1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Declaration portions of the Parser interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Parse/Parser.h" 14 #include "clang/Parse/RAIIObjectsForParser.h" 15 #include "clang/AST/ASTContext.h" 16 #include "clang/AST/DeclTemplate.h" 17 #include "clang/AST/PrettyDeclStackTrace.h" 18 #include "clang/Basic/AddressSpaces.h" 19 #include "clang/Basic/Attributes.h" 20 #include "clang/Basic/CharInfo.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "clang/Parse/ParseDiagnostic.h" 23 #include "clang/Sema/Lookup.h" 24 #include "clang/Sema/ParsedTemplate.h" 25 #include "clang/Sema/Scope.h" 26 #include "llvm/ADT/Optional.h" 27 #include "llvm/ADT/SmallSet.h" 28 #include "llvm/ADT/SmallString.h" 29 #include "llvm/ADT/StringSwitch.h" 30 31 using namespace clang; 32 33 //===----------------------------------------------------------------------===// 34 // C99 6.7: Declarations. 35 //===----------------------------------------------------------------------===// 36 37 /// ParseTypeName 38 /// type-name: [C99 6.7.6] 39 /// specifier-qualifier-list abstract-declarator[opt] 40 /// 41 /// Called type-id in C++. 42 TypeResult Parser::ParseTypeName(SourceRange *Range, 43 DeclaratorContext Context, 44 AccessSpecifier AS, 45 Decl **OwnedType, 46 ParsedAttributes *Attrs) { 47 DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context); 48 if (DSC == DeclSpecContext::DSC_normal) 49 DSC = DeclSpecContext::DSC_type_specifier; 50 51 // Parse the common declaration-specifiers piece. 52 DeclSpec DS(AttrFactory); 53 if (Attrs) 54 DS.addAttributes(*Attrs); 55 ParseSpecifierQualifierList(DS, AS, DSC); 56 if (OwnedType) 57 *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr; 58 59 // Parse the abstract-declarator, if present. 60 Declarator DeclaratorInfo(DS, Context); 61 ParseDeclarator(DeclaratorInfo); 62 if (Range) 63 *Range = DeclaratorInfo.getSourceRange(); 64 65 if (DeclaratorInfo.isInvalidType()) 66 return true; 67 68 return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo); 69 } 70 71 /// Normalizes an attribute name by dropping prefixed and suffixed __. 72 static StringRef normalizeAttrName(StringRef Name) { 73 if (Name.size() >= 4 && Name.startswith("__") && Name.endswith("__")) 74 return Name.drop_front(2).drop_back(2); 75 return Name; 76 } 77 78 /// isAttributeLateParsed - Return true if the attribute has arguments that 79 /// require late parsing. 80 static bool isAttributeLateParsed(const IdentifierInfo &II) { 81 #define CLANG_ATTR_LATE_PARSED_LIST 82 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 83 #include "clang/Parse/AttrParserStringSwitches.inc" 84 .Default(false); 85 #undef CLANG_ATTR_LATE_PARSED_LIST 86 } 87 88 /// Check if the a start and end source location expand to the same macro. 89 static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc, 90 SourceLocation EndLoc) { 91 if (!StartLoc.isMacroID() || !EndLoc.isMacroID()) 92 return false; 93 94 SourceManager &SM = PP.getSourceManager(); 95 if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc)) 96 return false; 97 98 bool AttrStartIsInMacro = 99 Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts()); 100 bool AttrEndIsInMacro = 101 Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts()); 102 return AttrStartIsInMacro && AttrEndIsInMacro; 103 } 104 105 /// ParseGNUAttributes - Parse a non-empty attributes list. 106 /// 107 /// [GNU] attributes: 108 /// attribute 109 /// attributes attribute 110 /// 111 /// [GNU] attribute: 112 /// '__attribute__' '(' '(' attribute-list ')' ')' 113 /// 114 /// [GNU] attribute-list: 115 /// attrib 116 /// attribute_list ',' attrib 117 /// 118 /// [GNU] attrib: 119 /// empty 120 /// attrib-name 121 /// attrib-name '(' identifier ')' 122 /// attrib-name '(' identifier ',' nonempty-expr-list ')' 123 /// attrib-name '(' argument-expression-list [C99 6.5.2] ')' 124 /// 125 /// [GNU] attrib-name: 126 /// identifier 127 /// typespec 128 /// typequal 129 /// storageclass 130 /// 131 /// Whether an attribute takes an 'identifier' is determined by the 132 /// attrib-name. GCC's behavior here is not worth imitating: 133 /// 134 /// * In C mode, if the attribute argument list starts with an identifier 135 /// followed by a ',' or an ')', and the identifier doesn't resolve to 136 /// a type, it is parsed as an identifier. If the attribute actually 137 /// wanted an expression, it's out of luck (but it turns out that no 138 /// attributes work that way, because C constant expressions are very 139 /// limited). 140 /// * In C++ mode, if the attribute argument list starts with an identifier, 141 /// and the attribute *wants* an identifier, it is parsed as an identifier. 142 /// At block scope, any additional tokens between the identifier and the 143 /// ',' or ')' are ignored, otherwise they produce a parse error. 144 /// 145 /// We follow the C++ model, but don't allow junk after the identifier. 146 void Parser::ParseGNUAttributes(ParsedAttributes &attrs, 147 SourceLocation *endLoc, 148 LateParsedAttrList *LateAttrs, 149 Declarator *D) { 150 assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!"); 151 152 while (Tok.is(tok::kw___attribute)) { 153 SourceLocation AttrTokLoc = ConsumeToken(); 154 unsigned OldNumAttrs = attrs.size(); 155 unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0; 156 157 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, 158 "attribute")) { 159 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ; 160 return; 161 } 162 if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) { 163 SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ; 164 return; 165 } 166 // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") )) 167 do { 168 // Eat preceeding commas to allow __attribute__((,,,foo)) 169 while (TryConsumeToken(tok::comma)) 170 ; 171 172 // Expect an identifier or declaration specifier (const, int, etc.) 173 if (Tok.isAnnotation()) 174 break; 175 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 176 if (!AttrName) 177 break; 178 179 SourceLocation AttrNameLoc = ConsumeToken(); 180 181 if (Tok.isNot(tok::l_paren)) { 182 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 183 ParsedAttr::AS_GNU); 184 continue; 185 } 186 187 // Handle "parameterized" attributes 188 if (!LateAttrs || !isAttributeLateParsed(*AttrName)) { 189 ParseGNUAttributeArgs(AttrName, AttrNameLoc, attrs, endLoc, nullptr, 190 SourceLocation(), ParsedAttr::AS_GNU, D); 191 continue; 192 } 193 194 // Handle attributes with arguments that require late parsing. 195 LateParsedAttribute *LA = 196 new LateParsedAttribute(this, *AttrName, AttrNameLoc); 197 LateAttrs->push_back(LA); 198 199 // Attributes in a class are parsed at the end of the class, along 200 // with other late-parsed declarations. 201 if (!ClassStack.empty() && !LateAttrs->parseSoon()) 202 getCurrentClass().LateParsedDeclarations.push_back(LA); 203 204 // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it 205 // recursively consumes balanced parens. 206 LA->Toks.push_back(Tok); 207 ConsumeParen(); 208 // Consume everything up to and including the matching right parens. 209 ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true); 210 211 Token Eof; 212 Eof.startToken(); 213 Eof.setLocation(Tok.getLocation()); 214 LA->Toks.push_back(Eof); 215 } while (Tok.is(tok::comma)); 216 217 if (ExpectAndConsume(tok::r_paren)) 218 SkipUntil(tok::r_paren, StopAtSemi); 219 SourceLocation Loc = Tok.getLocation(); 220 if (ExpectAndConsume(tok::r_paren)) 221 SkipUntil(tok::r_paren, StopAtSemi); 222 if (endLoc) 223 *endLoc = Loc; 224 225 // If this was declared in a macro, attach the macro IdentifierInfo to the 226 // parsed attribute. 227 auto &SM = PP.getSourceManager(); 228 if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) && 229 FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) { 230 CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc); 231 StringRef FoundName = 232 Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts()); 233 IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName); 234 235 for (unsigned i = OldNumAttrs; i < attrs.size(); ++i) 236 attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin()); 237 238 if (LateAttrs) { 239 for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i) 240 (*LateAttrs)[i]->MacroII = MacroII; 241 } 242 } 243 } 244 } 245 246 /// Determine whether the given attribute has an identifier argument. 247 static bool attributeHasIdentifierArg(const IdentifierInfo &II) { 248 #define CLANG_ATTR_IDENTIFIER_ARG_LIST 249 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 250 #include "clang/Parse/AttrParserStringSwitches.inc" 251 .Default(false); 252 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST 253 } 254 255 /// Determine whether the given attribute has a variadic identifier argument. 256 static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) { 257 #define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST 258 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 259 #include "clang/Parse/AttrParserStringSwitches.inc" 260 .Default(false); 261 #undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST 262 } 263 264 /// Determine whether the given attribute treats kw_this as an identifier. 265 static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) { 266 #define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST 267 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 268 #include "clang/Parse/AttrParserStringSwitches.inc" 269 .Default(false); 270 #undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST 271 } 272 273 /// Determine whether the given attribute parses a type argument. 274 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) { 275 #define CLANG_ATTR_TYPE_ARG_LIST 276 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 277 #include "clang/Parse/AttrParserStringSwitches.inc" 278 .Default(false); 279 #undef CLANG_ATTR_TYPE_ARG_LIST 280 } 281 282 /// Determine whether the given attribute requires parsing its arguments 283 /// in an unevaluated context or not. 284 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) { 285 #define CLANG_ATTR_ARG_CONTEXT_LIST 286 return llvm::StringSwitch<bool>(normalizeAttrName(II.getName())) 287 #include "clang/Parse/AttrParserStringSwitches.inc" 288 .Default(false); 289 #undef CLANG_ATTR_ARG_CONTEXT_LIST 290 } 291 292 IdentifierLoc *Parser::ParseIdentifierLoc() { 293 assert(Tok.is(tok::identifier) && "expected an identifier"); 294 IdentifierLoc *IL = IdentifierLoc::create(Actions.Context, 295 Tok.getLocation(), 296 Tok.getIdentifierInfo()); 297 ConsumeToken(); 298 return IL; 299 } 300 301 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName, 302 SourceLocation AttrNameLoc, 303 ParsedAttributes &Attrs, 304 SourceLocation *EndLoc, 305 IdentifierInfo *ScopeName, 306 SourceLocation ScopeLoc, 307 ParsedAttr::Syntax Syntax) { 308 BalancedDelimiterTracker Parens(*this, tok::l_paren); 309 Parens.consumeOpen(); 310 311 TypeResult T; 312 if (Tok.isNot(tok::r_paren)) 313 T = ParseTypeName(); 314 315 if (Parens.consumeClose()) 316 return; 317 318 if (T.isInvalid()) 319 return; 320 321 if (T.isUsable()) 322 Attrs.addNewTypeAttr(&AttrName, 323 SourceRange(AttrNameLoc, Parens.getCloseLocation()), 324 ScopeName, ScopeLoc, T.get(), Syntax); 325 else 326 Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()), 327 ScopeName, ScopeLoc, nullptr, 0, Syntax); 328 } 329 330 unsigned Parser::ParseAttributeArgsCommon( 331 IdentifierInfo *AttrName, SourceLocation AttrNameLoc, 332 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, 333 SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { 334 // Ignore the left paren location for now. 335 ConsumeParen(); 336 337 bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName); 338 bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName); 339 340 // Interpret "kw_this" as an identifier if the attributed requests it. 341 if (ChangeKWThisToIdent && Tok.is(tok::kw_this)) 342 Tok.setKind(tok::identifier); 343 344 ArgsVector ArgExprs; 345 if (Tok.is(tok::identifier)) { 346 // If this attribute wants an 'identifier' argument, make it so. 347 bool IsIdentifierArg = attributeHasIdentifierArg(*AttrName) || 348 attributeHasVariadicIdentifierArg(*AttrName); 349 ParsedAttr::Kind AttrKind = 350 ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax); 351 352 // If we don't know how to parse this attribute, but this is the only 353 // token in this argument, assume it's meant to be an identifier. 354 if (AttrKind == ParsedAttr::UnknownAttribute || 355 AttrKind == ParsedAttr::IgnoredAttribute) { 356 const Token &Next = NextToken(); 357 IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma); 358 } 359 360 if (IsIdentifierArg) 361 ArgExprs.push_back(ParseIdentifierLoc()); 362 } 363 364 ParsedType TheParsedType; 365 if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) { 366 // Eat the comma. 367 if (!ArgExprs.empty()) 368 ConsumeToken(); 369 370 // Parse the non-empty comma-separated list of expressions. 371 do { 372 // Interpret "kw_this" as an identifier if the attributed requests it. 373 if (ChangeKWThisToIdent && Tok.is(tok::kw_this)) 374 Tok.setKind(tok::identifier); 375 376 ExprResult ArgExpr; 377 if (AttributeIsTypeArgAttr) { 378 TypeResult T = ParseTypeName(); 379 if (T.isInvalid()) { 380 SkipUntil(tok::r_paren, StopAtSemi); 381 return 0; 382 } 383 if (T.isUsable()) 384 TheParsedType = T.get(); 385 break; // FIXME: Multiple type arguments are not implemented. 386 } else if (Tok.is(tok::identifier) && 387 attributeHasVariadicIdentifierArg(*AttrName)) { 388 ArgExprs.push_back(ParseIdentifierLoc()); 389 } else { 390 bool Uneval = attributeParsedArgsUnevaluated(*AttrName); 391 EnterExpressionEvaluationContext Unevaluated( 392 Actions, 393 Uneval ? Sema::ExpressionEvaluationContext::Unevaluated 394 : Sema::ExpressionEvaluationContext::ConstantEvaluated); 395 396 ExprResult ArgExpr( 397 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression())); 398 if (ArgExpr.isInvalid()) { 399 SkipUntil(tok::r_paren, StopAtSemi); 400 return 0; 401 } 402 ArgExprs.push_back(ArgExpr.get()); 403 } 404 // Eat the comma, move to the next argument 405 } while (TryConsumeToken(tok::comma)); 406 } 407 408 SourceLocation RParen = Tok.getLocation(); 409 if (!ExpectAndConsume(tok::r_paren)) { 410 SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc; 411 412 if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) { 413 Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen), 414 ScopeName, ScopeLoc, TheParsedType, Syntax); 415 } else { 416 Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc, 417 ArgExprs.data(), ArgExprs.size(), Syntax); 418 } 419 } 420 421 if (EndLoc) 422 *EndLoc = RParen; 423 424 return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull()); 425 } 426 427 /// Parse the arguments to a parameterized GNU attribute or 428 /// a C++11 attribute in "gnu" namespace. 429 void Parser::ParseGNUAttributeArgs(IdentifierInfo *AttrName, 430 SourceLocation AttrNameLoc, 431 ParsedAttributes &Attrs, 432 SourceLocation *EndLoc, 433 IdentifierInfo *ScopeName, 434 SourceLocation ScopeLoc, 435 ParsedAttr::Syntax Syntax, 436 Declarator *D) { 437 438 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); 439 440 ParsedAttr::Kind AttrKind = 441 ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax); 442 443 if (AttrKind == ParsedAttr::AT_Availability) { 444 ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, 445 ScopeLoc, Syntax); 446 return; 447 } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) { 448 ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 449 ScopeName, ScopeLoc, Syntax); 450 return; 451 } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) { 452 ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 453 ScopeName, ScopeLoc, Syntax); 454 return; 455 } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) { 456 ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 457 ScopeName, ScopeLoc, Syntax); 458 return; 459 } else if (attributeIsTypeArgAttr(*AttrName)) { 460 ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, 461 ScopeLoc, Syntax); 462 return; 463 } 464 465 // These may refer to the function arguments, but need to be parsed early to 466 // participate in determining whether it's a redeclaration. 467 llvm::Optional<ParseScope> PrototypeScope; 468 if (normalizeAttrName(AttrName->getName()) == "enable_if" && 469 D && D->isFunctionDeclarator()) { 470 DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo(); 471 PrototypeScope.emplace(this, Scope::FunctionPrototypeScope | 472 Scope::FunctionDeclarationScope | 473 Scope::DeclScope); 474 for (unsigned i = 0; i != FTI.NumParams; ++i) { 475 ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param); 476 Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param); 477 } 478 } 479 480 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, 481 ScopeLoc, Syntax); 482 } 483 484 unsigned Parser::ParseClangAttributeArgs( 485 IdentifierInfo *AttrName, SourceLocation AttrNameLoc, 486 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, 487 SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { 488 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); 489 490 ParsedAttr::Kind AttrKind = 491 ParsedAttr::getParsedKind(AttrName, ScopeName, Syntax); 492 493 switch (AttrKind) { 494 default: 495 return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, 496 ScopeName, ScopeLoc, Syntax); 497 case ParsedAttr::AT_ExternalSourceSymbol: 498 ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 499 ScopeName, ScopeLoc, Syntax); 500 break; 501 case ParsedAttr::AT_Availability: 502 ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName, 503 ScopeLoc, Syntax); 504 break; 505 case ParsedAttr::AT_ObjCBridgeRelated: 506 ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 507 ScopeName, ScopeLoc, Syntax); 508 break; 509 case ParsedAttr::AT_TypeTagForDatatype: 510 ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, 511 ScopeName, ScopeLoc, Syntax); 512 break; 513 } 514 return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0; 515 } 516 517 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName, 518 SourceLocation AttrNameLoc, 519 ParsedAttributes &Attrs) { 520 // If the attribute isn't known, we will not attempt to parse any 521 // arguments. 522 if (!hasAttribute(AttrSyntax::Declspec, nullptr, AttrName, 523 getTargetInfo(), getLangOpts())) { 524 // Eat the left paren, then skip to the ending right paren. 525 ConsumeParen(); 526 SkipUntil(tok::r_paren); 527 return false; 528 } 529 530 SourceLocation OpenParenLoc = Tok.getLocation(); 531 532 if (AttrName->getName() == "property") { 533 // The property declspec is more complex in that it can take one or two 534 // assignment expressions as a parameter, but the lhs of the assignment 535 // must be named get or put. 536 537 BalancedDelimiterTracker T(*this, tok::l_paren); 538 T.expectAndConsume(diag::err_expected_lparen_after, 539 AttrName->getNameStart(), tok::r_paren); 540 541 enum AccessorKind { 542 AK_Invalid = -1, 543 AK_Put = 0, 544 AK_Get = 1 // indices into AccessorNames 545 }; 546 IdentifierInfo *AccessorNames[] = {nullptr, nullptr}; 547 bool HasInvalidAccessor = false; 548 549 // Parse the accessor specifications. 550 while (true) { 551 // Stop if this doesn't look like an accessor spec. 552 if (!Tok.is(tok::identifier)) { 553 // If the user wrote a completely empty list, use a special diagnostic. 554 if (Tok.is(tok::r_paren) && !HasInvalidAccessor && 555 AccessorNames[AK_Put] == nullptr && 556 AccessorNames[AK_Get] == nullptr) { 557 Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter); 558 break; 559 } 560 561 Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor); 562 break; 563 } 564 565 AccessorKind Kind; 566 SourceLocation KindLoc = Tok.getLocation(); 567 StringRef KindStr = Tok.getIdentifierInfo()->getName(); 568 if (KindStr == "get") { 569 Kind = AK_Get; 570 } else if (KindStr == "put") { 571 Kind = AK_Put; 572 573 // Recover from the common mistake of using 'set' instead of 'put'. 574 } else if (KindStr == "set") { 575 Diag(KindLoc, diag::err_ms_property_has_set_accessor) 576 << FixItHint::CreateReplacement(KindLoc, "put"); 577 Kind = AK_Put; 578 579 // Handle the mistake of forgetting the accessor kind by skipping 580 // this accessor. 581 } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) { 582 Diag(KindLoc, diag::err_ms_property_missing_accessor_kind); 583 ConsumeToken(); 584 HasInvalidAccessor = true; 585 goto next_property_accessor; 586 587 // Otherwise, complain about the unknown accessor kind. 588 } else { 589 Diag(KindLoc, diag::err_ms_property_unknown_accessor); 590 HasInvalidAccessor = true; 591 Kind = AK_Invalid; 592 593 // Try to keep parsing unless it doesn't look like an accessor spec. 594 if (!NextToken().is(tok::equal)) 595 break; 596 } 597 598 // Consume the identifier. 599 ConsumeToken(); 600 601 // Consume the '='. 602 if (!TryConsumeToken(tok::equal)) { 603 Diag(Tok.getLocation(), diag::err_ms_property_expected_equal) 604 << KindStr; 605 break; 606 } 607 608 // Expect the method name. 609 if (!Tok.is(tok::identifier)) { 610 Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name); 611 break; 612 } 613 614 if (Kind == AK_Invalid) { 615 // Just drop invalid accessors. 616 } else if (AccessorNames[Kind] != nullptr) { 617 // Complain about the repeated accessor, ignore it, and keep parsing. 618 Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr; 619 } else { 620 AccessorNames[Kind] = Tok.getIdentifierInfo(); 621 } 622 ConsumeToken(); 623 624 next_property_accessor: 625 // Keep processing accessors until we run out. 626 if (TryConsumeToken(tok::comma)) 627 continue; 628 629 // If we run into the ')', stop without consuming it. 630 if (Tok.is(tok::r_paren)) 631 break; 632 633 Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen); 634 break; 635 } 636 637 // Only add the property attribute if it was well-formed. 638 if (!HasInvalidAccessor) 639 Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(), 640 AccessorNames[AK_Get], AccessorNames[AK_Put], 641 ParsedAttr::AS_Declspec); 642 T.skipToEnd(); 643 return !HasInvalidAccessor; 644 } 645 646 unsigned NumArgs = 647 ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr, 648 SourceLocation(), ParsedAttr::AS_Declspec); 649 650 // If this attribute's args were parsed, and it was expected to have 651 // arguments but none were provided, emit a diagnostic. 652 if (!Attrs.empty() && Attrs.begin()->getMaxArgs() && !NumArgs) { 653 Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName; 654 return false; 655 } 656 return true; 657 } 658 659 /// [MS] decl-specifier: 660 /// __declspec ( extended-decl-modifier-seq ) 661 /// 662 /// [MS] extended-decl-modifier-seq: 663 /// extended-decl-modifier[opt] 664 /// extended-decl-modifier extended-decl-modifier-seq 665 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs, 666 SourceLocation *End) { 667 assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled"); 668 assert(Tok.is(tok::kw___declspec) && "Not a declspec!"); 669 670 while (Tok.is(tok::kw___declspec)) { 671 ConsumeToken(); 672 BalancedDelimiterTracker T(*this, tok::l_paren); 673 if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec", 674 tok::r_paren)) 675 return; 676 677 // An empty declspec is perfectly legal and should not warn. Additionally, 678 // you can specify multiple attributes per declspec. 679 while (Tok.isNot(tok::r_paren)) { 680 // Attribute not present. 681 if (TryConsumeToken(tok::comma)) 682 continue; 683 684 // We expect either a well-known identifier or a generic string. Anything 685 // else is a malformed declspec. 686 bool IsString = Tok.getKind() == tok::string_literal; 687 if (!IsString && Tok.getKind() != tok::identifier && 688 Tok.getKind() != tok::kw_restrict) { 689 Diag(Tok, diag::err_ms_declspec_type); 690 T.skipToEnd(); 691 return; 692 } 693 694 IdentifierInfo *AttrName; 695 SourceLocation AttrNameLoc; 696 if (IsString) { 697 SmallString<8> StrBuffer; 698 bool Invalid = false; 699 StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid); 700 if (Invalid) { 701 T.skipToEnd(); 702 return; 703 } 704 AttrName = PP.getIdentifierInfo(Str); 705 AttrNameLoc = ConsumeStringToken(); 706 } else { 707 AttrName = Tok.getIdentifierInfo(); 708 AttrNameLoc = ConsumeToken(); 709 } 710 711 bool AttrHandled = false; 712 713 // Parse attribute arguments. 714 if (Tok.is(tok::l_paren)) 715 AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs); 716 else if (AttrName->getName() == "property") 717 // The property attribute must have an argument list. 718 Diag(Tok.getLocation(), diag::err_expected_lparen_after) 719 << AttrName->getName(); 720 721 if (!AttrHandled) 722 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 723 ParsedAttr::AS_Declspec); 724 } 725 T.consumeClose(); 726 if (End) 727 *End = T.getCloseLocation(); 728 } 729 } 730 731 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) { 732 // Treat these like attributes 733 while (true) { 734 switch (Tok.getKind()) { 735 case tok::kw___fastcall: 736 case tok::kw___stdcall: 737 case tok::kw___thiscall: 738 case tok::kw___regcall: 739 case tok::kw___cdecl: 740 case tok::kw___vectorcall: 741 case tok::kw___ptr64: 742 case tok::kw___w64: 743 case tok::kw___ptr32: 744 case tok::kw___sptr: 745 case tok::kw___uptr: { 746 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 747 SourceLocation AttrNameLoc = ConsumeToken(); 748 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 749 ParsedAttr::AS_Keyword); 750 break; 751 } 752 default: 753 return; 754 } 755 } 756 } 757 758 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() { 759 SourceLocation StartLoc = Tok.getLocation(); 760 SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes(); 761 762 if (EndLoc.isValid()) { 763 SourceRange Range(StartLoc, EndLoc); 764 Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range; 765 } 766 } 767 768 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() { 769 SourceLocation EndLoc; 770 771 while (true) { 772 switch (Tok.getKind()) { 773 case tok::kw_const: 774 case tok::kw_volatile: 775 case tok::kw___fastcall: 776 case tok::kw___stdcall: 777 case tok::kw___thiscall: 778 case tok::kw___cdecl: 779 case tok::kw___vectorcall: 780 case tok::kw___ptr32: 781 case tok::kw___ptr64: 782 case tok::kw___w64: 783 case tok::kw___unaligned: 784 case tok::kw___sptr: 785 case tok::kw___uptr: 786 EndLoc = ConsumeToken(); 787 break; 788 default: 789 return EndLoc; 790 } 791 } 792 } 793 794 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) { 795 // Treat these like attributes 796 while (Tok.is(tok::kw___pascal)) { 797 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 798 SourceLocation AttrNameLoc = ConsumeToken(); 799 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 800 ParsedAttr::AS_Keyword); 801 } 802 } 803 804 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) { 805 // Treat these like attributes 806 while (Tok.is(tok::kw___kernel)) { 807 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 808 SourceLocation AttrNameLoc = ConsumeToken(); 809 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 810 ParsedAttr::AS_Keyword); 811 } 812 } 813 814 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) { 815 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 816 SourceLocation AttrNameLoc = Tok.getLocation(); 817 Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 818 ParsedAttr::AS_Keyword); 819 } 820 821 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) { 822 // Treat these like attributes, even though they're type specifiers. 823 while (true) { 824 switch (Tok.getKind()) { 825 case tok::kw__Nonnull: 826 case tok::kw__Nullable: 827 case tok::kw__Null_unspecified: { 828 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 829 SourceLocation AttrNameLoc = ConsumeToken(); 830 if (!getLangOpts().ObjC) 831 Diag(AttrNameLoc, diag::ext_nullability) 832 << AttrName; 833 attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, 834 ParsedAttr::AS_Keyword); 835 break; 836 } 837 default: 838 return; 839 } 840 } 841 } 842 843 static bool VersionNumberSeparator(const char Separator) { 844 return (Separator == '.' || Separator == '_'); 845 } 846 847 /// Parse a version number. 848 /// 849 /// version: 850 /// simple-integer 851 /// simple-integer '.' simple-integer 852 /// simple-integer '_' simple-integer 853 /// simple-integer '.' simple-integer '.' simple-integer 854 /// simple-integer '_' simple-integer '_' simple-integer 855 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) { 856 Range = SourceRange(Tok.getLocation(), Tok.getEndLoc()); 857 858 if (!Tok.is(tok::numeric_constant)) { 859 Diag(Tok, diag::err_expected_version); 860 SkipUntil(tok::comma, tok::r_paren, 861 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); 862 return VersionTuple(); 863 } 864 865 // Parse the major (and possibly minor and subminor) versions, which 866 // are stored in the numeric constant. We utilize a quirk of the 867 // lexer, which is that it handles something like 1.2.3 as a single 868 // numeric constant, rather than two separate tokens. 869 SmallString<512> Buffer; 870 Buffer.resize(Tok.getLength()+1); 871 const char *ThisTokBegin = &Buffer[0]; 872 873 // Get the spelling of the token, which eliminates trigraphs, etc. 874 bool Invalid = false; 875 unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid); 876 if (Invalid) 877 return VersionTuple(); 878 879 // Parse the major version. 880 unsigned AfterMajor = 0; 881 unsigned Major = 0; 882 while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) { 883 Major = Major * 10 + ThisTokBegin[AfterMajor] - '0'; 884 ++AfterMajor; 885 } 886 887 if (AfterMajor == 0) { 888 Diag(Tok, diag::err_expected_version); 889 SkipUntil(tok::comma, tok::r_paren, 890 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); 891 return VersionTuple(); 892 } 893 894 if (AfterMajor == ActualLength) { 895 ConsumeToken(); 896 897 // We only had a single version component. 898 if (Major == 0) { 899 Diag(Tok, diag::err_zero_version); 900 return VersionTuple(); 901 } 902 903 return VersionTuple(Major); 904 } 905 906 const char AfterMajorSeparator = ThisTokBegin[AfterMajor]; 907 if (!VersionNumberSeparator(AfterMajorSeparator) 908 || (AfterMajor + 1 == ActualLength)) { 909 Diag(Tok, diag::err_expected_version); 910 SkipUntil(tok::comma, tok::r_paren, 911 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); 912 return VersionTuple(); 913 } 914 915 // Parse the minor version. 916 unsigned AfterMinor = AfterMajor + 1; 917 unsigned Minor = 0; 918 while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) { 919 Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0'; 920 ++AfterMinor; 921 } 922 923 if (AfterMinor == ActualLength) { 924 ConsumeToken(); 925 926 // We had major.minor. 927 if (Major == 0 && Minor == 0) { 928 Diag(Tok, diag::err_zero_version); 929 return VersionTuple(); 930 } 931 932 return VersionTuple(Major, Minor); 933 } 934 935 const char AfterMinorSeparator = ThisTokBegin[AfterMinor]; 936 // If what follows is not a '.' or '_', we have a problem. 937 if (!VersionNumberSeparator(AfterMinorSeparator)) { 938 Diag(Tok, diag::err_expected_version); 939 SkipUntil(tok::comma, tok::r_paren, 940 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); 941 return VersionTuple(); 942 } 943 944 // Warn if separators, be it '.' or '_', do not match. 945 if (AfterMajorSeparator != AfterMinorSeparator) 946 Diag(Tok, diag::warn_expected_consistent_version_separator); 947 948 // Parse the subminor version. 949 unsigned AfterSubminor = AfterMinor + 1; 950 unsigned Subminor = 0; 951 while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) { 952 Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0'; 953 ++AfterSubminor; 954 } 955 956 if (AfterSubminor != ActualLength) { 957 Diag(Tok, diag::err_expected_version); 958 SkipUntil(tok::comma, tok::r_paren, 959 StopAtSemi | StopBeforeMatch | StopAtCodeCompletion); 960 return VersionTuple(); 961 } 962 ConsumeToken(); 963 return VersionTuple(Major, Minor, Subminor); 964 } 965 966 /// Parse the contents of the "availability" attribute. 967 /// 968 /// availability-attribute: 969 /// 'availability' '(' platform ',' opt-strict version-arg-list, 970 /// opt-replacement, opt-message')' 971 /// 972 /// platform: 973 /// identifier 974 /// 975 /// opt-strict: 976 /// 'strict' ',' 977 /// 978 /// version-arg-list: 979 /// version-arg 980 /// version-arg ',' version-arg-list 981 /// 982 /// version-arg: 983 /// 'introduced' '=' version 984 /// 'deprecated' '=' version 985 /// 'obsoleted' = version 986 /// 'unavailable' 987 /// opt-replacement: 988 /// 'replacement' '=' <string> 989 /// opt-message: 990 /// 'message' '=' <string> 991 void Parser::ParseAvailabilityAttribute(IdentifierInfo &Availability, 992 SourceLocation AvailabilityLoc, 993 ParsedAttributes &attrs, 994 SourceLocation *endLoc, 995 IdentifierInfo *ScopeName, 996 SourceLocation ScopeLoc, 997 ParsedAttr::Syntax Syntax) { 998 enum { Introduced, Deprecated, Obsoleted, Unknown }; 999 AvailabilityChange Changes[Unknown]; 1000 ExprResult MessageExpr, ReplacementExpr; 1001 1002 // Opening '('. 1003 BalancedDelimiterTracker T(*this, tok::l_paren); 1004 if (T.consumeOpen()) { 1005 Diag(Tok, diag::err_expected) << tok::l_paren; 1006 return; 1007 } 1008 1009 // Parse the platform name. 1010 if (Tok.isNot(tok::identifier)) { 1011 Diag(Tok, diag::err_availability_expected_platform); 1012 SkipUntil(tok::r_paren, StopAtSemi); 1013 return; 1014 } 1015 IdentifierLoc *Platform = ParseIdentifierLoc(); 1016 if (const IdentifierInfo *const Ident = Platform->Ident) { 1017 // Canonicalize platform name from "macosx" to "macos". 1018 if (Ident->getName() == "macosx") 1019 Platform->Ident = PP.getIdentifierInfo("macos"); 1020 // Canonicalize platform name from "macosx_app_extension" to 1021 // "macos_app_extension". 1022 else if (Ident->getName() == "macosx_app_extension") 1023 Platform->Ident = PP.getIdentifierInfo("macos_app_extension"); 1024 else 1025 Platform->Ident = PP.getIdentifierInfo( 1026 AvailabilityAttr::canonicalizePlatformName(Ident->getName())); 1027 } 1028 1029 // Parse the ',' following the platform name. 1030 if (ExpectAndConsume(tok::comma)) { 1031 SkipUntil(tok::r_paren, StopAtSemi); 1032 return; 1033 } 1034 1035 // If we haven't grabbed the pointers for the identifiers 1036 // "introduced", "deprecated", and "obsoleted", do so now. 1037 if (!Ident_introduced) { 1038 Ident_introduced = PP.getIdentifierInfo("introduced"); 1039 Ident_deprecated = PP.getIdentifierInfo("deprecated"); 1040 Ident_obsoleted = PP.getIdentifierInfo("obsoleted"); 1041 Ident_unavailable = PP.getIdentifierInfo("unavailable"); 1042 Ident_message = PP.getIdentifierInfo("message"); 1043 Ident_strict = PP.getIdentifierInfo("strict"); 1044 Ident_replacement = PP.getIdentifierInfo("replacement"); 1045 } 1046 1047 // Parse the optional "strict", the optional "replacement" and the set of 1048 // introductions/deprecations/removals. 1049 SourceLocation UnavailableLoc, StrictLoc; 1050 do { 1051 if (Tok.isNot(tok::identifier)) { 1052 Diag(Tok, diag::err_availability_expected_change); 1053 SkipUntil(tok::r_paren, StopAtSemi); 1054 return; 1055 } 1056 IdentifierInfo *Keyword = Tok.getIdentifierInfo(); 1057 SourceLocation KeywordLoc = ConsumeToken(); 1058 1059 if (Keyword == Ident_strict) { 1060 if (StrictLoc.isValid()) { 1061 Diag(KeywordLoc, diag::err_availability_redundant) 1062 << Keyword << SourceRange(StrictLoc); 1063 } 1064 StrictLoc = KeywordLoc; 1065 continue; 1066 } 1067 1068 if (Keyword == Ident_unavailable) { 1069 if (UnavailableLoc.isValid()) { 1070 Diag(KeywordLoc, diag::err_availability_redundant) 1071 << Keyword << SourceRange(UnavailableLoc); 1072 } 1073 UnavailableLoc = KeywordLoc; 1074 continue; 1075 } 1076 1077 if (Keyword == Ident_deprecated && Platform->Ident && 1078 Platform->Ident->isStr("swift")) { 1079 // For swift, we deprecate for all versions. 1080 if (Changes[Deprecated].KeywordLoc.isValid()) { 1081 Diag(KeywordLoc, diag::err_availability_redundant) 1082 << Keyword 1083 << SourceRange(Changes[Deprecated].KeywordLoc); 1084 } 1085 1086 Changes[Deprecated].KeywordLoc = KeywordLoc; 1087 // Use a fake version here. 1088 Changes[Deprecated].Version = VersionTuple(1); 1089 continue; 1090 } 1091 1092 if (Tok.isNot(tok::equal)) { 1093 Diag(Tok, diag::err_expected_after) << Keyword << tok::equal; 1094 SkipUntil(tok::r_paren, StopAtSemi); 1095 return; 1096 } 1097 ConsumeToken(); 1098 if (Keyword == Ident_message || Keyword == Ident_replacement) { 1099 if (Tok.isNot(tok::string_literal)) { 1100 Diag(Tok, diag::err_expected_string_literal) 1101 << /*Source='availability attribute'*/2; 1102 SkipUntil(tok::r_paren, StopAtSemi); 1103 return; 1104 } 1105 if (Keyword == Ident_message) 1106 MessageExpr = ParseStringLiteralExpression(); 1107 else 1108 ReplacementExpr = ParseStringLiteralExpression(); 1109 // Also reject wide string literals. 1110 if (StringLiteral *MessageStringLiteral = 1111 cast_or_null<StringLiteral>(MessageExpr.get())) { 1112 if (MessageStringLiteral->getCharByteWidth() != 1) { 1113 Diag(MessageStringLiteral->getSourceRange().getBegin(), 1114 diag::err_expected_string_literal) 1115 << /*Source='availability attribute'*/ 2; 1116 SkipUntil(tok::r_paren, StopAtSemi); 1117 return; 1118 } 1119 } 1120 if (Keyword == Ident_message) 1121 break; 1122 else 1123 continue; 1124 } 1125 1126 // Special handling of 'NA' only when applied to introduced or 1127 // deprecated. 1128 if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) && 1129 Tok.is(tok::identifier)) { 1130 IdentifierInfo *NA = Tok.getIdentifierInfo(); 1131 if (NA->getName() == "NA") { 1132 ConsumeToken(); 1133 if (Keyword == Ident_introduced) 1134 UnavailableLoc = KeywordLoc; 1135 continue; 1136 } 1137 } 1138 1139 SourceRange VersionRange; 1140 VersionTuple Version = ParseVersionTuple(VersionRange); 1141 1142 if (Version.empty()) { 1143 SkipUntil(tok::r_paren, StopAtSemi); 1144 return; 1145 } 1146 1147 unsigned Index; 1148 if (Keyword == Ident_introduced) 1149 Index = Introduced; 1150 else if (Keyword == Ident_deprecated) 1151 Index = Deprecated; 1152 else if (Keyword == Ident_obsoleted) 1153 Index = Obsoleted; 1154 else 1155 Index = Unknown; 1156 1157 if (Index < Unknown) { 1158 if (!Changes[Index].KeywordLoc.isInvalid()) { 1159 Diag(KeywordLoc, diag::err_availability_redundant) 1160 << Keyword 1161 << SourceRange(Changes[Index].KeywordLoc, 1162 Changes[Index].VersionRange.getEnd()); 1163 } 1164 1165 Changes[Index].KeywordLoc = KeywordLoc; 1166 Changes[Index].Version = Version; 1167 Changes[Index].VersionRange = VersionRange; 1168 } else { 1169 Diag(KeywordLoc, diag::err_availability_unknown_change) 1170 << Keyword << VersionRange; 1171 } 1172 1173 } while (TryConsumeToken(tok::comma)); 1174 1175 // Closing ')'. 1176 if (T.consumeClose()) 1177 return; 1178 1179 if (endLoc) 1180 *endLoc = T.getCloseLocation(); 1181 1182 // The 'unavailable' availability cannot be combined with any other 1183 // availability changes. Make sure that hasn't happened. 1184 if (UnavailableLoc.isValid()) { 1185 bool Complained = false; 1186 for (unsigned Index = Introduced; Index != Unknown; ++Index) { 1187 if (Changes[Index].KeywordLoc.isValid()) { 1188 if (!Complained) { 1189 Diag(UnavailableLoc, diag::warn_availability_and_unavailable) 1190 << SourceRange(Changes[Index].KeywordLoc, 1191 Changes[Index].VersionRange.getEnd()); 1192 Complained = true; 1193 } 1194 1195 // Clear out the availability. 1196 Changes[Index] = AvailabilityChange(); 1197 } 1198 } 1199 } 1200 1201 // Record this attribute 1202 attrs.addNew(&Availability, 1203 SourceRange(AvailabilityLoc, T.getCloseLocation()), 1204 ScopeName, ScopeLoc, 1205 Platform, 1206 Changes[Introduced], 1207 Changes[Deprecated], 1208 Changes[Obsoleted], 1209 UnavailableLoc, MessageExpr.get(), 1210 Syntax, StrictLoc, ReplacementExpr.get()); 1211 } 1212 1213 /// Parse the contents of the "external_source_symbol" attribute. 1214 /// 1215 /// external-source-symbol-attribute: 1216 /// 'external_source_symbol' '(' keyword-arg-list ')' 1217 /// 1218 /// keyword-arg-list: 1219 /// keyword-arg 1220 /// keyword-arg ',' keyword-arg-list 1221 /// 1222 /// keyword-arg: 1223 /// 'language' '=' <string> 1224 /// 'defined_in' '=' <string> 1225 /// 'generated_declaration' 1226 void Parser::ParseExternalSourceSymbolAttribute( 1227 IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc, 1228 ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName, 1229 SourceLocation ScopeLoc, ParsedAttr::Syntax Syntax) { 1230 // Opening '('. 1231 BalancedDelimiterTracker T(*this, tok::l_paren); 1232 if (T.expectAndConsume()) 1233 return; 1234 1235 // Initialize the pointers for the keyword identifiers when required. 1236 if (!Ident_language) { 1237 Ident_language = PP.getIdentifierInfo("language"); 1238 Ident_defined_in = PP.getIdentifierInfo("defined_in"); 1239 Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration"); 1240 } 1241 1242 ExprResult Language; 1243 bool HasLanguage = false; 1244 ExprResult DefinedInExpr; 1245 bool HasDefinedIn = false; 1246 IdentifierLoc *GeneratedDeclaration = nullptr; 1247 1248 // Parse the language/defined_in/generated_declaration keywords 1249 do { 1250 if (Tok.isNot(tok::identifier)) { 1251 Diag(Tok, diag::err_external_source_symbol_expected_keyword); 1252 SkipUntil(tok::r_paren, StopAtSemi); 1253 return; 1254 } 1255 1256 SourceLocation KeywordLoc = Tok.getLocation(); 1257 IdentifierInfo *Keyword = Tok.getIdentifierInfo(); 1258 if (Keyword == Ident_generated_declaration) { 1259 if (GeneratedDeclaration) { 1260 Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword; 1261 SkipUntil(tok::r_paren, StopAtSemi); 1262 return; 1263 } 1264 GeneratedDeclaration = ParseIdentifierLoc(); 1265 continue; 1266 } 1267 1268 if (Keyword != Ident_language && Keyword != Ident_defined_in) { 1269 Diag(Tok, diag::err_external_source_symbol_expected_keyword); 1270 SkipUntil(tok::r_paren, StopAtSemi); 1271 return; 1272 } 1273 1274 ConsumeToken(); 1275 if (ExpectAndConsume(tok::equal, diag::err_expected_after, 1276 Keyword->getName())) { 1277 SkipUntil(tok::r_paren, StopAtSemi); 1278 return; 1279 } 1280 1281 bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn; 1282 if (Keyword == Ident_language) 1283 HasLanguage = true; 1284 else 1285 HasDefinedIn = true; 1286 1287 if (Tok.isNot(tok::string_literal)) { 1288 Diag(Tok, diag::err_expected_string_literal) 1289 << /*Source='external_source_symbol attribute'*/ 3 1290 << /*language | source container*/ (Keyword != Ident_language); 1291 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch); 1292 continue; 1293 } 1294 if (Keyword == Ident_language) { 1295 if (HadLanguage) { 1296 Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause) 1297 << Keyword; 1298 ParseStringLiteralExpression(); 1299 continue; 1300 } 1301 Language = ParseStringLiteralExpression(); 1302 } else { 1303 assert(Keyword == Ident_defined_in && "Invalid clause keyword!"); 1304 if (HadDefinedIn) { 1305 Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause) 1306 << Keyword; 1307 ParseStringLiteralExpression(); 1308 continue; 1309 } 1310 DefinedInExpr = ParseStringLiteralExpression(); 1311 } 1312 } while (TryConsumeToken(tok::comma)); 1313 1314 // Closing ')'. 1315 if (T.consumeClose()) 1316 return; 1317 if (EndLoc) 1318 *EndLoc = T.getCloseLocation(); 1319 1320 ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(), 1321 GeneratedDeclaration}; 1322 Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()), 1323 ScopeName, ScopeLoc, Args, llvm::array_lengthof(Args), Syntax); 1324 } 1325 1326 /// Parse the contents of the "objc_bridge_related" attribute. 1327 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')' 1328 /// related_class: 1329 /// Identifier 1330 /// 1331 /// opt-class_method: 1332 /// Identifier: | <empty> 1333 /// 1334 /// opt-instance_method: 1335 /// Identifier | <empty> 1336 /// 1337 void Parser::ParseObjCBridgeRelatedAttribute(IdentifierInfo &ObjCBridgeRelated, 1338 SourceLocation ObjCBridgeRelatedLoc, 1339 ParsedAttributes &attrs, 1340 SourceLocation *endLoc, 1341 IdentifierInfo *ScopeName, 1342 SourceLocation ScopeLoc, 1343 ParsedAttr::Syntax Syntax) { 1344 // Opening '('. 1345 BalancedDelimiterTracker T(*this, tok::l_paren); 1346 if (T.consumeOpen()) { 1347 Diag(Tok, diag::err_expected) << tok::l_paren; 1348 return; 1349 } 1350 1351 // Parse the related class name. 1352 if (Tok.isNot(tok::identifier)) { 1353 Diag(Tok, diag::err_objcbridge_related_expected_related_class); 1354 SkipUntil(tok::r_paren, StopAtSemi); 1355 return; 1356 } 1357 IdentifierLoc *RelatedClass = ParseIdentifierLoc(); 1358 if (ExpectAndConsume(tok::comma)) { 1359 SkipUntil(tok::r_paren, StopAtSemi); 1360 return; 1361 } 1362 1363 // Parse class method name. It's non-optional in the sense that a trailing 1364 // comma is required, but it can be the empty string, and then we record a 1365 // nullptr. 1366 IdentifierLoc *ClassMethod = nullptr; 1367 if (Tok.is(tok::identifier)) { 1368 ClassMethod = ParseIdentifierLoc(); 1369 if (!TryConsumeToken(tok::colon)) { 1370 Diag(Tok, diag::err_objcbridge_related_selector_name); 1371 SkipUntil(tok::r_paren, StopAtSemi); 1372 return; 1373 } 1374 } 1375 if (!TryConsumeToken(tok::comma)) { 1376 if (Tok.is(tok::colon)) 1377 Diag(Tok, diag::err_objcbridge_related_selector_name); 1378 else 1379 Diag(Tok, diag::err_expected) << tok::comma; 1380 SkipUntil(tok::r_paren, StopAtSemi); 1381 return; 1382 } 1383 1384 // Parse instance method name. Also non-optional but empty string is 1385 // permitted. 1386 IdentifierLoc *InstanceMethod = nullptr; 1387 if (Tok.is(tok::identifier)) 1388 InstanceMethod = ParseIdentifierLoc(); 1389 else if (Tok.isNot(tok::r_paren)) { 1390 Diag(Tok, diag::err_expected) << tok::r_paren; 1391 SkipUntil(tok::r_paren, StopAtSemi); 1392 return; 1393 } 1394 1395 // Closing ')'. 1396 if (T.consumeClose()) 1397 return; 1398 1399 if (endLoc) 1400 *endLoc = T.getCloseLocation(); 1401 1402 // Record this attribute 1403 attrs.addNew(&ObjCBridgeRelated, 1404 SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()), 1405 ScopeName, ScopeLoc, 1406 RelatedClass, 1407 ClassMethod, 1408 InstanceMethod, 1409 Syntax); 1410 } 1411 1412 // Late Parsed Attributes: 1413 // See other examples of late parsing in lib/Parse/ParseCXXInlineMethods 1414 1415 void Parser::LateParsedDeclaration::ParseLexedAttributes() {} 1416 1417 void Parser::LateParsedClass::ParseLexedAttributes() { 1418 Self->ParseLexedAttributes(*Class); 1419 } 1420 1421 void Parser::LateParsedAttribute::ParseLexedAttributes() { 1422 Self->ParseLexedAttribute(*this, true, false); 1423 } 1424 1425 /// Wrapper class which calls ParseLexedAttribute, after setting up the 1426 /// scope appropriately. 1427 void Parser::ParseLexedAttributes(ParsingClass &Class) { 1428 // Deal with templates 1429 // FIXME: Test cases to make sure this does the right thing for templates. 1430 bool HasTemplateScope = !Class.TopLevelClass && Class.TemplateScope; 1431 ParseScope ClassTemplateScope(this, Scope::TemplateParamScope, 1432 HasTemplateScope); 1433 if (HasTemplateScope) 1434 Actions.ActOnReenterTemplateScope(getCurScope(), Class.TagOrTemplate); 1435 1436 // Set or update the scope flags. 1437 bool AlreadyHasClassScope = Class.TopLevelClass; 1438 unsigned ScopeFlags = Scope::ClassScope|Scope::DeclScope; 1439 ParseScope ClassScope(this, ScopeFlags, !AlreadyHasClassScope); 1440 ParseScopeFlags ClassScopeFlags(this, ScopeFlags, AlreadyHasClassScope); 1441 1442 // Enter the scope of nested classes 1443 if (!AlreadyHasClassScope) 1444 Actions.ActOnStartDelayedMemberDeclarations(getCurScope(), 1445 Class.TagOrTemplate); 1446 if (!Class.LateParsedDeclarations.empty()) { 1447 for (unsigned i = 0, ni = Class.LateParsedDeclarations.size(); i < ni; ++i){ 1448 Class.LateParsedDeclarations[i]->ParseLexedAttributes(); 1449 } 1450 } 1451 1452 if (!AlreadyHasClassScope) 1453 Actions.ActOnFinishDelayedMemberDeclarations(getCurScope(), 1454 Class.TagOrTemplate); 1455 } 1456 1457 /// Parse all attributes in LAs, and attach them to Decl D. 1458 void Parser::ParseLexedAttributeList(LateParsedAttrList &LAs, Decl *D, 1459 bool EnterScope, bool OnDefinition) { 1460 assert(LAs.parseSoon() && 1461 "Attribute list should be marked for immediate parsing."); 1462 for (unsigned i = 0, ni = LAs.size(); i < ni; ++i) { 1463 if (D) 1464 LAs[i]->addDecl(D); 1465 ParseLexedAttribute(*LAs[i], EnterScope, OnDefinition); 1466 delete LAs[i]; 1467 } 1468 LAs.clear(); 1469 } 1470 1471 /// Finish parsing an attribute for which parsing was delayed. 1472 /// This will be called at the end of parsing a class declaration 1473 /// for each LateParsedAttribute. We consume the saved tokens and 1474 /// create an attribute with the arguments filled in. We add this 1475 /// to the Attribute list for the decl. 1476 void Parser::ParseLexedAttribute(LateParsedAttribute &LA, 1477 bool EnterScope, bool OnDefinition) { 1478 // Create a fake EOF so that attribute parsing won't go off the end of the 1479 // attribute. 1480 Token AttrEnd; 1481 AttrEnd.startToken(); 1482 AttrEnd.setKind(tok::eof); 1483 AttrEnd.setLocation(Tok.getLocation()); 1484 AttrEnd.setEofData(LA.Toks.data()); 1485 LA.Toks.push_back(AttrEnd); 1486 1487 // Append the current token at the end of the new token stream so that it 1488 // doesn't get lost. 1489 LA.Toks.push_back(Tok); 1490 PP.EnterTokenStream(LA.Toks, true, /*IsReinject=*/true); 1491 // Consume the previously pushed token. 1492 ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true); 1493 1494 ParsedAttributes Attrs(AttrFactory); 1495 SourceLocation endLoc; 1496 1497 if (LA.Decls.size() > 0) { 1498 Decl *D = LA.Decls[0]; 1499 NamedDecl *ND = dyn_cast<NamedDecl>(D); 1500 RecordDecl *RD = dyn_cast_or_null<RecordDecl>(D->getDeclContext()); 1501 1502 // Allow 'this' within late-parsed attributes. 1503 Sema::CXXThisScopeRAII ThisScope(Actions, RD, Qualifiers(), 1504 ND && ND->isCXXInstanceMember()); 1505 1506 if (LA.Decls.size() == 1) { 1507 // If the Decl is templatized, add template parameters to scope. 1508 bool HasTemplateScope = EnterScope && D->isTemplateDecl(); 1509 ParseScope TempScope(this, Scope::TemplateParamScope, HasTemplateScope); 1510 if (HasTemplateScope) 1511 Actions.ActOnReenterTemplateScope(Actions.CurScope, D); 1512 1513 // If the Decl is on a function, add function parameters to the scope. 1514 bool HasFunScope = EnterScope && D->isFunctionOrFunctionTemplate(); 1515 ParseScope FnScope( 1516 this, Scope::FnScope | Scope::DeclScope | Scope::CompoundStmtScope, 1517 HasFunScope); 1518 if (HasFunScope) 1519 Actions.ActOnReenterFunctionContext(Actions.CurScope, D); 1520 1521 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc, 1522 nullptr, SourceLocation(), ParsedAttr::AS_GNU, 1523 nullptr); 1524 1525 if (HasFunScope) { 1526 Actions.ActOnExitFunctionContext(); 1527 FnScope.Exit(); // Pop scope, and remove Decls from IdResolver 1528 } 1529 if (HasTemplateScope) { 1530 TempScope.Exit(); 1531 } 1532 } else { 1533 // If there are multiple decls, then the decl cannot be within the 1534 // function scope. 1535 ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, &endLoc, 1536 nullptr, SourceLocation(), ParsedAttr::AS_GNU, 1537 nullptr); 1538 } 1539 } else { 1540 Diag(Tok, diag::warn_attribute_no_decl) << LA.AttrName.getName(); 1541 } 1542 1543 if (OnDefinition && !Attrs.empty() && !Attrs.begin()->isCXX11Attribute() && 1544 Attrs.begin()->isKnownToGCC()) 1545 Diag(Tok, diag::warn_attribute_on_function_definition) 1546 << &LA.AttrName; 1547 1548 for (unsigned i = 0, ni = LA.Decls.size(); i < ni; ++i) 1549 Actions.ActOnFinishDelayedAttribute(getCurScope(), LA.Decls[i], Attrs); 1550 1551 // Due to a parsing error, we either went over the cached tokens or 1552 // there are still cached tokens left, so we skip the leftover tokens. 1553 while (Tok.isNot(tok::eof)) 1554 ConsumeAnyToken(); 1555 1556 if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData()) 1557 ConsumeAnyToken(); 1558 } 1559 1560 void Parser::ParseTypeTagForDatatypeAttribute(IdentifierInfo &AttrName, 1561 SourceLocation AttrNameLoc, 1562 ParsedAttributes &Attrs, 1563 SourceLocation *EndLoc, 1564 IdentifierInfo *ScopeName, 1565 SourceLocation ScopeLoc, 1566 ParsedAttr::Syntax Syntax) { 1567 assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('"); 1568 1569 BalancedDelimiterTracker T(*this, tok::l_paren); 1570 T.consumeOpen(); 1571 1572 if (Tok.isNot(tok::identifier)) { 1573 Diag(Tok, diag::err_expected) << tok::identifier; 1574 T.skipToEnd(); 1575 return; 1576 } 1577 IdentifierLoc *ArgumentKind = ParseIdentifierLoc(); 1578 1579 if (ExpectAndConsume(tok::comma)) { 1580 T.skipToEnd(); 1581 return; 1582 } 1583 1584 SourceRange MatchingCTypeRange; 1585 TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange); 1586 if (MatchingCType.isInvalid()) { 1587 T.skipToEnd(); 1588 return; 1589 } 1590 1591 bool LayoutCompatible = false; 1592 bool MustBeNull = false; 1593 while (TryConsumeToken(tok::comma)) { 1594 if (Tok.isNot(tok::identifier)) { 1595 Diag(Tok, diag::err_expected) << tok::identifier; 1596 T.skipToEnd(); 1597 return; 1598 } 1599 IdentifierInfo *Flag = Tok.getIdentifierInfo(); 1600 if (Flag->isStr("layout_compatible")) 1601 LayoutCompatible = true; 1602 else if (Flag->isStr("must_be_null")) 1603 MustBeNull = true; 1604 else { 1605 Diag(Tok, diag::err_type_safety_unknown_flag) << Flag; 1606 T.skipToEnd(); 1607 return; 1608 } 1609 ConsumeToken(); // consume flag 1610 } 1611 1612 if (!T.consumeClose()) { 1613 Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc, 1614 ArgumentKind, MatchingCType.get(), 1615 LayoutCompatible, MustBeNull, Syntax); 1616 } 1617 1618 if (EndLoc) 1619 *EndLoc = T.getCloseLocation(); 1620 } 1621 1622 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets 1623 /// of a C++11 attribute-specifier in a location where an attribute is not 1624 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this 1625 /// situation. 1626 /// 1627 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if 1628 /// this doesn't appear to actually be an attribute-specifier, and the caller 1629 /// should try to parse it. 1630 bool Parser::DiagnoseProhibitedCXX11Attribute() { 1631 assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square)); 1632 1633 switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) { 1634 case CAK_NotAttributeSpecifier: 1635 // No diagnostic: we're in Obj-C++11 and this is not actually an attribute. 1636 return false; 1637 1638 case CAK_InvalidAttributeSpecifier: 1639 Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute); 1640 return false; 1641 1642 case CAK_AttributeSpecifier: 1643 // Parse and discard the attributes. 1644 SourceLocation BeginLoc = ConsumeBracket(); 1645 ConsumeBracket(); 1646 SkipUntil(tok::r_square); 1647 assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied"); 1648 SourceLocation EndLoc = ConsumeBracket(); 1649 Diag(BeginLoc, diag::err_attributes_not_allowed) 1650 << SourceRange(BeginLoc, EndLoc); 1651 return true; 1652 } 1653 llvm_unreachable("All cases handled above."); 1654 } 1655 1656 /// We have found the opening square brackets of a C++11 1657 /// attribute-specifier in a location where an attribute is not permitted, but 1658 /// we know where the attributes ought to be written. Parse them anyway, and 1659 /// provide a fixit moving them to the right place. 1660 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributesWithRange &Attrs, 1661 SourceLocation CorrectLocation) { 1662 assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) || 1663 Tok.is(tok::kw_alignas)); 1664 1665 // Consume the attributes. 1666 SourceLocation Loc = Tok.getLocation(); 1667 ParseCXX11Attributes(Attrs); 1668 CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true); 1669 // FIXME: use err_attributes_misplaced 1670 Diag(Loc, diag::err_attributes_not_allowed) 1671 << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange) 1672 << FixItHint::CreateRemoval(AttrRange); 1673 } 1674 1675 void Parser::DiagnoseProhibitedAttributes( 1676 const SourceRange &Range, const SourceLocation CorrectLocation) { 1677 if (CorrectLocation.isValid()) { 1678 CharSourceRange AttrRange(Range, true); 1679 Diag(CorrectLocation, diag::err_attributes_misplaced) 1680 << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange) 1681 << FixItHint::CreateRemoval(AttrRange); 1682 } else 1683 Diag(Range.getBegin(), diag::err_attributes_not_allowed) << Range; 1684 } 1685 1686 void Parser::ProhibitCXX11Attributes(ParsedAttributesWithRange &Attrs, 1687 unsigned DiagID) { 1688 for (const ParsedAttr &AL : Attrs) { 1689 if (!AL.isCXX11Attribute() && !AL.isC2xAttribute()) 1690 continue; 1691 if (AL.getKind() == ParsedAttr::UnknownAttribute) 1692 Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored) << AL; 1693 else { 1694 Diag(AL.getLoc(), DiagID) << AL; 1695 AL.setInvalid(); 1696 } 1697 } 1698 } 1699 1700 // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute 1701 // applies to var, not the type Foo. 1702 // As an exception to the rule, __declspec(align(...)) before the 1703 // class-key affects the type instead of the variable. 1704 // Also, Microsoft-style [attributes] seem to affect the type instead of the 1705 // variable. 1706 // This function moves attributes that should apply to the type off DS to Attrs. 1707 void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributesWithRange &Attrs, 1708 DeclSpec &DS, 1709 Sema::TagUseKind TUK) { 1710 if (TUK == Sema::TUK_Reference) 1711 return; 1712 1713 llvm::SmallVector<ParsedAttr *, 1> ToBeMoved; 1714 1715 for (ParsedAttr &AL : DS.getAttributes()) { 1716 if ((AL.getKind() == ParsedAttr::AT_Aligned && 1717 AL.isDeclspecAttribute()) || 1718 AL.isMicrosoftAttribute()) 1719 ToBeMoved.push_back(&AL); 1720 } 1721 1722 for (ParsedAttr *AL : ToBeMoved) { 1723 DS.getAttributes().remove(AL); 1724 Attrs.addAtEnd(AL); 1725 } 1726 } 1727 1728 /// ParseDeclaration - Parse a full 'declaration', which consists of 1729 /// declaration-specifiers, some number of declarators, and a semicolon. 1730 /// 'Context' should be a DeclaratorContext value. This returns the 1731 /// location of the semicolon in DeclEnd. 1732 /// 1733 /// declaration: [C99 6.7] 1734 /// block-declaration -> 1735 /// simple-declaration 1736 /// others [FIXME] 1737 /// [C++] template-declaration 1738 /// [C++] namespace-definition 1739 /// [C++] using-directive 1740 /// [C++] using-declaration 1741 /// [C++11/C11] static_assert-declaration 1742 /// others... [FIXME] 1743 /// 1744 Parser::DeclGroupPtrTy 1745 Parser::ParseDeclaration(DeclaratorContext Context, SourceLocation &DeclEnd, 1746 ParsedAttributesWithRange &attrs, 1747 SourceLocation *DeclSpecStart) { 1748 ParenBraceBracketBalancer BalancerRAIIObj(*this); 1749 // Must temporarily exit the objective-c container scope for 1750 // parsing c none objective-c decls. 1751 ObjCDeclContextSwitch ObjCDC(*this); 1752 1753 Decl *SingleDecl = nullptr; 1754 switch (Tok.getKind()) { 1755 case tok::kw_template: 1756 case tok::kw_export: 1757 ProhibitAttributes(attrs); 1758 SingleDecl = ParseDeclarationStartingWithTemplate(Context, DeclEnd, attrs); 1759 break; 1760 case tok::kw_inline: 1761 // Could be the start of an inline namespace. Allowed as an ext in C++03. 1762 if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) { 1763 ProhibitAttributes(attrs); 1764 SourceLocation InlineLoc = ConsumeToken(); 1765 return ParseNamespace(Context, DeclEnd, InlineLoc); 1766 } 1767 return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr, 1768 DeclSpecStart); 1769 case tok::kw_namespace: 1770 ProhibitAttributes(attrs); 1771 return ParseNamespace(Context, DeclEnd); 1772 case tok::kw_using: 1773 return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(), 1774 DeclEnd, attrs); 1775 case tok::kw_static_assert: 1776 case tok::kw__Static_assert: 1777 ProhibitAttributes(attrs); 1778 SingleDecl = ParseStaticAssertDeclaration(DeclEnd); 1779 break; 1780 default: 1781 return ParseSimpleDeclaration(Context, DeclEnd, attrs, true, nullptr, 1782 DeclSpecStart); 1783 } 1784 1785 // This routine returns a DeclGroup, if the thing we parsed only contains a 1786 // single decl, convert it now. 1787 return Actions.ConvertDeclToDeclGroup(SingleDecl); 1788 } 1789 1790 /// simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl] 1791 /// declaration-specifiers init-declarator-list[opt] ';' 1792 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt] 1793 /// init-declarator-list ';' 1794 ///[C90/C++]init-declarator-list ';' [TODO] 1795 /// [OMP] threadprivate-directive 1796 /// [OMP] allocate-directive [TODO] 1797 /// 1798 /// for-range-declaration: [C++11 6.5p1: stmt.ranged] 1799 /// attribute-specifier-seq[opt] type-specifier-seq declarator 1800 /// 1801 /// If RequireSemi is false, this does not check for a ';' at the end of the 1802 /// declaration. If it is true, it checks for and eats it. 1803 /// 1804 /// If FRI is non-null, we might be parsing a for-range-declaration instead 1805 /// of a simple-declaration. If we find that we are, we also parse the 1806 /// for-range-initializer, and place it here. 1807 /// 1808 /// DeclSpecStart is used when decl-specifiers are parsed before parsing 1809 /// the Declaration. The SourceLocation for this Decl is set to 1810 /// DeclSpecStart if DeclSpecStart is non-null. 1811 Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration( 1812 DeclaratorContext Context, SourceLocation &DeclEnd, 1813 ParsedAttributesWithRange &Attrs, bool RequireSemi, ForRangeInit *FRI, 1814 SourceLocation *DeclSpecStart) { 1815 // Parse the common declaration-specifiers piece. 1816 ParsingDeclSpec DS(*this); 1817 1818 DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context); 1819 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext); 1820 1821 // If we had a free-standing type definition with a missing semicolon, we 1822 // may get this far before the problem becomes obvious. 1823 if (DS.hasTagDefinition() && 1824 DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext)) 1825 return nullptr; 1826 1827 // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };" 1828 // declaration-specifiers init-declarator-list[opt] ';' 1829 if (Tok.is(tok::semi)) { 1830 ProhibitAttributes(Attrs); 1831 DeclEnd = Tok.getLocation(); 1832 if (RequireSemi) ConsumeToken(); 1833 RecordDecl *AnonRecord = nullptr; 1834 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, 1835 DS, AnonRecord); 1836 DS.complete(TheDecl); 1837 if (AnonRecord) { 1838 Decl* decls[] = {AnonRecord, TheDecl}; 1839 return Actions.BuildDeclaratorGroup(decls); 1840 } 1841 return Actions.ConvertDeclToDeclGroup(TheDecl); 1842 } 1843 1844 if (DeclSpecStart) 1845 DS.SetRangeStart(*DeclSpecStart); 1846 1847 DS.takeAttributesFrom(Attrs); 1848 return ParseDeclGroup(DS, Context, &DeclEnd, FRI); 1849 } 1850 1851 /// Returns true if this might be the start of a declarator, or a common typo 1852 /// for a declarator. 1853 bool Parser::MightBeDeclarator(DeclaratorContext Context) { 1854 switch (Tok.getKind()) { 1855 case tok::annot_cxxscope: 1856 case tok::annot_template_id: 1857 case tok::caret: 1858 case tok::code_completion: 1859 case tok::coloncolon: 1860 case tok::ellipsis: 1861 case tok::kw___attribute: 1862 case tok::kw_operator: 1863 case tok::l_paren: 1864 case tok::star: 1865 return true; 1866 1867 case tok::amp: 1868 case tok::ampamp: 1869 return getLangOpts().CPlusPlus; 1870 1871 case tok::l_square: // Might be an attribute on an unnamed bit-field. 1872 return Context == DeclaratorContext::MemberContext && 1873 getLangOpts().CPlusPlus11 && NextToken().is(tok::l_square); 1874 1875 case tok::colon: // Might be a typo for '::' or an unnamed bit-field. 1876 return Context == DeclaratorContext::MemberContext || 1877 getLangOpts().CPlusPlus; 1878 1879 case tok::identifier: 1880 switch (NextToken().getKind()) { 1881 case tok::code_completion: 1882 case tok::coloncolon: 1883 case tok::comma: 1884 case tok::equal: 1885 case tok::equalequal: // Might be a typo for '='. 1886 case tok::kw_alignas: 1887 case tok::kw_asm: 1888 case tok::kw___attribute: 1889 case tok::l_brace: 1890 case tok::l_paren: 1891 case tok::l_square: 1892 case tok::less: 1893 case tok::r_brace: 1894 case tok::r_paren: 1895 case tok::r_square: 1896 case tok::semi: 1897 return true; 1898 1899 case tok::colon: 1900 // At namespace scope, 'identifier:' is probably a typo for 'identifier::' 1901 // and in block scope it's probably a label. Inside a class definition, 1902 // this is a bit-field. 1903 return Context == DeclaratorContext::MemberContext || 1904 (getLangOpts().CPlusPlus && 1905 Context == DeclaratorContext::FileContext); 1906 1907 case tok::identifier: // Possible virt-specifier. 1908 return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken()); 1909 1910 default: 1911 return false; 1912 } 1913 1914 default: 1915 return false; 1916 } 1917 } 1918 1919 /// Skip until we reach something which seems like a sensible place to pick 1920 /// up parsing after a malformed declaration. This will sometimes stop sooner 1921 /// than SkipUntil(tok::r_brace) would, but will never stop later. 1922 void Parser::SkipMalformedDecl() { 1923 while (true) { 1924 switch (Tok.getKind()) { 1925 case tok::l_brace: 1926 // Skip until matching }, then stop. We've probably skipped over 1927 // a malformed class or function definition or similar. 1928 ConsumeBrace(); 1929 SkipUntil(tok::r_brace); 1930 if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) { 1931 // This declaration isn't over yet. Keep skipping. 1932 continue; 1933 } 1934 TryConsumeToken(tok::semi); 1935 return; 1936 1937 case tok::l_square: 1938 ConsumeBracket(); 1939 SkipUntil(tok::r_square); 1940 continue; 1941 1942 case tok::l_paren: 1943 ConsumeParen(); 1944 SkipUntil(tok::r_paren); 1945 continue; 1946 1947 case tok::r_brace: 1948 return; 1949 1950 case tok::semi: 1951 ConsumeToken(); 1952 return; 1953 1954 case tok::kw_inline: 1955 // 'inline namespace' at the start of a line is almost certainly 1956 // a good place to pick back up parsing, except in an Objective-C 1957 // @interface context. 1958 if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) && 1959 (!ParsingInObjCContainer || CurParsedObjCImpl)) 1960 return; 1961 break; 1962 1963 case tok::kw_namespace: 1964 // 'namespace' at the start of a line is almost certainly a good 1965 // place to pick back up parsing, except in an Objective-C 1966 // @interface context. 1967 if (Tok.isAtStartOfLine() && 1968 (!ParsingInObjCContainer || CurParsedObjCImpl)) 1969 return; 1970 break; 1971 1972 case tok::at: 1973 // @end is very much like } in Objective-C contexts. 1974 if (NextToken().isObjCAtKeyword(tok::objc_end) && 1975 ParsingInObjCContainer) 1976 return; 1977 break; 1978 1979 case tok::minus: 1980 case tok::plus: 1981 // - and + probably start new method declarations in Objective-C contexts. 1982 if (Tok.isAtStartOfLine() && ParsingInObjCContainer) 1983 return; 1984 break; 1985 1986 case tok::eof: 1987 case tok::annot_module_begin: 1988 case tok::annot_module_end: 1989 case tok::annot_module_include: 1990 return; 1991 1992 default: 1993 break; 1994 } 1995 1996 ConsumeAnyToken(); 1997 } 1998 } 1999 2000 /// ParseDeclGroup - Having concluded that this is either a function 2001 /// definition or a group of object declarations, actually parse the 2002 /// result. 2003 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS, 2004 DeclaratorContext Context, 2005 SourceLocation *DeclEnd, 2006 ForRangeInit *FRI) { 2007 // Parse the first declarator. 2008 ParsingDeclarator D(*this, DS, Context); 2009 ParseDeclarator(D); 2010 2011 // Bail out if the first declarator didn't seem well-formed. 2012 if (!D.hasName() && !D.mayOmitIdentifier()) { 2013 SkipMalformedDecl(); 2014 return nullptr; 2015 } 2016 2017 // Save late-parsed attributes for now; they need to be parsed in the 2018 // appropriate function scope after the function Decl has been constructed. 2019 // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList. 2020 LateParsedAttrList LateParsedAttrs(true); 2021 if (D.isFunctionDeclarator()) { 2022 MaybeParseGNUAttributes(D, &LateParsedAttrs); 2023 2024 // The _Noreturn keyword can't appear here, unlike the GNU noreturn 2025 // attribute. If we find the keyword here, tell the user to put it 2026 // at the start instead. 2027 if (Tok.is(tok::kw__Noreturn)) { 2028 SourceLocation Loc = ConsumeToken(); 2029 const char *PrevSpec; 2030 unsigned DiagID; 2031 2032 // We can offer a fixit if it's valid to mark this function as _Noreturn 2033 // and we don't have any other declarators in this declaration. 2034 bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID); 2035 MaybeParseGNUAttributes(D, &LateParsedAttrs); 2036 Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try); 2037 2038 Diag(Loc, diag::err_c11_noreturn_misplaced) 2039 << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint()) 2040 << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ") 2041 : FixItHint()); 2042 } 2043 } 2044 2045 // Check to see if we have a function *definition* which must have a body. 2046 if (D.isFunctionDeclarator() && 2047 // Look at the next token to make sure that this isn't a function 2048 // declaration. We have to check this because __attribute__ might be the 2049 // start of a function definition in GCC-extended K&R C. 2050 !isDeclarationAfterDeclarator()) { 2051 2052 // Function definitions are only allowed at file scope and in C++ classes. 2053 // The C++ inline method definition case is handled elsewhere, so we only 2054 // need to handle the file scope definition case. 2055 if (Context == DeclaratorContext::FileContext) { 2056 if (isStartOfFunctionDefinition(D)) { 2057 if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { 2058 Diag(Tok, diag::err_function_declared_typedef); 2059 2060 // Recover by treating the 'typedef' as spurious. 2061 DS.ClearStorageClassSpecs(); 2062 } 2063 2064 Decl *TheDecl = 2065 ParseFunctionDefinition(D, ParsedTemplateInfo(), &LateParsedAttrs); 2066 return Actions.ConvertDeclToDeclGroup(TheDecl); 2067 } 2068 2069 if (isDeclarationSpecifier()) { 2070 // If there is an invalid declaration specifier right after the 2071 // function prototype, then we must be in a missing semicolon case 2072 // where this isn't actually a body. Just fall through into the code 2073 // that handles it as a prototype, and let the top-level code handle 2074 // the erroneous declspec where it would otherwise expect a comma or 2075 // semicolon. 2076 } else { 2077 Diag(Tok, diag::err_expected_fn_body); 2078 SkipUntil(tok::semi); 2079 return nullptr; 2080 } 2081 } else { 2082 if (Tok.is(tok::l_brace)) { 2083 Diag(Tok, diag::err_function_definition_not_allowed); 2084 SkipMalformedDecl(); 2085 return nullptr; 2086 } 2087 } 2088 } 2089 2090 if (ParseAsmAttributesAfterDeclarator(D)) 2091 return nullptr; 2092 2093 // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we 2094 // must parse and analyze the for-range-initializer before the declaration is 2095 // analyzed. 2096 // 2097 // Handle the Objective-C for-in loop variable similarly, although we 2098 // don't need to parse the container in advance. 2099 if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) { 2100 bool IsForRangeLoop = false; 2101 if (TryConsumeToken(tok::colon, FRI->ColonLoc)) { 2102 IsForRangeLoop = true; 2103 if (getLangOpts().OpenMP) 2104 Actions.startOpenMPCXXRangeFor(); 2105 if (Tok.is(tok::l_brace)) 2106 FRI->RangeExpr = ParseBraceInitializer(); 2107 else 2108 FRI->RangeExpr = ParseExpression(); 2109 } 2110 2111 Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); 2112 if (IsForRangeLoop) { 2113 Actions.ActOnCXXForRangeDecl(ThisDecl); 2114 } else { 2115 // Obj-C for loop 2116 if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl)) 2117 VD->setObjCForDecl(true); 2118 } 2119 Actions.FinalizeDeclaration(ThisDecl); 2120 D.complete(ThisDecl); 2121 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl); 2122 } 2123 2124 SmallVector<Decl *, 8> DeclsInGroup; 2125 Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes( 2126 D, ParsedTemplateInfo(), FRI); 2127 if (LateParsedAttrs.size() > 0) 2128 ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false); 2129 D.complete(FirstDecl); 2130 if (FirstDecl) 2131 DeclsInGroup.push_back(FirstDecl); 2132 2133 bool ExpectSemi = Context != DeclaratorContext::ForContext; 2134 2135 // If we don't have a comma, it is either the end of the list (a ';') or an 2136 // error, bail out. 2137 SourceLocation CommaLoc; 2138 while (TryConsumeToken(tok::comma, CommaLoc)) { 2139 if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) { 2140 // This comma was followed by a line-break and something which can't be 2141 // the start of a declarator. The comma was probably a typo for a 2142 // semicolon. 2143 Diag(CommaLoc, diag::err_expected_semi_declaration) 2144 << FixItHint::CreateReplacement(CommaLoc, ";"); 2145 ExpectSemi = false; 2146 break; 2147 } 2148 2149 // Parse the next declarator. 2150 D.clear(); 2151 D.setCommaLoc(CommaLoc); 2152 2153 // Accept attributes in an init-declarator. In the first declarator in a 2154 // declaration, these would be part of the declspec. In subsequent 2155 // declarators, they become part of the declarator itself, so that they 2156 // don't apply to declarators after *this* one. Examples: 2157 // short __attribute__((common)) var; -> declspec 2158 // short var __attribute__((common)); -> declarator 2159 // short x, __attribute__((common)) var; -> declarator 2160 MaybeParseGNUAttributes(D); 2161 2162 // MSVC parses but ignores qualifiers after the comma as an extension. 2163 if (getLangOpts().MicrosoftExt) 2164 DiagnoseAndSkipExtendedMicrosoftTypeAttributes(); 2165 2166 ParseDeclarator(D); 2167 if (!D.isInvalidType()) { 2168 Decl *ThisDecl = ParseDeclarationAfterDeclarator(D); 2169 D.complete(ThisDecl); 2170 if (ThisDecl) 2171 DeclsInGroup.push_back(ThisDecl); 2172 } 2173 } 2174 2175 if (DeclEnd) 2176 *DeclEnd = Tok.getLocation(); 2177 2178 if (ExpectSemi && 2179 ExpectAndConsumeSemi(Context == DeclaratorContext::FileContext 2180 ? diag::err_invalid_token_after_toplevel_declarator 2181 : diag::err_expected_semi_declaration)) { 2182 // Okay, there was no semicolon and one was expected. If we see a 2183 // declaration specifier, just assume it was missing and continue parsing. 2184 // Otherwise things are very confused and we skip to recover. 2185 if (!isDeclarationSpecifier()) { 2186 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); 2187 TryConsumeToken(tok::semi); 2188 } 2189 } 2190 2191 return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup); 2192 } 2193 2194 /// Parse an optional simple-asm-expr and attributes, and attach them to a 2195 /// declarator. Returns true on an error. 2196 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) { 2197 // If a simple-asm-expr is present, parse it. 2198 if (Tok.is(tok::kw_asm)) { 2199 SourceLocation Loc; 2200 ExprResult AsmLabel(ParseSimpleAsm(&Loc)); 2201 if (AsmLabel.isInvalid()) { 2202 SkipUntil(tok::semi, StopBeforeMatch); 2203 return true; 2204 } 2205 2206 D.setAsmLabel(AsmLabel.get()); 2207 D.SetRangeEnd(Loc); 2208 } 2209 2210 MaybeParseGNUAttributes(D); 2211 return false; 2212 } 2213 2214 /// Parse 'declaration' after parsing 'declaration-specifiers 2215 /// declarator'. This method parses the remainder of the declaration 2216 /// (including any attributes or initializer, among other things) and 2217 /// finalizes the declaration. 2218 /// 2219 /// init-declarator: [C99 6.7] 2220 /// declarator 2221 /// declarator '=' initializer 2222 /// [GNU] declarator simple-asm-expr[opt] attributes[opt] 2223 /// [GNU] declarator simple-asm-expr[opt] attributes[opt] '=' initializer 2224 /// [C++] declarator initializer[opt] 2225 /// 2226 /// [C++] initializer: 2227 /// [C++] '=' initializer-clause 2228 /// [C++] '(' expression-list ')' 2229 /// [C++0x] '=' 'default' [TODO] 2230 /// [C++0x] '=' 'delete' 2231 /// [C++0x] braced-init-list 2232 /// 2233 /// According to the standard grammar, =default and =delete are function 2234 /// definitions, but that definitely doesn't fit with the parser here. 2235 /// 2236 Decl *Parser::ParseDeclarationAfterDeclarator( 2237 Declarator &D, const ParsedTemplateInfo &TemplateInfo) { 2238 if (ParseAsmAttributesAfterDeclarator(D)) 2239 return nullptr; 2240 2241 return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo); 2242 } 2243 2244 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes( 2245 Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) { 2246 // RAII type used to track whether we're inside an initializer. 2247 struct InitializerScopeRAII { 2248 Parser &P; 2249 Declarator &D; 2250 Decl *ThisDecl; 2251 2252 InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl) 2253 : P(P), D(D), ThisDecl(ThisDecl) { 2254 if (ThisDecl && P.getLangOpts().CPlusPlus) { 2255 Scope *S = nullptr; 2256 if (D.getCXXScopeSpec().isSet()) { 2257 P.EnterScope(0); 2258 S = P.getCurScope(); 2259 } 2260 P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl); 2261 } 2262 } 2263 ~InitializerScopeRAII() { pop(); } 2264 void pop() { 2265 if (ThisDecl && P.getLangOpts().CPlusPlus) { 2266 Scope *S = nullptr; 2267 if (D.getCXXScopeSpec().isSet()) 2268 S = P.getCurScope(); 2269 P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl); 2270 if (S) 2271 P.ExitScope(); 2272 } 2273 ThisDecl = nullptr; 2274 } 2275 }; 2276 2277 // Inform the current actions module that we just parsed this declarator. 2278 Decl *ThisDecl = nullptr; 2279 switch (TemplateInfo.Kind) { 2280 case ParsedTemplateInfo::NonTemplate: 2281 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); 2282 break; 2283 2284 case ParsedTemplateInfo::Template: 2285 case ParsedTemplateInfo::ExplicitSpecialization: { 2286 ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(), 2287 *TemplateInfo.TemplateParams, 2288 D); 2289 if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl)) 2290 // Re-direct this decl to refer to the templated decl so that we can 2291 // initialize it. 2292 ThisDecl = VT->getTemplatedDecl(); 2293 break; 2294 } 2295 case ParsedTemplateInfo::ExplicitInstantiation: { 2296 if (Tok.is(tok::semi)) { 2297 DeclResult ThisRes = Actions.ActOnExplicitInstantiation( 2298 getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D); 2299 if (ThisRes.isInvalid()) { 2300 SkipUntil(tok::semi, StopBeforeMatch); 2301 return nullptr; 2302 } 2303 ThisDecl = ThisRes.get(); 2304 } else { 2305 // FIXME: This check should be for a variable template instantiation only. 2306 2307 // Check that this is a valid instantiation 2308 if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) { 2309 // If the declarator-id is not a template-id, issue a diagnostic and 2310 // recover by ignoring the 'template' keyword. 2311 Diag(Tok, diag::err_template_defn_explicit_instantiation) 2312 << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc); 2313 ThisDecl = Actions.ActOnDeclarator(getCurScope(), D); 2314 } else { 2315 SourceLocation LAngleLoc = 2316 PP.getLocForEndOfToken(TemplateInfo.TemplateLoc); 2317 Diag(D.getIdentifierLoc(), 2318 diag::err_explicit_instantiation_with_definition) 2319 << SourceRange(TemplateInfo.TemplateLoc) 2320 << FixItHint::CreateInsertion(LAngleLoc, "<>"); 2321 2322 // Recover as if it were an explicit specialization. 2323 TemplateParameterLists FakedParamLists; 2324 FakedParamLists.push_back(Actions.ActOnTemplateParameterList( 2325 0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc, None, 2326 LAngleLoc, nullptr)); 2327 2328 ThisDecl = 2329 Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D); 2330 } 2331 } 2332 break; 2333 } 2334 } 2335 2336 // Parse declarator '=' initializer. 2337 // If a '==' or '+=' is found, suggest a fixit to '='. 2338 if (isTokenEqualOrEqualTypo()) { 2339 SourceLocation EqualLoc = ConsumeToken(); 2340 2341 if (Tok.is(tok::kw_delete)) { 2342 if (D.isFunctionDeclarator()) 2343 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) 2344 << 1 /* delete */; 2345 else 2346 Diag(ConsumeToken(), diag::err_deleted_non_function); 2347 } else if (Tok.is(tok::kw_default)) { 2348 if (D.isFunctionDeclarator()) 2349 Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration) 2350 << 0 /* default */; 2351 else 2352 Diag(ConsumeToken(), diag::err_default_special_members); 2353 } else { 2354 InitializerScopeRAII InitScope(*this, D, ThisDecl); 2355 2356 if (Tok.is(tok::code_completion)) { 2357 Actions.CodeCompleteInitializer(getCurScope(), ThisDecl); 2358 Actions.FinalizeDeclaration(ThisDecl); 2359 cutOffParsing(); 2360 return nullptr; 2361 } 2362 2363 PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl); 2364 ExprResult Init = ParseInitializer(); 2365 2366 // If this is the only decl in (possibly) range based for statement, 2367 // our best guess is that the user meant ':' instead of '='. 2368 if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) { 2369 Diag(EqualLoc, diag::err_single_decl_assign_in_for_range) 2370 << FixItHint::CreateReplacement(EqualLoc, ":"); 2371 // We are trying to stop parser from looking for ';' in this for 2372 // statement, therefore preventing spurious errors to be issued. 2373 FRI->ColonLoc = EqualLoc; 2374 Init = ExprError(); 2375 FRI->RangeExpr = Init; 2376 } 2377 2378 InitScope.pop(); 2379 2380 if (Init.isInvalid()) { 2381 SmallVector<tok::TokenKind, 2> StopTokens; 2382 StopTokens.push_back(tok::comma); 2383 if (D.getContext() == DeclaratorContext::ForContext || 2384 D.getContext() == DeclaratorContext::InitStmtContext) 2385 StopTokens.push_back(tok::r_paren); 2386 SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch); 2387 Actions.ActOnInitializerError(ThisDecl); 2388 } else 2389 Actions.AddInitializerToDecl(ThisDecl, Init.get(), 2390 /*DirectInit=*/false); 2391 } 2392 } else if (Tok.is(tok::l_paren)) { 2393 // Parse C++ direct initializer: '(' expression-list ')' 2394 BalancedDelimiterTracker T(*this, tok::l_paren); 2395 T.consumeOpen(); 2396 2397 ExprVector Exprs; 2398 CommaLocsTy CommaLocs; 2399 2400 InitializerScopeRAII InitScope(*this, D, ThisDecl); 2401 2402 auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl); 2403 auto RunSignatureHelp = [&]() { 2404 QualType PreferredType = Actions.ProduceConstructorSignatureHelp( 2405 getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(), 2406 ThisDecl->getLocation(), Exprs, T.getOpenLocation()); 2407 CalledSignatureHelp = true; 2408 return PreferredType; 2409 }; 2410 auto SetPreferredType = [&] { 2411 PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp); 2412 }; 2413 2414 llvm::function_ref<void()> ExpressionStarts; 2415 if (ThisVarDecl) { 2416 // ParseExpressionList can sometimes succeed even when ThisDecl is not 2417 // VarDecl. This is an error and it is reported in a call to 2418 // Actions.ActOnInitializerError(). However, we call 2419 // ProduceConstructorSignatureHelp only on VarDecls. 2420 ExpressionStarts = SetPreferredType; 2421 } 2422 if (ParseExpressionList(Exprs, CommaLocs, ExpressionStarts)) { 2423 if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) { 2424 Actions.ProduceConstructorSignatureHelp( 2425 getCurScope(), ThisVarDecl->getType()->getCanonicalTypeInternal(), 2426 ThisDecl->getLocation(), Exprs, T.getOpenLocation()); 2427 CalledSignatureHelp = true; 2428 } 2429 Actions.ActOnInitializerError(ThisDecl); 2430 SkipUntil(tok::r_paren, StopAtSemi); 2431 } else { 2432 // Match the ')'. 2433 T.consumeClose(); 2434 2435 assert(!Exprs.empty() && Exprs.size()-1 == CommaLocs.size() && 2436 "Unexpected number of commas!"); 2437 2438 InitScope.pop(); 2439 2440 ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(), 2441 T.getCloseLocation(), 2442 Exprs); 2443 Actions.AddInitializerToDecl(ThisDecl, Initializer.get(), 2444 /*DirectInit=*/true); 2445 } 2446 } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) && 2447 (!CurParsedObjCImpl || !D.isFunctionDeclarator())) { 2448 // Parse C++0x braced-init-list. 2449 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 2450 2451 InitializerScopeRAII InitScope(*this, D, ThisDecl); 2452 2453 ExprResult Init(ParseBraceInitializer()); 2454 2455 InitScope.pop(); 2456 2457 if (Init.isInvalid()) { 2458 Actions.ActOnInitializerError(ThisDecl); 2459 } else 2460 Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true); 2461 2462 } else { 2463 Actions.ActOnUninitializedDecl(ThisDecl); 2464 } 2465 2466 Actions.FinalizeDeclaration(ThisDecl); 2467 2468 return ThisDecl; 2469 } 2470 2471 /// ParseSpecifierQualifierList 2472 /// specifier-qualifier-list: 2473 /// type-specifier specifier-qualifier-list[opt] 2474 /// type-qualifier specifier-qualifier-list[opt] 2475 /// [GNU] attributes specifier-qualifier-list[opt] 2476 /// 2477 void Parser::ParseSpecifierQualifierList(DeclSpec &DS, AccessSpecifier AS, 2478 DeclSpecContext DSC) { 2479 /// specifier-qualifier-list is a subset of declaration-specifiers. Just 2480 /// parse declaration-specifiers and complain about extra stuff. 2481 /// TODO: diagnose attribute-specifiers and alignment-specifiers. 2482 ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC); 2483 2484 // Validate declspec for type-name. 2485 unsigned Specs = DS.getParsedSpecifiers(); 2486 if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) { 2487 Diag(Tok, diag::err_expected_type); 2488 DS.SetTypeSpecError(); 2489 } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) { 2490 Diag(Tok, diag::err_typename_requires_specqual); 2491 if (!DS.hasTypeSpecifier()) 2492 DS.SetTypeSpecError(); 2493 } 2494 2495 // Issue diagnostic and remove storage class if present. 2496 if (Specs & DeclSpec::PQ_StorageClassSpecifier) { 2497 if (DS.getStorageClassSpecLoc().isValid()) 2498 Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass); 2499 else 2500 Diag(DS.getThreadStorageClassSpecLoc(), 2501 diag::err_typename_invalid_storageclass); 2502 DS.ClearStorageClassSpecs(); 2503 } 2504 2505 // Issue diagnostic and remove function specifier if present. 2506 if (Specs & DeclSpec::PQ_FunctionSpecifier) { 2507 if (DS.isInlineSpecified()) 2508 Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec); 2509 if (DS.isVirtualSpecified()) 2510 Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec); 2511 if (DS.hasExplicitSpecifier()) 2512 Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec); 2513 DS.ClearFunctionSpecs(); 2514 } 2515 2516 // Issue diagnostic and remove constexpr specifier if present. 2517 if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) { 2518 Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr) 2519 << DS.getConstexprSpecifier(); 2520 DS.ClearConstexprSpec(); 2521 } 2522 } 2523 2524 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the 2525 /// specified token is valid after the identifier in a declarator which 2526 /// immediately follows the declspec. For example, these things are valid: 2527 /// 2528 /// int x [ 4]; // direct-declarator 2529 /// int x ( int y); // direct-declarator 2530 /// int(int x ) // direct-declarator 2531 /// int x ; // simple-declaration 2532 /// int x = 17; // init-declarator-list 2533 /// int x , y; // init-declarator-list 2534 /// int x __asm__ ("foo"); // init-declarator-list 2535 /// int x : 4; // struct-declarator 2536 /// int x { 5}; // C++'0x unified initializers 2537 /// 2538 /// This is not, because 'x' does not immediately follow the declspec (though 2539 /// ')' happens to be valid anyway). 2540 /// int (x) 2541 /// 2542 static bool isValidAfterIdentifierInDeclarator(const Token &T) { 2543 return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi, 2544 tok::comma, tok::equal, tok::kw_asm, tok::l_brace, 2545 tok::colon); 2546 } 2547 2548 /// ParseImplicitInt - This method is called when we have an non-typename 2549 /// identifier in a declspec (which normally terminates the decl spec) when 2550 /// the declspec has no type specifier. In this case, the declspec is either 2551 /// malformed or is "implicit int" (in K&R and C89). 2552 /// 2553 /// This method handles diagnosing this prettily and returns false if the 2554 /// declspec is done being processed. If it recovers and thinks there may be 2555 /// other pieces of declspec after it, it returns true. 2556 /// 2557 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS, 2558 const ParsedTemplateInfo &TemplateInfo, 2559 AccessSpecifier AS, DeclSpecContext DSC, 2560 ParsedAttributesWithRange &Attrs) { 2561 assert(Tok.is(tok::identifier) && "should have identifier"); 2562 2563 SourceLocation Loc = Tok.getLocation(); 2564 // If we see an identifier that is not a type name, we normally would 2565 // parse it as the identifier being declared. However, when a typename 2566 // is typo'd or the definition is not included, this will incorrectly 2567 // parse the typename as the identifier name and fall over misparsing 2568 // later parts of the diagnostic. 2569 // 2570 // As such, we try to do some look-ahead in cases where this would 2571 // otherwise be an "implicit-int" case to see if this is invalid. For 2572 // example: "static foo_t x = 4;" In this case, if we parsed foo_t as 2573 // an identifier with implicit int, we'd get a parse error because the 2574 // next token is obviously invalid for a type. Parse these as a case 2575 // with an invalid type specifier. 2576 assert(!DS.hasTypeSpecifier() && "Type specifier checked above"); 2577 2578 // Since we know that this either implicit int (which is rare) or an 2579 // error, do lookahead to try to do better recovery. This never applies 2580 // within a type specifier. Outside of C++, we allow this even if the 2581 // language doesn't "officially" support implicit int -- we support 2582 // implicit int as an extension in C99 and C11. 2583 if (!isTypeSpecifier(DSC) && !getLangOpts().CPlusPlus && 2584 isValidAfterIdentifierInDeclarator(NextToken())) { 2585 // If this token is valid for implicit int, e.g. "static x = 4", then 2586 // we just avoid eating the identifier, so it will be parsed as the 2587 // identifier in the declarator. 2588 return false; 2589 } 2590 2591 // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic 2592 // for incomplete declarations such as `pipe p`. 2593 if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe()) 2594 return false; 2595 2596 if (getLangOpts().CPlusPlus && 2597 DS.getStorageClassSpec() == DeclSpec::SCS_auto) { 2598 // Don't require a type specifier if we have the 'auto' storage class 2599 // specifier in C++98 -- we'll promote it to a type specifier. 2600 if (SS) 2601 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false); 2602 return false; 2603 } 2604 2605 if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) && 2606 getLangOpts().MSVCCompat) { 2607 // Lookup of an unqualified type name has failed in MSVC compatibility mode. 2608 // Give Sema a chance to recover if we are in a template with dependent base 2609 // classes. 2610 if (ParsedType T = Actions.ActOnMSVCUnknownTypeName( 2611 *Tok.getIdentifierInfo(), Tok.getLocation(), 2612 DSC == DeclSpecContext::DSC_template_type_arg)) { 2613 const char *PrevSpec; 2614 unsigned DiagID; 2615 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, 2616 Actions.getASTContext().getPrintingPolicy()); 2617 DS.SetRangeEnd(Tok.getLocation()); 2618 ConsumeToken(); 2619 return false; 2620 } 2621 } 2622 2623 // Otherwise, if we don't consume this token, we are going to emit an 2624 // error anyway. Try to recover from various common problems. Check 2625 // to see if this was a reference to a tag name without a tag specified. 2626 // This is a common problem in C (saying 'foo' instead of 'struct foo'). 2627 // 2628 // C++ doesn't need this, and isTagName doesn't take SS. 2629 if (SS == nullptr) { 2630 const char *TagName = nullptr, *FixitTagName = nullptr; 2631 tok::TokenKind TagKind = tok::unknown; 2632 2633 switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) { 2634 default: break; 2635 case DeclSpec::TST_enum: 2636 TagName="enum" ; FixitTagName = "enum " ; TagKind=tok::kw_enum ;break; 2637 case DeclSpec::TST_union: 2638 TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break; 2639 case DeclSpec::TST_struct: 2640 TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break; 2641 case DeclSpec::TST_interface: 2642 TagName="__interface"; FixitTagName = "__interface "; 2643 TagKind=tok::kw___interface;break; 2644 case DeclSpec::TST_class: 2645 TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break; 2646 } 2647 2648 if (TagName) { 2649 IdentifierInfo *TokenName = Tok.getIdentifierInfo(); 2650 LookupResult R(Actions, TokenName, SourceLocation(), 2651 Sema::LookupOrdinaryName); 2652 2653 Diag(Loc, diag::err_use_of_tag_name_without_tag) 2654 << TokenName << TagName << getLangOpts().CPlusPlus 2655 << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName); 2656 2657 if (Actions.LookupParsedName(R, getCurScope(), SS)) { 2658 for (LookupResult::iterator I = R.begin(), IEnd = R.end(); 2659 I != IEnd; ++I) 2660 Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type) 2661 << TokenName << TagName; 2662 } 2663 2664 // Parse this as a tag as if the missing tag were present. 2665 if (TagKind == tok::kw_enum) 2666 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, 2667 DeclSpecContext::DSC_normal); 2668 else 2669 ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS, 2670 /*EnteringContext*/ false, 2671 DeclSpecContext::DSC_normal, Attrs); 2672 return true; 2673 } 2674 } 2675 2676 // Determine whether this identifier could plausibly be the name of something 2677 // being declared (with a missing type). 2678 if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level || 2679 DSC == DeclSpecContext::DSC_class)) { 2680 // Look ahead to the next token to try to figure out what this declaration 2681 // was supposed to be. 2682 switch (NextToken().getKind()) { 2683 case tok::l_paren: { 2684 // static x(4); // 'x' is not a type 2685 // x(int n); // 'x' is not a type 2686 // x (*p)[]; // 'x' is a type 2687 // 2688 // Since we're in an error case, we can afford to perform a tentative 2689 // parse to determine which case we're in. 2690 TentativeParsingAction PA(*this); 2691 ConsumeToken(); 2692 TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false); 2693 PA.Revert(); 2694 2695 if (TPR != TPResult::False) { 2696 // The identifier is followed by a parenthesized declarator. 2697 // It's supposed to be a type. 2698 break; 2699 } 2700 2701 // If we're in a context where we could be declaring a constructor, 2702 // check whether this is a constructor declaration with a bogus name. 2703 if (DSC == DeclSpecContext::DSC_class || 2704 (DSC == DeclSpecContext::DSC_top_level && SS)) { 2705 IdentifierInfo *II = Tok.getIdentifierInfo(); 2706 if (Actions.isCurrentClassNameTypo(II, SS)) { 2707 Diag(Loc, diag::err_constructor_bad_name) 2708 << Tok.getIdentifierInfo() << II 2709 << FixItHint::CreateReplacement(Tok.getLocation(), II->getName()); 2710 Tok.setIdentifierInfo(II); 2711 } 2712 } 2713 // Fall through. 2714 LLVM_FALLTHROUGH; 2715 } 2716 case tok::comma: 2717 case tok::equal: 2718 case tok::kw_asm: 2719 case tok::l_brace: 2720 case tok::l_square: 2721 case tok::semi: 2722 // This looks like a variable or function declaration. The type is 2723 // probably missing. We're done parsing decl-specifiers. 2724 // But only if we are not in a function prototype scope. 2725 if (getCurScope()->isFunctionPrototypeScope()) 2726 break; 2727 if (SS) 2728 AnnotateScopeToken(*SS, /*IsNewAnnotation*/false); 2729 return false; 2730 2731 default: 2732 // This is probably supposed to be a type. This includes cases like: 2733 // int f(itn); 2734 // struct S { unsinged : 4; }; 2735 break; 2736 } 2737 } 2738 2739 // This is almost certainly an invalid type name. Let Sema emit a diagnostic 2740 // and attempt to recover. 2741 ParsedType T; 2742 IdentifierInfo *II = Tok.getIdentifierInfo(); 2743 bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less); 2744 Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T, 2745 IsTemplateName); 2746 if (T) { 2747 // The action has suggested that the type T could be used. Set that as 2748 // the type in the declaration specifiers, consume the would-be type 2749 // name token, and we're done. 2750 const char *PrevSpec; 2751 unsigned DiagID; 2752 DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T, 2753 Actions.getASTContext().getPrintingPolicy()); 2754 DS.SetRangeEnd(Tok.getLocation()); 2755 ConsumeToken(); 2756 // There may be other declaration specifiers after this. 2757 return true; 2758 } else if (II != Tok.getIdentifierInfo()) { 2759 // If no type was suggested, the correction is to a keyword 2760 Tok.setKind(II->getTokenID()); 2761 // There may be other declaration specifiers after this. 2762 return true; 2763 } 2764 2765 // Otherwise, the action had no suggestion for us. Mark this as an error. 2766 DS.SetTypeSpecError(); 2767 DS.SetRangeEnd(Tok.getLocation()); 2768 ConsumeToken(); 2769 2770 // Eat any following template arguments. 2771 if (IsTemplateName) { 2772 SourceLocation LAngle, RAngle; 2773 TemplateArgList Args; 2774 ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle); 2775 } 2776 2777 // TODO: Could inject an invalid typedef decl in an enclosing scope to 2778 // avoid rippling error messages on subsequent uses of the same type, 2779 // could be useful if #include was forgotten. 2780 return true; 2781 } 2782 2783 /// Determine the declaration specifier context from the declarator 2784 /// context. 2785 /// 2786 /// \param Context the declarator context, which is one of the 2787 /// DeclaratorContext enumerator values. 2788 Parser::DeclSpecContext 2789 Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) { 2790 if (Context == DeclaratorContext::MemberContext) 2791 return DeclSpecContext::DSC_class; 2792 if (Context == DeclaratorContext::FileContext) 2793 return DeclSpecContext::DSC_top_level; 2794 if (Context == DeclaratorContext::TemplateParamContext) 2795 return DeclSpecContext::DSC_template_param; 2796 if (Context == DeclaratorContext::TemplateArgContext || 2797 Context == DeclaratorContext::TemplateTypeArgContext) 2798 return DeclSpecContext::DSC_template_type_arg; 2799 if (Context == DeclaratorContext::TrailingReturnContext || 2800 Context == DeclaratorContext::TrailingReturnVarContext) 2801 return DeclSpecContext::DSC_trailing; 2802 if (Context == DeclaratorContext::AliasDeclContext || 2803 Context == DeclaratorContext::AliasTemplateContext) 2804 return DeclSpecContext::DSC_alias_declaration; 2805 return DeclSpecContext::DSC_normal; 2806 } 2807 2808 /// ParseAlignArgument - Parse the argument to an alignment-specifier. 2809 /// 2810 /// FIXME: Simply returns an alignof() expression if the argument is a 2811 /// type. Ideally, the type should be propagated directly into Sema. 2812 /// 2813 /// [C11] type-id 2814 /// [C11] constant-expression 2815 /// [C++0x] type-id ...[opt] 2816 /// [C++0x] assignment-expression ...[opt] 2817 ExprResult Parser::ParseAlignArgument(SourceLocation Start, 2818 SourceLocation &EllipsisLoc) { 2819 ExprResult ER; 2820 if (isTypeIdInParens()) { 2821 SourceLocation TypeLoc = Tok.getLocation(); 2822 ParsedType Ty = ParseTypeName().get(); 2823 SourceRange TypeRange(Start, Tok.getLocation()); 2824 ER = Actions.ActOnUnaryExprOrTypeTraitExpr(TypeLoc, UETT_AlignOf, true, 2825 Ty.getAsOpaquePtr(), TypeRange); 2826 } else 2827 ER = ParseConstantExpression(); 2828 2829 if (getLangOpts().CPlusPlus11) 2830 TryConsumeToken(tok::ellipsis, EllipsisLoc); 2831 2832 return ER; 2833 } 2834 2835 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the 2836 /// attribute to Attrs. 2837 /// 2838 /// alignment-specifier: 2839 /// [C11] '_Alignas' '(' type-id ')' 2840 /// [C11] '_Alignas' '(' constant-expression ')' 2841 /// [C++11] 'alignas' '(' type-id ...[opt] ')' 2842 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')' 2843 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs, 2844 SourceLocation *EndLoc) { 2845 assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) && 2846 "Not an alignment-specifier!"); 2847 2848 IdentifierInfo *KWName = Tok.getIdentifierInfo(); 2849 SourceLocation KWLoc = ConsumeToken(); 2850 2851 BalancedDelimiterTracker T(*this, tok::l_paren); 2852 if (T.expectAndConsume()) 2853 return; 2854 2855 SourceLocation EllipsisLoc; 2856 ExprResult ArgExpr = ParseAlignArgument(T.getOpenLocation(), EllipsisLoc); 2857 if (ArgExpr.isInvalid()) { 2858 T.skipToEnd(); 2859 return; 2860 } 2861 2862 T.consumeClose(); 2863 if (EndLoc) 2864 *EndLoc = T.getCloseLocation(); 2865 2866 ArgsVector ArgExprs; 2867 ArgExprs.push_back(ArgExpr.get()); 2868 Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1, 2869 ParsedAttr::AS_Keyword, EllipsisLoc); 2870 } 2871 2872 /// Determine whether we're looking at something that might be a declarator 2873 /// in a simple-declaration. If it can't possibly be a declarator, maybe 2874 /// diagnose a missing semicolon after a prior tag definition in the decl 2875 /// specifier. 2876 /// 2877 /// \return \c true if an error occurred and this can't be any kind of 2878 /// declaration. 2879 bool 2880 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS, 2881 DeclSpecContext DSContext, 2882 LateParsedAttrList *LateAttrs) { 2883 assert(DS.hasTagDefinition() && "shouldn't call this"); 2884 2885 bool EnteringContext = (DSContext == DeclSpecContext::DSC_class || 2886 DSContext == DeclSpecContext::DSC_top_level); 2887 2888 if (getLangOpts().CPlusPlus && 2889 Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype, 2890 tok::annot_template_id) && 2891 TryAnnotateCXXScopeToken(EnteringContext)) { 2892 SkipMalformedDecl(); 2893 return true; 2894 } 2895 2896 bool HasScope = Tok.is(tok::annot_cxxscope); 2897 // Make a copy in case GetLookAheadToken invalidates the result of NextToken. 2898 Token AfterScope = HasScope ? NextToken() : Tok; 2899 2900 // Determine whether the following tokens could possibly be a 2901 // declarator. 2902 bool MightBeDeclarator = true; 2903 if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) { 2904 // A declarator-id can't start with 'typename'. 2905 MightBeDeclarator = false; 2906 } else if (AfterScope.is(tok::annot_template_id)) { 2907 // If we have a type expressed as a template-id, this cannot be a 2908 // declarator-id (such a type cannot be redeclared in a simple-declaration). 2909 TemplateIdAnnotation *Annot = 2910 static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue()); 2911 if (Annot->Kind == TNK_Type_template) 2912 MightBeDeclarator = false; 2913 } else if (AfterScope.is(tok::identifier)) { 2914 const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken(); 2915 2916 // These tokens cannot come after the declarator-id in a 2917 // simple-declaration, and are likely to come after a type-specifier. 2918 if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier, 2919 tok::annot_cxxscope, tok::coloncolon)) { 2920 // Missing a semicolon. 2921 MightBeDeclarator = false; 2922 } else if (HasScope) { 2923 // If the declarator-id has a scope specifier, it must redeclare a 2924 // previously-declared entity. If that's a type (and this is not a 2925 // typedef), that's an error. 2926 CXXScopeSpec SS; 2927 Actions.RestoreNestedNameSpecifierAnnotation( 2928 Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS); 2929 IdentifierInfo *Name = AfterScope.getIdentifierInfo(); 2930 Sema::NameClassification Classification = Actions.ClassifyName( 2931 getCurScope(), SS, Name, AfterScope.getLocation(), Next, 2932 /*CCC=*/nullptr); 2933 switch (Classification.getKind()) { 2934 case Sema::NC_Error: 2935 SkipMalformedDecl(); 2936 return true; 2937 2938 case Sema::NC_Keyword: 2939 llvm_unreachable("typo correction is not possible here"); 2940 2941 case Sema::NC_Type: 2942 case Sema::NC_TypeTemplate: 2943 case Sema::NC_UndeclaredNonType: 2944 case Sema::NC_UndeclaredTemplate: 2945 // Not a previously-declared non-type entity. 2946 MightBeDeclarator = false; 2947 break; 2948 2949 case Sema::NC_Unknown: 2950 case Sema::NC_NonType: 2951 case Sema::NC_DependentNonType: 2952 case Sema::NC_ContextIndependentExpr: 2953 case Sema::NC_VarTemplate: 2954 case Sema::NC_FunctionTemplate: 2955 // Might be a redeclaration of a prior entity. 2956 break; 2957 } 2958 } 2959 } 2960 2961 if (MightBeDeclarator) 2962 return false; 2963 2964 const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy(); 2965 Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()), 2966 diag::err_expected_after) 2967 << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi; 2968 2969 // Try to recover from the typo, by dropping the tag definition and parsing 2970 // the problematic tokens as a type. 2971 // 2972 // FIXME: Split the DeclSpec into pieces for the standalone 2973 // declaration and pieces for the following declaration, instead 2974 // of assuming that all the other pieces attach to new declaration, 2975 // and call ParsedFreeStandingDeclSpec as appropriate. 2976 DS.ClearTypeSpecType(); 2977 ParsedTemplateInfo NotATemplate; 2978 ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs); 2979 return false; 2980 } 2981 2982 // Choose the apprpriate diagnostic error for why fixed point types are 2983 // disabled, set the previous specifier, and mark as invalid. 2984 static void SetupFixedPointError(const LangOptions &LangOpts, 2985 const char *&PrevSpec, unsigned &DiagID, 2986 bool &isInvalid) { 2987 assert(!LangOpts.FixedPoint); 2988 DiagID = diag::err_fixed_point_not_enabled; 2989 PrevSpec = ""; // Not used by diagnostic 2990 isInvalid = true; 2991 } 2992 2993 /// ParseDeclarationSpecifiers 2994 /// declaration-specifiers: [C99 6.7] 2995 /// storage-class-specifier declaration-specifiers[opt] 2996 /// type-specifier declaration-specifiers[opt] 2997 /// [C99] function-specifier declaration-specifiers[opt] 2998 /// [C11] alignment-specifier declaration-specifiers[opt] 2999 /// [GNU] attributes declaration-specifiers[opt] 3000 /// [Clang] '__module_private__' declaration-specifiers[opt] 3001 /// [ObjC1] '__kindof' declaration-specifiers[opt] 3002 /// 3003 /// storage-class-specifier: [C99 6.7.1] 3004 /// 'typedef' 3005 /// 'extern' 3006 /// 'static' 3007 /// 'auto' 3008 /// 'register' 3009 /// [C++] 'mutable' 3010 /// [C++11] 'thread_local' 3011 /// [C11] '_Thread_local' 3012 /// [GNU] '__thread' 3013 /// function-specifier: [C99 6.7.4] 3014 /// [C99] 'inline' 3015 /// [C++] 'virtual' 3016 /// [C++] 'explicit' 3017 /// [OpenCL] '__kernel' 3018 /// 'friend': [C++ dcl.friend] 3019 /// 'constexpr': [C++0x dcl.constexpr] 3020 void Parser::ParseDeclarationSpecifiers(DeclSpec &DS, 3021 const ParsedTemplateInfo &TemplateInfo, 3022 AccessSpecifier AS, 3023 DeclSpecContext DSContext, 3024 LateParsedAttrList *LateAttrs) { 3025 if (DS.getSourceRange().isInvalid()) { 3026 // Start the range at the current token but make the end of the range 3027 // invalid. This will make the entire range invalid unless we successfully 3028 // consume a token. 3029 DS.SetRangeStart(Tok.getLocation()); 3030 DS.SetRangeEnd(SourceLocation()); 3031 } 3032 3033 bool EnteringContext = (DSContext == DeclSpecContext::DSC_class || 3034 DSContext == DeclSpecContext::DSC_top_level); 3035 bool AttrsLastTime = false; 3036 ParsedAttributesWithRange attrs(AttrFactory); 3037 // We use Sema's policy to get bool macros right. 3038 PrintingPolicy Policy = Actions.getPrintingPolicy(); 3039 while (1) { 3040 bool isInvalid = false; 3041 bool isStorageClass = false; 3042 const char *PrevSpec = nullptr; 3043 unsigned DiagID = 0; 3044 3045 // This value needs to be set to the location of the last token if the last 3046 // token of the specifier is already consumed. 3047 SourceLocation ConsumedEnd; 3048 3049 // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL 3050 // implementation for VS2013 uses _Atomic as an identifier for one of the 3051 // classes in <atomic>. 3052 // 3053 // A typedef declaration containing _Atomic<...> is among the places where 3054 // the class is used. If we are currently parsing such a declaration, treat 3055 // the token as an identifier. 3056 if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) && 3057 DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef && 3058 !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less)) 3059 Tok.setKind(tok::identifier); 3060 3061 SourceLocation Loc = Tok.getLocation(); 3062 3063 switch (Tok.getKind()) { 3064 default: 3065 DoneWithDeclSpec: 3066 if (!AttrsLastTime) 3067 ProhibitAttributes(attrs); 3068 else { 3069 // Reject C++11 attributes that appertain to decl specifiers as 3070 // we don't support any C++11 attributes that appertain to decl 3071 // specifiers. This also conforms to what g++ 4.8 is doing. 3072 ProhibitCXX11Attributes(attrs, diag::err_attribute_not_type_attr); 3073 3074 DS.takeAttributesFrom(attrs); 3075 } 3076 3077 // If this is not a declaration specifier token, we're done reading decl 3078 // specifiers. First verify that DeclSpec's are consistent. 3079 DS.Finish(Actions, Policy); 3080 return; 3081 3082 case tok::l_square: 3083 case tok::kw_alignas: 3084 if (!standardAttributesAllowed() || !isCXX11AttributeSpecifier()) 3085 goto DoneWithDeclSpec; 3086 3087 ProhibitAttributes(attrs); 3088 // FIXME: It would be good to recover by accepting the attributes, 3089 // but attempting to do that now would cause serious 3090 // madness in terms of diagnostics. 3091 attrs.clear(); 3092 attrs.Range = SourceRange(); 3093 3094 ParseCXX11Attributes(attrs); 3095 AttrsLastTime = true; 3096 continue; 3097 3098 case tok::code_completion: { 3099 Sema::ParserCompletionContext CCC = Sema::PCC_Namespace; 3100 if (DS.hasTypeSpecifier()) { 3101 bool AllowNonIdentifiers 3102 = (getCurScope()->getFlags() & (Scope::ControlScope | 3103 Scope::BlockScope | 3104 Scope::TemplateParamScope | 3105 Scope::FunctionPrototypeScope | 3106 Scope::AtCatchScope)) == 0; 3107 bool AllowNestedNameSpecifiers 3108 = DSContext == DeclSpecContext::DSC_top_level || 3109 (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified()); 3110 3111 Actions.CodeCompleteDeclSpec(getCurScope(), DS, 3112 AllowNonIdentifiers, 3113 AllowNestedNameSpecifiers); 3114 return cutOffParsing(); 3115 } 3116 3117 if (getCurScope()->getFnParent() || getCurScope()->getBlockParent()) 3118 CCC = Sema::PCC_LocalDeclarationSpecifiers; 3119 else if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate) 3120 CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate 3121 : Sema::PCC_Template; 3122 else if (DSContext == DeclSpecContext::DSC_class) 3123 CCC = Sema::PCC_Class; 3124 else if (CurParsedObjCImpl) 3125 CCC = Sema::PCC_ObjCImplementation; 3126 3127 Actions.CodeCompleteOrdinaryName(getCurScope(), CCC); 3128 return cutOffParsing(); 3129 } 3130 3131 case tok::coloncolon: // ::foo::bar 3132 // C++ scope specifier. Annotate and loop, or bail out on error. 3133 if (TryAnnotateCXXScopeToken(EnteringContext)) { 3134 if (!DS.hasTypeSpecifier()) 3135 DS.SetTypeSpecError(); 3136 goto DoneWithDeclSpec; 3137 } 3138 if (Tok.is(tok::coloncolon)) // ::new or ::delete 3139 goto DoneWithDeclSpec; 3140 continue; 3141 3142 case tok::annot_cxxscope: { 3143 if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector()) 3144 goto DoneWithDeclSpec; 3145 3146 CXXScopeSpec SS; 3147 Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(), 3148 Tok.getAnnotationRange(), 3149 SS); 3150 3151 // We are looking for a qualified typename. 3152 Token Next = NextToken(); 3153 if (Next.is(tok::annot_template_id) && 3154 static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue()) 3155 ->Kind == TNK_Type_template) { 3156 // We have a qualified template-id, e.g., N::A<int> 3157 3158 // If this would be a valid constructor declaration with template 3159 // arguments, we will reject the attempt to form an invalid type-id 3160 // referring to the injected-class-name when we annotate the token, 3161 // per C++ [class.qual]p2. 3162 // 3163 // To improve diagnostics for this case, parse the declaration as a 3164 // constructor (and reject the extra template arguments later). 3165 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Next); 3166 if ((DSContext == DeclSpecContext::DSC_top_level || 3167 DSContext == DeclSpecContext::DSC_class) && 3168 TemplateId->Name && 3169 Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) && 3170 isConstructorDeclarator(/*Unqualified*/ false)) { 3171 // The user meant this to be an out-of-line constructor 3172 // definition, but template arguments are not allowed 3173 // there. Just allow this as a constructor; we'll 3174 // complain about it later. 3175 goto DoneWithDeclSpec; 3176 } 3177 3178 DS.getTypeSpecScope() = SS; 3179 ConsumeAnnotationToken(); // The C++ scope. 3180 assert(Tok.is(tok::annot_template_id) && 3181 "ParseOptionalCXXScopeSpecifier not working"); 3182 AnnotateTemplateIdTokenAsType(); 3183 continue; 3184 } 3185 3186 if (Next.is(tok::annot_typename)) { 3187 DS.getTypeSpecScope() = SS; 3188 ConsumeAnnotationToken(); // The C++ scope. 3189 if (Tok.getAnnotationValue()) { 3190 ParsedType T = getTypeAnnotation(Tok); 3191 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, 3192 Tok.getAnnotationEndLoc(), 3193 PrevSpec, DiagID, T, Policy); 3194 if (isInvalid) 3195 break; 3196 } 3197 else 3198 DS.SetTypeSpecError(); 3199 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 3200 ConsumeAnnotationToken(); // The typename 3201 } 3202 3203 if (Next.isNot(tok::identifier)) 3204 goto DoneWithDeclSpec; 3205 3206 // Check whether this is a constructor declaration. If we're in a 3207 // context where the identifier could be a class name, and it has the 3208 // shape of a constructor declaration, process it as one. 3209 if ((DSContext == DeclSpecContext::DSC_top_level || 3210 DSContext == DeclSpecContext::DSC_class) && 3211 Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(), 3212 &SS) && 3213 isConstructorDeclarator(/*Unqualified*/ false)) 3214 goto DoneWithDeclSpec; 3215 3216 ParsedType TypeRep = 3217 Actions.getTypeName(*Next.getIdentifierInfo(), Next.getLocation(), 3218 getCurScope(), &SS, false, false, nullptr, 3219 /*IsCtorOrDtorName=*/false, 3220 /*WantNontrivialTypeSourceInfo=*/true, 3221 isClassTemplateDeductionContext(DSContext)); 3222 3223 // If the referenced identifier is not a type, then this declspec is 3224 // erroneous: We already checked about that it has no type specifier, and 3225 // C++ doesn't have implicit int. Diagnose it as a typo w.r.t. to the 3226 // typename. 3227 if (!TypeRep) { 3228 // Eat the scope spec so the identifier is current. 3229 ConsumeAnnotationToken(); 3230 ParsedAttributesWithRange Attrs(AttrFactory); 3231 if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) { 3232 if (!Attrs.empty()) { 3233 AttrsLastTime = true; 3234 attrs.takeAllFrom(Attrs); 3235 } 3236 continue; 3237 } 3238 goto DoneWithDeclSpec; 3239 } 3240 3241 DS.getTypeSpecScope() = SS; 3242 ConsumeAnnotationToken(); // The C++ scope. 3243 3244 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, 3245 DiagID, TypeRep, Policy); 3246 if (isInvalid) 3247 break; 3248 3249 DS.SetRangeEnd(Tok.getLocation()); 3250 ConsumeToken(); // The typename. 3251 3252 continue; 3253 } 3254 3255 case tok::annot_typename: { 3256 // If we've previously seen a tag definition, we were almost surely 3257 // missing a semicolon after it. 3258 if (DS.hasTypeSpecifier() && DS.hasTagDefinition()) 3259 goto DoneWithDeclSpec; 3260 3261 if (Tok.getAnnotationValue()) { 3262 ParsedType T = getTypeAnnotation(Tok); 3263 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, 3264 DiagID, T, Policy); 3265 } else 3266 DS.SetTypeSpecError(); 3267 3268 if (isInvalid) 3269 break; 3270 3271 DS.SetRangeEnd(Tok.getAnnotationEndLoc()); 3272 ConsumeAnnotationToken(); // The typename 3273 3274 continue; 3275 } 3276 3277 case tok::kw___is_signed: 3278 // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang 3279 // typically treats it as a trait. If we see __is_signed as it appears 3280 // in libstdc++, e.g., 3281 // 3282 // static const bool __is_signed; 3283 // 3284 // then treat __is_signed as an identifier rather than as a keyword. 3285 if (DS.getTypeSpecType() == TST_bool && 3286 DS.getTypeQualifiers() == DeclSpec::TQ_const && 3287 DS.getStorageClassSpec() == DeclSpec::SCS_static) 3288 TryKeywordIdentFallback(true); 3289 3290 // We're done with the declaration-specifiers. 3291 goto DoneWithDeclSpec; 3292 3293 // typedef-name 3294 case tok::kw___super: 3295 case tok::kw_decltype: 3296 case tok::identifier: { 3297 // This identifier can only be a typedef name if we haven't already seen 3298 // a type-specifier. Without this check we misparse: 3299 // typedef int X; struct Y { short X; }; as 'short int'. 3300 if (DS.hasTypeSpecifier()) 3301 goto DoneWithDeclSpec; 3302 3303 // If the token is an identifier named "__declspec" and Microsoft 3304 // extensions are not enabled, it is likely that there will be cascading 3305 // parse errors if this really is a __declspec attribute. Attempt to 3306 // recognize that scenario and recover gracefully. 3307 if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) && 3308 Tok.getIdentifierInfo()->getName().equals("__declspec")) { 3309 Diag(Loc, diag::err_ms_attributes_not_enabled); 3310 3311 // The next token should be an open paren. If it is, eat the entire 3312 // attribute declaration and continue. 3313 if (NextToken().is(tok::l_paren)) { 3314 // Consume the __declspec identifier. 3315 ConsumeToken(); 3316 3317 // Eat the parens and everything between them. 3318 BalancedDelimiterTracker T(*this, tok::l_paren); 3319 if (T.consumeOpen()) { 3320 assert(false && "Not a left paren?"); 3321 return; 3322 } 3323 T.skipToEnd(); 3324 continue; 3325 } 3326 } 3327 3328 // In C++, check to see if this is a scope specifier like foo::bar::, if 3329 // so handle it as such. This is important for ctor parsing. 3330 if (getLangOpts().CPlusPlus) { 3331 if (TryAnnotateCXXScopeToken(EnteringContext)) { 3332 DS.SetTypeSpecError(); 3333 goto DoneWithDeclSpec; 3334 } 3335 if (!Tok.is(tok::identifier)) 3336 continue; 3337 } 3338 3339 // Check for need to substitute AltiVec keyword tokens. 3340 if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid)) 3341 break; 3342 3343 // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not 3344 // allow the use of a typedef name as a type specifier. 3345 if (DS.isTypeAltiVecVector()) 3346 goto DoneWithDeclSpec; 3347 3348 if (DSContext == DeclSpecContext::DSC_objc_method_result && 3349 isObjCInstancetype()) { 3350 ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc); 3351 assert(TypeRep); 3352 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, 3353 DiagID, TypeRep, Policy); 3354 if (isInvalid) 3355 break; 3356 3357 DS.SetRangeEnd(Loc); 3358 ConsumeToken(); 3359 continue; 3360 } 3361 3362 // If we're in a context where the identifier could be a class name, 3363 // check whether this is a constructor declaration. 3364 if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class && 3365 Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) && 3366 isConstructorDeclarator(/*Unqualified*/true)) 3367 goto DoneWithDeclSpec; 3368 3369 ParsedType TypeRep = Actions.getTypeName( 3370 *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr, 3371 false, false, nullptr, false, false, 3372 isClassTemplateDeductionContext(DSContext)); 3373 3374 // If this is not a typedef name, don't parse it as part of the declspec, 3375 // it must be an implicit int or an error. 3376 if (!TypeRep) { 3377 ParsedAttributesWithRange Attrs(AttrFactory); 3378 if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) { 3379 if (!Attrs.empty()) { 3380 AttrsLastTime = true; 3381 attrs.takeAllFrom(Attrs); 3382 } 3383 continue; 3384 } 3385 goto DoneWithDeclSpec; 3386 } 3387 3388 // Likewise, if this is a context where the identifier could be a template 3389 // name, check whether this is a deduction guide declaration. 3390 if (getLangOpts().CPlusPlus17 && 3391 (DSContext == DeclSpecContext::DSC_class || 3392 DSContext == DeclSpecContext::DSC_top_level) && 3393 Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(), 3394 Tok.getLocation()) && 3395 isConstructorDeclarator(/*Unqualified*/ true, 3396 /*DeductionGuide*/ true)) 3397 goto DoneWithDeclSpec; 3398 3399 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, 3400 DiagID, TypeRep, Policy); 3401 if (isInvalid) 3402 break; 3403 3404 DS.SetRangeEnd(Tok.getLocation()); 3405 ConsumeToken(); // The identifier 3406 3407 // Objective-C supports type arguments and protocol references 3408 // following an Objective-C object or object pointer 3409 // type. Handle either one of them. 3410 if (Tok.is(tok::less) && getLangOpts().ObjC) { 3411 SourceLocation NewEndLoc; 3412 TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers( 3413 Loc, TypeRep, /*consumeLastToken=*/true, 3414 NewEndLoc); 3415 if (NewTypeRep.isUsable()) { 3416 DS.UpdateTypeRep(NewTypeRep.get()); 3417 DS.SetRangeEnd(NewEndLoc); 3418 } 3419 } 3420 3421 // Need to support trailing type qualifiers (e.g. "id<p> const"). 3422 // If a type specifier follows, it will be diagnosed elsewhere. 3423 continue; 3424 } 3425 3426 // type-name 3427 case tok::annot_template_id: { 3428 TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok); 3429 if (TemplateId->Kind != TNK_Type_template && 3430 TemplateId->Kind != TNK_Undeclared_template) { 3431 // This template-id does not refer to a type name, so we're 3432 // done with the type-specifiers. 3433 goto DoneWithDeclSpec; 3434 } 3435 3436 // If we're in a context where the template-id could be a 3437 // constructor name or specialization, check whether this is a 3438 // constructor declaration. 3439 if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class && 3440 Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) && 3441 isConstructorDeclarator(TemplateId->SS.isEmpty())) 3442 goto DoneWithDeclSpec; 3443 3444 // Turn the template-id annotation token into a type annotation 3445 // token, then try again to parse it as a type-specifier. 3446 AnnotateTemplateIdTokenAsType(); 3447 continue; 3448 } 3449 3450 // GNU attributes support. 3451 case tok::kw___attribute: 3452 ParseGNUAttributes(DS.getAttributes(), nullptr, LateAttrs); 3453 continue; 3454 3455 // Microsoft declspec support. 3456 case tok::kw___declspec: 3457 ParseMicrosoftDeclSpecs(DS.getAttributes()); 3458 continue; 3459 3460 // Microsoft single token adornments. 3461 case tok::kw___forceinline: { 3462 isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID); 3463 IdentifierInfo *AttrName = Tok.getIdentifierInfo(); 3464 SourceLocation AttrNameLoc = Tok.getLocation(); 3465 DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, 3466 nullptr, 0, ParsedAttr::AS_Keyword); 3467 break; 3468 } 3469 3470 case tok::kw___unaligned: 3471 isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID, 3472 getLangOpts()); 3473 break; 3474 3475 case tok::kw___sptr: 3476 case tok::kw___uptr: 3477 case tok::kw___ptr64: 3478 case tok::kw___ptr32: 3479 case tok::kw___w64: 3480 case tok::kw___cdecl: 3481 case tok::kw___stdcall: 3482 case tok::kw___fastcall: 3483 case tok::kw___thiscall: 3484 case tok::kw___regcall: 3485 case tok::kw___vectorcall: 3486 ParseMicrosoftTypeAttributes(DS.getAttributes()); 3487 continue; 3488 3489 // Borland single token adornments. 3490 case tok::kw___pascal: 3491 ParseBorlandTypeAttributes(DS.getAttributes()); 3492 continue; 3493 3494 // OpenCL single token adornments. 3495 case tok::kw___kernel: 3496 ParseOpenCLKernelAttributes(DS.getAttributes()); 3497 continue; 3498 3499 // Nullability type specifiers. 3500 case tok::kw__Nonnull: 3501 case tok::kw__Nullable: 3502 case tok::kw__Null_unspecified: 3503 ParseNullabilityTypeSpecifiers(DS.getAttributes()); 3504 continue; 3505 3506 // Objective-C 'kindof' types. 3507 case tok::kw___kindof: 3508 DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc, 3509 nullptr, 0, ParsedAttr::AS_Keyword); 3510 (void)ConsumeToken(); 3511 continue; 3512 3513 // storage-class-specifier 3514 case tok::kw_typedef: 3515 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc, 3516 PrevSpec, DiagID, Policy); 3517 isStorageClass = true; 3518 break; 3519 case tok::kw_extern: 3520 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread) 3521 Diag(Tok, diag::ext_thread_before) << "extern"; 3522 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc, 3523 PrevSpec, DiagID, Policy); 3524 isStorageClass = true; 3525 break; 3526 case tok::kw___private_extern__: 3527 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern, 3528 Loc, PrevSpec, DiagID, Policy); 3529 isStorageClass = true; 3530 break; 3531 case tok::kw_static: 3532 if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread) 3533 Diag(Tok, diag::ext_thread_before) << "static"; 3534 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc, 3535 PrevSpec, DiagID, Policy); 3536 isStorageClass = true; 3537 break; 3538 case tok::kw_auto: 3539 if (getLangOpts().CPlusPlus11) { 3540 if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) { 3541 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, 3542 PrevSpec, DiagID, Policy); 3543 if (!isInvalid) 3544 Diag(Tok, diag::ext_auto_storage_class) 3545 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc()); 3546 } else 3547 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec, 3548 DiagID, Policy); 3549 } else 3550 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc, 3551 PrevSpec, DiagID, Policy); 3552 isStorageClass = true; 3553 break; 3554 case tok::kw___auto_type: 3555 Diag(Tok, diag::ext_auto_type); 3556 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec, 3557 DiagID, Policy); 3558 break; 3559 case tok::kw_register: 3560 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc, 3561 PrevSpec, DiagID, Policy); 3562 isStorageClass = true; 3563 break; 3564 case tok::kw_mutable: 3565 isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc, 3566 PrevSpec, DiagID, Policy); 3567 isStorageClass = true; 3568 break; 3569 case tok::kw___thread: 3570 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc, 3571 PrevSpec, DiagID); 3572 isStorageClass = true; 3573 break; 3574 case tok::kw_thread_local: 3575 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS_thread_local, Loc, 3576 PrevSpec, DiagID); 3577 isStorageClass = true; 3578 break; 3579 case tok::kw__Thread_local: 3580 if (!getLangOpts().C11) 3581 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3582 isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local, 3583 Loc, PrevSpec, DiagID); 3584 isStorageClass = true; 3585 break; 3586 3587 // function-specifier 3588 case tok::kw_inline: 3589 isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID); 3590 break; 3591 case tok::kw_virtual: 3592 // C++ for OpenCL does not allow virtual function qualifier, to avoid 3593 // function pointers restricted in OpenCL v2.0 s6.9.a. 3594 if (getLangOpts().OpenCLCPlusPlus) { 3595 DiagID = diag::err_openclcxx_virtual_function; 3596 PrevSpec = Tok.getIdentifierInfo()->getNameStart(); 3597 isInvalid = true; 3598 } 3599 else { 3600 isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID); 3601 } 3602 break; 3603 case tok::kw_explicit: { 3604 SourceLocation ExplicitLoc = Loc; 3605 SourceLocation CloseParenLoc; 3606 ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue); 3607 ConsumedEnd = ExplicitLoc; 3608 ConsumeToken(); // kw_explicit 3609 if (Tok.is(tok::l_paren)) { 3610 if (getLangOpts().CPlusPlus2a) { 3611 ExprResult ExplicitExpr(static_cast<Expr *>(nullptr)); 3612 BalancedDelimiterTracker Tracker(*this, tok::l_paren); 3613 Tracker.consumeOpen(); 3614 ExplicitExpr = ParseConstantExpression(); 3615 ConsumedEnd = Tok.getLocation(); 3616 if (ExplicitExpr.isUsable()) { 3617 CloseParenLoc = Tok.getLocation(); 3618 Tracker.consumeClose(); 3619 ExplicitSpec = 3620 Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get()); 3621 } else 3622 Tracker.skipToEnd(); 3623 } else 3624 Diag(Tok.getLocation(), diag::warn_cxx2a_compat_explicit_bool); 3625 } 3626 isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID, 3627 ExplicitSpec, CloseParenLoc); 3628 break; 3629 } 3630 case tok::kw__Noreturn: 3631 if (!getLangOpts().C11) 3632 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3633 isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID); 3634 break; 3635 3636 // alignment-specifier 3637 case tok::kw__Alignas: 3638 if (!getLangOpts().C11) 3639 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3640 ParseAlignmentSpecifier(DS.getAttributes()); 3641 continue; 3642 3643 // friend 3644 case tok::kw_friend: 3645 if (DSContext == DeclSpecContext::DSC_class) 3646 isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID); 3647 else { 3648 PrevSpec = ""; // not actually used by the diagnostic 3649 DiagID = diag::err_friend_invalid_in_context; 3650 isInvalid = true; 3651 } 3652 break; 3653 3654 // Modules 3655 case tok::kw___module_private__: 3656 isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID); 3657 break; 3658 3659 // constexpr, consteval, constinit specifiers 3660 case tok::kw_constexpr: 3661 isInvalid = DS.SetConstexprSpec(CSK_constexpr, Loc, PrevSpec, DiagID); 3662 break; 3663 case tok::kw_consteval: 3664 isInvalid = DS.SetConstexprSpec(CSK_consteval, Loc, PrevSpec, DiagID); 3665 break; 3666 case tok::kw_constinit: 3667 isInvalid = DS.SetConstexprSpec(CSK_constinit, Loc, PrevSpec, DiagID); 3668 break; 3669 3670 // type-specifier 3671 case tok::kw_short: 3672 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_short, Loc, PrevSpec, 3673 DiagID, Policy); 3674 break; 3675 case tok::kw_long: 3676 if (DS.getTypeSpecWidth() != DeclSpec::TSW_long) 3677 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_long, Loc, PrevSpec, 3678 DiagID, Policy); 3679 else 3680 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, 3681 DiagID, Policy); 3682 break; 3683 case tok::kw___int64: 3684 isInvalid = DS.SetTypeSpecWidth(DeclSpec::TSW_longlong, Loc, PrevSpec, 3685 DiagID, Policy); 3686 break; 3687 case tok::kw_signed: 3688 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_signed, Loc, PrevSpec, 3689 DiagID); 3690 break; 3691 case tok::kw_unsigned: 3692 isInvalid = DS.SetTypeSpecSign(DeclSpec::TSS_unsigned, Loc, PrevSpec, 3693 DiagID); 3694 break; 3695 case tok::kw__Complex: 3696 if (!getLangOpts().C99) 3697 Diag(Tok, diag::ext_c99_feature) << Tok.getName(); 3698 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec, 3699 DiagID); 3700 break; 3701 case tok::kw__Imaginary: 3702 if (!getLangOpts().C99) 3703 Diag(Tok, diag::ext_c99_feature) << Tok.getName(); 3704 isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec, 3705 DiagID); 3706 break; 3707 case tok::kw_void: 3708 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec, 3709 DiagID, Policy); 3710 break; 3711 case tok::kw_char: 3712 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec, 3713 DiagID, Policy); 3714 break; 3715 case tok::kw_int: 3716 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec, 3717 DiagID, Policy); 3718 break; 3719 case tok::kw___int128: 3720 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec, 3721 DiagID, Policy); 3722 break; 3723 case tok::kw_half: 3724 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec, 3725 DiagID, Policy); 3726 break; 3727 case tok::kw_float: 3728 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec, 3729 DiagID, Policy); 3730 break; 3731 case tok::kw_double: 3732 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec, 3733 DiagID, Policy); 3734 break; 3735 case tok::kw__Float16: 3736 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec, 3737 DiagID, Policy); 3738 break; 3739 case tok::kw__Accum: 3740 if (!getLangOpts().FixedPoint) { 3741 SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid); 3742 } else { 3743 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec, 3744 DiagID, Policy); 3745 } 3746 break; 3747 case tok::kw__Fract: 3748 if (!getLangOpts().FixedPoint) { 3749 SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid); 3750 } else { 3751 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec, 3752 DiagID, Policy); 3753 } 3754 break; 3755 case tok::kw__Sat: 3756 if (!getLangOpts().FixedPoint) { 3757 SetupFixedPointError(getLangOpts(), PrevSpec, DiagID, isInvalid); 3758 } else { 3759 isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID); 3760 } 3761 break; 3762 case tok::kw___float128: 3763 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec, 3764 DiagID, Policy); 3765 break; 3766 case tok::kw_wchar_t: 3767 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec, 3768 DiagID, Policy); 3769 break; 3770 case tok::kw_char8_t: 3771 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec, 3772 DiagID, Policy); 3773 break; 3774 case tok::kw_char16_t: 3775 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec, 3776 DiagID, Policy); 3777 break; 3778 case tok::kw_char32_t: 3779 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec, 3780 DiagID, Policy); 3781 break; 3782 case tok::kw_bool: 3783 case tok::kw__Bool: 3784 if (Tok.is(tok::kw__Bool) && !getLangOpts().C99) 3785 Diag(Tok, diag::ext_c99_feature) << Tok.getName(); 3786 3787 if (Tok.is(tok::kw_bool) && 3788 DS.getTypeSpecType() != DeclSpec::TST_unspecified && 3789 DS.getStorageClassSpec() == DeclSpec::SCS_typedef) { 3790 PrevSpec = ""; // Not used by the diagnostic. 3791 DiagID = diag::err_bool_redeclaration; 3792 // For better error recovery. 3793 Tok.setKind(tok::identifier); 3794 isInvalid = true; 3795 } else { 3796 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec, 3797 DiagID, Policy); 3798 } 3799 break; 3800 case tok::kw__Decimal32: 3801 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec, 3802 DiagID, Policy); 3803 break; 3804 case tok::kw__Decimal64: 3805 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec, 3806 DiagID, Policy); 3807 break; 3808 case tok::kw__Decimal128: 3809 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec, 3810 DiagID, Policy); 3811 break; 3812 case tok::kw___vector: 3813 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); 3814 break; 3815 case tok::kw___pixel: 3816 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy); 3817 break; 3818 case tok::kw___bool: 3819 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy); 3820 break; 3821 case tok::kw_pipe: 3822 if (!getLangOpts().OpenCL || (getLangOpts().OpenCLVersion < 200 && 3823 !getLangOpts().OpenCLCPlusPlus)) { 3824 // OpenCL 2.0 defined this keyword. OpenCL 1.2 and earlier should 3825 // support the "pipe" word as identifier. 3826 Tok.getIdentifierInfo()->revertTokenIDToIdentifier(); 3827 goto DoneWithDeclSpec; 3828 } 3829 isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy); 3830 break; 3831 #define GENERIC_IMAGE_TYPE(ImgType, Id) \ 3832 case tok::kw_##ImgType##_t: \ 3833 isInvalid = DS.SetTypeSpecType(DeclSpec::TST_##ImgType##_t, Loc, PrevSpec, \ 3834 DiagID, Policy); \ 3835 break; 3836 #include "clang/Basic/OpenCLImageTypes.def" 3837 case tok::kw___unknown_anytype: 3838 isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc, 3839 PrevSpec, DiagID, Policy); 3840 break; 3841 3842 // class-specifier: 3843 case tok::kw_class: 3844 case tok::kw_struct: 3845 case tok::kw___interface: 3846 case tok::kw_union: { 3847 tok::TokenKind Kind = Tok.getKind(); 3848 ConsumeToken(); 3849 3850 // These are attributes following class specifiers. 3851 // To produce better diagnostic, we parse them when 3852 // parsing class specifier. 3853 ParsedAttributesWithRange Attributes(AttrFactory); 3854 ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS, 3855 EnteringContext, DSContext, Attributes); 3856 3857 // If there are attributes following class specifier, 3858 // take them over and handle them here. 3859 if (!Attributes.empty()) { 3860 AttrsLastTime = true; 3861 attrs.takeAllFrom(Attributes); 3862 } 3863 continue; 3864 } 3865 3866 // enum-specifier: 3867 case tok::kw_enum: 3868 ConsumeToken(); 3869 ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext); 3870 continue; 3871 3872 // cv-qualifier: 3873 case tok::kw_const: 3874 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID, 3875 getLangOpts()); 3876 break; 3877 case tok::kw_volatile: 3878 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, 3879 getLangOpts()); 3880 break; 3881 case tok::kw_restrict: 3882 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, 3883 getLangOpts()); 3884 break; 3885 3886 // C++ typename-specifier: 3887 case tok::kw_typename: 3888 if (TryAnnotateTypeOrScopeToken()) { 3889 DS.SetTypeSpecError(); 3890 goto DoneWithDeclSpec; 3891 } 3892 if (!Tok.is(tok::kw_typename)) 3893 continue; 3894 break; 3895 3896 // GNU typeof support. 3897 case tok::kw_typeof: 3898 ParseTypeofSpecifier(DS); 3899 continue; 3900 3901 case tok::annot_decltype: 3902 ParseDecltypeSpecifier(DS); 3903 continue; 3904 3905 case tok::annot_pragma_pack: 3906 HandlePragmaPack(); 3907 continue; 3908 3909 case tok::annot_pragma_ms_pragma: 3910 HandlePragmaMSPragma(); 3911 continue; 3912 3913 case tok::annot_pragma_ms_vtordisp: 3914 HandlePragmaMSVtorDisp(); 3915 continue; 3916 3917 case tok::annot_pragma_ms_pointers_to_members: 3918 HandlePragmaMSPointersToMembers(); 3919 continue; 3920 3921 case tok::kw___underlying_type: 3922 ParseUnderlyingTypeSpecifier(DS); 3923 continue; 3924 3925 case tok::kw__Atomic: 3926 // C11 6.7.2.4/4: 3927 // If the _Atomic keyword is immediately followed by a left parenthesis, 3928 // it is interpreted as a type specifier (with a type name), not as a 3929 // type qualifier. 3930 if (!getLangOpts().C11) 3931 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 3932 3933 if (NextToken().is(tok::l_paren)) { 3934 ParseAtomicSpecifier(DS); 3935 continue; 3936 } 3937 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID, 3938 getLangOpts()); 3939 break; 3940 3941 // OpenCL address space qualifiers: 3942 case tok::kw___generic: 3943 // generic address space is introduced only in OpenCL v2.0 3944 // see OpenCL C Spec v2.0 s6.5.5 3945 if (Actions.getLangOpts().OpenCLVersion < 200 && 3946 !Actions.getLangOpts().OpenCLCPlusPlus) { 3947 DiagID = diag::err_opencl_unknown_type_specifier; 3948 PrevSpec = Tok.getIdentifierInfo()->getNameStart(); 3949 isInvalid = true; 3950 break; 3951 }; 3952 LLVM_FALLTHROUGH; 3953 case tok::kw_private: 3954 case tok::kw___private: 3955 case tok::kw___global: 3956 case tok::kw___local: 3957 case tok::kw___constant: 3958 // OpenCL access qualifiers: 3959 case tok::kw___read_only: 3960 case tok::kw___write_only: 3961 case tok::kw___read_write: 3962 ParseOpenCLQualifiers(DS.getAttributes()); 3963 break; 3964 3965 case tok::less: 3966 // GCC ObjC supports types like "<SomeProtocol>" as a synonym for 3967 // "id<SomeProtocol>". This is hopelessly old fashioned and dangerous, 3968 // but we support it. 3969 if (DS.hasTypeSpecifier() || !getLangOpts().ObjC) 3970 goto DoneWithDeclSpec; 3971 3972 SourceLocation StartLoc = Tok.getLocation(); 3973 SourceLocation EndLoc; 3974 TypeResult Type = parseObjCProtocolQualifierType(EndLoc); 3975 if (Type.isUsable()) { 3976 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc, 3977 PrevSpec, DiagID, Type.get(), 3978 Actions.getASTContext().getPrintingPolicy())) 3979 Diag(StartLoc, DiagID) << PrevSpec; 3980 3981 DS.SetRangeEnd(EndLoc); 3982 } else { 3983 DS.SetTypeSpecError(); 3984 } 3985 3986 // Need to support trailing type qualifiers (e.g. "id<p> const"). 3987 // If a type specifier follows, it will be diagnosed elsewhere. 3988 continue; 3989 } 3990 3991 DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation()); 3992 3993 // If the specifier wasn't legal, issue a diagnostic. 3994 if (isInvalid) { 3995 assert(PrevSpec && "Method did not return previous specifier!"); 3996 assert(DiagID); 3997 3998 if (DiagID == diag::ext_duplicate_declspec || 3999 DiagID == diag::ext_warn_duplicate_declspec || 4000 DiagID == diag::err_duplicate_declspec) 4001 Diag(Loc, DiagID) << PrevSpec 4002 << FixItHint::CreateRemoval( 4003 SourceRange(Loc, DS.getEndLoc())); 4004 else if (DiagID == diag::err_opencl_unknown_type_specifier) { 4005 Diag(Loc, DiagID) << getLangOpts().OpenCLCPlusPlus 4006 << getLangOpts().getOpenCLVersionTuple().getAsString() 4007 << PrevSpec << isStorageClass; 4008 } else 4009 Diag(Loc, DiagID) << PrevSpec; 4010 } 4011 4012 if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid()) 4013 // After an error the next token can be an annotation token. 4014 ConsumeAnyToken(); 4015 4016 AttrsLastTime = false; 4017 } 4018 } 4019 4020 /// ParseStructDeclaration - Parse a struct declaration without the terminating 4021 /// semicolon. 4022 /// 4023 /// Note that a struct declaration refers to a declaration in a struct, 4024 /// not to the declaration of a struct. 4025 /// 4026 /// struct-declaration: 4027 /// [C2x] attributes-specifier-seq[opt] 4028 /// specifier-qualifier-list struct-declarator-list 4029 /// [GNU] __extension__ struct-declaration 4030 /// [GNU] specifier-qualifier-list 4031 /// struct-declarator-list: 4032 /// struct-declarator 4033 /// struct-declarator-list ',' struct-declarator 4034 /// [GNU] struct-declarator-list ',' attributes[opt] struct-declarator 4035 /// struct-declarator: 4036 /// declarator 4037 /// [GNU] declarator attributes[opt] 4038 /// declarator[opt] ':' constant-expression 4039 /// [GNU] declarator[opt] ':' constant-expression attributes[opt] 4040 /// 4041 void Parser::ParseStructDeclaration( 4042 ParsingDeclSpec &DS, 4043 llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) { 4044 4045 if (Tok.is(tok::kw___extension__)) { 4046 // __extension__ silences extension warnings in the subexpression. 4047 ExtensionRAIIObject O(Diags); // Use RAII to do this. 4048 ConsumeToken(); 4049 return ParseStructDeclaration(DS, FieldsCallback); 4050 } 4051 4052 // Parse leading attributes. 4053 ParsedAttributesWithRange Attrs(AttrFactory); 4054 MaybeParseCXX11Attributes(Attrs); 4055 DS.takeAttributesFrom(Attrs); 4056 4057 // Parse the common specifier-qualifiers-list piece. 4058 ParseSpecifierQualifierList(DS); 4059 4060 // If there are no declarators, this is a free-standing declaration 4061 // specifier. Let the actions module cope with it. 4062 if (Tok.is(tok::semi)) { 4063 RecordDecl *AnonRecord = nullptr; 4064 Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(getCurScope(), AS_none, 4065 DS, AnonRecord); 4066 assert(!AnonRecord && "Did not expect anonymous struct or union here"); 4067 DS.complete(TheDecl); 4068 return; 4069 } 4070 4071 // Read struct-declarators until we find the semicolon. 4072 bool FirstDeclarator = true; 4073 SourceLocation CommaLoc; 4074 while (1) { 4075 ParsingFieldDeclarator DeclaratorInfo(*this, DS); 4076 DeclaratorInfo.D.setCommaLoc(CommaLoc); 4077 4078 // Attributes are only allowed here on successive declarators. 4079 if (!FirstDeclarator) 4080 MaybeParseGNUAttributes(DeclaratorInfo.D); 4081 4082 /// struct-declarator: declarator 4083 /// struct-declarator: declarator[opt] ':' constant-expression 4084 if (Tok.isNot(tok::colon)) { 4085 // Don't parse FOO:BAR as if it were a typo for FOO::BAR. 4086 ColonProtectionRAIIObject X(*this); 4087 ParseDeclarator(DeclaratorInfo.D); 4088 } else 4089 DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation()); 4090 4091 if (TryConsumeToken(tok::colon)) { 4092 ExprResult Res(ParseConstantExpression()); 4093 if (Res.isInvalid()) 4094 SkipUntil(tok::semi, StopBeforeMatch); 4095 else 4096 DeclaratorInfo.BitfieldSize = Res.get(); 4097 } 4098 4099 // If attributes exist after the declarator, parse them. 4100 MaybeParseGNUAttributes(DeclaratorInfo.D); 4101 4102 // We're done with this declarator; invoke the callback. 4103 FieldsCallback(DeclaratorInfo); 4104 4105 // If we don't have a comma, it is either the end of the list (a ';') 4106 // or an error, bail out. 4107 if (!TryConsumeToken(tok::comma, CommaLoc)) 4108 return; 4109 4110 FirstDeclarator = false; 4111 } 4112 } 4113 4114 /// ParseStructUnionBody 4115 /// struct-contents: 4116 /// struct-declaration-list 4117 /// [EXT] empty 4118 /// [GNU] "struct-declaration-list" without terminatoring ';' 4119 /// struct-declaration-list: 4120 /// struct-declaration 4121 /// struct-declaration-list struct-declaration 4122 /// [OBC] '@' 'defs' '(' class-name ')' 4123 /// 4124 void Parser::ParseStructUnionBody(SourceLocation RecordLoc, 4125 DeclSpec::TST TagType, Decl *TagDecl) { 4126 PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc, 4127 "parsing struct/union body"); 4128 assert(!getLangOpts().CPlusPlus && "C++ declarations not supported"); 4129 4130 BalancedDelimiterTracker T(*this, tok::l_brace); 4131 if (T.consumeOpen()) 4132 return; 4133 4134 ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope); 4135 Actions.ActOnTagStartDefinition(getCurScope(), TagDecl); 4136 4137 SmallVector<Decl *, 32> FieldDecls; 4138 4139 // While we still have something to read, read the declarations in the struct. 4140 while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) && 4141 Tok.isNot(tok::eof)) { 4142 // Each iteration of this loop reads one struct-declaration. 4143 4144 // Check for extraneous top-level semicolon. 4145 if (Tok.is(tok::semi)) { 4146 ConsumeExtraSemi(InsideStruct, TagType); 4147 continue; 4148 } 4149 4150 // Parse _Static_assert declaration. 4151 if (Tok.is(tok::kw__Static_assert)) { 4152 SourceLocation DeclEnd; 4153 ParseStaticAssertDeclaration(DeclEnd); 4154 continue; 4155 } 4156 4157 if (Tok.is(tok::annot_pragma_pack)) { 4158 HandlePragmaPack(); 4159 continue; 4160 } 4161 4162 if (Tok.is(tok::annot_pragma_align)) { 4163 HandlePragmaAlign(); 4164 continue; 4165 } 4166 4167 if (Tok.is(tok::annot_pragma_openmp)) { 4168 // Result can be ignored, because it must be always empty. 4169 AccessSpecifier AS = AS_none; 4170 ParsedAttributesWithRange Attrs(AttrFactory); 4171 (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs); 4172 continue; 4173 } 4174 4175 if (tok::isPragmaAnnotation(Tok.getKind())) { 4176 Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl) 4177 << DeclSpec::getSpecifierName( 4178 TagType, Actions.getASTContext().getPrintingPolicy()); 4179 ConsumeAnnotationToken(); 4180 continue; 4181 } 4182 4183 if (!Tok.is(tok::at)) { 4184 auto CFieldCallback = [&](ParsingFieldDeclarator &FD) { 4185 // Install the declarator into the current TagDecl. 4186 Decl *Field = 4187 Actions.ActOnField(getCurScope(), TagDecl, 4188 FD.D.getDeclSpec().getSourceRange().getBegin(), 4189 FD.D, FD.BitfieldSize); 4190 FieldDecls.push_back(Field); 4191 FD.complete(Field); 4192 }; 4193 4194 // Parse all the comma separated declarators. 4195 ParsingDeclSpec DS(*this); 4196 ParseStructDeclaration(DS, CFieldCallback); 4197 } else { // Handle @defs 4198 ConsumeToken(); 4199 if (!Tok.isObjCAtKeyword(tok::objc_defs)) { 4200 Diag(Tok, diag::err_unexpected_at); 4201 SkipUntil(tok::semi); 4202 continue; 4203 } 4204 ConsumeToken(); 4205 ExpectAndConsume(tok::l_paren); 4206 if (!Tok.is(tok::identifier)) { 4207 Diag(Tok, diag::err_expected) << tok::identifier; 4208 SkipUntil(tok::semi); 4209 continue; 4210 } 4211 SmallVector<Decl *, 16> Fields; 4212 Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(), 4213 Tok.getIdentifierInfo(), Fields); 4214 FieldDecls.insert(FieldDecls.end(), Fields.begin(), Fields.end()); 4215 ConsumeToken(); 4216 ExpectAndConsume(tok::r_paren); 4217 } 4218 4219 if (TryConsumeToken(tok::semi)) 4220 continue; 4221 4222 if (Tok.is(tok::r_brace)) { 4223 ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list); 4224 break; 4225 } 4226 4227 ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list); 4228 // Skip to end of block or statement to avoid ext-warning on extra ';'. 4229 SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch); 4230 // If we stopped at a ';', eat it. 4231 TryConsumeToken(tok::semi); 4232 } 4233 4234 T.consumeClose(); 4235 4236 ParsedAttributes attrs(AttrFactory); 4237 // If attributes exist after struct contents, parse them. 4238 MaybeParseGNUAttributes(attrs); 4239 4240 Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls, 4241 T.getOpenLocation(), T.getCloseLocation(), attrs); 4242 StructScope.Exit(); 4243 Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange()); 4244 } 4245 4246 /// ParseEnumSpecifier 4247 /// enum-specifier: [C99 6.7.2.2] 4248 /// 'enum' identifier[opt] '{' enumerator-list '}' 4249 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}' 4250 /// [GNU] 'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt] 4251 /// '}' attributes[opt] 4252 /// [MS] 'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt] 4253 /// '}' 4254 /// 'enum' identifier 4255 /// [GNU] 'enum' attributes[opt] identifier 4256 /// 4257 /// [C++11] enum-head '{' enumerator-list[opt] '}' 4258 /// [C++11] enum-head '{' enumerator-list ',' '}' 4259 /// 4260 /// enum-head: [C++11] 4261 /// enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt] 4262 /// enum-key attribute-specifier-seq[opt] nested-name-specifier 4263 /// identifier enum-base[opt] 4264 /// 4265 /// enum-key: [C++11] 4266 /// 'enum' 4267 /// 'enum' 'class' 4268 /// 'enum' 'struct' 4269 /// 4270 /// enum-base: [C++11] 4271 /// ':' type-specifier-seq 4272 /// 4273 /// [C++] elaborated-type-specifier: 4274 /// [C++] 'enum' '::'[opt] nested-name-specifier[opt] identifier 4275 /// 4276 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS, 4277 const ParsedTemplateInfo &TemplateInfo, 4278 AccessSpecifier AS, DeclSpecContext DSC) { 4279 // Parse the tag portion of this. 4280 if (Tok.is(tok::code_completion)) { 4281 // Code completion for an enum name. 4282 Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum); 4283 return cutOffParsing(); 4284 } 4285 4286 // If attributes exist after tag, parse them. 4287 ParsedAttributesWithRange attrs(AttrFactory); 4288 MaybeParseGNUAttributes(attrs); 4289 MaybeParseCXX11Attributes(attrs); 4290 MaybeParseMicrosoftDeclSpecs(attrs); 4291 4292 SourceLocation ScopedEnumKWLoc; 4293 bool IsScopedUsingClassTag = false; 4294 4295 // In C++11, recognize 'enum class' and 'enum struct'. 4296 if (Tok.isOneOf(tok::kw_class, tok::kw_struct)) { 4297 Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum 4298 : diag::ext_scoped_enum); 4299 IsScopedUsingClassTag = Tok.is(tok::kw_class); 4300 ScopedEnumKWLoc = ConsumeToken(); 4301 4302 // Attributes are not allowed between these keywords. Diagnose, 4303 // but then just treat them like they appeared in the right place. 4304 ProhibitAttributes(attrs); 4305 4306 // They are allowed afterwards, though. 4307 MaybeParseGNUAttributes(attrs); 4308 MaybeParseCXX11Attributes(attrs); 4309 MaybeParseMicrosoftDeclSpecs(attrs); 4310 } 4311 4312 // C++11 [temp.explicit]p12: 4313 // The usual access controls do not apply to names used to specify 4314 // explicit instantiations. 4315 // We extend this to also cover explicit specializations. Note that 4316 // we don't suppress if this turns out to be an elaborated type 4317 // specifier. 4318 bool shouldDelayDiagsInTag = 4319 (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation || 4320 TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization); 4321 SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag); 4322 4323 // Enum definitions should not be parsed in a trailing-return-type. 4324 bool AllowDeclaration = DSC != DeclSpecContext::DSC_trailing; 4325 4326 CXXScopeSpec &SS = DS.getTypeSpecScope(); 4327 if (getLangOpts().CPlusPlus) { 4328 // "enum foo : bar;" is not a potential typo for "enum foo::bar;" 4329 // if a fixed underlying type is allowed. 4330 ColonProtectionRAIIObject X(*this, AllowDeclaration); 4331 4332 CXXScopeSpec Spec; 4333 if (ParseOptionalCXXScopeSpecifier(Spec, nullptr, 4334 /*EnteringContext=*/true)) 4335 return; 4336 4337 if (Spec.isSet() && Tok.isNot(tok::identifier)) { 4338 Diag(Tok, diag::err_expected) << tok::identifier; 4339 if (Tok.isNot(tok::l_brace)) { 4340 // Has no name and is not a definition. 4341 // Skip the rest of this declarator, up until the comma or semicolon. 4342 SkipUntil(tok::comma, StopAtSemi); 4343 return; 4344 } 4345 } 4346 4347 SS = Spec; 4348 } 4349 4350 // Must have either 'enum name' or 'enum {...}'. 4351 if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) && 4352 !(AllowDeclaration && Tok.is(tok::colon))) { 4353 Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace; 4354 4355 // Skip the rest of this declarator, up until the comma or semicolon. 4356 SkipUntil(tok::comma, StopAtSemi); 4357 return; 4358 } 4359 4360 // If an identifier is present, consume and remember it. 4361 IdentifierInfo *Name = nullptr; 4362 SourceLocation NameLoc; 4363 if (Tok.is(tok::identifier)) { 4364 Name = Tok.getIdentifierInfo(); 4365 NameLoc = ConsumeToken(); 4366 } 4367 4368 if (!Name && ScopedEnumKWLoc.isValid()) { 4369 // C++0x 7.2p2: The optional identifier shall not be omitted in the 4370 // declaration of a scoped enumeration. 4371 Diag(Tok, diag::err_scoped_enum_missing_identifier); 4372 ScopedEnumKWLoc = SourceLocation(); 4373 IsScopedUsingClassTag = false; 4374 } 4375 4376 // Okay, end the suppression area. We'll decide whether to emit the 4377 // diagnostics in a second. 4378 if (shouldDelayDiagsInTag) 4379 diagsFromTag.done(); 4380 4381 TypeResult BaseType; 4382 4383 // Parse the fixed underlying type. 4384 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope; 4385 if (AllowDeclaration && Tok.is(tok::colon)) { 4386 bool PossibleBitfield = false; 4387 if (CanBeBitfield) { 4388 // If we're in class scope, this can either be an enum declaration with 4389 // an underlying type, or a declaration of a bitfield member. We try to 4390 // use a simple disambiguation scheme first to catch the common cases 4391 // (integer literal, sizeof); if it's still ambiguous, we then consider 4392 // anything that's a simple-type-specifier followed by '(' as an 4393 // expression. This suffices because function types are not valid 4394 // underlying types anyway. 4395 EnterExpressionEvaluationContext Unevaluated( 4396 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 4397 TPResult TPR = isExpressionOrTypeSpecifierSimple(NextToken().getKind()); 4398 // If the next token starts an expression, we know we're parsing a 4399 // bit-field. This is the common case. 4400 if (TPR == TPResult::True) 4401 PossibleBitfield = true; 4402 // If the next token starts a type-specifier-seq, it may be either a 4403 // a fixed underlying type or the start of a function-style cast in C++; 4404 // lookahead one more token to see if it's obvious that we have a 4405 // fixed underlying type. 4406 else if (TPR == TPResult::False && 4407 GetLookAheadToken(2).getKind() == tok::semi) { 4408 // Consume the ':'. 4409 ConsumeToken(); 4410 } else { 4411 // We have the start of a type-specifier-seq, so we have to perform 4412 // tentative parsing to determine whether we have an expression or a 4413 // type. 4414 TentativeParsingAction TPA(*this); 4415 4416 // Consume the ':'. 4417 ConsumeToken(); 4418 4419 // If we see a type specifier followed by an open-brace, we have an 4420 // ambiguity between an underlying type and a C++11 braced 4421 // function-style cast. Resolve this by always treating it as an 4422 // underlying type. 4423 // FIXME: The standard is not entirely clear on how to disambiguate in 4424 // this case. 4425 if ((getLangOpts().CPlusPlus && 4426 isCXXDeclarationSpecifier(TPResult::True) != TPResult::True) || 4427 (!getLangOpts().CPlusPlus && !isDeclarationSpecifier(true))) { 4428 // We'll parse this as a bitfield later. 4429 PossibleBitfield = true; 4430 TPA.Revert(); 4431 } else { 4432 // We have a type-specifier-seq. 4433 TPA.Commit(); 4434 } 4435 } 4436 } else { 4437 // Consume the ':'. 4438 ConsumeToken(); 4439 } 4440 4441 if (!PossibleBitfield) { 4442 SourceRange Range; 4443 BaseType = ParseTypeName(&Range); 4444 4445 if (!getLangOpts().ObjC) { 4446 if (getLangOpts().CPlusPlus11) 4447 Diag(StartLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type); 4448 else if (getLangOpts().CPlusPlus) 4449 Diag(StartLoc, diag::ext_cxx11_enum_fixed_underlying_type); 4450 else if (getLangOpts().MicrosoftExt) 4451 Diag(StartLoc, diag::ext_ms_c_enum_fixed_underlying_type); 4452 else 4453 Diag(StartLoc, diag::ext_clang_c_enum_fixed_underlying_type); 4454 } 4455 } 4456 } 4457 4458 // There are four options here. If we have 'friend enum foo;' then this is a 4459 // friend declaration, and cannot have an accompanying definition. If we have 4460 // 'enum foo;', then this is a forward declaration. If we have 4461 // 'enum foo {...' then this is a definition. Otherwise we have something 4462 // like 'enum foo xyz', a reference. 4463 // 4464 // This is needed to handle stuff like this right (C99 6.7.2.3p11): 4465 // enum foo {..}; void bar() { enum foo; } <- new foo in bar. 4466 // enum foo {..}; void bar() { enum foo x; } <- use of old foo. 4467 // 4468 Sema::TagUseKind TUK; 4469 if (!AllowDeclaration) { 4470 TUK = Sema::TUK_Reference; 4471 } else if (Tok.is(tok::l_brace)) { 4472 if (DS.isFriendSpecified()) { 4473 Diag(Tok.getLocation(), diag::err_friend_decl_defines_type) 4474 << SourceRange(DS.getFriendSpecLoc()); 4475 ConsumeBrace(); 4476 SkipUntil(tok::r_brace, StopAtSemi); 4477 TUK = Sema::TUK_Friend; 4478 } else { 4479 TUK = Sema::TUK_Definition; 4480 } 4481 } else if (!isTypeSpecifier(DSC) && 4482 (Tok.is(tok::semi) || 4483 (Tok.isAtStartOfLine() && 4484 !isValidAfterTypeSpecifier(CanBeBitfield)))) { 4485 TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration; 4486 if (Tok.isNot(tok::semi)) { 4487 // A semicolon was missing after this declaration. Diagnose and recover. 4488 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum"); 4489 PP.EnterToken(Tok, /*IsReinject=*/true); 4490 Tok.setKind(tok::semi); 4491 } 4492 } else { 4493 TUK = Sema::TUK_Reference; 4494 } 4495 4496 // If this is an elaborated type specifier, and we delayed 4497 // diagnostics before, just merge them into the current pool. 4498 if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) { 4499 diagsFromTag.redelay(); 4500 } 4501 4502 MultiTemplateParamsArg TParams; 4503 if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate && 4504 TUK != Sema::TUK_Reference) { 4505 if (!getLangOpts().CPlusPlus11 || !SS.isSet()) { 4506 // Skip the rest of this declarator, up until the comma or semicolon. 4507 Diag(Tok, diag::err_enum_template); 4508 SkipUntil(tok::comma, StopAtSemi); 4509 return; 4510 } 4511 4512 if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) { 4513 // Enumerations can't be explicitly instantiated. 4514 DS.SetTypeSpecError(); 4515 Diag(StartLoc, diag::err_explicit_instantiation_enum); 4516 return; 4517 } 4518 4519 assert(TemplateInfo.TemplateParams && "no template parameters"); 4520 TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(), 4521 TemplateInfo.TemplateParams->size()); 4522 } 4523 4524 if (TUK == Sema::TUK_Reference) 4525 ProhibitAttributes(attrs); 4526 4527 if (!Name && TUK != Sema::TUK_Definition) { 4528 Diag(Tok, diag::err_enumerator_unnamed_no_def); 4529 4530 // Skip the rest of this declarator, up until the comma or semicolon. 4531 SkipUntil(tok::comma, StopAtSemi); 4532 return; 4533 } 4534 4535 stripTypeAttributesOffDeclSpec(attrs, DS, TUK); 4536 4537 Sema::SkipBodyInfo SkipBody; 4538 if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) && 4539 NextToken().is(tok::identifier)) 4540 SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(), 4541 NextToken().getIdentifierInfo(), 4542 NextToken().getLocation()); 4543 4544 bool Owned = false; 4545 bool IsDependent = false; 4546 const char *PrevSpec = nullptr; 4547 unsigned DiagID; 4548 Decl *TagDecl = Actions.ActOnTag( 4549 getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS, Name, NameLoc, 4550 attrs, AS, DS.getModulePrivateSpecLoc(), TParams, Owned, IsDependent, 4551 ScopedEnumKWLoc, IsScopedUsingClassTag, BaseType, 4552 DSC == DeclSpecContext::DSC_type_specifier, 4553 DSC == DeclSpecContext::DSC_template_param || 4554 DSC == DeclSpecContext::DSC_template_type_arg, 4555 &SkipBody); 4556 4557 if (SkipBody.ShouldSkip) { 4558 assert(TUK == Sema::TUK_Definition && "can only skip a definition"); 4559 4560 BalancedDelimiterTracker T(*this, tok::l_brace); 4561 T.consumeOpen(); 4562 T.skipToEnd(); 4563 4564 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, 4565 NameLoc.isValid() ? NameLoc : StartLoc, 4566 PrevSpec, DiagID, TagDecl, Owned, 4567 Actions.getASTContext().getPrintingPolicy())) 4568 Diag(StartLoc, DiagID) << PrevSpec; 4569 return; 4570 } 4571 4572 if (IsDependent) { 4573 // This enum has a dependent nested-name-specifier. Handle it as a 4574 // dependent tag. 4575 if (!Name) { 4576 DS.SetTypeSpecError(); 4577 Diag(Tok, diag::err_expected_type_name_after_typename); 4578 return; 4579 } 4580 4581 TypeResult Type = Actions.ActOnDependentTag( 4582 getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc); 4583 if (Type.isInvalid()) { 4584 DS.SetTypeSpecError(); 4585 return; 4586 } 4587 4588 if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, 4589 NameLoc.isValid() ? NameLoc : StartLoc, 4590 PrevSpec, DiagID, Type.get(), 4591 Actions.getASTContext().getPrintingPolicy())) 4592 Diag(StartLoc, DiagID) << PrevSpec; 4593 4594 return; 4595 } 4596 4597 if (!TagDecl) { 4598 // The action failed to produce an enumeration tag. If this is a 4599 // definition, consume the entire definition. 4600 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) { 4601 ConsumeBrace(); 4602 SkipUntil(tok::r_brace, StopAtSemi); 4603 } 4604 4605 DS.SetTypeSpecError(); 4606 return; 4607 } 4608 4609 if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) { 4610 Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl; 4611 ParseEnumBody(StartLoc, D); 4612 if (SkipBody.CheckSameAsPrevious && 4613 !Actions.ActOnDuplicateDefinition(DS, TagDecl, SkipBody)) { 4614 DS.SetTypeSpecError(); 4615 return; 4616 } 4617 } 4618 4619 if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc, 4620 NameLoc.isValid() ? NameLoc : StartLoc, 4621 PrevSpec, DiagID, TagDecl, Owned, 4622 Actions.getASTContext().getPrintingPolicy())) 4623 Diag(StartLoc, DiagID) << PrevSpec; 4624 } 4625 4626 /// ParseEnumBody - Parse a {} enclosed enumerator-list. 4627 /// enumerator-list: 4628 /// enumerator 4629 /// enumerator-list ',' enumerator 4630 /// enumerator: 4631 /// enumeration-constant attributes[opt] 4632 /// enumeration-constant attributes[opt] '=' constant-expression 4633 /// enumeration-constant: 4634 /// identifier 4635 /// 4636 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) { 4637 // Enter the scope of the enum body and start the definition. 4638 ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope); 4639 Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl); 4640 4641 BalancedDelimiterTracker T(*this, tok::l_brace); 4642 T.consumeOpen(); 4643 4644 // C does not allow an empty enumerator-list, C++ does [dcl.enum]. 4645 if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus) 4646 Diag(Tok, diag::err_empty_enum); 4647 4648 SmallVector<Decl *, 32> EnumConstantDecls; 4649 SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags; 4650 4651 Decl *LastEnumConstDecl = nullptr; 4652 4653 // Parse the enumerator-list. 4654 while (Tok.isNot(tok::r_brace)) { 4655 // Parse enumerator. If failed, try skipping till the start of the next 4656 // enumerator definition. 4657 if (Tok.isNot(tok::identifier)) { 4658 Diag(Tok.getLocation(), diag::err_expected) << tok::identifier; 4659 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) && 4660 TryConsumeToken(tok::comma)) 4661 continue; 4662 break; 4663 } 4664 IdentifierInfo *Ident = Tok.getIdentifierInfo(); 4665 SourceLocation IdentLoc = ConsumeToken(); 4666 4667 // If attributes exist after the enumerator, parse them. 4668 ParsedAttributesWithRange attrs(AttrFactory); 4669 MaybeParseGNUAttributes(attrs); 4670 ProhibitAttributes(attrs); // GNU-style attributes are prohibited. 4671 if (standardAttributesAllowed() && isCXX11AttributeSpecifier()) { 4672 if (getLangOpts().CPlusPlus) 4673 Diag(Tok.getLocation(), getLangOpts().CPlusPlus17 4674 ? diag::warn_cxx14_compat_ns_enum_attribute 4675 : diag::ext_ns_enum_attribute) 4676 << 1 /*enumerator*/; 4677 ParseCXX11Attributes(attrs); 4678 } 4679 4680 SourceLocation EqualLoc; 4681 ExprResult AssignedVal; 4682 EnumAvailabilityDiags.emplace_back(*this); 4683 4684 EnterExpressionEvaluationContext ConstantEvaluated( 4685 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 4686 if (TryConsumeToken(tok::equal, EqualLoc)) { 4687 AssignedVal = ParseConstantExpressionInExprEvalContext(); 4688 if (AssignedVal.isInvalid()) 4689 SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch); 4690 } 4691 4692 // Install the enumerator constant into EnumDecl. 4693 Decl *EnumConstDecl = Actions.ActOnEnumConstant( 4694 getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs, 4695 EqualLoc, AssignedVal.get()); 4696 EnumAvailabilityDiags.back().done(); 4697 4698 EnumConstantDecls.push_back(EnumConstDecl); 4699 LastEnumConstDecl = EnumConstDecl; 4700 4701 if (Tok.is(tok::identifier)) { 4702 // We're missing a comma between enumerators. 4703 SourceLocation Loc = getEndOfPreviousToken(); 4704 Diag(Loc, diag::err_enumerator_list_missing_comma) 4705 << FixItHint::CreateInsertion(Loc, ", "); 4706 continue; 4707 } 4708 4709 // Emumerator definition must be finished, only comma or r_brace are 4710 // allowed here. 4711 SourceLocation CommaLoc; 4712 if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) { 4713 if (EqualLoc.isValid()) 4714 Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace 4715 << tok::comma; 4716 else 4717 Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator); 4718 if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) { 4719 if (TryConsumeToken(tok::comma, CommaLoc)) 4720 continue; 4721 } else { 4722 break; 4723 } 4724 } 4725 4726 // If comma is followed by r_brace, emit appropriate warning. 4727 if (Tok.is(tok::r_brace) && CommaLoc.isValid()) { 4728 if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11) 4729 Diag(CommaLoc, getLangOpts().CPlusPlus ? 4730 diag::ext_enumerator_list_comma_cxx : 4731 diag::ext_enumerator_list_comma_c) 4732 << FixItHint::CreateRemoval(CommaLoc); 4733 else if (getLangOpts().CPlusPlus11) 4734 Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma) 4735 << FixItHint::CreateRemoval(CommaLoc); 4736 break; 4737 } 4738 } 4739 4740 // Eat the }. 4741 T.consumeClose(); 4742 4743 // If attributes exist after the identifier list, parse them. 4744 ParsedAttributes attrs(AttrFactory); 4745 MaybeParseGNUAttributes(attrs); 4746 4747 Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls, 4748 getCurScope(), attrs); 4749 4750 // Now handle enum constant availability diagnostics. 4751 assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size()); 4752 for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) { 4753 ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent); 4754 EnumAvailabilityDiags[i].redelay(); 4755 PD.complete(EnumConstantDecls[i]); 4756 } 4757 4758 EnumScope.Exit(); 4759 Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange()); 4760 4761 // The next token must be valid after an enum definition. If not, a ';' 4762 // was probably forgotten. 4763 bool CanBeBitfield = getCurScope()->getFlags() & Scope::ClassScope; 4764 if (!isValidAfterTypeSpecifier(CanBeBitfield)) { 4765 ExpectAndConsume(tok::semi, diag::err_expected_after, "enum"); 4766 // Push this token back into the preprocessor and change our current token 4767 // to ';' so that the rest of the code recovers as though there were an 4768 // ';' after the definition. 4769 PP.EnterToken(Tok, /*IsReinject=*/true); 4770 Tok.setKind(tok::semi); 4771 } 4772 } 4773 4774 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token 4775 /// is definitely a type-specifier. Return false if it isn't part of a type 4776 /// specifier or if we're not sure. 4777 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const { 4778 switch (Tok.getKind()) { 4779 default: return false; 4780 // type-specifiers 4781 case tok::kw_short: 4782 case tok::kw_long: 4783 case tok::kw___int64: 4784 case tok::kw___int128: 4785 case tok::kw_signed: 4786 case tok::kw_unsigned: 4787 case tok::kw__Complex: 4788 case tok::kw__Imaginary: 4789 case tok::kw_void: 4790 case tok::kw_char: 4791 case tok::kw_wchar_t: 4792 case tok::kw_char8_t: 4793 case tok::kw_char16_t: 4794 case tok::kw_char32_t: 4795 case tok::kw_int: 4796 case tok::kw_half: 4797 case tok::kw_float: 4798 case tok::kw_double: 4799 case tok::kw__Accum: 4800 case tok::kw__Fract: 4801 case tok::kw__Float16: 4802 case tok::kw___float128: 4803 case tok::kw_bool: 4804 case tok::kw__Bool: 4805 case tok::kw__Decimal32: 4806 case tok::kw__Decimal64: 4807 case tok::kw__Decimal128: 4808 case tok::kw___vector: 4809 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 4810 #include "clang/Basic/OpenCLImageTypes.def" 4811 4812 // struct-or-union-specifier (C99) or class-specifier (C++) 4813 case tok::kw_class: 4814 case tok::kw_struct: 4815 case tok::kw___interface: 4816 case tok::kw_union: 4817 // enum-specifier 4818 case tok::kw_enum: 4819 4820 // typedef-name 4821 case tok::annot_typename: 4822 return true; 4823 } 4824 } 4825 4826 /// isTypeSpecifierQualifier - Return true if the current token could be the 4827 /// start of a specifier-qualifier-list. 4828 bool Parser::isTypeSpecifierQualifier() { 4829 switch (Tok.getKind()) { 4830 default: return false; 4831 4832 case tok::identifier: // foo::bar 4833 if (TryAltiVecVectorToken()) 4834 return true; 4835 LLVM_FALLTHROUGH; 4836 case tok::kw_typename: // typename T::type 4837 // Annotate typenames and C++ scope specifiers. If we get one, just 4838 // recurse to handle whatever we get. 4839 if (TryAnnotateTypeOrScopeToken()) 4840 return true; 4841 if (Tok.is(tok::identifier)) 4842 return false; 4843 return isTypeSpecifierQualifier(); 4844 4845 case tok::coloncolon: // ::foo::bar 4846 if (NextToken().is(tok::kw_new) || // ::new 4847 NextToken().is(tok::kw_delete)) // ::delete 4848 return false; 4849 4850 if (TryAnnotateTypeOrScopeToken()) 4851 return true; 4852 return isTypeSpecifierQualifier(); 4853 4854 // GNU attributes support. 4855 case tok::kw___attribute: 4856 // GNU typeof support. 4857 case tok::kw_typeof: 4858 4859 // type-specifiers 4860 case tok::kw_short: 4861 case tok::kw_long: 4862 case tok::kw___int64: 4863 case tok::kw___int128: 4864 case tok::kw_signed: 4865 case tok::kw_unsigned: 4866 case tok::kw__Complex: 4867 case tok::kw__Imaginary: 4868 case tok::kw_void: 4869 case tok::kw_char: 4870 case tok::kw_wchar_t: 4871 case tok::kw_char8_t: 4872 case tok::kw_char16_t: 4873 case tok::kw_char32_t: 4874 case tok::kw_int: 4875 case tok::kw_half: 4876 case tok::kw_float: 4877 case tok::kw_double: 4878 case tok::kw__Accum: 4879 case tok::kw__Fract: 4880 case tok::kw__Float16: 4881 case tok::kw___float128: 4882 case tok::kw_bool: 4883 case tok::kw__Bool: 4884 case tok::kw__Decimal32: 4885 case tok::kw__Decimal64: 4886 case tok::kw__Decimal128: 4887 case tok::kw___vector: 4888 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 4889 #include "clang/Basic/OpenCLImageTypes.def" 4890 4891 // struct-or-union-specifier (C99) or class-specifier (C++) 4892 case tok::kw_class: 4893 case tok::kw_struct: 4894 case tok::kw___interface: 4895 case tok::kw_union: 4896 // enum-specifier 4897 case tok::kw_enum: 4898 4899 // type-qualifier 4900 case tok::kw_const: 4901 case tok::kw_volatile: 4902 case tok::kw_restrict: 4903 case tok::kw__Sat: 4904 4905 // Debugger support. 4906 case tok::kw___unknown_anytype: 4907 4908 // typedef-name 4909 case tok::annot_typename: 4910 return true; 4911 4912 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'. 4913 case tok::less: 4914 return getLangOpts().ObjC; 4915 4916 case tok::kw___cdecl: 4917 case tok::kw___stdcall: 4918 case tok::kw___fastcall: 4919 case tok::kw___thiscall: 4920 case tok::kw___regcall: 4921 case tok::kw___vectorcall: 4922 case tok::kw___w64: 4923 case tok::kw___ptr64: 4924 case tok::kw___ptr32: 4925 case tok::kw___pascal: 4926 case tok::kw___unaligned: 4927 4928 case tok::kw__Nonnull: 4929 case tok::kw__Nullable: 4930 case tok::kw__Null_unspecified: 4931 4932 case tok::kw___kindof: 4933 4934 case tok::kw___private: 4935 case tok::kw___local: 4936 case tok::kw___global: 4937 case tok::kw___constant: 4938 case tok::kw___generic: 4939 case tok::kw___read_only: 4940 case tok::kw___read_write: 4941 case tok::kw___write_only: 4942 return true; 4943 4944 case tok::kw_private: 4945 return getLangOpts().OpenCL; 4946 4947 // C11 _Atomic 4948 case tok::kw__Atomic: 4949 return true; 4950 } 4951 } 4952 4953 /// isDeclarationSpecifier() - Return true if the current token is part of a 4954 /// declaration specifier. 4955 /// 4956 /// \param DisambiguatingWithExpression True to indicate that the purpose of 4957 /// this check is to disambiguate between an expression and a declaration. 4958 bool Parser::isDeclarationSpecifier(bool DisambiguatingWithExpression) { 4959 switch (Tok.getKind()) { 4960 default: return false; 4961 4962 case tok::kw_pipe: 4963 return (getLangOpts().OpenCL && getLangOpts().OpenCLVersion >= 200) || 4964 getLangOpts().OpenCLCPlusPlus; 4965 4966 case tok::identifier: // foo::bar 4967 // Unfortunate hack to support "Class.factoryMethod" notation. 4968 if (getLangOpts().ObjC && NextToken().is(tok::period)) 4969 return false; 4970 if (TryAltiVecVectorToken()) 4971 return true; 4972 LLVM_FALLTHROUGH; 4973 case tok::kw_decltype: // decltype(T())::type 4974 case tok::kw_typename: // typename T::type 4975 // Annotate typenames and C++ scope specifiers. If we get one, just 4976 // recurse to handle whatever we get. 4977 if (TryAnnotateTypeOrScopeToken()) 4978 return true; 4979 if (Tok.is(tok::identifier)) 4980 return false; 4981 4982 // If we're in Objective-C and we have an Objective-C class type followed 4983 // by an identifier and then either ':' or ']', in a place where an 4984 // expression is permitted, then this is probably a class message send 4985 // missing the initial '['. In this case, we won't consider this to be 4986 // the start of a declaration. 4987 if (DisambiguatingWithExpression && 4988 isStartOfObjCClassMessageMissingOpenBracket()) 4989 return false; 4990 4991 return isDeclarationSpecifier(); 4992 4993 case tok::coloncolon: // ::foo::bar 4994 if (NextToken().is(tok::kw_new) || // ::new 4995 NextToken().is(tok::kw_delete)) // ::delete 4996 return false; 4997 4998 // Annotate typenames and C++ scope specifiers. If we get one, just 4999 // recurse to handle whatever we get. 5000 if (TryAnnotateTypeOrScopeToken()) 5001 return true; 5002 return isDeclarationSpecifier(); 5003 5004 // storage-class-specifier 5005 case tok::kw_typedef: 5006 case tok::kw_extern: 5007 case tok::kw___private_extern__: 5008 case tok::kw_static: 5009 case tok::kw_auto: 5010 case tok::kw___auto_type: 5011 case tok::kw_register: 5012 case tok::kw___thread: 5013 case tok::kw_thread_local: 5014 case tok::kw__Thread_local: 5015 5016 // Modules 5017 case tok::kw___module_private__: 5018 5019 // Debugger support 5020 case tok::kw___unknown_anytype: 5021 5022 // type-specifiers 5023 case tok::kw_short: 5024 case tok::kw_long: 5025 case tok::kw___int64: 5026 case tok::kw___int128: 5027 case tok::kw_signed: 5028 case tok::kw_unsigned: 5029 case tok::kw__Complex: 5030 case tok::kw__Imaginary: 5031 case tok::kw_void: 5032 case tok::kw_char: 5033 case tok::kw_wchar_t: 5034 case tok::kw_char8_t: 5035 case tok::kw_char16_t: 5036 case tok::kw_char32_t: 5037 5038 case tok::kw_int: 5039 case tok::kw_half: 5040 case tok::kw_float: 5041 case tok::kw_double: 5042 case tok::kw__Accum: 5043 case tok::kw__Fract: 5044 case tok::kw__Float16: 5045 case tok::kw___float128: 5046 case tok::kw_bool: 5047 case tok::kw__Bool: 5048 case tok::kw__Decimal32: 5049 case tok::kw__Decimal64: 5050 case tok::kw__Decimal128: 5051 case tok::kw___vector: 5052 5053 // struct-or-union-specifier (C99) or class-specifier (C++) 5054 case tok::kw_class: 5055 case tok::kw_struct: 5056 case tok::kw_union: 5057 case tok::kw___interface: 5058 // enum-specifier 5059 case tok::kw_enum: 5060 5061 // type-qualifier 5062 case tok::kw_const: 5063 case tok::kw_volatile: 5064 case tok::kw_restrict: 5065 case tok::kw__Sat: 5066 5067 // function-specifier 5068 case tok::kw_inline: 5069 case tok::kw_virtual: 5070 case tok::kw_explicit: 5071 case tok::kw__Noreturn: 5072 5073 // alignment-specifier 5074 case tok::kw__Alignas: 5075 5076 // friend keyword. 5077 case tok::kw_friend: 5078 5079 // static_assert-declaration 5080 case tok::kw__Static_assert: 5081 5082 // GNU typeof support. 5083 case tok::kw_typeof: 5084 5085 // GNU attributes. 5086 case tok::kw___attribute: 5087 5088 // C++11 decltype and constexpr. 5089 case tok::annot_decltype: 5090 case tok::kw_constexpr: 5091 5092 // C++20 consteval and constinit. 5093 case tok::kw_consteval: 5094 case tok::kw_constinit: 5095 5096 // C11 _Atomic 5097 case tok::kw__Atomic: 5098 return true; 5099 5100 // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'. 5101 case tok::less: 5102 return getLangOpts().ObjC; 5103 5104 // typedef-name 5105 case tok::annot_typename: 5106 return !DisambiguatingWithExpression || 5107 !isStartOfObjCClassMessageMissingOpenBracket(); 5108 5109 case tok::kw___declspec: 5110 case tok::kw___cdecl: 5111 case tok::kw___stdcall: 5112 case tok::kw___fastcall: 5113 case tok::kw___thiscall: 5114 case tok::kw___regcall: 5115 case tok::kw___vectorcall: 5116 case tok::kw___w64: 5117 case tok::kw___sptr: 5118 case tok::kw___uptr: 5119 case tok::kw___ptr64: 5120 case tok::kw___ptr32: 5121 case tok::kw___forceinline: 5122 case tok::kw___pascal: 5123 case tok::kw___unaligned: 5124 5125 case tok::kw__Nonnull: 5126 case tok::kw__Nullable: 5127 case tok::kw__Null_unspecified: 5128 5129 case tok::kw___kindof: 5130 5131 case tok::kw___private: 5132 case tok::kw___local: 5133 case tok::kw___global: 5134 case tok::kw___constant: 5135 case tok::kw___generic: 5136 case tok::kw___read_only: 5137 case tok::kw___read_write: 5138 case tok::kw___write_only: 5139 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t: 5140 #include "clang/Basic/OpenCLImageTypes.def" 5141 5142 return true; 5143 5144 case tok::kw_private: 5145 return getLangOpts().OpenCL; 5146 } 5147 } 5148 5149 bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide) { 5150 TentativeParsingAction TPA(*this); 5151 5152 // Parse the C++ scope specifier. 5153 CXXScopeSpec SS; 5154 if (ParseOptionalCXXScopeSpecifier(SS, nullptr, 5155 /*EnteringContext=*/true)) { 5156 TPA.Revert(); 5157 return false; 5158 } 5159 5160 // Parse the constructor name. 5161 if (Tok.is(tok::identifier)) { 5162 // We already know that we have a constructor name; just consume 5163 // the token. 5164 ConsumeToken(); 5165 } else if (Tok.is(tok::annot_template_id)) { 5166 ConsumeAnnotationToken(); 5167 } else { 5168 TPA.Revert(); 5169 return false; 5170 } 5171 5172 // There may be attributes here, appertaining to the constructor name or type 5173 // we just stepped past. 5174 SkipCXX11Attributes(); 5175 5176 // Current class name must be followed by a left parenthesis. 5177 if (Tok.isNot(tok::l_paren)) { 5178 TPA.Revert(); 5179 return false; 5180 } 5181 ConsumeParen(); 5182 5183 // A right parenthesis, or ellipsis followed by a right parenthesis signals 5184 // that we have a constructor. 5185 if (Tok.is(tok::r_paren) || 5186 (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) { 5187 TPA.Revert(); 5188 return true; 5189 } 5190 5191 // A C++11 attribute here signals that we have a constructor, and is an 5192 // attribute on the first constructor parameter. 5193 if (getLangOpts().CPlusPlus11 && 5194 isCXX11AttributeSpecifier(/*Disambiguate*/ false, 5195 /*OuterMightBeMessageSend*/ true)) { 5196 TPA.Revert(); 5197 return true; 5198 } 5199 5200 // If we need to, enter the specified scope. 5201 DeclaratorScopeObj DeclScopeObj(*this, SS); 5202 if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS)) 5203 DeclScopeObj.EnterDeclaratorScope(); 5204 5205 // Optionally skip Microsoft attributes. 5206 ParsedAttributes Attrs(AttrFactory); 5207 MaybeParseMicrosoftAttributes(Attrs); 5208 5209 // Check whether the next token(s) are part of a declaration 5210 // specifier, in which case we have the start of a parameter and, 5211 // therefore, we know that this is a constructor. 5212 bool IsConstructor = false; 5213 if (isDeclarationSpecifier()) 5214 IsConstructor = true; 5215 else if (Tok.is(tok::identifier) || 5216 (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) { 5217 // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type. 5218 // This might be a parenthesized member name, but is more likely to 5219 // be a constructor declaration with an invalid argument type. Keep 5220 // looking. 5221 if (Tok.is(tok::annot_cxxscope)) 5222 ConsumeAnnotationToken(); 5223 ConsumeToken(); 5224 5225 // If this is not a constructor, we must be parsing a declarator, 5226 // which must have one of the following syntactic forms (see the 5227 // grammar extract at the start of ParseDirectDeclarator): 5228 switch (Tok.getKind()) { 5229 case tok::l_paren: 5230 // C(X ( int)); 5231 case tok::l_square: 5232 // C(X [ 5]); 5233 // C(X [ [attribute]]); 5234 case tok::coloncolon: 5235 // C(X :: Y); 5236 // C(X :: *p); 5237 // Assume this isn't a constructor, rather than assuming it's a 5238 // constructor with an unnamed parameter of an ill-formed type. 5239 break; 5240 5241 case tok::r_paren: 5242 // C(X ) 5243 5244 // Skip past the right-paren and any following attributes to get to 5245 // the function body or trailing-return-type. 5246 ConsumeParen(); 5247 SkipCXX11Attributes(); 5248 5249 if (DeductionGuide) { 5250 // C(X) -> ... is a deduction guide. 5251 IsConstructor = Tok.is(tok::arrow); 5252 break; 5253 } 5254 if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) { 5255 // Assume these were meant to be constructors: 5256 // C(X) : (the name of a bit-field cannot be parenthesized). 5257 // C(X) try (this is otherwise ill-formed). 5258 IsConstructor = true; 5259 } 5260 if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) { 5261 // If we have a constructor name within the class definition, 5262 // assume these were meant to be constructors: 5263 // C(X) { 5264 // C(X) ; 5265 // ... because otherwise we would be declaring a non-static data 5266 // member that is ill-formed because it's of the same type as its 5267 // surrounding class. 5268 // 5269 // FIXME: We can actually do this whether or not the name is qualified, 5270 // because if it is qualified in this context it must be being used as 5271 // a constructor name. 5272 // currently, so we're somewhat conservative here. 5273 IsConstructor = IsUnqualified; 5274 } 5275 break; 5276 5277 default: 5278 IsConstructor = true; 5279 break; 5280 } 5281 } 5282 5283 TPA.Revert(); 5284 return IsConstructor; 5285 } 5286 5287 /// ParseTypeQualifierListOpt 5288 /// type-qualifier-list: [C99 6.7.5] 5289 /// type-qualifier 5290 /// [vendor] attributes 5291 /// [ only if AttrReqs & AR_VendorAttributesParsed ] 5292 /// type-qualifier-list type-qualifier 5293 /// [vendor] type-qualifier-list attributes 5294 /// [ only if AttrReqs & AR_VendorAttributesParsed ] 5295 /// [C++0x] attribute-specifier[opt] is allowed before cv-qualifier-seq 5296 /// [ only if AttReqs & AR_CXX11AttributesParsed ] 5297 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via 5298 /// AttrRequirements bitmask values. 5299 void Parser::ParseTypeQualifierListOpt( 5300 DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed, 5301 bool IdentifierRequired, 5302 Optional<llvm::function_ref<void()>> CodeCompletionHandler) { 5303 if (standardAttributesAllowed() && (AttrReqs & AR_CXX11AttributesParsed) && 5304 isCXX11AttributeSpecifier()) { 5305 ParsedAttributesWithRange attrs(AttrFactory); 5306 ParseCXX11Attributes(attrs); 5307 DS.takeAttributesFrom(attrs); 5308 } 5309 5310 SourceLocation EndLoc; 5311 5312 while (1) { 5313 bool isInvalid = false; 5314 const char *PrevSpec = nullptr; 5315 unsigned DiagID = 0; 5316 SourceLocation Loc = Tok.getLocation(); 5317 5318 switch (Tok.getKind()) { 5319 case tok::code_completion: 5320 if (CodeCompletionHandler) 5321 (*CodeCompletionHandler)(); 5322 else 5323 Actions.CodeCompleteTypeQualifiers(DS); 5324 return cutOffParsing(); 5325 5326 case tok::kw_const: 5327 isInvalid = DS.SetTypeQual(DeclSpec::TQ_const , Loc, PrevSpec, DiagID, 5328 getLangOpts()); 5329 break; 5330 case tok::kw_volatile: 5331 isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID, 5332 getLangOpts()); 5333 break; 5334 case tok::kw_restrict: 5335 isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID, 5336 getLangOpts()); 5337 break; 5338 case tok::kw__Atomic: 5339 if (!AtomicAllowed) 5340 goto DoneWithTypeQuals; 5341 if (!getLangOpts().C11) 5342 Diag(Tok, diag::ext_c11_feature) << Tok.getName(); 5343 isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID, 5344 getLangOpts()); 5345 break; 5346 5347 // OpenCL qualifiers: 5348 case tok::kw_private: 5349 if (!getLangOpts().OpenCL) 5350 goto DoneWithTypeQuals; 5351 LLVM_FALLTHROUGH; 5352 case tok::kw___private: 5353 case tok::kw___global: 5354 case tok::kw___local: 5355 case tok::kw___constant: 5356 case tok::kw___generic: 5357 case tok::kw___read_only: 5358 case tok::kw___write_only: 5359 case tok::kw___read_write: 5360 ParseOpenCLQualifiers(DS.getAttributes()); 5361 break; 5362 5363 case tok::kw___unaligned: 5364 isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID, 5365 getLangOpts()); 5366 break; 5367 case tok::kw___uptr: 5368 // GNU libc headers in C mode use '__uptr' as an identifier which conflicts 5369 // with the MS modifier keyword. 5370 if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus && 5371 IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) { 5372 if (TryKeywordIdentFallback(false)) 5373 continue; 5374 } 5375 LLVM_FALLTHROUGH; 5376 case tok::kw___sptr: 5377 case tok::kw___w64: 5378 case tok::kw___ptr64: 5379 case tok::kw___ptr32: 5380 case tok::kw___cdecl: 5381 case tok::kw___stdcall: 5382 case tok::kw___fastcall: 5383 case tok::kw___thiscall: 5384 case tok::kw___regcall: 5385 case tok::kw___vectorcall: 5386 if (AttrReqs & AR_DeclspecAttributesParsed) { 5387 ParseMicrosoftTypeAttributes(DS.getAttributes()); 5388 continue; 5389 } 5390 goto DoneWithTypeQuals; 5391 case tok::kw___pascal: 5392 if (AttrReqs & AR_VendorAttributesParsed) { 5393 ParseBorlandTypeAttributes(DS.getAttributes()); 5394 continue; 5395 } 5396 goto DoneWithTypeQuals; 5397 5398 // Nullability type specifiers. 5399 case tok::kw__Nonnull: 5400 case tok::kw__Nullable: 5401 case tok::kw__Null_unspecified: 5402 ParseNullabilityTypeSpecifiers(DS.getAttributes()); 5403 continue; 5404 5405 // Objective-C 'kindof' types. 5406 case tok::kw___kindof: 5407 DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc, 5408 nullptr, 0, ParsedAttr::AS_Keyword); 5409 (void)ConsumeToken(); 5410 continue; 5411 5412 case tok::kw___attribute: 5413 if (AttrReqs & AR_GNUAttributesParsedAndRejected) 5414 // When GNU attributes are expressly forbidden, diagnose their usage. 5415 Diag(Tok, diag::err_attributes_not_allowed); 5416 5417 // Parse the attributes even if they are rejected to ensure that error 5418 // recovery is graceful. 5419 if (AttrReqs & AR_GNUAttributesParsed || 5420 AttrReqs & AR_GNUAttributesParsedAndRejected) { 5421 ParseGNUAttributes(DS.getAttributes()); 5422 continue; // do *not* consume the next token! 5423 } 5424 // otherwise, FALL THROUGH! 5425 LLVM_FALLTHROUGH; 5426 default: 5427 DoneWithTypeQuals: 5428 // If this is not a type-qualifier token, we're done reading type 5429 // qualifiers. First verify that DeclSpec's are consistent. 5430 DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy()); 5431 if (EndLoc.isValid()) 5432 DS.SetRangeEnd(EndLoc); 5433 return; 5434 } 5435 5436 // If the specifier combination wasn't legal, issue a diagnostic. 5437 if (isInvalid) { 5438 assert(PrevSpec && "Method did not return previous specifier!"); 5439 Diag(Tok, DiagID) << PrevSpec; 5440 } 5441 EndLoc = ConsumeToken(); 5442 } 5443 } 5444 5445 /// ParseDeclarator - Parse and verify a newly-initialized declarator. 5446 /// 5447 void Parser::ParseDeclarator(Declarator &D) { 5448 /// This implements the 'declarator' production in the C grammar, then checks 5449 /// for well-formedness and issues diagnostics. 5450 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); 5451 } 5452 5453 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang, 5454 DeclaratorContext TheContext) { 5455 if (Kind == tok::star || Kind == tok::caret) 5456 return true; 5457 5458 if (Kind == tok::kw_pipe && 5459 ((Lang.OpenCL && Lang.OpenCLVersion >= 200) || Lang.OpenCLCPlusPlus)) 5460 return true; 5461 5462 if (!Lang.CPlusPlus) 5463 return false; 5464 5465 if (Kind == tok::amp) 5466 return true; 5467 5468 // We parse rvalue refs in C++03, because otherwise the errors are scary. 5469 // But we must not parse them in conversion-type-ids and new-type-ids, since 5470 // those can be legitimately followed by a && operator. 5471 // (The same thing can in theory happen after a trailing-return-type, but 5472 // since those are a C++11 feature, there is no rejects-valid issue there.) 5473 if (Kind == tok::ampamp) 5474 return Lang.CPlusPlus11 || 5475 (TheContext != DeclaratorContext::ConversionIdContext && 5476 TheContext != DeclaratorContext::CXXNewContext); 5477 5478 return false; 5479 } 5480 5481 // Indicates whether the given declarator is a pipe declarator. 5482 static bool isPipeDeclerator(const Declarator &D) { 5483 const unsigned NumTypes = D.getNumTypeObjects(); 5484 5485 for (unsigned Idx = 0; Idx != NumTypes; ++Idx) 5486 if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind) 5487 return true; 5488 5489 return false; 5490 } 5491 5492 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator 5493 /// is parsed by the function passed to it. Pass null, and the direct-declarator 5494 /// isn't parsed at all, making this function effectively parse the C++ 5495 /// ptr-operator production. 5496 /// 5497 /// If the grammar of this construct is extended, matching changes must also be 5498 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to 5499 /// isConstructorDeclarator. 5500 /// 5501 /// declarator: [C99 6.7.5] [C++ 8p4, dcl.decl] 5502 /// [C] pointer[opt] direct-declarator 5503 /// [C++] direct-declarator 5504 /// [C++] ptr-operator declarator 5505 /// 5506 /// pointer: [C99 6.7.5] 5507 /// '*' type-qualifier-list[opt] 5508 /// '*' type-qualifier-list[opt] pointer 5509 /// 5510 /// ptr-operator: 5511 /// '*' cv-qualifier-seq[opt] 5512 /// '&' 5513 /// [C++0x] '&&' 5514 /// [GNU] '&' restrict[opt] attributes[opt] 5515 /// [GNU?] '&&' restrict[opt] attributes[opt] 5516 /// '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt] 5517 void Parser::ParseDeclaratorInternal(Declarator &D, 5518 DirectDeclParseFunction DirectDeclParser) { 5519 if (Diags.hasAllExtensionsSilenced()) 5520 D.setExtension(); 5521 5522 // C++ member pointers start with a '::' or a nested-name. 5523 // Member pointers get special handling, since there's no place for the 5524 // scope spec in the generic path below. 5525 if (getLangOpts().CPlusPlus && 5526 (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) || 5527 (Tok.is(tok::identifier) && 5528 (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) || 5529 Tok.is(tok::annot_cxxscope))) { 5530 bool EnteringContext = 5531 D.getContext() == DeclaratorContext::FileContext || 5532 D.getContext() == DeclaratorContext::MemberContext; 5533 CXXScopeSpec SS; 5534 ParseOptionalCXXScopeSpecifier(SS, nullptr, EnteringContext); 5535 5536 if (SS.isNotEmpty()) { 5537 if (Tok.isNot(tok::star)) { 5538 // The scope spec really belongs to the direct-declarator. 5539 if (D.mayHaveIdentifier()) 5540 D.getCXXScopeSpec() = SS; 5541 else 5542 AnnotateScopeToken(SS, true); 5543 5544 if (DirectDeclParser) 5545 (this->*DirectDeclParser)(D); 5546 return; 5547 } 5548 5549 SourceLocation Loc = ConsumeToken(); 5550 D.SetRangeEnd(Loc); 5551 DeclSpec DS(AttrFactory); 5552 ParseTypeQualifierListOpt(DS); 5553 D.ExtendWithDeclSpec(DS); 5554 5555 // Recurse to parse whatever is left. 5556 ParseDeclaratorInternal(D, DirectDeclParser); 5557 5558 // Sema will have to catch (syntactically invalid) pointers into global 5559 // scope. It has to catch pointers into namespace scope anyway. 5560 D.AddTypeInfo(DeclaratorChunk::getMemberPointer( 5561 SS, DS.getTypeQualifiers(), DS.getEndLoc()), 5562 std::move(DS.getAttributes()), 5563 /* Don't replace range end. */ SourceLocation()); 5564 return; 5565 } 5566 } 5567 5568 tok::TokenKind Kind = Tok.getKind(); 5569 5570 if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclerator(D)) { 5571 DeclSpec DS(AttrFactory); 5572 ParseTypeQualifierListOpt(DS); 5573 5574 D.AddTypeInfo( 5575 DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()), 5576 std::move(DS.getAttributes()), SourceLocation()); 5577 } 5578 5579 // Not a pointer, C++ reference, or block. 5580 if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) { 5581 if (DirectDeclParser) 5582 (this->*DirectDeclParser)(D); 5583 return; 5584 } 5585 5586 // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference, 5587 // '&&' -> rvalue reference 5588 SourceLocation Loc = ConsumeToken(); // Eat the *, ^, & or &&. 5589 D.SetRangeEnd(Loc); 5590 5591 if (Kind == tok::star || Kind == tok::caret) { 5592 // Is a pointer. 5593 DeclSpec DS(AttrFactory); 5594 5595 // GNU attributes are not allowed here in a new-type-id, but Declspec and 5596 // C++11 attributes are allowed. 5597 unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed | 5598 ((D.getContext() != DeclaratorContext::CXXNewContext) 5599 ? AR_GNUAttributesParsed 5600 : AR_GNUAttributesParsedAndRejected); 5601 ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier()); 5602 D.ExtendWithDeclSpec(DS); 5603 5604 // Recursively parse the declarator. 5605 ParseDeclaratorInternal(D, DirectDeclParser); 5606 if (Kind == tok::star) 5607 // Remember that we parsed a pointer type, and remember the type-quals. 5608 D.AddTypeInfo(DeclaratorChunk::getPointer( 5609 DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(), 5610 DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(), 5611 DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()), 5612 std::move(DS.getAttributes()), SourceLocation()); 5613 else 5614 // Remember that we parsed a Block type, and remember the type-quals. 5615 D.AddTypeInfo( 5616 DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc), 5617 std::move(DS.getAttributes()), SourceLocation()); 5618 } else { 5619 // Is a reference 5620 DeclSpec DS(AttrFactory); 5621 5622 // Complain about rvalue references in C++03, but then go on and build 5623 // the declarator. 5624 if (Kind == tok::ampamp) 5625 Diag(Loc, getLangOpts().CPlusPlus11 ? 5626 diag::warn_cxx98_compat_rvalue_reference : 5627 diag::ext_rvalue_reference); 5628 5629 // GNU-style and C++11 attributes are allowed here, as is restrict. 5630 ParseTypeQualifierListOpt(DS); 5631 D.ExtendWithDeclSpec(DS); 5632 5633 // C++ 8.3.2p1: cv-qualified references are ill-formed except when the 5634 // cv-qualifiers are introduced through the use of a typedef or of a 5635 // template type argument, in which case the cv-qualifiers are ignored. 5636 if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) { 5637 if (DS.getTypeQualifiers() & DeclSpec::TQ_const) 5638 Diag(DS.getConstSpecLoc(), 5639 diag::err_invalid_reference_qualifier_application) << "const"; 5640 if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile) 5641 Diag(DS.getVolatileSpecLoc(), 5642 diag::err_invalid_reference_qualifier_application) << "volatile"; 5643 // 'restrict' is permitted as an extension. 5644 if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic) 5645 Diag(DS.getAtomicSpecLoc(), 5646 diag::err_invalid_reference_qualifier_application) << "_Atomic"; 5647 } 5648 5649 // Recursively parse the declarator. 5650 ParseDeclaratorInternal(D, DirectDeclParser); 5651 5652 if (D.getNumTypeObjects() > 0) { 5653 // C++ [dcl.ref]p4: There shall be no references to references. 5654 DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1); 5655 if (InnerChunk.Kind == DeclaratorChunk::Reference) { 5656 if (const IdentifierInfo *II = D.getIdentifier()) 5657 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) 5658 << II; 5659 else 5660 Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference) 5661 << "type name"; 5662 5663 // Once we've complained about the reference-to-reference, we 5664 // can go ahead and build the (technically ill-formed) 5665 // declarator: reference collapsing will take care of it. 5666 } 5667 } 5668 5669 // Remember that we parsed a reference type. 5670 D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc, 5671 Kind == tok::amp), 5672 std::move(DS.getAttributes()), SourceLocation()); 5673 } 5674 } 5675 5676 // When correcting from misplaced brackets before the identifier, the location 5677 // is saved inside the declarator so that other diagnostic messages can use 5678 // them. This extracts and returns that location, or returns the provided 5679 // location if a stored location does not exist. 5680 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D, 5681 SourceLocation Loc) { 5682 if (D.getName().StartLocation.isInvalid() && 5683 D.getName().EndLocation.isValid()) 5684 return D.getName().EndLocation; 5685 5686 return Loc; 5687 } 5688 5689 /// ParseDirectDeclarator 5690 /// direct-declarator: [C99 6.7.5] 5691 /// [C99] identifier 5692 /// '(' declarator ')' 5693 /// [GNU] '(' attributes declarator ')' 5694 /// [C90] direct-declarator '[' constant-expression[opt] ']' 5695 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' 5696 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' 5697 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' 5698 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' 5699 /// [C++11] direct-declarator '[' constant-expression[opt] ']' 5700 /// attribute-specifier-seq[opt] 5701 /// direct-declarator '(' parameter-type-list ')' 5702 /// direct-declarator '(' identifier-list[opt] ')' 5703 /// [GNU] direct-declarator '(' parameter-forward-declarations 5704 /// parameter-type-list[opt] ')' 5705 /// [C++] direct-declarator '(' parameter-declaration-clause ')' 5706 /// cv-qualifier-seq[opt] exception-specification[opt] 5707 /// [C++11] direct-declarator '(' parameter-declaration-clause ')' 5708 /// attribute-specifier-seq[opt] cv-qualifier-seq[opt] 5709 /// ref-qualifier[opt] exception-specification[opt] 5710 /// [C++] declarator-id 5711 /// [C++11] declarator-id attribute-specifier-seq[opt] 5712 /// 5713 /// declarator-id: [C++ 8] 5714 /// '...'[opt] id-expression 5715 /// '::'[opt] nested-name-specifier[opt] type-name 5716 /// 5717 /// id-expression: [C++ 5.1] 5718 /// unqualified-id 5719 /// qualified-id 5720 /// 5721 /// unqualified-id: [C++ 5.1] 5722 /// identifier 5723 /// operator-function-id 5724 /// conversion-function-id 5725 /// '~' class-name 5726 /// template-id 5727 /// 5728 /// C++17 adds the following, which we also handle here: 5729 /// 5730 /// simple-declaration: 5731 /// <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';' 5732 /// 5733 /// Note, any additional constructs added here may need corresponding changes 5734 /// in isConstructorDeclarator. 5735 void Parser::ParseDirectDeclarator(Declarator &D) { 5736 DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec()); 5737 5738 if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) { 5739 // This might be a C++17 structured binding. 5740 if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() && 5741 D.getCXXScopeSpec().isEmpty()) 5742 return ParseDecompositionDeclarator(D); 5743 5744 // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in 5745 // this context it is a bitfield. Also in range-based for statement colon 5746 // may delimit for-range-declaration. 5747 ColonProtectionRAIIObject X( 5748 *this, D.getContext() == DeclaratorContext::MemberContext || 5749 (D.getContext() == DeclaratorContext::ForContext && 5750 getLangOpts().CPlusPlus11)); 5751 5752 // ParseDeclaratorInternal might already have parsed the scope. 5753 if (D.getCXXScopeSpec().isEmpty()) { 5754 bool EnteringContext = 5755 D.getContext() == DeclaratorContext::FileContext || 5756 D.getContext() == DeclaratorContext::MemberContext; 5757 ParseOptionalCXXScopeSpecifier(D.getCXXScopeSpec(), nullptr, 5758 EnteringContext); 5759 } 5760 5761 if (D.getCXXScopeSpec().isValid()) { 5762 if (Actions.ShouldEnterDeclaratorScope(getCurScope(), 5763 D.getCXXScopeSpec())) 5764 // Change the declaration context for name lookup, until this function 5765 // is exited (and the declarator has been parsed). 5766 DeclScopeObj.EnterDeclaratorScope(); 5767 else if (getObjCDeclContext()) { 5768 // Ensure that we don't interpret the next token as an identifier when 5769 // dealing with declarations in an Objective-C container. 5770 D.SetIdentifier(nullptr, Tok.getLocation()); 5771 D.setInvalidType(true); 5772 ConsumeToken(); 5773 goto PastIdentifier; 5774 } 5775 } 5776 5777 // C++0x [dcl.fct]p14: 5778 // There is a syntactic ambiguity when an ellipsis occurs at the end of a 5779 // parameter-declaration-clause without a preceding comma. In this case, 5780 // the ellipsis is parsed as part of the abstract-declarator if the type 5781 // of the parameter either names a template parameter pack that has not 5782 // been expanded or contains auto; otherwise, it is parsed as part of the 5783 // parameter-declaration-clause. 5784 if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() && 5785 !((D.getContext() == DeclaratorContext::PrototypeContext || 5786 D.getContext() == DeclaratorContext::LambdaExprParameterContext || 5787 D.getContext() == DeclaratorContext::BlockLiteralContext) && 5788 NextToken().is(tok::r_paren) && 5789 !D.hasGroupingParens() && 5790 !Actions.containsUnexpandedParameterPacks(D) && 5791 D.getDeclSpec().getTypeSpecType() != TST_auto)) { 5792 SourceLocation EllipsisLoc = ConsumeToken(); 5793 if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) { 5794 // The ellipsis was put in the wrong place. Recover, and explain to 5795 // the user what they should have done. 5796 ParseDeclarator(D); 5797 if (EllipsisLoc.isValid()) 5798 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D); 5799 return; 5800 } else 5801 D.setEllipsisLoc(EllipsisLoc); 5802 5803 // The ellipsis can't be followed by a parenthesized declarator. We 5804 // check for that in ParseParenDeclarator, after we have disambiguated 5805 // the l_paren token. 5806 } 5807 5808 if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id, 5809 tok::tilde)) { 5810 // We found something that indicates the start of an unqualified-id. 5811 // Parse that unqualified-id. 5812 bool AllowConstructorName; 5813 bool AllowDeductionGuide; 5814 if (D.getDeclSpec().hasTypeSpecifier()) { 5815 AllowConstructorName = false; 5816 AllowDeductionGuide = false; 5817 } else if (D.getCXXScopeSpec().isSet()) { 5818 AllowConstructorName = 5819 (D.getContext() == DeclaratorContext::FileContext || 5820 D.getContext() == DeclaratorContext::MemberContext); 5821 AllowDeductionGuide = false; 5822 } else { 5823 AllowConstructorName = 5824 (D.getContext() == DeclaratorContext::MemberContext); 5825 AllowDeductionGuide = 5826 (D.getContext() == DeclaratorContext::FileContext || 5827 D.getContext() == DeclaratorContext::MemberContext); 5828 } 5829 5830 bool HadScope = D.getCXXScopeSpec().isValid(); 5831 if (ParseUnqualifiedId(D.getCXXScopeSpec(), 5832 /*EnteringContext=*/true, 5833 /*AllowDestructorName=*/true, AllowConstructorName, 5834 AllowDeductionGuide, nullptr, nullptr, 5835 D.getName()) || 5836 // Once we're past the identifier, if the scope was bad, mark the 5837 // whole declarator bad. 5838 D.getCXXScopeSpec().isInvalid()) { 5839 D.SetIdentifier(nullptr, Tok.getLocation()); 5840 D.setInvalidType(true); 5841 } else { 5842 // ParseUnqualifiedId might have parsed a scope specifier during error 5843 // recovery. If it did so, enter that scope. 5844 if (!HadScope && D.getCXXScopeSpec().isValid() && 5845 Actions.ShouldEnterDeclaratorScope(getCurScope(), 5846 D.getCXXScopeSpec())) 5847 DeclScopeObj.EnterDeclaratorScope(); 5848 5849 // Parsed the unqualified-id; update range information and move along. 5850 if (D.getSourceRange().getBegin().isInvalid()) 5851 D.SetRangeBegin(D.getName().getSourceRange().getBegin()); 5852 D.SetRangeEnd(D.getName().getSourceRange().getEnd()); 5853 } 5854 goto PastIdentifier; 5855 } 5856 5857 if (D.getCXXScopeSpec().isNotEmpty()) { 5858 // We have a scope specifier but no following unqualified-id. 5859 Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()), 5860 diag::err_expected_unqualified_id) 5861 << /*C++*/1; 5862 D.SetIdentifier(nullptr, Tok.getLocation()); 5863 goto PastIdentifier; 5864 } 5865 } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) { 5866 assert(!getLangOpts().CPlusPlus && 5867 "There's a C++-specific check for tok::identifier above"); 5868 assert(Tok.getIdentifierInfo() && "Not an identifier?"); 5869 D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 5870 D.SetRangeEnd(Tok.getLocation()); 5871 ConsumeToken(); 5872 goto PastIdentifier; 5873 } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) { 5874 // We're not allowed an identifier here, but we got one. Try to figure out 5875 // if the user was trying to attach a name to the type, or whether the name 5876 // is some unrelated trailing syntax. 5877 bool DiagnoseIdentifier = false; 5878 if (D.hasGroupingParens()) 5879 // An identifier within parens is unlikely to be intended to be anything 5880 // other than a name being "declared". 5881 DiagnoseIdentifier = true; 5882 else if (D.getContext() == DeclaratorContext::TemplateArgContext) 5883 // T<int N> is an accidental identifier; T<int N indicates a missing '>'. 5884 DiagnoseIdentifier = 5885 NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater); 5886 else if (D.getContext() == DeclaratorContext::AliasDeclContext || 5887 D.getContext() == DeclaratorContext::AliasTemplateContext) 5888 // The most likely error is that the ';' was forgotten. 5889 DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi); 5890 else if ((D.getContext() == DeclaratorContext::TrailingReturnContext || 5891 D.getContext() == DeclaratorContext::TrailingReturnVarContext) && 5892 !isCXX11VirtSpecifier(Tok)) 5893 DiagnoseIdentifier = NextToken().isOneOf( 5894 tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try); 5895 if (DiagnoseIdentifier) { 5896 Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id) 5897 << FixItHint::CreateRemoval(Tok.getLocation()); 5898 D.SetIdentifier(nullptr, Tok.getLocation()); 5899 ConsumeToken(); 5900 goto PastIdentifier; 5901 } 5902 } 5903 5904 if (Tok.is(tok::l_paren)) { 5905 // If this might be an abstract-declarator followed by a direct-initializer, 5906 // check whether this is a valid declarator chunk. If it can't be, assume 5907 // that it's an initializer instead. 5908 if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) { 5909 RevertingTentativeParsingAction PA(*this); 5910 if (TryParseDeclarator(true, D.mayHaveIdentifier(), true) == 5911 TPResult::False) { 5912 D.SetIdentifier(nullptr, Tok.getLocation()); 5913 goto PastIdentifier; 5914 } 5915 } 5916 5917 // direct-declarator: '(' declarator ')' 5918 // direct-declarator: '(' attributes declarator ')' 5919 // Example: 'char (*X)' or 'int (*XX)(void)' 5920 ParseParenDeclarator(D); 5921 5922 // If the declarator was parenthesized, we entered the declarator 5923 // scope when parsing the parenthesized declarator, then exited 5924 // the scope already. Re-enter the scope, if we need to. 5925 if (D.getCXXScopeSpec().isSet()) { 5926 // If there was an error parsing parenthesized declarator, declarator 5927 // scope may have been entered before. Don't do it again. 5928 if (!D.isInvalidType() && 5929 Actions.ShouldEnterDeclaratorScope(getCurScope(), 5930 D.getCXXScopeSpec())) 5931 // Change the declaration context for name lookup, until this function 5932 // is exited (and the declarator has been parsed). 5933 DeclScopeObj.EnterDeclaratorScope(); 5934 } 5935 } else if (D.mayOmitIdentifier()) { 5936 // This could be something simple like "int" (in which case the declarator 5937 // portion is empty), if an abstract-declarator is allowed. 5938 D.SetIdentifier(nullptr, Tok.getLocation()); 5939 5940 // The grammar for abstract-pack-declarator does not allow grouping parens. 5941 // FIXME: Revisit this once core issue 1488 is resolved. 5942 if (D.hasEllipsis() && D.hasGroupingParens()) 5943 Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()), 5944 diag::ext_abstract_pack_declarator_parens); 5945 } else { 5946 if (Tok.getKind() == tok::annot_pragma_parser_crash) 5947 LLVM_BUILTIN_TRAP; 5948 if (Tok.is(tok::l_square)) 5949 return ParseMisplacedBracketDeclarator(D); 5950 if (D.getContext() == DeclaratorContext::MemberContext) { 5951 // Objective-C++: Detect C++ keywords and try to prevent further errors by 5952 // treating these keyword as valid member names. 5953 if (getLangOpts().ObjC && getLangOpts().CPlusPlus && 5954 Tok.getIdentifierInfo() && 5955 Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) { 5956 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), 5957 diag::err_expected_member_name_or_semi_objcxx_keyword) 5958 << Tok.getIdentifierInfo() 5959 << (D.getDeclSpec().isEmpty() ? SourceRange() 5960 : D.getDeclSpec().getSourceRange()); 5961 D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation()); 5962 D.SetRangeEnd(Tok.getLocation()); 5963 ConsumeToken(); 5964 goto PastIdentifier; 5965 } 5966 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), 5967 diag::err_expected_member_name_or_semi) 5968 << (D.getDeclSpec().isEmpty() ? SourceRange() 5969 : D.getDeclSpec().getSourceRange()); 5970 } else if (getLangOpts().CPlusPlus) { 5971 if (Tok.isOneOf(tok::period, tok::arrow)) 5972 Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow); 5973 else { 5974 SourceLocation Loc = D.getCXXScopeSpec().getEndLoc(); 5975 if (Tok.isAtStartOfLine() && Loc.isValid()) 5976 Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id) 5977 << getLangOpts().CPlusPlus; 5978 else 5979 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), 5980 diag::err_expected_unqualified_id) 5981 << getLangOpts().CPlusPlus; 5982 } 5983 } else { 5984 Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()), 5985 diag::err_expected_either) 5986 << tok::identifier << tok::l_paren; 5987 } 5988 D.SetIdentifier(nullptr, Tok.getLocation()); 5989 D.setInvalidType(true); 5990 } 5991 5992 PastIdentifier: 5993 assert(D.isPastIdentifier() && 5994 "Haven't past the location of the identifier yet?"); 5995 5996 // Don't parse attributes unless we have parsed an unparenthesized name. 5997 if (D.hasName() && !D.getNumTypeObjects()) 5998 MaybeParseCXX11Attributes(D); 5999 6000 while (1) { 6001 if (Tok.is(tok::l_paren)) { 6002 // Enter function-declaration scope, limiting any declarators to the 6003 // function prototype scope, including parameter declarators. 6004 ParseScope PrototypeScope(this, 6005 Scope::FunctionPrototypeScope|Scope::DeclScope| 6006 (D.isFunctionDeclaratorAFunctionDeclaration() 6007 ? Scope::FunctionDeclarationScope : 0)); 6008 6009 // The paren may be part of a C++ direct initializer, eg. "int x(1);". 6010 // In such a case, check if we actually have a function declarator; if it 6011 // is not, the declarator has been fully parsed. 6012 bool IsAmbiguous = false; 6013 if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) { 6014 // The name of the declarator, if any, is tentatively declared within 6015 // a possible direct initializer. 6016 TentativelyDeclaredIdentifiers.push_back(D.getIdentifier()); 6017 bool IsFunctionDecl = isCXXFunctionDeclarator(&IsAmbiguous); 6018 TentativelyDeclaredIdentifiers.pop_back(); 6019 if (!IsFunctionDecl) 6020 break; 6021 } 6022 ParsedAttributes attrs(AttrFactory); 6023 BalancedDelimiterTracker T(*this, tok::l_paren); 6024 T.consumeOpen(); 6025 ParseFunctionDeclarator(D, attrs, T, IsAmbiguous); 6026 PrototypeScope.Exit(); 6027 } else if (Tok.is(tok::l_square)) { 6028 ParseBracketDeclarator(D); 6029 } else { 6030 break; 6031 } 6032 } 6033 } 6034 6035 void Parser::ParseDecompositionDeclarator(Declarator &D) { 6036 assert(Tok.is(tok::l_square)); 6037 6038 // If this doesn't look like a structured binding, maybe it's a misplaced 6039 // array declarator. 6040 // FIXME: Consume the l_square first so we don't need extra lookahead for 6041 // this. 6042 if (!(NextToken().is(tok::identifier) && 6043 GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) && 6044 !(NextToken().is(tok::r_square) && 6045 GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace))) 6046 return ParseMisplacedBracketDeclarator(D); 6047 6048 BalancedDelimiterTracker T(*this, tok::l_square); 6049 T.consumeOpen(); 6050 6051 SmallVector<DecompositionDeclarator::Binding, 32> Bindings; 6052 while (Tok.isNot(tok::r_square)) { 6053 if (!Bindings.empty()) { 6054 if (Tok.is(tok::comma)) 6055 ConsumeToken(); 6056 else { 6057 if (Tok.is(tok::identifier)) { 6058 SourceLocation EndLoc = getEndOfPreviousToken(); 6059 Diag(EndLoc, diag::err_expected) 6060 << tok::comma << FixItHint::CreateInsertion(EndLoc, ","); 6061 } else { 6062 Diag(Tok, diag::err_expected_comma_or_rsquare); 6063 } 6064 6065 SkipUntil(tok::r_square, tok::comma, tok::identifier, 6066 StopAtSemi | StopBeforeMatch); 6067 if (Tok.is(tok::comma)) 6068 ConsumeToken(); 6069 else if (Tok.isNot(tok::identifier)) 6070 break; 6071 } 6072 } 6073 6074 if (Tok.isNot(tok::identifier)) { 6075 Diag(Tok, diag::err_expected) << tok::identifier; 6076 break; 6077 } 6078 6079 Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()}); 6080 ConsumeToken(); 6081 } 6082 6083 if (Tok.isNot(tok::r_square)) 6084 // We've already diagnosed a problem here. 6085 T.skipToEnd(); 6086 else { 6087 // C++17 does not allow the identifier-list in a structured binding 6088 // to be empty. 6089 if (Bindings.empty()) 6090 Diag(Tok.getLocation(), diag::ext_decomp_decl_empty); 6091 6092 T.consumeClose(); 6093 } 6094 6095 return D.setDecompositionBindings(T.getOpenLocation(), Bindings, 6096 T.getCloseLocation()); 6097 } 6098 6099 /// ParseParenDeclarator - We parsed the declarator D up to a paren. This is 6100 /// only called before the identifier, so these are most likely just grouping 6101 /// parens for precedence. If we find that these are actually function 6102 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator. 6103 /// 6104 /// direct-declarator: 6105 /// '(' declarator ')' 6106 /// [GNU] '(' attributes declarator ')' 6107 /// direct-declarator '(' parameter-type-list ')' 6108 /// direct-declarator '(' identifier-list[opt] ')' 6109 /// [GNU] direct-declarator '(' parameter-forward-declarations 6110 /// parameter-type-list[opt] ')' 6111 /// 6112 void Parser::ParseParenDeclarator(Declarator &D) { 6113 BalancedDelimiterTracker T(*this, tok::l_paren); 6114 T.consumeOpen(); 6115 6116 assert(!D.isPastIdentifier() && "Should be called before passing identifier"); 6117 6118 // Eat any attributes before we look at whether this is a grouping or function 6119 // declarator paren. If this is a grouping paren, the attribute applies to 6120 // the type being built up, for example: 6121 // int (__attribute__(()) *x)(long y) 6122 // If this ends up not being a grouping paren, the attribute applies to the 6123 // first argument, for example: 6124 // int (__attribute__(()) int x) 6125 // In either case, we need to eat any attributes to be able to determine what 6126 // sort of paren this is. 6127 // 6128 ParsedAttributes attrs(AttrFactory); 6129 bool RequiresArg = false; 6130 if (Tok.is(tok::kw___attribute)) { 6131 ParseGNUAttributes(attrs); 6132 6133 // We require that the argument list (if this is a non-grouping paren) be 6134 // present even if the attribute list was empty. 6135 RequiresArg = true; 6136 } 6137 6138 // Eat any Microsoft extensions. 6139 ParseMicrosoftTypeAttributes(attrs); 6140 6141 // Eat any Borland extensions. 6142 if (Tok.is(tok::kw___pascal)) 6143 ParseBorlandTypeAttributes(attrs); 6144 6145 // If we haven't past the identifier yet (or where the identifier would be 6146 // stored, if this is an abstract declarator), then this is probably just 6147 // grouping parens. However, if this could be an abstract-declarator, then 6148 // this could also be the start of function arguments (consider 'void()'). 6149 bool isGrouping; 6150 6151 if (!D.mayOmitIdentifier()) { 6152 // If this can't be an abstract-declarator, this *must* be a grouping 6153 // paren, because we haven't seen the identifier yet. 6154 isGrouping = true; 6155 } else if (Tok.is(tok::r_paren) || // 'int()' is a function. 6156 (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) && 6157 NextToken().is(tok::r_paren)) || // C++ int(...) 6158 isDeclarationSpecifier() || // 'int(int)' is a function. 6159 isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function. 6160 // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is 6161 // considered to be a type, not a K&R identifier-list. 6162 isGrouping = false; 6163 } else { 6164 // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'. 6165 isGrouping = true; 6166 } 6167 6168 // If this is a grouping paren, handle: 6169 // direct-declarator: '(' declarator ')' 6170 // direct-declarator: '(' attributes declarator ')' 6171 if (isGrouping) { 6172 SourceLocation EllipsisLoc = D.getEllipsisLoc(); 6173 D.setEllipsisLoc(SourceLocation()); 6174 6175 bool hadGroupingParens = D.hasGroupingParens(); 6176 D.setGroupingParens(true); 6177 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); 6178 // Match the ')'. 6179 T.consumeClose(); 6180 D.AddTypeInfo( 6181 DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()), 6182 std::move(attrs), T.getCloseLocation()); 6183 6184 D.setGroupingParens(hadGroupingParens); 6185 6186 // An ellipsis cannot be placed outside parentheses. 6187 if (EllipsisLoc.isValid()) 6188 DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D); 6189 6190 return; 6191 } 6192 6193 // Okay, if this wasn't a grouping paren, it must be the start of a function 6194 // argument list. Recognize that this declarator will never have an 6195 // identifier (and remember where it would have been), then call into 6196 // ParseFunctionDeclarator to handle of argument list. 6197 D.SetIdentifier(nullptr, Tok.getLocation()); 6198 6199 // Enter function-declaration scope, limiting any declarators to the 6200 // function prototype scope, including parameter declarators. 6201 ParseScope PrototypeScope(this, 6202 Scope::FunctionPrototypeScope | Scope::DeclScope | 6203 (D.isFunctionDeclaratorAFunctionDeclaration() 6204 ? Scope::FunctionDeclarationScope : 0)); 6205 ParseFunctionDeclarator(D, attrs, T, false, RequiresArg); 6206 PrototypeScope.Exit(); 6207 } 6208 6209 /// ParseFunctionDeclarator - We are after the identifier and have parsed the 6210 /// declarator D up to a paren, which indicates that we are parsing function 6211 /// arguments. 6212 /// 6213 /// If FirstArgAttrs is non-null, then the caller parsed those arguments 6214 /// immediately after the open paren - they should be considered to be the 6215 /// first argument of a parameter. 6216 /// 6217 /// If RequiresArg is true, then the first argument of the function is required 6218 /// to be present and required to not be an identifier list. 6219 /// 6220 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt], 6221 /// (C++11) ref-qualifier[opt], exception-specification[opt], 6222 /// (C++11) attribute-specifier-seq[opt], and (C++11) trailing-return-type[opt]. 6223 /// 6224 /// [C++11] exception-specification: 6225 /// dynamic-exception-specification 6226 /// noexcept-specification 6227 /// 6228 void Parser::ParseFunctionDeclarator(Declarator &D, 6229 ParsedAttributes &FirstArgAttrs, 6230 BalancedDelimiterTracker &Tracker, 6231 bool IsAmbiguous, 6232 bool RequiresArg) { 6233 assert(getCurScope()->isFunctionPrototypeScope() && 6234 "Should call from a Function scope"); 6235 // lparen is already consumed! 6236 assert(D.isPastIdentifier() && "Should not call before identifier!"); 6237 6238 // This should be true when the function has typed arguments. 6239 // Otherwise, it is treated as a K&R-style function. 6240 bool HasProto = false; 6241 // Build up an array of information about the parsed arguments. 6242 SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo; 6243 // Remember where we see an ellipsis, if any. 6244 SourceLocation EllipsisLoc; 6245 6246 DeclSpec DS(AttrFactory); 6247 bool RefQualifierIsLValueRef = true; 6248 SourceLocation RefQualifierLoc; 6249 ExceptionSpecificationType ESpecType = EST_None; 6250 SourceRange ESpecRange; 6251 SmallVector<ParsedType, 2> DynamicExceptions; 6252 SmallVector<SourceRange, 2> DynamicExceptionRanges; 6253 ExprResult NoexceptExpr; 6254 CachedTokens *ExceptionSpecTokens = nullptr; 6255 ParsedAttributesWithRange FnAttrs(AttrFactory); 6256 TypeResult TrailingReturnType; 6257 6258 /* LocalEndLoc is the end location for the local FunctionTypeLoc. 6259 EndLoc is the end location for the function declarator. 6260 They differ for trailing return types. */ 6261 SourceLocation StartLoc, LocalEndLoc, EndLoc; 6262 SourceLocation LParenLoc, RParenLoc; 6263 LParenLoc = Tracker.getOpenLocation(); 6264 StartLoc = LParenLoc; 6265 6266 if (isFunctionDeclaratorIdentifierList()) { 6267 if (RequiresArg) 6268 Diag(Tok, diag::err_argument_required_after_attribute); 6269 6270 ParseFunctionDeclaratorIdentifierList(D, ParamInfo); 6271 6272 Tracker.consumeClose(); 6273 RParenLoc = Tracker.getCloseLocation(); 6274 LocalEndLoc = RParenLoc; 6275 EndLoc = RParenLoc; 6276 6277 // If there are attributes following the identifier list, parse them and 6278 // prohibit them. 6279 MaybeParseCXX11Attributes(FnAttrs); 6280 ProhibitAttributes(FnAttrs); 6281 } else { 6282 if (Tok.isNot(tok::r_paren)) 6283 ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, 6284 EllipsisLoc); 6285 else if (RequiresArg) 6286 Diag(Tok, diag::err_argument_required_after_attribute); 6287 6288 HasProto = ParamInfo.size() || getLangOpts().CPlusPlus 6289 || getLangOpts().OpenCL; 6290 6291 // If we have the closing ')', eat it. 6292 Tracker.consumeClose(); 6293 RParenLoc = Tracker.getCloseLocation(); 6294 LocalEndLoc = RParenLoc; 6295 EndLoc = RParenLoc; 6296 6297 if (getLangOpts().CPlusPlus) { 6298 // FIXME: Accept these components in any order, and produce fixits to 6299 // correct the order if the user gets it wrong. Ideally we should deal 6300 // with the pure-specifier in the same way. 6301 6302 // Parse cv-qualifier-seq[opt]. 6303 ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed, 6304 /*AtomicAllowed*/ false, 6305 /*IdentifierRequired=*/false, 6306 llvm::function_ref<void()>([&]() { 6307 Actions.CodeCompleteFunctionQualifiers(DS, D); 6308 })); 6309 if (!DS.getSourceRange().getEnd().isInvalid()) { 6310 EndLoc = DS.getSourceRange().getEnd(); 6311 } 6312 6313 // Parse ref-qualifier[opt]. 6314 if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc)) 6315 EndLoc = RefQualifierLoc; 6316 6317 // C++11 [expr.prim.general]p3: 6318 // If a declaration declares a member function or member function 6319 // template of a class X, the expression this is a prvalue of type 6320 // "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq 6321 // and the end of the function-definition, member-declarator, or 6322 // declarator. 6323 // FIXME: currently, "static" case isn't handled correctly. 6324 bool IsCXX11MemberFunction = 6325 getLangOpts().CPlusPlus11 && 6326 D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef && 6327 (D.getContext() == DeclaratorContext::MemberContext 6328 ? !D.getDeclSpec().isFriendSpecified() 6329 : D.getContext() == DeclaratorContext::FileContext && 6330 D.getCXXScopeSpec().isValid() && 6331 Actions.CurContext->isRecord()); 6332 6333 Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers()); 6334 if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14) 6335 Q.addConst(); 6336 // FIXME: Collect C++ address spaces. 6337 // If there are multiple different address spaces, the source is invalid. 6338 // Carry on using the first addr space for the qualifiers of 'this'. 6339 // The diagnostic will be given later while creating the function 6340 // prototype for the method. 6341 if (getLangOpts().OpenCLCPlusPlus) { 6342 for (ParsedAttr &attr : DS.getAttributes()) { 6343 LangAS ASIdx = attr.asOpenCLLangAS(); 6344 if (ASIdx != LangAS::Default) { 6345 Q.addAddressSpace(ASIdx); 6346 break; 6347 } 6348 } 6349 } 6350 6351 Sema::CXXThisScopeRAII ThisScope( 6352 Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q, 6353 IsCXX11MemberFunction); 6354 6355 // Parse exception-specification[opt]. 6356 bool Delayed = D.isFirstDeclarationOfMember() && 6357 D.isFunctionDeclaratorAFunctionDeclaration(); 6358 if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) && 6359 GetLookAheadToken(0).is(tok::kw_noexcept) && 6360 GetLookAheadToken(1).is(tok::l_paren) && 6361 GetLookAheadToken(2).is(tok::kw_noexcept) && 6362 GetLookAheadToken(3).is(tok::l_paren) && 6363 GetLookAheadToken(4).is(tok::identifier) && 6364 GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) { 6365 // HACK: We've got an exception-specification 6366 // noexcept(noexcept(swap(...))) 6367 // or 6368 // noexcept(noexcept(swap(...)) && noexcept(swap(...))) 6369 // on a 'swap' member function. This is a libstdc++ bug; the lookup 6370 // for 'swap' will only find the function we're currently declaring, 6371 // whereas it expects to find a non-member swap through ADL. Turn off 6372 // delayed parsing to give it a chance to find what it expects. 6373 Delayed = false; 6374 } 6375 ESpecType = tryParseExceptionSpecification(Delayed, 6376 ESpecRange, 6377 DynamicExceptions, 6378 DynamicExceptionRanges, 6379 NoexceptExpr, 6380 ExceptionSpecTokens); 6381 if (ESpecType != EST_None) 6382 EndLoc = ESpecRange.getEnd(); 6383 6384 // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes 6385 // after the exception-specification. 6386 MaybeParseCXX11Attributes(FnAttrs); 6387 6388 // Parse trailing-return-type[opt]. 6389 LocalEndLoc = EndLoc; 6390 if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) { 6391 Diag(Tok, diag::warn_cxx98_compat_trailing_return_type); 6392 if (D.getDeclSpec().getTypeSpecType() == TST_auto) 6393 StartLoc = D.getDeclSpec().getTypeSpecTypeLoc(); 6394 LocalEndLoc = Tok.getLocation(); 6395 SourceRange Range; 6396 TrailingReturnType = 6397 ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit()); 6398 EndLoc = Range.getEnd(); 6399 } 6400 } else if (standardAttributesAllowed()) { 6401 MaybeParseCXX11Attributes(FnAttrs); 6402 } 6403 } 6404 6405 // Collect non-parameter declarations from the prototype if this is a function 6406 // declaration. They will be moved into the scope of the function. Only do 6407 // this in C and not C++, where the decls will continue to live in the 6408 // surrounding context. 6409 SmallVector<NamedDecl *, 0> DeclsInPrototype; 6410 if (getCurScope()->getFlags() & Scope::FunctionDeclarationScope && 6411 !getLangOpts().CPlusPlus) { 6412 for (Decl *D : getCurScope()->decls()) { 6413 NamedDecl *ND = dyn_cast<NamedDecl>(D); 6414 if (!ND || isa<ParmVarDecl>(ND)) 6415 continue; 6416 DeclsInPrototype.push_back(ND); 6417 } 6418 } 6419 6420 // Remember that we parsed a function type, and remember the attributes. 6421 D.AddTypeInfo(DeclaratorChunk::getFunction( 6422 HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(), 6423 ParamInfo.size(), EllipsisLoc, RParenLoc, 6424 RefQualifierIsLValueRef, RefQualifierLoc, 6425 /*MutableLoc=*/SourceLocation(), 6426 ESpecType, ESpecRange, DynamicExceptions.data(), 6427 DynamicExceptionRanges.data(), DynamicExceptions.size(), 6428 NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr, 6429 ExceptionSpecTokens, DeclsInPrototype, StartLoc, 6430 LocalEndLoc, D, TrailingReturnType, &DS), 6431 std::move(FnAttrs), EndLoc); 6432 } 6433 6434 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns 6435 /// true if a ref-qualifier is found. 6436 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef, 6437 SourceLocation &RefQualifierLoc) { 6438 if (Tok.isOneOf(tok::amp, tok::ampamp)) { 6439 Diag(Tok, getLangOpts().CPlusPlus11 ? 6440 diag::warn_cxx98_compat_ref_qualifier : 6441 diag::ext_ref_qualifier); 6442 6443 RefQualifierIsLValueRef = Tok.is(tok::amp); 6444 RefQualifierLoc = ConsumeToken(); 6445 return true; 6446 } 6447 return false; 6448 } 6449 6450 /// isFunctionDeclaratorIdentifierList - This parameter list may have an 6451 /// identifier list form for a K&R-style function: void foo(a,b,c) 6452 /// 6453 /// Note that identifier-lists are only allowed for normal declarators, not for 6454 /// abstract-declarators. 6455 bool Parser::isFunctionDeclaratorIdentifierList() { 6456 return !getLangOpts().CPlusPlus 6457 && Tok.is(tok::identifier) 6458 && !TryAltiVecVectorToken() 6459 // K&R identifier lists can't have typedefs as identifiers, per C99 6460 // 6.7.5.3p11. 6461 && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename)) 6462 // Identifier lists follow a really simple grammar: the identifiers can 6463 // be followed *only* by a ", identifier" or ")". However, K&R 6464 // identifier lists are really rare in the brave new modern world, and 6465 // it is very common for someone to typo a type in a non-K&R style 6466 // list. If we are presented with something like: "void foo(intptr x, 6467 // float y)", we don't want to start parsing the function declarator as 6468 // though it is a K&R style declarator just because intptr is an 6469 // invalid type. 6470 // 6471 // To handle this, we check to see if the token after the first 6472 // identifier is a "," or ")". Only then do we parse it as an 6473 // identifier list. 6474 && (!Tok.is(tok::eof) && 6475 (NextToken().is(tok::comma) || NextToken().is(tok::r_paren))); 6476 } 6477 6478 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator 6479 /// we found a K&R-style identifier list instead of a typed parameter list. 6480 /// 6481 /// After returning, ParamInfo will hold the parsed parameters. 6482 /// 6483 /// identifier-list: [C99 6.7.5] 6484 /// identifier 6485 /// identifier-list ',' identifier 6486 /// 6487 void Parser::ParseFunctionDeclaratorIdentifierList( 6488 Declarator &D, 6489 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) { 6490 // If there was no identifier specified for the declarator, either we are in 6491 // an abstract-declarator, or we are in a parameter declarator which was found 6492 // to be abstract. In abstract-declarators, identifier lists are not valid: 6493 // diagnose this. 6494 if (!D.getIdentifier()) 6495 Diag(Tok, diag::ext_ident_list_in_param); 6496 6497 // Maintain an efficient lookup of params we have seen so far. 6498 llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar; 6499 6500 do { 6501 // If this isn't an identifier, report the error and skip until ')'. 6502 if (Tok.isNot(tok::identifier)) { 6503 Diag(Tok, diag::err_expected) << tok::identifier; 6504 SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch); 6505 // Forget we parsed anything. 6506 ParamInfo.clear(); 6507 return; 6508 } 6509 6510 IdentifierInfo *ParmII = Tok.getIdentifierInfo(); 6511 6512 // Reject 'typedef int y; int test(x, y)', but continue parsing. 6513 if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope())) 6514 Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII; 6515 6516 // Verify that the argument identifier has not already been mentioned. 6517 if (!ParamsSoFar.insert(ParmII).second) { 6518 Diag(Tok, diag::err_param_redefinition) << ParmII; 6519 } else { 6520 // Remember this identifier in ParamInfo. 6521 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, 6522 Tok.getLocation(), 6523 nullptr)); 6524 } 6525 6526 // Eat the identifier. 6527 ConsumeToken(); 6528 // The list continues if we see a comma. 6529 } while (TryConsumeToken(tok::comma)); 6530 } 6531 6532 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list 6533 /// after the opening parenthesis. This function will not parse a K&R-style 6534 /// identifier list. 6535 /// 6536 /// D is the declarator being parsed. If FirstArgAttrs is non-null, then the 6537 /// caller parsed those arguments immediately after the open paren - they should 6538 /// be considered to be part of the first parameter. 6539 /// 6540 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will 6541 /// be the location of the ellipsis, if any was parsed. 6542 /// 6543 /// parameter-type-list: [C99 6.7.5] 6544 /// parameter-list 6545 /// parameter-list ',' '...' 6546 /// [C++] parameter-list '...' 6547 /// 6548 /// parameter-list: [C99 6.7.5] 6549 /// parameter-declaration 6550 /// parameter-list ',' parameter-declaration 6551 /// 6552 /// parameter-declaration: [C99 6.7.5] 6553 /// declaration-specifiers declarator 6554 /// [C++] declaration-specifiers declarator '=' assignment-expression 6555 /// [C++11] initializer-clause 6556 /// [GNU] declaration-specifiers declarator attributes 6557 /// declaration-specifiers abstract-declarator[opt] 6558 /// [C++] declaration-specifiers abstract-declarator[opt] 6559 /// '=' assignment-expression 6560 /// [GNU] declaration-specifiers abstract-declarator[opt] attributes 6561 /// [C++11] attribute-specifier-seq parameter-declaration 6562 /// 6563 void Parser::ParseParameterDeclarationClause( 6564 Declarator &D, 6565 ParsedAttributes &FirstArgAttrs, 6566 SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo, 6567 SourceLocation &EllipsisLoc) { 6568 do { 6569 // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq 6570 // before deciding this was a parameter-declaration-clause. 6571 if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) 6572 break; 6573 6574 // Parse the declaration-specifiers. 6575 // Just use the ParsingDeclaration "scope" of the declarator. 6576 DeclSpec DS(AttrFactory); 6577 6578 // Parse any C++11 attributes. 6579 MaybeParseCXX11Attributes(DS.getAttributes()); 6580 6581 // Skip any Microsoft attributes before a param. 6582 MaybeParseMicrosoftAttributes(DS.getAttributes()); 6583 6584 SourceLocation DSStart = Tok.getLocation(); 6585 6586 // If the caller parsed attributes for the first argument, add them now. 6587 // Take them so that we only apply the attributes to the first parameter. 6588 // FIXME: If we can leave the attributes in the token stream somehow, we can 6589 // get rid of a parameter (FirstArgAttrs) and this statement. It might be 6590 // too much hassle. 6591 DS.takeAttributesFrom(FirstArgAttrs); 6592 6593 ParseDeclarationSpecifiers(DS); 6594 6595 6596 // Parse the declarator. This is "PrototypeContext" or 6597 // "LambdaExprParameterContext", because we must accept either 6598 // 'declarator' or 'abstract-declarator' here. 6599 Declarator ParmDeclarator( 6600 DS, D.getContext() == DeclaratorContext::LambdaExprContext 6601 ? DeclaratorContext::LambdaExprParameterContext 6602 : DeclaratorContext::PrototypeContext); 6603 ParseDeclarator(ParmDeclarator); 6604 6605 // Parse GNU attributes, if present. 6606 MaybeParseGNUAttributes(ParmDeclarator); 6607 6608 // Remember this parsed parameter in ParamInfo. 6609 IdentifierInfo *ParmII = ParmDeclarator.getIdentifier(); 6610 6611 // DefArgToks is used when the parsing of default arguments needs 6612 // to be delayed. 6613 std::unique_ptr<CachedTokens> DefArgToks; 6614 6615 // If no parameter was specified, verify that *something* was specified, 6616 // otherwise we have a missing type and identifier. 6617 if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr && 6618 ParmDeclarator.getNumTypeObjects() == 0) { 6619 // Completely missing, emit error. 6620 Diag(DSStart, diag::err_missing_param); 6621 } else { 6622 // Otherwise, we have something. Add it and let semantic analysis try 6623 // to grok it and add the result to the ParamInfo we are building. 6624 6625 // Last chance to recover from a misplaced ellipsis in an attempted 6626 // parameter pack declaration. 6627 if (Tok.is(tok::ellipsis) && 6628 (NextToken().isNot(tok::r_paren) || 6629 (!ParmDeclarator.getEllipsisLoc().isValid() && 6630 !Actions.isUnexpandedParameterPackPermitted())) && 6631 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) 6632 DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator); 6633 6634 // Inform the actions module about the parameter declarator, so it gets 6635 // added to the current scope. 6636 Decl *Param = Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator); 6637 // Parse the default argument, if any. We parse the default 6638 // arguments in all dialects; the semantic analysis in 6639 // ActOnParamDefaultArgument will reject the default argument in 6640 // C. 6641 if (Tok.is(tok::equal)) { 6642 SourceLocation EqualLoc = Tok.getLocation(); 6643 6644 // Parse the default argument 6645 if (D.getContext() == DeclaratorContext::MemberContext) { 6646 // If we're inside a class definition, cache the tokens 6647 // corresponding to the default argument. We'll actually parse 6648 // them when we see the end of the class definition. 6649 DefArgToks.reset(new CachedTokens); 6650 6651 SourceLocation ArgStartLoc = NextToken().getLocation(); 6652 if (!ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument)) { 6653 DefArgToks.reset(); 6654 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc); 6655 } else { 6656 Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc, 6657 ArgStartLoc); 6658 } 6659 } else { 6660 // Consume the '='. 6661 ConsumeToken(); 6662 6663 // The argument isn't actually potentially evaluated unless it is 6664 // used. 6665 EnterExpressionEvaluationContext Eval( 6666 Actions, 6667 Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed, 6668 Param); 6669 6670 ExprResult DefArgResult; 6671 if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) { 6672 Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists); 6673 DefArgResult = ParseBraceInitializer(); 6674 } else 6675 DefArgResult = ParseAssignmentExpression(); 6676 DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult); 6677 if (DefArgResult.isInvalid()) { 6678 Actions.ActOnParamDefaultArgumentError(Param, EqualLoc); 6679 SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch); 6680 } else { 6681 // Inform the actions module about the default argument 6682 Actions.ActOnParamDefaultArgument(Param, EqualLoc, 6683 DefArgResult.get()); 6684 } 6685 } 6686 } 6687 6688 ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII, 6689 ParmDeclarator.getIdentifierLoc(), 6690 Param, std::move(DefArgToks))); 6691 } 6692 6693 if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) { 6694 if (!getLangOpts().CPlusPlus) { 6695 // We have ellipsis without a preceding ',', which is ill-formed 6696 // in C. Complain and provide the fix. 6697 Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis) 6698 << FixItHint::CreateInsertion(EllipsisLoc, ", "); 6699 } else if (ParmDeclarator.getEllipsisLoc().isValid() || 6700 Actions.containsUnexpandedParameterPacks(ParmDeclarator)) { 6701 // It looks like this was supposed to be a parameter pack. Warn and 6702 // point out where the ellipsis should have gone. 6703 SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc(); 6704 Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg) 6705 << ParmEllipsis.isValid() << ParmEllipsis; 6706 if (ParmEllipsis.isValid()) { 6707 Diag(ParmEllipsis, 6708 diag::note_misplaced_ellipsis_vararg_existing_ellipsis); 6709 } else { 6710 Diag(ParmDeclarator.getIdentifierLoc(), 6711 diag::note_misplaced_ellipsis_vararg_add_ellipsis) 6712 << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(), 6713 "...") 6714 << !ParmDeclarator.hasName(); 6715 } 6716 Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma) 6717 << FixItHint::CreateInsertion(EllipsisLoc, ", "); 6718 } 6719 6720 // We can't have any more parameters after an ellipsis. 6721 break; 6722 } 6723 6724 // If the next token is a comma, consume it and keep reading arguments. 6725 } while (TryConsumeToken(tok::comma)); 6726 } 6727 6728 /// [C90] direct-declarator '[' constant-expression[opt] ']' 6729 /// [C99] direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']' 6730 /// [C99] direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']' 6731 /// [C99] direct-declarator '[' type-qual-list 'static' assignment-expr ']' 6732 /// [C99] direct-declarator '[' type-qual-list[opt] '*' ']' 6733 /// [C++11] direct-declarator '[' constant-expression[opt] ']' 6734 /// attribute-specifier-seq[opt] 6735 void Parser::ParseBracketDeclarator(Declarator &D) { 6736 if (CheckProhibitedCXX11Attribute()) 6737 return; 6738 6739 BalancedDelimiterTracker T(*this, tok::l_square); 6740 T.consumeOpen(); 6741 6742 // C array syntax has many features, but by-far the most common is [] and [4]. 6743 // This code does a fast path to handle some of the most obvious cases. 6744 if (Tok.getKind() == tok::r_square) { 6745 T.consumeClose(); 6746 ParsedAttributes attrs(AttrFactory); 6747 MaybeParseCXX11Attributes(attrs); 6748 6749 // Remember that we parsed the empty array type. 6750 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr, 6751 T.getOpenLocation(), 6752 T.getCloseLocation()), 6753 std::move(attrs), T.getCloseLocation()); 6754 return; 6755 } else if (Tok.getKind() == tok::numeric_constant && 6756 GetLookAheadToken(1).is(tok::r_square)) { 6757 // [4] is very common. Parse the numeric constant expression. 6758 ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope())); 6759 ConsumeToken(); 6760 6761 T.consumeClose(); 6762 ParsedAttributes attrs(AttrFactory); 6763 MaybeParseCXX11Attributes(attrs); 6764 6765 // Remember that we parsed a array type, and remember its features. 6766 D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(), 6767 T.getOpenLocation(), 6768 T.getCloseLocation()), 6769 std::move(attrs), T.getCloseLocation()); 6770 return; 6771 } else if (Tok.getKind() == tok::code_completion) { 6772 Actions.CodeCompleteBracketDeclarator(getCurScope()); 6773 return cutOffParsing(); 6774 } 6775 6776 // If valid, this location is the position where we read the 'static' keyword. 6777 SourceLocation StaticLoc; 6778 TryConsumeToken(tok::kw_static, StaticLoc); 6779 6780 // If there is a type-qualifier-list, read it now. 6781 // Type qualifiers in an array subscript are a C99 feature. 6782 DeclSpec DS(AttrFactory); 6783 ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed); 6784 6785 // If we haven't already read 'static', check to see if there is one after the 6786 // type-qualifier-list. 6787 if (!StaticLoc.isValid()) 6788 TryConsumeToken(tok::kw_static, StaticLoc); 6789 6790 // Handle "direct-declarator [ type-qual-list[opt] * ]". 6791 bool isStar = false; 6792 ExprResult NumElements; 6793 6794 // Handle the case where we have '[*]' as the array size. However, a leading 6795 // star could be the start of an expression, for example 'X[*p + 4]'. Verify 6796 // the token after the star is a ']'. Since stars in arrays are 6797 // infrequent, use of lookahead is not costly here. 6798 if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) { 6799 ConsumeToken(); // Eat the '*'. 6800 6801 if (StaticLoc.isValid()) { 6802 Diag(StaticLoc, diag::err_unspecified_vla_size_with_static); 6803 StaticLoc = SourceLocation(); // Drop the static. 6804 } 6805 isStar = true; 6806 } else if (Tok.isNot(tok::r_square)) { 6807 // Note, in C89, this production uses the constant-expr production instead 6808 // of assignment-expr. The only difference is that assignment-expr allows 6809 // things like '=' and '*='. Sema rejects these in C89 mode because they 6810 // are not i-c-e's, so we don't need to distinguish between the two here. 6811 6812 // Parse the constant-expression or assignment-expression now (depending 6813 // on dialect). 6814 if (getLangOpts().CPlusPlus) { 6815 NumElements = ParseConstantExpression(); 6816 } else { 6817 EnterExpressionEvaluationContext Unevaluated( 6818 Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated); 6819 NumElements = 6820 Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()); 6821 } 6822 } else { 6823 if (StaticLoc.isValid()) { 6824 Diag(StaticLoc, diag::err_unspecified_size_with_static); 6825 StaticLoc = SourceLocation(); // Drop the static. 6826 } 6827 } 6828 6829 // If there was an error parsing the assignment-expression, recover. 6830 if (NumElements.isInvalid()) { 6831 D.setInvalidType(true); 6832 // If the expression was invalid, skip it. 6833 SkipUntil(tok::r_square, StopAtSemi); 6834 return; 6835 } 6836 6837 T.consumeClose(); 6838 6839 MaybeParseCXX11Attributes(DS.getAttributes()); 6840 6841 // Remember that we parsed a array type, and remember its features. 6842 D.AddTypeInfo( 6843 DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(), 6844 isStar, NumElements.get(), T.getOpenLocation(), 6845 T.getCloseLocation()), 6846 std::move(DS.getAttributes()), T.getCloseLocation()); 6847 } 6848 6849 /// Diagnose brackets before an identifier. 6850 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) { 6851 assert(Tok.is(tok::l_square) && "Missing opening bracket"); 6852 assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier"); 6853 6854 SourceLocation StartBracketLoc = Tok.getLocation(); 6855 Declarator TempDeclarator(D.getDeclSpec(), D.getContext()); 6856 6857 while (Tok.is(tok::l_square)) { 6858 ParseBracketDeclarator(TempDeclarator); 6859 } 6860 6861 // Stuff the location of the start of the brackets into the Declarator. 6862 // The diagnostics from ParseDirectDeclarator will make more sense if 6863 // they use this location instead. 6864 if (Tok.is(tok::semi)) 6865 D.getName().EndLocation = StartBracketLoc; 6866 6867 SourceLocation SuggestParenLoc = Tok.getLocation(); 6868 6869 // Now that the brackets are removed, try parsing the declarator again. 6870 ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator); 6871 6872 // Something went wrong parsing the brackets, in which case, 6873 // ParseBracketDeclarator has emitted an error, and we don't need to emit 6874 // one here. 6875 if (TempDeclarator.getNumTypeObjects() == 0) 6876 return; 6877 6878 // Determine if parens will need to be suggested in the diagnostic. 6879 bool NeedParens = false; 6880 if (D.getNumTypeObjects() != 0) { 6881 switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) { 6882 case DeclaratorChunk::Pointer: 6883 case DeclaratorChunk::Reference: 6884 case DeclaratorChunk::BlockPointer: 6885 case DeclaratorChunk::MemberPointer: 6886 case DeclaratorChunk::Pipe: 6887 NeedParens = true; 6888 break; 6889 case DeclaratorChunk::Array: 6890 case DeclaratorChunk::Function: 6891 case DeclaratorChunk::Paren: 6892 break; 6893 } 6894 } 6895 6896 if (NeedParens) { 6897 // Create a DeclaratorChunk for the inserted parens. 6898 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc()); 6899 D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc), 6900 SourceLocation()); 6901 } 6902 6903 // Adding back the bracket info to the end of the Declarator. 6904 for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) { 6905 const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i); 6906 D.AddTypeInfo(Chunk, SourceLocation()); 6907 } 6908 6909 // The missing identifier would have been diagnosed in ParseDirectDeclarator. 6910 // If parentheses are required, always suggest them. 6911 if (!D.getIdentifier() && !NeedParens) 6912 return; 6913 6914 SourceLocation EndBracketLoc = TempDeclarator.getEndLoc(); 6915 6916 // Generate the move bracket error message. 6917 SourceRange BracketRange(StartBracketLoc, EndBracketLoc); 6918 SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc()); 6919 6920 if (NeedParens) { 6921 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id) 6922 << getLangOpts().CPlusPlus 6923 << FixItHint::CreateInsertion(SuggestParenLoc, "(") 6924 << FixItHint::CreateInsertion(EndLoc, ")") 6925 << FixItHint::CreateInsertionFromRange( 6926 EndLoc, CharSourceRange(BracketRange, true)) 6927 << FixItHint::CreateRemoval(BracketRange); 6928 } else { 6929 Diag(EndLoc, diag::err_brackets_go_after_unqualified_id) 6930 << getLangOpts().CPlusPlus 6931 << FixItHint::CreateInsertionFromRange( 6932 EndLoc, CharSourceRange(BracketRange, true)) 6933 << FixItHint::CreateRemoval(BracketRange); 6934 } 6935 } 6936 6937 /// [GNU] typeof-specifier: 6938 /// typeof ( expressions ) 6939 /// typeof ( type-name ) 6940 /// [GNU/C++] typeof unary-expression 6941 /// 6942 void Parser::ParseTypeofSpecifier(DeclSpec &DS) { 6943 assert(Tok.is(tok::kw_typeof) && "Not a typeof specifier"); 6944 Token OpTok = Tok; 6945 SourceLocation StartLoc = ConsumeToken(); 6946 6947 const bool hasParens = Tok.is(tok::l_paren); 6948 6949 EnterExpressionEvaluationContext Unevaluated( 6950 Actions, Sema::ExpressionEvaluationContext::Unevaluated, 6951 Sema::ReuseLambdaContextDecl); 6952 6953 bool isCastExpr; 6954 ParsedType CastTy; 6955 SourceRange CastRange; 6956 ExprResult Operand = Actions.CorrectDelayedTyposInExpr( 6957 ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange)); 6958 if (hasParens) 6959 DS.setTypeofParensRange(CastRange); 6960 6961 if (CastRange.getEnd().isInvalid()) 6962 // FIXME: Not accurate, the range gets one token more than it should. 6963 DS.SetRangeEnd(Tok.getLocation()); 6964 else 6965 DS.SetRangeEnd(CastRange.getEnd()); 6966 6967 if (isCastExpr) { 6968 if (!CastTy) { 6969 DS.SetTypeSpecError(); 6970 return; 6971 } 6972 6973 const char *PrevSpec = nullptr; 6974 unsigned DiagID; 6975 // Check for duplicate type specifiers (e.g. "int typeof(int)"). 6976 if (DS.SetTypeSpecType(DeclSpec::TST_typeofType, StartLoc, PrevSpec, 6977 DiagID, CastTy, 6978 Actions.getASTContext().getPrintingPolicy())) 6979 Diag(StartLoc, DiagID) << PrevSpec; 6980 return; 6981 } 6982 6983 // If we get here, the operand to the typeof was an expression. 6984 if (Operand.isInvalid()) { 6985 DS.SetTypeSpecError(); 6986 return; 6987 } 6988 6989 // We might need to transform the operand if it is potentially evaluated. 6990 Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get()); 6991 if (Operand.isInvalid()) { 6992 DS.SetTypeSpecError(); 6993 return; 6994 } 6995 6996 const char *PrevSpec = nullptr; 6997 unsigned DiagID; 6998 // Check for duplicate type specifiers (e.g. "int typeof(int)"). 6999 if (DS.SetTypeSpecType(DeclSpec::TST_typeofExpr, StartLoc, PrevSpec, 7000 DiagID, Operand.get(), 7001 Actions.getASTContext().getPrintingPolicy())) 7002 Diag(StartLoc, DiagID) << PrevSpec; 7003 } 7004 7005 /// [C11] atomic-specifier: 7006 /// _Atomic ( type-name ) 7007 /// 7008 void Parser::ParseAtomicSpecifier(DeclSpec &DS) { 7009 assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) && 7010 "Not an atomic specifier"); 7011 7012 SourceLocation StartLoc = ConsumeToken(); 7013 BalancedDelimiterTracker T(*this, tok::l_paren); 7014 if (T.consumeOpen()) 7015 return; 7016 7017 TypeResult Result = ParseTypeName(); 7018 if (Result.isInvalid()) { 7019 SkipUntil(tok::r_paren, StopAtSemi); 7020 return; 7021 } 7022 7023 // Match the ')' 7024 T.consumeClose(); 7025 7026 if (T.getCloseLocation().isInvalid()) 7027 return; 7028 7029 DS.setTypeofParensRange(T.getRange()); 7030 DS.SetRangeEnd(T.getCloseLocation()); 7031 7032 const char *PrevSpec = nullptr; 7033 unsigned DiagID; 7034 if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec, 7035 DiagID, Result.get(), 7036 Actions.getASTContext().getPrintingPolicy())) 7037 Diag(StartLoc, DiagID) << PrevSpec; 7038 } 7039 7040 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called 7041 /// from TryAltiVecVectorToken. 7042 bool Parser::TryAltiVecVectorTokenOutOfLine() { 7043 Token Next = NextToken(); 7044 switch (Next.getKind()) { 7045 default: return false; 7046 case tok::kw_short: 7047 case tok::kw_long: 7048 case tok::kw_signed: 7049 case tok::kw_unsigned: 7050 case tok::kw_void: 7051 case tok::kw_char: 7052 case tok::kw_int: 7053 case tok::kw_float: 7054 case tok::kw_double: 7055 case tok::kw_bool: 7056 case tok::kw___bool: 7057 case tok::kw___pixel: 7058 Tok.setKind(tok::kw___vector); 7059 return true; 7060 case tok::identifier: 7061 if (Next.getIdentifierInfo() == Ident_pixel) { 7062 Tok.setKind(tok::kw___vector); 7063 return true; 7064 } 7065 if (Next.getIdentifierInfo() == Ident_bool) { 7066 Tok.setKind(tok::kw___vector); 7067 return true; 7068 } 7069 return false; 7070 } 7071 } 7072 7073 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc, 7074 const char *&PrevSpec, unsigned &DiagID, 7075 bool &isInvalid) { 7076 const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy(); 7077 if (Tok.getIdentifierInfo() == Ident_vector) { 7078 Token Next = NextToken(); 7079 switch (Next.getKind()) { 7080 case tok::kw_short: 7081 case tok::kw_long: 7082 case tok::kw_signed: 7083 case tok::kw_unsigned: 7084 case tok::kw_void: 7085 case tok::kw_char: 7086 case tok::kw_int: 7087 case tok::kw_float: 7088 case tok::kw_double: 7089 case tok::kw_bool: 7090 case tok::kw___bool: 7091 case tok::kw___pixel: 7092 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy); 7093 return true; 7094 case tok::identifier: 7095 if (Next.getIdentifierInfo() == Ident_pixel) { 7096 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy); 7097 return true; 7098 } 7099 if (Next.getIdentifierInfo() == Ident_bool) { 7100 isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy); 7101 return true; 7102 } 7103 break; 7104 default: 7105 break; 7106 } 7107 } else if ((Tok.getIdentifierInfo() == Ident_pixel) && 7108 DS.isTypeAltiVecVector()) { 7109 isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy); 7110 return true; 7111 } else if ((Tok.getIdentifierInfo() == Ident_bool) && 7112 DS.isTypeAltiVecVector()) { 7113 isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy); 7114 return true; 7115 } 7116 return false; 7117 } 7118