1 //===--- ParseExpr.cpp - Expression Parsing -------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// Provides the Expression parsing implementation. 11 /// 12 /// Expressions in C99 basically consist of a bunch of binary operators with 13 /// unary operators and other random stuff at the leaves. 14 /// 15 /// In the C99 grammar, these unary operators bind tightest and are represented 16 /// as the 'cast-expression' production. Everything else is either a binary 17 /// operator (e.g. '/') or a ternary operator ("?:"). The unary leaves are 18 /// handled by ParseCastExpression, the higher level pieces are handled by 19 /// ParseBinaryExpression. 20 /// 21 //===----------------------------------------------------------------------===// 22 23 #include "clang/Parse/Parser.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ExprCXX.h" 26 #include "clang/Basic/PrettyStackTrace.h" 27 #include "clang/Parse/RAIIObjectsForParser.h" 28 #include "clang/Sema/DeclSpec.h" 29 #include "clang/Sema/ParsedTemplate.h" 30 #include "clang/Sema/Scope.h" 31 #include "clang/Sema/TypoCorrection.h" 32 #include "llvm/ADT/SmallVector.h" 33 using namespace clang; 34 35 /// Simple precedence-based parser for binary/ternary operators. 36 /// 37 /// Note: we diverge from the C99 grammar when parsing the assignment-expression 38 /// production. C99 specifies that the LHS of an assignment operator should be 39 /// parsed as a unary-expression, but consistency dictates that it be a 40 /// conditional-expession. In practice, the important thing here is that the 41 /// LHS of an assignment has to be an l-value, which productions between 42 /// unary-expression and conditional-expression don't produce. Because we want 43 /// consistency, we parse the LHS as a conditional-expression, then check for 44 /// l-value-ness in semantic analysis stages. 45 /// 46 /// \verbatim 47 /// pm-expression: [C++ 5.5] 48 /// cast-expression 49 /// pm-expression '.*' cast-expression 50 /// pm-expression '->*' cast-expression 51 /// 52 /// multiplicative-expression: [C99 6.5.5] 53 /// Note: in C++, apply pm-expression instead of cast-expression 54 /// cast-expression 55 /// multiplicative-expression '*' cast-expression 56 /// multiplicative-expression '/' cast-expression 57 /// multiplicative-expression '%' cast-expression 58 /// 59 /// additive-expression: [C99 6.5.6] 60 /// multiplicative-expression 61 /// additive-expression '+' multiplicative-expression 62 /// additive-expression '-' multiplicative-expression 63 /// 64 /// shift-expression: [C99 6.5.7] 65 /// additive-expression 66 /// shift-expression '<<' additive-expression 67 /// shift-expression '>>' additive-expression 68 /// 69 /// compare-expression: [C++20 expr.spaceship] 70 /// shift-expression 71 /// compare-expression '<=>' shift-expression 72 /// 73 /// relational-expression: [C99 6.5.8] 74 /// compare-expression 75 /// relational-expression '<' compare-expression 76 /// relational-expression '>' compare-expression 77 /// relational-expression '<=' compare-expression 78 /// relational-expression '>=' compare-expression 79 /// 80 /// equality-expression: [C99 6.5.9] 81 /// relational-expression 82 /// equality-expression '==' relational-expression 83 /// equality-expression '!=' relational-expression 84 /// 85 /// AND-expression: [C99 6.5.10] 86 /// equality-expression 87 /// AND-expression '&' equality-expression 88 /// 89 /// exclusive-OR-expression: [C99 6.5.11] 90 /// AND-expression 91 /// exclusive-OR-expression '^' AND-expression 92 /// 93 /// inclusive-OR-expression: [C99 6.5.12] 94 /// exclusive-OR-expression 95 /// inclusive-OR-expression '|' exclusive-OR-expression 96 /// 97 /// logical-AND-expression: [C99 6.5.13] 98 /// inclusive-OR-expression 99 /// logical-AND-expression '&&' inclusive-OR-expression 100 /// 101 /// logical-OR-expression: [C99 6.5.14] 102 /// logical-AND-expression 103 /// logical-OR-expression '||' logical-AND-expression 104 /// 105 /// conditional-expression: [C99 6.5.15] 106 /// logical-OR-expression 107 /// logical-OR-expression '?' expression ':' conditional-expression 108 /// [GNU] logical-OR-expression '?' ':' conditional-expression 109 /// [C++] the third operand is an assignment-expression 110 /// 111 /// assignment-expression: [C99 6.5.16] 112 /// conditional-expression 113 /// unary-expression assignment-operator assignment-expression 114 /// [C++] throw-expression [C++ 15] 115 /// 116 /// assignment-operator: one of 117 /// = *= /= %= += -= <<= >>= &= ^= |= 118 /// 119 /// expression: [C99 6.5.17] 120 /// assignment-expression ...[opt] 121 /// expression ',' assignment-expression ...[opt] 122 /// \endverbatim 123 ExprResult Parser::ParseExpression(TypeCastState isTypeCast) { 124 ExprResult LHS(ParseAssignmentExpression(isTypeCast)); 125 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 126 } 127 128 /// This routine is called when the '@' is seen and consumed. 129 /// Current token is an Identifier and is not a 'try'. This 130 /// routine is necessary to disambiguate \@try-statement from, 131 /// for example, \@encode-expression. 132 /// 133 ExprResult 134 Parser::ParseExpressionWithLeadingAt(SourceLocation AtLoc) { 135 ExprResult LHS(ParseObjCAtExpression(AtLoc)); 136 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 137 } 138 139 /// This routine is called when a leading '__extension__' is seen and 140 /// consumed. This is necessary because the token gets consumed in the 141 /// process of disambiguating between an expression and a declaration. 142 ExprResult 143 Parser::ParseExpressionWithLeadingExtension(SourceLocation ExtLoc) { 144 ExprResult LHS(true); 145 { 146 // Silence extension warnings in the sub-expression 147 ExtensionRAIIObject O(Diags); 148 149 LHS = ParseCastExpression(AnyCastExpr); 150 } 151 152 if (!LHS.isInvalid()) 153 LHS = Actions.ActOnUnaryOp(getCurScope(), ExtLoc, tok::kw___extension__, 154 LHS.get()); 155 156 return ParseRHSOfBinaryExpression(LHS, prec::Comma); 157 } 158 159 /// Parse an expr that doesn't include (top-level) commas. 160 ExprResult Parser::ParseAssignmentExpression(TypeCastState isTypeCast) { 161 if (Tok.is(tok::code_completion)) { 162 cutOffParsing(); 163 Actions.CodeCompleteExpression(getCurScope(), 164 PreferredType.get(Tok.getLocation())); 165 return ExprError(); 166 } 167 168 if (Tok.is(tok::kw_throw)) 169 return ParseThrowExpression(); 170 if (Tok.is(tok::kw_co_yield)) 171 return ParseCoyieldExpression(); 172 173 ExprResult LHS = ParseCastExpression(AnyCastExpr, 174 /*isAddressOfOperand=*/false, 175 isTypeCast); 176 return ParseRHSOfBinaryExpression(LHS, prec::Assignment); 177 } 178 179 /// Parse an assignment expression where part of an Objective-C message 180 /// send has already been parsed. 181 /// 182 /// In this case \p LBracLoc indicates the location of the '[' of the message 183 /// send, and either \p ReceiverName or \p ReceiverExpr is non-null indicating 184 /// the receiver of the message. 185 /// 186 /// Since this handles full assignment-expression's, it handles postfix 187 /// expressions and other binary operators for these expressions as well. 188 ExprResult 189 Parser::ParseAssignmentExprWithObjCMessageExprStart(SourceLocation LBracLoc, 190 SourceLocation SuperLoc, 191 ParsedType ReceiverType, 192 Expr *ReceiverExpr) { 193 ExprResult R 194 = ParseObjCMessageExpressionBody(LBracLoc, SuperLoc, 195 ReceiverType, ReceiverExpr); 196 R = ParsePostfixExpressionSuffix(R); 197 return ParseRHSOfBinaryExpression(R, prec::Assignment); 198 } 199 200 ExprResult 201 Parser::ParseConstantExpressionInExprEvalContext(TypeCastState isTypeCast) { 202 assert(Actions.ExprEvalContexts.back().Context == 203 Sema::ExpressionEvaluationContext::ConstantEvaluated && 204 "Call this function only if your ExpressionEvaluationContext is " 205 "already ConstantEvaluated"); 206 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, isTypeCast)); 207 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 208 return Actions.ActOnConstantExpression(Res); 209 } 210 211 ExprResult Parser::ParseConstantExpression(TypeCastState isTypeCast) { 212 // C++03 [basic.def.odr]p2: 213 // An expression is potentially evaluated unless it appears where an 214 // integral constant expression is required (see 5.19) [...]. 215 // C++98 and C++11 have no such rule, but this is only a defect in C++98. 216 EnterExpressionEvaluationContext ConstantEvaluated( 217 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 218 return ParseConstantExpressionInExprEvalContext(isTypeCast); 219 } 220 221 ExprResult Parser::ParseCaseExpression(SourceLocation CaseLoc) { 222 EnterExpressionEvaluationContext ConstantEvaluated( 223 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 224 ExprResult LHS(ParseCastExpression(AnyCastExpr, false, NotTypeCast)); 225 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::Conditional)); 226 return Actions.ActOnCaseExpr(CaseLoc, Res); 227 } 228 229 /// Parse a constraint-expression. 230 /// 231 /// \verbatim 232 /// constraint-expression: C++2a[temp.constr.decl]p1 233 /// logical-or-expression 234 /// \endverbatim 235 ExprResult Parser::ParseConstraintExpression() { 236 EnterExpressionEvaluationContext ConstantEvaluated( 237 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 238 ExprResult LHS(ParseCastExpression(AnyCastExpr)); 239 ExprResult Res(ParseRHSOfBinaryExpression(LHS, prec::LogicalOr)); 240 if (Res.isUsable() && !Actions.CheckConstraintExpression(Res.get())) { 241 Actions.CorrectDelayedTyposInExpr(Res); 242 return ExprError(); 243 } 244 return Res; 245 } 246 247 /// \brief Parse a constraint-logical-and-expression. 248 /// 249 /// \verbatim 250 /// C++2a[temp.constr.decl]p1 251 /// constraint-logical-and-expression: 252 /// primary-expression 253 /// constraint-logical-and-expression '&&' primary-expression 254 /// 255 /// \endverbatim 256 ExprResult 257 Parser::ParseConstraintLogicalAndExpression(bool IsTrailingRequiresClause) { 258 EnterExpressionEvaluationContext ConstantEvaluated( 259 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 260 bool NotPrimaryExpression = false; 261 auto ParsePrimary = [&] () { 262 ExprResult E = ParseCastExpression(PrimaryExprOnly, 263 /*isAddressOfOperand=*/false, 264 /*isTypeCast=*/NotTypeCast, 265 /*isVectorLiteral=*/false, 266 &NotPrimaryExpression); 267 if (E.isInvalid()) 268 return ExprError(); 269 auto RecoverFromNonPrimary = [&] (ExprResult E, bool Note) { 270 E = ParsePostfixExpressionSuffix(E); 271 // Use InclusiveOr, the precedence just after '&&' to not parse the 272 // next arguments to the logical and. 273 E = ParseRHSOfBinaryExpression(E, prec::InclusiveOr); 274 if (!E.isInvalid()) 275 Diag(E.get()->getExprLoc(), 276 Note 277 ? diag::note_unparenthesized_non_primary_expr_in_requires_clause 278 : diag::err_unparenthesized_non_primary_expr_in_requires_clause) 279 << FixItHint::CreateInsertion(E.get()->getBeginLoc(), "(") 280 << FixItHint::CreateInsertion( 281 PP.getLocForEndOfToken(E.get()->getEndLoc()), ")") 282 << E.get()->getSourceRange(); 283 return E; 284 }; 285 286 if (NotPrimaryExpression || 287 // Check if the following tokens must be a part of a non-primary 288 // expression 289 getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 290 /*CPlusPlus11=*/true) > prec::LogicalAnd || 291 // Postfix operators other than '(' (which will be checked for in 292 // CheckConstraintExpression). 293 Tok.isOneOf(tok::period, tok::plusplus, tok::minusminus) || 294 (Tok.is(tok::l_square) && !NextToken().is(tok::l_square))) { 295 E = RecoverFromNonPrimary(E, /*Note=*/false); 296 if (E.isInvalid()) 297 return ExprError(); 298 NotPrimaryExpression = false; 299 } 300 bool PossibleNonPrimary; 301 bool IsConstraintExpr = 302 Actions.CheckConstraintExpression(E.get(), Tok, &PossibleNonPrimary, 303 IsTrailingRequiresClause); 304 if (!IsConstraintExpr || PossibleNonPrimary) { 305 // Atomic constraint might be an unparenthesized non-primary expression 306 // (such as a binary operator), in which case we might get here (e.g. in 307 // 'requires 0 + 1 && true' we would now be at '+', and parse and ignore 308 // the rest of the addition expression). Try to parse the rest of it here. 309 if (PossibleNonPrimary) 310 E = RecoverFromNonPrimary(E, /*Note=*/!IsConstraintExpr); 311 Actions.CorrectDelayedTyposInExpr(E); 312 return ExprError(); 313 } 314 return E; 315 }; 316 ExprResult LHS = ParsePrimary(); 317 if (LHS.isInvalid()) 318 return ExprError(); 319 while (Tok.is(tok::ampamp)) { 320 SourceLocation LogicalAndLoc = ConsumeToken(); 321 ExprResult RHS = ParsePrimary(); 322 if (RHS.isInvalid()) { 323 Actions.CorrectDelayedTyposInExpr(LHS); 324 return ExprError(); 325 } 326 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalAndLoc, 327 tok::ampamp, LHS.get(), RHS.get()); 328 if (!Op.isUsable()) { 329 Actions.CorrectDelayedTyposInExpr(RHS); 330 Actions.CorrectDelayedTyposInExpr(LHS); 331 return ExprError(); 332 } 333 LHS = Op; 334 } 335 return LHS; 336 } 337 338 /// \brief Parse a constraint-logical-or-expression. 339 /// 340 /// \verbatim 341 /// C++2a[temp.constr.decl]p1 342 /// constraint-logical-or-expression: 343 /// constraint-logical-and-expression 344 /// constraint-logical-or-expression '||' 345 /// constraint-logical-and-expression 346 /// 347 /// \endverbatim 348 ExprResult 349 Parser::ParseConstraintLogicalOrExpression(bool IsTrailingRequiresClause) { 350 ExprResult LHS(ParseConstraintLogicalAndExpression(IsTrailingRequiresClause)); 351 if (!LHS.isUsable()) 352 return ExprError(); 353 while (Tok.is(tok::pipepipe)) { 354 SourceLocation LogicalOrLoc = ConsumeToken(); 355 ExprResult RHS = 356 ParseConstraintLogicalAndExpression(IsTrailingRequiresClause); 357 if (!RHS.isUsable()) { 358 Actions.CorrectDelayedTyposInExpr(LHS); 359 return ExprError(); 360 } 361 ExprResult Op = Actions.ActOnBinOp(getCurScope(), LogicalOrLoc, 362 tok::pipepipe, LHS.get(), RHS.get()); 363 if (!Op.isUsable()) { 364 Actions.CorrectDelayedTyposInExpr(RHS); 365 Actions.CorrectDelayedTyposInExpr(LHS); 366 return ExprError(); 367 } 368 LHS = Op; 369 } 370 return LHS; 371 } 372 373 bool Parser::isNotExpressionStart() { 374 tok::TokenKind K = Tok.getKind(); 375 if (K == tok::l_brace || K == tok::r_brace || 376 K == tok::kw_for || K == tok::kw_while || 377 K == tok::kw_if || K == tok::kw_else || 378 K == tok::kw_goto || K == tok::kw_try) 379 return true; 380 // If this is a decl-specifier, we can't be at the start of an expression. 381 return isKnownToBeDeclarationSpecifier(); 382 } 383 384 bool Parser::isFoldOperator(prec::Level Level) const { 385 return Level > prec::Unknown && Level != prec::Conditional && 386 Level != prec::Spaceship; 387 } 388 389 bool Parser::isFoldOperator(tok::TokenKind Kind) const { 390 return isFoldOperator(getBinOpPrecedence(Kind, GreaterThanIsOperator, true)); 391 } 392 393 /// Parse a binary expression that starts with \p LHS and has a 394 /// precedence of at least \p MinPrec. 395 ExprResult 396 Parser::ParseRHSOfBinaryExpression(ExprResult LHS, prec::Level MinPrec) { 397 prec::Level NextTokPrec = getBinOpPrecedence(Tok.getKind(), 398 GreaterThanIsOperator, 399 getLangOpts().CPlusPlus11); 400 SourceLocation ColonLoc; 401 402 auto SavedType = PreferredType; 403 while (1) { 404 // Every iteration may rely on a preferred type for the whole expression. 405 PreferredType = SavedType; 406 // If this token has a lower precedence than we are allowed to parse (e.g. 407 // because we are called recursively, or because the token is not a binop), 408 // then we are done! 409 if (NextTokPrec < MinPrec) 410 return LHS; 411 412 // Consume the operator, saving the operator token for error reporting. 413 Token OpToken = Tok; 414 ConsumeToken(); 415 416 if (OpToken.is(tok::caretcaret)) { 417 return ExprError(Diag(Tok, diag::err_opencl_logical_exclusive_or)); 418 } 419 420 // If we're potentially in a template-id, we may now be able to determine 421 // whether we're actually in one or not. 422 if (OpToken.isOneOf(tok::comma, tok::greater, tok::greatergreater, 423 tok::greatergreatergreater) && 424 checkPotentialAngleBracketDelimiter(OpToken)) 425 return ExprError(); 426 427 // Bail out when encountering a comma followed by a token which can't 428 // possibly be the start of an expression. For instance: 429 // int f() { return 1, } 430 // We can't do this before consuming the comma, because 431 // isNotExpressionStart() looks at the token stream. 432 if (OpToken.is(tok::comma) && isNotExpressionStart()) { 433 PP.EnterToken(Tok, /*IsReinject*/true); 434 Tok = OpToken; 435 return LHS; 436 } 437 438 // If the next token is an ellipsis, then this is a fold-expression. Leave 439 // it alone so we can handle it in the paren expression. 440 if (isFoldOperator(NextTokPrec) && Tok.is(tok::ellipsis)) { 441 // FIXME: We can't check this via lookahead before we consume the token 442 // because that tickles a lexer bug. 443 PP.EnterToken(Tok, /*IsReinject*/true); 444 Tok = OpToken; 445 return LHS; 446 } 447 448 // In Objective-C++, alternative operator tokens can be used as keyword args 449 // in message expressions. Unconsume the token so that it can reinterpreted 450 // as an identifier in ParseObjCMessageExpressionBody. i.e., we support: 451 // [foo meth:0 and:0]; 452 // [foo not_eq]; 453 if (getLangOpts().ObjC && getLangOpts().CPlusPlus && 454 Tok.isOneOf(tok::colon, tok::r_square) && 455 OpToken.getIdentifierInfo() != nullptr) { 456 PP.EnterToken(Tok, /*IsReinject*/true); 457 Tok = OpToken; 458 return LHS; 459 } 460 461 // Special case handling for the ternary operator. 462 ExprResult TernaryMiddle(true); 463 if (NextTokPrec == prec::Conditional) { 464 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 465 // Parse a braced-init-list here for error recovery purposes. 466 SourceLocation BraceLoc = Tok.getLocation(); 467 TernaryMiddle = ParseBraceInitializer(); 468 if (!TernaryMiddle.isInvalid()) { 469 Diag(BraceLoc, diag::err_init_list_bin_op) 470 << /*RHS*/ 1 << PP.getSpelling(OpToken) 471 << Actions.getExprRange(TernaryMiddle.get()); 472 TernaryMiddle = ExprError(); 473 } 474 } else if (Tok.isNot(tok::colon)) { 475 // Don't parse FOO:BAR as if it were a typo for FOO::BAR. 476 ColonProtectionRAIIObject X(*this); 477 478 // Handle this production specially: 479 // logical-OR-expression '?' expression ':' conditional-expression 480 // In particular, the RHS of the '?' is 'expression', not 481 // 'logical-OR-expression' as we might expect. 482 TernaryMiddle = ParseExpression(); 483 } else { 484 // Special case handling of "X ? Y : Z" where Y is empty: 485 // logical-OR-expression '?' ':' conditional-expression [GNU] 486 TernaryMiddle = nullptr; 487 Diag(Tok, diag::ext_gnu_conditional_expr); 488 } 489 490 if (TernaryMiddle.isInvalid()) { 491 Actions.CorrectDelayedTyposInExpr(LHS); 492 LHS = ExprError(); 493 TernaryMiddle = nullptr; 494 } 495 496 if (!TryConsumeToken(tok::colon, ColonLoc)) { 497 // Otherwise, we're missing a ':'. Assume that this was a typo that 498 // the user forgot. If we're not in a macro expansion, we can suggest 499 // a fixit hint. If there were two spaces before the current token, 500 // suggest inserting the colon in between them, otherwise insert ": ". 501 SourceLocation FILoc = Tok.getLocation(); 502 const char *FIText = ": "; 503 const SourceManager &SM = PP.getSourceManager(); 504 if (FILoc.isFileID() || PP.isAtStartOfMacroExpansion(FILoc, &FILoc)) { 505 assert(FILoc.isFileID()); 506 bool IsInvalid = false; 507 const char *SourcePtr = 508 SM.getCharacterData(FILoc.getLocWithOffset(-1), &IsInvalid); 509 if (!IsInvalid && *SourcePtr == ' ') { 510 SourcePtr = 511 SM.getCharacterData(FILoc.getLocWithOffset(-2), &IsInvalid); 512 if (!IsInvalid && *SourcePtr == ' ') { 513 FILoc = FILoc.getLocWithOffset(-1); 514 FIText = ":"; 515 } 516 } 517 } 518 519 Diag(Tok, diag::err_expected) 520 << tok::colon << FixItHint::CreateInsertion(FILoc, FIText); 521 Diag(OpToken, diag::note_matching) << tok::question; 522 ColonLoc = Tok.getLocation(); 523 } 524 } 525 526 PreferredType.enterBinary(Actions, Tok.getLocation(), LHS.get(), 527 OpToken.getKind()); 528 // Parse another leaf here for the RHS of the operator. 529 // ParseCastExpression works here because all RHS expressions in C have it 530 // as a prefix, at least. However, in C++, an assignment-expression could 531 // be a throw-expression, which is not a valid cast-expression. 532 // Therefore we need some special-casing here. 533 // Also note that the third operand of the conditional operator is 534 // an assignment-expression in C++, and in C++11, we can have a 535 // braced-init-list on the RHS of an assignment. For better diagnostics, 536 // parse as if we were allowed braced-init-lists everywhere, and check that 537 // they only appear on the RHS of assignments later. 538 ExprResult RHS; 539 bool RHSIsInitList = false; 540 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 541 RHS = ParseBraceInitializer(); 542 RHSIsInitList = true; 543 } else if (getLangOpts().CPlusPlus && NextTokPrec <= prec::Conditional) 544 RHS = ParseAssignmentExpression(); 545 else 546 RHS = ParseCastExpression(AnyCastExpr); 547 548 if (RHS.isInvalid()) { 549 // FIXME: Errors generated by the delayed typo correction should be 550 // printed before errors from parsing the RHS, not after. 551 Actions.CorrectDelayedTyposInExpr(LHS); 552 if (TernaryMiddle.isUsable()) 553 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 554 LHS = ExprError(); 555 } 556 557 // Remember the precedence of this operator and get the precedence of the 558 // operator immediately to the right of the RHS. 559 prec::Level ThisPrec = NextTokPrec; 560 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 561 getLangOpts().CPlusPlus11); 562 563 // Assignment and conditional expressions are right-associative. 564 bool isRightAssoc = ThisPrec == prec::Conditional || 565 ThisPrec == prec::Assignment; 566 567 // Get the precedence of the operator to the right of the RHS. If it binds 568 // more tightly with RHS than we do, evaluate it completely first. 569 if (ThisPrec < NextTokPrec || 570 (ThisPrec == NextTokPrec && isRightAssoc)) { 571 if (!RHS.isInvalid() && RHSIsInitList) { 572 Diag(Tok, diag::err_init_list_bin_op) 573 << /*LHS*/0 << PP.getSpelling(Tok) << Actions.getExprRange(RHS.get()); 574 RHS = ExprError(); 575 } 576 // If this is left-associative, only parse things on the RHS that bind 577 // more tightly than the current operator. If it is left-associative, it 578 // is okay, to bind exactly as tightly. For example, compile A=B=C=D as 579 // A=(B=(C=D)), where each paren is a level of recursion here. 580 // The function takes ownership of the RHS. 581 RHS = ParseRHSOfBinaryExpression(RHS, 582 static_cast<prec::Level>(ThisPrec + !isRightAssoc)); 583 RHSIsInitList = false; 584 585 if (RHS.isInvalid()) { 586 // FIXME: Errors generated by the delayed typo correction should be 587 // printed before errors from ParseRHSOfBinaryExpression, not after. 588 Actions.CorrectDelayedTyposInExpr(LHS); 589 if (TernaryMiddle.isUsable()) 590 TernaryMiddle = Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 591 LHS = ExprError(); 592 } 593 594 NextTokPrec = getBinOpPrecedence(Tok.getKind(), GreaterThanIsOperator, 595 getLangOpts().CPlusPlus11); 596 } 597 598 if (!RHS.isInvalid() && RHSIsInitList) { 599 if (ThisPrec == prec::Assignment) { 600 Diag(OpToken, diag::warn_cxx98_compat_generalized_initializer_lists) 601 << Actions.getExprRange(RHS.get()); 602 } else if (ColonLoc.isValid()) { 603 Diag(ColonLoc, diag::err_init_list_bin_op) 604 << /*RHS*/1 << ":" 605 << Actions.getExprRange(RHS.get()); 606 LHS = ExprError(); 607 } else { 608 Diag(OpToken, diag::err_init_list_bin_op) 609 << /*RHS*/1 << PP.getSpelling(OpToken) 610 << Actions.getExprRange(RHS.get()); 611 LHS = ExprError(); 612 } 613 } 614 615 ExprResult OrigLHS = LHS; 616 if (!LHS.isInvalid()) { 617 // Combine the LHS and RHS into the LHS (e.g. build AST). 618 if (TernaryMiddle.isInvalid()) { 619 // If we're using '>>' as an operator within a template 620 // argument list (in C++98), suggest the addition of 621 // parentheses so that the code remains well-formed in C++0x. 622 if (!GreaterThanIsOperator && OpToken.is(tok::greatergreater)) 623 SuggestParentheses(OpToken.getLocation(), 624 diag::warn_cxx11_right_shift_in_template_arg, 625 SourceRange(Actions.getExprRange(LHS.get()).getBegin(), 626 Actions.getExprRange(RHS.get()).getEnd())); 627 628 ExprResult BinOp = 629 Actions.ActOnBinOp(getCurScope(), OpToken.getLocation(), 630 OpToken.getKind(), LHS.get(), RHS.get()); 631 if (BinOp.isInvalid()) 632 BinOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 633 RHS.get()->getEndLoc(), 634 {LHS.get(), RHS.get()}); 635 636 LHS = BinOp; 637 } else { 638 ExprResult CondOp = Actions.ActOnConditionalOp( 639 OpToken.getLocation(), ColonLoc, LHS.get(), TernaryMiddle.get(), 640 RHS.get()); 641 if (CondOp.isInvalid()) { 642 std::vector<clang::Expr *> Args; 643 // TernaryMiddle can be null for the GNU conditional expr extension. 644 if (TernaryMiddle.get()) 645 Args = {LHS.get(), TernaryMiddle.get(), RHS.get()}; 646 else 647 Args = {LHS.get(), RHS.get()}; 648 CondOp = Actions.CreateRecoveryExpr(LHS.get()->getBeginLoc(), 649 RHS.get()->getEndLoc(), Args); 650 } 651 652 LHS = CondOp; 653 } 654 // In this case, ActOnBinOp or ActOnConditionalOp performed the 655 // CorrectDelayedTyposInExpr check. 656 if (!getLangOpts().CPlusPlus) 657 continue; 658 } 659 660 // Ensure potential typos aren't left undiagnosed. 661 if (LHS.isInvalid()) { 662 Actions.CorrectDelayedTyposInExpr(OrigLHS); 663 Actions.CorrectDelayedTyposInExpr(TernaryMiddle); 664 Actions.CorrectDelayedTyposInExpr(RHS); 665 } 666 } 667 } 668 669 /// Parse a cast-expression, unary-expression or primary-expression, based 670 /// on \p ExprType. 671 /// 672 /// \p isAddressOfOperand exists because an id-expression that is the 673 /// operand of address-of gets special treatment due to member pointers. 674 /// 675 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 676 bool isAddressOfOperand, 677 TypeCastState isTypeCast, 678 bool isVectorLiteral, 679 bool *NotPrimaryExpression) { 680 bool NotCastExpr; 681 ExprResult Res = ParseCastExpression(ParseKind, 682 isAddressOfOperand, 683 NotCastExpr, 684 isTypeCast, 685 isVectorLiteral, 686 NotPrimaryExpression); 687 if (NotCastExpr) 688 Diag(Tok, diag::err_expected_expression); 689 return Res; 690 } 691 692 namespace { 693 class CastExpressionIdValidator final : public CorrectionCandidateCallback { 694 public: 695 CastExpressionIdValidator(Token Next, bool AllowTypes, bool AllowNonTypes) 696 : NextToken(Next), AllowNonTypes(AllowNonTypes) { 697 WantTypeSpecifiers = WantFunctionLikeCasts = AllowTypes; 698 } 699 700 bool ValidateCandidate(const TypoCorrection &candidate) override { 701 NamedDecl *ND = candidate.getCorrectionDecl(); 702 if (!ND) 703 return candidate.isKeyword(); 704 705 if (isa<TypeDecl>(ND)) 706 return WantTypeSpecifiers; 707 708 if (!AllowNonTypes || !CorrectionCandidateCallback::ValidateCandidate(candidate)) 709 return false; 710 711 if (!NextToken.isOneOf(tok::equal, tok::arrow, tok::period)) 712 return true; 713 714 for (auto *C : candidate) { 715 NamedDecl *ND = C->getUnderlyingDecl(); 716 if (isa<ValueDecl>(ND) && !isa<FunctionDecl>(ND)) 717 return true; 718 } 719 return false; 720 } 721 722 std::unique_ptr<CorrectionCandidateCallback> clone() override { 723 return std::make_unique<CastExpressionIdValidator>(*this); 724 } 725 726 private: 727 Token NextToken; 728 bool AllowNonTypes; 729 }; 730 } 731 732 /// Parse a cast-expression, or, if \pisUnaryExpression is true, parse 733 /// a unary-expression. 734 /// 735 /// \p isAddressOfOperand exists because an id-expression that is the operand 736 /// of address-of gets special treatment due to member pointers. NotCastExpr 737 /// is set to true if the token is not the start of a cast-expression, and no 738 /// diagnostic is emitted in this case and no tokens are consumed. 739 /// 740 /// \verbatim 741 /// cast-expression: [C99 6.5.4] 742 /// unary-expression 743 /// '(' type-name ')' cast-expression 744 /// 745 /// unary-expression: [C99 6.5.3] 746 /// postfix-expression 747 /// '++' unary-expression 748 /// '--' unary-expression 749 /// [Coro] 'co_await' cast-expression 750 /// unary-operator cast-expression 751 /// 'sizeof' unary-expression 752 /// 'sizeof' '(' type-name ')' 753 /// [C++11] 'sizeof' '...' '(' identifier ')' 754 /// [GNU] '__alignof' unary-expression 755 /// [GNU] '__alignof' '(' type-name ')' 756 /// [C11] '_Alignof' '(' type-name ')' 757 /// [C++11] 'alignof' '(' type-id ')' 758 /// [GNU] '&&' identifier 759 /// [C++11] 'noexcept' '(' expression ')' [C++11 5.3.7] 760 /// [C++] new-expression 761 /// [C++] delete-expression 762 /// 763 /// unary-operator: one of 764 /// '&' '*' '+' '-' '~' '!' 765 /// [GNU] '__extension__' '__real' '__imag' 766 /// 767 /// primary-expression: [C99 6.5.1] 768 /// [C99] identifier 769 /// [C++] id-expression 770 /// constant 771 /// string-literal 772 /// [C++] boolean-literal [C++ 2.13.5] 773 /// [C++11] 'nullptr' [C++11 2.14.7] 774 /// [C++11] user-defined-literal 775 /// '(' expression ')' 776 /// [C11] generic-selection 777 /// [C++2a] requires-expression 778 /// '__func__' [C99 6.4.2.2] 779 /// [GNU] '__FUNCTION__' 780 /// [MS] '__FUNCDNAME__' 781 /// [MS] 'L__FUNCTION__' 782 /// [MS] '__FUNCSIG__' 783 /// [MS] 'L__FUNCSIG__' 784 /// [GNU] '__PRETTY_FUNCTION__' 785 /// [GNU] '(' compound-statement ')' 786 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 787 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 788 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 789 /// assign-expr ')' 790 /// [GNU] '__builtin_FILE' '(' ')' 791 /// [GNU] '__builtin_FUNCTION' '(' ')' 792 /// [GNU] '__builtin_LINE' '(' ')' 793 /// [CLANG] '__builtin_COLUMN' '(' ')' 794 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 795 /// [GNU] '__null' 796 /// [OBJC] '[' objc-message-expr ']' 797 /// [OBJC] '\@selector' '(' objc-selector-arg ')' 798 /// [OBJC] '\@protocol' '(' identifier ')' 799 /// [OBJC] '\@encode' '(' type-name ')' 800 /// [OBJC] objc-string-literal 801 /// [C++] simple-type-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 802 /// [C++11] simple-type-specifier braced-init-list [C++11 5.2.3] 803 /// [C++] typename-specifier '(' expression-list[opt] ')' [C++ 5.2.3] 804 /// [C++11] typename-specifier braced-init-list [C++11 5.2.3] 805 /// [C++] 'const_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 806 /// [C++] 'dynamic_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 807 /// [C++] 'reinterpret_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 808 /// [C++] 'static_cast' '<' type-name '>' '(' expression ')' [C++ 5.2p1] 809 /// [C++] 'typeid' '(' expression ')' [C++ 5.2p1] 810 /// [C++] 'typeid' '(' type-id ')' [C++ 5.2p1] 811 /// [C++] 'this' [C++ 9.3.2] 812 /// [G++] unary-type-trait '(' type-id ')' 813 /// [G++] binary-type-trait '(' type-id ',' type-id ')' [TODO] 814 /// [EMBT] array-type-trait '(' type-id ',' integer ')' 815 /// [clang] '^' block-literal 816 /// 817 /// constant: [C99 6.4.4] 818 /// integer-constant 819 /// floating-constant 820 /// enumeration-constant -> identifier 821 /// character-constant 822 /// 823 /// id-expression: [C++ 5.1] 824 /// unqualified-id 825 /// qualified-id 826 /// 827 /// unqualified-id: [C++ 5.1] 828 /// identifier 829 /// operator-function-id 830 /// conversion-function-id 831 /// '~' class-name 832 /// template-id 833 /// 834 /// new-expression: [C++ 5.3.4] 835 /// '::'[opt] 'new' new-placement[opt] new-type-id 836 /// new-initializer[opt] 837 /// '::'[opt] 'new' new-placement[opt] '(' type-id ')' 838 /// new-initializer[opt] 839 /// 840 /// delete-expression: [C++ 5.3.5] 841 /// '::'[opt] 'delete' cast-expression 842 /// '::'[opt] 'delete' '[' ']' cast-expression 843 /// 844 /// [GNU/Embarcadero] unary-type-trait: 845 /// '__is_arithmetic' 846 /// '__is_floating_point' 847 /// '__is_integral' 848 /// '__is_lvalue_expr' 849 /// '__is_rvalue_expr' 850 /// '__is_complete_type' 851 /// '__is_void' 852 /// '__is_array' 853 /// '__is_function' 854 /// '__is_reference' 855 /// '__is_lvalue_reference' 856 /// '__is_rvalue_reference' 857 /// '__is_fundamental' 858 /// '__is_object' 859 /// '__is_scalar' 860 /// '__is_compound' 861 /// '__is_pointer' 862 /// '__is_member_object_pointer' 863 /// '__is_member_function_pointer' 864 /// '__is_member_pointer' 865 /// '__is_const' 866 /// '__is_volatile' 867 /// '__is_trivial' 868 /// '__is_standard_layout' 869 /// '__is_signed' 870 /// '__is_unsigned' 871 /// 872 /// [GNU] unary-type-trait: 873 /// '__has_nothrow_assign' 874 /// '__has_nothrow_copy' 875 /// '__has_nothrow_constructor' 876 /// '__has_trivial_assign' [TODO] 877 /// '__has_trivial_copy' [TODO] 878 /// '__has_trivial_constructor' 879 /// '__has_trivial_destructor' 880 /// '__has_virtual_destructor' 881 /// '__is_abstract' [TODO] 882 /// '__is_class' 883 /// '__is_empty' [TODO] 884 /// '__is_enum' 885 /// '__is_final' 886 /// '__is_pod' 887 /// '__is_polymorphic' 888 /// '__is_sealed' [MS] 889 /// '__is_trivial' 890 /// '__is_union' 891 /// '__has_unique_object_representations' 892 /// 893 /// [Clang] unary-type-trait: 894 /// '__is_aggregate' 895 /// '__trivially_copyable' 896 /// 897 /// binary-type-trait: 898 /// [GNU] '__is_base_of' 899 /// [MS] '__is_convertible_to' 900 /// '__is_convertible' 901 /// '__is_same' 902 /// 903 /// [Embarcadero] array-type-trait: 904 /// '__array_rank' 905 /// '__array_extent' 906 /// 907 /// [Embarcadero] expression-trait: 908 /// '__is_lvalue_expr' 909 /// '__is_rvalue_expr' 910 /// \endverbatim 911 /// 912 ExprResult Parser::ParseCastExpression(CastParseKind ParseKind, 913 bool isAddressOfOperand, 914 bool &NotCastExpr, 915 TypeCastState isTypeCast, 916 bool isVectorLiteral, 917 bool *NotPrimaryExpression) { 918 ExprResult Res; 919 tok::TokenKind SavedKind = Tok.getKind(); 920 auto SavedType = PreferredType; 921 NotCastExpr = false; 922 923 // Are postfix-expression suffix operators permitted after this 924 // cast-expression? If not, and we find some, we'll parse them anyway and 925 // diagnose them. 926 bool AllowSuffix = true; 927 928 // This handles all of cast-expression, unary-expression, postfix-expression, 929 // and primary-expression. We handle them together like this for efficiency 930 // and to simplify handling of an expression starting with a '(' token: which 931 // may be one of a parenthesized expression, cast-expression, compound literal 932 // expression, or statement expression. 933 // 934 // If the parsed tokens consist of a primary-expression, the cases below 935 // break out of the switch; at the end we call ParsePostfixExpressionSuffix 936 // to handle the postfix expression suffixes. Cases that cannot be followed 937 // by postfix exprs should set AllowSuffix to false. 938 switch (SavedKind) { 939 case tok::l_paren: { 940 // If this expression is limited to being a unary-expression, the paren can 941 // not start a cast expression. 942 ParenParseOption ParenExprType; 943 switch (ParseKind) { 944 case CastParseKind::UnaryExprOnly: 945 if (!getLangOpts().CPlusPlus) 946 ParenExprType = CompoundLiteral; 947 LLVM_FALLTHROUGH; 948 case CastParseKind::AnyCastExpr: 949 ParenExprType = ParenParseOption::CastExpr; 950 break; 951 case CastParseKind::PrimaryExprOnly: 952 ParenExprType = FoldExpr; 953 break; 954 } 955 ParsedType CastTy; 956 SourceLocation RParenLoc; 957 Res = ParseParenExpression(ParenExprType, false/*stopIfCastExr*/, 958 isTypeCast == IsTypeCast, CastTy, RParenLoc); 959 960 // FIXME: What should we do if a vector literal is followed by a 961 // postfix-expression suffix? Usually postfix operators are permitted on 962 // literals. 963 if (isVectorLiteral) 964 return Res; 965 966 switch (ParenExprType) { 967 case SimpleExpr: break; // Nothing else to do. 968 case CompoundStmt: break; // Nothing else to do. 969 case CompoundLiteral: 970 // We parsed '(' type-name ')' '{' ... '}'. If any suffixes of 971 // postfix-expression exist, parse them now. 972 break; 973 case CastExpr: 974 // We have parsed the cast-expression and no postfix-expr pieces are 975 // following. 976 return Res; 977 case FoldExpr: 978 // We only parsed a fold-expression. There might be postfix-expr pieces 979 // afterwards; parse them now. 980 break; 981 } 982 983 break; 984 } 985 986 // primary-expression 987 case tok::numeric_constant: 988 // constant: integer-constant 989 // constant: floating-constant 990 991 Res = Actions.ActOnNumericConstant(Tok, /*UDLScope*/getCurScope()); 992 ConsumeToken(); 993 break; 994 995 case tok::kw_true: 996 case tok::kw_false: 997 Res = ParseCXXBoolLiteral(); 998 break; 999 1000 case tok::kw___objc_yes: 1001 case tok::kw___objc_no: 1002 Res = ParseObjCBoolLiteral(); 1003 break; 1004 1005 case tok::kw_nullptr: 1006 Diag(Tok, diag::warn_cxx98_compat_nullptr); 1007 Res = Actions.ActOnCXXNullPtrLiteral(ConsumeToken()); 1008 break; 1009 1010 case tok::annot_primary_expr: 1011 case tok::annot_overload_set: 1012 Res = getExprAnnotation(Tok); 1013 if (!Res.isInvalid() && Tok.getKind() == tok::annot_overload_set) 1014 Res = Actions.ActOnNameClassifiedAsOverloadSet(getCurScope(), Res.get()); 1015 ConsumeAnnotationToken(); 1016 if (!Res.isInvalid() && Tok.is(tok::less)) 1017 checkPotentialAngleBracket(Res); 1018 break; 1019 1020 case tok::annot_non_type: 1021 case tok::annot_non_type_dependent: 1022 case tok::annot_non_type_undeclared: { 1023 CXXScopeSpec SS; 1024 Token Replacement; 1025 Res = tryParseCXXIdExpression(SS, isAddressOfOperand, Replacement); 1026 assert(!Res.isUnset() && 1027 "should not perform typo correction on annotation token"); 1028 break; 1029 } 1030 1031 case tok::kw___super: 1032 case tok::kw_decltype: 1033 // Annotate the token and tail recurse. 1034 if (TryAnnotateTypeOrScopeToken()) 1035 return ExprError(); 1036 assert(Tok.isNot(tok::kw_decltype) && Tok.isNot(tok::kw___super)); 1037 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1038 isVectorLiteral, NotPrimaryExpression); 1039 1040 case tok::identifier: { // primary-expression: identifier 1041 // unqualified-id: identifier 1042 // constant: enumeration-constant 1043 // Turn a potentially qualified name into a annot_typename or 1044 // annot_cxxscope if it would be valid. This handles things like x::y, etc. 1045 if (getLangOpts().CPlusPlus) { 1046 // Avoid the unnecessary parse-time lookup in the common case 1047 // where the syntax forbids a type. 1048 const Token &Next = NextToken(); 1049 1050 // If this identifier was reverted from a token ID, and the next token 1051 // is a parenthesis, this is likely to be a use of a type trait. Check 1052 // those tokens. 1053 if (Next.is(tok::l_paren) && 1054 Tok.is(tok::identifier) && 1055 Tok.getIdentifierInfo()->hasRevertedTokenIDToIdentifier()) { 1056 IdentifierInfo *II = Tok.getIdentifierInfo(); 1057 // Build up the mapping of revertible type traits, for future use. 1058 if (RevertibleTypeTraits.empty()) { 1059 #define RTT_JOIN(X,Y) X##Y 1060 #define REVERTIBLE_TYPE_TRAIT(Name) \ 1061 RevertibleTypeTraits[PP.getIdentifierInfo(#Name)] \ 1062 = RTT_JOIN(tok::kw_,Name) 1063 1064 REVERTIBLE_TYPE_TRAIT(__is_abstract); 1065 REVERTIBLE_TYPE_TRAIT(__is_aggregate); 1066 REVERTIBLE_TYPE_TRAIT(__is_arithmetic); 1067 REVERTIBLE_TYPE_TRAIT(__is_array); 1068 REVERTIBLE_TYPE_TRAIT(__is_assignable); 1069 REVERTIBLE_TYPE_TRAIT(__is_base_of); 1070 REVERTIBLE_TYPE_TRAIT(__is_class); 1071 REVERTIBLE_TYPE_TRAIT(__is_complete_type); 1072 REVERTIBLE_TYPE_TRAIT(__is_compound); 1073 REVERTIBLE_TYPE_TRAIT(__is_const); 1074 REVERTIBLE_TYPE_TRAIT(__is_constructible); 1075 REVERTIBLE_TYPE_TRAIT(__is_convertible); 1076 REVERTIBLE_TYPE_TRAIT(__is_convertible_to); 1077 REVERTIBLE_TYPE_TRAIT(__is_destructible); 1078 REVERTIBLE_TYPE_TRAIT(__is_empty); 1079 REVERTIBLE_TYPE_TRAIT(__is_enum); 1080 REVERTIBLE_TYPE_TRAIT(__is_floating_point); 1081 REVERTIBLE_TYPE_TRAIT(__is_final); 1082 REVERTIBLE_TYPE_TRAIT(__is_function); 1083 REVERTIBLE_TYPE_TRAIT(__is_fundamental); 1084 REVERTIBLE_TYPE_TRAIT(__is_integral); 1085 REVERTIBLE_TYPE_TRAIT(__is_interface_class); 1086 REVERTIBLE_TYPE_TRAIT(__is_literal); 1087 REVERTIBLE_TYPE_TRAIT(__is_lvalue_expr); 1088 REVERTIBLE_TYPE_TRAIT(__is_lvalue_reference); 1089 REVERTIBLE_TYPE_TRAIT(__is_member_function_pointer); 1090 REVERTIBLE_TYPE_TRAIT(__is_member_object_pointer); 1091 REVERTIBLE_TYPE_TRAIT(__is_member_pointer); 1092 REVERTIBLE_TYPE_TRAIT(__is_nothrow_assignable); 1093 REVERTIBLE_TYPE_TRAIT(__is_nothrow_constructible); 1094 REVERTIBLE_TYPE_TRAIT(__is_nothrow_destructible); 1095 REVERTIBLE_TYPE_TRAIT(__is_object); 1096 REVERTIBLE_TYPE_TRAIT(__is_pod); 1097 REVERTIBLE_TYPE_TRAIT(__is_pointer); 1098 REVERTIBLE_TYPE_TRAIT(__is_polymorphic); 1099 REVERTIBLE_TYPE_TRAIT(__is_reference); 1100 REVERTIBLE_TYPE_TRAIT(__is_rvalue_expr); 1101 REVERTIBLE_TYPE_TRAIT(__is_rvalue_reference); 1102 REVERTIBLE_TYPE_TRAIT(__is_same); 1103 REVERTIBLE_TYPE_TRAIT(__is_scalar); 1104 REVERTIBLE_TYPE_TRAIT(__is_sealed); 1105 REVERTIBLE_TYPE_TRAIT(__is_signed); 1106 REVERTIBLE_TYPE_TRAIT(__is_standard_layout); 1107 REVERTIBLE_TYPE_TRAIT(__is_trivial); 1108 REVERTIBLE_TYPE_TRAIT(__is_trivially_assignable); 1109 REVERTIBLE_TYPE_TRAIT(__is_trivially_constructible); 1110 REVERTIBLE_TYPE_TRAIT(__is_trivially_copyable); 1111 REVERTIBLE_TYPE_TRAIT(__is_union); 1112 REVERTIBLE_TYPE_TRAIT(__is_unsigned); 1113 REVERTIBLE_TYPE_TRAIT(__is_void); 1114 REVERTIBLE_TYPE_TRAIT(__is_volatile); 1115 #undef REVERTIBLE_TYPE_TRAIT 1116 #undef RTT_JOIN 1117 } 1118 1119 // If we find that this is in fact the name of a type trait, 1120 // update the token kind in place and parse again to treat it as 1121 // the appropriate kind of type trait. 1122 llvm::SmallDenseMap<IdentifierInfo *, tok::TokenKind>::iterator Known 1123 = RevertibleTypeTraits.find(II); 1124 if (Known != RevertibleTypeTraits.end()) { 1125 Tok.setKind(Known->second); 1126 return ParseCastExpression(ParseKind, isAddressOfOperand, 1127 NotCastExpr, isTypeCast, 1128 isVectorLiteral, NotPrimaryExpression); 1129 } 1130 } 1131 1132 if ((!ColonIsSacred && Next.is(tok::colon)) || 1133 Next.isOneOf(tok::coloncolon, tok::less, tok::l_paren, 1134 tok::l_brace)) { 1135 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1136 if (TryAnnotateTypeOrScopeToken()) 1137 return ExprError(); 1138 if (!Tok.is(tok::identifier)) 1139 return ParseCastExpression(ParseKind, isAddressOfOperand, 1140 NotCastExpr, isTypeCast, 1141 isVectorLiteral, 1142 NotPrimaryExpression); 1143 } 1144 } 1145 1146 // Consume the identifier so that we can see if it is followed by a '(' or 1147 // '.'. 1148 IdentifierInfo &II = *Tok.getIdentifierInfo(); 1149 SourceLocation ILoc = ConsumeToken(); 1150 1151 // Support 'Class.property' and 'super.property' notation. 1152 if (getLangOpts().ObjC && Tok.is(tok::period) && 1153 (Actions.getTypeName(II, ILoc, getCurScope()) || 1154 // Allow the base to be 'super' if in an objc-method. 1155 (&II == Ident_super && getCurScope()->isInObjcMethodScope()))) { 1156 ConsumeToken(); 1157 1158 if (Tok.is(tok::code_completion) && &II != Ident_super) { 1159 cutOffParsing(); 1160 Actions.CodeCompleteObjCClassPropertyRefExpr( 1161 getCurScope(), II, ILoc, ExprStatementTokLoc == ILoc); 1162 return ExprError(); 1163 } 1164 // Allow either an identifier or the keyword 'class' (in C++). 1165 if (Tok.isNot(tok::identifier) && 1166 !(getLangOpts().CPlusPlus && Tok.is(tok::kw_class))) { 1167 Diag(Tok, diag::err_expected_property_name); 1168 return ExprError(); 1169 } 1170 IdentifierInfo &PropertyName = *Tok.getIdentifierInfo(); 1171 SourceLocation PropertyLoc = ConsumeToken(); 1172 1173 Res = Actions.ActOnClassPropertyRefExpr(II, PropertyName, 1174 ILoc, PropertyLoc); 1175 break; 1176 } 1177 1178 // In an Objective-C method, if we have "super" followed by an identifier, 1179 // the token sequence is ill-formed. However, if there's a ':' or ']' after 1180 // that identifier, this is probably a message send with a missing open 1181 // bracket. Treat it as such. 1182 if (getLangOpts().ObjC && &II == Ident_super && !InMessageExpression && 1183 getCurScope()->isInObjcMethodScope() && 1184 ((Tok.is(tok::identifier) && 1185 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) || 1186 Tok.is(tok::code_completion))) { 1187 Res = ParseObjCMessageExpressionBody(SourceLocation(), ILoc, nullptr, 1188 nullptr); 1189 break; 1190 } 1191 1192 // If we have an Objective-C class name followed by an identifier 1193 // and either ':' or ']', this is an Objective-C class message 1194 // send that's missing the opening '['. Recovery 1195 // appropriately. Also take this path if we're performing code 1196 // completion after an Objective-C class name. 1197 if (getLangOpts().ObjC && 1198 ((Tok.is(tok::identifier) && !InMessageExpression) || 1199 Tok.is(tok::code_completion))) { 1200 const Token& Next = NextToken(); 1201 if (Tok.is(tok::code_completion) || 1202 Next.is(tok::colon) || Next.is(tok::r_square)) 1203 if (ParsedType Typ = Actions.getTypeName(II, ILoc, getCurScope())) 1204 if (Typ.get()->isObjCObjectOrInterfaceType()) { 1205 // Fake up a Declarator to use with ActOnTypeName. 1206 DeclSpec DS(AttrFactory); 1207 DS.SetRangeStart(ILoc); 1208 DS.SetRangeEnd(ILoc); 1209 const char *PrevSpec = nullptr; 1210 unsigned DiagID; 1211 DS.SetTypeSpecType(TST_typename, ILoc, PrevSpec, DiagID, Typ, 1212 Actions.getASTContext().getPrintingPolicy()); 1213 1214 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName); 1215 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), 1216 DeclaratorInfo); 1217 if (Ty.isInvalid()) 1218 break; 1219 1220 Res = ParseObjCMessageExpressionBody(SourceLocation(), 1221 SourceLocation(), 1222 Ty.get(), nullptr); 1223 break; 1224 } 1225 } 1226 1227 // Make sure to pass down the right value for isAddressOfOperand. 1228 if (isAddressOfOperand && isPostfixExpressionSuffixStart()) 1229 isAddressOfOperand = false; 1230 1231 // Function designators are allowed to be undeclared (C99 6.5.1p2), so we 1232 // need to know whether or not this identifier is a function designator or 1233 // not. 1234 UnqualifiedId Name; 1235 CXXScopeSpec ScopeSpec; 1236 SourceLocation TemplateKWLoc; 1237 Token Replacement; 1238 CastExpressionIdValidator Validator( 1239 /*Next=*/Tok, 1240 /*AllowTypes=*/isTypeCast != NotTypeCast, 1241 /*AllowNonTypes=*/isTypeCast != IsTypeCast); 1242 Validator.IsAddressOfOperand = isAddressOfOperand; 1243 if (Tok.isOneOf(tok::periodstar, tok::arrowstar)) { 1244 Validator.WantExpressionKeywords = false; 1245 Validator.WantRemainingKeywords = false; 1246 } else { 1247 Validator.WantRemainingKeywords = Tok.isNot(tok::r_paren); 1248 } 1249 Name.setIdentifier(&II, ILoc); 1250 Res = Actions.ActOnIdExpression( 1251 getCurScope(), ScopeSpec, TemplateKWLoc, Name, Tok.is(tok::l_paren), 1252 isAddressOfOperand, &Validator, 1253 /*IsInlineAsmIdentifier=*/false, 1254 Tok.is(tok::r_paren) ? nullptr : &Replacement); 1255 if (!Res.isInvalid() && Res.isUnset()) { 1256 UnconsumeToken(Replacement); 1257 return ParseCastExpression(ParseKind, isAddressOfOperand, 1258 NotCastExpr, isTypeCast, 1259 /*isVectorLiteral=*/false, 1260 NotPrimaryExpression); 1261 } 1262 if (!Res.isInvalid() && Tok.is(tok::less)) 1263 checkPotentialAngleBracket(Res); 1264 break; 1265 } 1266 case tok::char_constant: // constant: character-constant 1267 case tok::wide_char_constant: 1268 case tok::utf8_char_constant: 1269 case tok::utf16_char_constant: 1270 case tok::utf32_char_constant: 1271 Res = Actions.ActOnCharacterConstant(Tok, /*UDLScope*/getCurScope()); 1272 ConsumeToken(); 1273 break; 1274 case tok::kw___func__: // primary-expression: __func__ [C99 6.4.2.2] 1275 case tok::kw___FUNCTION__: // primary-expression: __FUNCTION__ [GNU] 1276 case tok::kw___FUNCDNAME__: // primary-expression: __FUNCDNAME__ [MS] 1277 case tok::kw___FUNCSIG__: // primary-expression: __FUNCSIG__ [MS] 1278 case tok::kw_L__FUNCTION__: // primary-expression: L__FUNCTION__ [MS] 1279 case tok::kw_L__FUNCSIG__: // primary-expression: L__FUNCSIG__ [MS] 1280 case tok::kw___PRETTY_FUNCTION__: // primary-expression: __P..Y_F..N__ [GNU] 1281 Res = Actions.ActOnPredefinedExpr(Tok.getLocation(), SavedKind); 1282 ConsumeToken(); 1283 break; 1284 case tok::string_literal: // primary-expression: string-literal 1285 case tok::wide_string_literal: 1286 case tok::utf8_string_literal: 1287 case tok::utf16_string_literal: 1288 case tok::utf32_string_literal: 1289 Res = ParseStringLiteralExpression(true); 1290 break; 1291 case tok::kw__Generic: // primary-expression: generic-selection [C11 6.5.1] 1292 Res = ParseGenericSelectionExpression(); 1293 break; 1294 case tok::kw___builtin_available: 1295 Res = ParseAvailabilityCheckExpr(Tok.getLocation()); 1296 break; 1297 case tok::kw___builtin_va_arg: 1298 case tok::kw___builtin_offsetof: 1299 case tok::kw___builtin_choose_expr: 1300 case tok::kw___builtin_astype: // primary-expression: [OCL] as_type() 1301 case tok::kw___builtin_convertvector: 1302 case tok::kw___builtin_COLUMN: 1303 case tok::kw___builtin_FILE: 1304 case tok::kw___builtin_FUNCTION: 1305 case tok::kw___builtin_LINE: 1306 if (NotPrimaryExpression) 1307 *NotPrimaryExpression = true; 1308 // This parses the complete suffix; we can return early. 1309 return ParseBuiltinPrimaryExpression(); 1310 case tok::kw___null: 1311 Res = Actions.ActOnGNUNullExpr(ConsumeToken()); 1312 break; 1313 1314 case tok::plusplus: // unary-expression: '++' unary-expression [C99] 1315 case tok::minusminus: { // unary-expression: '--' unary-expression [C99] 1316 if (NotPrimaryExpression) 1317 *NotPrimaryExpression = true; 1318 // C++ [expr.unary] has: 1319 // unary-expression: 1320 // ++ cast-expression 1321 // -- cast-expression 1322 Token SavedTok = Tok; 1323 ConsumeToken(); 1324 1325 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedTok.getKind(), 1326 SavedTok.getLocation()); 1327 // One special case is implicitly handled here: if the preceding tokens are 1328 // an ambiguous cast expression, such as "(T())++", then we recurse to 1329 // determine whether the '++' is prefix or postfix. 1330 Res = ParseCastExpression(getLangOpts().CPlusPlus ? 1331 UnaryExprOnly : AnyCastExpr, 1332 /*isAddressOfOperand*/false, NotCastExpr, 1333 NotTypeCast); 1334 if (NotCastExpr) { 1335 // If we return with NotCastExpr = true, we must not consume any tokens, 1336 // so put the token back where we found it. 1337 assert(Res.isInvalid()); 1338 UnconsumeToken(SavedTok); 1339 return ExprError(); 1340 } 1341 if (!Res.isInvalid()) { 1342 Expr *Arg = Res.get(); 1343 Res = Actions.ActOnUnaryOp(getCurScope(), SavedTok.getLocation(), 1344 SavedKind, Arg); 1345 if (Res.isInvalid()) 1346 Res = Actions.CreateRecoveryExpr(SavedTok.getLocation(), 1347 Arg->getEndLoc(), Arg); 1348 } 1349 return Res; 1350 } 1351 case tok::amp: { // unary-expression: '&' cast-expression 1352 if (NotPrimaryExpression) 1353 *NotPrimaryExpression = true; 1354 // Special treatment because of member pointers 1355 SourceLocation SavedLoc = ConsumeToken(); 1356 PreferredType.enterUnary(Actions, Tok.getLocation(), tok::amp, SavedLoc); 1357 Res = ParseCastExpression(AnyCastExpr, true); 1358 if (!Res.isInvalid()) { 1359 Expr *Arg = Res.get(); 1360 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg); 1361 if (Res.isInvalid()) 1362 Res = Actions.CreateRecoveryExpr(Tok.getLocation(), Arg->getEndLoc(), 1363 Arg); 1364 } 1365 return Res; 1366 } 1367 1368 case tok::star: // unary-expression: '*' cast-expression 1369 case tok::plus: // unary-expression: '+' cast-expression 1370 case tok::minus: // unary-expression: '-' cast-expression 1371 case tok::tilde: // unary-expression: '~' cast-expression 1372 case tok::exclaim: // unary-expression: '!' cast-expression 1373 case tok::kw___real: // unary-expression: '__real' cast-expression [GNU] 1374 case tok::kw___imag: { // unary-expression: '__imag' cast-expression [GNU] 1375 if (NotPrimaryExpression) 1376 *NotPrimaryExpression = true; 1377 SourceLocation SavedLoc = ConsumeToken(); 1378 PreferredType.enterUnary(Actions, Tok.getLocation(), SavedKind, SavedLoc); 1379 Res = ParseCastExpression(AnyCastExpr); 1380 if (!Res.isInvalid()) { 1381 Expr *Arg = Res.get(); 1382 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Arg); 1383 if (Res.isInvalid()) 1384 Res = Actions.CreateRecoveryExpr(SavedLoc, Arg->getEndLoc(), Arg); 1385 } 1386 return Res; 1387 } 1388 1389 case tok::kw_co_await: { // unary-expression: 'co_await' cast-expression 1390 if (NotPrimaryExpression) 1391 *NotPrimaryExpression = true; 1392 SourceLocation CoawaitLoc = ConsumeToken(); 1393 Res = ParseCastExpression(AnyCastExpr); 1394 if (!Res.isInvalid()) 1395 Res = Actions.ActOnCoawaitExpr(getCurScope(), CoawaitLoc, Res.get()); 1396 return Res; 1397 } 1398 1399 case tok::kw___extension__:{//unary-expression:'__extension__' cast-expr [GNU] 1400 // __extension__ silences extension warnings in the subexpression. 1401 if (NotPrimaryExpression) 1402 *NotPrimaryExpression = true; 1403 ExtensionRAIIObject O(Diags); // Use RAII to do this. 1404 SourceLocation SavedLoc = ConsumeToken(); 1405 Res = ParseCastExpression(AnyCastExpr); 1406 if (!Res.isInvalid()) 1407 Res = Actions.ActOnUnaryOp(getCurScope(), SavedLoc, SavedKind, Res.get()); 1408 return Res; 1409 } 1410 case tok::kw__Alignof: // unary-expression: '_Alignof' '(' type-name ')' 1411 if (!getLangOpts().C11) 1412 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 1413 LLVM_FALLTHROUGH; 1414 case tok::kw_alignof: // unary-expression: 'alignof' '(' type-id ')' 1415 case tok::kw___alignof: // unary-expression: '__alignof' unary-expression 1416 // unary-expression: '__alignof' '(' type-name ')' 1417 case tok::kw_sizeof: // unary-expression: 'sizeof' unary-expression 1418 // unary-expression: 'sizeof' '(' type-name ')' 1419 case tok::kw_vec_step: // unary-expression: OpenCL 'vec_step' expression 1420 // unary-expression: '__builtin_omp_required_simd_align' '(' type-name ')' 1421 case tok::kw___builtin_omp_required_simd_align: 1422 if (NotPrimaryExpression) 1423 *NotPrimaryExpression = true; 1424 AllowSuffix = false; 1425 Res = ParseUnaryExprOrTypeTraitExpression(); 1426 break; 1427 case tok::ampamp: { // unary-expression: '&&' identifier 1428 if (NotPrimaryExpression) 1429 *NotPrimaryExpression = true; 1430 SourceLocation AmpAmpLoc = ConsumeToken(); 1431 if (Tok.isNot(tok::identifier)) 1432 return ExprError(Diag(Tok, diag::err_expected) << tok::identifier); 1433 1434 if (getCurScope()->getFnParent() == nullptr) 1435 return ExprError(Diag(Tok, diag::err_address_of_label_outside_fn)); 1436 1437 Diag(AmpAmpLoc, diag::ext_gnu_address_of_label); 1438 LabelDecl *LD = Actions.LookupOrCreateLabel(Tok.getIdentifierInfo(), 1439 Tok.getLocation()); 1440 Res = Actions.ActOnAddrLabel(AmpAmpLoc, Tok.getLocation(), LD); 1441 ConsumeToken(); 1442 AllowSuffix = false; 1443 break; 1444 } 1445 case tok::kw_const_cast: 1446 case tok::kw_dynamic_cast: 1447 case tok::kw_reinterpret_cast: 1448 case tok::kw_static_cast: 1449 case tok::kw_addrspace_cast: 1450 if (NotPrimaryExpression) 1451 *NotPrimaryExpression = true; 1452 Res = ParseCXXCasts(); 1453 break; 1454 case tok::kw___builtin_bit_cast: 1455 if (NotPrimaryExpression) 1456 *NotPrimaryExpression = true; 1457 Res = ParseBuiltinBitCast(); 1458 break; 1459 case tok::kw_typeid: 1460 if (NotPrimaryExpression) 1461 *NotPrimaryExpression = true; 1462 Res = ParseCXXTypeid(); 1463 break; 1464 case tok::kw___uuidof: 1465 if (NotPrimaryExpression) 1466 *NotPrimaryExpression = true; 1467 Res = ParseCXXUuidof(); 1468 break; 1469 case tok::kw_this: 1470 Res = ParseCXXThis(); 1471 break; 1472 case tok::kw___builtin_sycl_unique_stable_name: 1473 Res = ParseSYCLUniqueStableNameExpression(); 1474 break; 1475 1476 case tok::annot_typename: 1477 if (isStartOfObjCClassMessageMissingOpenBracket()) { 1478 TypeResult Type = getTypeAnnotation(Tok); 1479 1480 // Fake up a Declarator to use with ActOnTypeName. 1481 DeclSpec DS(AttrFactory); 1482 DS.SetRangeStart(Tok.getLocation()); 1483 DS.SetRangeEnd(Tok.getLastLoc()); 1484 1485 const char *PrevSpec = nullptr; 1486 unsigned DiagID; 1487 DS.SetTypeSpecType(TST_typename, Tok.getAnnotationEndLoc(), 1488 PrevSpec, DiagID, Type, 1489 Actions.getASTContext().getPrintingPolicy()); 1490 1491 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName); 1492 TypeResult Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 1493 if (Ty.isInvalid()) 1494 break; 1495 1496 ConsumeAnnotationToken(); 1497 Res = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1498 Ty.get(), nullptr); 1499 break; 1500 } 1501 LLVM_FALLTHROUGH; 1502 1503 case tok::annot_decltype: 1504 case tok::kw_char: 1505 case tok::kw_wchar_t: 1506 case tok::kw_char8_t: 1507 case tok::kw_char16_t: 1508 case tok::kw_char32_t: 1509 case tok::kw_bool: 1510 case tok::kw_short: 1511 case tok::kw_int: 1512 case tok::kw_long: 1513 case tok::kw___int64: 1514 case tok::kw___int128: 1515 case tok::kw__ExtInt: 1516 case tok::kw_signed: 1517 case tok::kw_unsigned: 1518 case tok::kw_half: 1519 case tok::kw_float: 1520 case tok::kw_double: 1521 case tok::kw___bf16: 1522 case tok::kw__Float16: 1523 case tok::kw___float128: 1524 case tok::kw_void: 1525 case tok::kw_typename: 1526 case tok::kw_typeof: 1527 case tok::kw___vector: 1528 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 1529 #include "clang/Basic/OpenCLImageTypes.def" 1530 { 1531 if (!getLangOpts().CPlusPlus) { 1532 Diag(Tok, diag::err_expected_expression); 1533 return ExprError(); 1534 } 1535 1536 // Everything henceforth is a postfix-expression. 1537 if (NotPrimaryExpression) 1538 *NotPrimaryExpression = true; 1539 1540 if (SavedKind == tok::kw_typename) { 1541 // postfix-expression: typename-specifier '(' expression-list[opt] ')' 1542 // typename-specifier braced-init-list 1543 if (TryAnnotateTypeOrScopeToken()) 1544 return ExprError(); 1545 1546 if (!Actions.isSimpleTypeSpecifier(Tok.getKind())) 1547 // We are trying to parse a simple-type-specifier but might not get such 1548 // a token after error recovery. 1549 return ExprError(); 1550 } 1551 1552 // postfix-expression: simple-type-specifier '(' expression-list[opt] ')' 1553 // simple-type-specifier braced-init-list 1554 // 1555 DeclSpec DS(AttrFactory); 1556 1557 ParseCXXSimpleTypeSpecifier(DS); 1558 if (Tok.isNot(tok::l_paren) && 1559 (!getLangOpts().CPlusPlus11 || Tok.isNot(tok::l_brace))) 1560 return ExprError(Diag(Tok, diag::err_expected_lparen_after_type) 1561 << DS.getSourceRange()); 1562 1563 if (Tok.is(tok::l_brace)) 1564 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1565 1566 Res = ParseCXXTypeConstructExpression(DS); 1567 break; 1568 } 1569 1570 case tok::annot_cxxscope: { // [C++] id-expression: qualified-id 1571 // If TryAnnotateTypeOrScopeToken annotates the token, tail recurse. 1572 // (We can end up in this situation after tentative parsing.) 1573 if (TryAnnotateTypeOrScopeToken()) 1574 return ExprError(); 1575 if (!Tok.is(tok::annot_cxxscope)) 1576 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1577 isTypeCast, isVectorLiteral, 1578 NotPrimaryExpression); 1579 1580 Token Next = NextToken(); 1581 if (Next.is(tok::annot_template_id)) { 1582 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); 1583 if (TemplateId->Kind == TNK_Type_template) { 1584 // We have a qualified template-id that we know refers to a 1585 // type, translate it into a type and continue parsing as a 1586 // cast expression. 1587 CXXScopeSpec SS; 1588 ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr, 1589 /*ObjectHadErrors=*/false, 1590 /*EnteringContext=*/false); 1591 AnnotateTemplateIdTokenAsType(SS); 1592 return ParseCastExpression(ParseKind, isAddressOfOperand, NotCastExpr, 1593 isTypeCast, isVectorLiteral, 1594 NotPrimaryExpression); 1595 } 1596 } 1597 1598 // Parse as an id-expression. 1599 Res = ParseCXXIdExpression(isAddressOfOperand); 1600 break; 1601 } 1602 1603 case tok::annot_template_id: { // [C++] template-id 1604 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 1605 if (TemplateId->Kind == TNK_Type_template) { 1606 // We have a template-id that we know refers to a type, 1607 // translate it into a type and continue parsing as a cast 1608 // expression. 1609 CXXScopeSpec SS; 1610 AnnotateTemplateIdTokenAsType(SS); 1611 return ParseCastExpression(ParseKind, isAddressOfOperand, 1612 NotCastExpr, isTypeCast, isVectorLiteral, 1613 NotPrimaryExpression); 1614 } 1615 1616 // Fall through to treat the template-id as an id-expression. 1617 LLVM_FALLTHROUGH; 1618 } 1619 1620 case tok::kw_operator: // [C++] id-expression: operator/conversion-function-id 1621 Res = ParseCXXIdExpression(isAddressOfOperand); 1622 break; 1623 1624 case tok::coloncolon: { 1625 // ::foo::bar -> global qualified name etc. If TryAnnotateTypeOrScopeToken 1626 // annotates the token, tail recurse. 1627 if (TryAnnotateTypeOrScopeToken()) 1628 return ExprError(); 1629 if (!Tok.is(tok::coloncolon)) 1630 return ParseCastExpression(ParseKind, isAddressOfOperand, isTypeCast, 1631 isVectorLiteral, NotPrimaryExpression); 1632 1633 // ::new -> [C++] new-expression 1634 // ::delete -> [C++] delete-expression 1635 SourceLocation CCLoc = ConsumeToken(); 1636 if (Tok.is(tok::kw_new)) { 1637 if (NotPrimaryExpression) 1638 *NotPrimaryExpression = true; 1639 Res = ParseCXXNewExpression(true, CCLoc); 1640 AllowSuffix = false; 1641 break; 1642 } 1643 if (Tok.is(tok::kw_delete)) { 1644 if (NotPrimaryExpression) 1645 *NotPrimaryExpression = true; 1646 Res = ParseCXXDeleteExpression(true, CCLoc); 1647 AllowSuffix = false; 1648 break; 1649 } 1650 1651 // This is not a type name or scope specifier, it is an invalid expression. 1652 Diag(CCLoc, diag::err_expected_expression); 1653 return ExprError(); 1654 } 1655 1656 case tok::kw_new: // [C++] new-expression 1657 if (NotPrimaryExpression) 1658 *NotPrimaryExpression = true; 1659 Res = ParseCXXNewExpression(false, Tok.getLocation()); 1660 AllowSuffix = false; 1661 break; 1662 1663 case tok::kw_delete: // [C++] delete-expression 1664 if (NotPrimaryExpression) 1665 *NotPrimaryExpression = true; 1666 Res = ParseCXXDeleteExpression(false, Tok.getLocation()); 1667 AllowSuffix = false; 1668 break; 1669 1670 case tok::kw_requires: // [C++2a] requires-expression 1671 Res = ParseRequiresExpression(); 1672 AllowSuffix = false; 1673 break; 1674 1675 case tok::kw_noexcept: { // [C++0x] 'noexcept' '(' expression ')' 1676 if (NotPrimaryExpression) 1677 *NotPrimaryExpression = true; 1678 Diag(Tok, diag::warn_cxx98_compat_noexcept_expr); 1679 SourceLocation KeyLoc = ConsumeToken(); 1680 BalancedDelimiterTracker T(*this, tok::l_paren); 1681 1682 if (T.expectAndConsume(diag::err_expected_lparen_after, "noexcept")) 1683 return ExprError(); 1684 // C++11 [expr.unary.noexcept]p1: 1685 // The noexcept operator determines whether the evaluation of its operand, 1686 // which is an unevaluated operand, can throw an exception. 1687 EnterExpressionEvaluationContext Unevaluated( 1688 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 1689 Res = ParseExpression(); 1690 1691 T.consumeClose(); 1692 1693 if (!Res.isInvalid()) 1694 Res = Actions.ActOnNoexceptExpr(KeyLoc, T.getOpenLocation(), Res.get(), 1695 T.getCloseLocation()); 1696 AllowSuffix = false; 1697 break; 1698 } 1699 1700 #define TYPE_TRAIT(N,Spelling,K) \ 1701 case tok::kw_##Spelling: 1702 #include "clang/Basic/TokenKinds.def" 1703 Res = ParseTypeTrait(); 1704 break; 1705 1706 case tok::kw___array_rank: 1707 case tok::kw___array_extent: 1708 if (NotPrimaryExpression) 1709 *NotPrimaryExpression = true; 1710 Res = ParseArrayTypeTrait(); 1711 break; 1712 1713 case tok::kw___is_lvalue_expr: 1714 case tok::kw___is_rvalue_expr: 1715 if (NotPrimaryExpression) 1716 *NotPrimaryExpression = true; 1717 Res = ParseExpressionTrait(); 1718 break; 1719 1720 case tok::at: { 1721 if (NotPrimaryExpression) 1722 *NotPrimaryExpression = true; 1723 SourceLocation AtLoc = ConsumeToken(); 1724 return ParseObjCAtExpression(AtLoc); 1725 } 1726 case tok::caret: 1727 Res = ParseBlockLiteralExpression(); 1728 break; 1729 case tok::code_completion: { 1730 cutOffParsing(); 1731 Actions.CodeCompleteExpression(getCurScope(), 1732 PreferredType.get(Tok.getLocation())); 1733 return ExprError(); 1734 } 1735 case tok::l_square: 1736 if (getLangOpts().CPlusPlus11) { 1737 if (getLangOpts().ObjC) { 1738 // C++11 lambda expressions and Objective-C message sends both start with a 1739 // square bracket. There are three possibilities here: 1740 // we have a valid lambda expression, we have an invalid lambda 1741 // expression, or we have something that doesn't appear to be a lambda. 1742 // If we're in the last case, we fall back to ParseObjCMessageExpression. 1743 Res = TryParseLambdaExpression(); 1744 if (!Res.isInvalid() && !Res.get()) { 1745 // We assume Objective-C++ message expressions are not 1746 // primary-expressions. 1747 if (NotPrimaryExpression) 1748 *NotPrimaryExpression = true; 1749 Res = ParseObjCMessageExpression(); 1750 } 1751 break; 1752 } 1753 Res = ParseLambdaExpression(); 1754 break; 1755 } 1756 if (getLangOpts().ObjC) { 1757 Res = ParseObjCMessageExpression(); 1758 break; 1759 } 1760 LLVM_FALLTHROUGH; 1761 default: 1762 NotCastExpr = true; 1763 return ExprError(); 1764 } 1765 1766 // Check to see whether Res is a function designator only. If it is and we 1767 // are compiling for OpenCL, we need to return an error as this implies 1768 // that the address of the function is being taken, which is illegal in CL. 1769 1770 if (ParseKind == PrimaryExprOnly) 1771 // This is strictly a primary-expression - no postfix-expr pieces should be 1772 // parsed. 1773 return Res; 1774 1775 if (!AllowSuffix) { 1776 // FIXME: Don't parse a primary-expression suffix if we encountered a parse 1777 // error already. 1778 if (Res.isInvalid()) 1779 return Res; 1780 1781 switch (Tok.getKind()) { 1782 case tok::l_square: 1783 case tok::l_paren: 1784 case tok::plusplus: 1785 case tok::minusminus: 1786 // "expected ';'" or similar is probably the right diagnostic here. Let 1787 // the caller decide what to do. 1788 if (Tok.isAtStartOfLine()) 1789 return Res; 1790 1791 LLVM_FALLTHROUGH; 1792 case tok::period: 1793 case tok::arrow: 1794 break; 1795 1796 default: 1797 return Res; 1798 } 1799 1800 // This was a unary-expression for which a postfix-expression suffix is 1801 // not permitted by the grammar (eg, a sizeof expression or 1802 // new-expression or similar). Diagnose but parse the suffix anyway. 1803 Diag(Tok.getLocation(), diag::err_postfix_after_unary_requires_parens) 1804 << Tok.getKind() << Res.get()->getSourceRange() 1805 << FixItHint::CreateInsertion(Res.get()->getBeginLoc(), "(") 1806 << FixItHint::CreateInsertion(PP.getLocForEndOfToken(PrevTokLocation), 1807 ")"); 1808 } 1809 1810 // These can be followed by postfix-expr pieces. 1811 PreferredType = SavedType; 1812 Res = ParsePostfixExpressionSuffix(Res); 1813 if (getLangOpts().OpenCL && 1814 !getActions().getOpenCLOptions().isAvailableOption( 1815 "__cl_clang_function_pointers", getLangOpts())) 1816 if (Expr *PostfixExpr = Res.get()) { 1817 QualType Ty = PostfixExpr->getType(); 1818 if (!Ty.isNull() && Ty->isFunctionType()) { 1819 Diag(PostfixExpr->getExprLoc(), 1820 diag::err_opencl_taking_function_address_parser); 1821 return ExprError(); 1822 } 1823 } 1824 1825 return Res; 1826 } 1827 1828 /// Once the leading part of a postfix-expression is parsed, this 1829 /// method parses any suffixes that apply. 1830 /// 1831 /// \verbatim 1832 /// postfix-expression: [C99 6.5.2] 1833 /// primary-expression 1834 /// postfix-expression '[' expression ']' 1835 /// postfix-expression '[' braced-init-list ']' 1836 /// postfix-expression '(' argument-expression-list[opt] ')' 1837 /// postfix-expression '.' identifier 1838 /// postfix-expression '->' identifier 1839 /// postfix-expression '++' 1840 /// postfix-expression '--' 1841 /// '(' type-name ')' '{' initializer-list '}' 1842 /// '(' type-name ')' '{' initializer-list ',' '}' 1843 /// 1844 /// argument-expression-list: [C99 6.5.2] 1845 /// argument-expression ...[opt] 1846 /// argument-expression-list ',' assignment-expression ...[opt] 1847 /// \endverbatim 1848 ExprResult 1849 Parser::ParsePostfixExpressionSuffix(ExprResult LHS) { 1850 // Now that the primary-expression piece of the postfix-expression has been 1851 // parsed, see if there are any postfix-expression pieces here. 1852 SourceLocation Loc; 1853 auto SavedType = PreferredType; 1854 while (1) { 1855 // Each iteration relies on preferred type for the whole expression. 1856 PreferredType = SavedType; 1857 switch (Tok.getKind()) { 1858 case tok::code_completion: 1859 if (InMessageExpression) 1860 return LHS; 1861 1862 cutOffParsing(); 1863 Actions.CodeCompletePostfixExpression( 1864 getCurScope(), LHS, PreferredType.get(Tok.getLocation())); 1865 return ExprError(); 1866 1867 case tok::identifier: 1868 // If we see identifier: after an expression, and we're not already in a 1869 // message send, then this is probably a message send with a missing 1870 // opening bracket '['. 1871 if (getLangOpts().ObjC && !InMessageExpression && 1872 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 1873 LHS = ParseObjCMessageExpressionBody(SourceLocation(), SourceLocation(), 1874 nullptr, LHS.get()); 1875 break; 1876 } 1877 // Fall through; this isn't a message send. 1878 LLVM_FALLTHROUGH; 1879 1880 default: // Not a postfix-expression suffix. 1881 return LHS; 1882 case tok::l_square: { // postfix-expression: p-e '[' expression ']' 1883 // If we have a array postfix expression that starts on a new line and 1884 // Objective-C is enabled, it is highly likely that the user forgot a 1885 // semicolon after the base expression and that the array postfix-expr is 1886 // actually another message send. In this case, do some look-ahead to see 1887 // if the contents of the square brackets are obviously not a valid 1888 // expression and recover by pretending there is no suffix. 1889 if (getLangOpts().ObjC && Tok.isAtStartOfLine() && 1890 isSimpleObjCMessageExpression()) 1891 return LHS; 1892 1893 // Reject array indices starting with a lambda-expression. '[[' is 1894 // reserved for attributes. 1895 if (CheckProhibitedCXX11Attribute()) { 1896 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1897 return ExprError(); 1898 } 1899 1900 BalancedDelimiterTracker T(*this, tok::l_square); 1901 T.consumeOpen(); 1902 Loc = T.getOpenLocation(); 1903 ExprResult Idx, Length, Stride; 1904 SourceLocation ColonLocFirst, ColonLocSecond; 1905 PreferredType.enterSubscript(Actions, Tok.getLocation(), LHS.get()); 1906 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 1907 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 1908 Idx = ParseBraceInitializer(); 1909 } else if (getLangOpts().OpenMP) { 1910 ColonProtectionRAIIObject RAII(*this); 1911 // Parse [: or [ expr or [ expr : 1912 if (!Tok.is(tok::colon)) { 1913 // [ expr 1914 Idx = ParseExpression(); 1915 } 1916 if (Tok.is(tok::colon)) { 1917 // Consume ':' 1918 ColonLocFirst = ConsumeToken(); 1919 if (Tok.isNot(tok::r_square) && 1920 (getLangOpts().OpenMP < 50 || 1921 ((Tok.isNot(tok::colon) && getLangOpts().OpenMP >= 50)))) 1922 Length = ParseExpression(); 1923 } 1924 if (getLangOpts().OpenMP >= 50 && 1925 (OMPClauseKind == llvm::omp::Clause::OMPC_to || 1926 OMPClauseKind == llvm::omp::Clause::OMPC_from) && 1927 Tok.is(tok::colon)) { 1928 // Consume ':' 1929 ColonLocSecond = ConsumeToken(); 1930 if (Tok.isNot(tok::r_square)) { 1931 Stride = ParseExpression(); 1932 } 1933 } 1934 } else 1935 Idx = ParseExpression(); 1936 1937 SourceLocation RLoc = Tok.getLocation(); 1938 1939 LHS = Actions.CorrectDelayedTyposInExpr(LHS); 1940 Idx = Actions.CorrectDelayedTyposInExpr(Idx); 1941 Length = Actions.CorrectDelayedTyposInExpr(Length); 1942 if (!LHS.isInvalid() && !Idx.isInvalid() && !Length.isInvalid() && 1943 !Stride.isInvalid() && Tok.is(tok::r_square)) { 1944 if (ColonLocFirst.isValid() || ColonLocSecond.isValid()) { 1945 LHS = Actions.ActOnOMPArraySectionExpr( 1946 LHS.get(), Loc, Idx.get(), ColonLocFirst, ColonLocSecond, 1947 Length.get(), Stride.get(), RLoc); 1948 } else { 1949 LHS = Actions.ActOnArraySubscriptExpr(getCurScope(), LHS.get(), Loc, 1950 Idx.get(), RLoc); 1951 } 1952 } else { 1953 LHS = ExprError(); 1954 Idx = ExprError(); 1955 } 1956 1957 // Match the ']'. 1958 T.consumeClose(); 1959 break; 1960 } 1961 1962 case tok::l_paren: // p-e: p-e '(' argument-expression-list[opt] ')' 1963 case tok::lesslessless: { // p-e: p-e '<<<' argument-expression-list '>>>' 1964 // '(' argument-expression-list[opt] ')' 1965 tok::TokenKind OpKind = Tok.getKind(); 1966 InMessageExpressionRAIIObject InMessage(*this, false); 1967 1968 Expr *ExecConfig = nullptr; 1969 1970 BalancedDelimiterTracker PT(*this, tok::l_paren); 1971 1972 if (OpKind == tok::lesslessless) { 1973 ExprVector ExecConfigExprs; 1974 CommaLocsTy ExecConfigCommaLocs; 1975 SourceLocation OpenLoc = ConsumeToken(); 1976 1977 if (ParseSimpleExpressionList(ExecConfigExprs, ExecConfigCommaLocs)) { 1978 (void)Actions.CorrectDelayedTyposInExpr(LHS); 1979 LHS = ExprError(); 1980 } 1981 1982 SourceLocation CloseLoc; 1983 if (TryConsumeToken(tok::greatergreatergreater, CloseLoc)) { 1984 } else if (LHS.isInvalid()) { 1985 SkipUntil(tok::greatergreatergreater, StopAtSemi); 1986 } else { 1987 // There was an error closing the brackets 1988 Diag(Tok, diag::err_expected) << tok::greatergreatergreater; 1989 Diag(OpenLoc, diag::note_matching) << tok::lesslessless; 1990 SkipUntil(tok::greatergreatergreater, StopAtSemi); 1991 LHS = ExprError(); 1992 } 1993 1994 if (!LHS.isInvalid()) { 1995 if (ExpectAndConsume(tok::l_paren)) 1996 LHS = ExprError(); 1997 else 1998 Loc = PrevTokLocation; 1999 } 2000 2001 if (!LHS.isInvalid()) { 2002 ExprResult ECResult = Actions.ActOnCUDAExecConfigExpr(getCurScope(), 2003 OpenLoc, 2004 ExecConfigExprs, 2005 CloseLoc); 2006 if (ECResult.isInvalid()) 2007 LHS = ExprError(); 2008 else 2009 ExecConfig = ECResult.get(); 2010 } 2011 } else { 2012 PT.consumeOpen(); 2013 Loc = PT.getOpenLocation(); 2014 } 2015 2016 ExprVector ArgExprs; 2017 CommaLocsTy CommaLocs; 2018 auto RunSignatureHelp = [&]() -> QualType { 2019 QualType PreferredType = Actions.ProduceCallSignatureHelp( 2020 getCurScope(), LHS.get(), ArgExprs, PT.getOpenLocation()); 2021 CalledSignatureHelp = true; 2022 return PreferredType; 2023 }; 2024 if (OpKind == tok::l_paren || !LHS.isInvalid()) { 2025 if (Tok.isNot(tok::r_paren)) { 2026 if (ParseExpressionList(ArgExprs, CommaLocs, [&] { 2027 PreferredType.enterFunctionArgument(Tok.getLocation(), 2028 RunSignatureHelp); 2029 })) { 2030 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2031 // If we got an error when parsing expression list, we don't call 2032 // the CodeCompleteCall handler inside the parser. So call it here 2033 // to make sure we get overload suggestions even when we are in the 2034 // middle of a parameter. 2035 if (PP.isCodeCompletionReached() && !CalledSignatureHelp) 2036 RunSignatureHelp(); 2037 LHS = ExprError(); 2038 } else if (LHS.isInvalid()) { 2039 for (auto &E : ArgExprs) 2040 Actions.CorrectDelayedTyposInExpr(E); 2041 } 2042 } 2043 } 2044 2045 // Match the ')'. 2046 if (LHS.isInvalid()) { 2047 SkipUntil(tok::r_paren, StopAtSemi); 2048 } else if (Tok.isNot(tok::r_paren)) { 2049 bool HadDelayedTypo = false; 2050 if (Actions.CorrectDelayedTyposInExpr(LHS).get() != LHS.get()) 2051 HadDelayedTypo = true; 2052 for (auto &E : ArgExprs) 2053 if (Actions.CorrectDelayedTyposInExpr(E).get() != E) 2054 HadDelayedTypo = true; 2055 // If there were delayed typos in the LHS or ArgExprs, call SkipUntil 2056 // instead of PT.consumeClose() to avoid emitting extra diagnostics for 2057 // the unmatched l_paren. 2058 if (HadDelayedTypo) 2059 SkipUntil(tok::r_paren, StopAtSemi); 2060 else 2061 PT.consumeClose(); 2062 LHS = ExprError(); 2063 } else { 2064 assert( 2065 (ArgExprs.size() == 0 || ArgExprs.size() - 1 == CommaLocs.size()) && 2066 "Unexpected number of commas!"); 2067 Expr *Fn = LHS.get(); 2068 SourceLocation RParLoc = Tok.getLocation(); 2069 LHS = Actions.ActOnCallExpr(getCurScope(), Fn, Loc, ArgExprs, RParLoc, 2070 ExecConfig); 2071 if (LHS.isInvalid()) { 2072 ArgExprs.insert(ArgExprs.begin(), Fn); 2073 LHS = 2074 Actions.CreateRecoveryExpr(Fn->getBeginLoc(), RParLoc, ArgExprs); 2075 } 2076 PT.consumeClose(); 2077 } 2078 2079 break; 2080 } 2081 case tok::arrow: 2082 case tok::period: { 2083 // postfix-expression: p-e '->' template[opt] id-expression 2084 // postfix-expression: p-e '.' template[opt] id-expression 2085 tok::TokenKind OpKind = Tok.getKind(); 2086 SourceLocation OpLoc = ConsumeToken(); // Eat the "." or "->" token. 2087 2088 CXXScopeSpec SS; 2089 ParsedType ObjectType; 2090 bool MayBePseudoDestructor = false; 2091 Expr* OrigLHS = !LHS.isInvalid() ? LHS.get() : nullptr; 2092 2093 PreferredType.enterMemAccess(Actions, Tok.getLocation(), OrigLHS); 2094 2095 if (getLangOpts().CPlusPlus && !LHS.isInvalid()) { 2096 Expr *Base = OrigLHS; 2097 const Type* BaseType = Base->getType().getTypePtrOrNull(); 2098 if (BaseType && Tok.is(tok::l_paren) && 2099 (BaseType->isFunctionType() || 2100 BaseType->isSpecificPlaceholderType(BuiltinType::BoundMember))) { 2101 Diag(OpLoc, diag::err_function_is_not_record) 2102 << OpKind << Base->getSourceRange() 2103 << FixItHint::CreateRemoval(OpLoc); 2104 return ParsePostfixExpressionSuffix(Base); 2105 } 2106 2107 LHS = Actions.ActOnStartCXXMemberReference(getCurScope(), Base, OpLoc, 2108 OpKind, ObjectType, 2109 MayBePseudoDestructor); 2110 if (LHS.isInvalid()) { 2111 // Clang will try to perform expression based completion as a 2112 // fallback, which is confusing in case of member references. So we 2113 // stop here without any completions. 2114 if (Tok.is(tok::code_completion)) { 2115 cutOffParsing(); 2116 return ExprError(); 2117 } 2118 break; 2119 } 2120 ParseOptionalCXXScopeSpecifier( 2121 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2122 /*EnteringContext=*/false, &MayBePseudoDestructor); 2123 if (SS.isNotEmpty()) 2124 ObjectType = nullptr; 2125 } 2126 2127 if (Tok.is(tok::code_completion)) { 2128 tok::TokenKind CorrectedOpKind = 2129 OpKind == tok::arrow ? tok::period : tok::arrow; 2130 ExprResult CorrectedLHS(/*Invalid=*/true); 2131 if (getLangOpts().CPlusPlus && OrigLHS) { 2132 // FIXME: Creating a TentativeAnalysisScope from outside Sema is a 2133 // hack. 2134 Sema::TentativeAnalysisScope Trap(Actions); 2135 CorrectedLHS = Actions.ActOnStartCXXMemberReference( 2136 getCurScope(), OrigLHS, OpLoc, CorrectedOpKind, ObjectType, 2137 MayBePseudoDestructor); 2138 } 2139 2140 Expr *Base = LHS.get(); 2141 Expr *CorrectedBase = CorrectedLHS.get(); 2142 if (!CorrectedBase && !getLangOpts().CPlusPlus) 2143 CorrectedBase = Base; 2144 2145 // Code completion for a member access expression. 2146 cutOffParsing(); 2147 Actions.CodeCompleteMemberReferenceExpr( 2148 getCurScope(), Base, CorrectedBase, OpLoc, OpKind == tok::arrow, 2149 Base && ExprStatementTokLoc == Base->getBeginLoc(), 2150 PreferredType.get(Tok.getLocation())); 2151 2152 return ExprError(); 2153 } 2154 2155 if (MayBePseudoDestructor && !LHS.isInvalid()) { 2156 LHS = ParseCXXPseudoDestructor(LHS.get(), OpLoc, OpKind, SS, 2157 ObjectType); 2158 break; 2159 } 2160 2161 // Either the action has told us that this cannot be a 2162 // pseudo-destructor expression (based on the type of base 2163 // expression), or we didn't see a '~' in the right place. We 2164 // can still parse a destructor name here, but in that case it 2165 // names a real destructor. 2166 // Allow explicit constructor calls in Microsoft mode. 2167 // FIXME: Add support for explicit call of template constructor. 2168 SourceLocation TemplateKWLoc; 2169 UnqualifiedId Name; 2170 if (getLangOpts().ObjC && OpKind == tok::period && 2171 Tok.is(tok::kw_class)) { 2172 // Objective-C++: 2173 // After a '.' in a member access expression, treat the keyword 2174 // 'class' as if it were an identifier. 2175 // 2176 // This hack allows property access to the 'class' method because it is 2177 // such a common method name. For other C++ keywords that are 2178 // Objective-C method names, one must use the message send syntax. 2179 IdentifierInfo *Id = Tok.getIdentifierInfo(); 2180 SourceLocation Loc = ConsumeToken(); 2181 Name.setIdentifier(Id, Loc); 2182 } else if (ParseUnqualifiedId( 2183 SS, ObjectType, LHS.get() && LHS.get()->containsErrors(), 2184 /*EnteringContext=*/false, 2185 /*AllowDestructorName=*/true, 2186 /*AllowConstructorName=*/ 2187 getLangOpts().MicrosoftExt && SS.isNotEmpty(), 2188 /*AllowDeductionGuide=*/false, &TemplateKWLoc, Name)) { 2189 (void)Actions.CorrectDelayedTyposInExpr(LHS); 2190 LHS = ExprError(); 2191 } 2192 2193 if (!LHS.isInvalid()) 2194 LHS = Actions.ActOnMemberAccessExpr(getCurScope(), LHS.get(), OpLoc, 2195 OpKind, SS, TemplateKWLoc, Name, 2196 CurParsedObjCImpl ? CurParsedObjCImpl->Dcl 2197 : nullptr); 2198 if (!LHS.isInvalid()) { 2199 if (Tok.is(tok::less)) 2200 checkPotentialAngleBracket(LHS); 2201 } else if (OrigLHS && Name.isValid()) { 2202 // Preserve the LHS if the RHS is an invalid member. 2203 LHS = Actions.CreateRecoveryExpr(OrigLHS->getBeginLoc(), 2204 Name.getEndLoc(), {OrigLHS}); 2205 } 2206 break; 2207 } 2208 case tok::plusplus: // postfix-expression: postfix-expression '++' 2209 case tok::minusminus: // postfix-expression: postfix-expression '--' 2210 if (!LHS.isInvalid()) { 2211 Expr *Arg = LHS.get(); 2212 LHS = Actions.ActOnPostfixUnaryOp(getCurScope(), Tok.getLocation(), 2213 Tok.getKind(), Arg); 2214 if (LHS.isInvalid()) 2215 LHS = Actions.CreateRecoveryExpr(Arg->getBeginLoc(), 2216 Tok.getLocation(), Arg); 2217 } 2218 ConsumeToken(); 2219 break; 2220 } 2221 } 2222 } 2223 2224 /// ParseExprAfterUnaryExprOrTypeTrait - We parsed a typeof/sizeof/alignof/ 2225 /// vec_step and we are at the start of an expression or a parenthesized 2226 /// type-id. OpTok is the operand token (typeof/sizeof/alignof). Returns the 2227 /// expression (isCastExpr == false) or the type (isCastExpr == true). 2228 /// 2229 /// \verbatim 2230 /// unary-expression: [C99 6.5.3] 2231 /// 'sizeof' unary-expression 2232 /// 'sizeof' '(' type-name ')' 2233 /// [GNU] '__alignof' unary-expression 2234 /// [GNU] '__alignof' '(' type-name ')' 2235 /// [C11] '_Alignof' '(' type-name ')' 2236 /// [C++0x] 'alignof' '(' type-id ')' 2237 /// 2238 /// [GNU] typeof-specifier: 2239 /// typeof ( expressions ) 2240 /// typeof ( type-name ) 2241 /// [GNU/C++] typeof unary-expression 2242 /// 2243 /// [OpenCL 1.1 6.11.12] vec_step built-in function: 2244 /// vec_step ( expressions ) 2245 /// vec_step ( type-name ) 2246 /// \endverbatim 2247 ExprResult 2248 Parser::ParseExprAfterUnaryExprOrTypeTrait(const Token &OpTok, 2249 bool &isCastExpr, 2250 ParsedType &CastTy, 2251 SourceRange &CastRange) { 2252 2253 assert(OpTok.isOneOf(tok::kw_typeof, tok::kw_sizeof, tok::kw___alignof, 2254 tok::kw_alignof, tok::kw__Alignof, tok::kw_vec_step, 2255 tok::kw___builtin_omp_required_simd_align) && 2256 "Not a typeof/sizeof/alignof/vec_step expression!"); 2257 2258 ExprResult Operand; 2259 2260 // If the operand doesn't start with an '(', it must be an expression. 2261 if (Tok.isNot(tok::l_paren)) { 2262 // If construct allows a form without parenthesis, user may forget to put 2263 // pathenthesis around type name. 2264 if (OpTok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof, 2265 tok::kw__Alignof)) { 2266 if (isTypeIdUnambiguously()) { 2267 DeclSpec DS(AttrFactory); 2268 ParseSpecifierQualifierList(DS); 2269 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName); 2270 ParseDeclarator(DeclaratorInfo); 2271 2272 SourceLocation LParenLoc = PP.getLocForEndOfToken(OpTok.getLocation()); 2273 SourceLocation RParenLoc = PP.getLocForEndOfToken(PrevTokLocation); 2274 if (LParenLoc.isInvalid() || RParenLoc.isInvalid()) { 2275 Diag(OpTok.getLocation(), 2276 diag::err_expected_parentheses_around_typename) 2277 << OpTok.getName(); 2278 } else { 2279 Diag(LParenLoc, diag::err_expected_parentheses_around_typename) 2280 << OpTok.getName() << FixItHint::CreateInsertion(LParenLoc, "(") 2281 << FixItHint::CreateInsertion(RParenLoc, ")"); 2282 } 2283 isCastExpr = true; 2284 return ExprEmpty(); 2285 } 2286 } 2287 2288 isCastExpr = false; 2289 if (OpTok.is(tok::kw_typeof) && !getLangOpts().CPlusPlus) { 2290 Diag(Tok, diag::err_expected_after) << OpTok.getIdentifierInfo() 2291 << tok::l_paren; 2292 return ExprError(); 2293 } 2294 2295 Operand = ParseCastExpression(UnaryExprOnly); 2296 } else { 2297 // If it starts with a '(', we know that it is either a parenthesized 2298 // type-name, or it is a unary-expression that starts with a compound 2299 // literal, or starts with a primary-expression that is a parenthesized 2300 // expression. 2301 ParenParseOption ExprType = CastExpr; 2302 SourceLocation LParenLoc = Tok.getLocation(), RParenLoc; 2303 2304 Operand = ParseParenExpression(ExprType, true/*stopIfCastExpr*/, 2305 false, CastTy, RParenLoc); 2306 CastRange = SourceRange(LParenLoc, RParenLoc); 2307 2308 // If ParseParenExpression parsed a '(typename)' sequence only, then this is 2309 // a type. 2310 if (ExprType == CastExpr) { 2311 isCastExpr = true; 2312 return ExprEmpty(); 2313 } 2314 2315 if (getLangOpts().CPlusPlus || OpTok.isNot(tok::kw_typeof)) { 2316 // GNU typeof in C requires the expression to be parenthesized. Not so for 2317 // sizeof/alignof or in C++. Therefore, the parenthesized expression is 2318 // the start of a unary-expression, but doesn't include any postfix 2319 // pieces. Parse these now if present. 2320 if (!Operand.isInvalid()) 2321 Operand = ParsePostfixExpressionSuffix(Operand.get()); 2322 } 2323 } 2324 2325 // If we get here, the operand to the typeof/sizeof/alignof was an expression. 2326 isCastExpr = false; 2327 return Operand; 2328 } 2329 2330 /// Parse a __builtin_sycl_unique_stable_name expression. Accepts a type-id as 2331 /// a parameter. 2332 ExprResult Parser::ParseSYCLUniqueStableNameExpression() { 2333 assert(Tok.is(tok::kw___builtin_sycl_unique_stable_name) && 2334 "Not __bulitin_sycl_unique_stable_name"); 2335 2336 SourceLocation OpLoc = ConsumeToken(); 2337 BalancedDelimiterTracker T(*this, tok::l_paren); 2338 2339 // __builtin_sycl_unique_stable_name expressions are always parenthesized. 2340 if (T.expectAndConsume(diag::err_expected_lparen_after, 2341 "__builtin_sycl_unique_stable_name")) 2342 return ExprError(); 2343 2344 TypeResult Ty = ParseTypeName(); 2345 2346 if (Ty.isInvalid()) { 2347 T.skipToEnd(); 2348 return ExprError(); 2349 } 2350 2351 if (T.consumeClose()) 2352 return ExprError(); 2353 2354 return Actions.ActOnSYCLUniqueStableNameExpr(OpLoc, T.getOpenLocation(), 2355 T.getCloseLocation(), Ty.get()); 2356 } 2357 2358 /// Parse a sizeof or alignof expression. 2359 /// 2360 /// \verbatim 2361 /// unary-expression: [C99 6.5.3] 2362 /// 'sizeof' unary-expression 2363 /// 'sizeof' '(' type-name ')' 2364 /// [C++11] 'sizeof' '...' '(' identifier ')' 2365 /// [GNU] '__alignof' unary-expression 2366 /// [GNU] '__alignof' '(' type-name ')' 2367 /// [C11] '_Alignof' '(' type-name ')' 2368 /// [C++11] 'alignof' '(' type-id ')' 2369 /// \endverbatim 2370 ExprResult Parser::ParseUnaryExprOrTypeTraitExpression() { 2371 assert(Tok.isOneOf(tok::kw_sizeof, tok::kw___alignof, tok::kw_alignof, 2372 tok::kw__Alignof, tok::kw_vec_step, 2373 tok::kw___builtin_omp_required_simd_align) && 2374 "Not a sizeof/alignof/vec_step expression!"); 2375 Token OpTok = Tok; 2376 ConsumeToken(); 2377 2378 // [C++11] 'sizeof' '...' '(' identifier ')' 2379 if (Tok.is(tok::ellipsis) && OpTok.is(tok::kw_sizeof)) { 2380 SourceLocation EllipsisLoc = ConsumeToken(); 2381 SourceLocation LParenLoc, RParenLoc; 2382 IdentifierInfo *Name = nullptr; 2383 SourceLocation NameLoc; 2384 if (Tok.is(tok::l_paren)) { 2385 BalancedDelimiterTracker T(*this, tok::l_paren); 2386 T.consumeOpen(); 2387 LParenLoc = T.getOpenLocation(); 2388 if (Tok.is(tok::identifier)) { 2389 Name = Tok.getIdentifierInfo(); 2390 NameLoc = ConsumeToken(); 2391 T.consumeClose(); 2392 RParenLoc = T.getCloseLocation(); 2393 if (RParenLoc.isInvalid()) 2394 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2395 } else { 2396 Diag(Tok, diag::err_expected_parameter_pack); 2397 SkipUntil(tok::r_paren, StopAtSemi); 2398 } 2399 } else if (Tok.is(tok::identifier)) { 2400 Name = Tok.getIdentifierInfo(); 2401 NameLoc = ConsumeToken(); 2402 LParenLoc = PP.getLocForEndOfToken(EllipsisLoc); 2403 RParenLoc = PP.getLocForEndOfToken(NameLoc); 2404 Diag(LParenLoc, diag::err_paren_sizeof_parameter_pack) 2405 << Name 2406 << FixItHint::CreateInsertion(LParenLoc, "(") 2407 << FixItHint::CreateInsertion(RParenLoc, ")"); 2408 } else { 2409 Diag(Tok, diag::err_sizeof_parameter_pack); 2410 } 2411 2412 if (!Name) 2413 return ExprError(); 2414 2415 EnterExpressionEvaluationContext Unevaluated( 2416 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2417 Sema::ReuseLambdaContextDecl); 2418 2419 return Actions.ActOnSizeofParameterPackExpr(getCurScope(), 2420 OpTok.getLocation(), 2421 *Name, NameLoc, 2422 RParenLoc); 2423 } 2424 2425 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2426 Diag(OpTok, diag::warn_cxx98_compat_alignof); 2427 2428 EnterExpressionEvaluationContext Unevaluated( 2429 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 2430 Sema::ReuseLambdaContextDecl); 2431 2432 bool isCastExpr; 2433 ParsedType CastTy; 2434 SourceRange CastRange; 2435 ExprResult Operand = ParseExprAfterUnaryExprOrTypeTrait(OpTok, 2436 isCastExpr, 2437 CastTy, 2438 CastRange); 2439 2440 UnaryExprOrTypeTrait ExprKind = UETT_SizeOf; 2441 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2442 ExprKind = UETT_AlignOf; 2443 else if (OpTok.is(tok::kw___alignof)) 2444 ExprKind = UETT_PreferredAlignOf; 2445 else if (OpTok.is(tok::kw_vec_step)) 2446 ExprKind = UETT_VecStep; 2447 else if (OpTok.is(tok::kw___builtin_omp_required_simd_align)) 2448 ExprKind = UETT_OpenMPRequiredSimdAlign; 2449 2450 if (isCastExpr) 2451 return Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2452 ExprKind, 2453 /*IsType=*/true, 2454 CastTy.getAsOpaquePtr(), 2455 CastRange); 2456 2457 if (OpTok.isOneOf(tok::kw_alignof, tok::kw__Alignof)) 2458 Diag(OpTok, diag::ext_alignof_expr) << OpTok.getIdentifierInfo(); 2459 2460 // If we get here, the operand to the sizeof/alignof was an expression. 2461 if (!Operand.isInvalid()) 2462 Operand = Actions.ActOnUnaryExprOrTypeTraitExpr(OpTok.getLocation(), 2463 ExprKind, 2464 /*IsType=*/false, 2465 Operand.get(), 2466 CastRange); 2467 return Operand; 2468 } 2469 2470 /// ParseBuiltinPrimaryExpression 2471 /// 2472 /// \verbatim 2473 /// primary-expression: [C99 6.5.1] 2474 /// [GNU] '__builtin_va_arg' '(' assignment-expression ',' type-name ')' 2475 /// [GNU] '__builtin_offsetof' '(' type-name ',' offsetof-member-designator')' 2476 /// [GNU] '__builtin_choose_expr' '(' assign-expr ',' assign-expr ',' 2477 /// assign-expr ')' 2478 /// [GNU] '__builtin_types_compatible_p' '(' type-name ',' type-name ')' 2479 /// [GNU] '__builtin_FILE' '(' ')' 2480 /// [GNU] '__builtin_FUNCTION' '(' ')' 2481 /// [GNU] '__builtin_LINE' '(' ')' 2482 /// [CLANG] '__builtin_COLUMN' '(' ')' 2483 /// [OCL] '__builtin_astype' '(' assignment-expression ',' type-name ')' 2484 /// 2485 /// [GNU] offsetof-member-designator: 2486 /// [GNU] identifier 2487 /// [GNU] offsetof-member-designator '.' identifier 2488 /// [GNU] offsetof-member-designator '[' expression ']' 2489 /// \endverbatim 2490 ExprResult Parser::ParseBuiltinPrimaryExpression() { 2491 ExprResult Res; 2492 const IdentifierInfo *BuiltinII = Tok.getIdentifierInfo(); 2493 2494 tok::TokenKind T = Tok.getKind(); 2495 SourceLocation StartLoc = ConsumeToken(); // Eat the builtin identifier. 2496 2497 // All of these start with an open paren. 2498 if (Tok.isNot(tok::l_paren)) 2499 return ExprError(Diag(Tok, diag::err_expected_after) << BuiltinII 2500 << tok::l_paren); 2501 2502 BalancedDelimiterTracker PT(*this, tok::l_paren); 2503 PT.consumeOpen(); 2504 2505 // TODO: Build AST. 2506 2507 switch (T) { 2508 default: llvm_unreachable("Not a builtin primary expression!"); 2509 case tok::kw___builtin_va_arg: { 2510 ExprResult Expr(ParseAssignmentExpression()); 2511 2512 if (ExpectAndConsume(tok::comma)) { 2513 SkipUntil(tok::r_paren, StopAtSemi); 2514 Expr = ExprError(); 2515 } 2516 2517 TypeResult Ty = ParseTypeName(); 2518 2519 if (Tok.isNot(tok::r_paren)) { 2520 Diag(Tok, diag::err_expected) << tok::r_paren; 2521 Expr = ExprError(); 2522 } 2523 2524 if (Expr.isInvalid() || Ty.isInvalid()) 2525 Res = ExprError(); 2526 else 2527 Res = Actions.ActOnVAArg(StartLoc, Expr.get(), Ty.get(), ConsumeParen()); 2528 break; 2529 } 2530 case tok::kw___builtin_offsetof: { 2531 SourceLocation TypeLoc = Tok.getLocation(); 2532 TypeResult Ty = ParseTypeName(); 2533 if (Ty.isInvalid()) { 2534 SkipUntil(tok::r_paren, StopAtSemi); 2535 return ExprError(); 2536 } 2537 2538 if (ExpectAndConsume(tok::comma)) { 2539 SkipUntil(tok::r_paren, StopAtSemi); 2540 return ExprError(); 2541 } 2542 2543 // We must have at least one identifier here. 2544 if (Tok.isNot(tok::identifier)) { 2545 Diag(Tok, diag::err_expected) << tok::identifier; 2546 SkipUntil(tok::r_paren, StopAtSemi); 2547 return ExprError(); 2548 } 2549 2550 // Keep track of the various subcomponents we see. 2551 SmallVector<Sema::OffsetOfComponent, 4> Comps; 2552 2553 Comps.push_back(Sema::OffsetOfComponent()); 2554 Comps.back().isBrackets = false; 2555 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2556 Comps.back().LocStart = Comps.back().LocEnd = ConsumeToken(); 2557 2558 // FIXME: This loop leaks the index expressions on error. 2559 while (1) { 2560 if (Tok.is(tok::period)) { 2561 // offsetof-member-designator: offsetof-member-designator '.' identifier 2562 Comps.push_back(Sema::OffsetOfComponent()); 2563 Comps.back().isBrackets = false; 2564 Comps.back().LocStart = ConsumeToken(); 2565 2566 if (Tok.isNot(tok::identifier)) { 2567 Diag(Tok, diag::err_expected) << tok::identifier; 2568 SkipUntil(tok::r_paren, StopAtSemi); 2569 return ExprError(); 2570 } 2571 Comps.back().U.IdentInfo = Tok.getIdentifierInfo(); 2572 Comps.back().LocEnd = ConsumeToken(); 2573 2574 } else if (Tok.is(tok::l_square)) { 2575 if (CheckProhibitedCXX11Attribute()) 2576 return ExprError(); 2577 2578 // offsetof-member-designator: offsetof-member-design '[' expression ']' 2579 Comps.push_back(Sema::OffsetOfComponent()); 2580 Comps.back().isBrackets = true; 2581 BalancedDelimiterTracker ST(*this, tok::l_square); 2582 ST.consumeOpen(); 2583 Comps.back().LocStart = ST.getOpenLocation(); 2584 Res = ParseExpression(); 2585 if (Res.isInvalid()) { 2586 SkipUntil(tok::r_paren, StopAtSemi); 2587 return Res; 2588 } 2589 Comps.back().U.E = Res.get(); 2590 2591 ST.consumeClose(); 2592 Comps.back().LocEnd = ST.getCloseLocation(); 2593 } else { 2594 if (Tok.isNot(tok::r_paren)) { 2595 PT.consumeClose(); 2596 Res = ExprError(); 2597 } else if (Ty.isInvalid()) { 2598 Res = ExprError(); 2599 } else { 2600 PT.consumeClose(); 2601 Res = Actions.ActOnBuiltinOffsetOf(getCurScope(), StartLoc, TypeLoc, 2602 Ty.get(), Comps, 2603 PT.getCloseLocation()); 2604 } 2605 break; 2606 } 2607 } 2608 break; 2609 } 2610 case tok::kw___builtin_choose_expr: { 2611 ExprResult Cond(ParseAssignmentExpression()); 2612 if (Cond.isInvalid()) { 2613 SkipUntil(tok::r_paren, StopAtSemi); 2614 return Cond; 2615 } 2616 if (ExpectAndConsume(tok::comma)) { 2617 SkipUntil(tok::r_paren, StopAtSemi); 2618 return ExprError(); 2619 } 2620 2621 ExprResult Expr1(ParseAssignmentExpression()); 2622 if (Expr1.isInvalid()) { 2623 SkipUntil(tok::r_paren, StopAtSemi); 2624 return Expr1; 2625 } 2626 if (ExpectAndConsume(tok::comma)) { 2627 SkipUntil(tok::r_paren, StopAtSemi); 2628 return ExprError(); 2629 } 2630 2631 ExprResult Expr2(ParseAssignmentExpression()); 2632 if (Expr2.isInvalid()) { 2633 SkipUntil(tok::r_paren, StopAtSemi); 2634 return Expr2; 2635 } 2636 if (Tok.isNot(tok::r_paren)) { 2637 Diag(Tok, diag::err_expected) << tok::r_paren; 2638 return ExprError(); 2639 } 2640 Res = Actions.ActOnChooseExpr(StartLoc, Cond.get(), Expr1.get(), 2641 Expr2.get(), ConsumeParen()); 2642 break; 2643 } 2644 case tok::kw___builtin_astype: { 2645 // The first argument is an expression to be converted, followed by a comma. 2646 ExprResult Expr(ParseAssignmentExpression()); 2647 if (Expr.isInvalid()) { 2648 SkipUntil(tok::r_paren, StopAtSemi); 2649 return ExprError(); 2650 } 2651 2652 if (ExpectAndConsume(tok::comma)) { 2653 SkipUntil(tok::r_paren, StopAtSemi); 2654 return ExprError(); 2655 } 2656 2657 // Second argument is the type to bitcast to. 2658 TypeResult DestTy = ParseTypeName(); 2659 if (DestTy.isInvalid()) 2660 return ExprError(); 2661 2662 // Attempt to consume the r-paren. 2663 if (Tok.isNot(tok::r_paren)) { 2664 Diag(Tok, diag::err_expected) << tok::r_paren; 2665 SkipUntil(tok::r_paren, StopAtSemi); 2666 return ExprError(); 2667 } 2668 2669 Res = Actions.ActOnAsTypeExpr(Expr.get(), DestTy.get(), StartLoc, 2670 ConsumeParen()); 2671 break; 2672 } 2673 case tok::kw___builtin_convertvector: { 2674 // The first argument is an expression to be converted, followed by a comma. 2675 ExprResult Expr(ParseAssignmentExpression()); 2676 if (Expr.isInvalid()) { 2677 SkipUntil(tok::r_paren, StopAtSemi); 2678 return ExprError(); 2679 } 2680 2681 if (ExpectAndConsume(tok::comma)) { 2682 SkipUntil(tok::r_paren, StopAtSemi); 2683 return ExprError(); 2684 } 2685 2686 // Second argument is the type to bitcast to. 2687 TypeResult DestTy = ParseTypeName(); 2688 if (DestTy.isInvalid()) 2689 return ExprError(); 2690 2691 // Attempt to consume the r-paren. 2692 if (Tok.isNot(tok::r_paren)) { 2693 Diag(Tok, diag::err_expected) << tok::r_paren; 2694 SkipUntil(tok::r_paren, StopAtSemi); 2695 return ExprError(); 2696 } 2697 2698 Res = Actions.ActOnConvertVectorExpr(Expr.get(), DestTy.get(), StartLoc, 2699 ConsumeParen()); 2700 break; 2701 } 2702 case tok::kw___builtin_COLUMN: 2703 case tok::kw___builtin_FILE: 2704 case tok::kw___builtin_FUNCTION: 2705 case tok::kw___builtin_LINE: { 2706 // Attempt to consume the r-paren. 2707 if (Tok.isNot(tok::r_paren)) { 2708 Diag(Tok, diag::err_expected) << tok::r_paren; 2709 SkipUntil(tok::r_paren, StopAtSemi); 2710 return ExprError(); 2711 } 2712 SourceLocExpr::IdentKind Kind = [&] { 2713 switch (T) { 2714 case tok::kw___builtin_FILE: 2715 return SourceLocExpr::File; 2716 case tok::kw___builtin_FUNCTION: 2717 return SourceLocExpr::Function; 2718 case tok::kw___builtin_LINE: 2719 return SourceLocExpr::Line; 2720 case tok::kw___builtin_COLUMN: 2721 return SourceLocExpr::Column; 2722 default: 2723 llvm_unreachable("invalid keyword"); 2724 } 2725 }(); 2726 Res = Actions.ActOnSourceLocExpr(Kind, StartLoc, ConsumeParen()); 2727 break; 2728 } 2729 } 2730 2731 if (Res.isInvalid()) 2732 return ExprError(); 2733 2734 // These can be followed by postfix-expr pieces because they are 2735 // primary-expressions. 2736 return ParsePostfixExpressionSuffix(Res.get()); 2737 } 2738 2739 bool Parser::tryParseOpenMPArrayShapingCastPart() { 2740 assert(Tok.is(tok::l_square) && "Expected open bracket"); 2741 bool ErrorFound = true; 2742 TentativeParsingAction TPA(*this); 2743 do { 2744 if (Tok.isNot(tok::l_square)) 2745 break; 2746 // Consume '[' 2747 ConsumeBracket(); 2748 // Skip inner expression. 2749 while (!SkipUntil(tok::r_square, tok::annot_pragma_openmp_end, 2750 StopAtSemi | StopBeforeMatch)) 2751 ; 2752 if (Tok.isNot(tok::r_square)) 2753 break; 2754 // Consume ']' 2755 ConsumeBracket(); 2756 // Found ')' - done. 2757 if (Tok.is(tok::r_paren)) { 2758 ErrorFound = false; 2759 break; 2760 } 2761 } while (Tok.isNot(tok::annot_pragma_openmp_end)); 2762 TPA.Revert(); 2763 return !ErrorFound; 2764 } 2765 2766 /// ParseParenExpression - This parses the unit that starts with a '(' token, 2767 /// based on what is allowed by ExprType. The actual thing parsed is returned 2768 /// in ExprType. If stopIfCastExpr is true, it will only return the parsed type, 2769 /// not the parsed cast-expression. 2770 /// 2771 /// \verbatim 2772 /// primary-expression: [C99 6.5.1] 2773 /// '(' expression ')' 2774 /// [GNU] '(' compound-statement ')' (if !ParenExprOnly) 2775 /// postfix-expression: [C99 6.5.2] 2776 /// '(' type-name ')' '{' initializer-list '}' 2777 /// '(' type-name ')' '{' initializer-list ',' '}' 2778 /// cast-expression: [C99 6.5.4] 2779 /// '(' type-name ')' cast-expression 2780 /// [ARC] bridged-cast-expression 2781 /// [ARC] bridged-cast-expression: 2782 /// (__bridge type-name) cast-expression 2783 /// (__bridge_transfer type-name) cast-expression 2784 /// (__bridge_retained type-name) cast-expression 2785 /// fold-expression: [C++1z] 2786 /// '(' cast-expression fold-operator '...' ')' 2787 /// '(' '...' fold-operator cast-expression ')' 2788 /// '(' cast-expression fold-operator '...' 2789 /// fold-operator cast-expression ')' 2790 /// [OPENMP] Array shaping operation 2791 /// '(' '[' expression ']' { '[' expression ']' } cast-expression 2792 /// \endverbatim 2793 ExprResult 2794 Parser::ParseParenExpression(ParenParseOption &ExprType, bool stopIfCastExpr, 2795 bool isTypeCast, ParsedType &CastTy, 2796 SourceLocation &RParenLoc) { 2797 assert(Tok.is(tok::l_paren) && "Not a paren expr!"); 2798 ColonProtectionRAIIObject ColonProtection(*this, false); 2799 BalancedDelimiterTracker T(*this, tok::l_paren); 2800 if (T.consumeOpen()) 2801 return ExprError(); 2802 SourceLocation OpenLoc = T.getOpenLocation(); 2803 2804 PreferredType.enterParenExpr(Tok.getLocation(), OpenLoc); 2805 2806 ExprResult Result(true); 2807 bool isAmbiguousTypeId; 2808 CastTy = nullptr; 2809 2810 if (Tok.is(tok::code_completion)) { 2811 cutOffParsing(); 2812 Actions.CodeCompleteExpression( 2813 getCurScope(), PreferredType.get(Tok.getLocation()), 2814 /*IsParenthesized=*/ExprType >= CompoundLiteral); 2815 return ExprError(); 2816 } 2817 2818 // Diagnose use of bridge casts in non-arc mode. 2819 bool BridgeCast = (getLangOpts().ObjC && 2820 Tok.isOneOf(tok::kw___bridge, 2821 tok::kw___bridge_transfer, 2822 tok::kw___bridge_retained, 2823 tok::kw___bridge_retain)); 2824 if (BridgeCast && !getLangOpts().ObjCAutoRefCount) { 2825 if (!TryConsumeToken(tok::kw___bridge)) { 2826 StringRef BridgeCastName = Tok.getName(); 2827 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2828 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2829 Diag(BridgeKeywordLoc, diag::warn_arc_bridge_cast_nonarc) 2830 << BridgeCastName 2831 << FixItHint::CreateReplacement(BridgeKeywordLoc, ""); 2832 } 2833 BridgeCast = false; 2834 } 2835 2836 // None of these cases should fall through with an invalid Result 2837 // unless they've already reported an error. 2838 if (ExprType >= CompoundStmt && Tok.is(tok::l_brace)) { 2839 Diag(Tok, diag::ext_gnu_statement_expr); 2840 2841 checkCompoundToken(OpenLoc, tok::l_paren, CompoundToken::StmtExprBegin); 2842 2843 if (!getCurScope()->getFnParent() && !getCurScope()->getBlockParent()) { 2844 Result = ExprError(Diag(OpenLoc, diag::err_stmtexpr_file_scope)); 2845 } else { 2846 // Find the nearest non-record decl context. Variables declared in a 2847 // statement expression behave as if they were declared in the enclosing 2848 // function, block, or other code construct. 2849 DeclContext *CodeDC = Actions.CurContext; 2850 while (CodeDC->isRecord() || isa<EnumDecl>(CodeDC)) { 2851 CodeDC = CodeDC->getParent(); 2852 assert(CodeDC && !CodeDC->isFileContext() && 2853 "statement expr not in code context"); 2854 } 2855 Sema::ContextRAII SavedContext(Actions, CodeDC, /*NewThisContext=*/false); 2856 2857 Actions.ActOnStartStmtExpr(); 2858 2859 StmtResult Stmt(ParseCompoundStatement(true)); 2860 ExprType = CompoundStmt; 2861 2862 // If the substmt parsed correctly, build the AST node. 2863 if (!Stmt.isInvalid()) { 2864 Result = Actions.ActOnStmtExpr(getCurScope(), OpenLoc, Stmt.get(), 2865 Tok.getLocation()); 2866 } else { 2867 Actions.ActOnStmtExprError(); 2868 } 2869 } 2870 } else if (ExprType >= CompoundLiteral && BridgeCast) { 2871 tok::TokenKind tokenKind = Tok.getKind(); 2872 SourceLocation BridgeKeywordLoc = ConsumeToken(); 2873 2874 // Parse an Objective-C ARC ownership cast expression. 2875 ObjCBridgeCastKind Kind; 2876 if (tokenKind == tok::kw___bridge) 2877 Kind = OBC_Bridge; 2878 else if (tokenKind == tok::kw___bridge_transfer) 2879 Kind = OBC_BridgeTransfer; 2880 else if (tokenKind == tok::kw___bridge_retained) 2881 Kind = OBC_BridgeRetained; 2882 else { 2883 // As a hopefully temporary workaround, allow __bridge_retain as 2884 // a synonym for __bridge_retained, but only in system headers. 2885 assert(tokenKind == tok::kw___bridge_retain); 2886 Kind = OBC_BridgeRetained; 2887 if (!PP.getSourceManager().isInSystemHeader(BridgeKeywordLoc)) 2888 Diag(BridgeKeywordLoc, diag::err_arc_bridge_retain) 2889 << FixItHint::CreateReplacement(BridgeKeywordLoc, 2890 "__bridge_retained"); 2891 } 2892 2893 TypeResult Ty = ParseTypeName(); 2894 T.consumeClose(); 2895 ColonProtection.restore(); 2896 RParenLoc = T.getCloseLocation(); 2897 2898 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get().get()); 2899 ExprResult SubExpr = ParseCastExpression(AnyCastExpr); 2900 2901 if (Ty.isInvalid() || SubExpr.isInvalid()) 2902 return ExprError(); 2903 2904 return Actions.ActOnObjCBridgedCast(getCurScope(), OpenLoc, Kind, 2905 BridgeKeywordLoc, Ty.get(), 2906 RParenLoc, SubExpr.get()); 2907 } else if (ExprType >= CompoundLiteral && 2908 isTypeIdInParens(isAmbiguousTypeId)) { 2909 2910 // Otherwise, this is a compound literal expression or cast expression. 2911 2912 // In C++, if the type-id is ambiguous we disambiguate based on context. 2913 // If stopIfCastExpr is true the context is a typeof/sizeof/alignof 2914 // in which case we should treat it as type-id. 2915 // if stopIfCastExpr is false, we need to determine the context past the 2916 // parens, so we defer to ParseCXXAmbiguousParenExpression for that. 2917 if (isAmbiguousTypeId && !stopIfCastExpr) { 2918 ExprResult res = ParseCXXAmbiguousParenExpression(ExprType, CastTy, T, 2919 ColonProtection); 2920 RParenLoc = T.getCloseLocation(); 2921 return res; 2922 } 2923 2924 // Parse the type declarator. 2925 DeclSpec DS(AttrFactory); 2926 ParseSpecifierQualifierList(DS); 2927 Declarator DeclaratorInfo(DS, DeclaratorContext::TypeName); 2928 ParseDeclarator(DeclaratorInfo); 2929 2930 // If our type is followed by an identifier and either ':' or ']', then 2931 // this is probably an Objective-C message send where the leading '[' is 2932 // missing. Recover as if that were the case. 2933 if (!DeclaratorInfo.isInvalidType() && Tok.is(tok::identifier) && 2934 !InMessageExpression && getLangOpts().ObjC && 2935 (NextToken().is(tok::colon) || NextToken().is(tok::r_square))) { 2936 TypeResult Ty; 2937 { 2938 InMessageExpressionRAIIObject InMessage(*this, false); 2939 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2940 } 2941 Result = ParseObjCMessageExpressionBody(SourceLocation(), 2942 SourceLocation(), 2943 Ty.get(), nullptr); 2944 } else { 2945 // Match the ')'. 2946 T.consumeClose(); 2947 ColonProtection.restore(); 2948 RParenLoc = T.getCloseLocation(); 2949 if (Tok.is(tok::l_brace)) { 2950 ExprType = CompoundLiteral; 2951 TypeResult Ty; 2952 { 2953 InMessageExpressionRAIIObject InMessage(*this, false); 2954 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2955 } 2956 return ParseCompoundLiteralExpression(Ty.get(), OpenLoc, RParenLoc); 2957 } 2958 2959 if (Tok.is(tok::l_paren)) { 2960 // This could be OpenCL vector Literals 2961 if (getLangOpts().OpenCL) 2962 { 2963 TypeResult Ty; 2964 { 2965 InMessageExpressionRAIIObject InMessage(*this, false); 2966 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 2967 } 2968 if(Ty.isInvalid()) 2969 { 2970 return ExprError(); 2971 } 2972 QualType QT = Ty.get().get().getCanonicalType(); 2973 if (QT->isVectorType()) 2974 { 2975 // We parsed '(' vector-type-name ')' followed by '(' 2976 2977 // Parse the cast-expression that follows it next. 2978 // isVectorLiteral = true will make sure we don't parse any 2979 // Postfix expression yet 2980 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 2981 /*isAddressOfOperand=*/false, 2982 /*isTypeCast=*/IsTypeCast, 2983 /*isVectorLiteral=*/true); 2984 2985 if (!Result.isInvalid()) { 2986 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 2987 DeclaratorInfo, CastTy, 2988 RParenLoc, Result.get()); 2989 } 2990 2991 // After we performed the cast we can check for postfix-expr pieces. 2992 if (!Result.isInvalid()) { 2993 Result = ParsePostfixExpressionSuffix(Result); 2994 } 2995 2996 return Result; 2997 } 2998 } 2999 } 3000 3001 if (ExprType == CastExpr) { 3002 // We parsed '(' type-name ')' and the thing after it wasn't a '{'. 3003 3004 if (DeclaratorInfo.isInvalidType()) 3005 return ExprError(); 3006 3007 // Note that this doesn't parse the subsequent cast-expression, it just 3008 // returns the parsed type to the callee. 3009 if (stopIfCastExpr) { 3010 TypeResult Ty; 3011 { 3012 InMessageExpressionRAIIObject InMessage(*this, false); 3013 Ty = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 3014 } 3015 CastTy = Ty.get(); 3016 return ExprResult(); 3017 } 3018 3019 // Reject the cast of super idiom in ObjC. 3020 if (Tok.is(tok::identifier) && getLangOpts().ObjC && 3021 Tok.getIdentifierInfo() == Ident_super && 3022 getCurScope()->isInObjcMethodScope() && 3023 GetLookAheadToken(1).isNot(tok::period)) { 3024 Diag(Tok.getLocation(), diag::err_illegal_super_cast) 3025 << SourceRange(OpenLoc, RParenLoc); 3026 return ExprError(); 3027 } 3028 3029 PreferredType.enterTypeCast(Tok.getLocation(), CastTy.get()); 3030 // Parse the cast-expression that follows it next. 3031 // TODO: For cast expression with CastTy. 3032 Result = ParseCastExpression(/*isUnaryExpression=*/AnyCastExpr, 3033 /*isAddressOfOperand=*/false, 3034 /*isTypeCast=*/IsTypeCast); 3035 if (!Result.isInvalid()) { 3036 Result = Actions.ActOnCastExpr(getCurScope(), OpenLoc, 3037 DeclaratorInfo, CastTy, 3038 RParenLoc, Result.get()); 3039 } 3040 return Result; 3041 } 3042 3043 Diag(Tok, diag::err_expected_lbrace_in_compound_literal); 3044 return ExprError(); 3045 } 3046 } else if (ExprType >= FoldExpr && Tok.is(tok::ellipsis) && 3047 isFoldOperator(NextToken().getKind())) { 3048 ExprType = FoldExpr; 3049 return ParseFoldExpression(ExprResult(), T); 3050 } else if (isTypeCast) { 3051 // Parse the expression-list. 3052 InMessageExpressionRAIIObject InMessage(*this, false); 3053 3054 ExprVector ArgExprs; 3055 CommaLocsTy CommaLocs; 3056 3057 if (!ParseSimpleExpressionList(ArgExprs, CommaLocs)) { 3058 // FIXME: If we ever support comma expressions as operands to 3059 // fold-expressions, we'll need to allow multiple ArgExprs here. 3060 if (ExprType >= FoldExpr && ArgExprs.size() == 1 && 3061 isFoldOperator(Tok.getKind()) && NextToken().is(tok::ellipsis)) { 3062 ExprType = FoldExpr; 3063 return ParseFoldExpression(ArgExprs[0], T); 3064 } 3065 3066 ExprType = SimpleExpr; 3067 Result = Actions.ActOnParenListExpr(OpenLoc, Tok.getLocation(), 3068 ArgExprs); 3069 } 3070 } else if (getLangOpts().OpenMP >= 50 && OpenMPDirectiveParsing && 3071 ExprType == CastExpr && Tok.is(tok::l_square) && 3072 tryParseOpenMPArrayShapingCastPart()) { 3073 bool ErrorFound = false; 3074 SmallVector<Expr *, 4> OMPDimensions; 3075 SmallVector<SourceRange, 4> OMPBracketsRanges; 3076 do { 3077 BalancedDelimiterTracker TS(*this, tok::l_square); 3078 TS.consumeOpen(); 3079 ExprResult NumElements = 3080 Actions.CorrectDelayedTyposInExpr(ParseExpression()); 3081 if (!NumElements.isUsable()) { 3082 ErrorFound = true; 3083 while (!SkipUntil(tok::r_square, tok::r_paren, 3084 StopAtSemi | StopBeforeMatch)) 3085 ; 3086 } 3087 TS.consumeClose(); 3088 OMPDimensions.push_back(NumElements.get()); 3089 OMPBracketsRanges.push_back(TS.getRange()); 3090 } while (Tok.isNot(tok::r_paren)); 3091 // Match the ')'. 3092 T.consumeClose(); 3093 RParenLoc = T.getCloseLocation(); 3094 Result = Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3095 if (ErrorFound) { 3096 Result = ExprError(); 3097 } else if (!Result.isInvalid()) { 3098 Result = Actions.ActOnOMPArrayShapingExpr( 3099 Result.get(), OpenLoc, RParenLoc, OMPDimensions, OMPBracketsRanges); 3100 } 3101 return Result; 3102 } else { 3103 InMessageExpressionRAIIObject InMessage(*this, false); 3104 3105 Result = ParseExpression(MaybeTypeCast); 3106 if (!getLangOpts().CPlusPlus && MaybeTypeCast && Result.isUsable()) { 3107 // Correct typos in non-C++ code earlier so that implicit-cast-like 3108 // expressions are parsed correctly. 3109 Result = Actions.CorrectDelayedTyposInExpr(Result); 3110 } 3111 3112 if (ExprType >= FoldExpr && isFoldOperator(Tok.getKind()) && 3113 NextToken().is(tok::ellipsis)) { 3114 ExprType = FoldExpr; 3115 return ParseFoldExpression(Result, T); 3116 } 3117 ExprType = SimpleExpr; 3118 3119 // Don't build a paren expression unless we actually match a ')'. 3120 if (!Result.isInvalid() && Tok.is(tok::r_paren)) 3121 Result = 3122 Actions.ActOnParenExpr(OpenLoc, Tok.getLocation(), Result.get()); 3123 } 3124 3125 // Match the ')'. 3126 if (Result.isInvalid()) { 3127 SkipUntil(tok::r_paren, StopAtSemi); 3128 return ExprError(); 3129 } 3130 3131 T.consumeClose(); 3132 RParenLoc = T.getCloseLocation(); 3133 return Result; 3134 } 3135 3136 /// ParseCompoundLiteralExpression - We have parsed the parenthesized type-name 3137 /// and we are at the left brace. 3138 /// 3139 /// \verbatim 3140 /// postfix-expression: [C99 6.5.2] 3141 /// '(' type-name ')' '{' initializer-list '}' 3142 /// '(' type-name ')' '{' initializer-list ',' '}' 3143 /// \endverbatim 3144 ExprResult 3145 Parser::ParseCompoundLiteralExpression(ParsedType Ty, 3146 SourceLocation LParenLoc, 3147 SourceLocation RParenLoc) { 3148 assert(Tok.is(tok::l_brace) && "Not a compound literal!"); 3149 if (!getLangOpts().C99) // Compound literals don't exist in C90. 3150 Diag(LParenLoc, diag::ext_c99_compound_literal); 3151 PreferredType.enterTypeCast(Tok.getLocation(), Ty.get()); 3152 ExprResult Result = ParseInitializer(); 3153 if (!Result.isInvalid() && Ty) 3154 return Actions.ActOnCompoundLiteral(LParenLoc, Ty, RParenLoc, Result.get()); 3155 return Result; 3156 } 3157 3158 /// ParseStringLiteralExpression - This handles the various token types that 3159 /// form string literals, and also handles string concatenation [C99 5.1.1.2, 3160 /// translation phase #6]. 3161 /// 3162 /// \verbatim 3163 /// primary-expression: [C99 6.5.1] 3164 /// string-literal 3165 /// \verbatim 3166 ExprResult Parser::ParseStringLiteralExpression(bool AllowUserDefinedLiteral) { 3167 assert(isTokenStringLiteral() && "Not a string literal!"); 3168 3169 // String concat. Note that keywords like __func__ and __FUNCTION__ are not 3170 // considered to be strings for concatenation purposes. 3171 SmallVector<Token, 4> StringToks; 3172 3173 do { 3174 StringToks.push_back(Tok); 3175 ConsumeStringToken(); 3176 } while (isTokenStringLiteral()); 3177 3178 // Pass the set of string tokens, ready for concatenation, to the actions. 3179 return Actions.ActOnStringLiteral(StringToks, 3180 AllowUserDefinedLiteral ? getCurScope() 3181 : nullptr); 3182 } 3183 3184 /// ParseGenericSelectionExpression - Parse a C11 generic-selection 3185 /// [C11 6.5.1.1]. 3186 /// 3187 /// \verbatim 3188 /// generic-selection: 3189 /// _Generic ( assignment-expression , generic-assoc-list ) 3190 /// generic-assoc-list: 3191 /// generic-association 3192 /// generic-assoc-list , generic-association 3193 /// generic-association: 3194 /// type-name : assignment-expression 3195 /// default : assignment-expression 3196 /// \endverbatim 3197 ExprResult Parser::ParseGenericSelectionExpression() { 3198 assert(Tok.is(tok::kw__Generic) && "_Generic keyword expected"); 3199 if (!getLangOpts().C11) 3200 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3201 3202 SourceLocation KeyLoc = ConsumeToken(); 3203 BalancedDelimiterTracker T(*this, tok::l_paren); 3204 if (T.expectAndConsume()) 3205 return ExprError(); 3206 3207 ExprResult ControllingExpr; 3208 { 3209 // C11 6.5.1.1p3 "The controlling expression of a generic selection is 3210 // not evaluated." 3211 EnterExpressionEvaluationContext Unevaluated( 3212 Actions, Sema::ExpressionEvaluationContext::Unevaluated); 3213 ControllingExpr = 3214 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 3215 if (ControllingExpr.isInvalid()) { 3216 SkipUntil(tok::r_paren, StopAtSemi); 3217 return ExprError(); 3218 } 3219 } 3220 3221 if (ExpectAndConsume(tok::comma)) { 3222 SkipUntil(tok::r_paren, StopAtSemi); 3223 return ExprError(); 3224 } 3225 3226 SourceLocation DefaultLoc; 3227 TypeVector Types; 3228 ExprVector Exprs; 3229 do { 3230 ParsedType Ty; 3231 if (Tok.is(tok::kw_default)) { 3232 // C11 6.5.1.1p2 "A generic selection shall have no more than one default 3233 // generic association." 3234 if (!DefaultLoc.isInvalid()) { 3235 Diag(Tok, diag::err_duplicate_default_assoc); 3236 Diag(DefaultLoc, diag::note_previous_default_assoc); 3237 SkipUntil(tok::r_paren, StopAtSemi); 3238 return ExprError(); 3239 } 3240 DefaultLoc = ConsumeToken(); 3241 Ty = nullptr; 3242 } else { 3243 ColonProtectionRAIIObject X(*this); 3244 TypeResult TR = ParseTypeName(); 3245 if (TR.isInvalid()) { 3246 SkipUntil(tok::r_paren, StopAtSemi); 3247 return ExprError(); 3248 } 3249 Ty = TR.get(); 3250 } 3251 Types.push_back(Ty); 3252 3253 if (ExpectAndConsume(tok::colon)) { 3254 SkipUntil(tok::r_paren, StopAtSemi); 3255 return ExprError(); 3256 } 3257 3258 // FIXME: These expressions should be parsed in a potentially potentially 3259 // evaluated context. 3260 ExprResult ER( 3261 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); 3262 if (ER.isInvalid()) { 3263 SkipUntil(tok::r_paren, StopAtSemi); 3264 return ExprError(); 3265 } 3266 Exprs.push_back(ER.get()); 3267 } while (TryConsumeToken(tok::comma)); 3268 3269 T.consumeClose(); 3270 if (T.getCloseLocation().isInvalid()) 3271 return ExprError(); 3272 3273 return Actions.ActOnGenericSelectionExpr(KeyLoc, DefaultLoc, 3274 T.getCloseLocation(), 3275 ControllingExpr.get(), 3276 Types, Exprs); 3277 } 3278 3279 /// Parse A C++1z fold-expression after the opening paren and optional 3280 /// left-hand-side expression. 3281 /// 3282 /// \verbatim 3283 /// fold-expression: 3284 /// ( cast-expression fold-operator ... ) 3285 /// ( ... fold-operator cast-expression ) 3286 /// ( cast-expression fold-operator ... fold-operator cast-expression ) 3287 ExprResult Parser::ParseFoldExpression(ExprResult LHS, 3288 BalancedDelimiterTracker &T) { 3289 if (LHS.isInvalid()) { 3290 T.skipToEnd(); 3291 return true; 3292 } 3293 3294 tok::TokenKind Kind = tok::unknown; 3295 SourceLocation FirstOpLoc; 3296 if (LHS.isUsable()) { 3297 Kind = Tok.getKind(); 3298 assert(isFoldOperator(Kind) && "missing fold-operator"); 3299 FirstOpLoc = ConsumeToken(); 3300 } 3301 3302 assert(Tok.is(tok::ellipsis) && "not a fold-expression"); 3303 SourceLocation EllipsisLoc = ConsumeToken(); 3304 3305 ExprResult RHS; 3306 if (Tok.isNot(tok::r_paren)) { 3307 if (!isFoldOperator(Tok.getKind())) 3308 return Diag(Tok.getLocation(), diag::err_expected_fold_operator); 3309 3310 if (Kind != tok::unknown && Tok.getKind() != Kind) 3311 Diag(Tok.getLocation(), diag::err_fold_operator_mismatch) 3312 << SourceRange(FirstOpLoc); 3313 Kind = Tok.getKind(); 3314 ConsumeToken(); 3315 3316 RHS = ParseExpression(); 3317 if (RHS.isInvalid()) { 3318 T.skipToEnd(); 3319 return true; 3320 } 3321 } 3322 3323 Diag(EllipsisLoc, getLangOpts().CPlusPlus17 3324 ? diag::warn_cxx14_compat_fold_expression 3325 : diag::ext_fold_expression); 3326 3327 T.consumeClose(); 3328 return Actions.ActOnCXXFoldExpr(getCurScope(), T.getOpenLocation(), LHS.get(), 3329 Kind, EllipsisLoc, RHS.get(), 3330 T.getCloseLocation()); 3331 } 3332 3333 /// ParseExpressionList - Used for C/C++ (argument-)expression-list. 3334 /// 3335 /// \verbatim 3336 /// argument-expression-list: 3337 /// assignment-expression 3338 /// argument-expression-list , assignment-expression 3339 /// 3340 /// [C++] expression-list: 3341 /// [C++] assignment-expression 3342 /// [C++] expression-list , assignment-expression 3343 /// 3344 /// [C++0x] expression-list: 3345 /// [C++0x] initializer-list 3346 /// 3347 /// [C++0x] initializer-list 3348 /// [C++0x] initializer-clause ...[opt] 3349 /// [C++0x] initializer-list , initializer-clause ...[opt] 3350 /// 3351 /// [C++0x] initializer-clause: 3352 /// [C++0x] assignment-expression 3353 /// [C++0x] braced-init-list 3354 /// \endverbatim 3355 bool Parser::ParseExpressionList(SmallVectorImpl<Expr *> &Exprs, 3356 SmallVectorImpl<SourceLocation> &CommaLocs, 3357 llvm::function_ref<void()> ExpressionStarts) { 3358 bool SawError = false; 3359 while (1) { 3360 if (ExpressionStarts) 3361 ExpressionStarts(); 3362 3363 ExprResult Expr; 3364 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 3365 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 3366 Expr = ParseBraceInitializer(); 3367 } else 3368 Expr = ParseAssignmentExpression(); 3369 3370 if (Tok.is(tok::ellipsis)) 3371 Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken()); 3372 else if (Tok.is(tok::code_completion)) { 3373 // There's nothing to suggest in here as we parsed a full expression. 3374 // Instead fail and propogate the error since caller might have something 3375 // the suggest, e.g. signature help in function call. Note that this is 3376 // performed before pushing the \p Expr, so that signature help can report 3377 // current argument correctly. 3378 SawError = true; 3379 cutOffParsing(); 3380 break; 3381 } 3382 if (Expr.isInvalid()) { 3383 SkipUntil(tok::comma, tok::r_paren, StopBeforeMatch); 3384 SawError = true; 3385 } else { 3386 Exprs.push_back(Expr.get()); 3387 } 3388 3389 if (Tok.isNot(tok::comma)) 3390 break; 3391 // Move to the next argument, remember where the comma was. 3392 Token Comma = Tok; 3393 CommaLocs.push_back(ConsumeToken()); 3394 3395 checkPotentialAngleBracketDelimiter(Comma); 3396 } 3397 if (SawError) { 3398 // Ensure typos get diagnosed when errors were encountered while parsing the 3399 // expression list. 3400 for (auto &E : Exprs) { 3401 ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E); 3402 if (Expr.isUsable()) E = Expr.get(); 3403 } 3404 } 3405 return SawError; 3406 } 3407 3408 /// ParseSimpleExpressionList - A simple comma-separated list of expressions, 3409 /// used for misc language extensions. 3410 /// 3411 /// \verbatim 3412 /// simple-expression-list: 3413 /// assignment-expression 3414 /// simple-expression-list , assignment-expression 3415 /// \endverbatim 3416 bool 3417 Parser::ParseSimpleExpressionList(SmallVectorImpl<Expr*> &Exprs, 3418 SmallVectorImpl<SourceLocation> &CommaLocs) { 3419 while (1) { 3420 ExprResult Expr = ParseAssignmentExpression(); 3421 if (Expr.isInvalid()) 3422 return true; 3423 3424 Exprs.push_back(Expr.get()); 3425 3426 if (Tok.isNot(tok::comma)) 3427 return false; 3428 3429 // Move to the next argument, remember where the comma was. 3430 Token Comma = Tok; 3431 CommaLocs.push_back(ConsumeToken()); 3432 3433 checkPotentialAngleBracketDelimiter(Comma); 3434 } 3435 } 3436 3437 /// ParseBlockId - Parse a block-id, which roughly looks like int (int x). 3438 /// 3439 /// \verbatim 3440 /// [clang] block-id: 3441 /// [clang] specifier-qualifier-list block-declarator 3442 /// \endverbatim 3443 void Parser::ParseBlockId(SourceLocation CaretLoc) { 3444 if (Tok.is(tok::code_completion)) { 3445 cutOffParsing(); 3446 Actions.CodeCompleteOrdinaryName(getCurScope(), Sema::PCC_Type); 3447 return; 3448 } 3449 3450 // Parse the specifier-qualifier-list piece. 3451 DeclSpec DS(AttrFactory); 3452 ParseSpecifierQualifierList(DS); 3453 3454 // Parse the block-declarator. 3455 Declarator DeclaratorInfo(DS, DeclaratorContext::BlockLiteral); 3456 DeclaratorInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 3457 ParseDeclarator(DeclaratorInfo); 3458 3459 MaybeParseGNUAttributes(DeclaratorInfo); 3460 3461 // Inform sema that we are starting a block. 3462 Actions.ActOnBlockArguments(CaretLoc, DeclaratorInfo, getCurScope()); 3463 } 3464 3465 /// ParseBlockLiteralExpression - Parse a block literal, which roughly looks 3466 /// like ^(int x){ return x+1; } 3467 /// 3468 /// \verbatim 3469 /// block-literal: 3470 /// [clang] '^' block-args[opt] compound-statement 3471 /// [clang] '^' block-id compound-statement 3472 /// [clang] block-args: 3473 /// [clang] '(' parameter-list ')' 3474 /// \endverbatim 3475 ExprResult Parser::ParseBlockLiteralExpression() { 3476 assert(Tok.is(tok::caret) && "block literal starts with ^"); 3477 SourceLocation CaretLoc = ConsumeToken(); 3478 3479 PrettyStackTraceLoc CrashInfo(PP.getSourceManager(), CaretLoc, 3480 "block literal parsing"); 3481 3482 // Enter a scope to hold everything within the block. This includes the 3483 // argument decls, decls within the compound expression, etc. This also 3484 // allows determining whether a variable reference inside the block is 3485 // within or outside of the block. 3486 ParseScope BlockScope(this, Scope::BlockScope | Scope::FnScope | 3487 Scope::CompoundStmtScope | Scope::DeclScope); 3488 3489 // Inform sema that we are starting a block. 3490 Actions.ActOnBlockStart(CaretLoc, getCurScope()); 3491 3492 // Parse the return type if present. 3493 DeclSpec DS(AttrFactory); 3494 Declarator ParamInfo(DS, DeclaratorContext::BlockLiteral); 3495 ParamInfo.setFunctionDefinitionKind(FunctionDefinitionKind::Definition); 3496 // FIXME: Since the return type isn't actually parsed, it can't be used to 3497 // fill ParamInfo with an initial valid range, so do it manually. 3498 ParamInfo.SetSourceRange(SourceRange(Tok.getLocation(), Tok.getLocation())); 3499 3500 // If this block has arguments, parse them. There is no ambiguity here with 3501 // the expression case, because the expression case requires a parameter list. 3502 if (Tok.is(tok::l_paren)) { 3503 ParseParenDeclarator(ParamInfo); 3504 // Parse the pieces after the identifier as if we had "int(...)". 3505 // SetIdentifier sets the source range end, but in this case we're past 3506 // that location. 3507 SourceLocation Tmp = ParamInfo.getSourceRange().getEnd(); 3508 ParamInfo.SetIdentifier(nullptr, CaretLoc); 3509 ParamInfo.SetRangeEnd(Tmp); 3510 if (ParamInfo.isInvalidType()) { 3511 // If there was an error parsing the arguments, they may have 3512 // tried to use ^(x+y) which requires an argument list. Just 3513 // skip the whole block literal. 3514 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3515 return ExprError(); 3516 } 3517 3518 MaybeParseGNUAttributes(ParamInfo); 3519 3520 // Inform sema that we are starting a block. 3521 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3522 } else if (!Tok.is(tok::l_brace)) { 3523 ParseBlockId(CaretLoc); 3524 } else { 3525 // Otherwise, pretend we saw (void). 3526 SourceLocation NoLoc; 3527 ParamInfo.AddTypeInfo( 3528 DeclaratorChunk::getFunction(/*HasProto=*/true, 3529 /*IsAmbiguous=*/false, 3530 /*RParenLoc=*/NoLoc, 3531 /*ArgInfo=*/nullptr, 3532 /*NumParams=*/0, 3533 /*EllipsisLoc=*/NoLoc, 3534 /*RParenLoc=*/NoLoc, 3535 /*RefQualifierIsLvalueRef=*/true, 3536 /*RefQualifierLoc=*/NoLoc, 3537 /*MutableLoc=*/NoLoc, EST_None, 3538 /*ESpecRange=*/SourceRange(), 3539 /*Exceptions=*/nullptr, 3540 /*ExceptionRanges=*/nullptr, 3541 /*NumExceptions=*/0, 3542 /*NoexceptExpr=*/nullptr, 3543 /*ExceptionSpecTokens=*/nullptr, 3544 /*DeclsInPrototype=*/None, CaretLoc, 3545 CaretLoc, ParamInfo), 3546 CaretLoc); 3547 3548 MaybeParseGNUAttributes(ParamInfo); 3549 3550 // Inform sema that we are starting a block. 3551 Actions.ActOnBlockArguments(CaretLoc, ParamInfo, getCurScope()); 3552 } 3553 3554 3555 ExprResult Result(true); 3556 if (!Tok.is(tok::l_brace)) { 3557 // Saw something like: ^expr 3558 Diag(Tok, diag::err_expected_expression); 3559 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3560 return ExprError(); 3561 } 3562 3563 StmtResult Stmt(ParseCompoundStatementBody()); 3564 BlockScope.Exit(); 3565 if (!Stmt.isInvalid()) 3566 Result = Actions.ActOnBlockStmtExpr(CaretLoc, Stmt.get(), getCurScope()); 3567 else 3568 Actions.ActOnBlockError(CaretLoc, getCurScope()); 3569 return Result; 3570 } 3571 3572 /// ParseObjCBoolLiteral - This handles the objective-c Boolean literals. 3573 /// 3574 /// '__objc_yes' 3575 /// '__objc_no' 3576 ExprResult Parser::ParseObjCBoolLiteral() { 3577 tok::TokenKind Kind = Tok.getKind(); 3578 return Actions.ActOnObjCBoolLiteral(ConsumeToken(), Kind); 3579 } 3580 3581 /// Validate availability spec list, emitting diagnostics if necessary. Returns 3582 /// true if invalid. 3583 static bool CheckAvailabilitySpecList(Parser &P, 3584 ArrayRef<AvailabilitySpec> AvailSpecs) { 3585 llvm::SmallSet<StringRef, 4> Platforms; 3586 bool HasOtherPlatformSpec = false; 3587 bool Valid = true; 3588 for (const auto &Spec : AvailSpecs) { 3589 if (Spec.isOtherPlatformSpec()) { 3590 if (HasOtherPlatformSpec) { 3591 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_star); 3592 Valid = false; 3593 } 3594 3595 HasOtherPlatformSpec = true; 3596 continue; 3597 } 3598 3599 bool Inserted = Platforms.insert(Spec.getPlatform()).second; 3600 if (!Inserted) { 3601 // Rule out multiple version specs referring to the same platform. 3602 // For example, we emit an error for: 3603 // @available(macos 10.10, macos 10.11, *) 3604 StringRef Platform = Spec.getPlatform(); 3605 P.Diag(Spec.getBeginLoc(), diag::err_availability_query_repeated_platform) 3606 << Spec.getEndLoc() << Platform; 3607 Valid = false; 3608 } 3609 } 3610 3611 if (!HasOtherPlatformSpec) { 3612 SourceLocation InsertWildcardLoc = AvailSpecs.back().getEndLoc(); 3613 P.Diag(InsertWildcardLoc, diag::err_availability_query_wildcard_required) 3614 << FixItHint::CreateInsertion(InsertWildcardLoc, ", *"); 3615 return true; 3616 } 3617 3618 return !Valid; 3619 } 3620 3621 /// Parse availability query specification. 3622 /// 3623 /// availability-spec: 3624 /// '*' 3625 /// identifier version-tuple 3626 Optional<AvailabilitySpec> Parser::ParseAvailabilitySpec() { 3627 if (Tok.is(tok::star)) { 3628 return AvailabilitySpec(ConsumeToken()); 3629 } else { 3630 // Parse the platform name. 3631 if (Tok.is(tok::code_completion)) { 3632 cutOffParsing(); 3633 Actions.CodeCompleteAvailabilityPlatformName(); 3634 return None; 3635 } 3636 if (Tok.isNot(tok::identifier)) { 3637 Diag(Tok, diag::err_avail_query_expected_platform_name); 3638 return None; 3639 } 3640 3641 IdentifierLoc *PlatformIdentifier = ParseIdentifierLoc(); 3642 SourceRange VersionRange; 3643 VersionTuple Version = ParseVersionTuple(VersionRange); 3644 3645 if (Version.empty()) 3646 return None; 3647 3648 StringRef GivenPlatform = PlatformIdentifier->Ident->getName(); 3649 StringRef Platform = 3650 AvailabilityAttr::canonicalizePlatformName(GivenPlatform); 3651 3652 if (AvailabilityAttr::getPrettyPlatformName(Platform).empty()) { 3653 Diag(PlatformIdentifier->Loc, 3654 diag::err_avail_query_unrecognized_platform_name) 3655 << GivenPlatform; 3656 return None; 3657 } 3658 3659 return AvailabilitySpec(Version, Platform, PlatformIdentifier->Loc, 3660 VersionRange.getEnd()); 3661 } 3662 } 3663 3664 ExprResult Parser::ParseAvailabilityCheckExpr(SourceLocation BeginLoc) { 3665 assert(Tok.is(tok::kw___builtin_available) || 3666 Tok.isObjCAtKeyword(tok::objc_available)); 3667 3668 // Eat the available or __builtin_available. 3669 ConsumeToken(); 3670 3671 BalancedDelimiterTracker Parens(*this, tok::l_paren); 3672 if (Parens.expectAndConsume()) 3673 return ExprError(); 3674 3675 SmallVector<AvailabilitySpec, 4> AvailSpecs; 3676 bool HasError = false; 3677 while (true) { 3678 Optional<AvailabilitySpec> Spec = ParseAvailabilitySpec(); 3679 if (!Spec) 3680 HasError = true; 3681 else 3682 AvailSpecs.push_back(*Spec); 3683 3684 if (!TryConsumeToken(tok::comma)) 3685 break; 3686 } 3687 3688 if (HasError) { 3689 SkipUntil(tok::r_paren, StopAtSemi); 3690 return ExprError(); 3691 } 3692 3693 CheckAvailabilitySpecList(*this, AvailSpecs); 3694 3695 if (Parens.consumeClose()) 3696 return ExprError(); 3697 3698 return Actions.ActOnObjCAvailabilityCheckExpr(AvailSpecs, BeginLoc, 3699 Parens.getCloseLocation()); 3700 } 3701