xref: /freebsd/contrib/llvm-project/clang/lib/Parse/ParseDecl.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the Declaration portions of the Parser interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/PrettyDeclStackTrace.h"
16 #include "clang/Basic/AddressSpaces.h"
17 #include "clang/Basic/AttributeCommonInfo.h"
18 #include "clang/Basic/Attributes.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Basic/TokenKinds.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Parse/Parser.h"
24 #include "clang/Parse/RAIIObjectsForParser.h"
25 #include "clang/Sema/EnterExpressionEvaluationContext.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/ParsedTemplate.h"
28 #include "clang/Sema/Scope.h"
29 #include "clang/Sema/SemaCUDA.h"
30 #include "clang/Sema/SemaCodeCompletion.h"
31 #include "clang/Sema/SemaDiagnostic.h"
32 #include "clang/Sema/SemaObjC.h"
33 #include "clang/Sema/SemaOpenMP.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/SmallString.h"
36 #include "llvm/ADT/StringSwitch.h"
37 #include <optional>
38 
39 using namespace clang;
40 
41 //===----------------------------------------------------------------------===//
42 // C99 6.7: Declarations.
43 //===----------------------------------------------------------------------===//
44 
45 /// ParseTypeName
46 ///       type-name: [C99 6.7.6]
47 ///         specifier-qualifier-list abstract-declarator[opt]
48 ///
49 /// Called type-id in C++.
50 TypeResult Parser::ParseTypeName(SourceRange *Range, DeclaratorContext Context,
51                                  AccessSpecifier AS, Decl **OwnedType,
52                                  ParsedAttributes *Attrs) {
53   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
54   if (DSC == DeclSpecContext::DSC_normal)
55     DSC = DeclSpecContext::DSC_type_specifier;
56 
57   // Parse the common declaration-specifiers piece.
58   DeclSpec DS(AttrFactory);
59   if (Attrs)
60     DS.addAttributes(*Attrs);
61   ParseSpecifierQualifierList(DS, AS, DSC);
62   if (OwnedType)
63     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
64 
65   // Move declspec attributes to ParsedAttributes
66   if (Attrs) {
67     llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
68     for (ParsedAttr &AL : DS.getAttributes()) {
69       if (AL.isDeclspecAttribute())
70         ToBeMoved.push_back(&AL);
71     }
72 
73     for (ParsedAttr *AL : ToBeMoved)
74       Attrs->takeOneFrom(DS.getAttributes(), AL);
75   }
76 
77   // Parse the abstract-declarator, if present.
78   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), Context);
79   ParseDeclarator(DeclaratorInfo);
80   if (Range)
81     *Range = DeclaratorInfo.getSourceRange();
82 
83   if (DeclaratorInfo.isInvalidType())
84     return true;
85 
86   return Actions.ActOnTypeName(DeclaratorInfo);
87 }
88 
89 /// Normalizes an attribute name by dropping prefixed and suffixed __.
90 static StringRef normalizeAttrName(StringRef Name) {
91   if (Name.size() >= 4 && Name.starts_with("__") && Name.ends_with("__"))
92     return Name.drop_front(2).drop_back(2);
93   return Name;
94 }
95 
96 /// returns true iff attribute is annotated with `LateAttrParseExperimentalExt`
97 /// in `Attr.td`.
98 static bool IsAttributeLateParsedExperimentalExt(const IdentifierInfo &II) {
99 #define CLANG_ATTR_LATE_PARSED_EXPERIMENTAL_EXT_LIST
100   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
101 #include "clang/Parse/AttrParserStringSwitches.inc"
102       .Default(false);
103 #undef CLANG_ATTR_LATE_PARSED_EXPERIMENTAL_EXT_LIST
104 }
105 
106 /// returns true iff attribute is annotated with `LateAttrParseStandard` in
107 /// `Attr.td`.
108 static bool IsAttributeLateParsedStandard(const IdentifierInfo &II) {
109 #define CLANG_ATTR_LATE_PARSED_LIST
110   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
111 #include "clang/Parse/AttrParserStringSwitches.inc"
112       .Default(false);
113 #undef CLANG_ATTR_LATE_PARSED_LIST
114 }
115 
116 /// Check if the a start and end source location expand to the same macro.
117 static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc,
118                                      SourceLocation EndLoc) {
119   if (!StartLoc.isMacroID() || !EndLoc.isMacroID())
120     return false;
121 
122   SourceManager &SM = PP.getSourceManager();
123   if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc))
124     return false;
125 
126   bool AttrStartIsInMacro =
127       Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts());
128   bool AttrEndIsInMacro =
129       Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts());
130   return AttrStartIsInMacro && AttrEndIsInMacro;
131 }
132 
133 void Parser::ParseAttributes(unsigned WhichAttrKinds, ParsedAttributes &Attrs,
134                              LateParsedAttrList *LateAttrs) {
135   bool MoreToParse;
136   do {
137     // Assume there's nothing left to parse, but if any attributes are in fact
138     // parsed, loop to ensure all specified attribute combinations are parsed.
139     MoreToParse = false;
140     if (WhichAttrKinds & PAKM_CXX11)
141       MoreToParse |= MaybeParseCXX11Attributes(Attrs);
142     if (WhichAttrKinds & PAKM_GNU)
143       MoreToParse |= MaybeParseGNUAttributes(Attrs, LateAttrs);
144     if (WhichAttrKinds & PAKM_Declspec)
145       MoreToParse |= MaybeParseMicrosoftDeclSpecs(Attrs);
146   } while (MoreToParse);
147 }
148 
149 /// ParseGNUAttributes - Parse a non-empty attributes list.
150 ///
151 /// [GNU] attributes:
152 ///         attribute
153 ///         attributes attribute
154 ///
155 /// [GNU]  attribute:
156 ///          '__attribute__' '(' '(' attribute-list ')' ')'
157 ///
158 /// [GNU]  attribute-list:
159 ///          attrib
160 ///          attribute_list ',' attrib
161 ///
162 /// [GNU]  attrib:
163 ///          empty
164 ///          attrib-name
165 ///          attrib-name '(' identifier ')'
166 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
167 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
168 ///
169 /// [GNU]  attrib-name:
170 ///          identifier
171 ///          typespec
172 ///          typequal
173 ///          storageclass
174 ///
175 /// Whether an attribute takes an 'identifier' is determined by the
176 /// attrib-name. GCC's behavior here is not worth imitating:
177 ///
178 ///  * In C mode, if the attribute argument list starts with an identifier
179 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
180 ///    a type, it is parsed as an identifier. If the attribute actually
181 ///    wanted an expression, it's out of luck (but it turns out that no
182 ///    attributes work that way, because C constant expressions are very
183 ///    limited).
184 ///  * In C++ mode, if the attribute argument list starts with an identifier,
185 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
186 ///    At block scope, any additional tokens between the identifier and the
187 ///    ',' or ')' are ignored, otherwise they produce a parse error.
188 ///
189 /// We follow the C++ model, but don't allow junk after the identifier.
190 void Parser::ParseGNUAttributes(ParsedAttributes &Attrs,
191                                 LateParsedAttrList *LateAttrs, Declarator *D) {
192   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
193 
194   SourceLocation StartLoc = Tok.getLocation();
195   SourceLocation EndLoc = StartLoc;
196 
197   while (Tok.is(tok::kw___attribute)) {
198     SourceLocation AttrTokLoc = ConsumeToken();
199     unsigned OldNumAttrs = Attrs.size();
200     unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0;
201 
202     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
203                          "attribute")) {
204       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
205       return;
206     }
207     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
208       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
209       return;
210     }
211     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
212     do {
213       // Eat preceeding commas to allow __attribute__((,,,foo))
214       while (TryConsumeToken(tok::comma))
215         ;
216 
217       // Expect an identifier or declaration specifier (const, int, etc.)
218       if (Tok.isAnnotation())
219         break;
220       if (Tok.is(tok::code_completion)) {
221         cutOffParsing();
222         Actions.CodeCompletion().CodeCompleteAttribute(
223             AttributeCommonInfo::Syntax::AS_GNU);
224         break;
225       }
226       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
227       if (!AttrName)
228         break;
229 
230       SourceLocation AttrNameLoc = ConsumeToken();
231 
232       if (Tok.isNot(tok::l_paren)) {
233         Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
234                      ParsedAttr::Form::GNU());
235         continue;
236       }
237 
238       bool LateParse = false;
239       if (!LateAttrs)
240         LateParse = false;
241       else if (LateAttrs->lateAttrParseExperimentalExtOnly()) {
242         // The caller requested that this attribute **only** be late
243         // parsed for `LateAttrParseExperimentalExt` attributes. This will
244         // only be late parsed if the experimental language option is enabled.
245         LateParse = getLangOpts().ExperimentalLateParseAttributes &&
246                     IsAttributeLateParsedExperimentalExt(*AttrName);
247       } else {
248         // The caller did not restrict late parsing to only
249         // `LateAttrParseExperimentalExt` attributes so late parse
250         // both `LateAttrParseStandard` and `LateAttrParseExperimentalExt`
251         // attributes.
252         LateParse = IsAttributeLateParsedExperimentalExt(*AttrName) ||
253                     IsAttributeLateParsedStandard(*AttrName);
254       }
255 
256       // Handle "parameterized" attributes
257       if (!LateParse) {
258         ParseGNUAttributeArgs(AttrName, AttrNameLoc, Attrs, &EndLoc, nullptr,
259                               SourceLocation(), ParsedAttr::Form::GNU(), D);
260         continue;
261       }
262 
263       // Handle attributes with arguments that require late parsing.
264       LateParsedAttribute *LA =
265           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
266       LateAttrs->push_back(LA);
267 
268       // Attributes in a class are parsed at the end of the class, along
269       // with other late-parsed declarations.
270       if (!ClassStack.empty() && !LateAttrs->parseSoon())
271         getCurrentClass().LateParsedDeclarations.push_back(LA);
272 
273       // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
274       // recursively consumes balanced parens.
275       LA->Toks.push_back(Tok);
276       ConsumeParen();
277       // Consume everything up to and including the matching right parens.
278       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
279 
280       Token Eof;
281       Eof.startToken();
282       Eof.setLocation(Tok.getLocation());
283       LA->Toks.push_back(Eof);
284     } while (Tok.is(tok::comma));
285 
286     if (ExpectAndConsume(tok::r_paren))
287       SkipUntil(tok::r_paren, StopAtSemi);
288     SourceLocation Loc = Tok.getLocation();
289     if (ExpectAndConsume(tok::r_paren))
290       SkipUntil(tok::r_paren, StopAtSemi);
291     EndLoc = Loc;
292 
293     // If this was declared in a macro, attach the macro IdentifierInfo to the
294     // parsed attribute.
295     auto &SM = PP.getSourceManager();
296     if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) &&
297         FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) {
298       CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc);
299       StringRef FoundName =
300           Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts());
301       IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName);
302 
303       for (unsigned i = OldNumAttrs; i < Attrs.size(); ++i)
304         Attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin());
305 
306       if (LateAttrs) {
307         for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i)
308           (*LateAttrs)[i]->MacroII = MacroII;
309       }
310     }
311   }
312 
313   Attrs.Range = SourceRange(StartLoc, EndLoc);
314 }
315 
316 /// Determine whether the given attribute has an identifier argument.
317 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
318 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
319   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
320 #include "clang/Parse/AttrParserStringSwitches.inc"
321            .Default(false);
322 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
323 }
324 
325 /// Determine whether the given attribute has an identifier argument.
326 static ParsedAttributeArgumentsProperties
327 attributeStringLiteralListArg(const llvm::Triple &T, const IdentifierInfo &II) {
328 #define CLANG_ATTR_STRING_LITERAL_ARG_LIST
329   return llvm::StringSwitch<uint32_t>(normalizeAttrName(II.getName()))
330 #include "clang/Parse/AttrParserStringSwitches.inc"
331       .Default(0);
332 #undef CLANG_ATTR_STRING_LITERAL_ARG_LIST
333 }
334 
335 /// Determine whether the given attribute has a variadic identifier argument.
336 static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) {
337 #define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
338   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
339 #include "clang/Parse/AttrParserStringSwitches.inc"
340            .Default(false);
341 #undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
342 }
343 
344 /// Determine whether the given attribute treats kw_this as an identifier.
345 static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) {
346 #define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
347   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
348 #include "clang/Parse/AttrParserStringSwitches.inc"
349            .Default(false);
350 #undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
351 }
352 
353 /// Determine if an attribute accepts parameter packs.
354 static bool attributeAcceptsExprPack(const IdentifierInfo &II) {
355 #define CLANG_ATTR_ACCEPTS_EXPR_PACK
356   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
357 #include "clang/Parse/AttrParserStringSwitches.inc"
358       .Default(false);
359 #undef CLANG_ATTR_ACCEPTS_EXPR_PACK
360 }
361 
362 /// Determine whether the given attribute parses a type argument.
363 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
364 #define CLANG_ATTR_TYPE_ARG_LIST
365   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
366 #include "clang/Parse/AttrParserStringSwitches.inc"
367            .Default(false);
368 #undef CLANG_ATTR_TYPE_ARG_LIST
369 }
370 
371 /// Determine whether the given attribute takes identifier arguments.
372 static bool attributeHasStrictIdentifierArgs(const IdentifierInfo &II) {
373 #define CLANG_ATTR_STRICT_IDENTIFIER_ARG_AT_INDEX_LIST
374   return (llvm::StringSwitch<uint64_t>(normalizeAttrName(II.getName()))
375 #include "clang/Parse/AttrParserStringSwitches.inc"
376               .Default(0)) != 0;
377 #undef CLANG_ATTR_STRICT_IDENTIFIER_ARG_AT_INDEX_LIST
378 }
379 
380 /// Determine whether the given attribute takes an identifier argument at a
381 /// specific index
382 static bool attributeHasStrictIdentifierArgAtIndex(const IdentifierInfo &II,
383                                                    size_t argIndex) {
384 #define CLANG_ATTR_STRICT_IDENTIFIER_ARG_AT_INDEX_LIST
385   return (llvm::StringSwitch<uint64_t>(normalizeAttrName(II.getName()))
386 #include "clang/Parse/AttrParserStringSwitches.inc"
387               .Default(0)) &
388          (1ull << argIndex);
389 #undef CLANG_ATTR_STRICT_IDENTIFIER_ARG_AT_INDEX_LIST
390 }
391 
392 /// Determine whether the given attribute requires parsing its arguments
393 /// in an unevaluated context or not.
394 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
395 #define CLANG_ATTR_ARG_CONTEXT_LIST
396   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
397 #include "clang/Parse/AttrParserStringSwitches.inc"
398            .Default(false);
399 #undef CLANG_ATTR_ARG_CONTEXT_LIST
400 }
401 
402 IdentifierLoc *Parser::ParseIdentifierLoc() {
403   assert(Tok.is(tok::identifier) && "expected an identifier");
404   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
405                                             Tok.getLocation(),
406                                             Tok.getIdentifierInfo());
407   ConsumeToken();
408   return IL;
409 }
410 
411 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
412                                        SourceLocation AttrNameLoc,
413                                        ParsedAttributes &Attrs,
414                                        IdentifierInfo *ScopeName,
415                                        SourceLocation ScopeLoc,
416                                        ParsedAttr::Form Form) {
417   BalancedDelimiterTracker Parens(*this, tok::l_paren);
418   Parens.consumeOpen();
419 
420   TypeResult T;
421   if (Tok.isNot(tok::r_paren))
422     T = ParseTypeName();
423 
424   if (Parens.consumeClose())
425     return;
426 
427   if (T.isInvalid())
428     return;
429 
430   if (T.isUsable())
431     Attrs.addNewTypeAttr(&AttrName,
432                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
433                          ScopeName, ScopeLoc, T.get(), Form);
434   else
435     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
436                  ScopeName, ScopeLoc, nullptr, 0, Form);
437 }
438 
439 ExprResult
440 Parser::ParseUnevaluatedStringInAttribute(const IdentifierInfo &AttrName) {
441   if (Tok.is(tok::l_paren)) {
442     BalancedDelimiterTracker Paren(*this, tok::l_paren);
443     Paren.consumeOpen();
444     ExprResult Res = ParseUnevaluatedStringInAttribute(AttrName);
445     Paren.consumeClose();
446     return Res;
447   }
448   if (!isTokenStringLiteral()) {
449     Diag(Tok.getLocation(), diag::err_expected_string_literal)
450         << /*in attribute...*/ 4 << AttrName.getName();
451     return ExprError();
452   }
453   return ParseUnevaluatedStringLiteralExpression();
454 }
455 
456 bool Parser::ParseAttributeArgumentList(
457     const IdentifierInfo &AttrName, SmallVectorImpl<Expr *> &Exprs,
458     ParsedAttributeArgumentsProperties ArgsProperties) {
459   bool SawError = false;
460   unsigned Arg = 0;
461   while (true) {
462     ExprResult Expr;
463     if (ArgsProperties.isStringLiteralArg(Arg)) {
464       Expr = ParseUnevaluatedStringInAttribute(AttrName);
465     } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
466       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
467       Expr = ParseBraceInitializer();
468     } else {
469       Expr = ParseAssignmentExpression();
470     }
471     Expr = Actions.CorrectDelayedTyposInExpr(Expr);
472 
473     if (Tok.is(tok::ellipsis))
474       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
475     else if (Tok.is(tok::code_completion)) {
476       // There's nothing to suggest in here as we parsed a full expression.
477       // Instead fail and propagate the error since caller might have something
478       // the suggest, e.g. signature help in function call. Note that this is
479       // performed before pushing the \p Expr, so that signature help can report
480       // current argument correctly.
481       SawError = true;
482       cutOffParsing();
483       break;
484     }
485 
486     if (Expr.isInvalid()) {
487       SawError = true;
488       break;
489     }
490 
491     if (Actions.DiagnoseUnexpandedParameterPack(Expr.get())) {
492       SawError = true;
493       break;
494     }
495 
496     Exprs.push_back(Expr.get());
497 
498     if (Tok.isNot(tok::comma))
499       break;
500     // Move to the next argument, remember where the comma was.
501     Token Comma = Tok;
502     ConsumeToken();
503     checkPotentialAngleBracketDelimiter(Comma);
504     Arg++;
505   }
506 
507   if (SawError) {
508     // Ensure typos get diagnosed when errors were encountered while parsing the
509     // expression list.
510     for (auto &E : Exprs) {
511       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
512       if (Expr.isUsable())
513         E = Expr.get();
514     }
515   }
516   return SawError;
517 }
518 
519 unsigned Parser::ParseAttributeArgsCommon(
520     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
521     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
522     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
523   // Ignore the left paren location for now.
524   ConsumeParen();
525 
526   bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName);
527   bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName);
528   bool AttributeHasVariadicIdentifierArg =
529       attributeHasVariadicIdentifierArg(*AttrName);
530 
531   // Interpret "kw_this" as an identifier if the attributed requests it.
532   if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
533     Tok.setKind(tok::identifier);
534 
535   ArgsVector ArgExprs;
536   if (Tok.is(tok::identifier)) {
537     // If this attribute wants an 'identifier' argument, make it so.
538     bool IsIdentifierArg = AttributeHasVariadicIdentifierArg ||
539                            attributeHasIdentifierArg(*AttrName);
540     ParsedAttr::Kind AttrKind =
541         ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
542 
543     // If we don't know how to parse this attribute, but this is the only
544     // token in this argument, assume it's meant to be an identifier.
545     if (AttrKind == ParsedAttr::UnknownAttribute ||
546         AttrKind == ParsedAttr::IgnoredAttribute) {
547       const Token &Next = NextToken();
548       IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
549     }
550 
551     if (IsIdentifierArg)
552       ArgExprs.push_back(ParseIdentifierLoc());
553   }
554 
555   ParsedType TheParsedType;
556   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
557     // Eat the comma.
558     if (!ArgExprs.empty())
559       ConsumeToken();
560 
561     if (AttributeIsTypeArgAttr) {
562       // FIXME: Multiple type arguments are not implemented.
563       TypeResult T = ParseTypeName();
564       if (T.isInvalid()) {
565         SkipUntil(tok::r_paren, StopAtSemi);
566         return 0;
567       }
568       if (T.isUsable())
569         TheParsedType = T.get();
570     } else if (AttributeHasVariadicIdentifierArg ||
571                attributeHasStrictIdentifierArgs(*AttrName)) {
572       // Parse variadic identifier arg. This can either consume identifiers or
573       // expressions. Variadic identifier args do not support parameter packs
574       // because those are typically used for attributes with enumeration
575       // arguments, and those enumerations are not something the user could
576       // express via a pack.
577       do {
578         // Interpret "kw_this" as an identifier if the attributed requests it.
579         if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
580           Tok.setKind(tok::identifier);
581 
582         if (Tok.is(tok::identifier) && attributeHasStrictIdentifierArgAtIndex(
583                                            *AttrName, ArgExprs.size())) {
584           ArgExprs.push_back(ParseIdentifierLoc());
585           continue;
586         }
587 
588         ExprResult ArgExpr;
589         if (Tok.is(tok::identifier)) {
590           ArgExprs.push_back(ParseIdentifierLoc());
591         } else {
592           bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
593           EnterExpressionEvaluationContext Unevaluated(
594               Actions,
595               Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
596                      : Sema::ExpressionEvaluationContext::ConstantEvaluated,
597               nullptr,
598               Sema::ExpressionEvaluationContextRecord::EK_AttrArgument);
599 
600           ExprResult ArgExpr(
601               Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
602 
603           if (ArgExpr.isInvalid()) {
604             SkipUntil(tok::r_paren, StopAtSemi);
605             return 0;
606           }
607           ArgExprs.push_back(ArgExpr.get());
608         }
609         // Eat the comma, move to the next argument
610       } while (TryConsumeToken(tok::comma));
611     } else {
612       // General case. Parse all available expressions.
613       bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
614       EnterExpressionEvaluationContext Unevaluated(
615           Actions,
616           Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
617                  : Sema::ExpressionEvaluationContext::ConstantEvaluated,
618           nullptr,
619           Sema::ExpressionEvaluationContextRecord::ExpressionKind::
620               EK_AttrArgument);
621 
622       ExprVector ParsedExprs;
623       ParsedAttributeArgumentsProperties ArgProperties =
624           attributeStringLiteralListArg(getTargetInfo().getTriple(), *AttrName);
625       if (ParseAttributeArgumentList(*AttrName, ParsedExprs, ArgProperties)) {
626         SkipUntil(tok::r_paren, StopAtSemi);
627         return 0;
628       }
629 
630       // Pack expansion must currently be explicitly supported by an attribute.
631       for (size_t I = 0; I < ParsedExprs.size(); ++I) {
632         if (!isa<PackExpansionExpr>(ParsedExprs[I]))
633           continue;
634 
635         if (!attributeAcceptsExprPack(*AttrName)) {
636           Diag(Tok.getLocation(),
637                diag::err_attribute_argument_parm_pack_not_supported)
638               << AttrName;
639           SkipUntil(tok::r_paren, StopAtSemi);
640           return 0;
641         }
642       }
643 
644       ArgExprs.insert(ArgExprs.end(), ParsedExprs.begin(), ParsedExprs.end());
645     }
646   }
647 
648   SourceLocation RParen = Tok.getLocation();
649   if (!ExpectAndConsume(tok::r_paren)) {
650     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
651 
652     if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) {
653       Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen),
654                            ScopeName, ScopeLoc, TheParsedType, Form);
655     } else {
656       Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
657                    ArgExprs.data(), ArgExprs.size(), Form);
658     }
659   }
660 
661   if (EndLoc)
662     *EndLoc = RParen;
663 
664   return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull());
665 }
666 
667 /// Parse the arguments to a parameterized GNU attribute or
668 /// a C++11 attribute in "gnu" namespace.
669 void Parser::ParseGNUAttributeArgs(
670     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
671     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
672     SourceLocation ScopeLoc, ParsedAttr::Form Form, Declarator *D) {
673 
674   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
675 
676   ParsedAttr::Kind AttrKind =
677       ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
678 
679   if (AttrKind == ParsedAttr::AT_Availability) {
680     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
681                                ScopeLoc, Form);
682     return;
683   } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
684     ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
685                                        ScopeName, ScopeLoc, Form);
686     return;
687   } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
688     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
689                                     ScopeName, ScopeLoc, Form);
690     return;
691   } else if (AttrKind == ParsedAttr::AT_SwiftNewType) {
692     ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
693                                ScopeLoc, Form);
694     return;
695   } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
696     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
697                                      ScopeName, ScopeLoc, Form);
698     return;
699   } else if (attributeIsTypeArgAttr(*AttrName)) {
700     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, ScopeName,
701                               ScopeLoc, Form);
702     return;
703   } else if (AttrKind == ParsedAttr::AT_CountedBy ||
704              AttrKind == ParsedAttr::AT_CountedByOrNull ||
705              AttrKind == ParsedAttr::AT_SizedBy ||
706              AttrKind == ParsedAttr::AT_SizedByOrNull) {
707     ParseBoundsAttribute(*AttrName, AttrNameLoc, Attrs, ScopeName, ScopeLoc,
708                          Form);
709     return;
710   } else if (AttrKind == ParsedAttr::AT_CXXAssume) {
711     ParseCXXAssumeAttributeArg(Attrs, AttrName, AttrNameLoc, EndLoc, Form);
712     return;
713   }
714 
715   // These may refer to the function arguments, but need to be parsed early to
716   // participate in determining whether it's a redeclaration.
717   std::optional<ParseScope> PrototypeScope;
718   if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
719       D && D->isFunctionDeclarator()) {
720     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
721     PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
722                                      Scope::FunctionDeclarationScope |
723                                      Scope::DeclScope);
724     for (unsigned i = 0; i != FTI.NumParams; ++i) {
725       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
726       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
727     }
728   }
729 
730   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
731                            ScopeLoc, Form);
732 }
733 
734 unsigned Parser::ParseClangAttributeArgs(
735     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
736     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
737     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
738   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
739 
740   ParsedAttr::Kind AttrKind =
741       ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
742 
743   switch (AttrKind) {
744   default:
745     return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
746                                     ScopeName, ScopeLoc, Form);
747   case ParsedAttr::AT_ExternalSourceSymbol:
748     ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
749                                        ScopeName, ScopeLoc, Form);
750     break;
751   case ParsedAttr::AT_Availability:
752     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
753                                ScopeLoc, Form);
754     break;
755   case ParsedAttr::AT_ObjCBridgeRelated:
756     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
757                                     ScopeName, ScopeLoc, Form);
758     break;
759   case ParsedAttr::AT_SwiftNewType:
760     ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
761                                ScopeLoc, Form);
762     break;
763   case ParsedAttr::AT_TypeTagForDatatype:
764     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
765                                      ScopeName, ScopeLoc, Form);
766     break;
767 
768   case ParsedAttr::AT_CXXAssume:
769     ParseCXXAssumeAttributeArg(Attrs, AttrName, AttrNameLoc, EndLoc, Form);
770     break;
771   }
772   return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
773 }
774 
775 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
776                                         SourceLocation AttrNameLoc,
777                                         ParsedAttributes &Attrs) {
778   unsigned ExistingAttrs = Attrs.size();
779 
780   // If the attribute isn't known, we will not attempt to parse any
781   // arguments.
782   if (!hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr, AttrName,
783                     getTargetInfo(), getLangOpts())) {
784     // Eat the left paren, then skip to the ending right paren.
785     ConsumeParen();
786     SkipUntil(tok::r_paren);
787     return false;
788   }
789 
790   SourceLocation OpenParenLoc = Tok.getLocation();
791 
792   if (AttrName->getName() == "property") {
793     // The property declspec is more complex in that it can take one or two
794     // assignment expressions as a parameter, but the lhs of the assignment
795     // must be named get or put.
796 
797     BalancedDelimiterTracker T(*this, tok::l_paren);
798     T.expectAndConsume(diag::err_expected_lparen_after,
799                        AttrName->getNameStart(), tok::r_paren);
800 
801     enum AccessorKind {
802       AK_Invalid = -1,
803       AK_Put = 0,
804       AK_Get = 1 // indices into AccessorNames
805     };
806     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
807     bool HasInvalidAccessor = false;
808 
809     // Parse the accessor specifications.
810     while (true) {
811       // Stop if this doesn't look like an accessor spec.
812       if (!Tok.is(tok::identifier)) {
813         // If the user wrote a completely empty list, use a special diagnostic.
814         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
815             AccessorNames[AK_Put] == nullptr &&
816             AccessorNames[AK_Get] == nullptr) {
817           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
818           break;
819         }
820 
821         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
822         break;
823       }
824 
825       AccessorKind Kind;
826       SourceLocation KindLoc = Tok.getLocation();
827       StringRef KindStr = Tok.getIdentifierInfo()->getName();
828       if (KindStr == "get") {
829         Kind = AK_Get;
830       } else if (KindStr == "put") {
831         Kind = AK_Put;
832 
833         // Recover from the common mistake of using 'set' instead of 'put'.
834       } else if (KindStr == "set") {
835         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
836             << FixItHint::CreateReplacement(KindLoc, "put");
837         Kind = AK_Put;
838 
839         // Handle the mistake of forgetting the accessor kind by skipping
840         // this accessor.
841       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
842         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
843         ConsumeToken();
844         HasInvalidAccessor = true;
845         goto next_property_accessor;
846 
847         // Otherwise, complain about the unknown accessor kind.
848       } else {
849         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
850         HasInvalidAccessor = true;
851         Kind = AK_Invalid;
852 
853         // Try to keep parsing unless it doesn't look like an accessor spec.
854         if (!NextToken().is(tok::equal))
855           break;
856       }
857 
858       // Consume the identifier.
859       ConsumeToken();
860 
861       // Consume the '='.
862       if (!TryConsumeToken(tok::equal)) {
863         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
864             << KindStr;
865         break;
866       }
867 
868       // Expect the method name.
869       if (!Tok.is(tok::identifier)) {
870         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
871         break;
872       }
873 
874       if (Kind == AK_Invalid) {
875         // Just drop invalid accessors.
876       } else if (AccessorNames[Kind] != nullptr) {
877         // Complain about the repeated accessor, ignore it, and keep parsing.
878         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
879       } else {
880         AccessorNames[Kind] = Tok.getIdentifierInfo();
881       }
882       ConsumeToken();
883 
884     next_property_accessor:
885       // Keep processing accessors until we run out.
886       if (TryConsumeToken(tok::comma))
887         continue;
888 
889       // If we run into the ')', stop without consuming it.
890       if (Tok.is(tok::r_paren))
891         break;
892 
893       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
894       break;
895     }
896 
897     // Only add the property attribute if it was well-formed.
898     if (!HasInvalidAccessor)
899       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
900                                AccessorNames[AK_Get], AccessorNames[AK_Put],
901                                ParsedAttr::Form::Declspec());
902     T.skipToEnd();
903     return !HasInvalidAccessor;
904   }
905 
906   unsigned NumArgs =
907       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
908                                SourceLocation(), ParsedAttr::Form::Declspec());
909 
910   // If this attribute's args were parsed, and it was expected to have
911   // arguments but none were provided, emit a diagnostic.
912   if (ExistingAttrs < Attrs.size() && Attrs.back().getMaxArgs() && !NumArgs) {
913     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
914     return false;
915   }
916   return true;
917 }
918 
919 /// [MS] decl-specifier:
920 ///             __declspec ( extended-decl-modifier-seq )
921 ///
922 /// [MS] extended-decl-modifier-seq:
923 ///             extended-decl-modifier[opt]
924 ///             extended-decl-modifier extended-decl-modifier-seq
925 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs) {
926   assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
927   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
928 
929   SourceLocation StartLoc = Tok.getLocation();
930   SourceLocation EndLoc = StartLoc;
931 
932   while (Tok.is(tok::kw___declspec)) {
933     ConsumeToken();
934     BalancedDelimiterTracker T(*this, tok::l_paren);
935     if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
936                            tok::r_paren))
937       return;
938 
939     // An empty declspec is perfectly legal and should not warn.  Additionally,
940     // you can specify multiple attributes per declspec.
941     while (Tok.isNot(tok::r_paren)) {
942       // Attribute not present.
943       if (TryConsumeToken(tok::comma))
944         continue;
945 
946       if (Tok.is(tok::code_completion)) {
947         cutOffParsing();
948         Actions.CodeCompletion().CodeCompleteAttribute(
949             AttributeCommonInfo::AS_Declspec);
950         return;
951       }
952 
953       // We expect either a well-known identifier or a generic string.  Anything
954       // else is a malformed declspec.
955       bool IsString = Tok.getKind() == tok::string_literal;
956       if (!IsString && Tok.getKind() != tok::identifier &&
957           Tok.getKind() != tok::kw_restrict) {
958         Diag(Tok, diag::err_ms_declspec_type);
959         T.skipToEnd();
960         return;
961       }
962 
963       IdentifierInfo *AttrName;
964       SourceLocation AttrNameLoc;
965       if (IsString) {
966         SmallString<8> StrBuffer;
967         bool Invalid = false;
968         StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
969         if (Invalid) {
970           T.skipToEnd();
971           return;
972         }
973         AttrName = PP.getIdentifierInfo(Str);
974         AttrNameLoc = ConsumeStringToken();
975       } else {
976         AttrName = Tok.getIdentifierInfo();
977         AttrNameLoc = ConsumeToken();
978       }
979 
980       bool AttrHandled = false;
981 
982       // Parse attribute arguments.
983       if (Tok.is(tok::l_paren))
984         AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
985       else if (AttrName->getName() == "property")
986         // The property attribute must have an argument list.
987         Diag(Tok.getLocation(), diag::err_expected_lparen_after)
988             << AttrName->getName();
989 
990       if (!AttrHandled)
991         Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
992                      ParsedAttr::Form::Declspec());
993     }
994     T.consumeClose();
995     EndLoc = T.getCloseLocation();
996   }
997 
998   Attrs.Range = SourceRange(StartLoc, EndLoc);
999 }
1000 
1001 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
1002   // Treat these like attributes
1003   while (true) {
1004     auto Kind = Tok.getKind();
1005     switch (Kind) {
1006     case tok::kw___fastcall:
1007     case tok::kw___stdcall:
1008     case tok::kw___thiscall:
1009     case tok::kw___regcall:
1010     case tok::kw___cdecl:
1011     case tok::kw___vectorcall:
1012     case tok::kw___ptr64:
1013     case tok::kw___w64:
1014     case tok::kw___ptr32:
1015     case tok::kw___sptr:
1016     case tok::kw___uptr: {
1017       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1018       SourceLocation AttrNameLoc = ConsumeToken();
1019       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1020                    Kind);
1021       break;
1022     }
1023     default:
1024       return;
1025     }
1026   }
1027 }
1028 
1029 void Parser::ParseWebAssemblyFuncrefTypeAttribute(ParsedAttributes &attrs) {
1030   assert(Tok.is(tok::kw___funcref));
1031   SourceLocation StartLoc = Tok.getLocation();
1032   if (!getTargetInfo().getTriple().isWasm()) {
1033     ConsumeToken();
1034     Diag(StartLoc, diag::err_wasm_funcref_not_wasm);
1035     return;
1036   }
1037 
1038   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1039   SourceLocation AttrNameLoc = ConsumeToken();
1040   attrs.addNew(AttrName, AttrNameLoc, /*ScopeName=*/nullptr,
1041                /*ScopeLoc=*/SourceLocation{}, /*Args=*/nullptr, /*numArgs=*/0,
1042                tok::kw___funcref);
1043 }
1044 
1045 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
1046   SourceLocation StartLoc = Tok.getLocation();
1047   SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
1048 
1049   if (EndLoc.isValid()) {
1050     SourceRange Range(StartLoc, EndLoc);
1051     Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
1052   }
1053 }
1054 
1055 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
1056   SourceLocation EndLoc;
1057 
1058   while (true) {
1059     switch (Tok.getKind()) {
1060     case tok::kw_const:
1061     case tok::kw_volatile:
1062     case tok::kw___fastcall:
1063     case tok::kw___stdcall:
1064     case tok::kw___thiscall:
1065     case tok::kw___cdecl:
1066     case tok::kw___vectorcall:
1067     case tok::kw___ptr32:
1068     case tok::kw___ptr64:
1069     case tok::kw___w64:
1070     case tok::kw___unaligned:
1071     case tok::kw___sptr:
1072     case tok::kw___uptr:
1073       EndLoc = ConsumeToken();
1074       break;
1075     default:
1076       return EndLoc;
1077     }
1078   }
1079 }
1080 
1081 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
1082   // Treat these like attributes
1083   while (Tok.is(tok::kw___pascal)) {
1084     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1085     SourceLocation AttrNameLoc = ConsumeToken();
1086     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1087                  tok::kw___pascal);
1088   }
1089 }
1090 
1091 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
1092   // Treat these like attributes
1093   while (Tok.is(tok::kw___kernel)) {
1094     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1095     SourceLocation AttrNameLoc = ConsumeToken();
1096     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1097                  tok::kw___kernel);
1098   }
1099 }
1100 
1101 void Parser::ParseCUDAFunctionAttributes(ParsedAttributes &attrs) {
1102   while (Tok.is(tok::kw___noinline__)) {
1103     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1104     SourceLocation AttrNameLoc = ConsumeToken();
1105     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1106                  tok::kw___noinline__);
1107   }
1108 }
1109 
1110 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
1111   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1112   SourceLocation AttrNameLoc = Tok.getLocation();
1113   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1114                Tok.getKind());
1115 }
1116 
1117 bool Parser::isHLSLQualifier(const Token &Tok) const {
1118   return Tok.is(tok::kw_groupshared);
1119 }
1120 
1121 void Parser::ParseHLSLQualifiers(ParsedAttributes &Attrs) {
1122   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1123   auto Kind = Tok.getKind();
1124   SourceLocation AttrNameLoc = ConsumeToken();
1125   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, Kind);
1126 }
1127 
1128 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
1129   // Treat these like attributes, even though they're type specifiers.
1130   while (true) {
1131     auto Kind = Tok.getKind();
1132     switch (Kind) {
1133     case tok::kw__Nonnull:
1134     case tok::kw__Nullable:
1135     case tok::kw__Nullable_result:
1136     case tok::kw__Null_unspecified: {
1137       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1138       SourceLocation AttrNameLoc = ConsumeToken();
1139       if (!getLangOpts().ObjC)
1140         Diag(AttrNameLoc, diag::ext_nullability)
1141           << AttrName;
1142       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1143                    Kind);
1144       break;
1145     }
1146     default:
1147       return;
1148     }
1149   }
1150 }
1151 
1152 static bool VersionNumberSeparator(const char Separator) {
1153   return (Separator == '.' || Separator == '_');
1154 }
1155 
1156 /// Parse a version number.
1157 ///
1158 /// version:
1159 ///   simple-integer
1160 ///   simple-integer '.' simple-integer
1161 ///   simple-integer '_' simple-integer
1162 ///   simple-integer '.' simple-integer '.' simple-integer
1163 ///   simple-integer '_' simple-integer '_' simple-integer
1164 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
1165   Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
1166 
1167   if (!Tok.is(tok::numeric_constant)) {
1168     Diag(Tok, diag::err_expected_version);
1169     SkipUntil(tok::comma, tok::r_paren,
1170               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1171     return VersionTuple();
1172   }
1173 
1174   // Parse the major (and possibly minor and subminor) versions, which
1175   // are stored in the numeric constant. We utilize a quirk of the
1176   // lexer, which is that it handles something like 1.2.3 as a single
1177   // numeric constant, rather than two separate tokens.
1178   SmallString<512> Buffer;
1179   Buffer.resize(Tok.getLength()+1);
1180   const char *ThisTokBegin = &Buffer[0];
1181 
1182   // Get the spelling of the token, which eliminates trigraphs, etc.
1183   bool Invalid = false;
1184   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1185   if (Invalid)
1186     return VersionTuple();
1187 
1188   // Parse the major version.
1189   unsigned AfterMajor = 0;
1190   unsigned Major = 0;
1191   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
1192     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
1193     ++AfterMajor;
1194   }
1195 
1196   if (AfterMajor == 0) {
1197     Diag(Tok, diag::err_expected_version);
1198     SkipUntil(tok::comma, tok::r_paren,
1199               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1200     return VersionTuple();
1201   }
1202 
1203   if (AfterMajor == ActualLength) {
1204     ConsumeToken();
1205 
1206     // We only had a single version component.
1207     if (Major == 0) {
1208       Diag(Tok, diag::err_zero_version);
1209       return VersionTuple();
1210     }
1211 
1212     return VersionTuple(Major);
1213   }
1214 
1215   const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
1216   if (!VersionNumberSeparator(AfterMajorSeparator)
1217       || (AfterMajor + 1 == ActualLength)) {
1218     Diag(Tok, diag::err_expected_version);
1219     SkipUntil(tok::comma, tok::r_paren,
1220               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1221     return VersionTuple();
1222   }
1223 
1224   // Parse the minor version.
1225   unsigned AfterMinor = AfterMajor + 1;
1226   unsigned Minor = 0;
1227   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
1228     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
1229     ++AfterMinor;
1230   }
1231 
1232   if (AfterMinor == ActualLength) {
1233     ConsumeToken();
1234 
1235     // We had major.minor.
1236     if (Major == 0 && Minor == 0) {
1237       Diag(Tok, diag::err_zero_version);
1238       return VersionTuple();
1239     }
1240 
1241     return VersionTuple(Major, Minor);
1242   }
1243 
1244   const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
1245   // If what follows is not a '.' or '_', we have a problem.
1246   if (!VersionNumberSeparator(AfterMinorSeparator)) {
1247     Diag(Tok, diag::err_expected_version);
1248     SkipUntil(tok::comma, tok::r_paren,
1249               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1250     return VersionTuple();
1251   }
1252 
1253   // Warn if separators, be it '.' or '_', do not match.
1254   if (AfterMajorSeparator != AfterMinorSeparator)
1255     Diag(Tok, diag::warn_expected_consistent_version_separator);
1256 
1257   // Parse the subminor version.
1258   unsigned AfterSubminor = AfterMinor + 1;
1259   unsigned Subminor = 0;
1260   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
1261     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
1262     ++AfterSubminor;
1263   }
1264 
1265   if (AfterSubminor != ActualLength) {
1266     Diag(Tok, diag::err_expected_version);
1267     SkipUntil(tok::comma, tok::r_paren,
1268               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1269     return VersionTuple();
1270   }
1271   ConsumeToken();
1272   return VersionTuple(Major, Minor, Subminor);
1273 }
1274 
1275 /// Parse the contents of the "availability" attribute.
1276 ///
1277 /// availability-attribute:
1278 ///   'availability' '(' platform ',' opt-strict version-arg-list,
1279 ///                      opt-replacement, opt-message')'
1280 ///
1281 /// platform:
1282 ///   identifier
1283 ///
1284 /// opt-strict:
1285 ///   'strict' ','
1286 ///
1287 /// version-arg-list:
1288 ///   version-arg
1289 ///   version-arg ',' version-arg-list
1290 ///
1291 /// version-arg:
1292 ///   'introduced' '=' version
1293 ///   'deprecated' '=' version
1294 ///   'obsoleted' = version
1295 ///   'unavailable'
1296 /// opt-replacement:
1297 ///   'replacement' '=' <string>
1298 /// opt-message:
1299 ///   'message' '=' <string>
1300 void Parser::ParseAvailabilityAttribute(
1301     IdentifierInfo &Availability, SourceLocation AvailabilityLoc,
1302     ParsedAttributes &attrs, SourceLocation *endLoc, IdentifierInfo *ScopeName,
1303     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1304   enum { Introduced, Deprecated, Obsoleted, Unknown };
1305   AvailabilityChange Changes[Unknown];
1306   ExprResult MessageExpr, ReplacementExpr;
1307   IdentifierLoc *EnvironmentLoc = nullptr;
1308 
1309   // Opening '('.
1310   BalancedDelimiterTracker T(*this, tok::l_paren);
1311   if (T.consumeOpen()) {
1312     Diag(Tok, diag::err_expected) << tok::l_paren;
1313     return;
1314   }
1315 
1316   // Parse the platform name.
1317   if (Tok.isNot(tok::identifier)) {
1318     Diag(Tok, diag::err_availability_expected_platform);
1319     SkipUntil(tok::r_paren, StopAtSemi);
1320     return;
1321   }
1322   IdentifierLoc *Platform = ParseIdentifierLoc();
1323   if (const IdentifierInfo *const Ident = Platform->Ident) {
1324     // Disallow xrOS for availability attributes.
1325     if (Ident->getName().contains("xrOS") || Ident->getName().contains("xros"))
1326       Diag(Platform->Loc, diag::warn_availability_unknown_platform) << Ident;
1327     // Canonicalize platform name from "macosx" to "macos".
1328     else if (Ident->getName() == "macosx")
1329       Platform->Ident = PP.getIdentifierInfo("macos");
1330     // Canonicalize platform name from "macosx_app_extension" to
1331     // "macos_app_extension".
1332     else if (Ident->getName() == "macosx_app_extension")
1333       Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
1334     else
1335       Platform->Ident = PP.getIdentifierInfo(
1336           AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
1337   }
1338 
1339   // Parse the ',' following the platform name.
1340   if (ExpectAndConsume(tok::comma)) {
1341     SkipUntil(tok::r_paren, StopAtSemi);
1342     return;
1343   }
1344 
1345   // If we haven't grabbed the pointers for the identifiers
1346   // "introduced", "deprecated", and "obsoleted", do so now.
1347   if (!Ident_introduced) {
1348     Ident_introduced = PP.getIdentifierInfo("introduced");
1349     Ident_deprecated = PP.getIdentifierInfo("deprecated");
1350     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
1351     Ident_unavailable = PP.getIdentifierInfo("unavailable");
1352     Ident_message = PP.getIdentifierInfo("message");
1353     Ident_strict = PP.getIdentifierInfo("strict");
1354     Ident_replacement = PP.getIdentifierInfo("replacement");
1355     Ident_environment = PP.getIdentifierInfo("environment");
1356   }
1357 
1358   // Parse the optional "strict", the optional "replacement" and the set of
1359   // introductions/deprecations/removals.
1360   SourceLocation UnavailableLoc, StrictLoc;
1361   do {
1362     if (Tok.isNot(tok::identifier)) {
1363       Diag(Tok, diag::err_availability_expected_change);
1364       SkipUntil(tok::r_paren, StopAtSemi);
1365       return;
1366     }
1367     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1368     SourceLocation KeywordLoc = ConsumeToken();
1369 
1370     if (Keyword == Ident_strict) {
1371       if (StrictLoc.isValid()) {
1372         Diag(KeywordLoc, diag::err_availability_redundant)
1373           << Keyword << SourceRange(StrictLoc);
1374       }
1375       StrictLoc = KeywordLoc;
1376       continue;
1377     }
1378 
1379     if (Keyword == Ident_unavailable) {
1380       if (UnavailableLoc.isValid()) {
1381         Diag(KeywordLoc, diag::err_availability_redundant)
1382           << Keyword << SourceRange(UnavailableLoc);
1383       }
1384       UnavailableLoc = KeywordLoc;
1385       continue;
1386     }
1387 
1388     if (Keyword == Ident_deprecated && Platform->Ident &&
1389         Platform->Ident->isStr("swift")) {
1390       // For swift, we deprecate for all versions.
1391       if (Changes[Deprecated].KeywordLoc.isValid()) {
1392         Diag(KeywordLoc, diag::err_availability_redundant)
1393           << Keyword
1394           << SourceRange(Changes[Deprecated].KeywordLoc);
1395       }
1396 
1397       Changes[Deprecated].KeywordLoc = KeywordLoc;
1398       // Use a fake version here.
1399       Changes[Deprecated].Version = VersionTuple(1);
1400       continue;
1401     }
1402 
1403     if (Keyword == Ident_environment) {
1404       if (EnvironmentLoc != nullptr) {
1405         Diag(KeywordLoc, diag::err_availability_redundant)
1406             << Keyword << SourceRange(EnvironmentLoc->Loc);
1407       }
1408     }
1409 
1410     if (Tok.isNot(tok::equal)) {
1411       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
1412       SkipUntil(tok::r_paren, StopAtSemi);
1413       return;
1414     }
1415     ConsumeToken();
1416     if (Keyword == Ident_message || Keyword == Ident_replacement) {
1417       if (!isTokenStringLiteral()) {
1418         Diag(Tok, diag::err_expected_string_literal)
1419           << /*Source='availability attribute'*/2;
1420         SkipUntil(tok::r_paren, StopAtSemi);
1421         return;
1422       }
1423       if (Keyword == Ident_message) {
1424         MessageExpr = ParseUnevaluatedStringLiteralExpression();
1425         break;
1426       } else {
1427         ReplacementExpr = ParseUnevaluatedStringLiteralExpression();
1428         continue;
1429       }
1430     }
1431     if (Keyword == Ident_environment) {
1432       if (Tok.isNot(tok::identifier)) {
1433         Diag(Tok, diag::err_availability_expected_environment);
1434         SkipUntil(tok::r_paren, StopAtSemi);
1435         return;
1436       }
1437       EnvironmentLoc = ParseIdentifierLoc();
1438       continue;
1439     }
1440 
1441     // Special handling of 'NA' only when applied to introduced or
1442     // deprecated.
1443     if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1444         Tok.is(tok::identifier)) {
1445       IdentifierInfo *NA = Tok.getIdentifierInfo();
1446       if (NA->getName() == "NA") {
1447         ConsumeToken();
1448         if (Keyword == Ident_introduced)
1449           UnavailableLoc = KeywordLoc;
1450         continue;
1451       }
1452     }
1453 
1454     SourceRange VersionRange;
1455     VersionTuple Version = ParseVersionTuple(VersionRange);
1456 
1457     if (Version.empty()) {
1458       SkipUntil(tok::r_paren, StopAtSemi);
1459       return;
1460     }
1461 
1462     unsigned Index;
1463     if (Keyword == Ident_introduced)
1464       Index = Introduced;
1465     else if (Keyword == Ident_deprecated)
1466       Index = Deprecated;
1467     else if (Keyword == Ident_obsoleted)
1468       Index = Obsoleted;
1469     else
1470       Index = Unknown;
1471 
1472     if (Index < Unknown) {
1473       if (!Changes[Index].KeywordLoc.isInvalid()) {
1474         Diag(KeywordLoc, diag::err_availability_redundant)
1475           << Keyword
1476           << SourceRange(Changes[Index].KeywordLoc,
1477                          Changes[Index].VersionRange.getEnd());
1478       }
1479 
1480       Changes[Index].KeywordLoc = KeywordLoc;
1481       Changes[Index].Version = Version;
1482       Changes[Index].VersionRange = VersionRange;
1483     } else {
1484       Diag(KeywordLoc, diag::err_availability_unknown_change)
1485         << Keyword << VersionRange;
1486     }
1487 
1488   } while (TryConsumeToken(tok::comma));
1489 
1490   // Closing ')'.
1491   if (T.consumeClose())
1492     return;
1493 
1494   if (endLoc)
1495     *endLoc = T.getCloseLocation();
1496 
1497   // The 'unavailable' availability cannot be combined with any other
1498   // availability changes. Make sure that hasn't happened.
1499   if (UnavailableLoc.isValid()) {
1500     bool Complained = false;
1501     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1502       if (Changes[Index].KeywordLoc.isValid()) {
1503         if (!Complained) {
1504           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1505             << SourceRange(Changes[Index].KeywordLoc,
1506                            Changes[Index].VersionRange.getEnd());
1507           Complained = true;
1508         }
1509 
1510         // Clear out the availability.
1511         Changes[Index] = AvailabilityChange();
1512       }
1513     }
1514   }
1515 
1516   // Record this attribute
1517   attrs.addNew(&Availability,
1518                SourceRange(AvailabilityLoc, T.getCloseLocation()), ScopeName,
1519                ScopeLoc, Platform, Changes[Introduced], Changes[Deprecated],
1520                Changes[Obsoleted], UnavailableLoc, MessageExpr.get(), Form,
1521                StrictLoc, ReplacementExpr.get(), EnvironmentLoc);
1522 }
1523 
1524 /// Parse the contents of the "external_source_symbol" attribute.
1525 ///
1526 /// external-source-symbol-attribute:
1527 ///   'external_source_symbol' '(' keyword-arg-list ')'
1528 ///
1529 /// keyword-arg-list:
1530 ///   keyword-arg
1531 ///   keyword-arg ',' keyword-arg-list
1532 ///
1533 /// keyword-arg:
1534 ///   'language' '=' <string>
1535 ///   'defined_in' '=' <string>
1536 ///   'USR' '=' <string>
1537 ///   'generated_declaration'
1538 void Parser::ParseExternalSourceSymbolAttribute(
1539     IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1540     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1541     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1542   // Opening '('.
1543   BalancedDelimiterTracker T(*this, tok::l_paren);
1544   if (T.expectAndConsume())
1545     return;
1546 
1547   // Initialize the pointers for the keyword identifiers when required.
1548   if (!Ident_language) {
1549     Ident_language = PP.getIdentifierInfo("language");
1550     Ident_defined_in = PP.getIdentifierInfo("defined_in");
1551     Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1552     Ident_USR = PP.getIdentifierInfo("USR");
1553   }
1554 
1555   ExprResult Language;
1556   bool HasLanguage = false;
1557   ExprResult DefinedInExpr;
1558   bool HasDefinedIn = false;
1559   IdentifierLoc *GeneratedDeclaration = nullptr;
1560   ExprResult USR;
1561   bool HasUSR = false;
1562 
1563   // Parse the language/defined_in/generated_declaration keywords
1564   do {
1565     if (Tok.isNot(tok::identifier)) {
1566       Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1567       SkipUntil(tok::r_paren, StopAtSemi);
1568       return;
1569     }
1570 
1571     SourceLocation KeywordLoc = Tok.getLocation();
1572     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1573     if (Keyword == Ident_generated_declaration) {
1574       if (GeneratedDeclaration) {
1575         Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1576         SkipUntil(tok::r_paren, StopAtSemi);
1577         return;
1578       }
1579       GeneratedDeclaration = ParseIdentifierLoc();
1580       continue;
1581     }
1582 
1583     if (Keyword != Ident_language && Keyword != Ident_defined_in &&
1584         Keyword != Ident_USR) {
1585       Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1586       SkipUntil(tok::r_paren, StopAtSemi);
1587       return;
1588     }
1589 
1590     ConsumeToken();
1591     if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1592                          Keyword->getName())) {
1593       SkipUntil(tok::r_paren, StopAtSemi);
1594       return;
1595     }
1596 
1597     bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn,
1598          HadUSR = HasUSR;
1599     if (Keyword == Ident_language)
1600       HasLanguage = true;
1601     else if (Keyword == Ident_USR)
1602       HasUSR = true;
1603     else
1604       HasDefinedIn = true;
1605 
1606     if (!isTokenStringLiteral()) {
1607       Diag(Tok, diag::err_expected_string_literal)
1608           << /*Source='external_source_symbol attribute'*/ 3
1609           << /*language | source container | USR*/ (
1610                  Keyword == Ident_language
1611                      ? 0
1612                      : (Keyword == Ident_defined_in ? 1 : 2));
1613       SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1614       continue;
1615     }
1616     if (Keyword == Ident_language) {
1617       if (HadLanguage) {
1618         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1619             << Keyword;
1620         ParseUnevaluatedStringLiteralExpression();
1621         continue;
1622       }
1623       Language = ParseUnevaluatedStringLiteralExpression();
1624     } else if (Keyword == Ident_USR) {
1625       if (HadUSR) {
1626         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1627             << Keyword;
1628         ParseUnevaluatedStringLiteralExpression();
1629         continue;
1630       }
1631       USR = ParseUnevaluatedStringLiteralExpression();
1632     } else {
1633       assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1634       if (HadDefinedIn) {
1635         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1636             << Keyword;
1637         ParseUnevaluatedStringLiteralExpression();
1638         continue;
1639       }
1640       DefinedInExpr = ParseUnevaluatedStringLiteralExpression();
1641     }
1642   } while (TryConsumeToken(tok::comma));
1643 
1644   // Closing ')'.
1645   if (T.consumeClose())
1646     return;
1647   if (EndLoc)
1648     *EndLoc = T.getCloseLocation();
1649 
1650   ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(), GeneratedDeclaration,
1651                       USR.get()};
1652   Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1653                ScopeName, ScopeLoc, Args, std::size(Args), Form);
1654 }
1655 
1656 /// Parse the contents of the "objc_bridge_related" attribute.
1657 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1658 /// related_class:
1659 ///     Identifier
1660 ///
1661 /// opt-class_method:
1662 ///     Identifier: | <empty>
1663 ///
1664 /// opt-instance_method:
1665 ///     Identifier | <empty>
1666 ///
1667 void Parser::ParseObjCBridgeRelatedAttribute(
1668     IdentifierInfo &ObjCBridgeRelated, SourceLocation ObjCBridgeRelatedLoc,
1669     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1670     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1671   // Opening '('.
1672   BalancedDelimiterTracker T(*this, tok::l_paren);
1673   if (T.consumeOpen()) {
1674     Diag(Tok, diag::err_expected) << tok::l_paren;
1675     return;
1676   }
1677 
1678   // Parse the related class name.
1679   if (Tok.isNot(tok::identifier)) {
1680     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1681     SkipUntil(tok::r_paren, StopAtSemi);
1682     return;
1683   }
1684   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1685   if (ExpectAndConsume(tok::comma)) {
1686     SkipUntil(tok::r_paren, StopAtSemi);
1687     return;
1688   }
1689 
1690   // Parse class method name.  It's non-optional in the sense that a trailing
1691   // comma is required, but it can be the empty string, and then we record a
1692   // nullptr.
1693   IdentifierLoc *ClassMethod = nullptr;
1694   if (Tok.is(tok::identifier)) {
1695     ClassMethod = ParseIdentifierLoc();
1696     if (!TryConsumeToken(tok::colon)) {
1697       Diag(Tok, diag::err_objcbridge_related_selector_name);
1698       SkipUntil(tok::r_paren, StopAtSemi);
1699       return;
1700     }
1701   }
1702   if (!TryConsumeToken(tok::comma)) {
1703     if (Tok.is(tok::colon))
1704       Diag(Tok, diag::err_objcbridge_related_selector_name);
1705     else
1706       Diag(Tok, diag::err_expected) << tok::comma;
1707     SkipUntil(tok::r_paren, StopAtSemi);
1708     return;
1709   }
1710 
1711   // Parse instance method name.  Also non-optional but empty string is
1712   // permitted.
1713   IdentifierLoc *InstanceMethod = nullptr;
1714   if (Tok.is(tok::identifier))
1715     InstanceMethod = ParseIdentifierLoc();
1716   else if (Tok.isNot(tok::r_paren)) {
1717     Diag(Tok, diag::err_expected) << tok::r_paren;
1718     SkipUntil(tok::r_paren, StopAtSemi);
1719     return;
1720   }
1721 
1722   // Closing ')'.
1723   if (T.consumeClose())
1724     return;
1725 
1726   if (EndLoc)
1727     *EndLoc = T.getCloseLocation();
1728 
1729   // Record this attribute
1730   Attrs.addNew(&ObjCBridgeRelated,
1731                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1732                ScopeName, ScopeLoc, RelatedClass, ClassMethod, InstanceMethod,
1733                Form);
1734 }
1735 
1736 void Parser::ParseSwiftNewTypeAttribute(
1737     IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
1738     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1739     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1740   BalancedDelimiterTracker T(*this, tok::l_paren);
1741 
1742   // Opening '('
1743   if (T.consumeOpen()) {
1744     Diag(Tok, diag::err_expected) << tok::l_paren;
1745     return;
1746   }
1747 
1748   if (Tok.is(tok::r_paren)) {
1749     Diag(Tok.getLocation(), diag::err_argument_required_after_attribute);
1750     T.consumeClose();
1751     return;
1752   }
1753   if (Tok.isNot(tok::kw_struct) && Tok.isNot(tok::kw_enum)) {
1754     Diag(Tok, diag::warn_attribute_type_not_supported)
1755         << &AttrName << Tok.getIdentifierInfo();
1756     if (!isTokenSpecial())
1757       ConsumeToken();
1758     T.consumeClose();
1759     return;
1760   }
1761 
1762   auto *SwiftType = IdentifierLoc::create(Actions.Context, Tok.getLocation(),
1763                                           Tok.getIdentifierInfo());
1764   ConsumeToken();
1765 
1766   // Closing ')'
1767   if (T.consumeClose())
1768     return;
1769   if (EndLoc)
1770     *EndLoc = T.getCloseLocation();
1771 
1772   ArgsUnion Args[] = {SwiftType};
1773   Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, T.getCloseLocation()),
1774                ScopeName, ScopeLoc, Args, std::size(Args), Form);
1775 }
1776 
1777 void Parser::ParseTypeTagForDatatypeAttribute(
1778     IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
1779     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1780     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1781   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1782 
1783   BalancedDelimiterTracker T(*this, tok::l_paren);
1784   T.consumeOpen();
1785 
1786   if (Tok.isNot(tok::identifier)) {
1787     Diag(Tok, diag::err_expected) << tok::identifier;
1788     T.skipToEnd();
1789     return;
1790   }
1791   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1792 
1793   if (ExpectAndConsume(tok::comma)) {
1794     T.skipToEnd();
1795     return;
1796   }
1797 
1798   SourceRange MatchingCTypeRange;
1799   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1800   if (MatchingCType.isInvalid()) {
1801     T.skipToEnd();
1802     return;
1803   }
1804 
1805   bool LayoutCompatible = false;
1806   bool MustBeNull = false;
1807   while (TryConsumeToken(tok::comma)) {
1808     if (Tok.isNot(tok::identifier)) {
1809       Diag(Tok, diag::err_expected) << tok::identifier;
1810       T.skipToEnd();
1811       return;
1812     }
1813     IdentifierInfo *Flag = Tok.getIdentifierInfo();
1814     if (Flag->isStr("layout_compatible"))
1815       LayoutCompatible = true;
1816     else if (Flag->isStr("must_be_null"))
1817       MustBeNull = true;
1818     else {
1819       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1820       T.skipToEnd();
1821       return;
1822     }
1823     ConsumeToken(); // consume flag
1824   }
1825 
1826   if (!T.consumeClose()) {
1827     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1828                                    ArgumentKind, MatchingCType.get(),
1829                                    LayoutCompatible, MustBeNull, Form);
1830   }
1831 
1832   if (EndLoc)
1833     *EndLoc = T.getCloseLocation();
1834 }
1835 
1836 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1837 /// of a C++11 attribute-specifier in a location where an attribute is not
1838 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1839 /// situation.
1840 ///
1841 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1842 /// this doesn't appear to actually be an attribute-specifier, and the caller
1843 /// should try to parse it.
1844 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1845   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1846 
1847   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1848   case CAK_NotAttributeSpecifier:
1849     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1850     return false;
1851 
1852   case CAK_InvalidAttributeSpecifier:
1853     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1854     return false;
1855 
1856   case CAK_AttributeSpecifier:
1857     // Parse and discard the attributes.
1858     SourceLocation BeginLoc = ConsumeBracket();
1859     ConsumeBracket();
1860     SkipUntil(tok::r_square);
1861     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1862     SourceLocation EndLoc = ConsumeBracket();
1863     Diag(BeginLoc, diag::err_attributes_not_allowed)
1864       << SourceRange(BeginLoc, EndLoc);
1865     return true;
1866   }
1867   llvm_unreachable("All cases handled above.");
1868 }
1869 
1870 /// We have found the opening square brackets of a C++11
1871 /// attribute-specifier in a location where an attribute is not permitted, but
1872 /// we know where the attributes ought to be written. Parse them anyway, and
1873 /// provide a fixit moving them to the right place.
1874 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributes &Attrs,
1875                                              SourceLocation CorrectLocation) {
1876   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1877          Tok.is(tok::kw_alignas) || Tok.isRegularKeywordAttribute());
1878 
1879   // Consume the attributes.
1880   auto Keyword =
1881       Tok.isRegularKeywordAttribute() ? Tok.getIdentifierInfo() : nullptr;
1882   SourceLocation Loc = Tok.getLocation();
1883   ParseCXX11Attributes(Attrs);
1884   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1885   // FIXME: use err_attributes_misplaced
1886   (Keyword ? Diag(Loc, diag::err_keyword_not_allowed) << Keyword
1887            : Diag(Loc, diag::err_attributes_not_allowed))
1888       << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1889       << FixItHint::CreateRemoval(AttrRange);
1890 }
1891 
1892 void Parser::DiagnoseProhibitedAttributes(
1893     const ParsedAttributesView &Attrs, const SourceLocation CorrectLocation) {
1894   auto *FirstAttr = Attrs.empty() ? nullptr : &Attrs.front();
1895   if (CorrectLocation.isValid()) {
1896     CharSourceRange AttrRange(Attrs.Range, true);
1897     (FirstAttr && FirstAttr->isRegularKeywordAttribute()
1898          ? Diag(CorrectLocation, diag::err_keyword_misplaced) << FirstAttr
1899          : Diag(CorrectLocation, diag::err_attributes_misplaced))
1900         << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1901         << FixItHint::CreateRemoval(AttrRange);
1902   } else {
1903     const SourceRange &Range = Attrs.Range;
1904     (FirstAttr && FirstAttr->isRegularKeywordAttribute()
1905          ? Diag(Range.getBegin(), diag::err_keyword_not_allowed) << FirstAttr
1906          : Diag(Range.getBegin(), diag::err_attributes_not_allowed))
1907         << Range;
1908   }
1909 }
1910 
1911 void Parser::ProhibitCXX11Attributes(ParsedAttributes &Attrs,
1912                                      unsigned AttrDiagID,
1913                                      unsigned KeywordDiagID,
1914                                      bool DiagnoseEmptyAttrs,
1915                                      bool WarnOnUnknownAttrs) {
1916 
1917   if (DiagnoseEmptyAttrs && Attrs.empty() && Attrs.Range.isValid()) {
1918     // An attribute list has been parsed, but it was empty.
1919     // This is the case for [[]].
1920     const auto &LangOpts = getLangOpts();
1921     auto &SM = PP.getSourceManager();
1922     Token FirstLSquare;
1923     Lexer::getRawToken(Attrs.Range.getBegin(), FirstLSquare, SM, LangOpts);
1924 
1925     if (FirstLSquare.is(tok::l_square)) {
1926       std::optional<Token> SecondLSquare =
1927           Lexer::findNextToken(FirstLSquare.getLocation(), SM, LangOpts);
1928 
1929       if (SecondLSquare && SecondLSquare->is(tok::l_square)) {
1930         // The attribute range starts with [[, but is empty. So this must
1931         // be [[]], which we are supposed to diagnose because
1932         // DiagnoseEmptyAttrs is true.
1933         Diag(Attrs.Range.getBegin(), AttrDiagID) << Attrs.Range;
1934         return;
1935       }
1936     }
1937   }
1938 
1939   for (const ParsedAttr &AL : Attrs) {
1940     if (AL.isRegularKeywordAttribute()) {
1941       Diag(AL.getLoc(), KeywordDiagID) << AL;
1942       AL.setInvalid();
1943       continue;
1944     }
1945     if (!AL.isStandardAttributeSyntax())
1946       continue;
1947     if (AL.getKind() == ParsedAttr::UnknownAttribute) {
1948       if (WarnOnUnknownAttrs)
1949         Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
1950             << AL << AL.getRange();
1951     } else {
1952       Diag(AL.getLoc(), AttrDiagID) << AL;
1953       AL.setInvalid();
1954     }
1955   }
1956 }
1957 
1958 void Parser::DiagnoseCXX11AttributeExtension(ParsedAttributes &Attrs) {
1959   for (const ParsedAttr &PA : Attrs) {
1960     if (PA.isStandardAttributeSyntax() || PA.isRegularKeywordAttribute())
1961       Diag(PA.getLoc(), diag::ext_cxx11_attr_placement)
1962           << PA << PA.isRegularKeywordAttribute() << PA.getRange();
1963   }
1964 }
1965 
1966 // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1967 // applies to var, not the type Foo.
1968 // As an exception to the rule, __declspec(align(...)) before the
1969 // class-key affects the type instead of the variable.
1970 // Also, Microsoft-style [attributes] seem to affect the type instead of the
1971 // variable.
1972 // This function moves attributes that should apply to the type off DS to Attrs.
1973 void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributes &Attrs,
1974                                             DeclSpec &DS, TagUseKind TUK) {
1975   if (TUK == TagUseKind::Reference)
1976     return;
1977 
1978   llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
1979 
1980   for (ParsedAttr &AL : DS.getAttributes()) {
1981     if ((AL.getKind() == ParsedAttr::AT_Aligned &&
1982          AL.isDeclspecAttribute()) ||
1983         AL.isMicrosoftAttribute())
1984       ToBeMoved.push_back(&AL);
1985   }
1986 
1987   for (ParsedAttr *AL : ToBeMoved) {
1988     DS.getAttributes().remove(AL);
1989     Attrs.addAtEnd(AL);
1990   }
1991 }
1992 
1993 /// ParseDeclaration - Parse a full 'declaration', which consists of
1994 /// declaration-specifiers, some number of declarators, and a semicolon.
1995 /// 'Context' should be a DeclaratorContext value.  This returns the
1996 /// location of the semicolon in DeclEnd.
1997 ///
1998 ///       declaration: [C99 6.7]
1999 ///         block-declaration ->
2000 ///           simple-declaration
2001 ///           others                   [FIXME]
2002 /// [C++]   template-declaration
2003 /// [C++]   namespace-definition
2004 /// [C++]   using-directive
2005 /// [C++]   using-declaration
2006 /// [C++11/C11] static_assert-declaration
2007 ///         others... [FIXME]
2008 ///
2009 Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context,
2010                                                 SourceLocation &DeclEnd,
2011                                                 ParsedAttributes &DeclAttrs,
2012                                                 ParsedAttributes &DeclSpecAttrs,
2013                                                 SourceLocation *DeclSpecStart) {
2014   ParenBraceBracketBalancer BalancerRAIIObj(*this);
2015   // Must temporarily exit the objective-c container scope for
2016   // parsing c none objective-c decls.
2017   ObjCDeclContextSwitch ObjCDC(*this);
2018 
2019   Decl *SingleDecl = nullptr;
2020   switch (Tok.getKind()) {
2021   case tok::kw_template:
2022   case tok::kw_export:
2023     ProhibitAttributes(DeclAttrs);
2024     ProhibitAttributes(DeclSpecAttrs);
2025     return ParseDeclarationStartingWithTemplate(Context, DeclEnd, DeclAttrs);
2026   case tok::kw_inline:
2027     // Could be the start of an inline namespace. Allowed as an ext in C++03.
2028     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
2029       ProhibitAttributes(DeclAttrs);
2030       ProhibitAttributes(DeclSpecAttrs);
2031       SourceLocation InlineLoc = ConsumeToken();
2032       return ParseNamespace(Context, DeclEnd, InlineLoc);
2033     }
2034     return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs,
2035                                   true, nullptr, DeclSpecStart);
2036 
2037   case tok::kw_cbuffer:
2038   case tok::kw_tbuffer:
2039     SingleDecl = ParseHLSLBuffer(DeclEnd);
2040     break;
2041   case tok::kw_namespace:
2042     ProhibitAttributes(DeclAttrs);
2043     ProhibitAttributes(DeclSpecAttrs);
2044     return ParseNamespace(Context, DeclEnd);
2045   case tok::kw_using: {
2046     ParsedAttributes Attrs(AttrFactory);
2047     takeAndConcatenateAttrs(DeclAttrs, DeclSpecAttrs, Attrs);
2048     return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
2049                                             DeclEnd, Attrs);
2050   }
2051   case tok::kw_static_assert:
2052   case tok::kw__Static_assert:
2053     ProhibitAttributes(DeclAttrs);
2054     ProhibitAttributes(DeclSpecAttrs);
2055     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
2056     break;
2057   default:
2058     return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs,
2059                                   true, nullptr, DeclSpecStart);
2060   }
2061 
2062   // This routine returns a DeclGroup, if the thing we parsed only contains a
2063   // single decl, convert it now.
2064   return Actions.ConvertDeclToDeclGroup(SingleDecl);
2065 }
2066 
2067 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
2068 ///         declaration-specifiers init-declarator-list[opt] ';'
2069 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
2070 ///             init-declarator-list ';'
2071 ///[C90/C++]init-declarator-list ';'                             [TODO]
2072 /// [OMP]   threadprivate-directive
2073 /// [OMP]   allocate-directive                                   [TODO]
2074 ///
2075 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
2076 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
2077 ///
2078 /// If RequireSemi is false, this does not check for a ';' at the end of the
2079 /// declaration.  If it is true, it checks for and eats it.
2080 ///
2081 /// If FRI is non-null, we might be parsing a for-range-declaration instead
2082 /// of a simple-declaration. If we find that we are, we also parse the
2083 /// for-range-initializer, and place it here.
2084 ///
2085 /// DeclSpecStart is used when decl-specifiers are parsed before parsing
2086 /// the Declaration. The SourceLocation for this Decl is set to
2087 /// DeclSpecStart if DeclSpecStart is non-null.
2088 Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(
2089     DeclaratorContext Context, SourceLocation &DeclEnd,
2090     ParsedAttributes &DeclAttrs, ParsedAttributes &DeclSpecAttrs,
2091     bool RequireSemi, ForRangeInit *FRI, SourceLocation *DeclSpecStart) {
2092   // Need to retain these for diagnostics before we add them to the DeclSepc.
2093   ParsedAttributesView OriginalDeclSpecAttrs;
2094   OriginalDeclSpecAttrs.addAll(DeclSpecAttrs.begin(), DeclSpecAttrs.end());
2095   OriginalDeclSpecAttrs.Range = DeclSpecAttrs.Range;
2096 
2097   // Parse the common declaration-specifiers piece.
2098   ParsingDeclSpec DS(*this);
2099   DS.takeAttributesFrom(DeclSpecAttrs);
2100 
2101   ParsedTemplateInfo TemplateInfo;
2102   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
2103   ParseDeclarationSpecifiers(DS, TemplateInfo, AS_none, DSContext);
2104 
2105   // If we had a free-standing type definition with a missing semicolon, we
2106   // may get this far before the problem becomes obvious.
2107   if (DS.hasTagDefinition() &&
2108       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
2109     return nullptr;
2110 
2111   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
2112   // declaration-specifiers init-declarator-list[opt] ';'
2113   if (Tok.is(tok::semi)) {
2114     ProhibitAttributes(DeclAttrs);
2115     DeclEnd = Tok.getLocation();
2116     if (RequireSemi) ConsumeToken();
2117     RecordDecl *AnonRecord = nullptr;
2118     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
2119         getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord);
2120     Actions.ActOnDefinedDeclarationSpecifier(TheDecl);
2121     DS.complete(TheDecl);
2122     if (AnonRecord) {
2123       Decl* decls[] = {AnonRecord, TheDecl};
2124       return Actions.BuildDeclaratorGroup(decls);
2125     }
2126     return Actions.ConvertDeclToDeclGroup(TheDecl);
2127   }
2128 
2129   if (DS.hasTagDefinition())
2130     Actions.ActOnDefinedDeclarationSpecifier(DS.getRepAsDecl());
2131 
2132   if (DeclSpecStart)
2133     DS.SetRangeStart(*DeclSpecStart);
2134 
2135   return ParseDeclGroup(DS, Context, DeclAttrs, TemplateInfo, &DeclEnd, FRI);
2136 }
2137 
2138 /// Returns true if this might be the start of a declarator, or a common typo
2139 /// for a declarator.
2140 bool Parser::MightBeDeclarator(DeclaratorContext Context) {
2141   switch (Tok.getKind()) {
2142   case tok::annot_cxxscope:
2143   case tok::annot_template_id:
2144   case tok::caret:
2145   case tok::code_completion:
2146   case tok::coloncolon:
2147   case tok::ellipsis:
2148   case tok::kw___attribute:
2149   case tok::kw_operator:
2150   case tok::l_paren:
2151   case tok::star:
2152     return true;
2153 
2154   case tok::amp:
2155   case tok::ampamp:
2156     return getLangOpts().CPlusPlus;
2157 
2158   case tok::l_square: // Might be an attribute on an unnamed bit-field.
2159     return Context == DeclaratorContext::Member && getLangOpts().CPlusPlus11 &&
2160            NextToken().is(tok::l_square);
2161 
2162   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
2163     return Context == DeclaratorContext::Member || getLangOpts().CPlusPlus;
2164 
2165   case tok::identifier:
2166     switch (NextToken().getKind()) {
2167     case tok::code_completion:
2168     case tok::coloncolon:
2169     case tok::comma:
2170     case tok::equal:
2171     case tok::equalequal: // Might be a typo for '='.
2172     case tok::kw_alignas:
2173     case tok::kw_asm:
2174     case tok::kw___attribute:
2175     case tok::l_brace:
2176     case tok::l_paren:
2177     case tok::l_square:
2178     case tok::less:
2179     case tok::r_brace:
2180     case tok::r_paren:
2181     case tok::r_square:
2182     case tok::semi:
2183       return true;
2184 
2185     case tok::colon:
2186       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
2187       // and in block scope it's probably a label. Inside a class definition,
2188       // this is a bit-field.
2189       return Context == DeclaratorContext::Member ||
2190              (getLangOpts().CPlusPlus && Context == DeclaratorContext::File);
2191 
2192     case tok::identifier: // Possible virt-specifier.
2193       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
2194 
2195     default:
2196       return Tok.isRegularKeywordAttribute();
2197     }
2198 
2199   default:
2200     return Tok.isRegularKeywordAttribute();
2201   }
2202 }
2203 
2204 /// Skip until we reach something which seems like a sensible place to pick
2205 /// up parsing after a malformed declaration. This will sometimes stop sooner
2206 /// than SkipUntil(tok::r_brace) would, but will never stop later.
2207 void Parser::SkipMalformedDecl() {
2208   while (true) {
2209     switch (Tok.getKind()) {
2210     case tok::l_brace:
2211       // Skip until matching }, then stop. We've probably skipped over
2212       // a malformed class or function definition or similar.
2213       ConsumeBrace();
2214       SkipUntil(tok::r_brace);
2215       if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
2216         // This declaration isn't over yet. Keep skipping.
2217         continue;
2218       }
2219       TryConsumeToken(tok::semi);
2220       return;
2221 
2222     case tok::l_square:
2223       ConsumeBracket();
2224       SkipUntil(tok::r_square);
2225       continue;
2226 
2227     case tok::l_paren:
2228       ConsumeParen();
2229       SkipUntil(tok::r_paren);
2230       continue;
2231 
2232     case tok::r_brace:
2233       return;
2234 
2235     case tok::semi:
2236       ConsumeToken();
2237       return;
2238 
2239     case tok::kw_inline:
2240       // 'inline namespace' at the start of a line is almost certainly
2241       // a good place to pick back up parsing, except in an Objective-C
2242       // @interface context.
2243       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
2244           (!ParsingInObjCContainer || CurParsedObjCImpl))
2245         return;
2246       break;
2247 
2248     case tok::kw_namespace:
2249       // 'namespace' at the start of a line is almost certainly a good
2250       // place to pick back up parsing, except in an Objective-C
2251       // @interface context.
2252       if (Tok.isAtStartOfLine() &&
2253           (!ParsingInObjCContainer || CurParsedObjCImpl))
2254         return;
2255       break;
2256 
2257     case tok::at:
2258       // @end is very much like } in Objective-C contexts.
2259       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
2260           ParsingInObjCContainer)
2261         return;
2262       break;
2263 
2264     case tok::minus:
2265     case tok::plus:
2266       // - and + probably start new method declarations in Objective-C contexts.
2267       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
2268         return;
2269       break;
2270 
2271     case tok::eof:
2272     case tok::annot_module_begin:
2273     case tok::annot_module_end:
2274     case tok::annot_module_include:
2275     case tok::annot_repl_input_end:
2276       return;
2277 
2278     default:
2279       break;
2280     }
2281 
2282     ConsumeAnyToken();
2283   }
2284 }
2285 
2286 /// ParseDeclGroup - Having concluded that this is either a function
2287 /// definition or a group of object declarations, actually parse the
2288 /// result.
2289 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
2290                                               DeclaratorContext Context,
2291                                               ParsedAttributes &Attrs,
2292                                               ParsedTemplateInfo &TemplateInfo,
2293                                               SourceLocation *DeclEnd,
2294                                               ForRangeInit *FRI) {
2295   // Parse the first declarator.
2296   // Consume all of the attributes from `Attrs` by moving them to our own local
2297   // list. This ensures that we will not attempt to interpret them as statement
2298   // attributes higher up the callchain.
2299   ParsedAttributes LocalAttrs(AttrFactory);
2300   LocalAttrs.takeAllFrom(Attrs);
2301   ParsingDeclarator D(*this, DS, LocalAttrs, Context);
2302   if (TemplateInfo.TemplateParams)
2303     D.setTemplateParameterLists(*TemplateInfo.TemplateParams);
2304 
2305   bool IsTemplateSpecOrInst =
2306       (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
2307        TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
2308   SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
2309 
2310   ParseDeclarator(D);
2311 
2312   if (IsTemplateSpecOrInst)
2313     SAC.done();
2314 
2315   // Bail out if the first declarator didn't seem well-formed.
2316   if (!D.hasName() && !D.mayOmitIdentifier()) {
2317     SkipMalformedDecl();
2318     return nullptr;
2319   }
2320 
2321   if (getLangOpts().HLSL)
2322     MaybeParseHLSLAnnotations(D);
2323 
2324   if (Tok.is(tok::kw_requires))
2325     ParseTrailingRequiresClause(D);
2326 
2327   // Save late-parsed attributes for now; they need to be parsed in the
2328   // appropriate function scope after the function Decl has been constructed.
2329   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
2330   LateParsedAttrList LateParsedAttrs(true);
2331   if (D.isFunctionDeclarator()) {
2332     MaybeParseGNUAttributes(D, &LateParsedAttrs);
2333 
2334     // The _Noreturn keyword can't appear here, unlike the GNU noreturn
2335     // attribute. If we find the keyword here, tell the user to put it
2336     // at the start instead.
2337     if (Tok.is(tok::kw__Noreturn)) {
2338       SourceLocation Loc = ConsumeToken();
2339       const char *PrevSpec;
2340       unsigned DiagID;
2341 
2342       // We can offer a fixit if it's valid to mark this function as _Noreturn
2343       // and we don't have any other declarators in this declaration.
2344       bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
2345       MaybeParseGNUAttributes(D, &LateParsedAttrs);
2346       Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
2347 
2348       Diag(Loc, diag::err_c11_noreturn_misplaced)
2349           << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
2350           << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
2351                     : FixItHint());
2352     }
2353 
2354     // Check to see if we have a function *definition* which must have a body.
2355     if (Tok.is(tok::equal) && NextToken().is(tok::code_completion)) {
2356       cutOffParsing();
2357       Actions.CodeCompletion().CodeCompleteAfterFunctionEquals(D);
2358       return nullptr;
2359     }
2360     // We're at the point where the parsing of function declarator is finished.
2361     //
2362     // A common error is that users accidently add a virtual specifier
2363     // (e.g. override) in an out-line method definition.
2364     // We attempt to recover by stripping all these specifiers coming after
2365     // the declarator.
2366     while (auto Specifier = isCXX11VirtSpecifier()) {
2367       Diag(Tok, diag::err_virt_specifier_outside_class)
2368           << VirtSpecifiers::getSpecifierName(Specifier)
2369           << FixItHint::CreateRemoval(Tok.getLocation());
2370       ConsumeToken();
2371     }
2372     // Look at the next token to make sure that this isn't a function
2373     // declaration.  We have to check this because __attribute__ might be the
2374     // start of a function definition in GCC-extended K&R C.
2375     if (!isDeclarationAfterDeclarator()) {
2376 
2377       // Function definitions are only allowed at file scope and in C++ classes.
2378       // The C++ inline method definition case is handled elsewhere, so we only
2379       // need to handle the file scope definition case.
2380       if (Context == DeclaratorContext::File) {
2381         if (isStartOfFunctionDefinition(D)) {
2382           // C++23 [dcl.typedef] p1:
2383           //   The typedef specifier shall not be [...], and it shall not be
2384           //   used in the decl-specifier-seq of a parameter-declaration nor in
2385           //   the decl-specifier-seq of a function-definition.
2386           if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2387             // If the user intended to write 'typename', we should have already
2388             // suggested adding it elsewhere. In any case, recover by ignoring
2389             // 'typedef' and suggest removing it.
2390             Diag(DS.getStorageClassSpecLoc(),
2391                  diag::err_function_declared_typedef)
2392                 << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
2393             DS.ClearStorageClassSpecs();
2394           }
2395           Decl *TheDecl = nullptr;
2396 
2397           if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
2398             if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2399               // If the declarator-id is not a template-id, issue a diagnostic
2400               // and recover by ignoring the 'template' keyword.
2401               Diag(Tok, diag::err_template_defn_explicit_instantiation) << 0;
2402               TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(),
2403                                                 &LateParsedAttrs);
2404             } else {
2405               SourceLocation LAngleLoc =
2406                   PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2407               Diag(D.getIdentifierLoc(),
2408                    diag::err_explicit_instantiation_with_definition)
2409                   << SourceRange(TemplateInfo.TemplateLoc)
2410                   << FixItHint::CreateInsertion(LAngleLoc, "<>");
2411 
2412               // Recover as if it were an explicit specialization.
2413               TemplateParameterLists FakedParamLists;
2414               FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2415                   0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc,
2416                   std::nullopt, LAngleLoc, nullptr));
2417 
2418               TheDecl = ParseFunctionDefinition(
2419                   D,
2420                   ParsedTemplateInfo(&FakedParamLists,
2421                                      /*isSpecialization=*/true,
2422                                      /*lastParameterListWasEmpty=*/true),
2423                   &LateParsedAttrs);
2424             }
2425           } else {
2426             TheDecl =
2427                 ParseFunctionDefinition(D, TemplateInfo, &LateParsedAttrs);
2428           }
2429 
2430           return Actions.ConvertDeclToDeclGroup(TheDecl);
2431         }
2432 
2433         if (isDeclarationSpecifier(ImplicitTypenameContext::No) ||
2434             Tok.is(tok::kw_namespace)) {
2435           // If there is an invalid declaration specifier or a namespace
2436           // definition right after the function prototype, then we must be in a
2437           // missing semicolon case where this isn't actually a body.  Just fall
2438           // through into the code that handles it as a prototype, and let the
2439           // top-level code handle the erroneous declspec where it would
2440           // otherwise expect a comma or semicolon. Note that
2441           // isDeclarationSpecifier already covers 'inline namespace', since
2442           // 'inline' can be a declaration specifier.
2443         } else {
2444           Diag(Tok, diag::err_expected_fn_body);
2445           SkipUntil(tok::semi);
2446           return nullptr;
2447         }
2448       } else {
2449         if (Tok.is(tok::l_brace)) {
2450           Diag(Tok, diag::err_function_definition_not_allowed);
2451           SkipMalformedDecl();
2452           return nullptr;
2453         }
2454       }
2455     }
2456   }
2457 
2458   if (ParseAsmAttributesAfterDeclarator(D))
2459     return nullptr;
2460 
2461   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
2462   // must parse and analyze the for-range-initializer before the declaration is
2463   // analyzed.
2464   //
2465   // Handle the Objective-C for-in loop variable similarly, although we
2466   // don't need to parse the container in advance.
2467   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
2468     bool IsForRangeLoop = false;
2469     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
2470       IsForRangeLoop = true;
2471       EnterExpressionEvaluationContext ForRangeInitContext(
2472           Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated,
2473           /*LambdaContextDecl=*/nullptr,
2474           Sema::ExpressionEvaluationContextRecord::EK_Other,
2475           getLangOpts().CPlusPlus23);
2476 
2477       // P2718R0 - Lifetime extension in range-based for loops.
2478       if (getLangOpts().CPlusPlus23) {
2479         auto &LastRecord = Actions.ExprEvalContexts.back();
2480         LastRecord.InLifetimeExtendingContext = true;
2481       }
2482 
2483       if (getLangOpts().OpenMP)
2484         Actions.OpenMP().startOpenMPCXXRangeFor();
2485       if (Tok.is(tok::l_brace))
2486         FRI->RangeExpr = ParseBraceInitializer();
2487       else
2488         FRI->RangeExpr = ParseExpression();
2489 
2490       // Before c++23, ForRangeLifetimeExtendTemps should be empty.
2491       assert(
2492           getLangOpts().CPlusPlus23 ||
2493           Actions.ExprEvalContexts.back().ForRangeLifetimeExtendTemps.empty());
2494 
2495       // Move the collected materialized temporaries into ForRangeInit before
2496       // ForRangeInitContext exit.
2497       FRI->LifetimeExtendTemps = std::move(
2498           Actions.ExprEvalContexts.back().ForRangeLifetimeExtendTemps);
2499     }
2500 
2501     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2502     if (IsForRangeLoop) {
2503       Actions.ActOnCXXForRangeDecl(ThisDecl);
2504     } else {
2505       // Obj-C for loop
2506       if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
2507         VD->setObjCForDecl(true);
2508     }
2509     Actions.FinalizeDeclaration(ThisDecl);
2510     D.complete(ThisDecl);
2511     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
2512   }
2513 
2514   SmallVector<Decl *, 8> DeclsInGroup;
2515   Decl *FirstDecl =
2516       ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo, FRI);
2517   if (LateParsedAttrs.size() > 0)
2518     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
2519   D.complete(FirstDecl);
2520   if (FirstDecl)
2521     DeclsInGroup.push_back(FirstDecl);
2522 
2523   bool ExpectSemi = Context != DeclaratorContext::ForInit;
2524 
2525   // If we don't have a comma, it is either the end of the list (a ';') or an
2526   // error, bail out.
2527   SourceLocation CommaLoc;
2528   while (TryConsumeToken(tok::comma, CommaLoc)) {
2529     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2530       // This comma was followed by a line-break and something which can't be
2531       // the start of a declarator. The comma was probably a typo for a
2532       // semicolon.
2533       Diag(CommaLoc, diag::err_expected_semi_declaration)
2534         << FixItHint::CreateReplacement(CommaLoc, ";");
2535       ExpectSemi = false;
2536       break;
2537     }
2538 
2539     // C++23 [temp.pre]p5:
2540     //   In a template-declaration, explicit specialization, or explicit
2541     //   instantiation the init-declarator-list in the declaration shall
2542     //   contain at most one declarator.
2543     if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
2544         D.isFirstDeclarator()) {
2545       Diag(CommaLoc, diag::err_multiple_template_declarators)
2546           << TemplateInfo.Kind;
2547     }
2548 
2549     // Parse the next declarator.
2550     D.clear();
2551     D.setCommaLoc(CommaLoc);
2552 
2553     // Accept attributes in an init-declarator.  In the first declarator in a
2554     // declaration, these would be part of the declspec.  In subsequent
2555     // declarators, they become part of the declarator itself, so that they
2556     // don't apply to declarators after *this* one.  Examples:
2557     //    short __attribute__((common)) var;    -> declspec
2558     //    short var __attribute__((common));    -> declarator
2559     //    short x, __attribute__((common)) var;    -> declarator
2560     MaybeParseGNUAttributes(D);
2561 
2562     // MSVC parses but ignores qualifiers after the comma as an extension.
2563     if (getLangOpts().MicrosoftExt)
2564       DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2565 
2566     ParseDeclarator(D);
2567 
2568     if (getLangOpts().HLSL)
2569       MaybeParseHLSLAnnotations(D);
2570 
2571     if (!D.isInvalidType()) {
2572       // C++2a [dcl.decl]p1
2573       //    init-declarator:
2574       //	      declarator initializer[opt]
2575       //        declarator requires-clause
2576       if (Tok.is(tok::kw_requires))
2577         ParseTrailingRequiresClause(D);
2578       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D, TemplateInfo);
2579       D.complete(ThisDecl);
2580       if (ThisDecl)
2581         DeclsInGroup.push_back(ThisDecl);
2582     }
2583   }
2584 
2585   if (DeclEnd)
2586     *DeclEnd = Tok.getLocation();
2587 
2588   if (ExpectSemi && ExpectAndConsumeSemi(
2589                         Context == DeclaratorContext::File
2590                             ? diag::err_invalid_token_after_toplevel_declarator
2591                             : diag::err_expected_semi_declaration)) {
2592     // Okay, there was no semicolon and one was expected.  If we see a
2593     // declaration specifier, just assume it was missing and continue parsing.
2594     // Otherwise things are very confused and we skip to recover.
2595     if (!isDeclarationSpecifier(ImplicitTypenameContext::No))
2596       SkipMalformedDecl();
2597   }
2598 
2599   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2600 }
2601 
2602 /// Parse an optional simple-asm-expr and attributes, and attach them to a
2603 /// declarator. Returns true on an error.
2604 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2605   // If a simple-asm-expr is present, parse it.
2606   if (Tok.is(tok::kw_asm)) {
2607     SourceLocation Loc;
2608     ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2609     if (AsmLabel.isInvalid()) {
2610       SkipUntil(tok::semi, StopBeforeMatch);
2611       return true;
2612     }
2613 
2614     D.setAsmLabel(AsmLabel.get());
2615     D.SetRangeEnd(Loc);
2616   }
2617 
2618   MaybeParseGNUAttributes(D);
2619   return false;
2620 }
2621 
2622 /// Parse 'declaration' after parsing 'declaration-specifiers
2623 /// declarator'. This method parses the remainder of the declaration
2624 /// (including any attributes or initializer, among other things) and
2625 /// finalizes the declaration.
2626 ///
2627 ///       init-declarator: [C99 6.7]
2628 ///         declarator
2629 ///         declarator '=' initializer
2630 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
2631 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2632 /// [C++]   declarator initializer[opt]
2633 ///
2634 /// [C++] initializer:
2635 /// [C++]   '=' initializer-clause
2636 /// [C++]   '(' expression-list ')'
2637 /// [C++0x] '=' 'default'                                                [TODO]
2638 /// [C++0x] '=' 'delete'
2639 /// [C++0x] braced-init-list
2640 ///
2641 /// According to the standard grammar, =default and =delete are function
2642 /// definitions, but that definitely doesn't fit with the parser here.
2643 ///
2644 Decl *Parser::ParseDeclarationAfterDeclarator(
2645     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2646   if (ParseAsmAttributesAfterDeclarator(D))
2647     return nullptr;
2648 
2649   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2650 }
2651 
2652 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2653     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2654   // RAII type used to track whether we're inside an initializer.
2655   struct InitializerScopeRAII {
2656     Parser &P;
2657     Declarator &D;
2658     Decl *ThisDecl;
2659     bool Entered;
2660 
2661     InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2662         : P(P), D(D), ThisDecl(ThisDecl), Entered(false) {
2663       if (ThisDecl && P.getLangOpts().CPlusPlus) {
2664         Scope *S = nullptr;
2665         if (D.getCXXScopeSpec().isSet()) {
2666           P.EnterScope(0);
2667           S = P.getCurScope();
2668         }
2669         if (ThisDecl && !ThisDecl->isInvalidDecl()) {
2670           P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2671           Entered = true;
2672         }
2673       }
2674     }
2675     ~InitializerScopeRAII() {
2676       if (ThisDecl && P.getLangOpts().CPlusPlus) {
2677         Scope *S = nullptr;
2678         if (D.getCXXScopeSpec().isSet())
2679           S = P.getCurScope();
2680 
2681         if (Entered)
2682           P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2683         if (S)
2684           P.ExitScope();
2685       }
2686       ThisDecl = nullptr;
2687     }
2688   };
2689 
2690   enum class InitKind { Uninitialized, Equal, CXXDirect, CXXBraced };
2691   InitKind TheInitKind;
2692   // If a '==' or '+=' is found, suggest a fixit to '='.
2693   if (isTokenEqualOrEqualTypo())
2694     TheInitKind = InitKind::Equal;
2695   else if (Tok.is(tok::l_paren))
2696     TheInitKind = InitKind::CXXDirect;
2697   else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2698            (!CurParsedObjCImpl || !D.isFunctionDeclarator()))
2699     TheInitKind = InitKind::CXXBraced;
2700   else
2701     TheInitKind = InitKind::Uninitialized;
2702   if (TheInitKind != InitKind::Uninitialized)
2703     D.setHasInitializer();
2704 
2705   // Inform Sema that we just parsed this declarator.
2706   Decl *ThisDecl = nullptr;
2707   Decl *OuterDecl = nullptr;
2708   switch (TemplateInfo.Kind) {
2709   case ParsedTemplateInfo::NonTemplate:
2710     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2711     break;
2712 
2713   case ParsedTemplateInfo::Template:
2714   case ParsedTemplateInfo::ExplicitSpecialization: {
2715     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2716                                                *TemplateInfo.TemplateParams,
2717                                                D);
2718     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl)) {
2719       // Re-direct this decl to refer to the templated decl so that we can
2720       // initialize it.
2721       ThisDecl = VT->getTemplatedDecl();
2722       OuterDecl = VT;
2723     }
2724     break;
2725   }
2726   case ParsedTemplateInfo::ExplicitInstantiation: {
2727     if (Tok.is(tok::semi)) {
2728       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2729           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2730       if (ThisRes.isInvalid()) {
2731         SkipUntil(tok::semi, StopBeforeMatch);
2732         return nullptr;
2733       }
2734       ThisDecl = ThisRes.get();
2735     } else {
2736       // FIXME: This check should be for a variable template instantiation only.
2737 
2738       // Check that this is a valid instantiation
2739       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2740         // If the declarator-id is not a template-id, issue a diagnostic and
2741         // recover by ignoring the 'template' keyword.
2742         Diag(Tok, diag::err_template_defn_explicit_instantiation)
2743             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2744         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2745       } else {
2746         SourceLocation LAngleLoc =
2747             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2748         Diag(D.getIdentifierLoc(),
2749              diag::err_explicit_instantiation_with_definition)
2750             << SourceRange(TemplateInfo.TemplateLoc)
2751             << FixItHint::CreateInsertion(LAngleLoc, "<>");
2752 
2753         // Recover as if it were an explicit specialization.
2754         TemplateParameterLists FakedParamLists;
2755         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2756             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc,
2757             std::nullopt, LAngleLoc, nullptr));
2758 
2759         ThisDecl =
2760             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2761       }
2762     }
2763     break;
2764     }
2765   }
2766 
2767   SemaCUDA::CUDATargetContextRAII X(Actions.CUDA(),
2768                                     SemaCUDA::CTCK_InitGlobalVar, ThisDecl);
2769   switch (TheInitKind) {
2770   // Parse declarator '=' initializer.
2771   case InitKind::Equal: {
2772     SourceLocation EqualLoc = ConsumeToken();
2773 
2774     if (Tok.is(tok::kw_delete)) {
2775       if (D.isFunctionDeclarator())
2776         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2777           << 1 /* delete */;
2778       else
2779         Diag(ConsumeToken(), diag::err_deleted_non_function);
2780       SkipDeletedFunctionBody();
2781     } else if (Tok.is(tok::kw_default)) {
2782       if (D.isFunctionDeclarator())
2783         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2784           << 0 /* default */;
2785       else
2786         Diag(ConsumeToken(), diag::err_default_special_members)
2787             << getLangOpts().CPlusPlus20;
2788     } else {
2789       InitializerScopeRAII InitScope(*this, D, ThisDecl);
2790 
2791       if (Tok.is(tok::code_completion)) {
2792         cutOffParsing();
2793         Actions.CodeCompletion().CodeCompleteInitializer(getCurScope(),
2794                                                          ThisDecl);
2795         Actions.FinalizeDeclaration(ThisDecl);
2796         return nullptr;
2797       }
2798 
2799       PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2800       ExprResult Init = ParseInitializer();
2801 
2802       // If this is the only decl in (possibly) range based for statement,
2803       // our best guess is that the user meant ':' instead of '='.
2804       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2805         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2806             << FixItHint::CreateReplacement(EqualLoc, ":");
2807         // We are trying to stop parser from looking for ';' in this for
2808         // statement, therefore preventing spurious errors to be issued.
2809         FRI->ColonLoc = EqualLoc;
2810         Init = ExprError();
2811         FRI->RangeExpr = Init;
2812       }
2813 
2814       if (Init.isInvalid()) {
2815         SmallVector<tok::TokenKind, 2> StopTokens;
2816         StopTokens.push_back(tok::comma);
2817         if (D.getContext() == DeclaratorContext::ForInit ||
2818             D.getContext() == DeclaratorContext::SelectionInit)
2819           StopTokens.push_back(tok::r_paren);
2820         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2821         Actions.ActOnInitializerError(ThisDecl);
2822       } else
2823         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2824                                      /*DirectInit=*/false);
2825     }
2826     break;
2827   }
2828   case InitKind::CXXDirect: {
2829     // Parse C++ direct initializer: '(' expression-list ')'
2830     BalancedDelimiterTracker T(*this, tok::l_paren);
2831     T.consumeOpen();
2832 
2833     ExprVector Exprs;
2834 
2835     InitializerScopeRAII InitScope(*this, D, ThisDecl);
2836 
2837     auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2838     auto RunSignatureHelp = [&]() {
2839       QualType PreferredType =
2840           Actions.CodeCompletion().ProduceConstructorSignatureHelp(
2841               ThisVarDecl->getType()->getCanonicalTypeInternal(),
2842               ThisDecl->getLocation(), Exprs, T.getOpenLocation(),
2843               /*Braced=*/false);
2844       CalledSignatureHelp = true;
2845       return PreferredType;
2846     };
2847     auto SetPreferredType = [&] {
2848       PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp);
2849     };
2850 
2851     llvm::function_ref<void()> ExpressionStarts;
2852     if (ThisVarDecl) {
2853       // ParseExpressionList can sometimes succeed even when ThisDecl is not
2854       // VarDecl. This is an error and it is reported in a call to
2855       // Actions.ActOnInitializerError(). However, we call
2856       // ProduceConstructorSignatureHelp only on VarDecls.
2857       ExpressionStarts = SetPreferredType;
2858     }
2859 
2860     bool SawError = ParseExpressionList(Exprs, ExpressionStarts);
2861 
2862     if (SawError) {
2863       if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
2864         Actions.CodeCompletion().ProduceConstructorSignatureHelp(
2865             ThisVarDecl->getType()->getCanonicalTypeInternal(),
2866             ThisDecl->getLocation(), Exprs, T.getOpenLocation(),
2867             /*Braced=*/false);
2868         CalledSignatureHelp = true;
2869       }
2870       Actions.ActOnInitializerError(ThisDecl);
2871       SkipUntil(tok::r_paren, StopAtSemi);
2872     } else {
2873       // Match the ')'.
2874       T.consumeClose();
2875 
2876       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2877                                                           T.getCloseLocation(),
2878                                                           Exprs);
2879       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2880                                    /*DirectInit=*/true);
2881     }
2882     break;
2883   }
2884   case InitKind::CXXBraced: {
2885     // Parse C++0x braced-init-list.
2886     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2887 
2888     InitializerScopeRAII InitScope(*this, D, ThisDecl);
2889 
2890     PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2891     ExprResult Init(ParseBraceInitializer());
2892 
2893     if (Init.isInvalid()) {
2894       Actions.ActOnInitializerError(ThisDecl);
2895     } else
2896       Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2897     break;
2898   }
2899   case InitKind::Uninitialized: {
2900     Actions.ActOnUninitializedDecl(ThisDecl);
2901     break;
2902   }
2903   }
2904 
2905   Actions.FinalizeDeclaration(ThisDecl);
2906   return OuterDecl ? OuterDecl : ThisDecl;
2907 }
2908 
2909 /// ParseSpecifierQualifierList
2910 ///        specifier-qualifier-list:
2911 ///          type-specifier specifier-qualifier-list[opt]
2912 ///          type-qualifier specifier-qualifier-list[opt]
2913 /// [GNU]    attributes     specifier-qualifier-list[opt]
2914 ///
2915 void Parser::ParseSpecifierQualifierList(
2916     DeclSpec &DS, ImplicitTypenameContext AllowImplicitTypename,
2917     AccessSpecifier AS, DeclSpecContext DSC) {
2918   ParsedTemplateInfo TemplateInfo;
2919   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2920   /// parse declaration-specifiers and complain about extra stuff.
2921   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2922   ParseDeclarationSpecifiers(DS, TemplateInfo, AS, DSC, nullptr,
2923                              AllowImplicitTypename);
2924 
2925   // Validate declspec for type-name.
2926   unsigned Specs = DS.getParsedSpecifiers();
2927   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2928     Diag(Tok, diag::err_expected_type);
2929     DS.SetTypeSpecError();
2930   } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2931     Diag(Tok, diag::err_typename_requires_specqual);
2932     if (!DS.hasTypeSpecifier())
2933       DS.SetTypeSpecError();
2934   }
2935 
2936   // Issue diagnostic and remove storage class if present.
2937   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2938     if (DS.getStorageClassSpecLoc().isValid())
2939       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2940     else
2941       Diag(DS.getThreadStorageClassSpecLoc(),
2942            diag::err_typename_invalid_storageclass);
2943     DS.ClearStorageClassSpecs();
2944   }
2945 
2946   // Issue diagnostic and remove function specifier if present.
2947   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2948     if (DS.isInlineSpecified())
2949       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2950     if (DS.isVirtualSpecified())
2951       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2952     if (DS.hasExplicitSpecifier())
2953       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2954     if (DS.isNoreturnSpecified())
2955       Diag(DS.getNoreturnSpecLoc(), diag::err_typename_invalid_functionspec);
2956     DS.ClearFunctionSpecs();
2957   }
2958 
2959   // Issue diagnostic and remove constexpr specifier if present.
2960   if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) {
2961     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr)
2962         << static_cast<int>(DS.getConstexprSpecifier());
2963     DS.ClearConstexprSpec();
2964   }
2965 }
2966 
2967 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2968 /// specified token is valid after the identifier in a declarator which
2969 /// immediately follows the declspec.  For example, these things are valid:
2970 ///
2971 ///      int x   [             4];         // direct-declarator
2972 ///      int x   (             int y);     // direct-declarator
2973 ///  int(int x   )                         // direct-declarator
2974 ///      int x   ;                         // simple-declaration
2975 ///      int x   =             17;         // init-declarator-list
2976 ///      int x   ,             y;          // init-declarator-list
2977 ///      int x   __asm__       ("foo");    // init-declarator-list
2978 ///      int x   :             4;          // struct-declarator
2979 ///      int x   {             5};         // C++'0x unified initializers
2980 ///
2981 /// This is not, because 'x' does not immediately follow the declspec (though
2982 /// ')' happens to be valid anyway).
2983 ///    int (x)
2984 ///
2985 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2986   return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2987                    tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2988                    tok::colon);
2989 }
2990 
2991 /// ParseImplicitInt - This method is called when we have an non-typename
2992 /// identifier in a declspec (which normally terminates the decl spec) when
2993 /// the declspec has no type specifier.  In this case, the declspec is either
2994 /// malformed or is "implicit int" (in K&R and C89).
2995 ///
2996 /// This method handles diagnosing this prettily and returns false if the
2997 /// declspec is done being processed.  If it recovers and thinks there may be
2998 /// other pieces of declspec after it, it returns true.
2999 ///
3000 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
3001                               ParsedTemplateInfo &TemplateInfo,
3002                               AccessSpecifier AS, DeclSpecContext DSC,
3003                               ParsedAttributes &Attrs) {
3004   assert(Tok.is(tok::identifier) && "should have identifier");
3005 
3006   SourceLocation Loc = Tok.getLocation();
3007   // If we see an identifier that is not a type name, we normally would
3008   // parse it as the identifier being declared.  However, when a typename
3009   // is typo'd or the definition is not included, this will incorrectly
3010   // parse the typename as the identifier name and fall over misparsing
3011   // later parts of the diagnostic.
3012   //
3013   // As such, we try to do some look-ahead in cases where this would
3014   // otherwise be an "implicit-int" case to see if this is invalid.  For
3015   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
3016   // an identifier with implicit int, we'd get a parse error because the
3017   // next token is obviously invalid for a type.  Parse these as a case
3018   // with an invalid type specifier.
3019   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
3020 
3021   // Since we know that this either implicit int (which is rare) or an
3022   // error, do lookahead to try to do better recovery. This never applies
3023   // within a type specifier. Outside of C++, we allow this even if the
3024   // language doesn't "officially" support implicit int -- we support
3025   // implicit int as an extension in some language modes.
3026   if (!isTypeSpecifier(DSC) && getLangOpts().isImplicitIntAllowed() &&
3027       isValidAfterIdentifierInDeclarator(NextToken())) {
3028     // If this token is valid for implicit int, e.g. "static x = 4", then
3029     // we just avoid eating the identifier, so it will be parsed as the
3030     // identifier in the declarator.
3031     return false;
3032   }
3033 
3034   // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic
3035   // for incomplete declarations such as `pipe p`.
3036   if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe())
3037     return false;
3038 
3039   if (getLangOpts().CPlusPlus &&
3040       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
3041     // Don't require a type specifier if we have the 'auto' storage class
3042     // specifier in C++98 -- we'll promote it to a type specifier.
3043     if (SS)
3044       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
3045     return false;
3046   }
3047 
3048   if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
3049       getLangOpts().MSVCCompat) {
3050     // Lookup of an unqualified type name has failed in MSVC compatibility mode.
3051     // Give Sema a chance to recover if we are in a template with dependent base
3052     // classes.
3053     if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
3054             *Tok.getIdentifierInfo(), Tok.getLocation(),
3055             DSC == DeclSpecContext::DSC_template_type_arg)) {
3056       const char *PrevSpec;
3057       unsigned DiagID;
3058       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
3059                          Actions.getASTContext().getPrintingPolicy());
3060       DS.SetRangeEnd(Tok.getLocation());
3061       ConsumeToken();
3062       return false;
3063     }
3064   }
3065 
3066   // Otherwise, if we don't consume this token, we are going to emit an
3067   // error anyway.  Try to recover from various common problems.  Check
3068   // to see if this was a reference to a tag name without a tag specified.
3069   // This is a common problem in C (saying 'foo' instead of 'struct foo').
3070   //
3071   // C++ doesn't need this, and isTagName doesn't take SS.
3072   if (SS == nullptr) {
3073     const char *TagName = nullptr, *FixitTagName = nullptr;
3074     tok::TokenKind TagKind = tok::unknown;
3075 
3076     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
3077       default: break;
3078       case DeclSpec::TST_enum:
3079         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
3080       case DeclSpec::TST_union:
3081         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
3082       case DeclSpec::TST_struct:
3083         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
3084       case DeclSpec::TST_interface:
3085         TagName="__interface"; FixitTagName = "__interface ";
3086         TagKind=tok::kw___interface;break;
3087       case DeclSpec::TST_class:
3088         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
3089     }
3090 
3091     if (TagName) {
3092       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
3093       LookupResult R(Actions, TokenName, SourceLocation(),
3094                      Sema::LookupOrdinaryName);
3095 
3096       Diag(Loc, diag::err_use_of_tag_name_without_tag)
3097         << TokenName << TagName << getLangOpts().CPlusPlus
3098         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
3099 
3100       if (Actions.LookupName(R, getCurScope())) {
3101         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
3102              I != IEnd; ++I)
3103           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
3104             << TokenName << TagName;
3105       }
3106 
3107       // Parse this as a tag as if the missing tag were present.
3108       if (TagKind == tok::kw_enum)
3109         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
3110                            DeclSpecContext::DSC_normal);
3111       else
3112         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
3113                             /*EnteringContext*/ false,
3114                             DeclSpecContext::DSC_normal, Attrs);
3115       return true;
3116     }
3117   }
3118 
3119   // Determine whether this identifier could plausibly be the name of something
3120   // being declared (with a missing type).
3121   if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
3122                                 DSC == DeclSpecContext::DSC_class)) {
3123     // Look ahead to the next token to try to figure out what this declaration
3124     // was supposed to be.
3125     switch (NextToken().getKind()) {
3126     case tok::l_paren: {
3127       // static x(4); // 'x' is not a type
3128       // x(int n);    // 'x' is not a type
3129       // x (*p)[];    // 'x' is a type
3130       //
3131       // Since we're in an error case, we can afford to perform a tentative
3132       // parse to determine which case we're in.
3133       TentativeParsingAction PA(*this);
3134       ConsumeToken();
3135       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
3136       PA.Revert();
3137 
3138       if (TPR != TPResult::False) {
3139         // The identifier is followed by a parenthesized declarator.
3140         // It's supposed to be a type.
3141         break;
3142       }
3143 
3144       // If we're in a context where we could be declaring a constructor,
3145       // check whether this is a constructor declaration with a bogus name.
3146       if (DSC == DeclSpecContext::DSC_class ||
3147           (DSC == DeclSpecContext::DSC_top_level && SS)) {
3148         IdentifierInfo *II = Tok.getIdentifierInfo();
3149         if (Actions.isCurrentClassNameTypo(II, SS)) {
3150           Diag(Loc, diag::err_constructor_bad_name)
3151             << Tok.getIdentifierInfo() << II
3152             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
3153           Tok.setIdentifierInfo(II);
3154         }
3155       }
3156       // Fall through.
3157       [[fallthrough]];
3158     }
3159     case tok::comma:
3160     case tok::equal:
3161     case tok::kw_asm:
3162     case tok::l_brace:
3163     case tok::l_square:
3164     case tok::semi:
3165       // This looks like a variable or function declaration. The type is
3166       // probably missing. We're done parsing decl-specifiers.
3167       // But only if we are not in a function prototype scope.
3168       if (getCurScope()->isFunctionPrototypeScope())
3169         break;
3170       if (SS)
3171         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
3172       return false;
3173 
3174     default:
3175       // This is probably supposed to be a type. This includes cases like:
3176       //   int f(itn);
3177       //   struct S { unsigned : 4; };
3178       break;
3179     }
3180   }
3181 
3182   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
3183   // and attempt to recover.
3184   ParsedType T;
3185   IdentifierInfo *II = Tok.getIdentifierInfo();
3186   bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
3187   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
3188                                   IsTemplateName);
3189   if (T) {
3190     // The action has suggested that the type T could be used. Set that as
3191     // the type in the declaration specifiers, consume the would-be type
3192     // name token, and we're done.
3193     const char *PrevSpec;
3194     unsigned DiagID;
3195     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
3196                        Actions.getASTContext().getPrintingPolicy());
3197     DS.SetRangeEnd(Tok.getLocation());
3198     ConsumeToken();
3199     // There may be other declaration specifiers after this.
3200     return true;
3201   } else if (II != Tok.getIdentifierInfo()) {
3202     // If no type was suggested, the correction is to a keyword
3203     Tok.setKind(II->getTokenID());
3204     // There may be other declaration specifiers after this.
3205     return true;
3206   }
3207 
3208   // Otherwise, the action had no suggestion for us.  Mark this as an error.
3209   DS.SetTypeSpecError();
3210   DS.SetRangeEnd(Tok.getLocation());
3211   ConsumeToken();
3212 
3213   // Eat any following template arguments.
3214   if (IsTemplateName) {
3215     SourceLocation LAngle, RAngle;
3216     TemplateArgList Args;
3217     ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
3218   }
3219 
3220   // TODO: Could inject an invalid typedef decl in an enclosing scope to
3221   // avoid rippling error messages on subsequent uses of the same type,
3222   // could be useful if #include was forgotten.
3223   return true;
3224 }
3225 
3226 /// Determine the declaration specifier context from the declarator
3227 /// context.
3228 ///
3229 /// \param Context the declarator context, which is one of the
3230 /// DeclaratorContext enumerator values.
3231 Parser::DeclSpecContext
3232 Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
3233   switch (Context) {
3234   case DeclaratorContext::Member:
3235     return DeclSpecContext::DSC_class;
3236   case DeclaratorContext::File:
3237     return DeclSpecContext::DSC_top_level;
3238   case DeclaratorContext::TemplateParam:
3239     return DeclSpecContext::DSC_template_param;
3240   case DeclaratorContext::TemplateArg:
3241     return DeclSpecContext::DSC_template_arg;
3242   case DeclaratorContext::TemplateTypeArg:
3243     return DeclSpecContext::DSC_template_type_arg;
3244   case DeclaratorContext::TrailingReturn:
3245   case DeclaratorContext::TrailingReturnVar:
3246     return DeclSpecContext::DSC_trailing;
3247   case DeclaratorContext::AliasDecl:
3248   case DeclaratorContext::AliasTemplate:
3249     return DeclSpecContext::DSC_alias_declaration;
3250   case DeclaratorContext::Association:
3251     return DeclSpecContext::DSC_association;
3252   case DeclaratorContext::TypeName:
3253     return DeclSpecContext::DSC_type_specifier;
3254   case DeclaratorContext::Condition:
3255     return DeclSpecContext::DSC_condition;
3256   case DeclaratorContext::ConversionId:
3257     return DeclSpecContext::DSC_conv_operator;
3258   case DeclaratorContext::CXXNew:
3259     return DeclSpecContext::DSC_new;
3260   case DeclaratorContext::Prototype:
3261   case DeclaratorContext::ObjCResult:
3262   case DeclaratorContext::ObjCParameter:
3263   case DeclaratorContext::KNRTypeList:
3264   case DeclaratorContext::FunctionalCast:
3265   case DeclaratorContext::Block:
3266   case DeclaratorContext::ForInit:
3267   case DeclaratorContext::SelectionInit:
3268   case DeclaratorContext::CXXCatch:
3269   case DeclaratorContext::ObjCCatch:
3270   case DeclaratorContext::BlockLiteral:
3271   case DeclaratorContext::LambdaExpr:
3272   case DeclaratorContext::LambdaExprParameter:
3273   case DeclaratorContext::RequiresExpr:
3274     return DeclSpecContext::DSC_normal;
3275   }
3276 
3277   llvm_unreachable("Missing DeclaratorContext case");
3278 }
3279 
3280 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
3281 ///
3282 /// [C11]   type-id
3283 /// [C11]   constant-expression
3284 /// [C++0x] type-id ...[opt]
3285 /// [C++0x] assignment-expression ...[opt]
3286 ExprResult Parser::ParseAlignArgument(StringRef KWName, SourceLocation Start,
3287                                       SourceLocation &EllipsisLoc, bool &IsType,
3288                                       ParsedType &TypeResult) {
3289   ExprResult ER;
3290   if (isTypeIdInParens()) {
3291     SourceLocation TypeLoc = Tok.getLocation();
3292     ParsedType Ty = ParseTypeName().get();
3293     SourceRange TypeRange(Start, Tok.getLocation());
3294     if (Actions.ActOnAlignasTypeArgument(KWName, Ty, TypeLoc, TypeRange))
3295       return ExprError();
3296     TypeResult = Ty;
3297     IsType = true;
3298   } else {
3299     ER = ParseConstantExpression();
3300     IsType = false;
3301   }
3302 
3303   if (getLangOpts().CPlusPlus11)
3304     TryConsumeToken(tok::ellipsis, EllipsisLoc);
3305 
3306   return ER;
3307 }
3308 
3309 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
3310 /// attribute to Attrs.
3311 ///
3312 /// alignment-specifier:
3313 /// [C11]   '_Alignas' '(' type-id ')'
3314 /// [C11]   '_Alignas' '(' constant-expression ')'
3315 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
3316 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
3317 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
3318                                      SourceLocation *EndLoc) {
3319   assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
3320          "Not an alignment-specifier!");
3321   Token KWTok = Tok;
3322   IdentifierInfo *KWName = KWTok.getIdentifierInfo();
3323   auto Kind = KWTok.getKind();
3324   SourceLocation KWLoc = ConsumeToken();
3325 
3326   BalancedDelimiterTracker T(*this, tok::l_paren);
3327   if (T.expectAndConsume())
3328     return;
3329 
3330   bool IsType;
3331   ParsedType TypeResult;
3332   SourceLocation EllipsisLoc;
3333   ExprResult ArgExpr =
3334       ParseAlignArgument(PP.getSpelling(KWTok), T.getOpenLocation(),
3335                          EllipsisLoc, IsType, TypeResult);
3336   if (ArgExpr.isInvalid()) {
3337     T.skipToEnd();
3338     return;
3339   }
3340 
3341   T.consumeClose();
3342   if (EndLoc)
3343     *EndLoc = T.getCloseLocation();
3344 
3345   if (IsType) {
3346     Attrs.addNewTypeAttr(KWName, KWLoc, nullptr, KWLoc, TypeResult, Kind,
3347                          EllipsisLoc);
3348   } else {
3349     ArgsVector ArgExprs;
3350     ArgExprs.push_back(ArgExpr.get());
3351     Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1, Kind,
3352                  EllipsisLoc);
3353   }
3354 }
3355 
3356 void Parser::DistributeCLateParsedAttrs(Decl *Dcl,
3357                                         LateParsedAttrList *LateAttrs) {
3358   if (!LateAttrs)
3359     return;
3360 
3361   if (Dcl) {
3362     for (auto *LateAttr : *LateAttrs) {
3363       if (LateAttr->Decls.empty())
3364         LateAttr->addDecl(Dcl);
3365     }
3366   }
3367 }
3368 
3369 /// Bounds attributes (e.g., counted_by):
3370 ///   AttrName '(' expression ')'
3371 void Parser::ParseBoundsAttribute(IdentifierInfo &AttrName,
3372                                   SourceLocation AttrNameLoc,
3373                                   ParsedAttributes &Attrs,
3374                                   IdentifierInfo *ScopeName,
3375                                   SourceLocation ScopeLoc,
3376                                   ParsedAttr::Form Form) {
3377   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
3378 
3379   BalancedDelimiterTracker Parens(*this, tok::l_paren);
3380   Parens.consumeOpen();
3381 
3382   if (Tok.is(tok::r_paren)) {
3383     Diag(Tok.getLocation(), diag::err_argument_required_after_attribute);
3384     Parens.consumeClose();
3385     return;
3386   }
3387 
3388   ArgsVector ArgExprs;
3389   // Don't evaluate argument when the attribute is ignored.
3390   using ExpressionKind =
3391       Sema::ExpressionEvaluationContextRecord::ExpressionKind;
3392   EnterExpressionEvaluationContext EC(
3393       Actions, Sema::ExpressionEvaluationContext::PotentiallyEvaluated, nullptr,
3394       ExpressionKind::EK_AttrArgument);
3395 
3396   ExprResult ArgExpr(
3397       Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
3398 
3399   if (ArgExpr.isInvalid()) {
3400     Parens.skipToEnd();
3401     return;
3402   }
3403 
3404   ArgExprs.push_back(ArgExpr.get());
3405   Parens.consumeClose();
3406 
3407   ASTContext &Ctx = Actions.getASTContext();
3408 
3409   ArgExprs.push_back(IntegerLiteral::Create(
3410       Ctx, llvm::APInt(Ctx.getTypeSize(Ctx.getSizeType()), 0),
3411       Ctx.getSizeType(), SourceLocation()));
3412 
3413   Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
3414                ScopeName, ScopeLoc, ArgExprs.data(), ArgExprs.size(), Form);
3415 }
3416 
3417 ExprResult Parser::ParseExtIntegerArgument() {
3418   assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) &&
3419          "Not an extended int type");
3420   ConsumeToken();
3421 
3422   BalancedDelimiterTracker T(*this, tok::l_paren);
3423   if (T.expectAndConsume())
3424     return ExprError();
3425 
3426   ExprResult ER = ParseConstantExpression();
3427   if (ER.isInvalid()) {
3428     T.skipToEnd();
3429     return ExprError();
3430   }
3431 
3432   if(T.consumeClose())
3433     return ExprError();
3434   return ER;
3435 }
3436 
3437 /// Determine whether we're looking at something that might be a declarator
3438 /// in a simple-declaration. If it can't possibly be a declarator, maybe
3439 /// diagnose a missing semicolon after a prior tag definition in the decl
3440 /// specifier.
3441 ///
3442 /// \return \c true if an error occurred and this can't be any kind of
3443 /// declaration.
3444 bool
3445 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
3446                                               DeclSpecContext DSContext,
3447                                               LateParsedAttrList *LateAttrs) {
3448   assert(DS.hasTagDefinition() && "shouldn't call this");
3449 
3450   bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3451                           DSContext == DeclSpecContext::DSC_top_level);
3452 
3453   if (getLangOpts().CPlusPlus &&
3454       Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
3455                   tok::annot_template_id) &&
3456       TryAnnotateCXXScopeToken(EnteringContext)) {
3457     SkipMalformedDecl();
3458     return true;
3459   }
3460 
3461   bool HasScope = Tok.is(tok::annot_cxxscope);
3462   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
3463   Token AfterScope = HasScope ? NextToken() : Tok;
3464 
3465   // Determine whether the following tokens could possibly be a
3466   // declarator.
3467   bool MightBeDeclarator = true;
3468   if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
3469     // A declarator-id can't start with 'typename'.
3470     MightBeDeclarator = false;
3471   } else if (AfterScope.is(tok::annot_template_id)) {
3472     // If we have a type expressed as a template-id, this cannot be a
3473     // declarator-id (such a type cannot be redeclared in a simple-declaration).
3474     TemplateIdAnnotation *Annot =
3475         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
3476     if (Annot->Kind == TNK_Type_template)
3477       MightBeDeclarator = false;
3478   } else if (AfterScope.is(tok::identifier)) {
3479     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
3480 
3481     // These tokens cannot come after the declarator-id in a
3482     // simple-declaration, and are likely to come after a type-specifier.
3483     if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
3484                      tok::annot_cxxscope, tok::coloncolon)) {
3485       // Missing a semicolon.
3486       MightBeDeclarator = false;
3487     } else if (HasScope) {
3488       // If the declarator-id has a scope specifier, it must redeclare a
3489       // previously-declared entity. If that's a type (and this is not a
3490       // typedef), that's an error.
3491       CXXScopeSpec SS;
3492       Actions.RestoreNestedNameSpecifierAnnotation(
3493           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3494       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
3495       Sema::NameClassification Classification = Actions.ClassifyName(
3496           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
3497           /*CCC=*/nullptr);
3498       switch (Classification.getKind()) {
3499       case Sema::NC_Error:
3500         SkipMalformedDecl();
3501         return true;
3502 
3503       case Sema::NC_Keyword:
3504         llvm_unreachable("typo correction is not possible here");
3505 
3506       case Sema::NC_Type:
3507       case Sema::NC_TypeTemplate:
3508       case Sema::NC_UndeclaredNonType:
3509       case Sema::NC_UndeclaredTemplate:
3510         // Not a previously-declared non-type entity.
3511         MightBeDeclarator = false;
3512         break;
3513 
3514       case Sema::NC_Unknown:
3515       case Sema::NC_NonType:
3516       case Sema::NC_DependentNonType:
3517       case Sema::NC_OverloadSet:
3518       case Sema::NC_VarTemplate:
3519       case Sema::NC_FunctionTemplate:
3520       case Sema::NC_Concept:
3521         // Might be a redeclaration of a prior entity.
3522         break;
3523       }
3524     }
3525   }
3526 
3527   if (MightBeDeclarator)
3528     return false;
3529 
3530   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
3531   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()),
3532        diag::err_expected_after)
3533       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
3534 
3535   // Try to recover from the typo, by dropping the tag definition and parsing
3536   // the problematic tokens as a type.
3537   //
3538   // FIXME: Split the DeclSpec into pieces for the standalone
3539   // declaration and pieces for the following declaration, instead
3540   // of assuming that all the other pieces attach to new declaration,
3541   // and call ParsedFreeStandingDeclSpec as appropriate.
3542   DS.ClearTypeSpecType();
3543   ParsedTemplateInfo NotATemplate;
3544   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
3545   return false;
3546 }
3547 
3548 /// ParseDeclarationSpecifiers
3549 ///       declaration-specifiers: [C99 6.7]
3550 ///         storage-class-specifier declaration-specifiers[opt]
3551 ///         type-specifier declaration-specifiers[opt]
3552 /// [C99]   function-specifier declaration-specifiers[opt]
3553 /// [C11]   alignment-specifier declaration-specifiers[opt]
3554 /// [GNU]   attributes declaration-specifiers[opt]
3555 /// [Clang] '__module_private__' declaration-specifiers[opt]
3556 /// [ObjC1] '__kindof' declaration-specifiers[opt]
3557 ///
3558 ///       storage-class-specifier: [C99 6.7.1]
3559 ///         'typedef'
3560 ///         'extern'
3561 ///         'static'
3562 ///         'auto'
3563 ///         'register'
3564 /// [C++]   'mutable'
3565 /// [C++11] 'thread_local'
3566 /// [C11]   '_Thread_local'
3567 /// [GNU]   '__thread'
3568 ///       function-specifier: [C99 6.7.4]
3569 /// [C99]   'inline'
3570 /// [C++]   'virtual'
3571 /// [C++]   'explicit'
3572 /// [OpenCL] '__kernel'
3573 ///       'friend': [C++ dcl.friend]
3574 ///       'constexpr': [C++0x dcl.constexpr]
3575 void Parser::ParseDeclarationSpecifiers(
3576     DeclSpec &DS, ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS,
3577     DeclSpecContext DSContext, LateParsedAttrList *LateAttrs,
3578     ImplicitTypenameContext AllowImplicitTypename) {
3579   if (DS.getSourceRange().isInvalid()) {
3580     // Start the range at the current token but make the end of the range
3581     // invalid.  This will make the entire range invalid unless we successfully
3582     // consume a token.
3583     DS.SetRangeStart(Tok.getLocation());
3584     DS.SetRangeEnd(SourceLocation());
3585   }
3586 
3587   // If we are in a operator context, convert it back into a type specifier
3588   // context for better error handling later on.
3589   if (DSContext == DeclSpecContext::DSC_conv_operator) {
3590     // No implicit typename here.
3591     AllowImplicitTypename = ImplicitTypenameContext::No;
3592     DSContext = DeclSpecContext::DSC_type_specifier;
3593   }
3594 
3595   bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3596                           DSContext == DeclSpecContext::DSC_top_level);
3597   bool AttrsLastTime = false;
3598   ParsedAttributes attrs(AttrFactory);
3599   // We use Sema's policy to get bool macros right.
3600   PrintingPolicy Policy = Actions.getPrintingPolicy();
3601   while (true) {
3602     bool isInvalid = false;
3603     bool isStorageClass = false;
3604     const char *PrevSpec = nullptr;
3605     unsigned DiagID = 0;
3606 
3607     // This value needs to be set to the location of the last token if the last
3608     // token of the specifier is already consumed.
3609     SourceLocation ConsumedEnd;
3610 
3611     // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
3612     // implementation for VS2013 uses _Atomic as an identifier for one of the
3613     // classes in <atomic>.
3614     //
3615     // A typedef declaration containing _Atomic<...> is among the places where
3616     // the class is used.  If we are currently parsing such a declaration, treat
3617     // the token as an identifier.
3618     if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
3619         DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
3620         !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
3621       Tok.setKind(tok::identifier);
3622 
3623     SourceLocation Loc = Tok.getLocation();
3624 
3625     // Helper for image types in OpenCL.
3626     auto handleOpenCLImageKW = [&] (StringRef Ext, TypeSpecifierType ImageTypeSpec) {
3627       // Check if the image type is supported and otherwise turn the keyword into an identifier
3628       // because image types from extensions are not reserved identifiers.
3629       if (!StringRef(Ext).empty() && !getActions().getOpenCLOptions().isSupported(Ext, getLangOpts())) {
3630         Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3631         Tok.setKind(tok::identifier);
3632         return false;
3633       }
3634       isInvalid = DS.SetTypeSpecType(ImageTypeSpec, Loc, PrevSpec, DiagID, Policy);
3635       return true;
3636     };
3637 
3638     // Turn off usual access checking for template specializations and
3639     // instantiations.
3640     bool IsTemplateSpecOrInst =
3641         (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3642          TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3643 
3644     switch (Tok.getKind()) {
3645     default:
3646       if (Tok.isRegularKeywordAttribute())
3647         goto Attribute;
3648 
3649     DoneWithDeclSpec:
3650       if (!AttrsLastTime)
3651         ProhibitAttributes(attrs);
3652       else {
3653         // Reject C++11 / C23 attributes that aren't type attributes.
3654         for (const ParsedAttr &PA : attrs) {
3655           if (!PA.isCXX11Attribute() && !PA.isC23Attribute() &&
3656               !PA.isRegularKeywordAttribute())
3657             continue;
3658           if (PA.getKind() == ParsedAttr::UnknownAttribute)
3659             // We will warn about the unknown attribute elsewhere (in
3660             // SemaDeclAttr.cpp)
3661             continue;
3662           // GCC ignores this attribute when placed on the DeclSpec in [[]]
3663           // syntax, so we do the same.
3664           if (PA.getKind() == ParsedAttr::AT_VectorSize) {
3665             Diag(PA.getLoc(), diag::warn_attribute_ignored) << PA;
3666             PA.setInvalid();
3667             continue;
3668           }
3669           // We reject AT_LifetimeBound and AT_AnyX86NoCfCheck, even though they
3670           // are type attributes, because we historically haven't allowed these
3671           // to be used as type attributes in C++11 / C23 syntax.
3672           if (PA.isTypeAttr() && PA.getKind() != ParsedAttr::AT_LifetimeBound &&
3673               PA.getKind() != ParsedAttr::AT_AnyX86NoCfCheck)
3674             continue;
3675           Diag(PA.getLoc(), diag::err_attribute_not_type_attr)
3676               << PA << PA.isRegularKeywordAttribute();
3677           PA.setInvalid();
3678         }
3679 
3680         DS.takeAttributesFrom(attrs);
3681       }
3682 
3683       // If this is not a declaration specifier token, we're done reading decl
3684       // specifiers.  First verify that DeclSpec's are consistent.
3685       DS.Finish(Actions, Policy);
3686       return;
3687 
3688     // alignment-specifier
3689     case tok::kw__Alignas:
3690       diagnoseUseOfC11Keyword(Tok);
3691       [[fallthrough]];
3692     case tok::kw_alignas:
3693       // _Alignas and alignas (C23, not C++) should parse the same way. The C++
3694       // parsing for alignas happens through the usual attribute parsing. This
3695       // ensures that an alignas specifier can appear in a type position in C
3696       // despite that not being valid in C++.
3697       if (getLangOpts().C23 || Tok.getKind() == tok::kw__Alignas) {
3698         if (Tok.getKind() == tok::kw_alignas)
3699           Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
3700         ParseAlignmentSpecifier(DS.getAttributes());
3701         continue;
3702       }
3703       [[fallthrough]];
3704     case tok::l_square:
3705       if (!isAllowedCXX11AttributeSpecifier())
3706         goto DoneWithDeclSpec;
3707 
3708     Attribute:
3709       ProhibitAttributes(attrs);
3710       // FIXME: It would be good to recover by accepting the attributes,
3711       //        but attempting to do that now would cause serious
3712       //        madness in terms of diagnostics.
3713       attrs.clear();
3714       attrs.Range = SourceRange();
3715 
3716       ParseCXX11Attributes(attrs);
3717       AttrsLastTime = true;
3718       continue;
3719 
3720     case tok::code_completion: {
3721       SemaCodeCompletion::ParserCompletionContext CCC =
3722           SemaCodeCompletion::PCC_Namespace;
3723       if (DS.hasTypeSpecifier()) {
3724         bool AllowNonIdentifiers
3725           = (getCurScope()->getFlags() & (Scope::ControlScope |
3726                                           Scope::BlockScope |
3727                                           Scope::TemplateParamScope |
3728                                           Scope::FunctionPrototypeScope |
3729                                           Scope::AtCatchScope)) == 0;
3730         bool AllowNestedNameSpecifiers
3731           = DSContext == DeclSpecContext::DSC_top_level ||
3732             (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
3733 
3734         cutOffParsing();
3735         Actions.CodeCompletion().CodeCompleteDeclSpec(
3736             getCurScope(), DS, AllowNonIdentifiers, AllowNestedNameSpecifiers);
3737         return;
3738       }
3739 
3740       // Class context can appear inside a function/block, so prioritise that.
3741       if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
3742         CCC = DSContext == DeclSpecContext::DSC_class
3743                   ? SemaCodeCompletion::PCC_MemberTemplate
3744                   : SemaCodeCompletion::PCC_Template;
3745       else if (DSContext == DeclSpecContext::DSC_class)
3746         CCC = SemaCodeCompletion::PCC_Class;
3747       else if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
3748         CCC = SemaCodeCompletion::PCC_LocalDeclarationSpecifiers;
3749       else if (CurParsedObjCImpl)
3750         CCC = SemaCodeCompletion::PCC_ObjCImplementation;
3751 
3752       cutOffParsing();
3753       Actions.CodeCompletion().CodeCompleteOrdinaryName(getCurScope(), CCC);
3754       return;
3755     }
3756 
3757     case tok::coloncolon: // ::foo::bar
3758       // C++ scope specifier.  Annotate and loop, or bail out on error.
3759       if (getLangOpts().CPlusPlus &&
3760           TryAnnotateCXXScopeToken(EnteringContext)) {
3761         if (!DS.hasTypeSpecifier())
3762           DS.SetTypeSpecError();
3763         goto DoneWithDeclSpec;
3764       }
3765       if (Tok.is(tok::coloncolon)) // ::new or ::delete
3766         goto DoneWithDeclSpec;
3767       continue;
3768 
3769     case tok::annot_cxxscope: {
3770       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3771         goto DoneWithDeclSpec;
3772 
3773       CXXScopeSpec SS;
3774       if (TemplateInfo.TemplateParams)
3775         SS.setTemplateParamLists(*TemplateInfo.TemplateParams);
3776       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3777                                                    Tok.getAnnotationRange(),
3778                                                    SS);
3779 
3780       // We are looking for a qualified typename.
3781       Token Next = NextToken();
3782 
3783       TemplateIdAnnotation *TemplateId = Next.is(tok::annot_template_id)
3784                                              ? takeTemplateIdAnnotation(Next)
3785                                              : nullptr;
3786       if (TemplateId && TemplateId->hasInvalidName()) {
3787         // We found something like 'T::U<Args> x', but U is not a template.
3788         // Assume it was supposed to be a type.
3789         DS.SetTypeSpecError();
3790         ConsumeAnnotationToken();
3791         break;
3792       }
3793 
3794       if (TemplateId && TemplateId->Kind == TNK_Type_template) {
3795         // We have a qualified template-id, e.g., N::A<int>
3796 
3797         // If this would be a valid constructor declaration with template
3798         // arguments, we will reject the attempt to form an invalid type-id
3799         // referring to the injected-class-name when we annotate the token,
3800         // per C++ [class.qual]p2.
3801         //
3802         // To improve diagnostics for this case, parse the declaration as a
3803         // constructor (and reject the extra template arguments later).
3804         if ((DSContext == DeclSpecContext::DSC_top_level ||
3805              DSContext == DeclSpecContext::DSC_class) &&
3806             TemplateId->Name &&
3807             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3808             isConstructorDeclarator(/*Unqualified=*/false,
3809                                     /*DeductionGuide=*/false,
3810                                     DS.isFriendSpecified())) {
3811           // The user meant this to be an out-of-line constructor
3812           // definition, but template arguments are not allowed
3813           // there.  Just allow this as a constructor; we'll
3814           // complain about it later.
3815           goto DoneWithDeclSpec;
3816         }
3817 
3818         DS.getTypeSpecScope() = SS;
3819         ConsumeAnnotationToken(); // The C++ scope.
3820         assert(Tok.is(tok::annot_template_id) &&
3821                "ParseOptionalCXXScopeSpecifier not working");
3822         AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
3823         continue;
3824       }
3825 
3826       if (TemplateId && TemplateId->Kind == TNK_Concept_template) {
3827         DS.getTypeSpecScope() = SS;
3828         // This is probably a qualified placeholder-specifier, e.g., ::C<int>
3829         // auto ... Consume the scope annotation and continue to consume the
3830         // template-id as a placeholder-specifier. Let the next iteration
3831         // diagnose a missing auto.
3832         ConsumeAnnotationToken();
3833         continue;
3834       }
3835 
3836       if (Next.is(tok::annot_typename)) {
3837         DS.getTypeSpecScope() = SS;
3838         ConsumeAnnotationToken(); // The C++ scope.
3839         TypeResult T = getTypeAnnotation(Tok);
3840         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
3841                                        Tok.getAnnotationEndLoc(),
3842                                        PrevSpec, DiagID, T, Policy);
3843         if (isInvalid)
3844           break;
3845         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3846         ConsumeAnnotationToken(); // The typename
3847       }
3848 
3849       if (AllowImplicitTypename == ImplicitTypenameContext::Yes &&
3850           Next.is(tok::annot_template_id) &&
3851           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3852                   ->Kind == TNK_Dependent_template_name) {
3853         DS.getTypeSpecScope() = SS;
3854         ConsumeAnnotationToken(); // The C++ scope.
3855         AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
3856         continue;
3857       }
3858 
3859       if (Next.isNot(tok::identifier))
3860         goto DoneWithDeclSpec;
3861 
3862       // Check whether this is a constructor declaration. If we're in a
3863       // context where the identifier could be a class name, and it has the
3864       // shape of a constructor declaration, process it as one.
3865       if ((DSContext == DeclSpecContext::DSC_top_level ||
3866            DSContext == DeclSpecContext::DSC_class) &&
3867           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3868                                      &SS) &&
3869           isConstructorDeclarator(/*Unqualified=*/false,
3870                                   /*DeductionGuide=*/false,
3871                                   DS.isFriendSpecified(),
3872                                   &TemplateInfo))
3873         goto DoneWithDeclSpec;
3874 
3875       // C++20 [temp.spec] 13.9/6.
3876       // This disables the access checking rules for function template explicit
3877       // instantiation and explicit specialization:
3878       // - `return type`.
3879       SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
3880 
3881       ParsedType TypeRep = Actions.getTypeName(
3882           *Next.getIdentifierInfo(), Next.getLocation(), getCurScope(), &SS,
3883           false, false, nullptr,
3884           /*IsCtorOrDtorName=*/false,
3885           /*WantNontrivialTypeSourceInfo=*/true,
3886           isClassTemplateDeductionContext(DSContext), AllowImplicitTypename);
3887 
3888       if (IsTemplateSpecOrInst)
3889         SAC.done();
3890 
3891       // If the referenced identifier is not a type, then this declspec is
3892       // erroneous: We already checked about that it has no type specifier, and
3893       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
3894       // typename.
3895       if (!TypeRep) {
3896         if (TryAnnotateTypeConstraint())
3897           goto DoneWithDeclSpec;
3898         if (Tok.isNot(tok::annot_cxxscope) ||
3899             NextToken().isNot(tok::identifier))
3900           continue;
3901         // Eat the scope spec so the identifier is current.
3902         ConsumeAnnotationToken();
3903         ParsedAttributes Attrs(AttrFactory);
3904         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3905           if (!Attrs.empty()) {
3906             AttrsLastTime = true;
3907             attrs.takeAllFrom(Attrs);
3908           }
3909           continue;
3910         }
3911         goto DoneWithDeclSpec;
3912       }
3913 
3914       DS.getTypeSpecScope() = SS;
3915       ConsumeAnnotationToken(); // The C++ scope.
3916 
3917       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3918                                      DiagID, TypeRep, Policy);
3919       if (isInvalid)
3920         break;
3921 
3922       DS.SetRangeEnd(Tok.getLocation());
3923       ConsumeToken(); // The typename.
3924 
3925       continue;
3926     }
3927 
3928     case tok::annot_typename: {
3929       // If we've previously seen a tag definition, we were almost surely
3930       // missing a semicolon after it.
3931       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3932         goto DoneWithDeclSpec;
3933 
3934       TypeResult T = getTypeAnnotation(Tok);
3935       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3936                                      DiagID, T, Policy);
3937       if (isInvalid)
3938         break;
3939 
3940       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3941       ConsumeAnnotationToken(); // The typename
3942 
3943       continue;
3944     }
3945 
3946     case tok::kw___is_signed:
3947       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3948       // typically treats it as a trait. If we see __is_signed as it appears
3949       // in libstdc++, e.g.,
3950       //
3951       //   static const bool __is_signed;
3952       //
3953       // then treat __is_signed as an identifier rather than as a keyword.
3954       if (DS.getTypeSpecType() == TST_bool &&
3955           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
3956           DS.getStorageClassSpec() == DeclSpec::SCS_static)
3957         TryKeywordIdentFallback(true);
3958 
3959       // We're done with the declaration-specifiers.
3960       goto DoneWithDeclSpec;
3961 
3962       // typedef-name
3963     case tok::kw___super:
3964     case tok::kw_decltype:
3965     case tok::identifier:
3966     ParseIdentifier: {
3967       // This identifier can only be a typedef name if we haven't already seen
3968       // a type-specifier.  Without this check we misparse:
3969       //  typedef int X; struct Y { short X; };  as 'short int'.
3970       if (DS.hasTypeSpecifier())
3971         goto DoneWithDeclSpec;
3972 
3973       // If the token is an identifier named "__declspec" and Microsoft
3974       // extensions are not enabled, it is likely that there will be cascading
3975       // parse errors if this really is a __declspec attribute. Attempt to
3976       // recognize that scenario and recover gracefully.
3977       if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3978           Tok.getIdentifierInfo()->getName() == "__declspec") {
3979         Diag(Loc, diag::err_ms_attributes_not_enabled);
3980 
3981         // The next token should be an open paren. If it is, eat the entire
3982         // attribute declaration and continue.
3983         if (NextToken().is(tok::l_paren)) {
3984           // Consume the __declspec identifier.
3985           ConsumeToken();
3986 
3987           // Eat the parens and everything between them.
3988           BalancedDelimiterTracker T(*this, tok::l_paren);
3989           if (T.consumeOpen()) {
3990             assert(false && "Not a left paren?");
3991             return;
3992           }
3993           T.skipToEnd();
3994           continue;
3995         }
3996       }
3997 
3998       // In C++, check to see if this is a scope specifier like foo::bar::, if
3999       // so handle it as such.  This is important for ctor parsing.
4000       if (getLangOpts().CPlusPlus) {
4001         // C++20 [temp.spec] 13.9/6.
4002         // This disables the access checking rules for function template
4003         // explicit instantiation and explicit specialization:
4004         // - `return type`.
4005         SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
4006 
4007         const bool Success = TryAnnotateCXXScopeToken(EnteringContext);
4008 
4009         if (IsTemplateSpecOrInst)
4010           SAC.done();
4011 
4012         if (Success) {
4013           if (IsTemplateSpecOrInst)
4014             SAC.redelay();
4015           DS.SetTypeSpecError();
4016           goto DoneWithDeclSpec;
4017         }
4018 
4019         if (!Tok.is(tok::identifier))
4020           continue;
4021       }
4022 
4023       // Check for need to substitute AltiVec keyword tokens.
4024       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
4025         break;
4026 
4027       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
4028       //                allow the use of a typedef name as a type specifier.
4029       if (DS.isTypeAltiVecVector())
4030         goto DoneWithDeclSpec;
4031 
4032       if (DSContext == DeclSpecContext::DSC_objc_method_result &&
4033           isObjCInstancetype()) {
4034         ParsedType TypeRep = Actions.ObjC().ActOnObjCInstanceType(Loc);
4035         assert(TypeRep);
4036         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
4037                                        DiagID, TypeRep, Policy);
4038         if (isInvalid)
4039           break;
4040 
4041         DS.SetRangeEnd(Loc);
4042         ConsumeToken();
4043         continue;
4044       }
4045 
4046       // If we're in a context where the identifier could be a class name,
4047       // check whether this is a constructor declaration.
4048       if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
4049           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
4050           isConstructorDeclarator(/*Unqualified=*/true,
4051                                   /*DeductionGuide=*/false,
4052                                   DS.isFriendSpecified()))
4053         goto DoneWithDeclSpec;
4054 
4055       ParsedType TypeRep = Actions.getTypeName(
4056           *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
4057           false, false, nullptr, false, false,
4058           isClassTemplateDeductionContext(DSContext));
4059 
4060       // If this is not a typedef name, don't parse it as part of the declspec,
4061       // it must be an implicit int or an error.
4062       if (!TypeRep) {
4063         if (TryAnnotateTypeConstraint())
4064           goto DoneWithDeclSpec;
4065         if (Tok.isNot(tok::identifier))
4066           continue;
4067         ParsedAttributes Attrs(AttrFactory);
4068         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
4069           if (!Attrs.empty()) {
4070             AttrsLastTime = true;
4071             attrs.takeAllFrom(Attrs);
4072           }
4073           continue;
4074         }
4075         goto DoneWithDeclSpec;
4076       }
4077 
4078       // Likewise, if this is a context where the identifier could be a template
4079       // name, check whether this is a deduction guide declaration.
4080       CXXScopeSpec SS;
4081       if (getLangOpts().CPlusPlus17 &&
4082           (DSContext == DeclSpecContext::DSC_class ||
4083            DSContext == DeclSpecContext::DSC_top_level) &&
4084           Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
4085                                        Tok.getLocation(), SS) &&
4086           isConstructorDeclarator(/*Unqualified*/ true,
4087                                   /*DeductionGuide*/ true))
4088         goto DoneWithDeclSpec;
4089 
4090       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
4091                                      DiagID, TypeRep, Policy);
4092       if (isInvalid)
4093         break;
4094 
4095       DS.SetRangeEnd(Tok.getLocation());
4096       ConsumeToken(); // The identifier
4097 
4098       // Objective-C supports type arguments and protocol references
4099       // following an Objective-C object or object pointer
4100       // type. Handle either one of them.
4101       if (Tok.is(tok::less) && getLangOpts().ObjC) {
4102         SourceLocation NewEndLoc;
4103         TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
4104                                   Loc, TypeRep, /*consumeLastToken=*/true,
4105                                   NewEndLoc);
4106         if (NewTypeRep.isUsable()) {
4107           DS.UpdateTypeRep(NewTypeRep.get());
4108           DS.SetRangeEnd(NewEndLoc);
4109         }
4110       }
4111 
4112       // Need to support trailing type qualifiers (e.g. "id<p> const").
4113       // If a type specifier follows, it will be diagnosed elsewhere.
4114       continue;
4115     }
4116 
4117       // type-name or placeholder-specifier
4118     case tok::annot_template_id: {
4119       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
4120 
4121       if (TemplateId->hasInvalidName()) {
4122         DS.SetTypeSpecError();
4123         break;
4124       }
4125 
4126       if (TemplateId->Kind == TNK_Concept_template) {
4127         // If we've already diagnosed that this type-constraint has invalid
4128         // arguments, drop it and just form 'auto' or 'decltype(auto)'.
4129         if (TemplateId->hasInvalidArgs())
4130           TemplateId = nullptr;
4131 
4132         // Any of the following tokens are likely the start of the user
4133         // forgetting 'auto' or 'decltype(auto)', so diagnose.
4134         // Note: if updating this list, please make sure we update
4135         // isCXXDeclarationSpecifier's check for IsPlaceholderSpecifier to have
4136         // a matching list.
4137         if (NextToken().isOneOf(tok::identifier, tok::kw_const,
4138                                 tok::kw_volatile, tok::kw_restrict, tok::amp,
4139                                 tok::ampamp)) {
4140           Diag(Loc, diag::err_placeholder_expected_auto_or_decltype_auto)
4141               << FixItHint::CreateInsertion(NextToken().getLocation(), "auto");
4142           // Attempt to continue as if 'auto' was placed here.
4143           isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID,
4144                                          TemplateId, Policy);
4145           break;
4146         }
4147         if (!NextToken().isOneOf(tok::kw_auto, tok::kw_decltype))
4148             goto DoneWithDeclSpec;
4149 
4150         if (TemplateId && !isInvalid && Actions.CheckTypeConstraint(TemplateId))
4151             TemplateId = nullptr;
4152 
4153         ConsumeAnnotationToken();
4154         SourceLocation AutoLoc = Tok.getLocation();
4155         if (TryConsumeToken(tok::kw_decltype)) {
4156           BalancedDelimiterTracker Tracker(*this, tok::l_paren);
4157           if (Tracker.consumeOpen()) {
4158             // Something like `void foo(Iterator decltype i)`
4159             Diag(Tok, diag::err_expected) << tok::l_paren;
4160           } else {
4161             if (!TryConsumeToken(tok::kw_auto)) {
4162               // Something like `void foo(Iterator decltype(int) i)`
4163               Tracker.skipToEnd();
4164               Diag(Tok, diag::err_placeholder_expected_auto_or_decltype_auto)
4165                 << FixItHint::CreateReplacement(SourceRange(AutoLoc,
4166                                                             Tok.getLocation()),
4167                                                 "auto");
4168             } else {
4169               Tracker.consumeClose();
4170             }
4171           }
4172           ConsumedEnd = Tok.getLocation();
4173           DS.setTypeArgumentRange(Tracker.getRange());
4174           // Even if something went wrong above, continue as if we've seen
4175           // `decltype(auto)`.
4176           isInvalid = DS.SetTypeSpecType(TST_decltype_auto, Loc, PrevSpec,
4177                                          DiagID, TemplateId, Policy);
4178         } else {
4179           isInvalid = DS.SetTypeSpecType(TST_auto, AutoLoc, PrevSpec, DiagID,
4180                                          TemplateId, Policy);
4181         }
4182         break;
4183       }
4184 
4185       if (TemplateId->Kind != TNK_Type_template &&
4186           TemplateId->Kind != TNK_Undeclared_template) {
4187         // This template-id does not refer to a type name, so we're
4188         // done with the type-specifiers.
4189         goto DoneWithDeclSpec;
4190       }
4191 
4192       // If we're in a context where the template-id could be a
4193       // constructor name or specialization, check whether this is a
4194       // constructor declaration.
4195       if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
4196           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
4197           isConstructorDeclarator(/*Unqualified=*/true,
4198                                   /*DeductionGuide=*/false,
4199                                   DS.isFriendSpecified()))
4200         goto DoneWithDeclSpec;
4201 
4202       // Turn the template-id annotation token into a type annotation
4203       // token, then try again to parse it as a type-specifier.
4204       CXXScopeSpec SS;
4205       AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
4206       continue;
4207     }
4208 
4209     // Attributes support.
4210     case tok::kw___attribute:
4211     case tok::kw___declspec:
4212       ParseAttributes(PAKM_GNU | PAKM_Declspec, DS.getAttributes(), LateAttrs);
4213       continue;
4214 
4215     // Microsoft single token adornments.
4216     case tok::kw___forceinline: {
4217       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
4218       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
4219       SourceLocation AttrNameLoc = Tok.getLocation();
4220       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
4221                                 nullptr, 0, tok::kw___forceinline);
4222       break;
4223     }
4224 
4225     case tok::kw___unaligned:
4226       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
4227                                  getLangOpts());
4228       break;
4229 
4230     case tok::kw___sptr:
4231     case tok::kw___uptr:
4232     case tok::kw___ptr64:
4233     case tok::kw___ptr32:
4234     case tok::kw___w64:
4235     case tok::kw___cdecl:
4236     case tok::kw___stdcall:
4237     case tok::kw___fastcall:
4238     case tok::kw___thiscall:
4239     case tok::kw___regcall:
4240     case tok::kw___vectorcall:
4241       ParseMicrosoftTypeAttributes(DS.getAttributes());
4242       continue;
4243 
4244     case tok::kw___funcref:
4245       ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes());
4246       continue;
4247 
4248     // Borland single token adornments.
4249     case tok::kw___pascal:
4250       ParseBorlandTypeAttributes(DS.getAttributes());
4251       continue;
4252 
4253     // OpenCL single token adornments.
4254     case tok::kw___kernel:
4255       ParseOpenCLKernelAttributes(DS.getAttributes());
4256       continue;
4257 
4258     // CUDA/HIP single token adornments.
4259     case tok::kw___noinline__:
4260       ParseCUDAFunctionAttributes(DS.getAttributes());
4261       continue;
4262 
4263     // Nullability type specifiers.
4264     case tok::kw__Nonnull:
4265     case tok::kw__Nullable:
4266     case tok::kw__Nullable_result:
4267     case tok::kw__Null_unspecified:
4268       ParseNullabilityTypeSpecifiers(DS.getAttributes());
4269       continue;
4270 
4271     // Objective-C 'kindof' types.
4272     case tok::kw___kindof:
4273       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
4274                                 nullptr, 0, tok::kw___kindof);
4275       (void)ConsumeToken();
4276       continue;
4277 
4278     // storage-class-specifier
4279     case tok::kw_typedef:
4280       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
4281                                          PrevSpec, DiagID, Policy);
4282       isStorageClass = true;
4283       break;
4284     case tok::kw_extern:
4285       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
4286         Diag(Tok, diag::ext_thread_before) << "extern";
4287       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
4288                                          PrevSpec, DiagID, Policy);
4289       isStorageClass = true;
4290       break;
4291     case tok::kw___private_extern__:
4292       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
4293                                          Loc, PrevSpec, DiagID, Policy);
4294       isStorageClass = true;
4295       break;
4296     case tok::kw_static:
4297       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
4298         Diag(Tok, diag::ext_thread_before) << "static";
4299       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
4300                                          PrevSpec, DiagID, Policy);
4301       isStorageClass = true;
4302       break;
4303     case tok::kw_auto:
4304       if (getLangOpts().CPlusPlus11 || getLangOpts().C23) {
4305         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
4306           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
4307                                              PrevSpec, DiagID, Policy);
4308           if (!isInvalid && !getLangOpts().C23)
4309             Diag(Tok, diag::ext_auto_storage_class)
4310               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4311         } else
4312           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
4313                                          DiagID, Policy);
4314       } else
4315         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
4316                                            PrevSpec, DiagID, Policy);
4317       isStorageClass = true;
4318       break;
4319     case tok::kw___auto_type:
4320       Diag(Tok, diag::ext_auto_type);
4321       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
4322                                      DiagID, Policy);
4323       break;
4324     case tok::kw_register:
4325       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
4326                                          PrevSpec, DiagID, Policy);
4327       isStorageClass = true;
4328       break;
4329     case tok::kw_mutable:
4330       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
4331                                          PrevSpec, DiagID, Policy);
4332       isStorageClass = true;
4333       break;
4334     case tok::kw___thread:
4335       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
4336                                                PrevSpec, DiagID);
4337       isStorageClass = true;
4338       break;
4339     case tok::kw_thread_local:
4340       if (getLangOpts().C23)
4341         Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
4342       // We map thread_local to _Thread_local in C23 mode so it retains the C
4343       // semantics rather than getting the C++ semantics.
4344       // FIXME: diagnostics will show _Thread_local when the user wrote
4345       // thread_local in source in C23 mode; we need some general way to
4346       // identify which way the user spelled the keyword in source.
4347       isInvalid = DS.SetStorageClassSpecThread(
4348           getLangOpts().C23 ? DeclSpec::TSCS__Thread_local
4349                             : DeclSpec::TSCS_thread_local,
4350           Loc, PrevSpec, DiagID);
4351       isStorageClass = true;
4352       break;
4353     case tok::kw__Thread_local:
4354       diagnoseUseOfC11Keyword(Tok);
4355       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
4356                                                Loc, PrevSpec, DiagID);
4357       isStorageClass = true;
4358       break;
4359 
4360     // function-specifier
4361     case tok::kw_inline:
4362       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
4363       break;
4364     case tok::kw_virtual:
4365       // C++ for OpenCL does not allow virtual function qualifier, to avoid
4366       // function pointers restricted in OpenCL v2.0 s6.9.a.
4367       if (getLangOpts().OpenCLCPlusPlus &&
4368           !getActions().getOpenCLOptions().isAvailableOption(
4369               "__cl_clang_function_pointers", getLangOpts())) {
4370         DiagID = diag::err_openclcxx_virtual_function;
4371         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4372         isInvalid = true;
4373       } else {
4374         isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
4375       }
4376       break;
4377     case tok::kw_explicit: {
4378       SourceLocation ExplicitLoc = Loc;
4379       SourceLocation CloseParenLoc;
4380       ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue);
4381       ConsumedEnd = ExplicitLoc;
4382       ConsumeToken(); // kw_explicit
4383       if (Tok.is(tok::l_paren)) {
4384         if (getLangOpts().CPlusPlus20 || isExplicitBool() == TPResult::True) {
4385           Diag(Tok.getLocation(), getLangOpts().CPlusPlus20
4386                                       ? diag::warn_cxx17_compat_explicit_bool
4387                                       : diag::ext_explicit_bool);
4388 
4389           ExprResult ExplicitExpr(static_cast<Expr *>(nullptr));
4390           BalancedDelimiterTracker Tracker(*this, tok::l_paren);
4391           Tracker.consumeOpen();
4392 
4393           EnterExpressionEvaluationContext ConstantEvaluated(
4394               Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4395 
4396           ExplicitExpr = ParseConstantExpressionInExprEvalContext();
4397           ConsumedEnd = Tok.getLocation();
4398           if (ExplicitExpr.isUsable()) {
4399             CloseParenLoc = Tok.getLocation();
4400             Tracker.consumeClose();
4401             ExplicitSpec =
4402                 Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get());
4403           } else
4404             Tracker.skipToEnd();
4405         } else {
4406           Diag(Tok.getLocation(), diag::warn_cxx20_compat_explicit_bool);
4407         }
4408       }
4409       isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID,
4410                                              ExplicitSpec, CloseParenLoc);
4411       break;
4412     }
4413     case tok::kw__Noreturn:
4414       diagnoseUseOfC11Keyword(Tok);
4415       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
4416       break;
4417 
4418     // friend
4419     case tok::kw_friend:
4420       if (DSContext == DeclSpecContext::DSC_class) {
4421         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
4422         Scope *CurS = getCurScope();
4423         if (!isInvalid && CurS)
4424           CurS->setFlags(CurS->getFlags() | Scope::FriendScope);
4425       } else {
4426         PrevSpec = ""; // not actually used by the diagnostic
4427         DiagID = diag::err_friend_invalid_in_context;
4428         isInvalid = true;
4429       }
4430       break;
4431 
4432     // Modules
4433     case tok::kw___module_private__:
4434       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
4435       break;
4436 
4437     // constexpr, consteval, constinit specifiers
4438     case tok::kw_constexpr:
4439       if (getLangOpts().C23)
4440         Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
4441       isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, Loc,
4442                                       PrevSpec, DiagID);
4443       break;
4444     case tok::kw_consteval:
4445       isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Consteval, Loc,
4446                                       PrevSpec, DiagID);
4447       break;
4448     case tok::kw_constinit:
4449       isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Constinit, Loc,
4450                                       PrevSpec, DiagID);
4451       break;
4452 
4453     // type-specifier
4454     case tok::kw_short:
4455       isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec,
4456                                       DiagID, Policy);
4457       break;
4458     case tok::kw_long:
4459       if (DS.getTypeSpecWidth() != TypeSpecifierWidth::Long)
4460         isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec,
4461                                         DiagID, Policy);
4462       else
4463         isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc,
4464                                         PrevSpec, DiagID, Policy);
4465       break;
4466     case tok::kw___int64:
4467       isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc,
4468                                       PrevSpec, DiagID, Policy);
4469       break;
4470     case tok::kw_signed:
4471       isInvalid =
4472           DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
4473       break;
4474     case tok::kw_unsigned:
4475       isInvalid = DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec,
4476                                      DiagID);
4477       break;
4478     case tok::kw__Complex:
4479       if (!getLangOpts().C99)
4480         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4481       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
4482                                         DiagID);
4483       break;
4484     case tok::kw__Imaginary:
4485       if (!getLangOpts().C99)
4486         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4487       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
4488                                         DiagID);
4489       break;
4490     case tok::kw_void:
4491       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
4492                                      DiagID, Policy);
4493       break;
4494     case tok::kw_char:
4495       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
4496                                      DiagID, Policy);
4497       break;
4498     case tok::kw_int:
4499       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
4500                                      DiagID, Policy);
4501       break;
4502     case tok::kw__ExtInt:
4503     case tok::kw__BitInt: {
4504       DiagnoseBitIntUse(Tok);
4505       ExprResult ER = ParseExtIntegerArgument();
4506       if (ER.isInvalid())
4507         continue;
4508       isInvalid = DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
4509       ConsumedEnd = PrevTokLocation;
4510       break;
4511     }
4512     case tok::kw___int128:
4513       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
4514                                      DiagID, Policy);
4515       break;
4516     case tok::kw_half:
4517       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
4518                                      DiagID, Policy);
4519       break;
4520     case tok::kw___bf16:
4521       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec,
4522                                      DiagID, Policy);
4523       break;
4524     case tok::kw_float:
4525       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
4526                                      DiagID, Policy);
4527       break;
4528     case tok::kw_double:
4529       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
4530                                      DiagID, Policy);
4531       break;
4532     case tok::kw__Float16:
4533       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
4534                                      DiagID, Policy);
4535       break;
4536     case tok::kw__Accum:
4537       assert(getLangOpts().FixedPoint &&
4538              "This keyword is only used when fixed point types are enabled "
4539              "with `-ffixed-point`");
4540       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec, DiagID,
4541                                      Policy);
4542       break;
4543     case tok::kw__Fract:
4544       assert(getLangOpts().FixedPoint &&
4545              "This keyword is only used when fixed point types are enabled "
4546              "with `-ffixed-point`");
4547       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec, DiagID,
4548                                      Policy);
4549       break;
4550     case tok::kw__Sat:
4551       assert(getLangOpts().FixedPoint &&
4552              "This keyword is only used when fixed point types are enabled "
4553              "with `-ffixed-point`");
4554       isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
4555       break;
4556     case tok::kw___float128:
4557       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
4558                                      DiagID, Policy);
4559       break;
4560     case tok::kw___ibm128:
4561       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec,
4562                                      DiagID, Policy);
4563       break;
4564     case tok::kw_wchar_t:
4565       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
4566                                      DiagID, Policy);
4567       break;
4568     case tok::kw_char8_t:
4569       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
4570                                      DiagID, Policy);
4571       break;
4572     case tok::kw_char16_t:
4573       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
4574                                      DiagID, Policy);
4575       break;
4576     case tok::kw_char32_t:
4577       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
4578                                      DiagID, Policy);
4579       break;
4580     case tok::kw_bool:
4581       if (getLangOpts().C23)
4582         Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
4583       [[fallthrough]];
4584     case tok::kw__Bool:
4585       if (Tok.is(tok::kw__Bool) && !getLangOpts().C99)
4586         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4587 
4588       if (Tok.is(tok::kw_bool) &&
4589           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
4590           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
4591         PrevSpec = ""; // Not used by the diagnostic.
4592         DiagID = diag::err_bool_redeclaration;
4593         // For better error recovery.
4594         Tok.setKind(tok::identifier);
4595         isInvalid = true;
4596       } else {
4597         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
4598                                        DiagID, Policy);
4599       }
4600       break;
4601     case tok::kw__Decimal32:
4602       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
4603                                      DiagID, Policy);
4604       break;
4605     case tok::kw__Decimal64:
4606       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
4607                                      DiagID, Policy);
4608       break;
4609     case tok::kw__Decimal128:
4610       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
4611                                      DiagID, Policy);
4612       break;
4613     case tok::kw___vector:
4614       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
4615       break;
4616     case tok::kw___pixel:
4617       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
4618       break;
4619     case tok::kw___bool:
4620       isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
4621       break;
4622     case tok::kw_pipe:
4623       if (!getLangOpts().OpenCL ||
4624           getLangOpts().getOpenCLCompatibleVersion() < 200) {
4625         // OpenCL 2.0 and later define this keyword. OpenCL 1.2 and earlier
4626         // should support the "pipe" word as identifier.
4627         Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
4628         Tok.setKind(tok::identifier);
4629         goto DoneWithDeclSpec;
4630       } else if (!getLangOpts().OpenCLPipes) {
4631         DiagID = diag::err_opencl_unknown_type_specifier;
4632         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4633         isInvalid = true;
4634       } else
4635         isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
4636       break;
4637 // We only need to enumerate each image type once.
4638 #define IMAGE_READ_WRITE_TYPE(Type, Id, Ext)
4639 #define IMAGE_WRITE_TYPE(Type, Id, Ext)
4640 #define IMAGE_READ_TYPE(ImgType, Id, Ext) \
4641     case tok::kw_##ImgType##_t: \
4642       if (!handleOpenCLImageKW(Ext, DeclSpec::TST_##ImgType##_t)) \
4643         goto DoneWithDeclSpec; \
4644       break;
4645 #include "clang/Basic/OpenCLImageTypes.def"
4646     case tok::kw___unknown_anytype:
4647       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
4648                                      PrevSpec, DiagID, Policy);
4649       break;
4650 
4651     // class-specifier:
4652     case tok::kw_class:
4653     case tok::kw_struct:
4654     case tok::kw___interface:
4655     case tok::kw_union: {
4656       tok::TokenKind Kind = Tok.getKind();
4657       ConsumeToken();
4658 
4659       // These are attributes following class specifiers.
4660       // To produce better diagnostic, we parse them when
4661       // parsing class specifier.
4662       ParsedAttributes Attributes(AttrFactory);
4663       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
4664                           EnteringContext, DSContext, Attributes);
4665 
4666       // If there are attributes following class specifier,
4667       // take them over and handle them here.
4668       if (!Attributes.empty()) {
4669         AttrsLastTime = true;
4670         attrs.takeAllFrom(Attributes);
4671       }
4672       continue;
4673     }
4674 
4675     // enum-specifier:
4676     case tok::kw_enum:
4677       ConsumeToken();
4678       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
4679       continue;
4680 
4681     // cv-qualifier:
4682     case tok::kw_const:
4683       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
4684                                  getLangOpts());
4685       break;
4686     case tok::kw_volatile:
4687       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4688                                  getLangOpts());
4689       break;
4690     case tok::kw_restrict:
4691       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4692                                  getLangOpts());
4693       break;
4694 
4695     // C++ typename-specifier:
4696     case tok::kw_typename:
4697       if (TryAnnotateTypeOrScopeToken()) {
4698         DS.SetTypeSpecError();
4699         goto DoneWithDeclSpec;
4700       }
4701       if (!Tok.is(tok::kw_typename))
4702         continue;
4703       break;
4704 
4705     // C23/GNU typeof support.
4706     case tok::kw_typeof:
4707     case tok::kw_typeof_unqual:
4708       ParseTypeofSpecifier(DS);
4709       continue;
4710 
4711     case tok::annot_decltype:
4712       ParseDecltypeSpecifier(DS);
4713       continue;
4714 
4715     case tok::annot_pack_indexing_type:
4716       ParsePackIndexingType(DS);
4717       continue;
4718 
4719     case tok::annot_pragma_pack:
4720       HandlePragmaPack();
4721       continue;
4722 
4723     case tok::annot_pragma_ms_pragma:
4724       HandlePragmaMSPragma();
4725       continue;
4726 
4727     case tok::annot_pragma_ms_vtordisp:
4728       HandlePragmaMSVtorDisp();
4729       continue;
4730 
4731     case tok::annot_pragma_ms_pointers_to_members:
4732       HandlePragmaMSPointersToMembers();
4733       continue;
4734 
4735 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
4736 #include "clang/Basic/TransformTypeTraits.def"
4737       // HACK: libstdc++ already uses '__remove_cv' as an alias template so we
4738       // work around this by expecting all transform type traits to be suffixed
4739       // with '('. They're an identifier otherwise.
4740       if (!MaybeParseTypeTransformTypeSpecifier(DS))
4741         goto ParseIdentifier;
4742       continue;
4743 
4744     case tok::kw__Atomic:
4745       // C11 6.7.2.4/4:
4746       //   If the _Atomic keyword is immediately followed by a left parenthesis,
4747       //   it is interpreted as a type specifier (with a type name), not as a
4748       //   type qualifier.
4749       diagnoseUseOfC11Keyword(Tok);
4750       if (NextToken().is(tok::l_paren)) {
4751         ParseAtomicSpecifier(DS);
4752         continue;
4753       }
4754       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4755                                  getLangOpts());
4756       break;
4757 
4758     // OpenCL address space qualifiers:
4759     case tok::kw___generic:
4760       // generic address space is introduced only in OpenCL v2.0
4761       // see OpenCL C Spec v2.0 s6.5.5
4762       // OpenCL v3.0 introduces __opencl_c_generic_address_space
4763       // feature macro to indicate if generic address space is supported
4764       if (!Actions.getLangOpts().OpenCLGenericAddressSpace) {
4765         DiagID = diag::err_opencl_unknown_type_specifier;
4766         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4767         isInvalid = true;
4768         break;
4769       }
4770       [[fallthrough]];
4771     case tok::kw_private:
4772       // It's fine (but redundant) to check this for __generic on the
4773       // fallthrough path; we only form the __generic token in OpenCL mode.
4774       if (!getLangOpts().OpenCL)
4775         goto DoneWithDeclSpec;
4776       [[fallthrough]];
4777     case tok::kw___private:
4778     case tok::kw___global:
4779     case tok::kw___local:
4780     case tok::kw___constant:
4781     // OpenCL access qualifiers:
4782     case tok::kw___read_only:
4783     case tok::kw___write_only:
4784     case tok::kw___read_write:
4785       ParseOpenCLQualifiers(DS.getAttributes());
4786       break;
4787 
4788     case tok::kw_groupshared:
4789     case tok::kw_in:
4790     case tok::kw_inout:
4791     case tok::kw_out:
4792       // NOTE: ParseHLSLQualifiers will consume the qualifier token.
4793       ParseHLSLQualifiers(DS.getAttributes());
4794       continue;
4795 
4796     case tok::less:
4797       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
4798       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
4799       // but we support it.
4800       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC)
4801         goto DoneWithDeclSpec;
4802 
4803       SourceLocation StartLoc = Tok.getLocation();
4804       SourceLocation EndLoc;
4805       TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
4806       if (Type.isUsable()) {
4807         if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
4808                                PrevSpec, DiagID, Type.get(),
4809                                Actions.getASTContext().getPrintingPolicy()))
4810           Diag(StartLoc, DiagID) << PrevSpec;
4811 
4812         DS.SetRangeEnd(EndLoc);
4813       } else {
4814         DS.SetTypeSpecError();
4815       }
4816 
4817       // Need to support trailing type qualifiers (e.g. "id<p> const").
4818       // If a type specifier follows, it will be diagnosed elsewhere.
4819       continue;
4820     }
4821 
4822     DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation());
4823 
4824     // If the specifier wasn't legal, issue a diagnostic.
4825     if (isInvalid) {
4826       assert(PrevSpec && "Method did not return previous specifier!");
4827       assert(DiagID);
4828 
4829       if (DiagID == diag::ext_duplicate_declspec ||
4830           DiagID == diag::ext_warn_duplicate_declspec ||
4831           DiagID == diag::err_duplicate_declspec)
4832         Diag(Loc, DiagID) << PrevSpec
4833                           << FixItHint::CreateRemoval(
4834                                  SourceRange(Loc, DS.getEndLoc()));
4835       else if (DiagID == diag::err_opencl_unknown_type_specifier) {
4836         Diag(Loc, DiagID) << getLangOpts().getOpenCLVersionString() << PrevSpec
4837                           << isStorageClass;
4838       } else
4839         Diag(Loc, DiagID) << PrevSpec;
4840     }
4841 
4842     if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid())
4843       // After an error the next token can be an annotation token.
4844       ConsumeAnyToken();
4845 
4846     AttrsLastTime = false;
4847   }
4848 }
4849 
4850 static void DiagnoseCountAttributedTypeInUnnamedAnon(ParsingDeclSpec &DS,
4851                                                      Parser &P) {
4852 
4853   if (DS.getTypeSpecType() != DeclSpec::TST_struct)
4854     return;
4855 
4856   auto *RD = dyn_cast<RecordDecl>(DS.getRepAsDecl());
4857   // We're only interested in unnamed, non-anonymous struct
4858   if (!RD || !RD->getName().empty() || RD->isAnonymousStructOrUnion())
4859     return;
4860 
4861   for (auto *I : RD->decls()) {
4862     auto *VD = dyn_cast<ValueDecl>(I);
4863     if (!VD)
4864       continue;
4865 
4866     auto *CAT = VD->getType()->getAs<CountAttributedType>();
4867     if (!CAT)
4868       continue;
4869 
4870     for (const auto &DD : CAT->dependent_decls()) {
4871       if (!RD->containsDecl(DD.getDecl())) {
4872         P.Diag(VD->getBeginLoc(), diag::err_count_attr_param_not_in_same_struct)
4873             << DD.getDecl() << CAT->getKind() << CAT->isArrayType();
4874         P.Diag(DD.getDecl()->getBeginLoc(),
4875                diag::note_flexible_array_counted_by_attr_field)
4876             << DD.getDecl();
4877       }
4878     }
4879   }
4880 }
4881 
4882 /// ParseStructDeclaration - Parse a struct declaration without the terminating
4883 /// semicolon.
4884 ///
4885 /// Note that a struct declaration refers to a declaration in a struct,
4886 /// not to the declaration of a struct.
4887 ///
4888 ///       struct-declaration:
4889 /// [C23]   attributes-specifier-seq[opt]
4890 ///           specifier-qualifier-list struct-declarator-list
4891 /// [GNU]   __extension__ struct-declaration
4892 /// [GNU]   specifier-qualifier-list
4893 ///       struct-declarator-list:
4894 ///         struct-declarator
4895 ///         struct-declarator-list ',' struct-declarator
4896 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
4897 ///       struct-declarator:
4898 ///         declarator
4899 /// [GNU]   declarator attributes[opt]
4900 ///         declarator[opt] ':' constant-expression
4901 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
4902 ///
4903 void Parser::ParseStructDeclaration(
4904     ParsingDeclSpec &DS,
4905     llvm::function_ref<Decl *(ParsingFieldDeclarator &)> FieldsCallback,
4906     LateParsedAttrList *LateFieldAttrs) {
4907 
4908   if (Tok.is(tok::kw___extension__)) {
4909     // __extension__ silences extension warnings in the subexpression.
4910     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
4911     ConsumeToken();
4912     return ParseStructDeclaration(DS, FieldsCallback, LateFieldAttrs);
4913   }
4914 
4915   // Parse leading attributes.
4916   ParsedAttributes Attrs(AttrFactory);
4917   MaybeParseCXX11Attributes(Attrs);
4918 
4919   // Parse the common specifier-qualifiers-list piece.
4920   ParseSpecifierQualifierList(DS);
4921 
4922   // If there are no declarators, this is a free-standing declaration
4923   // specifier. Let the actions module cope with it.
4924   if (Tok.is(tok::semi)) {
4925     // C23 6.7.2.1p9 : "The optional attribute specifier sequence in a
4926     // member declaration appertains to each of the members declared by the
4927     // member declarator list; it shall not appear if the optional member
4928     // declarator list is omitted."
4929     ProhibitAttributes(Attrs);
4930     RecordDecl *AnonRecord = nullptr;
4931     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
4932         getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord);
4933     assert(!AnonRecord && "Did not expect anonymous struct or union here");
4934     DS.complete(TheDecl);
4935     return;
4936   }
4937 
4938   // Read struct-declarators until we find the semicolon.
4939   bool FirstDeclarator = true;
4940   SourceLocation CommaLoc;
4941   while (true) {
4942     ParsingFieldDeclarator DeclaratorInfo(*this, DS, Attrs);
4943     DeclaratorInfo.D.setCommaLoc(CommaLoc);
4944 
4945     // Attributes are only allowed here on successive declarators.
4946     if (!FirstDeclarator) {
4947       // However, this does not apply for [[]] attributes (which could show up
4948       // before or after the __attribute__ attributes).
4949       DiagnoseAndSkipCXX11Attributes();
4950       MaybeParseGNUAttributes(DeclaratorInfo.D);
4951       DiagnoseAndSkipCXX11Attributes();
4952     }
4953 
4954     /// struct-declarator: declarator
4955     /// struct-declarator: declarator[opt] ':' constant-expression
4956     if (Tok.isNot(tok::colon)) {
4957       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
4958       ColonProtectionRAIIObject X(*this);
4959       ParseDeclarator(DeclaratorInfo.D);
4960     } else
4961       DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
4962 
4963     // Here, we now know that the unnamed struct is not an anonymous struct.
4964     // Report an error if a counted_by attribute refers to a field in a
4965     // different named struct.
4966     DiagnoseCountAttributedTypeInUnnamedAnon(DS, *this);
4967 
4968     if (TryConsumeToken(tok::colon)) {
4969       ExprResult Res(ParseConstantExpression());
4970       if (Res.isInvalid())
4971         SkipUntil(tok::semi, StopBeforeMatch);
4972       else
4973         DeclaratorInfo.BitfieldSize = Res.get();
4974     }
4975 
4976     // If attributes exist after the declarator, parse them.
4977     MaybeParseGNUAttributes(DeclaratorInfo.D, LateFieldAttrs);
4978 
4979     // We're done with this declarator;  invoke the callback.
4980     Decl *Field = FieldsCallback(DeclaratorInfo);
4981     if (Field)
4982       DistributeCLateParsedAttrs(Field, LateFieldAttrs);
4983 
4984     // If we don't have a comma, it is either the end of the list (a ';')
4985     // or an error, bail out.
4986     if (!TryConsumeToken(tok::comma, CommaLoc))
4987       return;
4988 
4989     FirstDeclarator = false;
4990   }
4991 }
4992 
4993 // TODO: All callers of this function should be moved to
4994 // `Parser::ParseLexedAttributeList`.
4995 void Parser::ParseLexedCAttributeList(LateParsedAttrList &LAs, bool EnterScope,
4996                                       ParsedAttributes *OutAttrs) {
4997   assert(LAs.parseSoon() &&
4998          "Attribute list should be marked for immediate parsing.");
4999   for (auto *LA : LAs) {
5000     ParseLexedCAttribute(*LA, EnterScope, OutAttrs);
5001     delete LA;
5002   }
5003   LAs.clear();
5004 }
5005 
5006 /// Finish parsing an attribute for which parsing was delayed.
5007 /// This will be called at the end of parsing a class declaration
5008 /// for each LateParsedAttribute. We consume the saved tokens and
5009 /// create an attribute with the arguments filled in. We add this
5010 /// to the Attribute list for the decl.
5011 void Parser::ParseLexedCAttribute(LateParsedAttribute &LA, bool EnterScope,
5012                                   ParsedAttributes *OutAttrs) {
5013   // Create a fake EOF so that attribute parsing won't go off the end of the
5014   // attribute.
5015   Token AttrEnd;
5016   AttrEnd.startToken();
5017   AttrEnd.setKind(tok::eof);
5018   AttrEnd.setLocation(Tok.getLocation());
5019   AttrEnd.setEofData(LA.Toks.data());
5020   LA.Toks.push_back(AttrEnd);
5021 
5022   // Append the current token at the end of the new token stream so that it
5023   // doesn't get lost.
5024   LA.Toks.push_back(Tok);
5025   PP.EnterTokenStream(LA.Toks, /*DisableMacroExpansion=*/true,
5026                       /*IsReinject=*/true);
5027   // Drop the current token and bring the first cached one. It's the same token
5028   // as when we entered this function.
5029   ConsumeAnyToken(/*ConsumeCodeCompletionTok=*/true);
5030 
5031   // TODO: Use `EnterScope`
5032   (void)EnterScope;
5033 
5034   ParsedAttributes Attrs(AttrFactory);
5035 
5036   assert(LA.Decls.size() <= 1 &&
5037          "late field attribute expects to have at most one declaration.");
5038 
5039   // Dispatch based on the attribute and parse it
5040   ParseGNUAttributeArgs(&LA.AttrName, LA.AttrNameLoc, Attrs, nullptr, nullptr,
5041                         SourceLocation(), ParsedAttr::Form::GNU(), nullptr);
5042 
5043   for (auto *D : LA.Decls)
5044     Actions.ActOnFinishDelayedAttribute(getCurScope(), D, Attrs);
5045 
5046   // Due to a parsing error, we either went over the cached tokens or
5047   // there are still cached tokens left, so we skip the leftover tokens.
5048   while (Tok.isNot(tok::eof))
5049     ConsumeAnyToken();
5050 
5051   // Consume the fake EOF token if it's there
5052   if (Tok.is(tok::eof) && Tok.getEofData() == AttrEnd.getEofData())
5053     ConsumeAnyToken();
5054 
5055   if (OutAttrs) {
5056     OutAttrs->takeAllFrom(Attrs);
5057   }
5058 }
5059 
5060 /// ParseStructUnionBody
5061 ///       struct-contents:
5062 ///         struct-declaration-list
5063 /// [EXT]   empty
5064 /// [GNU]   "struct-declaration-list" without terminating ';'
5065 ///       struct-declaration-list:
5066 ///         struct-declaration
5067 ///         struct-declaration-list struct-declaration
5068 /// [OBC]   '@' 'defs' '(' class-name ')'
5069 ///
5070 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
5071                                   DeclSpec::TST TagType, RecordDecl *TagDecl) {
5072   PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
5073                                       "parsing struct/union body");
5074   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
5075 
5076   BalancedDelimiterTracker T(*this, tok::l_brace);
5077   if (T.consumeOpen())
5078     return;
5079 
5080   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
5081   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
5082 
5083   // `LateAttrParseExperimentalExtOnly=true` requests that only attributes
5084   // marked with `LateAttrParseExperimentalExt` are late parsed.
5085   LateParsedAttrList LateFieldAttrs(/*PSoon=*/true,
5086                                     /*LateAttrParseExperimentalExtOnly=*/true);
5087 
5088   // While we still have something to read, read the declarations in the struct.
5089   while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
5090          Tok.isNot(tok::eof)) {
5091     // Each iteration of this loop reads one struct-declaration.
5092 
5093     // Check for extraneous top-level semicolon.
5094     if (Tok.is(tok::semi)) {
5095       ConsumeExtraSemi(InsideStruct, TagType);
5096       continue;
5097     }
5098 
5099     // Parse _Static_assert declaration.
5100     if (Tok.isOneOf(tok::kw__Static_assert, tok::kw_static_assert)) {
5101       SourceLocation DeclEnd;
5102       ParseStaticAssertDeclaration(DeclEnd);
5103       continue;
5104     }
5105 
5106     if (Tok.is(tok::annot_pragma_pack)) {
5107       HandlePragmaPack();
5108       continue;
5109     }
5110 
5111     if (Tok.is(tok::annot_pragma_align)) {
5112       HandlePragmaAlign();
5113       continue;
5114     }
5115 
5116     if (Tok.isOneOf(tok::annot_pragma_openmp, tok::annot_attr_openmp)) {
5117       // Result can be ignored, because it must be always empty.
5118       AccessSpecifier AS = AS_none;
5119       ParsedAttributes Attrs(AttrFactory);
5120       (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
5121       continue;
5122     }
5123 
5124     if (Tok.is(tok::annot_pragma_openacc)) {
5125       ParseOpenACCDirectiveDecl();
5126       continue;
5127     }
5128 
5129     if (tok::isPragmaAnnotation(Tok.getKind())) {
5130       Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl)
5131           << DeclSpec::getSpecifierName(
5132                  TagType, Actions.getASTContext().getPrintingPolicy());
5133       ConsumeAnnotationToken();
5134       continue;
5135     }
5136 
5137     if (!Tok.is(tok::at)) {
5138       auto CFieldCallback = [&](ParsingFieldDeclarator &FD) -> Decl * {
5139         // Install the declarator into the current TagDecl.
5140         Decl *Field =
5141             Actions.ActOnField(getCurScope(), TagDecl,
5142                                FD.D.getDeclSpec().getSourceRange().getBegin(),
5143                                FD.D, FD.BitfieldSize);
5144         FD.complete(Field);
5145         return Field;
5146       };
5147 
5148       // Parse all the comma separated declarators.
5149       ParsingDeclSpec DS(*this);
5150       ParseStructDeclaration(DS, CFieldCallback, &LateFieldAttrs);
5151     } else { // Handle @defs
5152       ConsumeToken();
5153       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
5154         Diag(Tok, diag::err_unexpected_at);
5155         SkipUntil(tok::semi);
5156         continue;
5157       }
5158       ConsumeToken();
5159       ExpectAndConsume(tok::l_paren);
5160       if (!Tok.is(tok::identifier)) {
5161         Diag(Tok, diag::err_expected) << tok::identifier;
5162         SkipUntil(tok::semi);
5163         continue;
5164       }
5165       SmallVector<Decl *, 16> Fields;
5166       Actions.ObjC().ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
5167                                Tok.getIdentifierInfo(), Fields);
5168       ConsumeToken();
5169       ExpectAndConsume(tok::r_paren);
5170     }
5171 
5172     if (TryConsumeToken(tok::semi))
5173       continue;
5174 
5175     if (Tok.is(tok::r_brace)) {
5176       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
5177       break;
5178     }
5179 
5180     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
5181     // Skip to end of block or statement to avoid ext-warning on extra ';'.
5182     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
5183     // If we stopped at a ';', eat it.
5184     TryConsumeToken(tok::semi);
5185   }
5186 
5187   T.consumeClose();
5188 
5189   ParsedAttributes attrs(AttrFactory);
5190   // If attributes exist after struct contents, parse them.
5191   MaybeParseGNUAttributes(attrs, &LateFieldAttrs);
5192 
5193   // Late parse field attributes if necessary.
5194   ParseLexedCAttributeList(LateFieldAttrs, /*EnterScope=*/false);
5195 
5196   SmallVector<Decl *, 32> FieldDecls(TagDecl->fields());
5197 
5198   Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
5199                       T.getOpenLocation(), T.getCloseLocation(), attrs);
5200   StructScope.Exit();
5201   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
5202 }
5203 
5204 /// ParseEnumSpecifier
5205 ///       enum-specifier: [C99 6.7.2.2]
5206 ///         'enum' identifier[opt] '{' enumerator-list '}'
5207 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
5208 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
5209 ///                                                 '}' attributes[opt]
5210 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
5211 ///                                                 '}'
5212 ///         'enum' identifier
5213 /// [GNU]   'enum' attributes[opt] identifier
5214 ///
5215 /// [C++11] enum-head '{' enumerator-list[opt] '}'
5216 /// [C++11] enum-head '{' enumerator-list ','  '}'
5217 ///
5218 ///       enum-head: [C++11]
5219 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
5220 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
5221 ///             identifier enum-base[opt]
5222 ///
5223 ///       enum-key: [C++11]
5224 ///         'enum'
5225 ///         'enum' 'class'
5226 ///         'enum' 'struct'
5227 ///
5228 ///       enum-base: [C++11]
5229 ///         ':' type-specifier-seq
5230 ///
5231 /// [C++] elaborated-type-specifier:
5232 /// [C++]   'enum' nested-name-specifier[opt] identifier
5233 ///
5234 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
5235                                 const ParsedTemplateInfo &TemplateInfo,
5236                                 AccessSpecifier AS, DeclSpecContext DSC) {
5237   // Parse the tag portion of this.
5238   if (Tok.is(tok::code_completion)) {
5239     // Code completion for an enum name.
5240     cutOffParsing();
5241     Actions.CodeCompletion().CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
5242     DS.SetTypeSpecError(); // Needed by ActOnUsingDeclaration.
5243     return;
5244   }
5245 
5246   // If attributes exist after tag, parse them.
5247   ParsedAttributes attrs(AttrFactory);
5248   MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs);
5249 
5250   SourceLocation ScopedEnumKWLoc;
5251   bool IsScopedUsingClassTag = false;
5252 
5253   // In C++11, recognize 'enum class' and 'enum struct'.
5254   if (Tok.isOneOf(tok::kw_class, tok::kw_struct) && getLangOpts().CPlusPlus) {
5255     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
5256                                         : diag::ext_scoped_enum);
5257     IsScopedUsingClassTag = Tok.is(tok::kw_class);
5258     ScopedEnumKWLoc = ConsumeToken();
5259 
5260     // Attributes are not allowed between these keywords.  Diagnose,
5261     // but then just treat them like they appeared in the right place.
5262     ProhibitAttributes(attrs);
5263 
5264     // They are allowed afterwards, though.
5265     MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs);
5266   }
5267 
5268   // C++11 [temp.explicit]p12:
5269   //   The usual access controls do not apply to names used to specify
5270   //   explicit instantiations.
5271   // We extend this to also cover explicit specializations.  Note that
5272   // we don't suppress if this turns out to be an elaborated type
5273   // specifier.
5274   bool shouldDelayDiagsInTag =
5275     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
5276      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
5277   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
5278 
5279   // Determine whether this declaration is permitted to have an enum-base.
5280   AllowDefiningTypeSpec AllowEnumSpecifier =
5281       isDefiningTypeSpecifierContext(DSC, getLangOpts().CPlusPlus);
5282   bool CanBeOpaqueEnumDeclaration =
5283       DS.isEmpty() && isOpaqueEnumDeclarationContext(DSC);
5284   bool CanHaveEnumBase = (getLangOpts().CPlusPlus11 || getLangOpts().ObjC ||
5285                           getLangOpts().MicrosoftExt) &&
5286                          (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes ||
5287                           CanBeOpaqueEnumDeclaration);
5288 
5289   CXXScopeSpec &SS = DS.getTypeSpecScope();
5290   if (getLangOpts().CPlusPlus) {
5291     // "enum foo : bar;" is not a potential typo for "enum foo::bar;".
5292     ColonProtectionRAIIObject X(*this);
5293 
5294     CXXScopeSpec Spec;
5295     if (ParseOptionalCXXScopeSpecifier(Spec, /*ObjectType=*/nullptr,
5296                                        /*ObjectHasErrors=*/false,
5297                                        /*EnteringContext=*/true))
5298       return;
5299 
5300     if (Spec.isSet() && Tok.isNot(tok::identifier)) {
5301       Diag(Tok, diag::err_expected) << tok::identifier;
5302       DS.SetTypeSpecError();
5303       if (Tok.isNot(tok::l_brace)) {
5304         // Has no name and is not a definition.
5305         // Skip the rest of this declarator, up until the comma or semicolon.
5306         SkipUntil(tok::comma, StopAtSemi);
5307         return;
5308       }
5309     }
5310 
5311     SS = Spec;
5312   }
5313 
5314   // Must have either 'enum name' or 'enum {...}' or (rarely) 'enum : T { ... }'.
5315   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
5316       Tok.isNot(tok::colon)) {
5317     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
5318 
5319     DS.SetTypeSpecError();
5320     // Skip the rest of this declarator, up until the comma or semicolon.
5321     SkipUntil(tok::comma, StopAtSemi);
5322     return;
5323   }
5324 
5325   // If an identifier is present, consume and remember it.
5326   IdentifierInfo *Name = nullptr;
5327   SourceLocation NameLoc;
5328   if (Tok.is(tok::identifier)) {
5329     Name = Tok.getIdentifierInfo();
5330     NameLoc = ConsumeToken();
5331   }
5332 
5333   if (!Name && ScopedEnumKWLoc.isValid()) {
5334     // C++0x 7.2p2: The optional identifier shall not be omitted in the
5335     // declaration of a scoped enumeration.
5336     Diag(Tok, diag::err_scoped_enum_missing_identifier);
5337     ScopedEnumKWLoc = SourceLocation();
5338     IsScopedUsingClassTag = false;
5339   }
5340 
5341   // Okay, end the suppression area.  We'll decide whether to emit the
5342   // diagnostics in a second.
5343   if (shouldDelayDiagsInTag)
5344     diagsFromTag.done();
5345 
5346   TypeResult BaseType;
5347   SourceRange BaseRange;
5348 
5349   bool CanBeBitfield =
5350       getCurScope()->isClassScope() && ScopedEnumKWLoc.isInvalid() && Name;
5351 
5352   // Parse the fixed underlying type.
5353   if (Tok.is(tok::colon)) {
5354     // This might be an enum-base or part of some unrelated enclosing context.
5355     //
5356     // 'enum E : base' is permitted in two circumstances:
5357     //
5358     // 1) As a defining-type-specifier, when followed by '{'.
5359     // 2) As the sole constituent of a complete declaration -- when DS is empty
5360     //    and the next token is ';'.
5361     //
5362     // The restriction to defining-type-specifiers is important to allow parsing
5363     //   a ? new enum E : int{}
5364     //   _Generic(a, enum E : int{})
5365     // properly.
5366     //
5367     // One additional consideration applies:
5368     //
5369     // C++ [dcl.enum]p1:
5370     //   A ':' following "enum nested-name-specifier[opt] identifier" within
5371     //   the decl-specifier-seq of a member-declaration is parsed as part of
5372     //   an enum-base.
5373     //
5374     // Other language modes supporting enumerations with fixed underlying types
5375     // do not have clear rules on this, so we disambiguate to determine whether
5376     // the tokens form a bit-field width or an enum-base.
5377 
5378     if (CanBeBitfield && !isEnumBase(CanBeOpaqueEnumDeclaration)) {
5379       // Outside C++11, do not interpret the tokens as an enum-base if they do
5380       // not make sense as one. In C++11, it's an error if this happens.
5381       if (getLangOpts().CPlusPlus11)
5382         Diag(Tok.getLocation(), diag::err_anonymous_enum_bitfield);
5383     } else if (CanHaveEnumBase || !ColonIsSacred) {
5384       SourceLocation ColonLoc = ConsumeToken();
5385 
5386       // Parse a type-specifier-seq as a type. We can't just ParseTypeName here,
5387       // because under -fms-extensions,
5388       //   enum E : int *p;
5389       // declares 'enum E : int; E *p;' not 'enum E : int*; E p;'.
5390       DeclSpec DS(AttrFactory);
5391       // enum-base is not assumed to be a type and therefore requires the
5392       // typename keyword [p0634r3].
5393       ParseSpecifierQualifierList(DS, ImplicitTypenameContext::No, AS,
5394                                   DeclSpecContext::DSC_type_specifier);
5395       Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
5396                                 DeclaratorContext::TypeName);
5397       BaseType = Actions.ActOnTypeName(DeclaratorInfo);
5398 
5399       BaseRange = SourceRange(ColonLoc, DeclaratorInfo.getSourceRange().getEnd());
5400 
5401       if (!getLangOpts().ObjC && !getLangOpts().C23) {
5402         if (getLangOpts().CPlusPlus11)
5403           Diag(ColonLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type)
5404               << BaseRange;
5405         else if (getLangOpts().CPlusPlus)
5406           Diag(ColonLoc, diag::ext_cxx11_enum_fixed_underlying_type)
5407               << BaseRange;
5408         else if (getLangOpts().MicrosoftExt)
5409           Diag(ColonLoc, diag::ext_ms_c_enum_fixed_underlying_type)
5410               << BaseRange;
5411         else
5412           Diag(ColonLoc, diag::ext_clang_c_enum_fixed_underlying_type)
5413               << BaseRange;
5414       }
5415     }
5416   }
5417 
5418   // There are four options here.  If we have 'friend enum foo;' then this is a
5419   // friend declaration, and cannot have an accompanying definition. If we have
5420   // 'enum foo;', then this is a forward declaration.  If we have
5421   // 'enum foo {...' then this is a definition. Otherwise we have something
5422   // like 'enum foo xyz', a reference.
5423   //
5424   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
5425   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
5426   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
5427   //
5428   TagUseKind TUK;
5429   if (AllowEnumSpecifier == AllowDefiningTypeSpec::No)
5430     TUK = TagUseKind::Reference;
5431   else if (Tok.is(tok::l_brace)) {
5432     if (DS.isFriendSpecified()) {
5433       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
5434         << SourceRange(DS.getFriendSpecLoc());
5435       ConsumeBrace();
5436       SkipUntil(tok::r_brace, StopAtSemi);
5437       // Discard any other definition-only pieces.
5438       attrs.clear();
5439       ScopedEnumKWLoc = SourceLocation();
5440       IsScopedUsingClassTag = false;
5441       BaseType = TypeResult();
5442       TUK = TagUseKind::Friend;
5443     } else {
5444       TUK = TagUseKind::Definition;
5445     }
5446   } else if (!isTypeSpecifier(DSC) &&
5447              (Tok.is(tok::semi) ||
5448               (Tok.isAtStartOfLine() &&
5449                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
5450     // An opaque-enum-declaration is required to be standalone (no preceding or
5451     // following tokens in the declaration). Sema enforces this separately by
5452     // diagnosing anything else in the DeclSpec.
5453     TUK = DS.isFriendSpecified() ? TagUseKind::Friend : TagUseKind::Declaration;
5454     if (Tok.isNot(tok::semi)) {
5455       // A semicolon was missing after this declaration. Diagnose and recover.
5456       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
5457       PP.EnterToken(Tok, /*IsReinject=*/true);
5458       Tok.setKind(tok::semi);
5459     }
5460   } else {
5461     TUK = TagUseKind::Reference;
5462   }
5463 
5464   bool IsElaboratedTypeSpecifier =
5465       TUK == TagUseKind::Reference || TUK == TagUseKind::Friend;
5466 
5467   // If this is an elaborated type specifier nested in a larger declaration,
5468   // and we delayed diagnostics before, just merge them into the current pool.
5469   if (TUK == TagUseKind::Reference && shouldDelayDiagsInTag) {
5470     diagsFromTag.redelay();
5471   }
5472 
5473   MultiTemplateParamsArg TParams;
5474   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
5475       TUK != TagUseKind::Reference) {
5476     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
5477       // Skip the rest of this declarator, up until the comma or semicolon.
5478       Diag(Tok, diag::err_enum_template);
5479       SkipUntil(tok::comma, StopAtSemi);
5480       return;
5481     }
5482 
5483     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
5484       // Enumerations can't be explicitly instantiated.
5485       DS.SetTypeSpecError();
5486       Diag(StartLoc, diag::err_explicit_instantiation_enum);
5487       return;
5488     }
5489 
5490     assert(TemplateInfo.TemplateParams && "no template parameters");
5491     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
5492                                      TemplateInfo.TemplateParams->size());
5493     SS.setTemplateParamLists(TParams);
5494   }
5495 
5496   if (!Name && TUK != TagUseKind::Definition) {
5497     Diag(Tok, diag::err_enumerator_unnamed_no_def);
5498 
5499     DS.SetTypeSpecError();
5500     // Skip the rest of this declarator, up until the comma or semicolon.
5501     SkipUntil(tok::comma, StopAtSemi);
5502     return;
5503   }
5504 
5505   // An elaborated-type-specifier has a much more constrained grammar:
5506   //
5507   //   'enum' nested-name-specifier[opt] identifier
5508   //
5509   // If we parsed any other bits, reject them now.
5510   //
5511   // MSVC and (for now at least) Objective-C permit a full enum-specifier
5512   // or opaque-enum-declaration anywhere.
5513   if (IsElaboratedTypeSpecifier && !getLangOpts().MicrosoftExt &&
5514       !getLangOpts().ObjC) {
5515     ProhibitCXX11Attributes(attrs, diag::err_attributes_not_allowed,
5516                             diag::err_keyword_not_allowed,
5517                             /*DiagnoseEmptyAttrs=*/true);
5518     if (BaseType.isUsable())
5519       Diag(BaseRange.getBegin(), diag::ext_enum_base_in_type_specifier)
5520           << (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes) << BaseRange;
5521     else if (ScopedEnumKWLoc.isValid())
5522       Diag(ScopedEnumKWLoc, diag::ext_elaborated_enum_class)
5523         << FixItHint::CreateRemoval(ScopedEnumKWLoc) << IsScopedUsingClassTag;
5524   }
5525 
5526   stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
5527 
5528   SkipBodyInfo SkipBody;
5529   if (!Name && TUK == TagUseKind::Definition && Tok.is(tok::l_brace) &&
5530       NextToken().is(tok::identifier))
5531     SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
5532                                               NextToken().getIdentifierInfo(),
5533                                               NextToken().getLocation());
5534 
5535   bool Owned = false;
5536   bool IsDependent = false;
5537   const char *PrevSpec = nullptr;
5538   unsigned DiagID;
5539   Decl *TagDecl =
5540       Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS,
5541                     Name, NameLoc, attrs, AS, DS.getModulePrivateSpecLoc(),
5542                     TParams, Owned, IsDependent, ScopedEnumKWLoc,
5543                     IsScopedUsingClassTag,
5544                     BaseType, DSC == DeclSpecContext::DSC_type_specifier,
5545                     DSC == DeclSpecContext::DSC_template_param ||
5546                         DSC == DeclSpecContext::DSC_template_type_arg,
5547                     OffsetOfState, &SkipBody).get();
5548 
5549   if (SkipBody.ShouldSkip) {
5550     assert(TUK == TagUseKind::Definition && "can only skip a definition");
5551 
5552     BalancedDelimiterTracker T(*this, tok::l_brace);
5553     T.consumeOpen();
5554     T.skipToEnd();
5555 
5556     if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
5557                            NameLoc.isValid() ? NameLoc : StartLoc,
5558                            PrevSpec, DiagID, TagDecl, Owned,
5559                            Actions.getASTContext().getPrintingPolicy()))
5560       Diag(StartLoc, DiagID) << PrevSpec;
5561     return;
5562   }
5563 
5564   if (IsDependent) {
5565     // This enum has a dependent nested-name-specifier. Handle it as a
5566     // dependent tag.
5567     if (!Name) {
5568       DS.SetTypeSpecError();
5569       Diag(Tok, diag::err_expected_type_name_after_typename);
5570       return;
5571     }
5572 
5573     TypeResult Type = Actions.ActOnDependentTag(
5574         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
5575     if (Type.isInvalid()) {
5576       DS.SetTypeSpecError();
5577       return;
5578     }
5579 
5580     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
5581                            NameLoc.isValid() ? NameLoc : StartLoc,
5582                            PrevSpec, DiagID, Type.get(),
5583                            Actions.getASTContext().getPrintingPolicy()))
5584       Diag(StartLoc, DiagID) << PrevSpec;
5585 
5586     return;
5587   }
5588 
5589   if (!TagDecl) {
5590     // The action failed to produce an enumeration tag. If this is a
5591     // definition, consume the entire definition.
5592     if (Tok.is(tok::l_brace) && TUK != TagUseKind::Reference) {
5593       ConsumeBrace();
5594       SkipUntil(tok::r_brace, StopAtSemi);
5595     }
5596 
5597     DS.SetTypeSpecError();
5598     return;
5599   }
5600 
5601   if (Tok.is(tok::l_brace) && TUK == TagUseKind::Definition) {
5602     Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
5603     ParseEnumBody(StartLoc, D);
5604     if (SkipBody.CheckSameAsPrevious &&
5605         !Actions.ActOnDuplicateDefinition(TagDecl, SkipBody)) {
5606       DS.SetTypeSpecError();
5607       return;
5608     }
5609   }
5610 
5611   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
5612                          NameLoc.isValid() ? NameLoc : StartLoc,
5613                          PrevSpec, DiagID, TagDecl, Owned,
5614                          Actions.getASTContext().getPrintingPolicy()))
5615     Diag(StartLoc, DiagID) << PrevSpec;
5616 }
5617 
5618 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
5619 ///       enumerator-list:
5620 ///         enumerator
5621 ///         enumerator-list ',' enumerator
5622 ///       enumerator:
5623 ///         enumeration-constant attributes[opt]
5624 ///         enumeration-constant attributes[opt] '=' constant-expression
5625 ///       enumeration-constant:
5626 ///         identifier
5627 ///
5628 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
5629   // Enter the scope of the enum body and start the definition.
5630   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
5631   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
5632 
5633   BalancedDelimiterTracker T(*this, tok::l_brace);
5634   T.consumeOpen();
5635 
5636   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
5637   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
5638     Diag(Tok, diag::err_empty_enum);
5639 
5640   SmallVector<Decl *, 32> EnumConstantDecls;
5641   SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
5642 
5643   Decl *LastEnumConstDecl = nullptr;
5644 
5645   // Parse the enumerator-list.
5646   while (Tok.isNot(tok::r_brace)) {
5647     // Parse enumerator. If failed, try skipping till the start of the next
5648     // enumerator definition.
5649     if (Tok.isNot(tok::identifier)) {
5650       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
5651       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
5652           TryConsumeToken(tok::comma))
5653         continue;
5654       break;
5655     }
5656     IdentifierInfo *Ident = Tok.getIdentifierInfo();
5657     SourceLocation IdentLoc = ConsumeToken();
5658 
5659     // If attributes exist after the enumerator, parse them.
5660     ParsedAttributes attrs(AttrFactory);
5661     MaybeParseGNUAttributes(attrs);
5662     if (isAllowedCXX11AttributeSpecifier()) {
5663       if (getLangOpts().CPlusPlus)
5664         Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
5665                                     ? diag::warn_cxx14_compat_ns_enum_attribute
5666                                     : diag::ext_ns_enum_attribute)
5667             << 1 /*enumerator*/;
5668       ParseCXX11Attributes(attrs);
5669     }
5670 
5671     SourceLocation EqualLoc;
5672     ExprResult AssignedVal;
5673     EnumAvailabilityDiags.emplace_back(*this);
5674 
5675     EnterExpressionEvaluationContext ConstantEvaluated(
5676         Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5677     if (TryConsumeToken(tok::equal, EqualLoc)) {
5678       AssignedVal = ParseConstantExpressionInExprEvalContext();
5679       if (AssignedVal.isInvalid())
5680         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
5681     }
5682 
5683     // Install the enumerator constant into EnumDecl.
5684     Decl *EnumConstDecl = Actions.ActOnEnumConstant(
5685         getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
5686         EqualLoc, AssignedVal.get());
5687     EnumAvailabilityDiags.back().done();
5688 
5689     EnumConstantDecls.push_back(EnumConstDecl);
5690     LastEnumConstDecl = EnumConstDecl;
5691 
5692     if (Tok.is(tok::identifier)) {
5693       // We're missing a comma between enumerators.
5694       SourceLocation Loc = getEndOfPreviousToken();
5695       Diag(Loc, diag::err_enumerator_list_missing_comma)
5696         << FixItHint::CreateInsertion(Loc, ", ");
5697       continue;
5698     }
5699 
5700     // Emumerator definition must be finished, only comma or r_brace are
5701     // allowed here.
5702     SourceLocation CommaLoc;
5703     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
5704       if (EqualLoc.isValid())
5705         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
5706                                                            << tok::comma;
5707       else
5708         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
5709       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
5710         if (TryConsumeToken(tok::comma, CommaLoc))
5711           continue;
5712       } else {
5713         break;
5714       }
5715     }
5716 
5717     // If comma is followed by r_brace, emit appropriate warning.
5718     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
5719       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
5720         Diag(CommaLoc, getLangOpts().CPlusPlus ?
5721                diag::ext_enumerator_list_comma_cxx :
5722                diag::ext_enumerator_list_comma_c)
5723           << FixItHint::CreateRemoval(CommaLoc);
5724       else if (getLangOpts().CPlusPlus11)
5725         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
5726           << FixItHint::CreateRemoval(CommaLoc);
5727       break;
5728     }
5729   }
5730 
5731   // Eat the }.
5732   T.consumeClose();
5733 
5734   // If attributes exist after the identifier list, parse them.
5735   ParsedAttributes attrs(AttrFactory);
5736   MaybeParseGNUAttributes(attrs);
5737 
5738   Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
5739                         getCurScope(), attrs);
5740 
5741   // Now handle enum constant availability diagnostics.
5742   assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
5743   for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
5744     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
5745     EnumAvailabilityDiags[i].redelay();
5746     PD.complete(EnumConstantDecls[i]);
5747   }
5748 
5749   EnumScope.Exit();
5750   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
5751 
5752   // The next token must be valid after an enum definition. If not, a ';'
5753   // was probably forgotten.
5754   bool CanBeBitfield = getCurScope()->isClassScope();
5755   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
5756     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
5757     // Push this token back into the preprocessor and change our current token
5758     // to ';' so that the rest of the code recovers as though there were an
5759     // ';' after the definition.
5760     PP.EnterToken(Tok, /*IsReinject=*/true);
5761     Tok.setKind(tok::semi);
5762   }
5763 }
5764 
5765 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
5766 /// is definitely a type-specifier.  Return false if it isn't part of a type
5767 /// specifier or if we're not sure.
5768 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
5769   switch (Tok.getKind()) {
5770   default: return false;
5771     // type-specifiers
5772   case tok::kw_short:
5773   case tok::kw_long:
5774   case tok::kw___int64:
5775   case tok::kw___int128:
5776   case tok::kw_signed:
5777   case tok::kw_unsigned:
5778   case tok::kw__Complex:
5779   case tok::kw__Imaginary:
5780   case tok::kw_void:
5781   case tok::kw_char:
5782   case tok::kw_wchar_t:
5783   case tok::kw_char8_t:
5784   case tok::kw_char16_t:
5785   case tok::kw_char32_t:
5786   case tok::kw_int:
5787   case tok::kw__ExtInt:
5788   case tok::kw__BitInt:
5789   case tok::kw___bf16:
5790   case tok::kw_half:
5791   case tok::kw_float:
5792   case tok::kw_double:
5793   case tok::kw__Accum:
5794   case tok::kw__Fract:
5795   case tok::kw__Float16:
5796   case tok::kw___float128:
5797   case tok::kw___ibm128:
5798   case tok::kw_bool:
5799   case tok::kw__Bool:
5800   case tok::kw__Decimal32:
5801   case tok::kw__Decimal64:
5802   case tok::kw__Decimal128:
5803   case tok::kw___vector:
5804 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5805 #include "clang/Basic/OpenCLImageTypes.def"
5806 
5807     // struct-or-union-specifier (C99) or class-specifier (C++)
5808   case tok::kw_class:
5809   case tok::kw_struct:
5810   case tok::kw___interface:
5811   case tok::kw_union:
5812     // enum-specifier
5813   case tok::kw_enum:
5814 
5815     // typedef-name
5816   case tok::annot_typename:
5817     return true;
5818   }
5819 }
5820 
5821 /// isTypeSpecifierQualifier - Return true if the current token could be the
5822 /// start of a specifier-qualifier-list.
5823 bool Parser::isTypeSpecifierQualifier() {
5824   switch (Tok.getKind()) {
5825   default: return false;
5826 
5827   case tok::identifier:   // foo::bar
5828     if (TryAltiVecVectorToken())
5829       return true;
5830     [[fallthrough]];
5831   case tok::kw_typename:  // typename T::type
5832     // Annotate typenames and C++ scope specifiers.  If we get one, just
5833     // recurse to handle whatever we get.
5834     if (TryAnnotateTypeOrScopeToken())
5835       return true;
5836     if (Tok.is(tok::identifier))
5837       return false;
5838     return isTypeSpecifierQualifier();
5839 
5840   case tok::coloncolon:   // ::foo::bar
5841     if (NextToken().is(tok::kw_new) ||    // ::new
5842         NextToken().is(tok::kw_delete))   // ::delete
5843       return false;
5844 
5845     if (TryAnnotateTypeOrScopeToken())
5846       return true;
5847     return isTypeSpecifierQualifier();
5848 
5849     // GNU attributes support.
5850   case tok::kw___attribute:
5851     // C23/GNU typeof support.
5852   case tok::kw_typeof:
5853   case tok::kw_typeof_unqual:
5854 
5855     // type-specifiers
5856   case tok::kw_short:
5857   case tok::kw_long:
5858   case tok::kw___int64:
5859   case tok::kw___int128:
5860   case tok::kw_signed:
5861   case tok::kw_unsigned:
5862   case tok::kw__Complex:
5863   case tok::kw__Imaginary:
5864   case tok::kw_void:
5865   case tok::kw_char:
5866   case tok::kw_wchar_t:
5867   case tok::kw_char8_t:
5868   case tok::kw_char16_t:
5869   case tok::kw_char32_t:
5870   case tok::kw_int:
5871   case tok::kw__ExtInt:
5872   case tok::kw__BitInt:
5873   case tok::kw_half:
5874   case tok::kw___bf16:
5875   case tok::kw_float:
5876   case tok::kw_double:
5877   case tok::kw__Accum:
5878   case tok::kw__Fract:
5879   case tok::kw__Float16:
5880   case tok::kw___float128:
5881   case tok::kw___ibm128:
5882   case tok::kw_bool:
5883   case tok::kw__Bool:
5884   case tok::kw__Decimal32:
5885   case tok::kw__Decimal64:
5886   case tok::kw__Decimal128:
5887   case tok::kw___vector:
5888 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5889 #include "clang/Basic/OpenCLImageTypes.def"
5890 
5891     // struct-or-union-specifier (C99) or class-specifier (C++)
5892   case tok::kw_class:
5893   case tok::kw_struct:
5894   case tok::kw___interface:
5895   case tok::kw_union:
5896     // enum-specifier
5897   case tok::kw_enum:
5898 
5899     // type-qualifier
5900   case tok::kw_const:
5901   case tok::kw_volatile:
5902   case tok::kw_restrict:
5903   case tok::kw__Sat:
5904 
5905     // Debugger support.
5906   case tok::kw___unknown_anytype:
5907 
5908     // typedef-name
5909   case tok::annot_typename:
5910     return true;
5911 
5912     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5913   case tok::less:
5914     return getLangOpts().ObjC;
5915 
5916   case tok::kw___cdecl:
5917   case tok::kw___stdcall:
5918   case tok::kw___fastcall:
5919   case tok::kw___thiscall:
5920   case tok::kw___regcall:
5921   case tok::kw___vectorcall:
5922   case tok::kw___w64:
5923   case tok::kw___ptr64:
5924   case tok::kw___ptr32:
5925   case tok::kw___pascal:
5926   case tok::kw___unaligned:
5927 
5928   case tok::kw__Nonnull:
5929   case tok::kw__Nullable:
5930   case tok::kw__Nullable_result:
5931   case tok::kw__Null_unspecified:
5932 
5933   case tok::kw___kindof:
5934 
5935   case tok::kw___private:
5936   case tok::kw___local:
5937   case tok::kw___global:
5938   case tok::kw___constant:
5939   case tok::kw___generic:
5940   case tok::kw___read_only:
5941   case tok::kw___read_write:
5942   case tok::kw___write_only:
5943   case tok::kw___funcref:
5944     return true;
5945 
5946   case tok::kw_private:
5947     return getLangOpts().OpenCL;
5948 
5949   // C11 _Atomic
5950   case tok::kw__Atomic:
5951     return true;
5952 
5953   // HLSL type qualifiers
5954   case tok::kw_groupshared:
5955   case tok::kw_in:
5956   case tok::kw_inout:
5957   case tok::kw_out:
5958     return getLangOpts().HLSL;
5959   }
5960 }
5961 
5962 Parser::DeclGroupPtrTy Parser::ParseTopLevelStmtDecl() {
5963   assert(PP.isIncrementalProcessingEnabled() && "Not in incremental mode");
5964 
5965   // Parse a top-level-stmt.
5966   Parser::StmtVector Stmts;
5967   ParsedStmtContext SubStmtCtx = ParsedStmtContext();
5968   ParseScope FnScope(this, Scope::FnScope | Scope::DeclScope |
5969                                Scope::CompoundStmtScope);
5970   TopLevelStmtDecl *TLSD = Actions.ActOnStartTopLevelStmtDecl(getCurScope());
5971   StmtResult R = ParseStatementOrDeclaration(Stmts, SubStmtCtx);
5972   if (!R.isUsable())
5973     return nullptr;
5974 
5975   Actions.ActOnFinishTopLevelStmtDecl(TLSD, R.get());
5976 
5977   if (Tok.is(tok::annot_repl_input_end) &&
5978       Tok.getAnnotationValue() != nullptr) {
5979     ConsumeAnnotationToken();
5980     TLSD->setSemiMissing();
5981   }
5982 
5983   SmallVector<Decl *, 2> DeclsInGroup;
5984   DeclsInGroup.push_back(TLSD);
5985 
5986   // Currently happens for things like -fms-extensions and use `__if_exists`.
5987   for (Stmt *S : Stmts) {
5988     // Here we should be safe as `__if_exists` and friends are not introducing
5989     // new variables which need to live outside file scope.
5990     TopLevelStmtDecl *D = Actions.ActOnStartTopLevelStmtDecl(getCurScope());
5991     Actions.ActOnFinishTopLevelStmtDecl(D, S);
5992     DeclsInGroup.push_back(D);
5993   }
5994 
5995   return Actions.BuildDeclaratorGroup(DeclsInGroup);
5996 }
5997 
5998 /// isDeclarationSpecifier() - Return true if the current token is part of a
5999 /// declaration specifier.
6000 ///
6001 /// \param AllowImplicitTypename whether this is a context where T::type [T
6002 /// dependent] can appear.
6003 /// \param DisambiguatingWithExpression True to indicate that the purpose of
6004 /// this check is to disambiguate between an expression and a declaration.
6005 bool Parser::isDeclarationSpecifier(
6006     ImplicitTypenameContext AllowImplicitTypename,
6007     bool DisambiguatingWithExpression) {
6008   switch (Tok.getKind()) {
6009   default: return false;
6010 
6011   // OpenCL 2.0 and later define this keyword.
6012   case tok::kw_pipe:
6013     return getLangOpts().OpenCL &&
6014            getLangOpts().getOpenCLCompatibleVersion() >= 200;
6015 
6016   case tok::identifier:   // foo::bar
6017     // Unfortunate hack to support "Class.factoryMethod" notation.
6018     if (getLangOpts().ObjC && NextToken().is(tok::period))
6019       return false;
6020     if (TryAltiVecVectorToken())
6021       return true;
6022     [[fallthrough]];
6023   case tok::kw_decltype: // decltype(T())::type
6024   case tok::kw_typename: // typename T::type
6025     // Annotate typenames and C++ scope specifiers.  If we get one, just
6026     // recurse to handle whatever we get.
6027     if (TryAnnotateTypeOrScopeToken(AllowImplicitTypename))
6028       return true;
6029     if (TryAnnotateTypeConstraint())
6030       return true;
6031     if (Tok.is(tok::identifier))
6032       return false;
6033 
6034     // If we're in Objective-C and we have an Objective-C class type followed
6035     // by an identifier and then either ':' or ']', in a place where an
6036     // expression is permitted, then this is probably a class message send
6037     // missing the initial '['. In this case, we won't consider this to be
6038     // the start of a declaration.
6039     if (DisambiguatingWithExpression &&
6040         isStartOfObjCClassMessageMissingOpenBracket())
6041       return false;
6042 
6043     return isDeclarationSpecifier(AllowImplicitTypename);
6044 
6045   case tok::coloncolon:   // ::foo::bar
6046     if (!getLangOpts().CPlusPlus)
6047       return false;
6048     if (NextToken().is(tok::kw_new) ||    // ::new
6049         NextToken().is(tok::kw_delete))   // ::delete
6050       return false;
6051 
6052     // Annotate typenames and C++ scope specifiers.  If we get one, just
6053     // recurse to handle whatever we get.
6054     if (TryAnnotateTypeOrScopeToken())
6055       return true;
6056     return isDeclarationSpecifier(ImplicitTypenameContext::No);
6057 
6058     // storage-class-specifier
6059   case tok::kw_typedef:
6060   case tok::kw_extern:
6061   case tok::kw___private_extern__:
6062   case tok::kw_static:
6063   case tok::kw_auto:
6064   case tok::kw___auto_type:
6065   case tok::kw_register:
6066   case tok::kw___thread:
6067   case tok::kw_thread_local:
6068   case tok::kw__Thread_local:
6069 
6070     // Modules
6071   case tok::kw___module_private__:
6072 
6073     // Debugger support
6074   case tok::kw___unknown_anytype:
6075 
6076     // type-specifiers
6077   case tok::kw_short:
6078   case tok::kw_long:
6079   case tok::kw___int64:
6080   case tok::kw___int128:
6081   case tok::kw_signed:
6082   case tok::kw_unsigned:
6083   case tok::kw__Complex:
6084   case tok::kw__Imaginary:
6085   case tok::kw_void:
6086   case tok::kw_char:
6087   case tok::kw_wchar_t:
6088   case tok::kw_char8_t:
6089   case tok::kw_char16_t:
6090   case tok::kw_char32_t:
6091 
6092   case tok::kw_int:
6093   case tok::kw__ExtInt:
6094   case tok::kw__BitInt:
6095   case tok::kw_half:
6096   case tok::kw___bf16:
6097   case tok::kw_float:
6098   case tok::kw_double:
6099   case tok::kw__Accum:
6100   case tok::kw__Fract:
6101   case tok::kw__Float16:
6102   case tok::kw___float128:
6103   case tok::kw___ibm128:
6104   case tok::kw_bool:
6105   case tok::kw__Bool:
6106   case tok::kw__Decimal32:
6107   case tok::kw__Decimal64:
6108   case tok::kw__Decimal128:
6109   case tok::kw___vector:
6110 
6111     // struct-or-union-specifier (C99) or class-specifier (C++)
6112   case tok::kw_class:
6113   case tok::kw_struct:
6114   case tok::kw_union:
6115   case tok::kw___interface:
6116     // enum-specifier
6117   case tok::kw_enum:
6118 
6119     // type-qualifier
6120   case tok::kw_const:
6121   case tok::kw_volatile:
6122   case tok::kw_restrict:
6123   case tok::kw__Sat:
6124 
6125     // function-specifier
6126   case tok::kw_inline:
6127   case tok::kw_virtual:
6128   case tok::kw_explicit:
6129   case tok::kw__Noreturn:
6130 
6131     // alignment-specifier
6132   case tok::kw__Alignas:
6133 
6134     // friend keyword.
6135   case tok::kw_friend:
6136 
6137     // static_assert-declaration
6138   case tok::kw_static_assert:
6139   case tok::kw__Static_assert:
6140 
6141     // C23/GNU typeof support.
6142   case tok::kw_typeof:
6143   case tok::kw_typeof_unqual:
6144 
6145     // GNU attributes.
6146   case tok::kw___attribute:
6147 
6148     // C++11 decltype and constexpr.
6149   case tok::annot_decltype:
6150   case tok::annot_pack_indexing_type:
6151   case tok::kw_constexpr:
6152 
6153     // C++20 consteval and constinit.
6154   case tok::kw_consteval:
6155   case tok::kw_constinit:
6156 
6157     // C11 _Atomic
6158   case tok::kw__Atomic:
6159     return true;
6160 
6161   case tok::kw_alignas:
6162     // alignas is a type-specifier-qualifier in C23, which is a kind of
6163     // declaration-specifier. Outside of C23 mode (including in C++), it is not.
6164     return getLangOpts().C23;
6165 
6166     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
6167   case tok::less:
6168     return getLangOpts().ObjC;
6169 
6170     // typedef-name
6171   case tok::annot_typename:
6172     return !DisambiguatingWithExpression ||
6173            !isStartOfObjCClassMessageMissingOpenBracket();
6174 
6175     // placeholder-type-specifier
6176   case tok::annot_template_id: {
6177     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
6178     if (TemplateId->hasInvalidName())
6179       return true;
6180     // FIXME: What about type templates that have only been annotated as
6181     // annot_template_id, not as annot_typename?
6182     return isTypeConstraintAnnotation() &&
6183            (NextToken().is(tok::kw_auto) || NextToken().is(tok::kw_decltype));
6184   }
6185 
6186   case tok::annot_cxxscope: {
6187     TemplateIdAnnotation *TemplateId =
6188         NextToken().is(tok::annot_template_id)
6189             ? takeTemplateIdAnnotation(NextToken())
6190             : nullptr;
6191     if (TemplateId && TemplateId->hasInvalidName())
6192       return true;
6193     // FIXME: What about type templates that have only been annotated as
6194     // annot_template_id, not as annot_typename?
6195     if (NextToken().is(tok::identifier) && TryAnnotateTypeConstraint())
6196       return true;
6197     return isTypeConstraintAnnotation() &&
6198         GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype);
6199   }
6200 
6201   case tok::kw___declspec:
6202   case tok::kw___cdecl:
6203   case tok::kw___stdcall:
6204   case tok::kw___fastcall:
6205   case tok::kw___thiscall:
6206   case tok::kw___regcall:
6207   case tok::kw___vectorcall:
6208   case tok::kw___w64:
6209   case tok::kw___sptr:
6210   case tok::kw___uptr:
6211   case tok::kw___ptr64:
6212   case tok::kw___ptr32:
6213   case tok::kw___forceinline:
6214   case tok::kw___pascal:
6215   case tok::kw___unaligned:
6216 
6217   case tok::kw__Nonnull:
6218   case tok::kw__Nullable:
6219   case tok::kw__Nullable_result:
6220   case tok::kw__Null_unspecified:
6221 
6222   case tok::kw___kindof:
6223 
6224   case tok::kw___private:
6225   case tok::kw___local:
6226   case tok::kw___global:
6227   case tok::kw___constant:
6228   case tok::kw___generic:
6229   case tok::kw___read_only:
6230   case tok::kw___read_write:
6231   case tok::kw___write_only:
6232 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
6233 #include "clang/Basic/OpenCLImageTypes.def"
6234 
6235   case tok::kw___funcref:
6236   case tok::kw_groupshared:
6237     return true;
6238 
6239   case tok::kw_private:
6240     return getLangOpts().OpenCL;
6241   }
6242 }
6243 
6244 bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide,
6245                                      DeclSpec::FriendSpecified IsFriend,
6246                                      const ParsedTemplateInfo *TemplateInfo) {
6247   RevertingTentativeParsingAction TPA(*this);
6248   // Parse the C++ scope specifier.
6249   CXXScopeSpec SS;
6250   if (TemplateInfo && TemplateInfo->TemplateParams)
6251     SS.setTemplateParamLists(*TemplateInfo->TemplateParams);
6252 
6253   if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
6254                                      /*ObjectHasErrors=*/false,
6255                                      /*EnteringContext=*/true)) {
6256     return false;
6257   }
6258 
6259   // Parse the constructor name.
6260   if (Tok.is(tok::identifier)) {
6261     // We already know that we have a constructor name; just consume
6262     // the token.
6263     ConsumeToken();
6264   } else if (Tok.is(tok::annot_template_id)) {
6265     ConsumeAnnotationToken();
6266   } else {
6267     return false;
6268   }
6269 
6270   // There may be attributes here, appertaining to the constructor name or type
6271   // we just stepped past.
6272   SkipCXX11Attributes();
6273 
6274   // Current class name must be followed by a left parenthesis.
6275   if (Tok.isNot(tok::l_paren)) {
6276     return false;
6277   }
6278   ConsumeParen();
6279 
6280   // A right parenthesis, or ellipsis followed by a right parenthesis signals
6281   // that we have a constructor.
6282   if (Tok.is(tok::r_paren) ||
6283       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
6284     return true;
6285   }
6286 
6287   // A C++11 attribute here signals that we have a constructor, and is an
6288   // attribute on the first constructor parameter.
6289   if (getLangOpts().CPlusPlus11 &&
6290       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
6291                                 /*OuterMightBeMessageSend*/ true)) {
6292     return true;
6293   }
6294 
6295   // If we need to, enter the specified scope.
6296   DeclaratorScopeObj DeclScopeObj(*this, SS);
6297   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
6298     DeclScopeObj.EnterDeclaratorScope();
6299 
6300   // Optionally skip Microsoft attributes.
6301   ParsedAttributes Attrs(AttrFactory);
6302   MaybeParseMicrosoftAttributes(Attrs);
6303 
6304   // Check whether the next token(s) are part of a declaration
6305   // specifier, in which case we have the start of a parameter and,
6306   // therefore, we know that this is a constructor.
6307   // Due to an ambiguity with implicit typename, the above is not enough.
6308   // Additionally, check to see if we are a friend.
6309   // If we parsed a scope specifier as well as friend,
6310   // we might be parsing a friend constructor.
6311   bool IsConstructor = false;
6312   ImplicitTypenameContext ITC = IsFriend && !SS.isSet()
6313                                     ? ImplicitTypenameContext::No
6314                                     : ImplicitTypenameContext::Yes;
6315   // Constructors cannot have this parameters, but we support that scenario here
6316   // to improve diagnostic.
6317   if (Tok.is(tok::kw_this)) {
6318     ConsumeToken();
6319     return isDeclarationSpecifier(ITC);
6320   }
6321 
6322   if (isDeclarationSpecifier(ITC))
6323     IsConstructor = true;
6324   else if (Tok.is(tok::identifier) ||
6325            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
6326     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
6327     // This might be a parenthesized member name, but is more likely to
6328     // be a constructor declaration with an invalid argument type. Keep
6329     // looking.
6330     if (Tok.is(tok::annot_cxxscope))
6331       ConsumeAnnotationToken();
6332     ConsumeToken();
6333 
6334     // If this is not a constructor, we must be parsing a declarator,
6335     // which must have one of the following syntactic forms (see the
6336     // grammar extract at the start of ParseDirectDeclarator):
6337     switch (Tok.getKind()) {
6338     case tok::l_paren:
6339       // C(X   (   int));
6340     case tok::l_square:
6341       // C(X   [   5]);
6342       // C(X   [   [attribute]]);
6343     case tok::coloncolon:
6344       // C(X   ::   Y);
6345       // C(X   ::   *p);
6346       // Assume this isn't a constructor, rather than assuming it's a
6347       // constructor with an unnamed parameter of an ill-formed type.
6348       break;
6349 
6350     case tok::r_paren:
6351       // C(X   )
6352 
6353       // Skip past the right-paren and any following attributes to get to
6354       // the function body or trailing-return-type.
6355       ConsumeParen();
6356       SkipCXX11Attributes();
6357 
6358       if (DeductionGuide) {
6359         // C(X) -> ... is a deduction guide.
6360         IsConstructor = Tok.is(tok::arrow);
6361         break;
6362       }
6363       if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
6364         // Assume these were meant to be constructors:
6365         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
6366         //   C(X)   try  (this is otherwise ill-formed).
6367         IsConstructor = true;
6368       }
6369       if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
6370         // If we have a constructor name within the class definition,
6371         // assume these were meant to be constructors:
6372         //   C(X)   {
6373         //   C(X)   ;
6374         // ... because otherwise we would be declaring a non-static data
6375         // member that is ill-formed because it's of the same type as its
6376         // surrounding class.
6377         //
6378         // FIXME: We can actually do this whether or not the name is qualified,
6379         // because if it is qualified in this context it must be being used as
6380         // a constructor name.
6381         // currently, so we're somewhat conservative here.
6382         IsConstructor = IsUnqualified;
6383       }
6384       break;
6385 
6386     default:
6387       IsConstructor = true;
6388       break;
6389     }
6390   }
6391   return IsConstructor;
6392 }
6393 
6394 /// ParseTypeQualifierListOpt
6395 ///          type-qualifier-list: [C99 6.7.5]
6396 ///            type-qualifier
6397 /// [vendor]   attributes
6398 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
6399 ///            type-qualifier-list type-qualifier
6400 /// [vendor]   type-qualifier-list attributes
6401 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
6402 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
6403 ///              [ only if AttReqs & AR_CXX11AttributesParsed ]
6404 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
6405 /// AttrRequirements bitmask values.
6406 void Parser::ParseTypeQualifierListOpt(
6407     DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
6408     bool IdentifierRequired,
6409     std::optional<llvm::function_ref<void()>> CodeCompletionHandler) {
6410   if ((AttrReqs & AR_CXX11AttributesParsed) &&
6411       isAllowedCXX11AttributeSpecifier()) {
6412     ParsedAttributes Attrs(AttrFactory);
6413     ParseCXX11Attributes(Attrs);
6414     DS.takeAttributesFrom(Attrs);
6415   }
6416 
6417   SourceLocation EndLoc;
6418 
6419   while (true) {
6420     bool isInvalid = false;
6421     const char *PrevSpec = nullptr;
6422     unsigned DiagID = 0;
6423     SourceLocation Loc = Tok.getLocation();
6424 
6425     switch (Tok.getKind()) {
6426     case tok::code_completion:
6427       cutOffParsing();
6428       if (CodeCompletionHandler)
6429         (*CodeCompletionHandler)();
6430       else
6431         Actions.CodeCompletion().CodeCompleteTypeQualifiers(DS);
6432       return;
6433 
6434     case tok::kw_const:
6435       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
6436                                  getLangOpts());
6437       break;
6438     case tok::kw_volatile:
6439       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
6440                                  getLangOpts());
6441       break;
6442     case tok::kw_restrict:
6443       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
6444                                  getLangOpts());
6445       break;
6446     case tok::kw__Atomic:
6447       if (!AtomicAllowed)
6448         goto DoneWithTypeQuals;
6449       diagnoseUseOfC11Keyword(Tok);
6450       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
6451                                  getLangOpts());
6452       break;
6453 
6454     // OpenCL qualifiers:
6455     case tok::kw_private:
6456       if (!getLangOpts().OpenCL)
6457         goto DoneWithTypeQuals;
6458       [[fallthrough]];
6459     case tok::kw___private:
6460     case tok::kw___global:
6461     case tok::kw___local:
6462     case tok::kw___constant:
6463     case tok::kw___generic:
6464     case tok::kw___read_only:
6465     case tok::kw___write_only:
6466     case tok::kw___read_write:
6467       ParseOpenCLQualifiers(DS.getAttributes());
6468       break;
6469 
6470     case tok::kw_groupshared:
6471     case tok::kw_in:
6472     case tok::kw_inout:
6473     case tok::kw_out:
6474       // NOTE: ParseHLSLQualifiers will consume the qualifier token.
6475       ParseHLSLQualifiers(DS.getAttributes());
6476       continue;
6477 
6478     case tok::kw___unaligned:
6479       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
6480                                  getLangOpts());
6481       break;
6482     case tok::kw___uptr:
6483       // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
6484       // with the MS modifier keyword.
6485       if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
6486           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
6487         if (TryKeywordIdentFallback(false))
6488           continue;
6489       }
6490       [[fallthrough]];
6491     case tok::kw___sptr:
6492     case tok::kw___w64:
6493     case tok::kw___ptr64:
6494     case tok::kw___ptr32:
6495     case tok::kw___cdecl:
6496     case tok::kw___stdcall:
6497     case tok::kw___fastcall:
6498     case tok::kw___thiscall:
6499     case tok::kw___regcall:
6500     case tok::kw___vectorcall:
6501       if (AttrReqs & AR_DeclspecAttributesParsed) {
6502         ParseMicrosoftTypeAttributes(DS.getAttributes());
6503         continue;
6504       }
6505       goto DoneWithTypeQuals;
6506 
6507     case tok::kw___funcref:
6508       ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes());
6509       continue;
6510       goto DoneWithTypeQuals;
6511 
6512     case tok::kw___pascal:
6513       if (AttrReqs & AR_VendorAttributesParsed) {
6514         ParseBorlandTypeAttributes(DS.getAttributes());
6515         continue;
6516       }
6517       goto DoneWithTypeQuals;
6518 
6519     // Nullability type specifiers.
6520     case tok::kw__Nonnull:
6521     case tok::kw__Nullable:
6522     case tok::kw__Nullable_result:
6523     case tok::kw__Null_unspecified:
6524       ParseNullabilityTypeSpecifiers(DS.getAttributes());
6525       continue;
6526 
6527     // Objective-C 'kindof' types.
6528     case tok::kw___kindof:
6529       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
6530                                 nullptr, 0, tok::kw___kindof);
6531       (void)ConsumeToken();
6532       continue;
6533 
6534     case tok::kw___attribute:
6535       if (AttrReqs & AR_GNUAttributesParsedAndRejected)
6536         // When GNU attributes are expressly forbidden, diagnose their usage.
6537         Diag(Tok, diag::err_attributes_not_allowed);
6538 
6539       // Parse the attributes even if they are rejected to ensure that error
6540       // recovery is graceful.
6541       if (AttrReqs & AR_GNUAttributesParsed ||
6542           AttrReqs & AR_GNUAttributesParsedAndRejected) {
6543         ParseGNUAttributes(DS.getAttributes());
6544         continue; // do *not* consume the next token!
6545       }
6546       // otherwise, FALL THROUGH!
6547       [[fallthrough]];
6548     default:
6549       DoneWithTypeQuals:
6550       // If this is not a type-qualifier token, we're done reading type
6551       // qualifiers.  First verify that DeclSpec's are consistent.
6552       DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
6553       if (EndLoc.isValid())
6554         DS.SetRangeEnd(EndLoc);
6555       return;
6556     }
6557 
6558     // If the specifier combination wasn't legal, issue a diagnostic.
6559     if (isInvalid) {
6560       assert(PrevSpec && "Method did not return previous specifier!");
6561       Diag(Tok, DiagID) << PrevSpec;
6562     }
6563     EndLoc = ConsumeToken();
6564   }
6565 }
6566 
6567 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
6568 void Parser::ParseDeclarator(Declarator &D) {
6569   /// This implements the 'declarator' production in the C grammar, then checks
6570   /// for well-formedness and issues diagnostics.
6571   Actions.runWithSufficientStackSpace(D.getBeginLoc(), [&] {
6572     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6573   });
6574 }
6575 
6576 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
6577                                DeclaratorContext TheContext) {
6578   if (Kind == tok::star || Kind == tok::caret)
6579     return true;
6580 
6581   // OpenCL 2.0 and later define this keyword.
6582   if (Kind == tok::kw_pipe && Lang.OpenCL &&
6583       Lang.getOpenCLCompatibleVersion() >= 200)
6584     return true;
6585 
6586   if (!Lang.CPlusPlus)
6587     return false;
6588 
6589   if (Kind == tok::amp)
6590     return true;
6591 
6592   // We parse rvalue refs in C++03, because otherwise the errors are scary.
6593   // But we must not parse them in conversion-type-ids and new-type-ids, since
6594   // those can be legitimately followed by a && operator.
6595   // (The same thing can in theory happen after a trailing-return-type, but
6596   // since those are a C++11 feature, there is no rejects-valid issue there.)
6597   if (Kind == tok::ampamp)
6598     return Lang.CPlusPlus11 || (TheContext != DeclaratorContext::ConversionId &&
6599                                 TheContext != DeclaratorContext::CXXNew);
6600 
6601   return false;
6602 }
6603 
6604 // Indicates whether the given declarator is a pipe declarator.
6605 static bool isPipeDeclarator(const Declarator &D) {
6606   const unsigned NumTypes = D.getNumTypeObjects();
6607 
6608   for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
6609     if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
6610       return true;
6611 
6612   return false;
6613 }
6614 
6615 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
6616 /// is parsed by the function passed to it. Pass null, and the direct-declarator
6617 /// isn't parsed at all, making this function effectively parse the C++
6618 /// ptr-operator production.
6619 ///
6620 /// If the grammar of this construct is extended, matching changes must also be
6621 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
6622 /// isConstructorDeclarator.
6623 ///
6624 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
6625 /// [C]     pointer[opt] direct-declarator
6626 /// [C++]   direct-declarator
6627 /// [C++]   ptr-operator declarator
6628 ///
6629 ///       pointer: [C99 6.7.5]
6630 ///         '*' type-qualifier-list[opt]
6631 ///         '*' type-qualifier-list[opt] pointer
6632 ///
6633 ///       ptr-operator:
6634 ///         '*' cv-qualifier-seq[opt]
6635 ///         '&'
6636 /// [C++0x] '&&'
6637 /// [GNU]   '&' restrict[opt] attributes[opt]
6638 /// [GNU?]  '&&' restrict[opt] attributes[opt]
6639 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
6640 void Parser::ParseDeclaratorInternal(Declarator &D,
6641                                      DirectDeclParseFunction DirectDeclParser) {
6642   if (Diags.hasAllExtensionsSilenced())
6643     D.setExtension();
6644 
6645   // C++ member pointers start with a '::' or a nested-name.
6646   // Member pointers get special handling, since there's no place for the
6647   // scope spec in the generic path below.
6648   if (getLangOpts().CPlusPlus &&
6649       (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
6650        (Tok.is(tok::identifier) &&
6651         (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
6652        Tok.is(tok::annot_cxxscope))) {
6653     bool EnteringContext = D.getContext() == DeclaratorContext::File ||
6654                            D.getContext() == DeclaratorContext::Member;
6655     CXXScopeSpec SS;
6656     SS.setTemplateParamLists(D.getTemplateParameterLists());
6657     ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
6658                                    /*ObjectHasErrors=*/false, EnteringContext);
6659 
6660     if (SS.isNotEmpty()) {
6661       if (Tok.isNot(tok::star)) {
6662         // The scope spec really belongs to the direct-declarator.
6663         if (D.mayHaveIdentifier())
6664           D.getCXXScopeSpec() = SS;
6665         else
6666           AnnotateScopeToken(SS, true);
6667 
6668         if (DirectDeclParser)
6669           (this->*DirectDeclParser)(D);
6670         return;
6671       }
6672 
6673       if (SS.isValid()) {
6674         checkCompoundToken(SS.getEndLoc(), tok::coloncolon,
6675                            CompoundToken::MemberPtr);
6676       }
6677 
6678       SourceLocation StarLoc = ConsumeToken();
6679       D.SetRangeEnd(StarLoc);
6680       DeclSpec DS(AttrFactory);
6681       ParseTypeQualifierListOpt(DS);
6682       D.ExtendWithDeclSpec(DS);
6683 
6684       // Recurse to parse whatever is left.
6685       Actions.runWithSufficientStackSpace(D.getBeginLoc(), [&] {
6686         ParseDeclaratorInternal(D, DirectDeclParser);
6687       });
6688 
6689       // Sema will have to catch (syntactically invalid) pointers into global
6690       // scope. It has to catch pointers into namespace scope anyway.
6691       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(
6692                         SS, DS.getTypeQualifiers(), StarLoc, DS.getEndLoc()),
6693                     std::move(DS.getAttributes()),
6694                     /* Don't replace range end. */ SourceLocation());
6695       return;
6696     }
6697   }
6698 
6699   tok::TokenKind Kind = Tok.getKind();
6700 
6701   if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclarator(D)) {
6702     DeclSpec DS(AttrFactory);
6703     ParseTypeQualifierListOpt(DS);
6704 
6705     D.AddTypeInfo(
6706         DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
6707         std::move(DS.getAttributes()), SourceLocation());
6708   }
6709 
6710   // Not a pointer, C++ reference, or block.
6711   if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
6712     if (DirectDeclParser)
6713       (this->*DirectDeclParser)(D);
6714     return;
6715   }
6716 
6717   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
6718   // '&&' -> rvalue reference
6719   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
6720   D.SetRangeEnd(Loc);
6721 
6722   if (Kind == tok::star || Kind == tok::caret) {
6723     // Is a pointer.
6724     DeclSpec DS(AttrFactory);
6725 
6726     // GNU attributes are not allowed here in a new-type-id, but Declspec and
6727     // C++11 attributes are allowed.
6728     unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
6729                     ((D.getContext() != DeclaratorContext::CXXNew)
6730                          ? AR_GNUAttributesParsed
6731                          : AR_GNUAttributesParsedAndRejected);
6732     ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
6733     D.ExtendWithDeclSpec(DS);
6734 
6735     // Recursively parse the declarator.
6736     Actions.runWithSufficientStackSpace(
6737         D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); });
6738     if (Kind == tok::star)
6739       // Remember that we parsed a pointer type, and remember the type-quals.
6740       D.AddTypeInfo(DeclaratorChunk::getPointer(
6741                         DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(),
6742                         DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(),
6743                         DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()),
6744                     std::move(DS.getAttributes()), SourceLocation());
6745     else
6746       // Remember that we parsed a Block type, and remember the type-quals.
6747       D.AddTypeInfo(
6748           DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc),
6749           std::move(DS.getAttributes()), SourceLocation());
6750   } else {
6751     // Is a reference
6752     DeclSpec DS(AttrFactory);
6753 
6754     // Complain about rvalue references in C++03, but then go on and build
6755     // the declarator.
6756     if (Kind == tok::ampamp)
6757       Diag(Loc, getLangOpts().CPlusPlus11 ?
6758            diag::warn_cxx98_compat_rvalue_reference :
6759            diag::ext_rvalue_reference);
6760 
6761     // GNU-style and C++11 attributes are allowed here, as is restrict.
6762     ParseTypeQualifierListOpt(DS);
6763     D.ExtendWithDeclSpec(DS);
6764 
6765     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
6766     // cv-qualifiers are introduced through the use of a typedef or of a
6767     // template type argument, in which case the cv-qualifiers are ignored.
6768     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
6769       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
6770         Diag(DS.getConstSpecLoc(),
6771              diag::err_invalid_reference_qualifier_application) << "const";
6772       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
6773         Diag(DS.getVolatileSpecLoc(),
6774              diag::err_invalid_reference_qualifier_application) << "volatile";
6775       // 'restrict' is permitted as an extension.
6776       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
6777         Diag(DS.getAtomicSpecLoc(),
6778              diag::err_invalid_reference_qualifier_application) << "_Atomic";
6779     }
6780 
6781     // Recursively parse the declarator.
6782     Actions.runWithSufficientStackSpace(
6783         D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); });
6784 
6785     if (D.getNumTypeObjects() > 0) {
6786       // C++ [dcl.ref]p4: There shall be no references to references.
6787       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
6788       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
6789         if (const IdentifierInfo *II = D.getIdentifier())
6790           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
6791            << II;
6792         else
6793           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
6794             << "type name";
6795 
6796         // Once we've complained about the reference-to-reference, we
6797         // can go ahead and build the (technically ill-formed)
6798         // declarator: reference collapsing will take care of it.
6799       }
6800     }
6801 
6802     // Remember that we parsed a reference type.
6803     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
6804                                                 Kind == tok::amp),
6805                   std::move(DS.getAttributes()), SourceLocation());
6806   }
6807 }
6808 
6809 // When correcting from misplaced brackets before the identifier, the location
6810 // is saved inside the declarator so that other diagnostic messages can use
6811 // them.  This extracts and returns that location, or returns the provided
6812 // location if a stored location does not exist.
6813 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
6814                                                 SourceLocation Loc) {
6815   if (D.getName().StartLocation.isInvalid() &&
6816       D.getName().EndLocation.isValid())
6817     return D.getName().EndLocation;
6818 
6819   return Loc;
6820 }
6821 
6822 /// ParseDirectDeclarator
6823 ///       direct-declarator: [C99 6.7.5]
6824 /// [C99]   identifier
6825 ///         '(' declarator ')'
6826 /// [GNU]   '(' attributes declarator ')'
6827 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
6828 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
6829 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
6830 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
6831 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
6832 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
6833 ///                    attribute-specifier-seq[opt]
6834 ///         direct-declarator '(' parameter-type-list ')'
6835 ///         direct-declarator '(' identifier-list[opt] ')'
6836 /// [GNU]   direct-declarator '(' parameter-forward-declarations
6837 ///                    parameter-type-list[opt] ')'
6838 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
6839 ///                    cv-qualifier-seq[opt] exception-specification[opt]
6840 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
6841 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
6842 ///                    ref-qualifier[opt] exception-specification[opt]
6843 /// [C++]   declarator-id
6844 /// [C++11] declarator-id attribute-specifier-seq[opt]
6845 ///
6846 ///       declarator-id: [C++ 8]
6847 ///         '...'[opt] id-expression
6848 ///         '::'[opt] nested-name-specifier[opt] type-name
6849 ///
6850 ///       id-expression: [C++ 5.1]
6851 ///         unqualified-id
6852 ///         qualified-id
6853 ///
6854 ///       unqualified-id: [C++ 5.1]
6855 ///         identifier
6856 ///         operator-function-id
6857 ///         conversion-function-id
6858 ///          '~' class-name
6859 ///         template-id
6860 ///
6861 /// C++17 adds the following, which we also handle here:
6862 ///
6863 ///       simple-declaration:
6864 ///         <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
6865 ///
6866 /// Note, any additional constructs added here may need corresponding changes
6867 /// in isConstructorDeclarator.
6868 void Parser::ParseDirectDeclarator(Declarator &D) {
6869   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
6870 
6871   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
6872     // This might be a C++17 structured binding.
6873     if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
6874         D.getCXXScopeSpec().isEmpty())
6875       return ParseDecompositionDeclarator(D);
6876 
6877     // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
6878     // this context it is a bitfield. Also in range-based for statement colon
6879     // may delimit for-range-declaration.
6880     ColonProtectionRAIIObject X(
6881         *this, D.getContext() == DeclaratorContext::Member ||
6882                    (D.getContext() == DeclaratorContext::ForInit &&
6883                     getLangOpts().CPlusPlus11));
6884 
6885     // ParseDeclaratorInternal might already have parsed the scope.
6886     if (D.getCXXScopeSpec().isEmpty()) {
6887       bool EnteringContext = D.getContext() == DeclaratorContext::File ||
6888                              D.getContext() == DeclaratorContext::Member;
6889       ParseOptionalCXXScopeSpecifier(
6890           D.getCXXScopeSpec(), /*ObjectType=*/nullptr,
6891           /*ObjectHasErrors=*/false, EnteringContext);
6892     }
6893 
6894     // C++23 [basic.scope.namespace]p1:
6895     //   For each non-friend redeclaration or specialization whose target scope
6896     //   is or is contained by the scope, the portion after the declarator-id,
6897     //   class-head-name, or enum-head-name is also included in the scope.
6898     // C++23 [basic.scope.class]p1:
6899     //   For each non-friend redeclaration or specialization whose target scope
6900     //   is or is contained by the scope, the portion after the declarator-id,
6901     //   class-head-name, or enum-head-name is also included in the scope.
6902     //
6903     // FIXME: We should not be doing this for friend declarations; they have
6904     // their own special lookup semantics specified by [basic.lookup.unqual]p6.
6905     if (D.getCXXScopeSpec().isValid()) {
6906       if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
6907                                              D.getCXXScopeSpec()))
6908         // Change the declaration context for name lookup, until this function
6909         // is exited (and the declarator has been parsed).
6910         DeclScopeObj.EnterDeclaratorScope();
6911       else if (getObjCDeclContext()) {
6912         // Ensure that we don't interpret the next token as an identifier when
6913         // dealing with declarations in an Objective-C container.
6914         D.SetIdentifier(nullptr, Tok.getLocation());
6915         D.setInvalidType(true);
6916         ConsumeToken();
6917         goto PastIdentifier;
6918       }
6919     }
6920 
6921     // C++0x [dcl.fct]p14:
6922     //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
6923     //   parameter-declaration-clause without a preceding comma. In this case,
6924     //   the ellipsis is parsed as part of the abstract-declarator if the type
6925     //   of the parameter either names a template parameter pack that has not
6926     //   been expanded or contains auto; otherwise, it is parsed as part of the
6927     //   parameter-declaration-clause.
6928     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
6929         !((D.getContext() == DeclaratorContext::Prototype ||
6930            D.getContext() == DeclaratorContext::LambdaExprParameter ||
6931            D.getContext() == DeclaratorContext::BlockLiteral) &&
6932           NextToken().is(tok::r_paren) && !D.hasGroupingParens() &&
6933           !Actions.containsUnexpandedParameterPacks(D) &&
6934           D.getDeclSpec().getTypeSpecType() != TST_auto)) {
6935       SourceLocation EllipsisLoc = ConsumeToken();
6936       if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
6937         // The ellipsis was put in the wrong place. Recover, and explain to
6938         // the user what they should have done.
6939         ParseDeclarator(D);
6940         if (EllipsisLoc.isValid())
6941           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
6942         return;
6943       } else
6944         D.setEllipsisLoc(EllipsisLoc);
6945 
6946       // The ellipsis can't be followed by a parenthesized declarator. We
6947       // check for that in ParseParenDeclarator, after we have disambiguated
6948       // the l_paren token.
6949     }
6950 
6951     if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
6952                     tok::tilde)) {
6953       // We found something that indicates the start of an unqualified-id.
6954       // Parse that unqualified-id.
6955       bool AllowConstructorName;
6956       bool AllowDeductionGuide;
6957       if (D.getDeclSpec().hasTypeSpecifier()) {
6958         AllowConstructorName = false;
6959         AllowDeductionGuide = false;
6960       } else if (D.getCXXScopeSpec().isSet()) {
6961         AllowConstructorName = (D.getContext() == DeclaratorContext::File ||
6962                                 D.getContext() == DeclaratorContext::Member);
6963         AllowDeductionGuide = false;
6964       } else {
6965         AllowConstructorName = (D.getContext() == DeclaratorContext::Member);
6966         AllowDeductionGuide = (D.getContext() == DeclaratorContext::File ||
6967                                D.getContext() == DeclaratorContext::Member);
6968       }
6969 
6970       bool HadScope = D.getCXXScopeSpec().isValid();
6971       SourceLocation TemplateKWLoc;
6972       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
6973                              /*ObjectType=*/nullptr,
6974                              /*ObjectHadErrors=*/false,
6975                              /*EnteringContext=*/true,
6976                              /*AllowDestructorName=*/true, AllowConstructorName,
6977                              AllowDeductionGuide, &TemplateKWLoc,
6978                              D.getName()) ||
6979           // Once we're past the identifier, if the scope was bad, mark the
6980           // whole declarator bad.
6981           D.getCXXScopeSpec().isInvalid()) {
6982         D.SetIdentifier(nullptr, Tok.getLocation());
6983         D.setInvalidType(true);
6984       } else {
6985         // ParseUnqualifiedId might have parsed a scope specifier during error
6986         // recovery. If it did so, enter that scope.
6987         if (!HadScope && D.getCXXScopeSpec().isValid() &&
6988             Actions.ShouldEnterDeclaratorScope(getCurScope(),
6989                                                D.getCXXScopeSpec()))
6990           DeclScopeObj.EnterDeclaratorScope();
6991 
6992         // Parsed the unqualified-id; update range information and move along.
6993         if (D.getSourceRange().getBegin().isInvalid())
6994           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
6995         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
6996       }
6997       goto PastIdentifier;
6998     }
6999 
7000     if (D.getCXXScopeSpec().isNotEmpty()) {
7001       // We have a scope specifier but no following unqualified-id.
7002       Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
7003            diag::err_expected_unqualified_id)
7004           << /*C++*/1;
7005       D.SetIdentifier(nullptr, Tok.getLocation());
7006       goto PastIdentifier;
7007     }
7008   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
7009     assert(!getLangOpts().CPlusPlus &&
7010            "There's a C++-specific check for tok::identifier above");
7011     assert(Tok.getIdentifierInfo() && "Not an identifier?");
7012     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
7013     D.SetRangeEnd(Tok.getLocation());
7014     ConsumeToken();
7015     goto PastIdentifier;
7016   } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
7017     // We're not allowed an identifier here, but we got one. Try to figure out
7018     // if the user was trying to attach a name to the type, or whether the name
7019     // is some unrelated trailing syntax.
7020     bool DiagnoseIdentifier = false;
7021     if (D.hasGroupingParens())
7022       // An identifier within parens is unlikely to be intended to be anything
7023       // other than a name being "declared".
7024       DiagnoseIdentifier = true;
7025     else if (D.getContext() == DeclaratorContext::TemplateArg)
7026       // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
7027       DiagnoseIdentifier =
7028           NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
7029     else if (D.getContext() == DeclaratorContext::AliasDecl ||
7030              D.getContext() == DeclaratorContext::AliasTemplate)
7031       // The most likely error is that the ';' was forgotten.
7032       DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
7033     else if ((D.getContext() == DeclaratorContext::TrailingReturn ||
7034               D.getContext() == DeclaratorContext::TrailingReturnVar) &&
7035              !isCXX11VirtSpecifier(Tok))
7036       DiagnoseIdentifier = NextToken().isOneOf(
7037           tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
7038     if (DiagnoseIdentifier) {
7039       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
7040         << FixItHint::CreateRemoval(Tok.getLocation());
7041       D.SetIdentifier(nullptr, Tok.getLocation());
7042       ConsumeToken();
7043       goto PastIdentifier;
7044     }
7045   }
7046 
7047   if (Tok.is(tok::l_paren)) {
7048     // If this might be an abstract-declarator followed by a direct-initializer,
7049     // check whether this is a valid declarator chunk. If it can't be, assume
7050     // that it's an initializer instead.
7051     if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) {
7052       RevertingTentativeParsingAction PA(*this);
7053       if (TryParseDeclarator(true, D.mayHaveIdentifier(), true,
7054                              D.getDeclSpec().getTypeSpecType() == TST_auto) ==
7055           TPResult::False) {
7056         D.SetIdentifier(nullptr, Tok.getLocation());
7057         goto PastIdentifier;
7058       }
7059     }
7060 
7061     // direct-declarator: '(' declarator ')'
7062     // direct-declarator: '(' attributes declarator ')'
7063     // Example: 'char (*X)'   or 'int (*XX)(void)'
7064     ParseParenDeclarator(D);
7065 
7066     // If the declarator was parenthesized, we entered the declarator
7067     // scope when parsing the parenthesized declarator, then exited
7068     // the scope already. Re-enter the scope, if we need to.
7069     if (D.getCXXScopeSpec().isSet()) {
7070       // If there was an error parsing parenthesized declarator, declarator
7071       // scope may have been entered before. Don't do it again.
7072       if (!D.isInvalidType() &&
7073           Actions.ShouldEnterDeclaratorScope(getCurScope(),
7074                                              D.getCXXScopeSpec()))
7075         // Change the declaration context for name lookup, until this function
7076         // is exited (and the declarator has been parsed).
7077         DeclScopeObj.EnterDeclaratorScope();
7078     }
7079   } else if (D.mayOmitIdentifier()) {
7080     // This could be something simple like "int" (in which case the declarator
7081     // portion is empty), if an abstract-declarator is allowed.
7082     D.SetIdentifier(nullptr, Tok.getLocation());
7083 
7084     // The grammar for abstract-pack-declarator does not allow grouping parens.
7085     // FIXME: Revisit this once core issue 1488 is resolved.
7086     if (D.hasEllipsis() && D.hasGroupingParens())
7087       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
7088            diag::ext_abstract_pack_declarator_parens);
7089   } else {
7090     if (Tok.getKind() == tok::annot_pragma_parser_crash)
7091       LLVM_BUILTIN_TRAP;
7092     if (Tok.is(tok::l_square))
7093       return ParseMisplacedBracketDeclarator(D);
7094     if (D.getContext() == DeclaratorContext::Member) {
7095       // Objective-C++: Detect C++ keywords and try to prevent further errors by
7096       // treating these keyword as valid member names.
7097       if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
7098           !Tok.isAnnotation() && Tok.getIdentifierInfo() &&
7099           Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) {
7100         Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
7101              diag::err_expected_member_name_or_semi_objcxx_keyword)
7102             << Tok.getIdentifierInfo()
7103             << (D.getDeclSpec().isEmpty() ? SourceRange()
7104                                           : D.getDeclSpec().getSourceRange());
7105         D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
7106         D.SetRangeEnd(Tok.getLocation());
7107         ConsumeToken();
7108         goto PastIdentifier;
7109       }
7110       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
7111            diag::err_expected_member_name_or_semi)
7112           << (D.getDeclSpec().isEmpty() ? SourceRange()
7113                                         : D.getDeclSpec().getSourceRange());
7114     } else {
7115       if (Tok.getKind() == tok::TokenKind::kw_while) {
7116         Diag(Tok, diag::err_while_loop_outside_of_a_function);
7117       } else if (getLangOpts().CPlusPlus) {
7118         if (Tok.isOneOf(tok::period, tok::arrow))
7119           Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
7120         else {
7121           SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
7122           if (Tok.isAtStartOfLine() && Loc.isValid())
7123             Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
7124                 << getLangOpts().CPlusPlus;
7125           else
7126             Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
7127                  diag::err_expected_unqualified_id)
7128                 << getLangOpts().CPlusPlus;
7129         }
7130       } else {
7131         Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
7132              diag::err_expected_either)
7133             << tok::identifier << tok::l_paren;
7134       }
7135     }
7136     D.SetIdentifier(nullptr, Tok.getLocation());
7137     D.setInvalidType(true);
7138   }
7139 
7140  PastIdentifier:
7141   assert(D.isPastIdentifier() &&
7142          "Haven't past the location of the identifier yet?");
7143 
7144   // Don't parse attributes unless we have parsed an unparenthesized name.
7145   if (D.hasName() && !D.getNumTypeObjects())
7146     MaybeParseCXX11Attributes(D);
7147 
7148   while (true) {
7149     if (Tok.is(tok::l_paren)) {
7150       bool IsFunctionDeclaration = D.isFunctionDeclaratorAFunctionDeclaration();
7151       // Enter function-declaration scope, limiting any declarators to the
7152       // function prototype scope, including parameter declarators.
7153       ParseScope PrototypeScope(this,
7154                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
7155                                 (IsFunctionDeclaration
7156                                    ? Scope::FunctionDeclarationScope : 0));
7157 
7158       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
7159       // In such a case, check if we actually have a function declarator; if it
7160       // is not, the declarator has been fully parsed.
7161       bool IsAmbiguous = false;
7162       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
7163         // C++2a [temp.res]p5
7164         // A qualified-id is assumed to name a type if
7165         //   - [...]
7166         //   - it is a decl-specifier of the decl-specifier-seq of a
7167         //     - [...]
7168         //     - parameter-declaration in a member-declaration [...]
7169         //     - parameter-declaration in a declarator of a function or function
7170         //       template declaration whose declarator-id is qualified [...]
7171         auto AllowImplicitTypename = ImplicitTypenameContext::No;
7172         if (D.getCXXScopeSpec().isSet())
7173           AllowImplicitTypename =
7174               (ImplicitTypenameContext)Actions.isDeclaratorFunctionLike(D);
7175         else if (D.getContext() == DeclaratorContext::Member) {
7176           AllowImplicitTypename = ImplicitTypenameContext::Yes;
7177         }
7178 
7179         // The name of the declarator, if any, is tentatively declared within
7180         // a possible direct initializer.
7181         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
7182         bool IsFunctionDecl =
7183             isCXXFunctionDeclarator(&IsAmbiguous, AllowImplicitTypename);
7184         TentativelyDeclaredIdentifiers.pop_back();
7185         if (!IsFunctionDecl)
7186           break;
7187       }
7188       ParsedAttributes attrs(AttrFactory);
7189       BalancedDelimiterTracker T(*this, tok::l_paren);
7190       T.consumeOpen();
7191       if (IsFunctionDeclaration)
7192         Actions.ActOnStartFunctionDeclarationDeclarator(D,
7193                                                         TemplateParameterDepth);
7194       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
7195       if (IsFunctionDeclaration)
7196         Actions.ActOnFinishFunctionDeclarationDeclarator(D);
7197       PrototypeScope.Exit();
7198     } else if (Tok.is(tok::l_square)) {
7199       ParseBracketDeclarator(D);
7200     } else if (Tok.isRegularKeywordAttribute()) {
7201       // For consistency with attribute parsing.
7202       Diag(Tok, diag::err_keyword_not_allowed) << Tok.getIdentifierInfo();
7203       bool TakesArgs = doesKeywordAttributeTakeArgs(Tok.getKind());
7204       ConsumeToken();
7205       if (TakesArgs) {
7206         BalancedDelimiterTracker T(*this, tok::l_paren);
7207         if (!T.consumeOpen())
7208           T.skipToEnd();
7209       }
7210     } else if (Tok.is(tok::kw_requires) && D.hasGroupingParens()) {
7211       // This declarator is declaring a function, but the requires clause is
7212       // in the wrong place:
7213       //   void (f() requires true);
7214       // instead of
7215       //   void f() requires true;
7216       // or
7217       //   void (f()) requires true;
7218       Diag(Tok, diag::err_requires_clause_inside_parens);
7219       ConsumeToken();
7220       ExprResult TrailingRequiresClause = Actions.CorrectDelayedTyposInExpr(
7221          ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
7222       if (TrailingRequiresClause.isUsable() && D.isFunctionDeclarator() &&
7223           !D.hasTrailingRequiresClause())
7224         // We're already ill-formed if we got here but we'll accept it anyway.
7225         D.setTrailingRequiresClause(TrailingRequiresClause.get());
7226     } else {
7227       break;
7228     }
7229   }
7230 }
7231 
7232 void Parser::ParseDecompositionDeclarator(Declarator &D) {
7233   assert(Tok.is(tok::l_square));
7234 
7235   TentativeParsingAction PA(*this);
7236   BalancedDelimiterTracker T(*this, tok::l_square);
7237   T.consumeOpen();
7238 
7239   if (isCXX11AttributeSpecifier())
7240     DiagnoseAndSkipCXX11Attributes();
7241 
7242   // If this doesn't look like a structured binding, maybe it's a misplaced
7243   // array declarator.
7244   if (!(Tok.is(tok::identifier) &&
7245         NextToken().isOneOf(tok::comma, tok::r_square, tok::kw_alignas,
7246                             tok::l_square)) &&
7247       !(Tok.is(tok::r_square) &&
7248         NextToken().isOneOf(tok::equal, tok::l_brace))) {
7249     PA.Revert();
7250     return ParseMisplacedBracketDeclarator(D);
7251   }
7252 
7253   SmallVector<DecompositionDeclarator::Binding, 32> Bindings;
7254   while (Tok.isNot(tok::r_square)) {
7255     if (!Bindings.empty()) {
7256       if (Tok.is(tok::comma))
7257         ConsumeToken();
7258       else {
7259         if (Tok.is(tok::identifier)) {
7260           SourceLocation EndLoc = getEndOfPreviousToken();
7261           Diag(EndLoc, diag::err_expected)
7262               << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
7263         } else {
7264           Diag(Tok, diag::err_expected_comma_or_rsquare);
7265         }
7266 
7267         SkipUntil(tok::r_square, tok::comma, tok::identifier,
7268                   StopAtSemi | StopBeforeMatch);
7269         if (Tok.is(tok::comma))
7270           ConsumeToken();
7271         else if (Tok.isNot(tok::identifier))
7272           break;
7273       }
7274     }
7275 
7276     if (isCXX11AttributeSpecifier())
7277       DiagnoseAndSkipCXX11Attributes();
7278 
7279     if (Tok.isNot(tok::identifier)) {
7280       Diag(Tok, diag::err_expected) << tok::identifier;
7281       break;
7282     }
7283 
7284     IdentifierInfo *II = Tok.getIdentifierInfo();
7285     SourceLocation Loc = Tok.getLocation();
7286     ConsumeToken();
7287 
7288     ParsedAttributes Attrs(AttrFactory);
7289     if (isCXX11AttributeSpecifier()) {
7290       Diag(Tok, getLangOpts().CPlusPlus26
7291                     ? diag::warn_cxx23_compat_decl_attrs_on_binding
7292                     : diag::ext_decl_attrs_on_binding);
7293       MaybeParseCXX11Attributes(Attrs);
7294     }
7295 
7296     Bindings.push_back({II, Loc, std::move(Attrs)});
7297   }
7298 
7299   if (Tok.isNot(tok::r_square))
7300     // We've already diagnosed a problem here.
7301     T.skipToEnd();
7302   else {
7303     // C++17 does not allow the identifier-list in a structured binding
7304     // to be empty.
7305     if (Bindings.empty())
7306       Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
7307 
7308     T.consumeClose();
7309   }
7310 
7311   PA.Commit();
7312 
7313   return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
7314                                     T.getCloseLocation());
7315 }
7316 
7317 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
7318 /// only called before the identifier, so these are most likely just grouping
7319 /// parens for precedence.  If we find that these are actually function
7320 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
7321 ///
7322 ///       direct-declarator:
7323 ///         '(' declarator ')'
7324 /// [GNU]   '(' attributes declarator ')'
7325 ///         direct-declarator '(' parameter-type-list ')'
7326 ///         direct-declarator '(' identifier-list[opt] ')'
7327 /// [GNU]   direct-declarator '(' parameter-forward-declarations
7328 ///                    parameter-type-list[opt] ')'
7329 ///
7330 void Parser::ParseParenDeclarator(Declarator &D) {
7331   BalancedDelimiterTracker T(*this, tok::l_paren);
7332   T.consumeOpen();
7333 
7334   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
7335 
7336   // Eat any attributes before we look at whether this is a grouping or function
7337   // declarator paren.  If this is a grouping paren, the attribute applies to
7338   // the type being built up, for example:
7339   //     int (__attribute__(()) *x)(long y)
7340   // If this ends up not being a grouping paren, the attribute applies to the
7341   // first argument, for example:
7342   //     int (__attribute__(()) int x)
7343   // In either case, we need to eat any attributes to be able to determine what
7344   // sort of paren this is.
7345   //
7346   ParsedAttributes attrs(AttrFactory);
7347   bool RequiresArg = false;
7348   if (Tok.is(tok::kw___attribute)) {
7349     ParseGNUAttributes(attrs);
7350 
7351     // We require that the argument list (if this is a non-grouping paren) be
7352     // present even if the attribute list was empty.
7353     RequiresArg = true;
7354   }
7355 
7356   // Eat any Microsoft extensions.
7357   ParseMicrosoftTypeAttributes(attrs);
7358 
7359   // Eat any Borland extensions.
7360   if  (Tok.is(tok::kw___pascal))
7361     ParseBorlandTypeAttributes(attrs);
7362 
7363   // If we haven't past the identifier yet (or where the identifier would be
7364   // stored, if this is an abstract declarator), then this is probably just
7365   // grouping parens. However, if this could be an abstract-declarator, then
7366   // this could also be the start of function arguments (consider 'void()').
7367   bool isGrouping;
7368 
7369   if (!D.mayOmitIdentifier()) {
7370     // If this can't be an abstract-declarator, this *must* be a grouping
7371     // paren, because we haven't seen the identifier yet.
7372     isGrouping = true;
7373   } else if (Tok.is(tok::r_paren) || // 'int()' is a function.
7374              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
7375               NextToken().is(tok::r_paren)) || // C++ int(...)
7376              isDeclarationSpecifier(
7377                  ImplicitTypenameContext::No) || // 'int(int)' is a function.
7378              isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
7379     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
7380     // considered to be a type, not a K&R identifier-list.
7381     isGrouping = false;
7382   } else {
7383     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
7384     isGrouping = true;
7385   }
7386 
7387   // If this is a grouping paren, handle:
7388   // direct-declarator: '(' declarator ')'
7389   // direct-declarator: '(' attributes declarator ')'
7390   if (isGrouping) {
7391     SourceLocation EllipsisLoc = D.getEllipsisLoc();
7392     D.setEllipsisLoc(SourceLocation());
7393 
7394     bool hadGroupingParens = D.hasGroupingParens();
7395     D.setGroupingParens(true);
7396     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
7397     // Match the ')'.
7398     T.consumeClose();
7399     D.AddTypeInfo(
7400         DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()),
7401         std::move(attrs), T.getCloseLocation());
7402 
7403     D.setGroupingParens(hadGroupingParens);
7404 
7405     // An ellipsis cannot be placed outside parentheses.
7406     if (EllipsisLoc.isValid())
7407       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
7408 
7409     return;
7410   }
7411 
7412   // Okay, if this wasn't a grouping paren, it must be the start of a function
7413   // argument list.  Recognize that this declarator will never have an
7414   // identifier (and remember where it would have been), then call into
7415   // ParseFunctionDeclarator to handle of argument list.
7416   D.SetIdentifier(nullptr, Tok.getLocation());
7417 
7418   // Enter function-declaration scope, limiting any declarators to the
7419   // function prototype scope, including parameter declarators.
7420   ParseScope PrototypeScope(this,
7421                             Scope::FunctionPrototypeScope | Scope::DeclScope |
7422                             (D.isFunctionDeclaratorAFunctionDeclaration()
7423                                ? Scope::FunctionDeclarationScope : 0));
7424   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
7425   PrototypeScope.Exit();
7426 }
7427 
7428 void Parser::InitCXXThisScopeForDeclaratorIfRelevant(
7429     const Declarator &D, const DeclSpec &DS,
7430     std::optional<Sema::CXXThisScopeRAII> &ThisScope) {
7431   // C++11 [expr.prim.general]p3:
7432   //   If a declaration declares a member function or member function
7433   //   template of a class X, the expression this is a prvalue of type
7434   //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
7435   //   and the end of the function-definition, member-declarator, or
7436   //   declarator.
7437   // FIXME: currently, "static" case isn't handled correctly.
7438   bool IsCXX11MemberFunction =
7439       getLangOpts().CPlusPlus11 &&
7440       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7441       (D.getContext() == DeclaratorContext::Member
7442            ? !D.getDeclSpec().isFriendSpecified()
7443            : D.getContext() == DeclaratorContext::File &&
7444                  D.getCXXScopeSpec().isValid() &&
7445                  Actions.CurContext->isRecord());
7446   if (!IsCXX11MemberFunction)
7447     return;
7448 
7449   Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers());
7450   if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14)
7451     Q.addConst();
7452   // FIXME: Collect C++ address spaces.
7453   // If there are multiple different address spaces, the source is invalid.
7454   // Carry on using the first addr space for the qualifiers of 'this'.
7455   // The diagnostic will be given later while creating the function
7456   // prototype for the method.
7457   if (getLangOpts().OpenCLCPlusPlus) {
7458     for (ParsedAttr &attr : DS.getAttributes()) {
7459       LangAS ASIdx = attr.asOpenCLLangAS();
7460       if (ASIdx != LangAS::Default) {
7461         Q.addAddressSpace(ASIdx);
7462         break;
7463       }
7464     }
7465   }
7466   ThisScope.emplace(Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q,
7467                     IsCXX11MemberFunction);
7468 }
7469 
7470 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
7471 /// declarator D up to a paren, which indicates that we are parsing function
7472 /// arguments.
7473 ///
7474 /// If FirstArgAttrs is non-null, then the caller parsed those attributes
7475 /// immediately after the open paren - they will be applied to the DeclSpec
7476 /// of the first parameter.
7477 ///
7478 /// If RequiresArg is true, then the first argument of the function is required
7479 /// to be present and required to not be an identifier list.
7480 ///
7481 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
7482 /// (C++11) ref-qualifier[opt], exception-specification[opt],
7483 /// (C++11) attribute-specifier-seq[opt], (C++11) trailing-return-type[opt] and
7484 /// (C++2a) the trailing requires-clause.
7485 ///
7486 /// [C++11] exception-specification:
7487 ///           dynamic-exception-specification
7488 ///           noexcept-specification
7489 ///
7490 void Parser::ParseFunctionDeclarator(Declarator &D,
7491                                      ParsedAttributes &FirstArgAttrs,
7492                                      BalancedDelimiterTracker &Tracker,
7493                                      bool IsAmbiguous,
7494                                      bool RequiresArg) {
7495   assert(getCurScope()->isFunctionPrototypeScope() &&
7496          "Should call from a Function scope");
7497   // lparen is already consumed!
7498   assert(D.isPastIdentifier() && "Should not call before identifier!");
7499 
7500   // This should be true when the function has typed arguments.
7501   // Otherwise, it is treated as a K&R-style function.
7502   bool HasProto = false;
7503   // Build up an array of information about the parsed arguments.
7504   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
7505   // Remember where we see an ellipsis, if any.
7506   SourceLocation EllipsisLoc;
7507 
7508   DeclSpec DS(AttrFactory);
7509   bool RefQualifierIsLValueRef = true;
7510   SourceLocation RefQualifierLoc;
7511   ExceptionSpecificationType ESpecType = EST_None;
7512   SourceRange ESpecRange;
7513   SmallVector<ParsedType, 2> DynamicExceptions;
7514   SmallVector<SourceRange, 2> DynamicExceptionRanges;
7515   ExprResult NoexceptExpr;
7516   CachedTokens *ExceptionSpecTokens = nullptr;
7517   ParsedAttributes FnAttrs(AttrFactory);
7518   TypeResult TrailingReturnType;
7519   SourceLocation TrailingReturnTypeLoc;
7520 
7521   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
7522      EndLoc is the end location for the function declarator.
7523      They differ for trailing return types. */
7524   SourceLocation StartLoc, LocalEndLoc, EndLoc;
7525   SourceLocation LParenLoc, RParenLoc;
7526   LParenLoc = Tracker.getOpenLocation();
7527   StartLoc = LParenLoc;
7528 
7529   if (isFunctionDeclaratorIdentifierList()) {
7530     if (RequiresArg)
7531       Diag(Tok, diag::err_argument_required_after_attribute);
7532 
7533     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
7534 
7535     Tracker.consumeClose();
7536     RParenLoc = Tracker.getCloseLocation();
7537     LocalEndLoc = RParenLoc;
7538     EndLoc = RParenLoc;
7539 
7540     // If there are attributes following the identifier list, parse them and
7541     // prohibit them.
7542     MaybeParseCXX11Attributes(FnAttrs);
7543     ProhibitAttributes(FnAttrs);
7544   } else {
7545     if (Tok.isNot(tok::r_paren))
7546       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
7547     else if (RequiresArg)
7548       Diag(Tok, diag::err_argument_required_after_attribute);
7549 
7550     // OpenCL disallows functions without a prototype, but it doesn't enforce
7551     // strict prototypes as in C23 because it allows a function definition to
7552     // have an identifier list. See OpenCL 3.0 6.11/g for more details.
7553     HasProto = ParamInfo.size() || getLangOpts().requiresStrictPrototypes() ||
7554                getLangOpts().OpenCL;
7555 
7556     // If we have the closing ')', eat it.
7557     Tracker.consumeClose();
7558     RParenLoc = Tracker.getCloseLocation();
7559     LocalEndLoc = RParenLoc;
7560     EndLoc = RParenLoc;
7561 
7562     if (getLangOpts().CPlusPlus) {
7563       // FIXME: Accept these components in any order, and produce fixits to
7564       // correct the order if the user gets it wrong. Ideally we should deal
7565       // with the pure-specifier in the same way.
7566 
7567       // Parse cv-qualifier-seq[opt].
7568       ParseTypeQualifierListOpt(
7569           DS, AR_NoAttributesParsed,
7570           /*AtomicAllowed*/ false,
7571           /*IdentifierRequired=*/false, llvm::function_ref<void()>([&]() {
7572             Actions.CodeCompletion().CodeCompleteFunctionQualifiers(DS, D);
7573           }));
7574       if (!DS.getSourceRange().getEnd().isInvalid()) {
7575         EndLoc = DS.getSourceRange().getEnd();
7576       }
7577 
7578       // Parse ref-qualifier[opt].
7579       if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
7580         EndLoc = RefQualifierLoc;
7581 
7582       std::optional<Sema::CXXThisScopeRAII> ThisScope;
7583       InitCXXThisScopeForDeclaratorIfRelevant(D, DS, ThisScope);
7584 
7585       // C++ [class.mem.general]p8:
7586       //   A complete-class context of a class (template) is a
7587       //     - function body,
7588       //     - default argument,
7589       //     - default template argument,
7590       //     - noexcept-specifier, or
7591       //     - default member initializer
7592       //   within the member-specification of the class or class template.
7593       //
7594       // Parse exception-specification[opt]. If we are in the
7595       // member-specification of a class or class template, this is a
7596       // complete-class context and parsing of the noexcept-specifier should be
7597       // delayed (even if this is a friend declaration).
7598       bool Delayed = D.getContext() == DeclaratorContext::Member &&
7599                      D.isFunctionDeclaratorAFunctionDeclaration();
7600       if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
7601           GetLookAheadToken(0).is(tok::kw_noexcept) &&
7602           GetLookAheadToken(1).is(tok::l_paren) &&
7603           GetLookAheadToken(2).is(tok::kw_noexcept) &&
7604           GetLookAheadToken(3).is(tok::l_paren) &&
7605           GetLookAheadToken(4).is(tok::identifier) &&
7606           GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
7607         // HACK: We've got an exception-specification
7608         //   noexcept(noexcept(swap(...)))
7609         // or
7610         //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
7611         // on a 'swap' member function. This is a libstdc++ bug; the lookup
7612         // for 'swap' will only find the function we're currently declaring,
7613         // whereas it expects to find a non-member swap through ADL. Turn off
7614         // delayed parsing to give it a chance to find what it expects.
7615         Delayed = false;
7616       }
7617       ESpecType = tryParseExceptionSpecification(Delayed,
7618                                                  ESpecRange,
7619                                                  DynamicExceptions,
7620                                                  DynamicExceptionRanges,
7621                                                  NoexceptExpr,
7622                                                  ExceptionSpecTokens);
7623       if (ESpecType != EST_None)
7624         EndLoc = ESpecRange.getEnd();
7625 
7626       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
7627       // after the exception-specification.
7628       MaybeParseCXX11Attributes(FnAttrs);
7629 
7630       // Parse trailing-return-type[opt].
7631       LocalEndLoc = EndLoc;
7632       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
7633         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
7634         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
7635           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
7636         LocalEndLoc = Tok.getLocation();
7637         SourceRange Range;
7638         TrailingReturnType =
7639             ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit());
7640         TrailingReturnTypeLoc = Range.getBegin();
7641         EndLoc = Range.getEnd();
7642       }
7643     } else {
7644       MaybeParseCXX11Attributes(FnAttrs);
7645     }
7646   }
7647 
7648   // Collect non-parameter declarations from the prototype if this is a function
7649   // declaration. They will be moved into the scope of the function. Only do
7650   // this in C and not C++, where the decls will continue to live in the
7651   // surrounding context.
7652   SmallVector<NamedDecl *, 0> DeclsInPrototype;
7653   if (getCurScope()->isFunctionDeclarationScope() && !getLangOpts().CPlusPlus) {
7654     for (Decl *D : getCurScope()->decls()) {
7655       NamedDecl *ND = dyn_cast<NamedDecl>(D);
7656       if (!ND || isa<ParmVarDecl>(ND))
7657         continue;
7658       DeclsInPrototype.push_back(ND);
7659     }
7660     // Sort DeclsInPrototype based on raw encoding of the source location.
7661     // Scope::decls() is iterating over a SmallPtrSet so sort the Decls before
7662     // moving to DeclContext. This provides a stable ordering for traversing
7663     // Decls in DeclContext, which is important for tasks like ASTWriter for
7664     // deterministic output.
7665     llvm::sort(DeclsInPrototype, [](Decl *D1, Decl *D2) {
7666       return D1->getLocation().getRawEncoding() <
7667              D2->getLocation().getRawEncoding();
7668     });
7669   }
7670 
7671   // Remember that we parsed a function type, and remember the attributes.
7672   D.AddTypeInfo(DeclaratorChunk::getFunction(
7673                     HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(),
7674                     ParamInfo.size(), EllipsisLoc, RParenLoc,
7675                     RefQualifierIsLValueRef, RefQualifierLoc,
7676                     /*MutableLoc=*/SourceLocation(),
7677                     ESpecType, ESpecRange, DynamicExceptions.data(),
7678                     DynamicExceptionRanges.data(), DynamicExceptions.size(),
7679                     NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
7680                     ExceptionSpecTokens, DeclsInPrototype, StartLoc,
7681                     LocalEndLoc, D, TrailingReturnType, TrailingReturnTypeLoc,
7682                     &DS),
7683                 std::move(FnAttrs), EndLoc);
7684 }
7685 
7686 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
7687 /// true if a ref-qualifier is found.
7688 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
7689                                SourceLocation &RefQualifierLoc) {
7690   if (Tok.isOneOf(tok::amp, tok::ampamp)) {
7691     Diag(Tok, getLangOpts().CPlusPlus11 ?
7692          diag::warn_cxx98_compat_ref_qualifier :
7693          diag::ext_ref_qualifier);
7694 
7695     RefQualifierIsLValueRef = Tok.is(tok::amp);
7696     RefQualifierLoc = ConsumeToken();
7697     return true;
7698   }
7699   return false;
7700 }
7701 
7702 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
7703 /// identifier list form for a K&R-style function:  void foo(a,b,c)
7704 ///
7705 /// Note that identifier-lists are only allowed for normal declarators, not for
7706 /// abstract-declarators.
7707 bool Parser::isFunctionDeclaratorIdentifierList() {
7708   return !getLangOpts().requiresStrictPrototypes()
7709          && Tok.is(tok::identifier)
7710          && !TryAltiVecVectorToken()
7711          // K&R identifier lists can't have typedefs as identifiers, per C99
7712          // 6.7.5.3p11.
7713          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
7714          // Identifier lists follow a really simple grammar: the identifiers can
7715          // be followed *only* by a ", identifier" or ")".  However, K&R
7716          // identifier lists are really rare in the brave new modern world, and
7717          // it is very common for someone to typo a type in a non-K&R style
7718          // list.  If we are presented with something like: "void foo(intptr x,
7719          // float y)", we don't want to start parsing the function declarator as
7720          // though it is a K&R style declarator just because intptr is an
7721          // invalid type.
7722          //
7723          // To handle this, we check to see if the token after the first
7724          // identifier is a "," or ")".  Only then do we parse it as an
7725          // identifier list.
7726          && (!Tok.is(tok::eof) &&
7727              (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)));
7728 }
7729 
7730 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
7731 /// we found a K&R-style identifier list instead of a typed parameter list.
7732 ///
7733 /// After returning, ParamInfo will hold the parsed parameters.
7734 ///
7735 ///       identifier-list: [C99 6.7.5]
7736 ///         identifier
7737 ///         identifier-list ',' identifier
7738 ///
7739 void Parser::ParseFunctionDeclaratorIdentifierList(
7740        Declarator &D,
7741        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
7742   // We should never reach this point in C23 or C++.
7743   assert(!getLangOpts().requiresStrictPrototypes() &&
7744          "Cannot parse an identifier list in C23 or C++");
7745 
7746   // If there was no identifier specified for the declarator, either we are in
7747   // an abstract-declarator, or we are in a parameter declarator which was found
7748   // to be abstract.  In abstract-declarators, identifier lists are not valid:
7749   // diagnose this.
7750   if (!D.getIdentifier())
7751     Diag(Tok, diag::ext_ident_list_in_param);
7752 
7753   // Maintain an efficient lookup of params we have seen so far.
7754   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
7755 
7756   do {
7757     // If this isn't an identifier, report the error and skip until ')'.
7758     if (Tok.isNot(tok::identifier)) {
7759       Diag(Tok, diag::err_expected) << tok::identifier;
7760       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
7761       // Forget we parsed anything.
7762       ParamInfo.clear();
7763       return;
7764     }
7765 
7766     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
7767 
7768     // Reject 'typedef int y; int test(x, y)', but continue parsing.
7769     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
7770       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
7771 
7772     // Verify that the argument identifier has not already been mentioned.
7773     if (!ParamsSoFar.insert(ParmII).second) {
7774       Diag(Tok, diag::err_param_redefinition) << ParmII;
7775     } else {
7776       // Remember this identifier in ParamInfo.
7777       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
7778                                                      Tok.getLocation(),
7779                                                      nullptr));
7780     }
7781 
7782     // Eat the identifier.
7783     ConsumeToken();
7784     // The list continues if we see a comma.
7785   } while (TryConsumeToken(tok::comma));
7786 }
7787 
7788 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
7789 /// after the opening parenthesis. This function will not parse a K&R-style
7790 /// identifier list.
7791 ///
7792 /// DeclContext is the context of the declarator being parsed.  If FirstArgAttrs
7793 /// is non-null, then the caller parsed those attributes immediately after the
7794 /// open paren - they will be applied to the DeclSpec of the first parameter.
7795 ///
7796 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
7797 /// be the location of the ellipsis, if any was parsed.
7798 ///
7799 ///       parameter-type-list: [C99 6.7.5]
7800 ///         parameter-list
7801 ///         parameter-list ',' '...'
7802 /// [C++]   parameter-list '...'
7803 ///
7804 ///       parameter-list: [C99 6.7.5]
7805 ///         parameter-declaration
7806 ///         parameter-list ',' parameter-declaration
7807 ///
7808 ///       parameter-declaration: [C99 6.7.5]
7809 ///         declaration-specifiers declarator
7810 /// [C++]   declaration-specifiers declarator '=' assignment-expression
7811 /// [C++11]                                       initializer-clause
7812 /// [GNU]   declaration-specifiers declarator attributes
7813 ///         declaration-specifiers abstract-declarator[opt]
7814 /// [C++]   declaration-specifiers abstract-declarator[opt]
7815 ///           '=' assignment-expression
7816 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
7817 /// [C++11] attribute-specifier-seq parameter-declaration
7818 /// [C++2b] attribute-specifier-seq 'this' parameter-declaration
7819 ///
7820 void Parser::ParseParameterDeclarationClause(
7821     DeclaratorContext DeclaratorCtx, ParsedAttributes &FirstArgAttrs,
7822     SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
7823     SourceLocation &EllipsisLoc, bool IsACXXFunctionDeclaration) {
7824 
7825   // Avoid exceeding the maximum function scope depth.
7826   // See https://bugs.llvm.org/show_bug.cgi?id=19607
7827   // Note Sema::ActOnParamDeclarator calls ParmVarDecl::setScopeInfo with
7828   // getFunctionPrototypeDepth() - 1.
7829   if (getCurScope()->getFunctionPrototypeDepth() - 1 >
7830       ParmVarDecl::getMaxFunctionScopeDepth()) {
7831     Diag(Tok.getLocation(), diag::err_function_scope_depth_exceeded)
7832         << ParmVarDecl::getMaxFunctionScopeDepth();
7833     cutOffParsing();
7834     return;
7835   }
7836 
7837   // C++2a [temp.res]p5
7838   // A qualified-id is assumed to name a type if
7839   //   - [...]
7840   //   - it is a decl-specifier of the decl-specifier-seq of a
7841   //     - [...]
7842   //     - parameter-declaration in a member-declaration [...]
7843   //     - parameter-declaration in a declarator of a function or function
7844   //       template declaration whose declarator-id is qualified [...]
7845   //     - parameter-declaration in a lambda-declarator [...]
7846   auto AllowImplicitTypename = ImplicitTypenameContext::No;
7847   if (DeclaratorCtx == DeclaratorContext::Member ||
7848       DeclaratorCtx == DeclaratorContext::LambdaExpr ||
7849       DeclaratorCtx == DeclaratorContext::RequiresExpr ||
7850       IsACXXFunctionDeclaration) {
7851     AllowImplicitTypename = ImplicitTypenameContext::Yes;
7852   }
7853 
7854   do {
7855     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
7856     // before deciding this was a parameter-declaration-clause.
7857     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
7858       break;
7859 
7860     // Parse the declaration-specifiers.
7861     // Just use the ParsingDeclaration "scope" of the declarator.
7862     DeclSpec DS(AttrFactory);
7863 
7864     ParsedAttributes ArgDeclAttrs(AttrFactory);
7865     ParsedAttributes ArgDeclSpecAttrs(AttrFactory);
7866 
7867     if (FirstArgAttrs.Range.isValid()) {
7868       // If the caller parsed attributes for the first argument, add them now.
7869       // Take them so that we only apply the attributes to the first parameter.
7870       // We have already started parsing the decl-specifier sequence, so don't
7871       // parse any parameter-declaration pieces that precede it.
7872       ArgDeclSpecAttrs.takeAllFrom(FirstArgAttrs);
7873     } else {
7874       // Parse any C++11 attributes.
7875       MaybeParseCXX11Attributes(ArgDeclAttrs);
7876 
7877       // Skip any Microsoft attributes before a param.
7878       MaybeParseMicrosoftAttributes(ArgDeclSpecAttrs);
7879     }
7880 
7881     SourceLocation DSStart = Tok.getLocation();
7882 
7883     // Parse a C++23 Explicit Object Parameter
7884     // We do that in all language modes to produce a better diagnostic.
7885     SourceLocation ThisLoc;
7886     if (getLangOpts().CPlusPlus && Tok.is(tok::kw_this)) {
7887       ThisLoc = ConsumeToken();
7888       // C++23 [dcl.fct]p6:
7889       //   An explicit-object-parameter-declaration is a parameter-declaration
7890       //   with a this specifier. An explicit-object-parameter-declaration
7891       //   shall appear only as the first parameter-declaration of a
7892       //   parameter-declaration-list of either:
7893       //   - a member-declarator that declares a member function, or
7894       //   - a lambda-declarator.
7895       //
7896       // The parameter-declaration-list of a requires-expression is not such
7897       // a context.
7898       if (DeclaratorCtx == DeclaratorContext::RequiresExpr)
7899         Diag(ThisLoc, diag::err_requires_expr_explicit_object_parameter);
7900     }
7901 
7902     ParsedTemplateInfo TemplateInfo;
7903     ParseDeclarationSpecifiers(DS, TemplateInfo, AS_none,
7904                                DeclSpecContext::DSC_normal,
7905                                /*LateAttrs=*/nullptr, AllowImplicitTypename);
7906 
7907     DS.takeAttributesFrom(ArgDeclSpecAttrs);
7908 
7909     // Parse the declarator.  This is "PrototypeContext" or
7910     // "LambdaExprParameterContext", because we must accept either
7911     // 'declarator' or 'abstract-declarator' here.
7912     Declarator ParmDeclarator(DS, ArgDeclAttrs,
7913                               DeclaratorCtx == DeclaratorContext::RequiresExpr
7914                                   ? DeclaratorContext::RequiresExpr
7915                               : DeclaratorCtx == DeclaratorContext::LambdaExpr
7916                                   ? DeclaratorContext::LambdaExprParameter
7917                                   : DeclaratorContext::Prototype);
7918     ParseDeclarator(ParmDeclarator);
7919 
7920     if (ThisLoc.isValid())
7921       ParmDeclarator.SetRangeBegin(ThisLoc);
7922 
7923     // Parse GNU attributes, if present.
7924     MaybeParseGNUAttributes(ParmDeclarator);
7925     if (getLangOpts().HLSL)
7926       MaybeParseHLSLAnnotations(DS.getAttributes());
7927 
7928     if (Tok.is(tok::kw_requires)) {
7929       // User tried to define a requires clause in a parameter declaration,
7930       // which is surely not a function declaration.
7931       // void f(int (*g)(int, int) requires true);
7932       Diag(Tok,
7933            diag::err_requires_clause_on_declarator_not_declaring_a_function);
7934       ConsumeToken();
7935       Actions.CorrectDelayedTyposInExpr(
7936          ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
7937     }
7938 
7939     // Remember this parsed parameter in ParamInfo.
7940     const IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
7941 
7942     // DefArgToks is used when the parsing of default arguments needs
7943     // to be delayed.
7944     std::unique_ptr<CachedTokens> DefArgToks;
7945 
7946     // If no parameter was specified, verify that *something* was specified,
7947     // otherwise we have a missing type and identifier.
7948     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
7949         ParmDeclarator.getNumTypeObjects() == 0) {
7950       // Completely missing, emit error.
7951       Diag(DSStart, diag::err_missing_param);
7952     } else {
7953       // Otherwise, we have something.  Add it and let semantic analysis try
7954       // to grok it and add the result to the ParamInfo we are building.
7955 
7956       // Last chance to recover from a misplaced ellipsis in an attempted
7957       // parameter pack declaration.
7958       if (Tok.is(tok::ellipsis) &&
7959           (NextToken().isNot(tok::r_paren) ||
7960            (!ParmDeclarator.getEllipsisLoc().isValid() &&
7961             !Actions.isUnexpandedParameterPackPermitted())) &&
7962           Actions.containsUnexpandedParameterPacks(ParmDeclarator))
7963         DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
7964 
7965       // Now we are at the point where declarator parsing is finished.
7966       //
7967       // Try to catch keywords in place of the identifier in a declarator, and
7968       // in particular the common case where:
7969       //   1 identifier comes at the end of the declarator
7970       //   2 if the identifier is dropped, the declarator is valid but anonymous
7971       //     (no identifier)
7972       //   3 declarator parsing succeeds, and then we have a trailing keyword,
7973       //     which is never valid in a param list (e.g. missing a ',')
7974       // And we can't handle this in ParseDeclarator because in general keywords
7975       // may be allowed to follow the declarator. (And in some cases there'd be
7976       // better recovery like inserting punctuation). ParseDeclarator is just
7977       // treating this as an anonymous parameter, and fortunately at this point
7978       // we've already almost done that.
7979       //
7980       // We care about case 1) where the declarator type should be known, and
7981       // the identifier should be null.
7982       if (!ParmDeclarator.isInvalidType() && !ParmDeclarator.hasName() &&
7983           Tok.isNot(tok::raw_identifier) && !Tok.isAnnotation() &&
7984           Tok.getIdentifierInfo() &&
7985           Tok.getIdentifierInfo()->isKeyword(getLangOpts())) {
7986         Diag(Tok, diag::err_keyword_as_parameter) << PP.getSpelling(Tok);
7987         // Consume the keyword.
7988         ConsumeToken();
7989       }
7990       // Inform the actions module about the parameter declarator, so it gets
7991       // added to the current scope.
7992       Decl *Param =
7993           Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator, ThisLoc);
7994       // Parse the default argument, if any. We parse the default
7995       // arguments in all dialects; the semantic analysis in
7996       // ActOnParamDefaultArgument will reject the default argument in
7997       // C.
7998       if (Tok.is(tok::equal)) {
7999         SourceLocation EqualLoc = Tok.getLocation();
8000 
8001         // Parse the default argument
8002         if (DeclaratorCtx == DeclaratorContext::Member) {
8003           // If we're inside a class definition, cache the tokens
8004           // corresponding to the default argument. We'll actually parse
8005           // them when we see the end of the class definition.
8006           DefArgToks.reset(new CachedTokens);
8007 
8008           SourceLocation ArgStartLoc = NextToken().getLocation();
8009           ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument);
8010           Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
8011                                                     ArgStartLoc);
8012         } else {
8013           // Consume the '='.
8014           ConsumeToken();
8015 
8016           // The argument isn't actually potentially evaluated unless it is
8017           // used.
8018           EnterExpressionEvaluationContext Eval(
8019               Actions,
8020               Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed,
8021               Param);
8022 
8023           ExprResult DefArgResult;
8024           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
8025             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
8026             DefArgResult = ParseBraceInitializer();
8027           } else {
8028             if (Tok.is(tok::l_paren) && NextToken().is(tok::l_brace)) {
8029               Diag(Tok, diag::err_stmt_expr_in_default_arg) << 0;
8030               Actions.ActOnParamDefaultArgumentError(Param, EqualLoc,
8031                                                      /*DefaultArg=*/nullptr);
8032               // Skip the statement expression and continue parsing
8033               SkipUntil(tok::comma, StopBeforeMatch);
8034               continue;
8035             }
8036             DefArgResult = ParseAssignmentExpression();
8037           }
8038           DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
8039           if (DefArgResult.isInvalid()) {
8040             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc,
8041                                                    /*DefaultArg=*/nullptr);
8042             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
8043           } else {
8044             // Inform the actions module about the default argument
8045             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
8046                                               DefArgResult.get());
8047           }
8048         }
8049       }
8050 
8051       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
8052                                           ParmDeclarator.getIdentifierLoc(),
8053                                           Param, std::move(DefArgToks)));
8054     }
8055 
8056     if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
8057       if (!getLangOpts().CPlusPlus) {
8058         // We have ellipsis without a preceding ',', which is ill-formed
8059         // in C. Complain and provide the fix.
8060         Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
8061             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
8062       } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
8063                  Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
8064         // It looks like this was supposed to be a parameter pack. Warn and
8065         // point out where the ellipsis should have gone.
8066         SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
8067         Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
8068           << ParmEllipsis.isValid() << ParmEllipsis;
8069         if (ParmEllipsis.isValid()) {
8070           Diag(ParmEllipsis,
8071                diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
8072         } else {
8073           Diag(ParmDeclarator.getIdentifierLoc(),
8074                diag::note_misplaced_ellipsis_vararg_add_ellipsis)
8075             << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
8076                                           "...")
8077             << !ParmDeclarator.hasName();
8078         }
8079         Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
8080           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
8081       }
8082 
8083       // We can't have any more parameters after an ellipsis.
8084       break;
8085     }
8086 
8087     // If the next token is a comma, consume it and keep reading arguments.
8088   } while (TryConsumeToken(tok::comma));
8089 }
8090 
8091 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
8092 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
8093 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
8094 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
8095 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
8096 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
8097 ///                           attribute-specifier-seq[opt]
8098 void Parser::ParseBracketDeclarator(Declarator &D) {
8099   if (CheckProhibitedCXX11Attribute())
8100     return;
8101 
8102   BalancedDelimiterTracker T(*this, tok::l_square);
8103   T.consumeOpen();
8104 
8105   // C array syntax has many features, but by-far the most common is [] and [4].
8106   // This code does a fast path to handle some of the most obvious cases.
8107   if (Tok.getKind() == tok::r_square) {
8108     T.consumeClose();
8109     ParsedAttributes attrs(AttrFactory);
8110     MaybeParseCXX11Attributes(attrs);
8111 
8112     // Remember that we parsed the empty array type.
8113     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
8114                                             T.getOpenLocation(),
8115                                             T.getCloseLocation()),
8116                   std::move(attrs), T.getCloseLocation());
8117     return;
8118   } else if (Tok.getKind() == tok::numeric_constant &&
8119              GetLookAheadToken(1).is(tok::r_square)) {
8120     // [4] is very common.  Parse the numeric constant expression.
8121     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
8122     ConsumeToken();
8123 
8124     T.consumeClose();
8125     ParsedAttributes attrs(AttrFactory);
8126     MaybeParseCXX11Attributes(attrs);
8127 
8128     // Remember that we parsed a array type, and remember its features.
8129     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(),
8130                                             T.getOpenLocation(),
8131                                             T.getCloseLocation()),
8132                   std::move(attrs), T.getCloseLocation());
8133     return;
8134   } else if (Tok.getKind() == tok::code_completion) {
8135     cutOffParsing();
8136     Actions.CodeCompletion().CodeCompleteBracketDeclarator(getCurScope());
8137     return;
8138   }
8139 
8140   // If valid, this location is the position where we read the 'static' keyword.
8141   SourceLocation StaticLoc;
8142   TryConsumeToken(tok::kw_static, StaticLoc);
8143 
8144   // If there is a type-qualifier-list, read it now.
8145   // Type qualifiers in an array subscript are a C99 feature.
8146   DeclSpec DS(AttrFactory);
8147   ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
8148 
8149   // If we haven't already read 'static', check to see if there is one after the
8150   // type-qualifier-list.
8151   if (!StaticLoc.isValid())
8152     TryConsumeToken(tok::kw_static, StaticLoc);
8153 
8154   // Handle "direct-declarator [ type-qual-list[opt] * ]".
8155   bool isStar = false;
8156   ExprResult NumElements;
8157 
8158   // Handle the case where we have '[*]' as the array size.  However, a leading
8159   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
8160   // the token after the star is a ']'.  Since stars in arrays are
8161   // infrequent, use of lookahead is not costly here.
8162   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
8163     ConsumeToken();  // Eat the '*'.
8164 
8165     if (StaticLoc.isValid()) {
8166       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
8167       StaticLoc = SourceLocation();  // Drop the static.
8168     }
8169     isStar = true;
8170   } else if (Tok.isNot(tok::r_square)) {
8171     // Note, in C89, this production uses the constant-expr production instead
8172     // of assignment-expr.  The only difference is that assignment-expr allows
8173     // things like '=' and '*='.  Sema rejects these in C89 mode because they
8174     // are not i-c-e's, so we don't need to distinguish between the two here.
8175 
8176     // Parse the constant-expression or assignment-expression now (depending
8177     // on dialect).
8178     if (getLangOpts().CPlusPlus) {
8179       NumElements = ParseArrayBoundExpression();
8180     } else {
8181       EnterExpressionEvaluationContext Unevaluated(
8182           Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
8183       NumElements =
8184           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
8185     }
8186   } else {
8187     if (StaticLoc.isValid()) {
8188       Diag(StaticLoc, diag::err_unspecified_size_with_static);
8189       StaticLoc = SourceLocation();  // Drop the static.
8190     }
8191   }
8192 
8193   // If there was an error parsing the assignment-expression, recover.
8194   if (NumElements.isInvalid()) {
8195     D.setInvalidType(true);
8196     // If the expression was invalid, skip it.
8197     SkipUntil(tok::r_square, StopAtSemi);
8198     return;
8199   }
8200 
8201   T.consumeClose();
8202 
8203   MaybeParseCXX11Attributes(DS.getAttributes());
8204 
8205   // Remember that we parsed a array type, and remember its features.
8206   D.AddTypeInfo(
8207       DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(),
8208                                 isStar, NumElements.get(), T.getOpenLocation(),
8209                                 T.getCloseLocation()),
8210       std::move(DS.getAttributes()), T.getCloseLocation());
8211 }
8212 
8213 /// Diagnose brackets before an identifier.
8214 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
8215   assert(Tok.is(tok::l_square) && "Missing opening bracket");
8216   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
8217 
8218   SourceLocation StartBracketLoc = Tok.getLocation();
8219   Declarator TempDeclarator(D.getDeclSpec(), ParsedAttributesView::none(),
8220                             D.getContext());
8221 
8222   while (Tok.is(tok::l_square)) {
8223     ParseBracketDeclarator(TempDeclarator);
8224   }
8225 
8226   // Stuff the location of the start of the brackets into the Declarator.
8227   // The diagnostics from ParseDirectDeclarator will make more sense if
8228   // they use this location instead.
8229   if (Tok.is(tok::semi))
8230     D.getName().EndLocation = StartBracketLoc;
8231 
8232   SourceLocation SuggestParenLoc = Tok.getLocation();
8233 
8234   // Now that the brackets are removed, try parsing the declarator again.
8235   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
8236 
8237   // Something went wrong parsing the brackets, in which case,
8238   // ParseBracketDeclarator has emitted an error, and we don't need to emit
8239   // one here.
8240   if (TempDeclarator.getNumTypeObjects() == 0)
8241     return;
8242 
8243   // Determine if parens will need to be suggested in the diagnostic.
8244   bool NeedParens = false;
8245   if (D.getNumTypeObjects() != 0) {
8246     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
8247     case DeclaratorChunk::Pointer:
8248     case DeclaratorChunk::Reference:
8249     case DeclaratorChunk::BlockPointer:
8250     case DeclaratorChunk::MemberPointer:
8251     case DeclaratorChunk::Pipe:
8252       NeedParens = true;
8253       break;
8254     case DeclaratorChunk::Array:
8255     case DeclaratorChunk::Function:
8256     case DeclaratorChunk::Paren:
8257       break;
8258     }
8259   }
8260 
8261   if (NeedParens) {
8262     // Create a DeclaratorChunk for the inserted parens.
8263     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
8264     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc),
8265                   SourceLocation());
8266   }
8267 
8268   // Adding back the bracket info to the end of the Declarator.
8269   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
8270     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
8271     D.AddTypeInfo(Chunk, TempDeclarator.getAttributePool(), SourceLocation());
8272   }
8273 
8274   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
8275   // If parentheses are required, always suggest them.
8276   if (!D.getIdentifier() && !NeedParens)
8277     return;
8278 
8279   SourceLocation EndBracketLoc = TempDeclarator.getEndLoc();
8280 
8281   // Generate the move bracket error message.
8282   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
8283   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
8284 
8285   if (NeedParens) {
8286     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
8287         << getLangOpts().CPlusPlus
8288         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
8289         << FixItHint::CreateInsertion(EndLoc, ")")
8290         << FixItHint::CreateInsertionFromRange(
8291                EndLoc, CharSourceRange(BracketRange, true))
8292         << FixItHint::CreateRemoval(BracketRange);
8293   } else {
8294     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
8295         << getLangOpts().CPlusPlus
8296         << FixItHint::CreateInsertionFromRange(
8297                EndLoc, CharSourceRange(BracketRange, true))
8298         << FixItHint::CreateRemoval(BracketRange);
8299   }
8300 }
8301 
8302 /// [GNU]   typeof-specifier:
8303 ///           typeof ( expressions )
8304 ///           typeof ( type-name )
8305 /// [GNU/C++] typeof unary-expression
8306 /// [C23]   typeof-specifier:
8307 ///           typeof '(' typeof-specifier-argument ')'
8308 ///           typeof_unqual '(' typeof-specifier-argument ')'
8309 ///
8310 ///         typeof-specifier-argument:
8311 ///           expression
8312 ///           type-name
8313 ///
8314 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
8315   assert(Tok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
8316          "Not a typeof specifier");
8317 
8318   bool IsUnqual = Tok.is(tok::kw_typeof_unqual);
8319   const IdentifierInfo *II = Tok.getIdentifierInfo();
8320   if (getLangOpts().C23 && !II->getName().starts_with("__"))
8321     Diag(Tok.getLocation(), diag::warn_c23_compat_keyword) << Tok.getName();
8322 
8323   Token OpTok = Tok;
8324   SourceLocation StartLoc = ConsumeToken();
8325   bool HasParens = Tok.is(tok::l_paren);
8326 
8327   EnterExpressionEvaluationContext Unevaluated(
8328       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
8329       Sema::ReuseLambdaContextDecl);
8330 
8331   bool isCastExpr;
8332   ParsedType CastTy;
8333   SourceRange CastRange;
8334   ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
8335       ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
8336   if (HasParens)
8337     DS.setTypeArgumentRange(CastRange);
8338 
8339   if (CastRange.getEnd().isInvalid())
8340     // FIXME: Not accurate, the range gets one token more than it should.
8341     DS.SetRangeEnd(Tok.getLocation());
8342   else
8343     DS.SetRangeEnd(CastRange.getEnd());
8344 
8345   if (isCastExpr) {
8346     if (!CastTy) {
8347       DS.SetTypeSpecError();
8348       return;
8349     }
8350 
8351     const char *PrevSpec = nullptr;
8352     unsigned DiagID;
8353     // Check for duplicate type specifiers (e.g. "int typeof(int)").
8354     if (DS.SetTypeSpecType(IsUnqual ? DeclSpec::TST_typeof_unqualType
8355                                     : DeclSpec::TST_typeofType,
8356                            StartLoc, PrevSpec,
8357                            DiagID, CastTy,
8358                            Actions.getASTContext().getPrintingPolicy()))
8359       Diag(StartLoc, DiagID) << PrevSpec;
8360     return;
8361   }
8362 
8363   // If we get here, the operand to the typeof was an expression.
8364   if (Operand.isInvalid()) {
8365     DS.SetTypeSpecError();
8366     return;
8367   }
8368 
8369   // We might need to transform the operand if it is potentially evaluated.
8370   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
8371   if (Operand.isInvalid()) {
8372     DS.SetTypeSpecError();
8373     return;
8374   }
8375 
8376   const char *PrevSpec = nullptr;
8377   unsigned DiagID;
8378   // Check for duplicate type specifiers (e.g. "int typeof(int)").
8379   if (DS.SetTypeSpecType(IsUnqual ? DeclSpec::TST_typeof_unqualExpr
8380                                   : DeclSpec::TST_typeofExpr,
8381                          StartLoc, PrevSpec,
8382                          DiagID, Operand.get(),
8383                          Actions.getASTContext().getPrintingPolicy()))
8384     Diag(StartLoc, DiagID) << PrevSpec;
8385 }
8386 
8387 /// [C11]   atomic-specifier:
8388 ///           _Atomic ( type-name )
8389 ///
8390 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
8391   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
8392          "Not an atomic specifier");
8393 
8394   SourceLocation StartLoc = ConsumeToken();
8395   BalancedDelimiterTracker T(*this, tok::l_paren);
8396   if (T.consumeOpen())
8397     return;
8398 
8399   TypeResult Result = ParseTypeName();
8400   if (Result.isInvalid()) {
8401     SkipUntil(tok::r_paren, StopAtSemi);
8402     return;
8403   }
8404 
8405   // Match the ')'
8406   T.consumeClose();
8407 
8408   if (T.getCloseLocation().isInvalid())
8409     return;
8410 
8411   DS.setTypeArgumentRange(T.getRange());
8412   DS.SetRangeEnd(T.getCloseLocation());
8413 
8414   const char *PrevSpec = nullptr;
8415   unsigned DiagID;
8416   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
8417                          DiagID, Result.get(),
8418                          Actions.getASTContext().getPrintingPolicy()))
8419     Diag(StartLoc, DiagID) << PrevSpec;
8420 }
8421 
8422 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
8423 /// from TryAltiVecVectorToken.
8424 bool Parser::TryAltiVecVectorTokenOutOfLine() {
8425   Token Next = NextToken();
8426   switch (Next.getKind()) {
8427   default: return false;
8428   case tok::kw_short:
8429   case tok::kw_long:
8430   case tok::kw_signed:
8431   case tok::kw_unsigned:
8432   case tok::kw_void:
8433   case tok::kw_char:
8434   case tok::kw_int:
8435   case tok::kw_float:
8436   case tok::kw_double:
8437   case tok::kw_bool:
8438   case tok::kw__Bool:
8439   case tok::kw___bool:
8440   case tok::kw___pixel:
8441     Tok.setKind(tok::kw___vector);
8442     return true;
8443   case tok::identifier:
8444     if (Next.getIdentifierInfo() == Ident_pixel) {
8445       Tok.setKind(tok::kw___vector);
8446       return true;
8447     }
8448     if (Next.getIdentifierInfo() == Ident_bool ||
8449         Next.getIdentifierInfo() == Ident_Bool) {
8450       Tok.setKind(tok::kw___vector);
8451       return true;
8452     }
8453     return false;
8454   }
8455 }
8456 
8457 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
8458                                       const char *&PrevSpec, unsigned &DiagID,
8459                                       bool &isInvalid) {
8460   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
8461   if (Tok.getIdentifierInfo() == Ident_vector) {
8462     Token Next = NextToken();
8463     switch (Next.getKind()) {
8464     case tok::kw_short:
8465     case tok::kw_long:
8466     case tok::kw_signed:
8467     case tok::kw_unsigned:
8468     case tok::kw_void:
8469     case tok::kw_char:
8470     case tok::kw_int:
8471     case tok::kw_float:
8472     case tok::kw_double:
8473     case tok::kw_bool:
8474     case tok::kw__Bool:
8475     case tok::kw___bool:
8476     case tok::kw___pixel:
8477       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
8478       return true;
8479     case tok::identifier:
8480       if (Next.getIdentifierInfo() == Ident_pixel) {
8481         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
8482         return true;
8483       }
8484       if (Next.getIdentifierInfo() == Ident_bool ||
8485           Next.getIdentifierInfo() == Ident_Bool) {
8486         isInvalid =
8487             DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
8488         return true;
8489       }
8490       break;
8491     default:
8492       break;
8493     }
8494   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
8495              DS.isTypeAltiVecVector()) {
8496     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
8497     return true;
8498   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
8499              DS.isTypeAltiVecVector()) {
8500     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
8501     return true;
8502   }
8503   return false;
8504 }
8505 
8506 TypeResult Parser::ParseTypeFromString(StringRef TypeStr, StringRef Context,
8507                                        SourceLocation IncludeLoc) {
8508   // Consume (unexpanded) tokens up to the end-of-directive.
8509   SmallVector<Token, 4> Tokens;
8510   {
8511     // Create a new buffer from which we will parse the type.
8512     auto &SourceMgr = PP.getSourceManager();
8513     FileID FID = SourceMgr.createFileID(
8514         llvm::MemoryBuffer::getMemBufferCopy(TypeStr, Context), SrcMgr::C_User,
8515         0, 0, IncludeLoc);
8516 
8517     // Form a new lexer that references the buffer.
8518     Lexer L(FID, SourceMgr.getBufferOrFake(FID), PP);
8519     L.setParsingPreprocessorDirective(true);
8520 
8521     // Lex the tokens from that buffer.
8522     Token Tok;
8523     do {
8524       L.Lex(Tok);
8525       Tokens.push_back(Tok);
8526     } while (Tok.isNot(tok::eod));
8527   }
8528 
8529   // Replace the "eod" token with an "eof" token identifying the end of
8530   // the provided string.
8531   Token &EndToken = Tokens.back();
8532   EndToken.startToken();
8533   EndToken.setKind(tok::eof);
8534   EndToken.setLocation(Tok.getLocation());
8535   EndToken.setEofData(TypeStr.data());
8536 
8537   // Add the current token back.
8538   Tokens.push_back(Tok);
8539 
8540   // Enter the tokens into the token stream.
8541   PP.EnterTokenStream(Tokens, /*DisableMacroExpansion=*/false,
8542                       /*IsReinject=*/false);
8543 
8544   // Consume the current token so that we'll start parsing the tokens we
8545   // added to the stream.
8546   ConsumeAnyToken();
8547 
8548   // Enter a new scope.
8549   ParseScope LocalScope(this, 0);
8550 
8551   // Parse the type.
8552   TypeResult Result = ParseTypeName(nullptr);
8553 
8554   // Check if we parsed the whole thing.
8555   if (Result.isUsable() &&
8556       (Tok.isNot(tok::eof) || Tok.getEofData() != TypeStr.data())) {
8557     Diag(Tok.getLocation(), diag::err_type_unparsed);
8558   }
8559 
8560   // There could be leftover tokens (e.g. because of an error).
8561   // Skip through until we reach the 'end of directive' token.
8562   while (Tok.isNot(tok::eof))
8563     ConsumeAnyToken();
8564 
8565   // Consume the end token.
8566   if (Tok.is(tok::eof) && Tok.getEofData() == TypeStr.data())
8567     ConsumeAnyToken();
8568   return Result;
8569 }
8570 
8571 void Parser::DiagnoseBitIntUse(const Token &Tok) {
8572   // If the token is for _ExtInt, diagnose it as being deprecated. Otherwise,
8573   // the token is about _BitInt and gets (potentially) diagnosed as use of an
8574   // extension.
8575   assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) &&
8576          "expected either an _ExtInt or _BitInt token!");
8577 
8578   SourceLocation Loc = Tok.getLocation();
8579   if (Tok.is(tok::kw__ExtInt)) {
8580     Diag(Loc, diag::warn_ext_int_deprecated)
8581         << FixItHint::CreateReplacement(Loc, "_BitInt");
8582   } else {
8583     // In C23 mode, diagnose that the use is not compatible with pre-C23 modes.
8584     // Otherwise, diagnose that the use is a Clang extension.
8585     if (getLangOpts().C23)
8586       Diag(Loc, diag::warn_c23_compat_keyword) << Tok.getName();
8587     else
8588       Diag(Loc, diag::ext_bit_int) << getLangOpts().CPlusPlus;
8589   }
8590 }
8591