: // unary-expression: '*' cast-expression 1161 case tok::plus: // unary-expression: '+' cast-expression 1162 case tok::minus: // unary-expression: '-' cast-expression 1163 case tok::tilde: // unary-expression: '~' cast-expression 1164 case tok::exclaim: // unary-expression: '!' cast-expression 1165 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU] 1166 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU] 1167 SourceLocation SavedLoc = ConsumeToken(); 1168 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc); 1169 Res = ParseCastExpression(false); 1170 if (!Res.isInvalid()) 1171 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1172 return Res; 1173 } 1174 1175 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression 1176 SourceLocation CoawaitLoc = ConsumeToken(); 1177 Res = ParseCastExpression(false); 1178 if (!Res.isInvalid()) 1179 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get()); 1180 return Res; 1181 } 1182 1183 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU] 1184 // __extension__ silences extension warnings in the subexpression. 1185 ExtensionRAIIObject O(Diags); // Use RAII to do this. 1186 SourceLocation SavedLoc = ConsumeToken(); 1187 Res = ParseCastExpression(false); 1188 if (!Res.isInvalid()) 1189 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1190 return Res; 1191 } 1192 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')' 1193 if (!getLangOpts().C11) 1194 Diag(Tok, diag::ext_c11_alignment) << Tok.getName(); 1195 LLVM_FALLTHROUGH; 1196 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')' 1197 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression 1198 // unary-expression: '__alignof' '(' type-name ')' 1199 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression 1200 // unary-expression: 'sizeof' '(' type-name ')' 1201 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression 1202 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')' 1203 case tok::kw___builtin_omp_required_simd_align: 1204 return ParseUnaryExprOrTypeTraitExpression(); 1205 case tok::ampamp: { // unary-expression: '&&' identifier 1206 SourceLocation AmpAmpLoc = ConsumeToken(); 1207 if (Tok.isNot(tok::identifier)) 1208 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier); 1209 1210 if (getCurScope()->getFnParent() == nullptr) 1211 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn)); 1212 1213 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label); 1214 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(), 1215 Tok.getLocation()); 1216 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD); 1217 ConsumeToken(); 1218 return Res; 1219 } 1220 case tok::kw_const_cast: 1221 case tok::kw_dynamic_cast: 1222 case tok::kw_reinterpret_cast: 1223 case tok::kw_static_cast: 1224 Res = ParseCXXCasts(); 1225 break; 1226 case tok::kw___builtin_bit_cast: 1227 Res = ParseBuiltinBitCast(); 1228 break; 1229 case tok::kw_typeid: 1230 Res = ParseCXXTypeid(); 1231 break; 1232 case tok::kw___uuidof: 1233 Res = ParseCXXUuidof(); 1234 break; 1235 case tok::kw_this: 1236 Res = ParseCXXThis(); 1237 break; 1238 1239 case tok::annot_typename: 1240 if (isStartOfObjCClassMessageMissingOpenBracket()) { 1241 ParsedType Type = getTypeAnnotation(Tok); 1242 1243 // Fake up a Declarator to use with ActOnTypeName. 1244 DeclSpec DS(AttrFactory); 1245 DS.SetRangeStart(Tok.getLocation()); 1246 DS.SetRangeEnd(Tok.getLastLoc()); 1247 1248 const char *PrevSpec = nullptr; 1249 unsigned DiagID; 1250 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(), 1251 PrevSpec, DiagID, Type, 1252 Actions.getASTContext().getPrintingPolicy()); 1253 1254 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 1255 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 1256 if (Ty.isInvalid()) 1257 break; 1258 1259 ConsumeAnnotationToken(); 1260 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1261 Ty.get(), nullptr); 1262 break; 1263 } 1264 LLVM_FALLTHROUGH; 1265 1266 case tok::annot_decltype: 1267 case tok::kw_char: 1268 case tok::kw_wchar_t: 1269 case tok::kw_char8_t: 1270 case tok::kw_char16_t: 1271 case tok::kw_char32_t: 1272 case tok::kw_bool: 1273 case tok::kw_short: 1274 case tok::kw_int: 1275 case tok::kw_long: 1276 case tok::kw___int64: 1277 case tok::kw___int128: 1278 case tok::kw_signed: 1279 case tok::kw_unsigned: 1280 case tok::kw_half: 1281 case tok::kw_float: 1282 case tok::kw_double: 1283 case tok::kw__Float16: 1284 case tok::kw___float128: 1285 case tok::kw_void: 1286 case tok::kw_typename: 1287 case tok::kw_typeof: 1288 case tok::kw___vector: 1289 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 1290 #include "clang/Basic/OpenCLImageTypes.def" 1291 { 1292 if (!getLangOpts().CPlusPlus) { 1293 Diag(Tok, diag::err_expected_expression); 1294 return ExprError(); 1295 } 1296 1297 if (SavedKind == tok::kw_typename) { 1298 // postfix-expression: typename-specifier '(' expression-list[opt] ')' 1299 // typename-specifier braced-init-list 1300 if (TryAnnotateTypeOrScopeToken()) 1301 return ExprError(); 1302 1303 if (!Actions.isSimpleTypeSpecifier(Tok.getKind())) 1304 // We are trying to parse a simple-type-specifier but might not get such 1305 // a token after error recovery. 1306 return ExprError(); 1307 } 1308 1309 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')' 1310 // simple-type-specifier braced-init-list 1311 // 1312 DeclSpec DS(AttrFactory); 1313 1314 ParseCXXSimpleTypeSpecifier(DS); 1315 if (Tok.isNot(tok::l_paren) && 1316 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace))) 1317 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type) 1318 << DS.getSourceRange()); 1319 1320 if (Tok.is(tok::l_brace)) 1321 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1322 1323 Res = ParseCXXTypeConstructExpression(DS); 1324 break; 1325 } 1326 1327 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id 1328 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1329 // (We can end up in this situation after tentative parsing.) 1330 if (TryAnnotateTypeOrScopeToken()) 1331 return ExprError(); 1332 if (!Tok.is(tok::annot_cxxscope)) 1333 return ParseCastExpression(isUnaryExpression, isAddressOfOperand, 1334 NotCastExpr, isTypeCast); 1335 1336 Token Next = NextToken(); 1337 if (Next.is(tok::annot_template_id)) { 1338 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); 1339 if (TemplateId->Kind == TNK_Type_template) { 1340 // We have a qualified template-id that we know refers to a 1341 // type, translate it into a type and continue parsing as a 1342 // cast expression. 1343 CXXScopeSpec SS; 1344 ParseOptionalCXXScopeSpecifier(SS, nullptr, 1345 /*EnteringContext=*/false); 1346 AnnotateTemplateIdTokenAsType(); 1347 return ParseCastExpression(isUnaryExpression, isAddressOfOperand, 1348 NotCastExpr, isTypeCast); 1349 } 1350 } 1351 1352 // Parse as an id-expression. 1353 Res = ParseCXXIdExpression(isAddressOfOperand); 1354 break; 1355 } 1356 1357 case tok::annot_template_id: { // [C++] template-id 1358 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 1359 if (TemplateId->Kind == TNK_Type_template) { 1360 // We have a template-id that we know refers to a type, 1361 // translate it into a type and continue parsing as a cast 1362 // expression. 1363 AnnotateTemplateIdTokenAsType(); 1364 return ParseCastExpression(isUnaryExpression, isAddressOfOperand, 1365 NotCastExpr, isTypeCast); 1366 } 1367 1368 // Fall through to treat the template-id as an id-expression. 1369 LLVM_FALLTHROUGH; 1370 } 1371 1372 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id 1373 Res = ParseCXXIdExpression(isAddressOfOperand); 1374 break; 1375 1376 case tok::coloncolon: { 1377 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken 1378 // annotates the token, tail recurse. 1379 if (TryAnnotateTypeOrScopeToken()) 1380 return ExprError(); 1381 if (!Tok.is(tok::coloncolon)) 1382 return ParseCastExpression(isUnaryExpression, isAddressOfOperand); 1383 1384 // ::new -> [C++] new-expression 1385 // ::delete -> [C++] delete-expression 1386 SourceLocation CCLoc = ConsumeToken(); 1387 if (Tok.is(tok::kw_new)) 1388 return ParseCXXNewExpression(true, CCLoc); 1389 if (Tok.is(tok::kw_delete)) 1390 return ParseCXXDeleteExpression(true, CCLoc); 1391 1392 // This is not a type name or scope specifier, it is an invalid expression. 1393 Diag(CCLoc, diag::err_expected_expression); 1394 return ExprError(); 1395 } 1396 1397 case tok::kw_new: // [C++] new-expression 1398 return ParseCXXNewExpression(false, Tok.getLocation()); 1399 1400 case tok::kw_delete: // [C++] delete-expression 1401 return ParseCXXDeleteExpression(false, Tok.getLocation()); 1402 1403 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')' 1404 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr); 1405 SourceLocation KeyLoc = ConsumeToken(); 1406 BalancedDelimiterTracker T(*this, tok::l_paren); 1407 1408 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept")) 1409 return ExprError(); 1410 // C++11 [expr.unary.noexcept]p1: 1411 // The noexcept operator determines whether the evaluation of its operand, 1412 // which is an unevaluated operand, can throw an exception. 1413 EnterExpressionEvaluationContext Unevaluated( 1414 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 1415 ExprResult Result = ParseExpression(); 1416 1417 T.consumeClose(); 1418 1419 if (!Result.isInvalid()) 1420 Result = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), 1421 Result.get(), T.getCloseLocation()); 1422 return Result; 1423 } 1424 1425 #define TYPE_TRAIT(N,Spelling,K) \ 1426 case tok::kw_##Spelling: 1427 #include "clang/Basic/TokenKinds.def" 1428 return ParseTypeTrait(); 1429 1430 case tok::kw___array_rank: 1431 case tok::kw___array_extent: 1432 return ParseArrayTypeTrait(); 1433 1434 case tok::kw___is_lvalue_expr: 1435 case tok::kw___is_rvalue_expr: 1436 return ParseExpressionTrait(); 1437 1438 case tok::at: { 1439 SourceLocation AtLoc = ConsumeToken(); 1440 return ParseObjCAtExpression(AtLoc); 1441 } 1442 case tok::caret: 1443 Res = ParseBlockLiteralExpression(); 1444 break; 1445 case tok::code_completion: { 1446 Actions.CodeCompleteExpression(getCurScope(), 1447 PreferredType.get(Tok.getLocation())); 1448 cutOffParsing(); 1449 return ExprError(); 1450 } 1451 case tok::l_square: 1452 if (getLangOpts().CPlusPlus11) { 1453 if (getLangOpts().ObjC) { 1454 // C++11 lambda expressions and Objective-C message sends both start with a 1455 // square bracket. There are three possibilities here: 1456 // we have a valid lambda expression, we have an invalid lambda 1457 // expression, or we have something that doesn't appear to be a lambda. 1458 // If we're in the last case, we fall back to ParseObjCMessageExpression. 1459 Res = TryParseLambdaExpression(); 1460 if (!Res.isInvalid() && !Res.get()) 1461 Res = ParseObjCMessageExpression(); 1462 break; 1463 } 1464 Res = ParseLambdaExpression(); 1465 break; 1466 } 1467 if (getLangOpts().ObjC) { 1468 Res = ParseObjCMessageExpression(); 1469 break; 1470 } 1471 LLVM_FALLTHROUGH; 1472 default: 1473 NotCastExpr = true; 1474 return ExprError(); 1475 } 1476 1477 // Check to see whether Res is a function designator only. If it is and we 1478 // are compiling for OpenCL, we need to return an error as this implies 1479 // that the address of the function is being taken, which is illegal in CL. 1480 1481 // These can be followed by postfix-expr pieces. 1482 PreferredType = SavedType; 1483 Res = ParsePostfixExpressionSuffix(Res); 1484 if (getLangOpts().OpenCL) 1485 if (Expr *PostfixExpr = Res.get()) { 1486 QualType Ty = PostfixExpr->getType(); 1487 if (!Ty.isNull() && Ty->isFunctionType()) { 1488 Diag(PostfixExpr->getExprLoc(), 1489 diag::err_opencl_taking_function_address_parser); 1490 return ExprError(); 1491 } 1492 } 1493 1494 return Res; 1495 } 1496 1497 /// Once the leading part of a postfix-expression is parsed, this 1498 /// method parses any suffixes that apply. 1499 /// 1500 /// \verbatim 1501 /// postfix-expression: [C99 6.5.2] 1502 /// primary-expression 1503 /// postfix-expression '[' expression ']' 1504 /// postfix-expression '[' braced-init-list ']' 1505 /// postfix-expression '(' argument-expression-list[opt] ')' 1506 /// postfix-expression '.' identifier 1507 /// postfix-expression '->' identifier 1508 /// postfix-expression '++' 1509 /// postfix-expression '--' 1510 /// '(' type-name ')' '{' initializer-list '}' 1511 /// '(' type-name ')' '{' initializer-list ',' '}' 1512 /// 1513 /// argument-expression-list: [C99 6.5.2] 1514 /// argument-expression ...[opt] 1515 /// argument-expression-list ',' assignment-expression ...[opt] 1516 /// \endverbatim 1517 ExprResult 1518 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) { 1519 // Now that the primary-expression piece of the postfix-expression has been 1520 // parsed, see if there are any postfix-expression pieces here. 1521 SourceLocation Loc; 1522 auto SavedType = PreferredType; 1523 while (1) { 1524 // Each iteration relies on preferred type for the whole expression. 1525 PreferredType = SavedType; 1526 switch (Tok.getKind()) { 1527 case tok::code_completion: 1528 if (InMessageExpression) 1529 return LHS; 1530 1531 Actions.CodeCompletePostfixExpression( 1532 getCurScope(), LHS, PreferredType.get(Tok.getLocation())); 1533 cutOffParsing(); 1534 return ExprError(); 1535 1536 case tok::identifier: 1537 // If we see identifier: after an expression, and we're not already in a 1538 // message send, then this is probably a message send with a missing 1539 // opening bracket '['. 1540 if (getLangOpts().ObjC && !InMessageExpression && 1541 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 1542 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1543 nullptr, LHS.get()); 1544 break; 1545 } 1546 // Fall through; this isn't a message send. 1547 LLVM_FALLTHROUGH; 1548 1549 default: // Not a postfix-expression suffix. 1550 return LHS; 1551 case tok::l_square: { // postfix-expression: p-e '[' expression ']' 1552 // If we have a array postfix expression that starts on a new line and 1553 // Objective-C is enabled, it is highly likely that the user forgot a 1554 // semicolon after the base expression and that the array postfix-expr is 1555 // actually another message send. In this case, do some look-ahead to see 1556 // if the contents of the square brackets are obviously not a valid 1557 // expression and recover by pretending there is no suffix. 1558 if (getLangOpts().ObjC && Tok.isAtStartOfLine() && 1559 isSimpleObjCMessageExpression()) 1560 return LHS; 1561 1562 // Reject array indices starting with a lambda-expression. '[[' is 1563 // reserved for attributes. 1564 if (CheckProhibitedCXX11Attribute()) { 1565 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1566 return ExprError(); 1567 } 1568 1569 BalancedDelimiterTracker T(*this, tok::l_square); 1570 T.consumeOpen(); 1571 Loc = T.getOpenLocation(); 1572 ExprResult Idx, Length; 1573 SourceLocation ColonLoc; 1574 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get()); 1575 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 1576 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1577 Idx = ParseBraceInitializer(); 1578 } else if (getLangOpts().OpenMP) { 1579 ColonProtectionRAIIObject RAII(*this); 1580 // Parse [: or [ expr or [ expr : 1581 if (!Tok.is(tok::colon)) { 1582 // [ expr 1583 Idx = ParseExpression(); 1584 } 1585 if (Tok.is(tok::colon)) { 1586 // Consume ':' 1587 ColonLoc = ConsumeToken(); 1588 if (Tok.isNot(tok::r_square)) 1589 Length = ParseExpression(); 1590 } 1591 } else 1592 Idx = ParseExpression(); 1593 1594 SourceLocation RLoc = Tok.getLocation(); 1595 1596 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 1597 Idx = Actions.CorrectDelayedTyposInExpr(Idx); 1598 Length = Actions.CorrectDelayedTyposInExpr(Length); 1599 if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() && 1600 Tok.is(tok::r_square)) { 1601 if (ColonLoc.isValid()) { 1602 LHS = Actions.ActOnOMPArraySectionExpr(LHS.get(), Loc, Idx.get(), 1603 ColonLoc, Length.get(), RLoc); 1604 } else { 1605 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc, 1606 Idx.get(), RLoc); 1607 } 1608 } else { 1609 LHS = ExprError(); 1610 Idx = ExprError(); 1611 } 1612 1613 // Match the ']'. 1614 T.consumeClose(); 1615 break; 1616 } 1617 1618 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')' 1619 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>' 1620 // '(' argument-expression-list[opt] ')' 1621 tok::TokenKind OpKind = Tok.getKind(); 1622 InMessageExpressionRAIIObject InMessage(*this, false); 1623 1624 Expr *ExecConfig = nullptr; 1625 1626 BalancedDelimiterTracker PT(*this, tok::l_paren); 1627 1628 if (OpKind == tok::lesslessless) { 1629 ExprVector ExecConfigExprs; 1630 CommaLocsTy ExecConfigCommaLocs; 1631 SourceLocation OpenLoc = ConsumeToken(); 1632 1633 if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) { 1634 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1635 LHS = ExprError(); 1636 } 1637 1638 SourceLocation CloseLoc; 1639 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) { 1640 } else if (LHS.isInvalid()) { 1641 SkipUntil(tok::greatergreatergreater, StopAtSemi); 1642 } else { 1643 // There was an error closing the brackets 1644 Diag(Tok, diag::err_expected) << tok::greatergreatergreater; 1645 Diag(OpenLoc, diag::note_matching) << tok::lesslessless; 1646 SkipUntil(tok::greatergreatergreater, StopAtSemi); 1647 LHS = ExprError(); 1648 } 1649 1650 if (!LHS.isInvalid()) { 1651 if (ExpectAndConsume(tok::l_paren)) 1652 LHS = ExprError(); 1653 else 1654 Loc = PrevTokLocation; 1655 } 1656 1657 if (!LHS.isInvalid()) { 1658 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(), 1659 OpenLoc, 1660 ExecConfigExprs, 1661 CloseLoc); 1662 if (ECResult.isInvalid()) 1663 LHS = ExprError(); 1664 else 1665 ExecConfig = ECResult.get(); 1666 } 1667 } else { 1668 PT.consumeOpen(); 1669 Loc = PT.getOpenLocation(); 1670 } 1671 1672 ExprVector ArgExprs; 1673 CommaLocsTy CommaLocs; 1674 auto RunSignatureHelp = [&]() -> QualType { 1675 QualType PreferredType = Actions.ProduceCallSignatureHelp( 1676 getCurScope(), LHS.get(), ArgExprs, PT.getOpenLocation()); 1677 CalledSignatureHelp = true; 1678 return PreferredType; 1679 }; 1680 if (OpKind == tok::l_paren || !LHS.isInvalid()) { 1681 if (Tok.isNot(tok::r_paren)) { 1682 if (ParseExpressionList(ArgExprs, CommaLocs, [&] { 1683 PreferredType.enterFunctionArgument(Tok.getLocation(), 1684 RunSignatureHelp); 1685 })) { 1686 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1687 // If we got an error when parsing expression list, we don't call 1688 // the CodeCompleteCall handler inside the parser. So call it here 1689 // to make sure we get overload suggestions even when we are in the 1690 // middle of a parameter. 1691 if (PP.isCodeCompletionReached() && !CalledSignatureHelp) 1692 RunSignatureHelp(); 1693 LHS = ExprError(); 1694 } else if (LHS.isInvalid()) { 1695 for (auto &E : ArgExprs) 1696 Actions.CorrectDelayedTyposInExpr(E); 1697 } 1698 } 1699 } 1700 1701 // Match the ')'. 1702 if (LHS.isInvalid()) { 1703 SkipUntil(tok::r_paren, StopAtSemi); 1704 } else if (Tok.isNot(tok::r_paren)) { 1705 bool HadDelayedTypo = false; 1706 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get()) 1707 HadDelayedTypo = true; 1708 for (auto &E : ArgExprs) 1709 if (Actions.CorrectDelayedTyposInExpr(E).get() != E) 1710 HadDelayedTypo = true; 1711 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil 1712 // instead of PT.consumeClose() to avoid emitting extra diagnostics for 1713 // the unmatched l_paren. 1714 if (HadDelayedTypo) 1715 SkipUntil(tok::r_paren, StopAtSemi); 1716 else 1717 PT.consumeClose(); 1718 LHS = ExprError(); 1719 } else { 1720 assert((ArgExprs.size() == 0 || 1721 ArgExprs.size()-1 == CommaLocs.size())&& 1722 "Unexpected number of commas!"); 1723 LHS = Actions.ActOnCallExpr(getCurScope(), LHS.get(), Loc, 1724 ArgExprs, Tok.getLocation(), 1725 ExecConfig); 1726 PT.consumeClose(); 1727 } 1728 1729 break; 1730 } 1731 case tok::arrow: 1732 case tok::period: { 1733 // postfix-expression: p-e '->' template[opt] id-expression 1734 // postfix-expression: p-e '.' template[opt] id-expression 1735 tok::TokenKind OpKind = Tok.getKind(); 1736 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token. 1737 1738 CXXScopeSpec SS; 1739 ParsedType ObjectType; 1740 bool MayBePseudoDestructor = false; 1741 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr; 1742 1743 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS); 1744 1745 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) { 1746 Expr *Base = OrigLHS; 1747 const Type* BaseType = Base->getType().getTypePtrOrNull(); 1748 if (BaseType && Tok.is(tok::l_paren) && 1749 (BaseType->isFunctionType() || 1750 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) { 1751 Diag(OpLoc, diag::err_function_is_not_record) 1752 << OpKind << Base->getSourceRange() 1753 << FixItHint::CreateRemoval(OpLoc); 1754 return ParsePostfixExpressionSuffix(Base); 1755 } 1756 1757 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, 1758 OpLoc, OpKind, ObjectType, 1759 MayBePseudoDestructor); 1760 if (LHS.isInvalid()) 1761 break; 1762 1763 ParseOptionalCXXScopeSpecifier(SS, ObjectType, 1764 /*EnteringContext=*/false, 1765 &MayBePseudoDestructor); 1766 if (SS.isNotEmpty()) 1767 ObjectType = nullptr; 1768 } 1769 1770 if (Tok.is(tok::code_completion)) { 1771 tok::TokenKind CorrectedOpKind = 1772 OpKind == tok::arrow ? tok::period : tok::arrow; 1773 ExprResult CorrectedLHS(/*Invalid=*/true); 1774 if (getLangOpts().CPlusPlus && OrigLHS) { 1775 const bool DiagsAreSuppressed = Diags.getSuppressAllDiagnostics(); 1776 Diags.setSuppressAllDiagnostics(true); 1777 CorrectedLHS = Actions.ActOnStartCXXMemberReference( 1778 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType, 1779 MayBePseudoDestructor); 1780 Diags.setSuppressAllDiagnostics(DiagsAreSuppressed); 1781 } 1782 1783 Expr *Base = LHS.get(); 1784 Expr *CorrectedBase = CorrectedLHS.get(); 1785 if (!CorrectedBase && !getLangOpts().CPlusPlus) 1786 CorrectedBase = Base; 1787 1788 // Code completion for a member access expression. 1789 Actions.CodeCompleteMemberReferenceExpr( 1790 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow, 1791 Base && ExprStatementTokLoc == Base->getBeginLoc(), 1792 PreferredType.get(Tok.getLocation())); 1793 1794 cutOffParsing(); 1795 return ExprError(); 1796 } 1797 1798 if (MayBePseudoDestructor && !LHS.isInvalid()) { 1799 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS, 1800 ObjectType); 1801 break; 1802 } 1803 1804 // Either the action has told us that this cannot be a 1805 // pseudo-destructor expression (based on the type of base 1806 // expression), or we didn't see a '~' in the right place. We 1807 // can still parse a destructor name here, but in that case it 1808 // names a real destructor. 1809 // Allow explicit constructor calls in Microsoft mode. 1810 // FIXME: Add support for explicit call of template constructor. 1811 SourceLocation TemplateKWLoc; 1812 UnqualifiedId Name; 1813 if (getLangOpts().ObjC && OpKind == tok::period && 1814 Tok.is(tok::kw_class)) { 1815 // Objective-C++: 1816 // After a '.' in a member access expression, treat the keyword 1817 // 'class' as if it were an identifier. 1818 // 1819 // This hack allows property access to the 'class' method because it is 1820 // such a common method name. For other C++ keywords that are 1821 // Objective-C method names, one must use the message send syntax. 1822 IdentifierInfo *Id = Tok.getIdentifierInfo(); 1823 SourceLocation Loc = ConsumeToken(); 1824 Name.setIdentifier(Id, Loc); 1825 } else if (ParseUnqualifiedId(SS, 1826 /*EnteringContext=*/false, 1827 /*AllowDestructorName=*/true, 1828 /*AllowConstructorName=*/ 1829 getLangOpts().MicrosoftExt && 1830 SS.isNotEmpty(), 1831 /*AllowDeductionGuide=*/false, 1832 ObjectType, &TemplateKWLoc, Name)) { 1833 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1834 LHS = ExprError(); 1835 } 1836 1837 if (!LHS.isInvalid()) 1838 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc, 1839 OpKind, SS, TemplateKWLoc, Name, 1840 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl 1841 : nullptr); 1842 if (!LHS.isInvalid() && Tok.is(tok::less)) 1843 checkPotentialAngleBracket(LHS); 1844 break; 1845 } 1846 case tok::plusplus: // postfix-expression: postfix-expression '++' 1847 case tok::minusminus: // postfix-expression: postfix-expression '--' 1848 if (!LHS.isInvalid()) { 1849 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(), 1850 Tok.getKind(), LHS.get()); 1851 } 1852 ConsumeToken(); 1853 break; 1854 } 1855 } 1856 } 1857 1858 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/ 1859 /// vec_step and we are at the start of an expression or a parenthesized 1860 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the 1861 /// expression (isCastExpr == false) or the type (isCastExpr == true). 1862 /// 1863 /// \verbatim 1864 /// unary-expression: [C99 6.5.3] 1865 /// 'sizeof' unary-expression 1866 /// 'sizeof' '(' type-name ')' 1867 /// [GNU] '__alignof' unary-expression 1868 /// [GNU] '__alignof' '(' type-name ')' 1869 /// [C11] '_Alignof' '(' type-name ')' 1870 /// [C++0x] 'alignof' '(' type-id ')' 1871 /// 1872 /// [GNU] typeof-specifier: 1873 /// typeof ( expressions ) 1874 /// typeof ( type-name ) 1875 /// [GNU/C++] typeof unary-expression 1876 /// 1877 /// [OpenCL 1.1 6.11.12] vec_step built-in function: 1878 /// vec_step ( expressions ) 1879 /// vec_step ( type-name ) 1880 /// \endverbatim 1881 ExprResult 1882 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok, 1883 bool &isCastExpr, 1884 ParsedType &CastTy, 1885 SourceRange &CastRange) { 1886 1887 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof, 1888 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step, 1889 tok::kw___builtin_omp_required_simd_align) && 1890 "Not a typeof/sizeof/alignof/vec_step expression!"); 1891 1892 ExprResult Operand; 1893 1894 // If the operand doesn't start with an '(', it must be an expression. 1895 if (Tok.isNot(tok::l_paren)) { 1896 // If construct allows a form without parenthesis, user may forget to put 1897 // pathenthesis around type name. 1898 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof, 1899 tok::kw__Alignof)) { 1900 if (isTypeIdUnambiguously()) { 1901 DeclSpec DS(AttrFactory); 1902 ParseSpecifierQualifierList(DS); 1903 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 1904 ParseDeclarator(DeclaratorInfo); 1905 1906 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation()); 1907 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation); 1908 Diag(LParenLoc, diag::err_expected_parentheses_around_typename) 1909 << OpTok.getName() 1910 << FixItHint::CreateInsertion(LParenLoc, "(") 1911 << FixItHint::CreateInsertion(RParenLoc, ")"); 1912 isCastExpr = true; 1913 return ExprEmpty(); 1914 } 1915 } 1916 1917 isCastExpr = false; 1918 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) { 1919 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo() 1920 << tok::l_paren; 1921 return ExprError(); 1922 } 1923 1924 Operand = ParseCastExpression(true/*isUnaryExpression*/); 1925 } else { 1926 // If it starts with a '(', we know that it is either a parenthesized 1927 // type-name, or it is a unary-expression that starts with a compound 1928 // literal, or starts with a primary-expression that is a parenthesized 1929 // expression. 1930 ParenParseOption ExprType = CastExpr; 1931 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc; 1932 1933 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/, 1934 false, CastTy, RParenLoc); 1935 CastRange = SourceRange(LParenLoc, RParenLoc); 1936 1937 // If ParseParenExpression parsed a '(typename)' sequence only, then this is 1938 // a type. 1939 if (ExprType == CastExpr) { 1940 isCastExpr = true; 1941 return ExprEmpty(); 1942 } 1943 1944 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) { 1945 // GNU typeof in C requires the expression to be parenthesized. Not so for 1946 // sizeof/alignof or in C++. Therefore, the parenthesized expression is 1947 // the start of a unary-expression, but doesn't include any postfix 1948 // pieces. Parse these now if present. 1949 if (!Operand.isInvalid()) 1950 Operand = ParsePostfixExpressionSuffix(Operand.get()); 1951 } 1952 } 1953 1954 // If we get here, the operand to the typeof/sizeof/alignof was an expression. 1955 isCastExpr = false; 1956 return Operand; 1957 } 1958 1959 1960 /// Parse a sizeof or alignof expression. 1961 /// 1962 /// \verbatim 1963 /// unary-expression: [C99 6.5.3] 1964 /// 'sizeof' unary-expression 1965 /// 'sizeof' '(' type-name ')' 1966 /// [C++11] 'sizeof' '...' '(' identifier ')' 1967 /// [GNU] '__alignof' unary-expression 1968 /// [GNU] '__alignof' '(' type-name ')' 1969 /// [C11] '_Alignof' '(' type-name ')' 1970 /// [C++11] 'alignof' '(' type-id ')' 1971 /// \endverbatim 1972 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() { 1973 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof, 1974 tok::kw__Alignof, tok::kw_vec_step, 1975 tok::kw___builtin_omp_required_simd_align) && 1976 "Not a sizeof/alignof/vec_step expression!"); 1977 Token OpTok = Tok; 1978 ConsumeToken(); 1979 1980 // [C++11] 'sizeof' '...' '(' identifier ')' 1981 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) { 1982 SourceLocation EllipsisLoc = ConsumeToken(); 1983 SourceLocation LParenLoc, RParenLoc; 1984 IdentifierInfo *Name = nullptr; 1985 SourceLocation NameLoc; 1986 if (Tok.is(tok::l_paren)) { 1987 BalancedDelimiterTracker T(*this, tok::l_paren); 1988 T.consumeOpen(); 1989 LParenLoc = T.getOpenLocation(); 1990 if (Tok.is(tok::identifier)) { 1991 Name = Tok.getIdentifierInfo(); 1992 NameLoc = ConsumeToken(); 1993 T.consumeClose(); 1994 RParenLoc = T.getCloseLocation(); 1995 if (RParenLoc.isInvalid()) 1996 RParenLoc = PP.getLocForEndOfToken(NameLoc); 1997 } else { 1998 Diag(Tok, diag::err_expected_parameter_pack); 1999 SkipUntil(tok::r_paren, StopAtSemi); 2000 } 2001 } else if (Tok.is(tok::identifier)) { 2002 Name = Tok.getIdentifierInfo(); 2003 NameLoc = ConsumeToken(); 2004 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc); 2005 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2006 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack) 2007 << Name 2008 << FixItHint::CreateInsertion(LParenLoc, "(") 2009 << FixItHint::CreateInsertion(RParenLoc, ")"); 2010 } else { 2011 Diag(Tok, diag::err_sizeof_parameter_pack); 2012 } 2013 2014 if (!Name) 2015 return ExprError(); 2016 2017 EnterExpressionEvaluationContext Unevaluated( 2018 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2019 Sema::ReuseLambdaContextDecl); 2020 2021 return Actions.ActOnSizeofParameterPackExpr(getCurScope(), 2022 OpTok.getLocation(), 2023 *Name, NameLoc, 2024 RParenLoc); 2025 } 2026 2027 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2028 Diag(OpTok, diag::warn_cxx98_compat_alignof); 2029 2030 EnterExpressionEvaluationContext Unevaluated( 2031 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2032 Sema::ReuseLambdaContextDecl); 2033 2034 bool isCastExpr; 2035 ParsedType CastTy; 2036 SourceRange CastRange; 2037 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, 2038 isCastExpr, 2039 CastTy, 2040 CastRange); 2041 2042 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf; 2043 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2044 ExprKind = UETT_AlignOf; 2045 else if (OpTok.is(tok::kw___alignof)) 2046 ExprKind = UETT_PreferredAlignOf; 2047 else if (OpTok.is(tok::kw_vec_step)) 2048 ExprKind = UETT_VecStep; 2049 else if (OpTok.is(tok::kw___builtin_omp_required_simd_align)) 2050 ExprKind = UETT_OpenMPRequiredSimdAlign; 2051 2052 if (isCastExpr) 2053 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2054 ExprKind, 2055 /*IsType=*/true, 2056 CastTy.getAsOpaquePtr(), 2057 CastRange); 2058 2059 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2060 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo(); 2061 2062 // If we get here, the operand to the sizeof/alignof was an expression. 2063 if (!Operand.isInvalid()) 2064 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2065 ExprKind, 2066 /*IsType=*/false, 2067 Operand.get(), 2068 CastRange); 2069 return Operand; 2070 } 2071 2072 /// ParseBuiltinPrimaryExpression 2073 /// 2074 /// \verbatim 2075 /// primary-expression: [C99 6.5.1] 2076 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 2077 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 2078 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 2079 /// assign-expr ')' 2080 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 2081 /// [GNU] '__builtin_FILE' '(' ')' 2082 /// [GNU] '__builtin_FUNCTION' '(' ')' 2083 /// [GNU] '__builtin_LINE' '(' ')' 2084 /// [CLANG] '__builtin_COLUMN' '(' ')' 2085 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')' 2086 /// 2087 /// [GNU] offsetof-member-designator: 2088 /// [GNU] identifier 2089 /// [GNU] offsetof-member-designator '.' identifier 2090 /// [GNU] offsetof-member-designator '[' expression ']' 2091 /// \endverbatim 2092 ExprResult Parser::ParseBuiltinPrimaryExpression() { 2093 ExprResult Res; 2094 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo(); 2095 2096 tok::TokenKind T = Tok.getKind(); 2097 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier. 2098 2099 // All of these start with an open paren. 2100 if (Tok.isNot(tok::l_paren)) 2101 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII 2102 << tok::l_paren); 2103 2104 BalancedDelimiterTracker PT(*this, tok::l_paren); 2105 PT.consumeOpen(); 2106 2107 // TODO: Build AST. 2108 2109 switch (T) { 2110 default: llvm_unreachable("Not a builtin primary expression!"); 2111 case tok::kw___builtin_va_arg: { 2112 ExprResult Expr(ParseAssignmentExpression()); 2113 2114 if (ExpectAndConsume(tok::comma)) { 2115 SkipUntil(tok::r_paren, StopAtSemi); 2116 Expr = ExprError(); 2117 } 2118 2119 TypeResult Ty = ParseTypeName(); 2120 2121 if (Tok.isNot(tok::r_paren)) { 2122 Diag(Tok, diag::err_expected) << tok::r_paren; 2123 Expr = ExprError(); 2124 } 2125 2126 if (Expr.isInvalid() || Ty.isInvalid()) 2127 Res = ExprError(); 2128 else 2129 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen()); 2130 break; 2131 } 2132 case tok::kw___builtin_offsetof: { 2133 SourceLocation TypeLoc = Tok.getLocation(); 2134 TypeResult Ty = ParseTypeName(); 2135 if (Ty.isInvalid()) { 2136 SkipUntil(tok::r_paren, StopAtSemi); 2137 return ExprError(); 2138 } 2139 2140 if (ExpectAndConsume(tok::comma)) { 2141 SkipUntil(tok::r_paren, StopAtSemi); 2142 return ExprError(); 2143 } 2144 2145 // We must have at least one identifier here. 2146 if (Tok.isNot(tok::identifier)) { 2147 Diag(Tok, diag::err_expected) << tok::identifier; 2148 SkipUntil(tok::r_paren, StopAtSemi); 2149 return ExprError(); 2150 } 2151 2152 // Keep track of the various subcomponents we see. 2153 SmallVector<Sema::OffsetOfComponent, 4> Comps; 2154 2155 Comps.push_back(Sema::OffsetOfComponent()); 2156 Comps.back().isBrackets = false; 2157 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2158 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken(); 2159 2160 // FIXME: This loop leaks the index expressions on error. 2161 while (1) { 2162 if (Tok.is(tok::period)) { 2163 // offsetof-member-designator: offsetof-member-designator '.' identifier 2164 Comps.push_back(Sema::OffsetOfComponent()); 2165 Comps.back().isBrackets = false; 2166 Comps.back().LocStart = ConsumeToken(); 2167 2168 if (Tok.isNot(tok::identifier)) { 2169 Diag(Tok, diag::err_expected) << tok::identifier; 2170 SkipUntil(tok::r_paren, StopAtSemi); 2171 return ExprError(); 2172 } 2173 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2174 Comps.back().LocEnd = ConsumeToken(); 2175 2176 } else if (Tok.is(tok::l_square)) { 2177 if (CheckProhibitedCXX11Attribute()) 2178 return ExprError(); 2179 2180 // offsetof-member-designator: offsetof-member-design '[' expression ']' 2181 Comps.push_back(Sema::OffsetOfComponent()); 2182 Comps.back().isBrackets = true; 2183 BalancedDelimiterTracker ST(*this, tok::l_square); 2184 ST.consumeOpen(); 2185 Comps.back().LocStart = ST.getOpenLocation(); 2186 Res = ParseExpression(); 2187 if (Res.isInvalid()) { 2188 SkipUntil(tok::r_paren, StopAtSemi); 2189 return Res; 2190 } 2191 Comps.back().U.E = Res.get(); 2192 2193 ST.consumeClose(); 2194 Comps.back().LocEnd = ST.getCloseLocation(); 2195 } else { 2196 if (Tok.isNot(tok::r_paren)) { 2197 PT.consumeClose(); 2198 Res = ExprError(); 2199 } else if (Ty.isInvalid()) { 2200 Res = ExprError(); 2201 } else { 2202 PT.consumeClose(); 2203 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc, 2204 Ty.get(), Comps, 2205 PT.getCloseLocation()); 2206 } 2207 break; 2208 } 2209 } 2210 break; 2211 } 2212 case tok::kw___builtin_choose_expr: { 2213 ExprResult Cond(ParseAssignmentExpression()); 2214 if (Cond.isInvalid()) { 2215 SkipUntil(tok::r_paren, StopAtSemi); 2216 return Cond; 2217 } 2218 if (ExpectAndConsume(tok::comma)) { 2219 SkipUntil(tok::r_paren, StopAtSemi); 2220 return ExprError(); 2221 } 2222 2223 ExprResult Expr1(ParseAssignmentExpression()); 2224 if (Expr1.isInvalid()) { 2225 SkipUntil(tok::r_paren, StopAtSemi); 2226 return Expr1; 2227 } 2228 if (ExpectAndConsume(tok::comma)) { 2229 SkipUntil(tok::r_paren, StopAtSemi); 2230 return ExprError(); 2231 } 2232 2233 ExprResult Expr2(ParseAssignmentExpression()); 2234 if (Expr2.isInvalid()) { 2235 SkipUntil(tok::r_paren, StopAtSemi); 2236 return Expr2; 2237 } 2238 if (Tok.isNot(tok::r_paren)) { 2239 Diag(Tok, diag::err_expected) << tok::r_paren; 2240 return ExprError(); 2241 } 2242 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(), 2243 Expr2.get(), ConsumeParen()); 2244 break; 2245 } 2246 case tok::kw___builtin_astype: { 2247 // The first argument is an expression to be converted, followed by a comma. 2248 ExprResult Expr(ParseAssignmentExpression()); 2249 if (Expr.isInvalid()) { 2250 SkipUntil(tok::r_paren, StopAtSemi); 2251 return ExprError(); 2252 } 2253 2254 if (ExpectAndConsume(tok::comma)) { 2255 SkipUntil(tok::r_paren, StopAtSemi); 2256 return ExprError(); 2257 } 2258 2259 // Second argument is the type to bitcast to. 2260 TypeResult DestTy = ParseTypeName(); 2261 if (DestTy.isInvalid()) 2262 return ExprError(); 2263 2264 // Attempt to consume the r-paren. 2265 if (Tok.isNot(tok::r_paren)) { 2266 Diag(Tok, diag::err_expected) << tok::r_paren; 2267 SkipUntil(tok::r_paren, StopAtSemi); 2268 return ExprError(); 2269 } 2270 2271 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc, 2272 ConsumeParen()); 2273 break; 2274 } 2275 case tok::kw___builtin_convertvector: { 2276 // The first argument is an expression to be converted, followed by a comma. 2277 ExprResult Expr(ParseAssignmentExpression()); 2278 if (Expr.isInvalid()) { 2279 SkipUntil(tok::r_paren, StopAtSemi); 2280 return ExprError(); 2281 } 2282 2283 if (ExpectAndConsume(tok::comma)) { 2284 SkipUntil(tok::r_paren, StopAtSemi); 2285 return ExprError(); 2286 } 2287 2288 // Second argument is the type to bitcast to. 2289 TypeResult DestTy = ParseTypeName(); 2290 if (DestTy.isInvalid()) 2291 return ExprError(); 2292 2293 // Attempt to consume the r-paren. 2294 if (Tok.isNot(tok::r_paren)) { 2295 Diag(Tok, diag::err_expected) << tok::r_paren; 2296 SkipUntil(tok::r_paren, StopAtSemi); 2297 return ExprError(); 2298 } 2299 2300 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc, 2301 ConsumeParen()); 2302 break; 2303 } 2304 case tok::kw___builtin_COLUMN: 2305 case tok::kw___builtin_FILE: 2306 case tok::kw___builtin_FUNCTION: 2307 case tok::kw___builtin_LINE: { 2308 // Attempt to consume the r-paren. 2309 if (Tok.isNot(tok::r_paren)) { 2310 Diag(Tok, diag::err_expected) << tok::r_paren; 2311 SkipUntil(tok::r_paren, StopAtSemi); 2312 return ExprError(); 2313 } 2314 SourceLocExpr::IdentKind Kind = [&] { 2315 switch (T) { 2316 case tok::kw___builtin_FILE: 2317 return SourceLocExpr::File; 2318 case tok::kw___builtin_FUNCTION: 2319 return SourceLocExpr::Function; 2320 case tok::kw___builtin_LINE: 2321 return SourceLocExpr::Line; 2322 case tok::kw___builtin_COLUMN: 2323 return SourceLocExpr::Column; 2324 default: 2325 llvm_unreachable("invalid keyword"); 2326 } 2327 }(); 2328 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen()); 2329 break; 2330 } 2331 } 2332 2333 if (Res.isInvalid()) 2334 return ExprError(); 2335 2336 // These can be followed by postfix-expr pieces because they are 2337 // primary-expressions. 2338 return ParsePostfixExpressionSuffix(Res.get()); 2339 } 2340 2341 /// ParseParenExpression - This parses the unit that starts with a '(' token, 2342 /// based on what is allowed by ExprType. The actual thing parsed is returned 2343 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type, 2344 /// not the parsed cast-expression. 2345 /// 2346 /// \verbatim 2347 /// primary-expression: [C99 6.5.1] 2348 /// '(' expression ')' 2349 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly) 2350 /// postfix-expression: [C99 6.5.2] 2351 /// '(' type-name ')' '{' initializer-list '}' 2352 /// '(' type-name ')' '{' initializer-list ',' '}' 2353 /// cast-expression: [C99 6.5.4] 2354 /// '(' type-name ')' cast-expression 2355 /// [ARC] bridged-cast-expression 2356 /// [ARC] bridged-cast-expression: 2357 /// (__bridge type-name) cast-expression 2358 /// (__bridge_transfer type-name) cast-expression 2359 /// (__bridge_retained type-name) cast-expression 2360 /// fold-expression: [C++1z] 2361 /// '(' cast-expression fold-operator '...' ')' 2362 /// '(' '...' fold-operator cast-expression ')' 2363 /// '(' cast-expression fold-operator '...' 2364 /// fold-operator cast-expression ')' 2365 /// \endverbatim 2366 ExprResult 2367 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr, 2368 bool isTypeCast, ParsedType &CastTy, 2369 SourceLocation &RParenLoc) { 2370 assert(Tok.is(tok::l_paren) && "Not a paren expr!"); 2371 ColonProtectionRAIIObject ColonProtection(*this, false); 2372 BalancedDelimiterTracker T(*this, tok::l_paren); 2373 if (T.consumeOpen()) 2374 return ExprError(); 2375 SourceLocation OpenLoc = T.getOpenLocation(); 2376 2377 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc); 2378 2379 ExprResult Result(true); 2380 bool isAmbiguousTypeId; 2381 CastTy = nullptr; 2382 2383 if (Tok.is(tok::code_completion)) { 2384 Actions.CodeCompleteExpression( 2385 getCurScope(), PreferredType.get(Tok.getLocation()), 2386 /*IsParenthesized=*/ExprType >= CompoundLiteral); 2387 cutOffParsing(); 2388 return ExprError(); 2389 } 2390 2391 // Diagnose use of bridge casts in non-arc mode. 2392 bool BridgeCast = (getLangOpts().ObjC && 2393 Tok.isOneOf(tok::kw___bridge, 2394 tok::kw___bridge_transfer, 2395 tok::kw___bridge_retained, 2396 tok::kw___bridge_retain)); 2397 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) { 2398 if (!TryConsumeToken(tok::kw___bridge)) { 2399 StringRef BridgeCastName = Tok.getName(); 2400 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2401 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2402 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc) 2403 << BridgeCastName 2404 << FixItHint::CreateReplacement(BridgeKeywordLoc, ""); 2405 } 2406 BridgeCast = false; 2407 } 2408 2409 // None of these cases should fall through with an invalid Result 2410 // unless they've already reported an error. 2411 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) { 2412 Diag(Tok, diag::ext_gnu_statement_expr); 2413 2414 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) { 2415 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope)); 2416 } else { 2417 // Find the nearest non-record decl context. Variables declared in a 2418 // statement expression behave as if they were declared in the enclosing 2419 // function, block, or other code construct. 2420 DeclContext *CodeDC = Actions.CurContext; 2421 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) { 2422 CodeDC = CodeDC->getParent(); 2423 assert(CodeDC && !CodeDC->isFileContext() && 2424 "statement expr not in code context"); 2425 } 2426 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false); 2427 2428 Actions.ActOnStartStmtExpr(); 2429 2430 StmtResult Stmt(ParseCompoundStatement(true)); 2431 ExprType = CompoundStmt; 2432 2433 // If the substmt parsed correctly, build the AST node. 2434 if (!Stmt.isInvalid()) { 2435 Result = Actions.ActOnStmtExpr(OpenLoc, Stmt.get(), Tok.getLocation()); 2436 } else { 2437 Actions.ActOnStmtExprError(); 2438 } 2439 } 2440 } else if (ExprType >= CompoundLiteral && BridgeCast) { 2441 tok::TokenKind tokenKind = Tok.getKind(); 2442 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2443 2444 // Parse an Objective-C ARC ownership cast expression. 2445 ObjCBridgeCastKind Kind; 2446 if (tokenKind == tok::kw___bridge) 2447 Kind = OBC_Bridge; 2448 else if (tokenKind == tok::kw___bridge_transfer) 2449 Kind = OBC_BridgeTransfer; 2450 else if (tokenKind == tok::kw___bridge_retained) 2451 Kind = OBC_BridgeRetained; 2452 else { 2453 // As a hopefully temporary workaround, allow __bridge_retain as 2454 // a synonym for __bridge_retained, but only in system headers. 2455 assert(tokenKind == tok::kw___bridge_retain); 2456 Kind = OBC_BridgeRetained; 2457 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2458 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain) 2459 << FixItHint::CreateReplacement(BridgeKeywordLoc, 2460 "__bridge_retained"); 2461 } 2462 2463 TypeResult Ty = ParseTypeName(); 2464 T.consumeClose(); 2465 ColonProtection.restore(); 2466 RParenLoc = T.getCloseLocation(); 2467 2468 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get()); 2469 ExprResult SubExpr = ParseCastExpression(/*isUnaryExpression=*/false); 2470 2471 if (Ty.isInvalid() || SubExpr.isInvalid()) 2472 return ExprError(); 2473 2474 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind, 2475 BridgeKeywordLoc, Ty.get(), 2476 RParenLoc, SubExpr.get()); 2477 } else if (ExprType >= CompoundLiteral && 2478 isTypeIdInParens(isAmbiguousTypeId)) { 2479 2480 // Otherwise, this is a compound literal expression or cast expression. 2481 2482 // In C++, if the type-id is ambiguous we disambiguate based on context. 2483 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof 2484 // in which case we should treat it as type-id. 2485 // if stopIfCastExpr is false, we need to determine the context past the 2486 // parens, so we defer to ParseCXXAmbiguousParenExpression for that. 2487 if (isAmbiguousTypeId && !stopIfCastExpr) { 2488 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T, 2489 ColonProtection); 2490 RParenLoc = T.getCloseLocation(); 2491 return res; 2492 } 2493 2494 // Parse the type declarator. 2495 DeclSpec DS(AttrFactory); 2496 ParseSpecifierQualifierList(DS); 2497 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeNameContext); 2498 ParseDeclarator(DeclaratorInfo); 2499 2500 // If our type is followed by an identifier and either ':' or ']', then 2501 // this is probably an Objective-C message send where the leading '[' is 2502 // missing. Recover as if that were the case. 2503 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) && 2504 !InMessageExpression && getLangOpts().ObjC && 2505 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 2506 TypeResult Ty; 2507 { 2508 InMessageExpressionRAIIObject InMessage(*this, false); 2509 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2510 } 2511 Result = ParseObjCMessageExpressionBody(SourceLocation(), 2512 SourceLocation(), 2513 Ty.get(), nullptr); 2514 } else { 2515 // Match the ')'. 2516 T.consumeClose(); 2517 ColonProtection.restore(); 2518 RParenLoc = T.getCloseLocation(); 2519 if (Tok.is(tok::l_brace)) { 2520 ExprType = CompoundLiteral; 2521 TypeResult Ty; 2522 { 2523 InMessageExpressionRAIIObject InMessage(*this, false); 2524 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2525 } 2526 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc); 2527 } 2528 2529 if (Tok.is(tok::l_paren)) { 2530 // This could be OpenCL vector Literals 2531 if (getLangOpts().OpenCL) 2532 { 2533 TypeResult Ty; 2534 { 2535 InMessageExpressionRAIIObject InMessage(*this, false); 2536 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2537 } 2538 if(Ty.isInvalid()) 2539 { 2540 return ExprError(); 2541 } 2542 QualType QT = Ty.get().get().getCanonicalType(); 2543 if (QT->isVectorType()) 2544 { 2545 // We parsed '(' vector-type-name ')' followed by '(' 2546 2547 // Parse the cast-expression that follows it next. 2548 // isVectorLiteral = true will make sure we don't parse any 2549 // Postfix expression yet 2550 Result = ParseCastExpression(/*isUnaryExpression=*/false, 2551 /*isAddressOfOperand=*/false, 2552 /*isTypeCast=*/IsTypeCast, 2553 /*isVectorLiteral=*/true); 2554 2555 if (!Result.isInvalid()) { 2556 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 2557 DeclaratorInfo, CastTy, 2558 RParenLoc, Result.get()); 2559 } 2560 2561 // After we performed the cast we can check for postfix-expr pieces. 2562 if (!Result.isInvalid()) { 2563 Result = ParsePostfixExpressionSuffix(Result); 2564 } 2565 2566 return Result; 2567 } 2568 } 2569 } 2570 2571 if (ExprType == CastExpr) { 2572 // We parsed '(' type-name ')' and the thing after it wasn't a '{'. 2573 2574 if (DeclaratorInfo.isInvalidType()) 2575 return ExprError(); 2576 2577 // Note that this doesn't parse the subsequent cast-expression, it just 2578 // returns the parsed type to the callee. 2579 if (stopIfCastExpr) { 2580 TypeResult Ty; 2581 { 2582 InMessageExpressionRAIIObject InMessage(*this, false); 2583 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2584 } 2585 CastTy = Ty.get(); 2586 return ExprResult(); 2587 } 2588 2589 // Reject the cast of super idiom in ObjC. 2590 if (Tok.is(tok::identifier) && getLangOpts().ObjC && 2591 Tok.getIdentifierInfo() == Ident_super && 2592 getCurScope()->isInObjcMethodScope() && 2593 GetLookAheadToken(1).isNot(tok::period)) { 2594 Diag(Tok.getLocation(), diag::err_illegal_super_cast) 2595 << SourceRange(OpenLoc, RParenLoc); 2596 return ExprError(); 2597 } 2598 2599 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get()); 2600 // Parse the cast-expression that follows it next. 2601 // TODO: For cast expression with CastTy. 2602 Result = ParseCastExpression(/*isUnaryExpression=*/false, 2603 /*isAddressOfOperand=*/false, 2604 /*isTypeCast=*/IsTypeCast); 2605 if (!Result.isInvalid()) { 2606 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 2607 DeclaratorInfo, CastTy, 2608 RParenLoc, Result.get()); 2609 } 2610 return Result; 2611 } 2612 2613 Diag(Tok, diag::err_expected_lbrace_in_compound_literal); 2614 return ExprError(); 2615 } 2616 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) && 2617 isFoldOperator(NextToken().getKind())) { 2618 ExprType = FoldExpr; 2619 return ParseFoldExpression(ExprResult(), T); 2620 } else if (isTypeCast) { 2621 // Parse the expression-list. 2622 InMessageExpressionRAIIObject InMessage(*this, false); 2623 2624 ExprVector ArgExprs; 2625 CommaLocsTy CommaLocs; 2626 2627 if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) { 2628 // FIXME: If we ever support comma expressions as operands to 2629 // fold-expressions, we'll need to allow multiple ArgExprs here. 2630 if (ExprType >= FoldExpr && ArgExprs.size() == 1 && 2631 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) { 2632 ExprType = FoldExpr; 2633 return ParseFoldExpression(ArgExprs[0], T); 2634 } 2635 2636 ExprType = SimpleExpr; 2637 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(), 2638 ArgExprs); 2639 } 2640 } else { 2641 InMessageExpressionRAIIObject InMessage(*this, false); 2642 2643 Result = ParseExpression(MaybeTypeCast); 2644 if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) { 2645 // Correct typos in non-C++ code earlier so that implicit-cast-like 2646 // expressions are parsed correctly. 2647 Result = Actions.CorrectDelayedTyposInExpr(Result); 2648 } 2649 2650 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) && 2651 NextToken().is(tok::ellipsis)) { 2652 ExprType = FoldExpr; 2653 return ParseFoldExpression(Result, T); 2654 } 2655 ExprType = SimpleExpr; 2656 2657 // Don't build a paren expression unless we actually match a ')'. 2658 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 2659 Result = 2660 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get()); 2661 } 2662 2663 // Match the ')'. 2664 if (Result.isInvalid()) { 2665 SkipUntil(tok::r_paren, StopAtSemi); 2666 return ExprError(); 2667 } 2668 2669 T.consumeClose(); 2670 RParenLoc = T.getCloseLocation(); 2671 return Result; 2672 } 2673 2674 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name 2675 /// and we are at the left brace. 2676 /// 2677 /// \verbatim 2678 /// postfix-expression: [C99 6.5.2] 2679 /// '(' type-name ')' '{' initializer-list '}' 2680 /// '(' type-name ')' '{' initializer-list ',' '}' 2681 /// \endverbatim 2682 ExprResult 2683 Parser::ParseCompoundLiteralExpression(ParsedType Ty, 2684 SourceLocation LParenLoc, 2685 SourceLocation RParenLoc) { 2686 assert(Tok.is(tok::l_brace) && "Not a compound literal!"); 2687 if (!getLangOpts().C99) // Compound literals don't exist in C90. 2688 Diag(LParenLoc, diag::ext_c99_compound_literal); 2689 ExprResult Result = ParseInitializer(); 2690 if (!Result.isInvalid() && Ty) 2691 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get()); 2692 return Result; 2693 } 2694 2695 /// ParseStringLiteralExpression - This handles the various token types that 2696 /// form string literals, and also handles string concatenation [C99 5.1.1.2, 2697 /// translation phase #6]. 2698 /// 2699 /// \verbatim 2700 /// primary-expression: [C99 6.5.1] 2701 /// string-literal 2702 /// \verbatim 2703 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) { 2704 assert(isTokenStringLiteral() && "Not a string literal!"); 2705 2706 // String concat. Note that keywords like __func__ and __FUNCTION__ are not 2707 // considered to be strings for concatenation purposes. 2708 SmallVector<Token, 4> StringToks; 2709 2710 do { 2711 StringToks.push_back(Tok); 2712 ConsumeStringToken(); 2713 } while (isTokenStringLiteral()); 2714 2715 // Pass the set of string tokens, ready for concatenation, to the actions. 2716 return Actions.ActOnStringLiteral(StringToks, 2717 AllowUserDefinedLiteral ? getCurScope() 2718 : nullptr); 2719 } 2720 2721 /// ParseGenericSelectionExpression - Parse a C11 generic-selection 2722 /// [C11 6.5.1.1]. 2723 /// 2724 /// \verbatim 2725 /// generic-selection: 2726 /// _Generic ( assignment-expression , generic-assoc-list ) 2727 /// generic-assoc-list: 2728 /// generic-association 2729 /// generic-assoc-list , generic-association 2730 /// generic-association: 2731 /// type-name : assignment-expression 2732 /// default : assignment-expression 2733 /// \endverbatim 2734 ExprResult Parser::ParseGenericSelectionExpression() { 2735 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected"); 2736 SourceLocation KeyLoc = ConsumeToken(); 2737 2738 if (!getLangOpts().C11) 2739 Diag(KeyLoc, diag::ext_c11_generic_selection); 2740 2741 BalancedDelimiterTracker T(*this, tok::l_paren); 2742 if (T.expectAndConsume()) 2743 return ExprError(); 2744 2745 ExprResult ControllingExpr; 2746 { 2747 // C11 6.5.1.1p3 "The controlling expression of a generic selection is 2748 // not evaluated." 2749 EnterExpressionEvaluationContext Unevaluated( 2750 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 2751 ControllingExpr = 2752 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 2753 if (ControllingExpr.isInvalid()) { 2754 SkipUntil(tok::r_paren, StopAtSemi); 2755 return ExprError(); 2756 } 2757 } 2758 2759 if (ExpectAndConsume(tok::comma)) { 2760 SkipUntil(tok::r_paren, StopAtSemi); 2761 return ExprError(); 2762 } 2763 2764 SourceLocation DefaultLoc; 2765 TypeVector Types; 2766 ExprVector Exprs; 2767 do { 2768 ParsedType Ty; 2769 if (Tok.is(tok::kw_default)) { 2770 // C11 6.5.1.1p2 "A generic selection shall have no more than one default 2771 // generic association." 2772 if (!DefaultLoc.isInvalid()) { 2773 Diag(Tok, diag::err_duplicate_default_assoc); 2774 Diag(DefaultLoc, diag::note_previous_default_assoc); 2775 SkipUntil(tok::r_paren, StopAtSemi); 2776 return ExprError(); 2777 } 2778 DefaultLoc = ConsumeToken(); 2779 Ty = nullptr; 2780 } else { 2781 ColonProtectionRAIIObject X(*this); 2782 TypeResult TR = ParseTypeName(); 2783 if (TR.isInvalid()) { 2784 SkipUntil(tok::r_paren, StopAtSemi); 2785 return ExprError(); 2786 } 2787 Ty = TR.get(); 2788 } 2789 Types.push_back(Ty); 2790 2791 if (ExpectAndConsume(tok::colon)) { 2792 SkipUntil(tok::r_paren, StopAtSemi); 2793 return ExprError(); 2794 } 2795 2796 // FIXME: These expressions should be parsed in a potentially potentially 2797 // evaluated context. 2798 ExprResult ER( 2799 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); 2800 if (ER.isInvalid()) { 2801 SkipUntil(tok::r_paren, StopAtSemi); 2802 return ExprError(); 2803 } 2804 Exprs.push_back(ER.get()); 2805 } while (TryConsumeToken(tok::comma)); 2806 2807 T.consumeClose(); 2808 if (T.getCloseLocation().isInvalid()) 2809 return ExprError(); 2810 2811 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc, 2812 T.getCloseLocation(), 2813 ControllingExpr.get(), 2814 Types, Exprs); 2815 } 2816 2817 /// Parse A C++1z fold-expression after the opening paren and optional 2818 /// left-hand-side expression. 2819 /// 2820 /// \verbatim 2821 /// fold-expression: 2822 /// ( cast-expression fold-operator ... ) 2823 /// ( ... fold-operator cast-expression ) 2824 /// ( cast-expression fold-operator ... fold-operator cast-expression ) 2825 ExprResult Parser::ParseFoldExpression(ExprResult LHS, 2826 BalancedDelimiterTracker &T) { 2827 if (LHS.isInvalid()) { 2828 T.skipToEnd(); 2829 return true; 2830 } 2831 2832 tok::TokenKind Kind = tok::unknown; 2833 SourceLocation FirstOpLoc; 2834 if (LHS.isUsable()) { 2835 Kind = Tok.getKind(); 2836 assert(isFoldOperator(Kind) && "missing fold-operator"); 2837 FirstOpLoc = ConsumeToken(); 2838 } 2839 2840 assert(Tok.is(tok::ellipsis) && "not a fold-expression"); 2841 SourceLocation EllipsisLoc = ConsumeToken(); 2842 2843 ExprResult RHS; 2844 if (Tok.isNot(tok::r_paren)) { 2845 if (!isFoldOperator(Tok.getKind())) 2846 return Diag(Tok.getLocation(), diag::err_expected_fold_operator); 2847 2848 if (Kind != tok::unknown && Tok.getKind() != Kind) 2849 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch) 2850 << SourceRange(FirstOpLoc); 2851 Kind = Tok.getKind(); 2852 ConsumeToken(); 2853 2854 RHS = ParseExpression(); 2855 if (RHS.isInvalid()) { 2856 T.skipToEnd(); 2857 return true; 2858 } 2859 } 2860 2861 Diag(EllipsisLoc, getLangOpts().CPlusPlus17 2862 ? diag::warn_cxx14_compat_fold_expression 2863 : diag::ext_fold_expression); 2864 2865 T.consumeClose(); 2866 return Actions.ActOnCXXFoldExpr(T.getOpenLocation(), LHS.get(), Kind, 2867 EllipsisLoc, RHS.get(), T.getCloseLocation()); 2868 } 2869 2870 /// ParseExpressionList - Used for C/C++ (argument-)expression-list. 2871 /// 2872 /// \verbatim 2873 /// argument-expression-list: 2874 /// assignment-expression 2875 /// argument-expression-list , assignment-expression 2876 /// 2877 /// [C++] expression-list: 2878 /// [C++] assignment-expression 2879 /// [C++] expression-list , assignment-expression 2880 /// 2881 /// [C++0x] expression-list: 2882 /// [C++0x] initializer-list 2883 /// 2884 /// [C++0x] initializer-list 2885 /// [C++0x] initializer-clause ...[opt] 2886 /// [C++0x] initializer-list , initializer-clause ...[opt] 2887 /// 2888 /// [C++0x] initializer-clause: 2889 /// [C++0x] assignment-expression 2890 /// [C++0x] braced-init-list 2891 /// \endverbatim 2892 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs, 2893 SmallVectorImpl<SourceLocation> &CommaLocs, 2894 llvm::function_ref<void()> ExpressionStarts) { 2895 bool SawError = false; 2896 while (1) { 2897 if (ExpressionStarts) 2898 ExpressionStarts(); 2899 2900 ExprResult Expr; 2901 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 2902 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 2903 Expr = ParseBraceInitializer(); 2904 } else 2905 Expr = ParseAssignmentExpression(); 2906 2907 if (Tok.is(tok::ellipsis)) 2908 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken()); 2909 if (Expr.isInvalid()) { 2910 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch); 2911 SawError = true; 2912 } else { 2913 Exprs.push_back(Expr.get()); 2914 } 2915 2916 if (Tok.isNot(tok::comma)) 2917 break; 2918 // Move to the next argument, remember where the comma was. 2919 Token Comma = Tok; 2920 CommaLocs.push_back(ConsumeToken()); 2921 2922 checkPotentialAngleBracketDelimiter(Comma); 2923 } 2924 if (SawError) { 2925 // Ensure typos get diagnosed when errors were encountered while parsing the 2926 // expression list. 2927 for (auto &E : Exprs) { 2928 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E); 2929 if (Expr.isUsable()) E = Expr.get(); 2930 } 2931 } 2932 return SawError; 2933 } 2934 2935 /// ParseSimpleExpressionList - A simple comma-separated list of expressions, 2936 /// used for misc language extensions. 2937 /// 2938 /// \verbatim 2939 /// simple-expression-list: 2940 /// assignment-expression 2941 /// simple-expression-list , assignment-expression 2942 /// \endverbatim 2943 bool 2944 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs, 2945 SmallVectorImpl<SourceLocation> &CommaLocs) { 2946 while (1) { 2947 ExprResult Expr = ParseAssignmentExpression(); 2948 if (Expr.isInvalid()) 2949 return true; 2950 2951 Exprs.push_back(Expr.get()); 2952 2953 if (Tok.isNot(tok::comma)) 2954 return false; 2955 2956 // Move to the next argument, remember where the comma was. 2957 Token Comma = Tok; 2958 CommaLocs.push_back(ConsumeToken()); 2959 2960 checkPotentialAngleBracketDelimiter(Comma); 2961 } 2962 } 2963 2964 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x). 2965 /// 2966 /// \verbatim 2967 /// [clang] block-id: 2968 /// [clang] specifier-qualifier-list block-declarator 2969 /// \endverbatim 2970 void Parser::ParseBlockId(SourceLocation CaretLoc) { 2971 if (Tok.is(tok::code_completion)) { 2972 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type); 2973 return cutOffParsing(); 2974 } 2975 2976 // Parse the specifier-qualifier-list piece. 2977 DeclSpec DS(AttrFactory); 2978 ParseSpecifierQualifierList(DS); 2979 2980 // Parse the block-declarator. 2981 Declarator DeclaratorInfo(DS, DeclaratorContext::BlockLiteralContext); 2982 DeclaratorInfo.setFunctionDefinitionKind(FDK_Definition); 2983 ParseDeclarator(DeclaratorInfo); 2984 2985 MaybeParseGNUAttributes(DeclaratorInfo); 2986 2987 // Inform sema that we are starting a block. 2988 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope()); 2989 } 2990 2991 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks 2992 /// like ^(int x){ return x+1; } 2993 /// 2994 /// \verbatim 2995 /// block-literal: 2996 /// [clang] '^' block-args[opt] compound-statement 2997 /// [clang] '^' block-id compound-statement 2998 /// [clang] block-args: 2999 /// [clang] '(' parameter-list ')' 3000 /// \endverbatim 3001 ExprResult Parser::ParseBlockLiteralExpression() { 3002 assert(Tok.is(tok::caret) && "block literal starts with ^"); 3003 SourceLocation CaretLoc = ConsumeToken(); 3004 3005 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc, 3006 "block literal parsing"); 3007 3008 // Enter a scope to hold everything within the block. This includes the 3009 // argument decls, decls within the compound expression, etc. This also 3010 // allows determining whether a variable reference inside the block is 3011 // within or outside of the block. 3012 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope | 3013 Scope::CompoundStmtScope | Scope::DeclScope); 3014 3015 // Inform sema that we are starting a block. 3016 Actions.ActOnBlockStart(CaretLoc, getCurScope()); 3017 3018 // Parse the return type if present. 3019 DeclSpec DS(AttrFactory); 3020 Declarator ParamInfo(DS, DeclaratorContext::BlockLiteralContext); 3021 ParamInfo.setFunctionDefinitionKind(FDK_Definition); 3022 // FIXME: Since the return type isn't actually parsed, it can't be used to 3023 // fill ParamInfo with an initial valid range, so do it manually. 3024 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation())); 3025 3026 // If this block has arguments, parse them. There is no ambiguity here with 3027 // the expression case, because the expression case requires a parameter list. 3028 if (Tok.is(tok::l_paren)) { 3029 ParseParenDeclarator(ParamInfo); 3030 // Parse the pieces after the identifier as if we had "int(...)". 3031 // SetIdentifier sets the source range end, but in this case we're past 3032 // that location. 3033 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd(); 3034 ParamInfo.SetIdentifier(nullptr, CaretLoc); 3035 ParamInfo.SetRangeEnd(Tmp); 3036 if (ParamInfo.isInvalidType()) { 3037 // If there was an error parsing the arguments, they may have 3038 // tried to use ^(x+y) which requires an argument list. Just 3039 // skip the whole block literal. 3040 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3041 return ExprError(); 3042 } 3043 3044 MaybeParseGNUAttributes(ParamInfo); 3045 3046 // Inform sema that we are starting a block. 3047 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3048 } else if (!Tok.is(tok::l_brace)) { 3049 ParseBlockId(CaretLoc); 3050 } else { 3051 // Otherwise, pretend we saw (void). 3052 SourceLocation NoLoc; 3053 ParamInfo.AddTypeInfo( 3054 DeclaratorChunk::getFunction(/*HasProto=*/true, 3055 /*IsAmbiguous=*/false, 3056 /*RParenLoc=*/NoLoc, 3057 /*ArgInfo=*/nullptr, 3058 /*NumParams=*/0, 3059 /*EllipsisLoc=*/NoLoc, 3060 /*RParenLoc=*/NoLoc, 3061 /*RefQualifierIsLvalueRef=*/true, 3062 /*RefQualifierLoc=*/NoLoc, 3063 /*MutableLoc=*/NoLoc, EST_None, 3064 /*ESpecRange=*/SourceRange(), 3065 /*Exceptions=*/nullptr, 3066 /*ExceptionRanges=*/nullptr, 3067 /*NumExceptions=*/0, 3068 /*NoexceptExpr=*/nullptr, 3069 /*ExceptionSpecTokens=*/nullptr, 3070 /*DeclsInPrototype=*/None, CaretLoc, 3071 CaretLoc, ParamInfo), 3072 CaretLoc); 3073 3074 MaybeParseGNUAttributes(ParamInfo); 3075 3076 // Inform sema that we are starting a block. 3077 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3078 } 3079 3080 3081 ExprResult Result(true); 3082 if (!Tok.is(tok::l_brace)) { 3083 // Saw something like: ^expr 3084 Diag(Tok, diag::err_expected_expression); 3085 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3086 return ExprError(); 3087 } 3088 3089 StmtResult Stmt(ParseCompoundStatementBody()); 3090 BlockScope.Exit(); 3091 if (!Stmt.isInvalid()) 3092 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope()); 3093 else 3094 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3095 return Result; 3096 } 3097 3098 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals. 3099 /// 3100 /// '__objc_yes' 3101 /// '__objc_no' 3102 ExprResult Parser::ParseObjCBoolLiteral() { 3103 tok::TokenKind Kind = Tok.getKind(); 3104 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind); 3105 } 3106 3107 /// Validate availability spec list, emitting diagnostics if necessary. Returns 3108 /// true if invalid. 3109 static bool CheckAvailabilitySpecList(Parser &P, 3110 ArrayRef<AvailabilitySpec> AvailSpecs) { 3111 llvm::SmallSet<StringRef, 4> Platforms; 3112 bool HasOtherPlatformSpec = false; 3113 bool Valid = true; 3114 for (const auto &Spec : AvailSpecs) { 3115 if (Spec.isOtherPlatformSpec()) { 3116 if (HasOtherPlatformSpec) { 3117 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star); 3118 Valid = false; 3119 } 3120 3121 HasOtherPlatformSpec = true; 3122 continue; 3123 } 3124 3125 bool Inserted = Platforms.insert(Spec.getPlatform()).second; 3126 if (!Inserted) { 3127 // Rule out multiple version specs referring to the same platform. 3128 // For example, we emit an error for: 3129 // @available(macos 10.10, macos 10.11, *) 3130 StringRef Platform = Spec.getPlatform(); 3131 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform) 3132 << Spec.getEndLoc() << Platform; 3133 Valid = false; 3134 } 3135 } 3136 3137 if (!HasOtherPlatformSpec) { 3138 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc(); 3139 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required) 3140 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *"); 3141 return true; 3142 } 3143 3144 return !Valid; 3145 } 3146 3147 /// Parse availability query specification. 3148 /// 3149 /// availability-spec: 3150 /// '*' 3151 /// identifier version-tuple 3152 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() { 3153 if (Tok.is(tok::star)) { 3154 return AvailabilitySpec(ConsumeToken()); 3155 } else { 3156 // Parse the platform name. 3157 if (Tok.is(tok::code_completion)) { 3158 Actions.CodeCompleteAvailabilityPlatformName(); 3159 cutOffParsing(); 3160 return None; 3161 } 3162 if (Tok.isNot(tok::identifier)) { 3163 Diag(Tok, diag::err_avail_query_expected_platform_name); 3164 return None; 3165 } 3166 3167 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc(); 3168 SourceRange VersionRange; 3169 VersionTuple Version = ParseVersionTuple(VersionRange); 3170 3171 if (Version.empty()) 3172 return None; 3173 3174 StringRef GivenPlatform = PlatformIdentifier->Ident->getName(); 3175 StringRef Platform = 3176 AvailabilityAttr::canonicalizePlatformName(GivenPlatform); 3177 3178 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) { 3179 Diag(PlatformIdentifier->Loc, 3180 diag::err_avail_query_unrecognized_platform_name) 3181 << GivenPlatform; 3182 return None; 3183 } 3184 3185 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc, 3186 VersionRange.getEnd()); 3187 } 3188 } 3189 3190 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) { 3191 assert(Tok.is(tok::kw___builtin_available) || 3192 Tok.isObjCAtKeyword(tok::objc_available)); 3193 3194 // Eat the available or __builtin_available. 3195 ConsumeToken(); 3196 3197 BalancedDelimiterTracker Parens(*this, tok::l_paren); 3198 if (Parens.expectAndConsume()) 3199 return ExprError(); 3200 3201 SmallVector<AvailabilitySpec, 4> AvailSpecs; 3202 bool HasError = false; 3203 while (true) { 3204 Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec(); 3205 if (!Spec) 3206 HasError = true; 3207 else 3208 AvailSpecs.push_back(*Spec); 3209 3210 if (!TryConsumeToken(tok::comma)) 3211 break; 3212 } 3213 3214 if (HasError) { 3215 SkipUntil(tok::r_paren, StopAtSemi); 3216 return ExprError(); 3217 } 3218 3219 CheckAvailabilitySpecList(*this, AvailSpecs); 3220 3221 if (Parens.consumeClose()) 3222 return ExprError(); 3223 3224 return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc, 3225 Parens.getCloseLocation()); 3226 } 3227