xref: /freebsd/contrib/llvm-project/clang/lib/Parse/ParseDecl.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===--- ParseDecl.cpp - Declaration Parsing --------------------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the Declaration portions of the Parser interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/AST/ASTContext.h"
14 #include "clang/AST/DeclTemplate.h"
15 #include "clang/AST/PrettyDeclStackTrace.h"
16 #include "clang/Basic/AddressSpaces.h"
17 #include "clang/Basic/AttributeCommonInfo.h"
18 #include "clang/Basic/Attributes.h"
19 #include "clang/Basic/CharInfo.h"
20 #include "clang/Basic/TargetInfo.h"
21 #include "clang/Basic/TokenKinds.h"
22 #include "clang/Parse/ParseDiagnostic.h"
23 #include "clang/Parse/Parser.h"
24 #include "clang/Parse/RAIIObjectsForParser.h"
25 #include "clang/Sema/EnterExpressionEvaluationContext.h"
26 #include "clang/Sema/Lookup.h"
27 #include "clang/Sema/ParsedTemplate.h"
28 #include "clang/Sema/Scope.h"
29 #include "clang/Sema/SemaDiagnostic.h"
30 #include "llvm/ADT/SmallSet.h"
31 #include "llvm/ADT/SmallString.h"
32 #include "llvm/ADT/StringSwitch.h"
33 #include <optional>
34 
35 using namespace clang;
36 
37 //===----------------------------------------------------------------------===//
38 // C99 6.7: Declarations.
39 //===----------------------------------------------------------------------===//
40 
41 /// ParseTypeName
42 ///       type-name: [C99 6.7.6]
43 ///         specifier-qualifier-list abstract-declarator[opt]
44 ///
45 /// Called type-id in C++.
46 TypeResult Parser::ParseTypeName(SourceRange *Range, DeclaratorContext Context,
47                                  AccessSpecifier AS, Decl **OwnedType,
48                                  ParsedAttributes *Attrs) {
49   DeclSpecContext DSC = getDeclSpecContextFromDeclaratorContext(Context);
50   if (DSC == DeclSpecContext::DSC_normal)
51     DSC = DeclSpecContext::DSC_type_specifier;
52 
53   // Parse the common declaration-specifiers piece.
54   DeclSpec DS(AttrFactory);
55   if (Attrs)
56     DS.addAttributes(*Attrs);
57   ParseSpecifierQualifierList(DS, AS, DSC);
58   if (OwnedType)
59     *OwnedType = DS.isTypeSpecOwned() ? DS.getRepAsDecl() : nullptr;
60 
61   // Move declspec attributes to ParsedAttributes
62   if (Attrs) {
63     llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
64     for (ParsedAttr &AL : DS.getAttributes()) {
65       if (AL.isDeclspecAttribute())
66         ToBeMoved.push_back(&AL);
67     }
68 
69     for (ParsedAttr *AL : ToBeMoved)
70       Attrs->takeOneFrom(DS.getAttributes(), AL);
71   }
72 
73   // Parse the abstract-declarator, if present.
74   Declarator DeclaratorInfo(DS, ParsedAttributesView::none(), Context);
75   ParseDeclarator(DeclaratorInfo);
76   if (Range)
77     *Range = DeclaratorInfo.getSourceRange();
78 
79   if (DeclaratorInfo.isInvalidType())
80     return true;
81 
82   return Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
83 }
84 
85 /// Normalizes an attribute name by dropping prefixed and suffixed __.
86 static StringRef normalizeAttrName(StringRef Name) {
87   if (Name.size() >= 4 && Name.starts_with("__") && Name.ends_with("__"))
88     return Name.drop_front(2).drop_back(2);
89   return Name;
90 }
91 
92 /// isAttributeLateParsed - Return true if the attribute has arguments that
93 /// require late parsing.
94 static bool isAttributeLateParsed(const IdentifierInfo &II) {
95 #define CLANG_ATTR_LATE_PARSED_LIST
96     return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
97 #include "clang/Parse/AttrParserStringSwitches.inc"
98         .Default(false);
99 #undef CLANG_ATTR_LATE_PARSED_LIST
100 }
101 
102 /// Check if the a start and end source location expand to the same macro.
103 static bool FindLocsWithCommonFileID(Preprocessor &PP, SourceLocation StartLoc,
104                                      SourceLocation EndLoc) {
105   if (!StartLoc.isMacroID() || !EndLoc.isMacroID())
106     return false;
107 
108   SourceManager &SM = PP.getSourceManager();
109   if (SM.getFileID(StartLoc) != SM.getFileID(EndLoc))
110     return false;
111 
112   bool AttrStartIsInMacro =
113       Lexer::isAtStartOfMacroExpansion(StartLoc, SM, PP.getLangOpts());
114   bool AttrEndIsInMacro =
115       Lexer::isAtEndOfMacroExpansion(EndLoc, SM, PP.getLangOpts());
116   return AttrStartIsInMacro && AttrEndIsInMacro;
117 }
118 
119 void Parser::ParseAttributes(unsigned WhichAttrKinds, ParsedAttributes &Attrs,
120                              LateParsedAttrList *LateAttrs) {
121   bool MoreToParse;
122   do {
123     // Assume there's nothing left to parse, but if any attributes are in fact
124     // parsed, loop to ensure all specified attribute combinations are parsed.
125     MoreToParse = false;
126     if (WhichAttrKinds & PAKM_CXX11)
127       MoreToParse |= MaybeParseCXX11Attributes(Attrs);
128     if (WhichAttrKinds & PAKM_GNU)
129       MoreToParse |= MaybeParseGNUAttributes(Attrs, LateAttrs);
130     if (WhichAttrKinds & PAKM_Declspec)
131       MoreToParse |= MaybeParseMicrosoftDeclSpecs(Attrs);
132   } while (MoreToParse);
133 }
134 
135 /// ParseGNUAttributes - Parse a non-empty attributes list.
136 ///
137 /// [GNU] attributes:
138 ///         attribute
139 ///         attributes attribute
140 ///
141 /// [GNU]  attribute:
142 ///          '__attribute__' '(' '(' attribute-list ')' ')'
143 ///
144 /// [GNU]  attribute-list:
145 ///          attrib
146 ///          attribute_list ',' attrib
147 ///
148 /// [GNU]  attrib:
149 ///          empty
150 ///          attrib-name
151 ///          attrib-name '(' identifier ')'
152 ///          attrib-name '(' identifier ',' nonempty-expr-list ')'
153 ///          attrib-name '(' argument-expression-list [C99 6.5.2] ')'
154 ///
155 /// [GNU]  attrib-name:
156 ///          identifier
157 ///          typespec
158 ///          typequal
159 ///          storageclass
160 ///
161 /// Whether an attribute takes an 'identifier' is determined by the
162 /// attrib-name. GCC's behavior here is not worth imitating:
163 ///
164 ///  * In C mode, if the attribute argument list starts with an identifier
165 ///    followed by a ',' or an ')', and the identifier doesn't resolve to
166 ///    a type, it is parsed as an identifier. If the attribute actually
167 ///    wanted an expression, it's out of luck (but it turns out that no
168 ///    attributes work that way, because C constant expressions are very
169 ///    limited).
170 ///  * In C++ mode, if the attribute argument list starts with an identifier,
171 ///    and the attribute *wants* an identifier, it is parsed as an identifier.
172 ///    At block scope, any additional tokens between the identifier and the
173 ///    ',' or ')' are ignored, otherwise they produce a parse error.
174 ///
175 /// We follow the C++ model, but don't allow junk after the identifier.
176 void Parser::ParseGNUAttributes(ParsedAttributes &Attrs,
177                                 LateParsedAttrList *LateAttrs, Declarator *D) {
178   assert(Tok.is(tok::kw___attribute) && "Not a GNU attribute list!");
179 
180   SourceLocation StartLoc = Tok.getLocation();
181   SourceLocation EndLoc = StartLoc;
182 
183   while (Tok.is(tok::kw___attribute)) {
184     SourceLocation AttrTokLoc = ConsumeToken();
185     unsigned OldNumAttrs = Attrs.size();
186     unsigned OldNumLateAttrs = LateAttrs ? LateAttrs->size() : 0;
187 
188     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after,
189                          "attribute")) {
190       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
191       return;
192     }
193     if (ExpectAndConsume(tok::l_paren, diag::err_expected_lparen_after, "(")) {
194       SkipUntil(tok::r_paren, StopAtSemi); // skip until ) or ;
195       return;
196     }
197     // Parse the attribute-list. e.g. __attribute__(( weak, alias("__f") ))
198     do {
199       // Eat preceeding commas to allow __attribute__((,,,foo))
200       while (TryConsumeToken(tok::comma))
201         ;
202 
203       // Expect an identifier or declaration specifier (const, int, etc.)
204       if (Tok.isAnnotation())
205         break;
206       if (Tok.is(tok::code_completion)) {
207         cutOffParsing();
208         Actions.CodeCompleteAttribute(AttributeCommonInfo::Syntax::AS_GNU);
209         break;
210       }
211       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
212       if (!AttrName)
213         break;
214 
215       SourceLocation AttrNameLoc = ConsumeToken();
216 
217       if (Tok.isNot(tok::l_paren)) {
218         Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
219                      ParsedAttr::Form::GNU());
220         continue;
221       }
222 
223       // Handle "parameterized" attributes
224       if (!LateAttrs || !isAttributeLateParsed(*AttrName)) {
225         ParseGNUAttributeArgs(AttrName, AttrNameLoc, Attrs, &EndLoc, nullptr,
226                               SourceLocation(), ParsedAttr::Form::GNU(), D);
227         continue;
228       }
229 
230       // Handle attributes with arguments that require late parsing.
231       LateParsedAttribute *LA =
232           new LateParsedAttribute(this, *AttrName, AttrNameLoc);
233       LateAttrs->push_back(LA);
234 
235       // Attributes in a class are parsed at the end of the class, along
236       // with other late-parsed declarations.
237       if (!ClassStack.empty() && !LateAttrs->parseSoon())
238         getCurrentClass().LateParsedDeclarations.push_back(LA);
239 
240       // Be sure ConsumeAndStoreUntil doesn't see the start l_paren, since it
241       // recursively consumes balanced parens.
242       LA->Toks.push_back(Tok);
243       ConsumeParen();
244       // Consume everything up to and including the matching right parens.
245       ConsumeAndStoreUntil(tok::r_paren, LA->Toks, /*StopAtSemi=*/true);
246 
247       Token Eof;
248       Eof.startToken();
249       Eof.setLocation(Tok.getLocation());
250       LA->Toks.push_back(Eof);
251     } while (Tok.is(tok::comma));
252 
253     if (ExpectAndConsume(tok::r_paren))
254       SkipUntil(tok::r_paren, StopAtSemi);
255     SourceLocation Loc = Tok.getLocation();
256     if (ExpectAndConsume(tok::r_paren))
257       SkipUntil(tok::r_paren, StopAtSemi);
258     EndLoc = Loc;
259 
260     // If this was declared in a macro, attach the macro IdentifierInfo to the
261     // parsed attribute.
262     auto &SM = PP.getSourceManager();
263     if (!SM.isWrittenInBuiltinFile(SM.getSpellingLoc(AttrTokLoc)) &&
264         FindLocsWithCommonFileID(PP, AttrTokLoc, Loc)) {
265       CharSourceRange ExpansionRange = SM.getExpansionRange(AttrTokLoc);
266       StringRef FoundName =
267           Lexer::getSourceText(ExpansionRange, SM, PP.getLangOpts());
268       IdentifierInfo *MacroII = PP.getIdentifierInfo(FoundName);
269 
270       for (unsigned i = OldNumAttrs; i < Attrs.size(); ++i)
271         Attrs[i].setMacroIdentifier(MacroII, ExpansionRange.getBegin());
272 
273       if (LateAttrs) {
274         for (unsigned i = OldNumLateAttrs; i < LateAttrs->size(); ++i)
275           (*LateAttrs)[i]->MacroII = MacroII;
276       }
277     }
278   }
279 
280   Attrs.Range = SourceRange(StartLoc, EndLoc);
281 }
282 
283 /// Determine whether the given attribute has an identifier argument.
284 static bool attributeHasIdentifierArg(const IdentifierInfo &II) {
285 #define CLANG_ATTR_IDENTIFIER_ARG_LIST
286   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
287 #include "clang/Parse/AttrParserStringSwitches.inc"
288            .Default(false);
289 #undef CLANG_ATTR_IDENTIFIER_ARG_LIST
290 }
291 
292 /// Determine whether the given attribute has an identifier argument.
293 static ParsedAttributeArgumentsProperties
294 attributeStringLiteralListArg(const IdentifierInfo &II) {
295 #define CLANG_ATTR_STRING_LITERAL_ARG_LIST
296   return llvm::StringSwitch<uint32_t>(normalizeAttrName(II.getName()))
297 #include "clang/Parse/AttrParserStringSwitches.inc"
298       .Default(0);
299 #undef CLANG_ATTR_STRING_LITERAL_ARG_LIST
300 }
301 
302 /// Determine whether the given attribute has a variadic identifier argument.
303 static bool attributeHasVariadicIdentifierArg(const IdentifierInfo &II) {
304 #define CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
305   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
306 #include "clang/Parse/AttrParserStringSwitches.inc"
307            .Default(false);
308 #undef CLANG_ATTR_VARIADIC_IDENTIFIER_ARG_LIST
309 }
310 
311 /// Determine whether the given attribute treats kw_this as an identifier.
312 static bool attributeTreatsKeywordThisAsIdentifier(const IdentifierInfo &II) {
313 #define CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
314   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
315 #include "clang/Parse/AttrParserStringSwitches.inc"
316            .Default(false);
317 #undef CLANG_ATTR_THIS_ISA_IDENTIFIER_ARG_LIST
318 }
319 
320 /// Determine if an attribute accepts parameter packs.
321 static bool attributeAcceptsExprPack(const IdentifierInfo &II) {
322 #define CLANG_ATTR_ACCEPTS_EXPR_PACK
323   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
324 #include "clang/Parse/AttrParserStringSwitches.inc"
325       .Default(false);
326 #undef CLANG_ATTR_ACCEPTS_EXPR_PACK
327 }
328 
329 /// Determine whether the given attribute parses a type argument.
330 static bool attributeIsTypeArgAttr(const IdentifierInfo &II) {
331 #define CLANG_ATTR_TYPE_ARG_LIST
332   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
333 #include "clang/Parse/AttrParserStringSwitches.inc"
334            .Default(false);
335 #undef CLANG_ATTR_TYPE_ARG_LIST
336 }
337 
338 /// Determine whether the given attribute requires parsing its arguments
339 /// in an unevaluated context or not.
340 static bool attributeParsedArgsUnevaluated(const IdentifierInfo &II) {
341 #define CLANG_ATTR_ARG_CONTEXT_LIST
342   return llvm::StringSwitch<bool>(normalizeAttrName(II.getName()))
343 #include "clang/Parse/AttrParserStringSwitches.inc"
344            .Default(false);
345 #undef CLANG_ATTR_ARG_CONTEXT_LIST
346 }
347 
348 IdentifierLoc *Parser::ParseIdentifierLoc() {
349   assert(Tok.is(tok::identifier) && "expected an identifier");
350   IdentifierLoc *IL = IdentifierLoc::create(Actions.Context,
351                                             Tok.getLocation(),
352                                             Tok.getIdentifierInfo());
353   ConsumeToken();
354   return IL;
355 }
356 
357 void Parser::ParseAttributeWithTypeArg(IdentifierInfo &AttrName,
358                                        SourceLocation AttrNameLoc,
359                                        ParsedAttributes &Attrs,
360                                        IdentifierInfo *ScopeName,
361                                        SourceLocation ScopeLoc,
362                                        ParsedAttr::Form Form) {
363   BalancedDelimiterTracker Parens(*this, tok::l_paren);
364   Parens.consumeOpen();
365 
366   TypeResult T;
367   if (Tok.isNot(tok::r_paren))
368     T = ParseTypeName();
369 
370   if (Parens.consumeClose())
371     return;
372 
373   if (T.isInvalid())
374     return;
375 
376   if (T.isUsable())
377     Attrs.addNewTypeAttr(&AttrName,
378                          SourceRange(AttrNameLoc, Parens.getCloseLocation()),
379                          ScopeName, ScopeLoc, T.get(), Form);
380   else
381     Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, Parens.getCloseLocation()),
382                  ScopeName, ScopeLoc, nullptr, 0, Form);
383 }
384 
385 ExprResult
386 Parser::ParseUnevaluatedStringInAttribute(const IdentifierInfo &AttrName) {
387   if (Tok.is(tok::l_paren)) {
388     BalancedDelimiterTracker Paren(*this, tok::l_paren);
389     Paren.consumeOpen();
390     ExprResult Res = ParseUnevaluatedStringInAttribute(AttrName);
391     Paren.consumeClose();
392     return Res;
393   }
394   if (!isTokenStringLiteral()) {
395     Diag(Tok.getLocation(), diag::err_expected_string_literal)
396         << /*in attribute...*/ 4 << AttrName.getName();
397     return ExprError();
398   }
399   return ParseUnevaluatedStringLiteralExpression();
400 }
401 
402 bool Parser::ParseAttributeArgumentList(
403     const IdentifierInfo &AttrName, SmallVectorImpl<Expr *> &Exprs,
404     ParsedAttributeArgumentsProperties ArgsProperties) {
405   bool SawError = false;
406   unsigned Arg = 0;
407   while (true) {
408     ExprResult Expr;
409     if (ArgsProperties.isStringLiteralArg(Arg)) {
410       Expr = ParseUnevaluatedStringInAttribute(AttrName);
411     } else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
412       Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
413       Expr = ParseBraceInitializer();
414     } else {
415       Expr = ParseAssignmentExpression();
416     }
417     Expr = Actions.CorrectDelayedTyposInExpr(Expr);
418 
419     if (Tok.is(tok::ellipsis))
420       Expr = Actions.ActOnPackExpansion(Expr.get(), ConsumeToken());
421     else if (Tok.is(tok::code_completion)) {
422       // There's nothing to suggest in here as we parsed a full expression.
423       // Instead fail and propagate the error since caller might have something
424       // the suggest, e.g. signature help in function call. Note that this is
425       // performed before pushing the \p Expr, so that signature help can report
426       // current argument correctly.
427       SawError = true;
428       cutOffParsing();
429       break;
430     }
431 
432     if (Expr.isInvalid()) {
433       SawError = true;
434       break;
435     }
436 
437     Exprs.push_back(Expr.get());
438 
439     if (Tok.isNot(tok::comma))
440       break;
441     // Move to the next argument, remember where the comma was.
442     Token Comma = Tok;
443     ConsumeToken();
444     checkPotentialAngleBracketDelimiter(Comma);
445     Arg++;
446   }
447 
448   if (SawError) {
449     // Ensure typos get diagnosed when errors were encountered while parsing the
450     // expression list.
451     for (auto &E : Exprs) {
452       ExprResult Expr = Actions.CorrectDelayedTyposInExpr(E);
453       if (Expr.isUsable())
454         E = Expr.get();
455     }
456   }
457   return SawError;
458 }
459 
460 unsigned Parser::ParseAttributeArgsCommon(
461     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
462     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
463     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
464   // Ignore the left paren location for now.
465   ConsumeParen();
466 
467   bool ChangeKWThisToIdent = attributeTreatsKeywordThisAsIdentifier(*AttrName);
468   bool AttributeIsTypeArgAttr = attributeIsTypeArgAttr(*AttrName);
469   bool AttributeHasVariadicIdentifierArg =
470       attributeHasVariadicIdentifierArg(*AttrName);
471 
472   // Interpret "kw_this" as an identifier if the attributed requests it.
473   if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
474     Tok.setKind(tok::identifier);
475 
476   ArgsVector ArgExprs;
477   if (Tok.is(tok::identifier)) {
478     // If this attribute wants an 'identifier' argument, make it so.
479     bool IsIdentifierArg = AttributeHasVariadicIdentifierArg ||
480                            attributeHasIdentifierArg(*AttrName);
481     ParsedAttr::Kind AttrKind =
482         ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
483 
484     // If we don't know how to parse this attribute, but this is the only
485     // token in this argument, assume it's meant to be an identifier.
486     if (AttrKind == ParsedAttr::UnknownAttribute ||
487         AttrKind == ParsedAttr::IgnoredAttribute) {
488       const Token &Next = NextToken();
489       IsIdentifierArg = Next.isOneOf(tok::r_paren, tok::comma);
490     }
491 
492     if (IsIdentifierArg)
493       ArgExprs.push_back(ParseIdentifierLoc());
494   }
495 
496   ParsedType TheParsedType;
497   if (!ArgExprs.empty() ? Tok.is(tok::comma) : Tok.isNot(tok::r_paren)) {
498     // Eat the comma.
499     if (!ArgExprs.empty())
500       ConsumeToken();
501 
502     if (AttributeIsTypeArgAttr) {
503       // FIXME: Multiple type arguments are not implemented.
504       TypeResult T = ParseTypeName();
505       if (T.isInvalid()) {
506         SkipUntil(tok::r_paren, StopAtSemi);
507         return 0;
508       }
509       if (T.isUsable())
510         TheParsedType = T.get();
511     } else if (AttributeHasVariadicIdentifierArg) {
512       // Parse variadic identifier arg. This can either consume identifiers or
513       // expressions. Variadic identifier args do not support parameter packs
514       // because those are typically used for attributes with enumeration
515       // arguments, and those enumerations are not something the user could
516       // express via a pack.
517       do {
518         // Interpret "kw_this" as an identifier if the attributed requests it.
519         if (ChangeKWThisToIdent && Tok.is(tok::kw_this))
520           Tok.setKind(tok::identifier);
521 
522         ExprResult ArgExpr;
523         if (Tok.is(tok::identifier)) {
524           ArgExprs.push_back(ParseIdentifierLoc());
525         } else {
526           bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
527           EnterExpressionEvaluationContext Unevaluated(
528               Actions,
529               Uneval ? Sema::ExpressionEvaluationContext::Unevaluated
530                      : Sema::ExpressionEvaluationContext::ConstantEvaluated);
531 
532           ExprResult ArgExpr(
533               Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression()));
534 
535           if (ArgExpr.isInvalid()) {
536             SkipUntil(tok::r_paren, StopAtSemi);
537             return 0;
538           }
539           ArgExprs.push_back(ArgExpr.get());
540         }
541         // Eat the comma, move to the next argument
542       } while (TryConsumeToken(tok::comma));
543     } else {
544       // General case. Parse all available expressions.
545       bool Uneval = attributeParsedArgsUnevaluated(*AttrName);
546       EnterExpressionEvaluationContext Unevaluated(
547           Actions, Uneval
548                        ? Sema::ExpressionEvaluationContext::Unevaluated
549                        : Sema::ExpressionEvaluationContext::ConstantEvaluated);
550 
551       ExprVector ParsedExprs;
552       ParsedAttributeArgumentsProperties ArgProperties =
553           attributeStringLiteralListArg(*AttrName);
554       if (ParseAttributeArgumentList(*AttrName, ParsedExprs, ArgProperties)) {
555         SkipUntil(tok::r_paren, StopAtSemi);
556         return 0;
557       }
558 
559       // Pack expansion must currently be explicitly supported by an attribute.
560       for (size_t I = 0; I < ParsedExprs.size(); ++I) {
561         if (!isa<PackExpansionExpr>(ParsedExprs[I]))
562           continue;
563 
564         if (!attributeAcceptsExprPack(*AttrName)) {
565           Diag(Tok.getLocation(),
566                diag::err_attribute_argument_parm_pack_not_supported)
567               << AttrName;
568           SkipUntil(tok::r_paren, StopAtSemi);
569           return 0;
570         }
571       }
572 
573       ArgExprs.insert(ArgExprs.end(), ParsedExprs.begin(), ParsedExprs.end());
574     }
575   }
576 
577   SourceLocation RParen = Tok.getLocation();
578   if (!ExpectAndConsume(tok::r_paren)) {
579     SourceLocation AttrLoc = ScopeLoc.isValid() ? ScopeLoc : AttrNameLoc;
580 
581     if (AttributeIsTypeArgAttr && !TheParsedType.get().isNull()) {
582       Attrs.addNewTypeAttr(AttrName, SourceRange(AttrNameLoc, RParen),
583                            ScopeName, ScopeLoc, TheParsedType, Form);
584     } else {
585       Attrs.addNew(AttrName, SourceRange(AttrLoc, RParen), ScopeName, ScopeLoc,
586                    ArgExprs.data(), ArgExprs.size(), Form);
587     }
588   }
589 
590   if (EndLoc)
591     *EndLoc = RParen;
592 
593   return static_cast<unsigned>(ArgExprs.size() + !TheParsedType.get().isNull());
594 }
595 
596 /// Parse the arguments to a parameterized GNU attribute or
597 /// a C++11 attribute in "gnu" namespace.
598 void Parser::ParseGNUAttributeArgs(
599     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
600     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
601     SourceLocation ScopeLoc, ParsedAttr::Form Form, Declarator *D) {
602 
603   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
604 
605   ParsedAttr::Kind AttrKind =
606       ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
607 
608   if (AttrKind == ParsedAttr::AT_Availability) {
609     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
610                                ScopeLoc, Form);
611     return;
612   } else if (AttrKind == ParsedAttr::AT_ExternalSourceSymbol) {
613     ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
614                                        ScopeName, ScopeLoc, Form);
615     return;
616   } else if (AttrKind == ParsedAttr::AT_ObjCBridgeRelated) {
617     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
618                                     ScopeName, ScopeLoc, Form);
619     return;
620   } else if (AttrKind == ParsedAttr::AT_SwiftNewType) {
621     ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
622                                ScopeLoc, Form);
623     return;
624   } else if (AttrKind == ParsedAttr::AT_TypeTagForDatatype) {
625     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
626                                      ScopeName, ScopeLoc, Form);
627     return;
628   } else if (attributeIsTypeArgAttr(*AttrName)) {
629     ParseAttributeWithTypeArg(*AttrName, AttrNameLoc, Attrs, ScopeName,
630                               ScopeLoc, Form);
631     return;
632   }
633 
634   // These may refer to the function arguments, but need to be parsed early to
635   // participate in determining whether it's a redeclaration.
636   std::optional<ParseScope> PrototypeScope;
637   if (normalizeAttrName(AttrName->getName()) == "enable_if" &&
638       D && D->isFunctionDeclarator()) {
639     DeclaratorChunk::FunctionTypeInfo FTI = D->getFunctionTypeInfo();
640     PrototypeScope.emplace(this, Scope::FunctionPrototypeScope |
641                                      Scope::FunctionDeclarationScope |
642                                      Scope::DeclScope);
643     for (unsigned i = 0; i != FTI.NumParams; ++i) {
644       ParmVarDecl *Param = cast<ParmVarDecl>(FTI.Params[i].Param);
645       Actions.ActOnReenterCXXMethodParameter(getCurScope(), Param);
646     }
647   }
648 
649   ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
650                            ScopeLoc, Form);
651 }
652 
653 unsigned Parser::ParseClangAttributeArgs(
654     IdentifierInfo *AttrName, SourceLocation AttrNameLoc,
655     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
656     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
657   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
658 
659   ParsedAttr::Kind AttrKind =
660       ParsedAttr::getParsedKind(AttrName, ScopeName, Form.getSyntax());
661 
662   switch (AttrKind) {
663   default:
664     return ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, EndLoc,
665                                     ScopeName, ScopeLoc, Form);
666   case ParsedAttr::AT_ExternalSourceSymbol:
667     ParseExternalSourceSymbolAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
668                                        ScopeName, ScopeLoc, Form);
669     break;
670   case ParsedAttr::AT_Availability:
671     ParseAvailabilityAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
672                                ScopeLoc, Form);
673     break;
674   case ParsedAttr::AT_ObjCBridgeRelated:
675     ParseObjCBridgeRelatedAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
676                                     ScopeName, ScopeLoc, Form);
677     break;
678   case ParsedAttr::AT_SwiftNewType:
679     ParseSwiftNewTypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc, ScopeName,
680                                ScopeLoc, Form);
681     break;
682   case ParsedAttr::AT_TypeTagForDatatype:
683     ParseTypeTagForDatatypeAttribute(*AttrName, AttrNameLoc, Attrs, EndLoc,
684                                      ScopeName, ScopeLoc, Form);
685     break;
686   }
687   return !Attrs.empty() ? Attrs.begin()->getNumArgs() : 0;
688 }
689 
690 bool Parser::ParseMicrosoftDeclSpecArgs(IdentifierInfo *AttrName,
691                                         SourceLocation AttrNameLoc,
692                                         ParsedAttributes &Attrs) {
693   unsigned ExistingAttrs = Attrs.size();
694 
695   // If the attribute isn't known, we will not attempt to parse any
696   // arguments.
697   if (!hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr, AttrName,
698                     getTargetInfo(), getLangOpts())) {
699     // Eat the left paren, then skip to the ending right paren.
700     ConsumeParen();
701     SkipUntil(tok::r_paren);
702     return false;
703   }
704 
705   SourceLocation OpenParenLoc = Tok.getLocation();
706 
707   if (AttrName->getName() == "property") {
708     // The property declspec is more complex in that it can take one or two
709     // assignment expressions as a parameter, but the lhs of the assignment
710     // must be named get or put.
711 
712     BalancedDelimiterTracker T(*this, tok::l_paren);
713     T.expectAndConsume(diag::err_expected_lparen_after,
714                        AttrName->getNameStart(), tok::r_paren);
715 
716     enum AccessorKind {
717       AK_Invalid = -1,
718       AK_Put = 0,
719       AK_Get = 1 // indices into AccessorNames
720     };
721     IdentifierInfo *AccessorNames[] = {nullptr, nullptr};
722     bool HasInvalidAccessor = false;
723 
724     // Parse the accessor specifications.
725     while (true) {
726       // Stop if this doesn't look like an accessor spec.
727       if (!Tok.is(tok::identifier)) {
728         // If the user wrote a completely empty list, use a special diagnostic.
729         if (Tok.is(tok::r_paren) && !HasInvalidAccessor &&
730             AccessorNames[AK_Put] == nullptr &&
731             AccessorNames[AK_Get] == nullptr) {
732           Diag(AttrNameLoc, diag::err_ms_property_no_getter_or_putter);
733           break;
734         }
735 
736         Diag(Tok.getLocation(), diag::err_ms_property_unknown_accessor);
737         break;
738       }
739 
740       AccessorKind Kind;
741       SourceLocation KindLoc = Tok.getLocation();
742       StringRef KindStr = Tok.getIdentifierInfo()->getName();
743       if (KindStr == "get") {
744         Kind = AK_Get;
745       } else if (KindStr == "put") {
746         Kind = AK_Put;
747 
748         // Recover from the common mistake of using 'set' instead of 'put'.
749       } else if (KindStr == "set") {
750         Diag(KindLoc, diag::err_ms_property_has_set_accessor)
751             << FixItHint::CreateReplacement(KindLoc, "put");
752         Kind = AK_Put;
753 
754         // Handle the mistake of forgetting the accessor kind by skipping
755         // this accessor.
756       } else if (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)) {
757         Diag(KindLoc, diag::err_ms_property_missing_accessor_kind);
758         ConsumeToken();
759         HasInvalidAccessor = true;
760         goto next_property_accessor;
761 
762         // Otherwise, complain about the unknown accessor kind.
763       } else {
764         Diag(KindLoc, diag::err_ms_property_unknown_accessor);
765         HasInvalidAccessor = true;
766         Kind = AK_Invalid;
767 
768         // Try to keep parsing unless it doesn't look like an accessor spec.
769         if (!NextToken().is(tok::equal))
770           break;
771       }
772 
773       // Consume the identifier.
774       ConsumeToken();
775 
776       // Consume the '='.
777       if (!TryConsumeToken(tok::equal)) {
778         Diag(Tok.getLocation(), diag::err_ms_property_expected_equal)
779             << KindStr;
780         break;
781       }
782 
783       // Expect the method name.
784       if (!Tok.is(tok::identifier)) {
785         Diag(Tok.getLocation(), diag::err_ms_property_expected_accessor_name);
786         break;
787       }
788 
789       if (Kind == AK_Invalid) {
790         // Just drop invalid accessors.
791       } else if (AccessorNames[Kind] != nullptr) {
792         // Complain about the repeated accessor, ignore it, and keep parsing.
793         Diag(KindLoc, diag::err_ms_property_duplicate_accessor) << KindStr;
794       } else {
795         AccessorNames[Kind] = Tok.getIdentifierInfo();
796       }
797       ConsumeToken();
798 
799     next_property_accessor:
800       // Keep processing accessors until we run out.
801       if (TryConsumeToken(tok::comma))
802         continue;
803 
804       // If we run into the ')', stop without consuming it.
805       if (Tok.is(tok::r_paren))
806         break;
807 
808       Diag(Tok.getLocation(), diag::err_ms_property_expected_comma_or_rparen);
809       break;
810     }
811 
812     // Only add the property attribute if it was well-formed.
813     if (!HasInvalidAccessor)
814       Attrs.addNewPropertyAttr(AttrName, AttrNameLoc, nullptr, SourceLocation(),
815                                AccessorNames[AK_Get], AccessorNames[AK_Put],
816                                ParsedAttr::Form::Declspec());
817     T.skipToEnd();
818     return !HasInvalidAccessor;
819   }
820 
821   unsigned NumArgs =
822       ParseAttributeArgsCommon(AttrName, AttrNameLoc, Attrs, nullptr, nullptr,
823                                SourceLocation(), ParsedAttr::Form::Declspec());
824 
825   // If this attribute's args were parsed, and it was expected to have
826   // arguments but none were provided, emit a diagnostic.
827   if (ExistingAttrs < Attrs.size() && Attrs.back().getMaxArgs() && !NumArgs) {
828     Diag(OpenParenLoc, diag::err_attribute_requires_arguments) << AttrName;
829     return false;
830   }
831   return true;
832 }
833 
834 /// [MS] decl-specifier:
835 ///             __declspec ( extended-decl-modifier-seq )
836 ///
837 /// [MS] extended-decl-modifier-seq:
838 ///             extended-decl-modifier[opt]
839 ///             extended-decl-modifier extended-decl-modifier-seq
840 void Parser::ParseMicrosoftDeclSpecs(ParsedAttributes &Attrs) {
841   assert(getLangOpts().DeclSpecKeyword && "__declspec keyword is not enabled");
842   assert(Tok.is(tok::kw___declspec) && "Not a declspec!");
843 
844   SourceLocation StartLoc = Tok.getLocation();
845   SourceLocation EndLoc = StartLoc;
846 
847   while (Tok.is(tok::kw___declspec)) {
848     ConsumeToken();
849     BalancedDelimiterTracker T(*this, tok::l_paren);
850     if (T.expectAndConsume(diag::err_expected_lparen_after, "__declspec",
851                            tok::r_paren))
852       return;
853 
854     // An empty declspec is perfectly legal and should not warn.  Additionally,
855     // you can specify multiple attributes per declspec.
856     while (Tok.isNot(tok::r_paren)) {
857       // Attribute not present.
858       if (TryConsumeToken(tok::comma))
859         continue;
860 
861       if (Tok.is(tok::code_completion)) {
862         cutOffParsing();
863         Actions.CodeCompleteAttribute(AttributeCommonInfo::AS_Declspec);
864         return;
865       }
866 
867       // We expect either a well-known identifier or a generic string.  Anything
868       // else is a malformed declspec.
869       bool IsString = Tok.getKind() == tok::string_literal;
870       if (!IsString && Tok.getKind() != tok::identifier &&
871           Tok.getKind() != tok::kw_restrict) {
872         Diag(Tok, diag::err_ms_declspec_type);
873         T.skipToEnd();
874         return;
875       }
876 
877       IdentifierInfo *AttrName;
878       SourceLocation AttrNameLoc;
879       if (IsString) {
880         SmallString<8> StrBuffer;
881         bool Invalid = false;
882         StringRef Str = PP.getSpelling(Tok, StrBuffer, &Invalid);
883         if (Invalid) {
884           T.skipToEnd();
885           return;
886         }
887         AttrName = PP.getIdentifierInfo(Str);
888         AttrNameLoc = ConsumeStringToken();
889       } else {
890         AttrName = Tok.getIdentifierInfo();
891         AttrNameLoc = ConsumeToken();
892       }
893 
894       bool AttrHandled = false;
895 
896       // Parse attribute arguments.
897       if (Tok.is(tok::l_paren))
898         AttrHandled = ParseMicrosoftDeclSpecArgs(AttrName, AttrNameLoc, Attrs);
899       else if (AttrName->getName() == "property")
900         // The property attribute must have an argument list.
901         Diag(Tok.getLocation(), diag::err_expected_lparen_after)
902             << AttrName->getName();
903 
904       if (!AttrHandled)
905         Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
906                      ParsedAttr::Form::Declspec());
907     }
908     T.consumeClose();
909     EndLoc = T.getCloseLocation();
910   }
911 
912   Attrs.Range = SourceRange(StartLoc, EndLoc);
913 }
914 
915 void Parser::ParseMicrosoftTypeAttributes(ParsedAttributes &attrs) {
916   // Treat these like attributes
917   while (true) {
918     auto Kind = Tok.getKind();
919     switch (Kind) {
920     case tok::kw___fastcall:
921     case tok::kw___stdcall:
922     case tok::kw___thiscall:
923     case tok::kw___regcall:
924     case tok::kw___cdecl:
925     case tok::kw___vectorcall:
926     case tok::kw___ptr64:
927     case tok::kw___w64:
928     case tok::kw___ptr32:
929     case tok::kw___sptr:
930     case tok::kw___uptr: {
931       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
932       SourceLocation AttrNameLoc = ConsumeToken();
933       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
934                    Kind);
935       break;
936     }
937     default:
938       return;
939     }
940   }
941 }
942 
943 void Parser::ParseWebAssemblyFuncrefTypeAttribute(ParsedAttributes &attrs) {
944   assert(Tok.is(tok::kw___funcref));
945   SourceLocation StartLoc = Tok.getLocation();
946   if (!getTargetInfo().getTriple().isWasm()) {
947     ConsumeToken();
948     Diag(StartLoc, diag::err_wasm_funcref_not_wasm);
949     return;
950   }
951 
952   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
953   SourceLocation AttrNameLoc = ConsumeToken();
954   attrs.addNew(AttrName, AttrNameLoc, /*ScopeName=*/nullptr,
955                /*ScopeLoc=*/SourceLocation{}, /*Args=*/nullptr, /*numArgs=*/0,
956                tok::kw___funcref);
957 }
958 
959 void Parser::DiagnoseAndSkipExtendedMicrosoftTypeAttributes() {
960   SourceLocation StartLoc = Tok.getLocation();
961   SourceLocation EndLoc = SkipExtendedMicrosoftTypeAttributes();
962 
963   if (EndLoc.isValid()) {
964     SourceRange Range(StartLoc, EndLoc);
965     Diag(StartLoc, diag::warn_microsoft_qualifiers_ignored) << Range;
966   }
967 }
968 
969 SourceLocation Parser::SkipExtendedMicrosoftTypeAttributes() {
970   SourceLocation EndLoc;
971 
972   while (true) {
973     switch (Tok.getKind()) {
974     case tok::kw_const:
975     case tok::kw_volatile:
976     case tok::kw___fastcall:
977     case tok::kw___stdcall:
978     case tok::kw___thiscall:
979     case tok::kw___cdecl:
980     case tok::kw___vectorcall:
981     case tok::kw___ptr32:
982     case tok::kw___ptr64:
983     case tok::kw___w64:
984     case tok::kw___unaligned:
985     case tok::kw___sptr:
986     case tok::kw___uptr:
987       EndLoc = ConsumeToken();
988       break;
989     default:
990       return EndLoc;
991     }
992   }
993 }
994 
995 void Parser::ParseBorlandTypeAttributes(ParsedAttributes &attrs) {
996   // Treat these like attributes
997   while (Tok.is(tok::kw___pascal)) {
998     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
999     SourceLocation AttrNameLoc = ConsumeToken();
1000     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1001                  tok::kw___pascal);
1002   }
1003 }
1004 
1005 void Parser::ParseOpenCLKernelAttributes(ParsedAttributes &attrs) {
1006   // Treat these like attributes
1007   while (Tok.is(tok::kw___kernel)) {
1008     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1009     SourceLocation AttrNameLoc = ConsumeToken();
1010     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1011                  tok::kw___kernel);
1012   }
1013 }
1014 
1015 void Parser::ParseCUDAFunctionAttributes(ParsedAttributes &attrs) {
1016   while (Tok.is(tok::kw___noinline__)) {
1017     IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1018     SourceLocation AttrNameLoc = ConsumeToken();
1019     attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1020                  tok::kw___noinline__);
1021   }
1022 }
1023 
1024 void Parser::ParseOpenCLQualifiers(ParsedAttributes &Attrs) {
1025   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1026   SourceLocation AttrNameLoc = Tok.getLocation();
1027   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1028                Tok.getKind());
1029 }
1030 
1031 bool Parser::isHLSLQualifier(const Token &Tok) const {
1032   return Tok.is(tok::kw_groupshared);
1033 }
1034 
1035 void Parser::ParseHLSLQualifiers(ParsedAttributes &Attrs) {
1036   IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1037   auto Kind = Tok.getKind();
1038   SourceLocation AttrNameLoc = ConsumeToken();
1039   Attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0, Kind);
1040 }
1041 
1042 void Parser::ParseNullabilityTypeSpecifiers(ParsedAttributes &attrs) {
1043   // Treat these like attributes, even though they're type specifiers.
1044   while (true) {
1045     auto Kind = Tok.getKind();
1046     switch (Kind) {
1047     case tok::kw__Nonnull:
1048     case tok::kw__Nullable:
1049     case tok::kw__Nullable_result:
1050     case tok::kw__Null_unspecified: {
1051       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
1052       SourceLocation AttrNameLoc = ConsumeToken();
1053       if (!getLangOpts().ObjC)
1054         Diag(AttrNameLoc, diag::ext_nullability)
1055           << AttrName;
1056       attrs.addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc, nullptr, 0,
1057                    Kind);
1058       break;
1059     }
1060     default:
1061       return;
1062     }
1063   }
1064 }
1065 
1066 static bool VersionNumberSeparator(const char Separator) {
1067   return (Separator == '.' || Separator == '_');
1068 }
1069 
1070 /// Parse a version number.
1071 ///
1072 /// version:
1073 ///   simple-integer
1074 ///   simple-integer '.' simple-integer
1075 ///   simple-integer '_' simple-integer
1076 ///   simple-integer '.' simple-integer '.' simple-integer
1077 ///   simple-integer '_' simple-integer '_' simple-integer
1078 VersionTuple Parser::ParseVersionTuple(SourceRange &Range) {
1079   Range = SourceRange(Tok.getLocation(), Tok.getEndLoc());
1080 
1081   if (!Tok.is(tok::numeric_constant)) {
1082     Diag(Tok, diag::err_expected_version);
1083     SkipUntil(tok::comma, tok::r_paren,
1084               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1085     return VersionTuple();
1086   }
1087 
1088   // Parse the major (and possibly minor and subminor) versions, which
1089   // are stored in the numeric constant. We utilize a quirk of the
1090   // lexer, which is that it handles something like 1.2.3 as a single
1091   // numeric constant, rather than two separate tokens.
1092   SmallString<512> Buffer;
1093   Buffer.resize(Tok.getLength()+1);
1094   const char *ThisTokBegin = &Buffer[0];
1095 
1096   // Get the spelling of the token, which eliminates trigraphs, etc.
1097   bool Invalid = false;
1098   unsigned ActualLength = PP.getSpelling(Tok, ThisTokBegin, &Invalid);
1099   if (Invalid)
1100     return VersionTuple();
1101 
1102   // Parse the major version.
1103   unsigned AfterMajor = 0;
1104   unsigned Major = 0;
1105   while (AfterMajor < ActualLength && isDigit(ThisTokBegin[AfterMajor])) {
1106     Major = Major * 10 + ThisTokBegin[AfterMajor] - '0';
1107     ++AfterMajor;
1108   }
1109 
1110   if (AfterMajor == 0) {
1111     Diag(Tok, diag::err_expected_version);
1112     SkipUntil(tok::comma, tok::r_paren,
1113               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1114     return VersionTuple();
1115   }
1116 
1117   if (AfterMajor == ActualLength) {
1118     ConsumeToken();
1119 
1120     // We only had a single version component.
1121     if (Major == 0) {
1122       Diag(Tok, diag::err_zero_version);
1123       return VersionTuple();
1124     }
1125 
1126     return VersionTuple(Major);
1127   }
1128 
1129   const char AfterMajorSeparator = ThisTokBegin[AfterMajor];
1130   if (!VersionNumberSeparator(AfterMajorSeparator)
1131       || (AfterMajor + 1 == ActualLength)) {
1132     Diag(Tok, diag::err_expected_version);
1133     SkipUntil(tok::comma, tok::r_paren,
1134               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1135     return VersionTuple();
1136   }
1137 
1138   // Parse the minor version.
1139   unsigned AfterMinor = AfterMajor + 1;
1140   unsigned Minor = 0;
1141   while (AfterMinor < ActualLength && isDigit(ThisTokBegin[AfterMinor])) {
1142     Minor = Minor * 10 + ThisTokBegin[AfterMinor] - '0';
1143     ++AfterMinor;
1144   }
1145 
1146   if (AfterMinor == ActualLength) {
1147     ConsumeToken();
1148 
1149     // We had major.minor.
1150     if (Major == 0 && Minor == 0) {
1151       Diag(Tok, diag::err_zero_version);
1152       return VersionTuple();
1153     }
1154 
1155     return VersionTuple(Major, Minor);
1156   }
1157 
1158   const char AfterMinorSeparator = ThisTokBegin[AfterMinor];
1159   // If what follows is not a '.' or '_', we have a problem.
1160   if (!VersionNumberSeparator(AfterMinorSeparator)) {
1161     Diag(Tok, diag::err_expected_version);
1162     SkipUntil(tok::comma, tok::r_paren,
1163               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1164     return VersionTuple();
1165   }
1166 
1167   // Warn if separators, be it '.' or '_', do not match.
1168   if (AfterMajorSeparator != AfterMinorSeparator)
1169     Diag(Tok, diag::warn_expected_consistent_version_separator);
1170 
1171   // Parse the subminor version.
1172   unsigned AfterSubminor = AfterMinor + 1;
1173   unsigned Subminor = 0;
1174   while (AfterSubminor < ActualLength && isDigit(ThisTokBegin[AfterSubminor])) {
1175     Subminor = Subminor * 10 + ThisTokBegin[AfterSubminor] - '0';
1176     ++AfterSubminor;
1177   }
1178 
1179   if (AfterSubminor != ActualLength) {
1180     Diag(Tok, diag::err_expected_version);
1181     SkipUntil(tok::comma, tok::r_paren,
1182               StopAtSemi | StopBeforeMatch | StopAtCodeCompletion);
1183     return VersionTuple();
1184   }
1185   ConsumeToken();
1186   return VersionTuple(Major, Minor, Subminor);
1187 }
1188 
1189 /// Parse the contents of the "availability" attribute.
1190 ///
1191 /// availability-attribute:
1192 ///   'availability' '(' platform ',' opt-strict version-arg-list,
1193 ///                      opt-replacement, opt-message')'
1194 ///
1195 /// platform:
1196 ///   identifier
1197 ///
1198 /// opt-strict:
1199 ///   'strict' ','
1200 ///
1201 /// version-arg-list:
1202 ///   version-arg
1203 ///   version-arg ',' version-arg-list
1204 ///
1205 /// version-arg:
1206 ///   'introduced' '=' version
1207 ///   'deprecated' '=' version
1208 ///   'obsoleted' = version
1209 ///   'unavailable'
1210 /// opt-replacement:
1211 ///   'replacement' '=' <string>
1212 /// opt-message:
1213 ///   'message' '=' <string>
1214 void Parser::ParseAvailabilityAttribute(
1215     IdentifierInfo &Availability, SourceLocation AvailabilityLoc,
1216     ParsedAttributes &attrs, SourceLocation *endLoc, IdentifierInfo *ScopeName,
1217     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1218   enum { Introduced, Deprecated, Obsoleted, Unknown };
1219   AvailabilityChange Changes[Unknown];
1220   ExprResult MessageExpr, ReplacementExpr;
1221 
1222   // Opening '('.
1223   BalancedDelimiterTracker T(*this, tok::l_paren);
1224   if (T.consumeOpen()) {
1225     Diag(Tok, diag::err_expected) << tok::l_paren;
1226     return;
1227   }
1228 
1229   // Parse the platform name.
1230   if (Tok.isNot(tok::identifier)) {
1231     Diag(Tok, diag::err_availability_expected_platform);
1232     SkipUntil(tok::r_paren, StopAtSemi);
1233     return;
1234   }
1235   IdentifierLoc *Platform = ParseIdentifierLoc();
1236   if (const IdentifierInfo *const Ident = Platform->Ident) {
1237     // Canonicalize platform name from "macosx" to "macos".
1238     if (Ident->getName() == "macosx")
1239       Platform->Ident = PP.getIdentifierInfo("macos");
1240     // Canonicalize platform name from "macosx_app_extension" to
1241     // "macos_app_extension".
1242     else if (Ident->getName() == "macosx_app_extension")
1243       Platform->Ident = PP.getIdentifierInfo("macos_app_extension");
1244     else
1245       Platform->Ident = PP.getIdentifierInfo(
1246           AvailabilityAttr::canonicalizePlatformName(Ident->getName()));
1247   }
1248 
1249   // Parse the ',' following the platform name.
1250   if (ExpectAndConsume(tok::comma)) {
1251     SkipUntil(tok::r_paren, StopAtSemi);
1252     return;
1253   }
1254 
1255   // If we haven't grabbed the pointers for the identifiers
1256   // "introduced", "deprecated", and "obsoleted", do so now.
1257   if (!Ident_introduced) {
1258     Ident_introduced = PP.getIdentifierInfo("introduced");
1259     Ident_deprecated = PP.getIdentifierInfo("deprecated");
1260     Ident_obsoleted = PP.getIdentifierInfo("obsoleted");
1261     Ident_unavailable = PP.getIdentifierInfo("unavailable");
1262     Ident_message = PP.getIdentifierInfo("message");
1263     Ident_strict = PP.getIdentifierInfo("strict");
1264     Ident_replacement = PP.getIdentifierInfo("replacement");
1265   }
1266 
1267   // Parse the optional "strict", the optional "replacement" and the set of
1268   // introductions/deprecations/removals.
1269   SourceLocation UnavailableLoc, StrictLoc;
1270   do {
1271     if (Tok.isNot(tok::identifier)) {
1272       Diag(Tok, diag::err_availability_expected_change);
1273       SkipUntil(tok::r_paren, StopAtSemi);
1274       return;
1275     }
1276     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1277     SourceLocation KeywordLoc = ConsumeToken();
1278 
1279     if (Keyword == Ident_strict) {
1280       if (StrictLoc.isValid()) {
1281         Diag(KeywordLoc, diag::err_availability_redundant)
1282           << Keyword << SourceRange(StrictLoc);
1283       }
1284       StrictLoc = KeywordLoc;
1285       continue;
1286     }
1287 
1288     if (Keyword == Ident_unavailable) {
1289       if (UnavailableLoc.isValid()) {
1290         Diag(KeywordLoc, diag::err_availability_redundant)
1291           << Keyword << SourceRange(UnavailableLoc);
1292       }
1293       UnavailableLoc = KeywordLoc;
1294       continue;
1295     }
1296 
1297     if (Keyword == Ident_deprecated && Platform->Ident &&
1298         Platform->Ident->isStr("swift")) {
1299       // For swift, we deprecate for all versions.
1300       if (Changes[Deprecated].KeywordLoc.isValid()) {
1301         Diag(KeywordLoc, diag::err_availability_redundant)
1302           << Keyword
1303           << SourceRange(Changes[Deprecated].KeywordLoc);
1304       }
1305 
1306       Changes[Deprecated].KeywordLoc = KeywordLoc;
1307       // Use a fake version here.
1308       Changes[Deprecated].Version = VersionTuple(1);
1309       continue;
1310     }
1311 
1312     if (Tok.isNot(tok::equal)) {
1313       Diag(Tok, diag::err_expected_after) << Keyword << tok::equal;
1314       SkipUntil(tok::r_paren, StopAtSemi);
1315       return;
1316     }
1317     ConsumeToken();
1318     if (Keyword == Ident_message || Keyword == Ident_replacement) {
1319       if (!isTokenStringLiteral()) {
1320         Diag(Tok, diag::err_expected_string_literal)
1321           << /*Source='availability attribute'*/2;
1322         SkipUntil(tok::r_paren, StopAtSemi);
1323         return;
1324       }
1325       if (Keyword == Ident_message) {
1326         MessageExpr = ParseUnevaluatedStringLiteralExpression();
1327         break;
1328       } else {
1329         ReplacementExpr = ParseUnevaluatedStringLiteralExpression();
1330         continue;
1331       }
1332     }
1333 
1334     // Special handling of 'NA' only when applied to introduced or
1335     // deprecated.
1336     if ((Keyword == Ident_introduced || Keyword == Ident_deprecated) &&
1337         Tok.is(tok::identifier)) {
1338       IdentifierInfo *NA = Tok.getIdentifierInfo();
1339       if (NA->getName() == "NA") {
1340         ConsumeToken();
1341         if (Keyword == Ident_introduced)
1342           UnavailableLoc = KeywordLoc;
1343         continue;
1344       }
1345     }
1346 
1347     SourceRange VersionRange;
1348     VersionTuple Version = ParseVersionTuple(VersionRange);
1349 
1350     if (Version.empty()) {
1351       SkipUntil(tok::r_paren, StopAtSemi);
1352       return;
1353     }
1354 
1355     unsigned Index;
1356     if (Keyword == Ident_introduced)
1357       Index = Introduced;
1358     else if (Keyword == Ident_deprecated)
1359       Index = Deprecated;
1360     else if (Keyword == Ident_obsoleted)
1361       Index = Obsoleted;
1362     else
1363       Index = Unknown;
1364 
1365     if (Index < Unknown) {
1366       if (!Changes[Index].KeywordLoc.isInvalid()) {
1367         Diag(KeywordLoc, diag::err_availability_redundant)
1368           << Keyword
1369           << SourceRange(Changes[Index].KeywordLoc,
1370                          Changes[Index].VersionRange.getEnd());
1371       }
1372 
1373       Changes[Index].KeywordLoc = KeywordLoc;
1374       Changes[Index].Version = Version;
1375       Changes[Index].VersionRange = VersionRange;
1376     } else {
1377       Diag(KeywordLoc, diag::err_availability_unknown_change)
1378         << Keyword << VersionRange;
1379     }
1380 
1381   } while (TryConsumeToken(tok::comma));
1382 
1383   // Closing ')'.
1384   if (T.consumeClose())
1385     return;
1386 
1387   if (endLoc)
1388     *endLoc = T.getCloseLocation();
1389 
1390   // The 'unavailable' availability cannot be combined with any other
1391   // availability changes. Make sure that hasn't happened.
1392   if (UnavailableLoc.isValid()) {
1393     bool Complained = false;
1394     for (unsigned Index = Introduced; Index != Unknown; ++Index) {
1395       if (Changes[Index].KeywordLoc.isValid()) {
1396         if (!Complained) {
1397           Diag(UnavailableLoc, diag::warn_availability_and_unavailable)
1398             << SourceRange(Changes[Index].KeywordLoc,
1399                            Changes[Index].VersionRange.getEnd());
1400           Complained = true;
1401         }
1402 
1403         // Clear out the availability.
1404         Changes[Index] = AvailabilityChange();
1405       }
1406     }
1407   }
1408 
1409   // Record this attribute
1410   attrs.addNew(&Availability,
1411                SourceRange(AvailabilityLoc, T.getCloseLocation()), ScopeName,
1412                ScopeLoc, Platform, Changes[Introduced], Changes[Deprecated],
1413                Changes[Obsoleted], UnavailableLoc, MessageExpr.get(), Form,
1414                StrictLoc, ReplacementExpr.get());
1415 }
1416 
1417 /// Parse the contents of the "external_source_symbol" attribute.
1418 ///
1419 /// external-source-symbol-attribute:
1420 ///   'external_source_symbol' '(' keyword-arg-list ')'
1421 ///
1422 /// keyword-arg-list:
1423 ///   keyword-arg
1424 ///   keyword-arg ',' keyword-arg-list
1425 ///
1426 /// keyword-arg:
1427 ///   'language' '=' <string>
1428 ///   'defined_in' '=' <string>
1429 ///   'USR' '=' <string>
1430 ///   'generated_declaration'
1431 void Parser::ParseExternalSourceSymbolAttribute(
1432     IdentifierInfo &ExternalSourceSymbol, SourceLocation Loc,
1433     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1434     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1435   // Opening '('.
1436   BalancedDelimiterTracker T(*this, tok::l_paren);
1437   if (T.expectAndConsume())
1438     return;
1439 
1440   // Initialize the pointers for the keyword identifiers when required.
1441   if (!Ident_language) {
1442     Ident_language = PP.getIdentifierInfo("language");
1443     Ident_defined_in = PP.getIdentifierInfo("defined_in");
1444     Ident_generated_declaration = PP.getIdentifierInfo("generated_declaration");
1445     Ident_USR = PP.getIdentifierInfo("USR");
1446   }
1447 
1448   ExprResult Language;
1449   bool HasLanguage = false;
1450   ExprResult DefinedInExpr;
1451   bool HasDefinedIn = false;
1452   IdentifierLoc *GeneratedDeclaration = nullptr;
1453   ExprResult USR;
1454   bool HasUSR = false;
1455 
1456   // Parse the language/defined_in/generated_declaration keywords
1457   do {
1458     if (Tok.isNot(tok::identifier)) {
1459       Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1460       SkipUntil(tok::r_paren, StopAtSemi);
1461       return;
1462     }
1463 
1464     SourceLocation KeywordLoc = Tok.getLocation();
1465     IdentifierInfo *Keyword = Tok.getIdentifierInfo();
1466     if (Keyword == Ident_generated_declaration) {
1467       if (GeneratedDeclaration) {
1468         Diag(Tok, diag::err_external_source_symbol_duplicate_clause) << Keyword;
1469         SkipUntil(tok::r_paren, StopAtSemi);
1470         return;
1471       }
1472       GeneratedDeclaration = ParseIdentifierLoc();
1473       continue;
1474     }
1475 
1476     if (Keyword != Ident_language && Keyword != Ident_defined_in &&
1477         Keyword != Ident_USR) {
1478       Diag(Tok, diag::err_external_source_symbol_expected_keyword);
1479       SkipUntil(tok::r_paren, StopAtSemi);
1480       return;
1481     }
1482 
1483     ConsumeToken();
1484     if (ExpectAndConsume(tok::equal, diag::err_expected_after,
1485                          Keyword->getName())) {
1486       SkipUntil(tok::r_paren, StopAtSemi);
1487       return;
1488     }
1489 
1490     bool HadLanguage = HasLanguage, HadDefinedIn = HasDefinedIn,
1491          HadUSR = HasUSR;
1492     if (Keyword == Ident_language)
1493       HasLanguage = true;
1494     else if (Keyword == Ident_USR)
1495       HasUSR = true;
1496     else
1497       HasDefinedIn = true;
1498 
1499     if (!isTokenStringLiteral()) {
1500       Diag(Tok, diag::err_expected_string_literal)
1501           << /*Source='external_source_symbol attribute'*/ 3
1502           << /*language | source container | USR*/ (
1503                  Keyword == Ident_language
1504                      ? 0
1505                      : (Keyword == Ident_defined_in ? 1 : 2));
1506       SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
1507       continue;
1508     }
1509     if (Keyword == Ident_language) {
1510       if (HadLanguage) {
1511         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1512             << Keyword;
1513         ParseUnevaluatedStringLiteralExpression();
1514         continue;
1515       }
1516       Language = ParseUnevaluatedStringLiteralExpression();
1517     } else if (Keyword == Ident_USR) {
1518       if (HadUSR) {
1519         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1520             << Keyword;
1521         ParseUnevaluatedStringLiteralExpression();
1522         continue;
1523       }
1524       USR = ParseUnevaluatedStringLiteralExpression();
1525     } else {
1526       assert(Keyword == Ident_defined_in && "Invalid clause keyword!");
1527       if (HadDefinedIn) {
1528         Diag(KeywordLoc, diag::err_external_source_symbol_duplicate_clause)
1529             << Keyword;
1530         ParseUnevaluatedStringLiteralExpression();
1531         continue;
1532       }
1533       DefinedInExpr = ParseUnevaluatedStringLiteralExpression();
1534     }
1535   } while (TryConsumeToken(tok::comma));
1536 
1537   // Closing ')'.
1538   if (T.consumeClose())
1539     return;
1540   if (EndLoc)
1541     *EndLoc = T.getCloseLocation();
1542 
1543   ArgsUnion Args[] = {Language.get(), DefinedInExpr.get(), GeneratedDeclaration,
1544                       USR.get()};
1545   Attrs.addNew(&ExternalSourceSymbol, SourceRange(Loc, T.getCloseLocation()),
1546                ScopeName, ScopeLoc, Args, std::size(Args), Form);
1547 }
1548 
1549 /// Parse the contents of the "objc_bridge_related" attribute.
1550 /// objc_bridge_related '(' related_class ',' opt-class_method ',' opt-instance_method ')'
1551 /// related_class:
1552 ///     Identifier
1553 ///
1554 /// opt-class_method:
1555 ///     Identifier: | <empty>
1556 ///
1557 /// opt-instance_method:
1558 ///     Identifier | <empty>
1559 ///
1560 void Parser::ParseObjCBridgeRelatedAttribute(
1561     IdentifierInfo &ObjCBridgeRelated, SourceLocation ObjCBridgeRelatedLoc,
1562     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1563     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1564   // Opening '('.
1565   BalancedDelimiterTracker T(*this, tok::l_paren);
1566   if (T.consumeOpen()) {
1567     Diag(Tok, diag::err_expected) << tok::l_paren;
1568     return;
1569   }
1570 
1571   // Parse the related class name.
1572   if (Tok.isNot(tok::identifier)) {
1573     Diag(Tok, diag::err_objcbridge_related_expected_related_class);
1574     SkipUntil(tok::r_paren, StopAtSemi);
1575     return;
1576   }
1577   IdentifierLoc *RelatedClass = ParseIdentifierLoc();
1578   if (ExpectAndConsume(tok::comma)) {
1579     SkipUntil(tok::r_paren, StopAtSemi);
1580     return;
1581   }
1582 
1583   // Parse class method name.  It's non-optional in the sense that a trailing
1584   // comma is required, but it can be the empty string, and then we record a
1585   // nullptr.
1586   IdentifierLoc *ClassMethod = nullptr;
1587   if (Tok.is(tok::identifier)) {
1588     ClassMethod = ParseIdentifierLoc();
1589     if (!TryConsumeToken(tok::colon)) {
1590       Diag(Tok, diag::err_objcbridge_related_selector_name);
1591       SkipUntil(tok::r_paren, StopAtSemi);
1592       return;
1593     }
1594   }
1595   if (!TryConsumeToken(tok::comma)) {
1596     if (Tok.is(tok::colon))
1597       Diag(Tok, diag::err_objcbridge_related_selector_name);
1598     else
1599       Diag(Tok, diag::err_expected) << tok::comma;
1600     SkipUntil(tok::r_paren, StopAtSemi);
1601     return;
1602   }
1603 
1604   // Parse instance method name.  Also non-optional but empty string is
1605   // permitted.
1606   IdentifierLoc *InstanceMethod = nullptr;
1607   if (Tok.is(tok::identifier))
1608     InstanceMethod = ParseIdentifierLoc();
1609   else if (Tok.isNot(tok::r_paren)) {
1610     Diag(Tok, diag::err_expected) << tok::r_paren;
1611     SkipUntil(tok::r_paren, StopAtSemi);
1612     return;
1613   }
1614 
1615   // Closing ')'.
1616   if (T.consumeClose())
1617     return;
1618 
1619   if (EndLoc)
1620     *EndLoc = T.getCloseLocation();
1621 
1622   // Record this attribute
1623   Attrs.addNew(&ObjCBridgeRelated,
1624                SourceRange(ObjCBridgeRelatedLoc, T.getCloseLocation()),
1625                ScopeName, ScopeLoc, RelatedClass, ClassMethod, InstanceMethod,
1626                Form);
1627 }
1628 
1629 void Parser::ParseSwiftNewTypeAttribute(
1630     IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
1631     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1632     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1633   BalancedDelimiterTracker T(*this, tok::l_paren);
1634 
1635   // Opening '('
1636   if (T.consumeOpen()) {
1637     Diag(Tok, diag::err_expected) << tok::l_paren;
1638     return;
1639   }
1640 
1641   if (Tok.is(tok::r_paren)) {
1642     Diag(Tok.getLocation(), diag::err_argument_required_after_attribute);
1643     T.consumeClose();
1644     return;
1645   }
1646   if (Tok.isNot(tok::kw_struct) && Tok.isNot(tok::kw_enum)) {
1647     Diag(Tok, diag::warn_attribute_type_not_supported)
1648         << &AttrName << Tok.getIdentifierInfo();
1649     if (!isTokenSpecial())
1650       ConsumeToken();
1651     T.consumeClose();
1652     return;
1653   }
1654 
1655   auto *SwiftType = IdentifierLoc::create(Actions.Context, Tok.getLocation(),
1656                                           Tok.getIdentifierInfo());
1657   ConsumeToken();
1658 
1659   // Closing ')'
1660   if (T.consumeClose())
1661     return;
1662   if (EndLoc)
1663     *EndLoc = T.getCloseLocation();
1664 
1665   ArgsUnion Args[] = {SwiftType};
1666   Attrs.addNew(&AttrName, SourceRange(AttrNameLoc, T.getCloseLocation()),
1667                ScopeName, ScopeLoc, Args, std::size(Args), Form);
1668 }
1669 
1670 void Parser::ParseTypeTagForDatatypeAttribute(
1671     IdentifierInfo &AttrName, SourceLocation AttrNameLoc,
1672     ParsedAttributes &Attrs, SourceLocation *EndLoc, IdentifierInfo *ScopeName,
1673     SourceLocation ScopeLoc, ParsedAttr::Form Form) {
1674   assert(Tok.is(tok::l_paren) && "Attribute arg list not starting with '('");
1675 
1676   BalancedDelimiterTracker T(*this, tok::l_paren);
1677   T.consumeOpen();
1678 
1679   if (Tok.isNot(tok::identifier)) {
1680     Diag(Tok, diag::err_expected) << tok::identifier;
1681     T.skipToEnd();
1682     return;
1683   }
1684   IdentifierLoc *ArgumentKind = ParseIdentifierLoc();
1685 
1686   if (ExpectAndConsume(tok::comma)) {
1687     T.skipToEnd();
1688     return;
1689   }
1690 
1691   SourceRange MatchingCTypeRange;
1692   TypeResult MatchingCType = ParseTypeName(&MatchingCTypeRange);
1693   if (MatchingCType.isInvalid()) {
1694     T.skipToEnd();
1695     return;
1696   }
1697 
1698   bool LayoutCompatible = false;
1699   bool MustBeNull = false;
1700   while (TryConsumeToken(tok::comma)) {
1701     if (Tok.isNot(tok::identifier)) {
1702       Diag(Tok, diag::err_expected) << tok::identifier;
1703       T.skipToEnd();
1704       return;
1705     }
1706     IdentifierInfo *Flag = Tok.getIdentifierInfo();
1707     if (Flag->isStr("layout_compatible"))
1708       LayoutCompatible = true;
1709     else if (Flag->isStr("must_be_null"))
1710       MustBeNull = true;
1711     else {
1712       Diag(Tok, diag::err_type_safety_unknown_flag) << Flag;
1713       T.skipToEnd();
1714       return;
1715     }
1716     ConsumeToken(); // consume flag
1717   }
1718 
1719   if (!T.consumeClose()) {
1720     Attrs.addNewTypeTagForDatatype(&AttrName, AttrNameLoc, ScopeName, ScopeLoc,
1721                                    ArgumentKind, MatchingCType.get(),
1722                                    LayoutCompatible, MustBeNull, Form);
1723   }
1724 
1725   if (EndLoc)
1726     *EndLoc = T.getCloseLocation();
1727 }
1728 
1729 /// DiagnoseProhibitedCXX11Attribute - We have found the opening square brackets
1730 /// of a C++11 attribute-specifier in a location where an attribute is not
1731 /// permitted. By C++11 [dcl.attr.grammar]p6, this is ill-formed. Diagnose this
1732 /// situation.
1733 ///
1734 /// \return \c true if we skipped an attribute-like chunk of tokens, \c false if
1735 /// this doesn't appear to actually be an attribute-specifier, and the caller
1736 /// should try to parse it.
1737 bool Parser::DiagnoseProhibitedCXX11Attribute() {
1738   assert(Tok.is(tok::l_square) && NextToken().is(tok::l_square));
1739 
1740   switch (isCXX11AttributeSpecifier(/*Disambiguate*/true)) {
1741   case CAK_NotAttributeSpecifier:
1742     // No diagnostic: we're in Obj-C++11 and this is not actually an attribute.
1743     return false;
1744 
1745   case CAK_InvalidAttributeSpecifier:
1746     Diag(Tok.getLocation(), diag::err_l_square_l_square_not_attribute);
1747     return false;
1748 
1749   case CAK_AttributeSpecifier:
1750     // Parse and discard the attributes.
1751     SourceLocation BeginLoc = ConsumeBracket();
1752     ConsumeBracket();
1753     SkipUntil(tok::r_square);
1754     assert(Tok.is(tok::r_square) && "isCXX11AttributeSpecifier lied");
1755     SourceLocation EndLoc = ConsumeBracket();
1756     Diag(BeginLoc, diag::err_attributes_not_allowed)
1757       << SourceRange(BeginLoc, EndLoc);
1758     return true;
1759   }
1760   llvm_unreachable("All cases handled above.");
1761 }
1762 
1763 /// We have found the opening square brackets of a C++11
1764 /// attribute-specifier in a location where an attribute is not permitted, but
1765 /// we know where the attributes ought to be written. Parse them anyway, and
1766 /// provide a fixit moving them to the right place.
1767 void Parser::DiagnoseMisplacedCXX11Attribute(ParsedAttributes &Attrs,
1768                                              SourceLocation CorrectLocation) {
1769   assert((Tok.is(tok::l_square) && NextToken().is(tok::l_square)) ||
1770          Tok.is(tok::kw_alignas) || Tok.isRegularKeywordAttribute());
1771 
1772   // Consume the attributes.
1773   auto Keyword =
1774       Tok.isRegularKeywordAttribute() ? Tok.getIdentifierInfo() : nullptr;
1775   SourceLocation Loc = Tok.getLocation();
1776   ParseCXX11Attributes(Attrs);
1777   CharSourceRange AttrRange(SourceRange(Loc, Attrs.Range.getEnd()), true);
1778   // FIXME: use err_attributes_misplaced
1779   (Keyword ? Diag(Loc, diag::err_keyword_not_allowed) << Keyword
1780            : Diag(Loc, diag::err_attributes_not_allowed))
1781       << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1782       << FixItHint::CreateRemoval(AttrRange);
1783 }
1784 
1785 void Parser::DiagnoseProhibitedAttributes(
1786     const ParsedAttributesView &Attrs, const SourceLocation CorrectLocation) {
1787   auto *FirstAttr = Attrs.empty() ? nullptr : &Attrs.front();
1788   if (CorrectLocation.isValid()) {
1789     CharSourceRange AttrRange(Attrs.Range, true);
1790     (FirstAttr && FirstAttr->isRegularKeywordAttribute()
1791          ? Diag(CorrectLocation, diag::err_keyword_misplaced) << FirstAttr
1792          : Diag(CorrectLocation, diag::err_attributes_misplaced))
1793         << FixItHint::CreateInsertionFromRange(CorrectLocation, AttrRange)
1794         << FixItHint::CreateRemoval(AttrRange);
1795   } else {
1796     const SourceRange &Range = Attrs.Range;
1797     (FirstAttr && FirstAttr->isRegularKeywordAttribute()
1798          ? Diag(Range.getBegin(), diag::err_keyword_not_allowed) << FirstAttr
1799          : Diag(Range.getBegin(), diag::err_attributes_not_allowed))
1800         << Range;
1801   }
1802 }
1803 
1804 void Parser::ProhibitCXX11Attributes(ParsedAttributes &Attrs,
1805                                      unsigned AttrDiagID,
1806                                      unsigned KeywordDiagID,
1807                                      bool DiagnoseEmptyAttrs,
1808                                      bool WarnOnUnknownAttrs) {
1809 
1810   if (DiagnoseEmptyAttrs && Attrs.empty() && Attrs.Range.isValid()) {
1811     // An attribute list has been parsed, but it was empty.
1812     // This is the case for [[]].
1813     const auto &LangOpts = getLangOpts();
1814     auto &SM = PP.getSourceManager();
1815     Token FirstLSquare;
1816     Lexer::getRawToken(Attrs.Range.getBegin(), FirstLSquare, SM, LangOpts);
1817 
1818     if (FirstLSquare.is(tok::l_square)) {
1819       std::optional<Token> SecondLSquare =
1820           Lexer::findNextToken(FirstLSquare.getLocation(), SM, LangOpts);
1821 
1822       if (SecondLSquare && SecondLSquare->is(tok::l_square)) {
1823         // The attribute range starts with [[, but is empty. So this must
1824         // be [[]], which we are supposed to diagnose because
1825         // DiagnoseEmptyAttrs is true.
1826         Diag(Attrs.Range.getBegin(), AttrDiagID) << Attrs.Range;
1827         return;
1828       }
1829     }
1830   }
1831 
1832   for (const ParsedAttr &AL : Attrs) {
1833     if (AL.isRegularKeywordAttribute()) {
1834       Diag(AL.getLoc(), KeywordDiagID) << AL;
1835       AL.setInvalid();
1836       continue;
1837     }
1838     if (!AL.isStandardAttributeSyntax())
1839       continue;
1840     if (AL.getKind() == ParsedAttr::UnknownAttribute) {
1841       if (WarnOnUnknownAttrs)
1842         Diag(AL.getLoc(), diag::warn_unknown_attribute_ignored)
1843             << AL << AL.getRange();
1844     } else {
1845       Diag(AL.getLoc(), AttrDiagID) << AL;
1846       AL.setInvalid();
1847     }
1848   }
1849 }
1850 
1851 void Parser::DiagnoseCXX11AttributeExtension(ParsedAttributes &Attrs) {
1852   for (const ParsedAttr &PA : Attrs) {
1853     if (PA.isStandardAttributeSyntax() || PA.isRegularKeywordAttribute())
1854       Diag(PA.getLoc(), diag::ext_cxx11_attr_placement)
1855           << PA << PA.isRegularKeywordAttribute() << PA.getRange();
1856   }
1857 }
1858 
1859 // Usually, `__attribute__((attrib)) class Foo {} var` means that attribute
1860 // applies to var, not the type Foo.
1861 // As an exception to the rule, __declspec(align(...)) before the
1862 // class-key affects the type instead of the variable.
1863 // Also, Microsoft-style [attributes] seem to affect the type instead of the
1864 // variable.
1865 // This function moves attributes that should apply to the type off DS to Attrs.
1866 void Parser::stripTypeAttributesOffDeclSpec(ParsedAttributes &Attrs,
1867                                             DeclSpec &DS,
1868                                             Sema::TagUseKind TUK) {
1869   if (TUK == Sema::TUK_Reference)
1870     return;
1871 
1872   llvm::SmallVector<ParsedAttr *, 1> ToBeMoved;
1873 
1874   for (ParsedAttr &AL : DS.getAttributes()) {
1875     if ((AL.getKind() == ParsedAttr::AT_Aligned &&
1876          AL.isDeclspecAttribute()) ||
1877         AL.isMicrosoftAttribute())
1878       ToBeMoved.push_back(&AL);
1879   }
1880 
1881   for (ParsedAttr *AL : ToBeMoved) {
1882     DS.getAttributes().remove(AL);
1883     Attrs.addAtEnd(AL);
1884   }
1885 }
1886 
1887 /// ParseDeclaration - Parse a full 'declaration', which consists of
1888 /// declaration-specifiers, some number of declarators, and a semicolon.
1889 /// 'Context' should be a DeclaratorContext value.  This returns the
1890 /// location of the semicolon in DeclEnd.
1891 ///
1892 ///       declaration: [C99 6.7]
1893 ///         block-declaration ->
1894 ///           simple-declaration
1895 ///           others                   [FIXME]
1896 /// [C++]   template-declaration
1897 /// [C++]   namespace-definition
1898 /// [C++]   using-directive
1899 /// [C++]   using-declaration
1900 /// [C++11/C11] static_assert-declaration
1901 ///         others... [FIXME]
1902 ///
1903 Parser::DeclGroupPtrTy Parser::ParseDeclaration(DeclaratorContext Context,
1904                                                 SourceLocation &DeclEnd,
1905                                                 ParsedAttributes &DeclAttrs,
1906                                                 ParsedAttributes &DeclSpecAttrs,
1907                                                 SourceLocation *DeclSpecStart) {
1908   ParenBraceBracketBalancer BalancerRAIIObj(*this);
1909   // Must temporarily exit the objective-c container scope for
1910   // parsing c none objective-c decls.
1911   ObjCDeclContextSwitch ObjCDC(*this);
1912 
1913   Decl *SingleDecl = nullptr;
1914   switch (Tok.getKind()) {
1915   case tok::kw_template:
1916   case tok::kw_export:
1917     ProhibitAttributes(DeclAttrs);
1918     ProhibitAttributes(DeclSpecAttrs);
1919     SingleDecl =
1920         ParseDeclarationStartingWithTemplate(Context, DeclEnd, DeclAttrs);
1921     break;
1922   case tok::kw_inline:
1923     // Could be the start of an inline namespace. Allowed as an ext in C++03.
1924     if (getLangOpts().CPlusPlus && NextToken().is(tok::kw_namespace)) {
1925       ProhibitAttributes(DeclAttrs);
1926       ProhibitAttributes(DeclSpecAttrs);
1927       SourceLocation InlineLoc = ConsumeToken();
1928       return ParseNamespace(Context, DeclEnd, InlineLoc);
1929     }
1930     return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs,
1931                                   true, nullptr, DeclSpecStart);
1932 
1933   case tok::kw_cbuffer:
1934   case tok::kw_tbuffer:
1935     SingleDecl = ParseHLSLBuffer(DeclEnd);
1936     break;
1937   case tok::kw_namespace:
1938     ProhibitAttributes(DeclAttrs);
1939     ProhibitAttributes(DeclSpecAttrs);
1940     return ParseNamespace(Context, DeclEnd);
1941   case tok::kw_using: {
1942     ParsedAttributes Attrs(AttrFactory);
1943     takeAndConcatenateAttrs(DeclAttrs, DeclSpecAttrs, Attrs);
1944     return ParseUsingDirectiveOrDeclaration(Context, ParsedTemplateInfo(),
1945                                             DeclEnd, Attrs);
1946   }
1947   case tok::kw_static_assert:
1948   case tok::kw__Static_assert:
1949     ProhibitAttributes(DeclAttrs);
1950     ProhibitAttributes(DeclSpecAttrs);
1951     SingleDecl = ParseStaticAssertDeclaration(DeclEnd);
1952     break;
1953   default:
1954     return ParseSimpleDeclaration(Context, DeclEnd, DeclAttrs, DeclSpecAttrs,
1955                                   true, nullptr, DeclSpecStart);
1956   }
1957 
1958   // This routine returns a DeclGroup, if the thing we parsed only contains a
1959   // single decl, convert it now.
1960   return Actions.ConvertDeclToDeclGroup(SingleDecl);
1961 }
1962 
1963 ///       simple-declaration: [C99 6.7: declaration] [C++ 7p1: dcl.dcl]
1964 ///         declaration-specifiers init-declarator-list[opt] ';'
1965 /// [C++11] attribute-specifier-seq decl-specifier-seq[opt]
1966 ///             init-declarator-list ';'
1967 ///[C90/C++]init-declarator-list ';'                             [TODO]
1968 /// [OMP]   threadprivate-directive
1969 /// [OMP]   allocate-directive                                   [TODO]
1970 ///
1971 ///       for-range-declaration: [C++11 6.5p1: stmt.ranged]
1972 ///         attribute-specifier-seq[opt] type-specifier-seq declarator
1973 ///
1974 /// If RequireSemi is false, this does not check for a ';' at the end of the
1975 /// declaration.  If it is true, it checks for and eats it.
1976 ///
1977 /// If FRI is non-null, we might be parsing a for-range-declaration instead
1978 /// of a simple-declaration. If we find that we are, we also parse the
1979 /// for-range-initializer, and place it here.
1980 ///
1981 /// DeclSpecStart is used when decl-specifiers are parsed before parsing
1982 /// the Declaration. The SourceLocation for this Decl is set to
1983 /// DeclSpecStart if DeclSpecStart is non-null.
1984 Parser::DeclGroupPtrTy Parser::ParseSimpleDeclaration(
1985     DeclaratorContext Context, SourceLocation &DeclEnd,
1986     ParsedAttributes &DeclAttrs, ParsedAttributes &DeclSpecAttrs,
1987     bool RequireSemi, ForRangeInit *FRI, SourceLocation *DeclSpecStart) {
1988   // Need to retain these for diagnostics before we add them to the DeclSepc.
1989   ParsedAttributesView OriginalDeclSpecAttrs;
1990   OriginalDeclSpecAttrs.addAll(DeclSpecAttrs.begin(), DeclSpecAttrs.end());
1991   OriginalDeclSpecAttrs.Range = DeclSpecAttrs.Range;
1992 
1993   // Parse the common declaration-specifiers piece.
1994   ParsingDeclSpec DS(*this);
1995   DS.takeAttributesFrom(DeclSpecAttrs);
1996 
1997   DeclSpecContext DSContext = getDeclSpecContextFromDeclaratorContext(Context);
1998   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS_none, DSContext);
1999 
2000   // If we had a free-standing type definition with a missing semicolon, we
2001   // may get this far before the problem becomes obvious.
2002   if (DS.hasTagDefinition() &&
2003       DiagnoseMissingSemiAfterTagDefinition(DS, AS_none, DSContext))
2004     return nullptr;
2005 
2006   // C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
2007   // declaration-specifiers init-declarator-list[opt] ';'
2008   if (Tok.is(tok::semi)) {
2009     ProhibitAttributes(DeclAttrs);
2010     DeclEnd = Tok.getLocation();
2011     if (RequireSemi) ConsumeToken();
2012     RecordDecl *AnonRecord = nullptr;
2013     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
2014         getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord);
2015     Actions.ActOnDefinedDeclarationSpecifier(TheDecl);
2016     DS.complete(TheDecl);
2017     if (AnonRecord) {
2018       Decl* decls[] = {AnonRecord, TheDecl};
2019       return Actions.BuildDeclaratorGroup(decls);
2020     }
2021     return Actions.ConvertDeclToDeclGroup(TheDecl);
2022   }
2023 
2024   if (DS.hasTagDefinition())
2025     Actions.ActOnDefinedDeclarationSpecifier(DS.getRepAsDecl());
2026 
2027   if (DeclSpecStart)
2028     DS.SetRangeStart(*DeclSpecStart);
2029 
2030   return ParseDeclGroup(DS, Context, DeclAttrs, &DeclEnd, FRI);
2031 }
2032 
2033 /// Returns true if this might be the start of a declarator, or a common typo
2034 /// for a declarator.
2035 bool Parser::MightBeDeclarator(DeclaratorContext Context) {
2036   switch (Tok.getKind()) {
2037   case tok::annot_cxxscope:
2038   case tok::annot_template_id:
2039   case tok::caret:
2040   case tok::code_completion:
2041   case tok::coloncolon:
2042   case tok::ellipsis:
2043   case tok::kw___attribute:
2044   case tok::kw_operator:
2045   case tok::l_paren:
2046   case tok::star:
2047     return true;
2048 
2049   case tok::amp:
2050   case tok::ampamp:
2051     return getLangOpts().CPlusPlus;
2052 
2053   case tok::l_square: // Might be an attribute on an unnamed bit-field.
2054     return Context == DeclaratorContext::Member && getLangOpts().CPlusPlus11 &&
2055            NextToken().is(tok::l_square);
2056 
2057   case tok::colon: // Might be a typo for '::' or an unnamed bit-field.
2058     return Context == DeclaratorContext::Member || getLangOpts().CPlusPlus;
2059 
2060   case tok::identifier:
2061     switch (NextToken().getKind()) {
2062     case tok::code_completion:
2063     case tok::coloncolon:
2064     case tok::comma:
2065     case tok::equal:
2066     case tok::equalequal: // Might be a typo for '='.
2067     case tok::kw_alignas:
2068     case tok::kw_asm:
2069     case tok::kw___attribute:
2070     case tok::l_brace:
2071     case tok::l_paren:
2072     case tok::l_square:
2073     case tok::less:
2074     case tok::r_brace:
2075     case tok::r_paren:
2076     case tok::r_square:
2077     case tok::semi:
2078       return true;
2079 
2080     case tok::colon:
2081       // At namespace scope, 'identifier:' is probably a typo for 'identifier::'
2082       // and in block scope it's probably a label. Inside a class definition,
2083       // this is a bit-field.
2084       return Context == DeclaratorContext::Member ||
2085              (getLangOpts().CPlusPlus && Context == DeclaratorContext::File);
2086 
2087     case tok::identifier: // Possible virt-specifier.
2088       return getLangOpts().CPlusPlus11 && isCXX11VirtSpecifier(NextToken());
2089 
2090     default:
2091       return Tok.isRegularKeywordAttribute();
2092     }
2093 
2094   default:
2095     return Tok.isRegularKeywordAttribute();
2096   }
2097 }
2098 
2099 /// Skip until we reach something which seems like a sensible place to pick
2100 /// up parsing after a malformed declaration. This will sometimes stop sooner
2101 /// than SkipUntil(tok::r_brace) would, but will never stop later.
2102 void Parser::SkipMalformedDecl() {
2103   while (true) {
2104     switch (Tok.getKind()) {
2105     case tok::l_brace:
2106       // Skip until matching }, then stop. We've probably skipped over
2107       // a malformed class or function definition or similar.
2108       ConsumeBrace();
2109       SkipUntil(tok::r_brace);
2110       if (Tok.isOneOf(tok::comma, tok::l_brace, tok::kw_try)) {
2111         // This declaration isn't over yet. Keep skipping.
2112         continue;
2113       }
2114       TryConsumeToken(tok::semi);
2115       return;
2116 
2117     case tok::l_square:
2118       ConsumeBracket();
2119       SkipUntil(tok::r_square);
2120       continue;
2121 
2122     case tok::l_paren:
2123       ConsumeParen();
2124       SkipUntil(tok::r_paren);
2125       continue;
2126 
2127     case tok::r_brace:
2128       return;
2129 
2130     case tok::semi:
2131       ConsumeToken();
2132       return;
2133 
2134     case tok::kw_inline:
2135       // 'inline namespace' at the start of a line is almost certainly
2136       // a good place to pick back up parsing, except in an Objective-C
2137       // @interface context.
2138       if (Tok.isAtStartOfLine() && NextToken().is(tok::kw_namespace) &&
2139           (!ParsingInObjCContainer || CurParsedObjCImpl))
2140         return;
2141       break;
2142 
2143     case tok::kw_namespace:
2144       // 'namespace' at the start of a line is almost certainly a good
2145       // place to pick back up parsing, except in an Objective-C
2146       // @interface context.
2147       if (Tok.isAtStartOfLine() &&
2148           (!ParsingInObjCContainer || CurParsedObjCImpl))
2149         return;
2150       break;
2151 
2152     case tok::at:
2153       // @end is very much like } in Objective-C contexts.
2154       if (NextToken().isObjCAtKeyword(tok::objc_end) &&
2155           ParsingInObjCContainer)
2156         return;
2157       break;
2158 
2159     case tok::minus:
2160     case tok::plus:
2161       // - and + probably start new method declarations in Objective-C contexts.
2162       if (Tok.isAtStartOfLine() && ParsingInObjCContainer)
2163         return;
2164       break;
2165 
2166     case tok::eof:
2167     case tok::annot_module_begin:
2168     case tok::annot_module_end:
2169     case tok::annot_module_include:
2170     case tok::annot_repl_input_end:
2171       return;
2172 
2173     default:
2174       break;
2175     }
2176 
2177     ConsumeAnyToken();
2178   }
2179 }
2180 
2181 /// ParseDeclGroup - Having concluded that this is either a function
2182 /// definition or a group of object declarations, actually parse the
2183 /// result.
2184 Parser::DeclGroupPtrTy Parser::ParseDeclGroup(ParsingDeclSpec &DS,
2185                                               DeclaratorContext Context,
2186                                               ParsedAttributes &Attrs,
2187                                               SourceLocation *DeclEnd,
2188                                               ForRangeInit *FRI) {
2189   // Parse the first declarator.
2190   // Consume all of the attributes from `Attrs` by moving them to our own local
2191   // list. This ensures that we will not attempt to interpret them as statement
2192   // attributes higher up the callchain.
2193   ParsedAttributes LocalAttrs(AttrFactory);
2194   LocalAttrs.takeAllFrom(Attrs);
2195   ParsingDeclarator D(*this, DS, LocalAttrs, Context);
2196   ParseDeclarator(D);
2197 
2198   // Bail out if the first declarator didn't seem well-formed.
2199   if (!D.hasName() && !D.mayOmitIdentifier()) {
2200     SkipMalformedDecl();
2201     return nullptr;
2202   }
2203 
2204   if (getLangOpts().HLSL)
2205     MaybeParseHLSLSemantics(D);
2206 
2207   if (Tok.is(tok::kw_requires))
2208     ParseTrailingRequiresClause(D);
2209 
2210   // Save late-parsed attributes for now; they need to be parsed in the
2211   // appropriate function scope after the function Decl has been constructed.
2212   // These will be parsed in ParseFunctionDefinition or ParseLexedAttrList.
2213   LateParsedAttrList LateParsedAttrs(true);
2214   if (D.isFunctionDeclarator()) {
2215     MaybeParseGNUAttributes(D, &LateParsedAttrs);
2216 
2217     // The _Noreturn keyword can't appear here, unlike the GNU noreturn
2218     // attribute. If we find the keyword here, tell the user to put it
2219     // at the start instead.
2220     if (Tok.is(tok::kw__Noreturn)) {
2221       SourceLocation Loc = ConsumeToken();
2222       const char *PrevSpec;
2223       unsigned DiagID;
2224 
2225       // We can offer a fixit if it's valid to mark this function as _Noreturn
2226       // and we don't have any other declarators in this declaration.
2227       bool Fixit = !DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
2228       MaybeParseGNUAttributes(D, &LateParsedAttrs);
2229       Fixit &= Tok.isOneOf(tok::semi, tok::l_brace, tok::kw_try);
2230 
2231       Diag(Loc, diag::err_c11_noreturn_misplaced)
2232           << (Fixit ? FixItHint::CreateRemoval(Loc) : FixItHint())
2233           << (Fixit ? FixItHint::CreateInsertion(D.getBeginLoc(), "_Noreturn ")
2234                     : FixItHint());
2235     }
2236 
2237     // Check to see if we have a function *definition* which must have a body.
2238     if (Tok.is(tok::equal) && NextToken().is(tok::code_completion)) {
2239       cutOffParsing();
2240       Actions.CodeCompleteAfterFunctionEquals(D);
2241       return nullptr;
2242     }
2243     // We're at the point where the parsing of function declarator is finished.
2244     //
2245     // A common error is that users accidently add a virtual specifier
2246     // (e.g. override) in an out-line method definition.
2247     // We attempt to recover by stripping all these specifiers coming after
2248     // the declarator.
2249     while (auto Specifier = isCXX11VirtSpecifier()) {
2250       Diag(Tok, diag::err_virt_specifier_outside_class)
2251           << VirtSpecifiers::getSpecifierName(Specifier)
2252           << FixItHint::CreateRemoval(Tok.getLocation());
2253       ConsumeToken();
2254     }
2255     // Look at the next token to make sure that this isn't a function
2256     // declaration.  We have to check this because __attribute__ might be the
2257     // start of a function definition in GCC-extended K&R C.
2258     if (!isDeclarationAfterDeclarator()) {
2259 
2260       // Function definitions are only allowed at file scope and in C++ classes.
2261       // The C++ inline method definition case is handled elsewhere, so we only
2262       // need to handle the file scope definition case.
2263       if (Context == DeclaratorContext::File) {
2264         if (isStartOfFunctionDefinition(D)) {
2265           if (DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
2266             Diag(Tok, diag::err_function_declared_typedef);
2267 
2268             // Recover by treating the 'typedef' as spurious.
2269             DS.ClearStorageClassSpecs();
2270           }
2271 
2272           Decl *TheDecl = ParseFunctionDefinition(D, ParsedTemplateInfo(),
2273                                                   &LateParsedAttrs);
2274           return Actions.ConvertDeclToDeclGroup(TheDecl);
2275         }
2276 
2277         if (isDeclarationSpecifier(ImplicitTypenameContext::No) ||
2278             Tok.is(tok::kw_namespace)) {
2279           // If there is an invalid declaration specifier or a namespace
2280           // definition right after the function prototype, then we must be in a
2281           // missing semicolon case where this isn't actually a body.  Just fall
2282           // through into the code that handles it as a prototype, and let the
2283           // top-level code handle the erroneous declspec where it would
2284           // otherwise expect a comma or semicolon. Note that
2285           // isDeclarationSpecifier already covers 'inline namespace', since
2286           // 'inline' can be a declaration specifier.
2287         } else {
2288           Diag(Tok, diag::err_expected_fn_body);
2289           SkipUntil(tok::semi);
2290           return nullptr;
2291         }
2292       } else {
2293         if (Tok.is(tok::l_brace)) {
2294           Diag(Tok, diag::err_function_definition_not_allowed);
2295           SkipMalformedDecl();
2296           return nullptr;
2297         }
2298       }
2299     }
2300   }
2301 
2302   if (ParseAsmAttributesAfterDeclarator(D))
2303     return nullptr;
2304 
2305   // C++0x [stmt.iter]p1: Check if we have a for-range-declarator. If so, we
2306   // must parse and analyze the for-range-initializer before the declaration is
2307   // analyzed.
2308   //
2309   // Handle the Objective-C for-in loop variable similarly, although we
2310   // don't need to parse the container in advance.
2311   if (FRI && (Tok.is(tok::colon) || isTokIdentifier_in())) {
2312     bool IsForRangeLoop = false;
2313     if (TryConsumeToken(tok::colon, FRI->ColonLoc)) {
2314       IsForRangeLoop = true;
2315       if (getLangOpts().OpenMP)
2316         Actions.startOpenMPCXXRangeFor();
2317       if (Tok.is(tok::l_brace))
2318         FRI->RangeExpr = ParseBraceInitializer();
2319       else
2320         FRI->RangeExpr = ParseExpression();
2321     }
2322 
2323     Decl *ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2324     if (IsForRangeLoop) {
2325       Actions.ActOnCXXForRangeDecl(ThisDecl);
2326     } else {
2327       // Obj-C for loop
2328       if (auto *VD = dyn_cast_or_null<VarDecl>(ThisDecl))
2329         VD->setObjCForDecl(true);
2330     }
2331     Actions.FinalizeDeclaration(ThisDecl);
2332     D.complete(ThisDecl);
2333     return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, ThisDecl);
2334   }
2335 
2336   SmallVector<Decl *, 8> DeclsInGroup;
2337   Decl *FirstDecl = ParseDeclarationAfterDeclaratorAndAttributes(
2338       D, ParsedTemplateInfo(), FRI);
2339   if (LateParsedAttrs.size() > 0)
2340     ParseLexedAttributeList(LateParsedAttrs, FirstDecl, true, false);
2341   D.complete(FirstDecl);
2342   if (FirstDecl)
2343     DeclsInGroup.push_back(FirstDecl);
2344 
2345   bool ExpectSemi = Context != DeclaratorContext::ForInit;
2346 
2347   // If we don't have a comma, it is either the end of the list (a ';') or an
2348   // error, bail out.
2349   SourceLocation CommaLoc;
2350   while (TryConsumeToken(tok::comma, CommaLoc)) {
2351     if (Tok.isAtStartOfLine() && ExpectSemi && !MightBeDeclarator(Context)) {
2352       // This comma was followed by a line-break and something which can't be
2353       // the start of a declarator. The comma was probably a typo for a
2354       // semicolon.
2355       Diag(CommaLoc, diag::err_expected_semi_declaration)
2356         << FixItHint::CreateReplacement(CommaLoc, ";");
2357       ExpectSemi = false;
2358       break;
2359     }
2360 
2361     // Parse the next declarator.
2362     D.clear();
2363     D.setCommaLoc(CommaLoc);
2364 
2365     // Accept attributes in an init-declarator.  In the first declarator in a
2366     // declaration, these would be part of the declspec.  In subsequent
2367     // declarators, they become part of the declarator itself, so that they
2368     // don't apply to declarators after *this* one.  Examples:
2369     //    short __attribute__((common)) var;    -> declspec
2370     //    short var __attribute__((common));    -> declarator
2371     //    short x, __attribute__((common)) var;    -> declarator
2372     MaybeParseGNUAttributes(D);
2373 
2374     // MSVC parses but ignores qualifiers after the comma as an extension.
2375     if (getLangOpts().MicrosoftExt)
2376       DiagnoseAndSkipExtendedMicrosoftTypeAttributes();
2377 
2378     ParseDeclarator(D);
2379 
2380     if (getLangOpts().HLSL)
2381       MaybeParseHLSLSemantics(D);
2382 
2383     if (!D.isInvalidType()) {
2384       // C++2a [dcl.decl]p1
2385       //    init-declarator:
2386       //	      declarator initializer[opt]
2387       //        declarator requires-clause
2388       if (Tok.is(tok::kw_requires))
2389         ParseTrailingRequiresClause(D);
2390       Decl *ThisDecl = ParseDeclarationAfterDeclarator(D);
2391       D.complete(ThisDecl);
2392       if (ThisDecl)
2393         DeclsInGroup.push_back(ThisDecl);
2394     }
2395   }
2396 
2397   if (DeclEnd)
2398     *DeclEnd = Tok.getLocation();
2399 
2400   if (ExpectSemi && ExpectAndConsumeSemi(
2401                         Context == DeclaratorContext::File
2402                             ? diag::err_invalid_token_after_toplevel_declarator
2403                             : diag::err_expected_semi_declaration)) {
2404     // Okay, there was no semicolon and one was expected.  If we see a
2405     // declaration specifier, just assume it was missing and continue parsing.
2406     // Otherwise things are very confused and we skip to recover.
2407     if (!isDeclarationSpecifier(ImplicitTypenameContext::No))
2408       SkipMalformedDecl();
2409   }
2410 
2411   return Actions.FinalizeDeclaratorGroup(getCurScope(), DS, DeclsInGroup);
2412 }
2413 
2414 /// Parse an optional simple-asm-expr and attributes, and attach them to a
2415 /// declarator. Returns true on an error.
2416 bool Parser::ParseAsmAttributesAfterDeclarator(Declarator &D) {
2417   // If a simple-asm-expr is present, parse it.
2418   if (Tok.is(tok::kw_asm)) {
2419     SourceLocation Loc;
2420     ExprResult AsmLabel(ParseSimpleAsm(/*ForAsmLabel*/ true, &Loc));
2421     if (AsmLabel.isInvalid()) {
2422       SkipUntil(tok::semi, StopBeforeMatch);
2423       return true;
2424     }
2425 
2426     D.setAsmLabel(AsmLabel.get());
2427     D.SetRangeEnd(Loc);
2428   }
2429 
2430   MaybeParseGNUAttributes(D);
2431   return false;
2432 }
2433 
2434 /// Parse 'declaration' after parsing 'declaration-specifiers
2435 /// declarator'. This method parses the remainder of the declaration
2436 /// (including any attributes or initializer, among other things) and
2437 /// finalizes the declaration.
2438 ///
2439 ///       init-declarator: [C99 6.7]
2440 ///         declarator
2441 ///         declarator '=' initializer
2442 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt]
2443 /// [GNU]   declarator simple-asm-expr[opt] attributes[opt] '=' initializer
2444 /// [C++]   declarator initializer[opt]
2445 ///
2446 /// [C++] initializer:
2447 /// [C++]   '=' initializer-clause
2448 /// [C++]   '(' expression-list ')'
2449 /// [C++0x] '=' 'default'                                                [TODO]
2450 /// [C++0x] '=' 'delete'
2451 /// [C++0x] braced-init-list
2452 ///
2453 /// According to the standard grammar, =default and =delete are function
2454 /// definitions, but that definitely doesn't fit with the parser here.
2455 ///
2456 Decl *Parser::ParseDeclarationAfterDeclarator(
2457     Declarator &D, const ParsedTemplateInfo &TemplateInfo) {
2458   if (ParseAsmAttributesAfterDeclarator(D))
2459     return nullptr;
2460 
2461   return ParseDeclarationAfterDeclaratorAndAttributes(D, TemplateInfo);
2462 }
2463 
2464 Decl *Parser::ParseDeclarationAfterDeclaratorAndAttributes(
2465     Declarator &D, const ParsedTemplateInfo &TemplateInfo, ForRangeInit *FRI) {
2466   // RAII type used to track whether we're inside an initializer.
2467   struct InitializerScopeRAII {
2468     Parser &P;
2469     Declarator &D;
2470     Decl *ThisDecl;
2471 
2472     InitializerScopeRAII(Parser &P, Declarator &D, Decl *ThisDecl)
2473         : P(P), D(D), ThisDecl(ThisDecl) {
2474       if (ThisDecl && P.getLangOpts().CPlusPlus) {
2475         Scope *S = nullptr;
2476         if (D.getCXXScopeSpec().isSet()) {
2477           P.EnterScope(0);
2478           S = P.getCurScope();
2479         }
2480         P.Actions.ActOnCXXEnterDeclInitializer(S, ThisDecl);
2481       }
2482     }
2483     ~InitializerScopeRAII() { pop(); }
2484     void pop() {
2485       if (ThisDecl && P.getLangOpts().CPlusPlus) {
2486         Scope *S = nullptr;
2487         if (D.getCXXScopeSpec().isSet())
2488           S = P.getCurScope();
2489         P.Actions.ActOnCXXExitDeclInitializer(S, ThisDecl);
2490         if (S)
2491           P.ExitScope();
2492       }
2493       ThisDecl = nullptr;
2494     }
2495   };
2496 
2497   enum class InitKind { Uninitialized, Equal, CXXDirect, CXXBraced };
2498   InitKind TheInitKind;
2499   // If a '==' or '+=' is found, suggest a fixit to '='.
2500   if (isTokenEqualOrEqualTypo())
2501     TheInitKind = InitKind::Equal;
2502   else if (Tok.is(tok::l_paren))
2503     TheInitKind = InitKind::CXXDirect;
2504   else if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace) &&
2505            (!CurParsedObjCImpl || !D.isFunctionDeclarator()))
2506     TheInitKind = InitKind::CXXBraced;
2507   else
2508     TheInitKind = InitKind::Uninitialized;
2509   if (TheInitKind != InitKind::Uninitialized)
2510     D.setHasInitializer();
2511 
2512   // Inform Sema that we just parsed this declarator.
2513   Decl *ThisDecl = nullptr;
2514   Decl *OuterDecl = nullptr;
2515   switch (TemplateInfo.Kind) {
2516   case ParsedTemplateInfo::NonTemplate:
2517     ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2518     break;
2519 
2520   case ParsedTemplateInfo::Template:
2521   case ParsedTemplateInfo::ExplicitSpecialization: {
2522     ThisDecl = Actions.ActOnTemplateDeclarator(getCurScope(),
2523                                                *TemplateInfo.TemplateParams,
2524                                                D);
2525     if (VarTemplateDecl *VT = dyn_cast_or_null<VarTemplateDecl>(ThisDecl)) {
2526       // Re-direct this decl to refer to the templated decl so that we can
2527       // initialize it.
2528       ThisDecl = VT->getTemplatedDecl();
2529       OuterDecl = VT;
2530     }
2531     break;
2532   }
2533   case ParsedTemplateInfo::ExplicitInstantiation: {
2534     if (Tok.is(tok::semi)) {
2535       DeclResult ThisRes = Actions.ActOnExplicitInstantiation(
2536           getCurScope(), TemplateInfo.ExternLoc, TemplateInfo.TemplateLoc, D);
2537       if (ThisRes.isInvalid()) {
2538         SkipUntil(tok::semi, StopBeforeMatch);
2539         return nullptr;
2540       }
2541       ThisDecl = ThisRes.get();
2542     } else {
2543       // FIXME: This check should be for a variable template instantiation only.
2544 
2545       // Check that this is a valid instantiation
2546       if (D.getName().getKind() != UnqualifiedIdKind::IK_TemplateId) {
2547         // If the declarator-id is not a template-id, issue a diagnostic and
2548         // recover by ignoring the 'template' keyword.
2549         Diag(Tok, diag::err_template_defn_explicit_instantiation)
2550             << 2 << FixItHint::CreateRemoval(TemplateInfo.TemplateLoc);
2551         ThisDecl = Actions.ActOnDeclarator(getCurScope(), D);
2552       } else {
2553         SourceLocation LAngleLoc =
2554             PP.getLocForEndOfToken(TemplateInfo.TemplateLoc);
2555         Diag(D.getIdentifierLoc(),
2556              diag::err_explicit_instantiation_with_definition)
2557             << SourceRange(TemplateInfo.TemplateLoc)
2558             << FixItHint::CreateInsertion(LAngleLoc, "<>");
2559 
2560         // Recover as if it were an explicit specialization.
2561         TemplateParameterLists FakedParamLists;
2562         FakedParamLists.push_back(Actions.ActOnTemplateParameterList(
2563             0, SourceLocation(), TemplateInfo.TemplateLoc, LAngleLoc,
2564             std::nullopt, LAngleLoc, nullptr));
2565 
2566         ThisDecl =
2567             Actions.ActOnTemplateDeclarator(getCurScope(), FakedParamLists, D);
2568       }
2569     }
2570     break;
2571     }
2572   }
2573 
2574   Sema::CUDATargetContextRAII X(Actions, Sema::CTCK_InitGlobalVar, ThisDecl);
2575   switch (TheInitKind) {
2576   // Parse declarator '=' initializer.
2577   case InitKind::Equal: {
2578     SourceLocation EqualLoc = ConsumeToken();
2579 
2580     if (Tok.is(tok::kw_delete)) {
2581       if (D.isFunctionDeclarator())
2582         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2583           << 1 /* delete */;
2584       else
2585         Diag(ConsumeToken(), diag::err_deleted_non_function);
2586     } else if (Tok.is(tok::kw_default)) {
2587       if (D.isFunctionDeclarator())
2588         Diag(ConsumeToken(), diag::err_default_delete_in_multiple_declaration)
2589           << 0 /* default */;
2590       else
2591         Diag(ConsumeToken(), diag::err_default_special_members)
2592             << getLangOpts().CPlusPlus20;
2593     } else {
2594       InitializerScopeRAII InitScope(*this, D, ThisDecl);
2595 
2596       if (Tok.is(tok::code_completion)) {
2597         cutOffParsing();
2598         Actions.CodeCompleteInitializer(getCurScope(), ThisDecl);
2599         Actions.FinalizeDeclaration(ThisDecl);
2600         return nullptr;
2601       }
2602 
2603       PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2604       ExprResult Init = ParseInitializer();
2605 
2606       // If this is the only decl in (possibly) range based for statement,
2607       // our best guess is that the user meant ':' instead of '='.
2608       if (Tok.is(tok::r_paren) && FRI && D.isFirstDeclarator()) {
2609         Diag(EqualLoc, diag::err_single_decl_assign_in_for_range)
2610             << FixItHint::CreateReplacement(EqualLoc, ":");
2611         // We are trying to stop parser from looking for ';' in this for
2612         // statement, therefore preventing spurious errors to be issued.
2613         FRI->ColonLoc = EqualLoc;
2614         Init = ExprError();
2615         FRI->RangeExpr = Init;
2616       }
2617 
2618       InitScope.pop();
2619 
2620       if (Init.isInvalid()) {
2621         SmallVector<tok::TokenKind, 2> StopTokens;
2622         StopTokens.push_back(tok::comma);
2623         if (D.getContext() == DeclaratorContext::ForInit ||
2624             D.getContext() == DeclaratorContext::SelectionInit)
2625           StopTokens.push_back(tok::r_paren);
2626         SkipUntil(StopTokens, StopAtSemi | StopBeforeMatch);
2627         Actions.ActOnInitializerError(ThisDecl);
2628       } else
2629         Actions.AddInitializerToDecl(ThisDecl, Init.get(),
2630                                      /*DirectInit=*/false);
2631     }
2632     break;
2633   }
2634   case InitKind::CXXDirect: {
2635     // Parse C++ direct initializer: '(' expression-list ')'
2636     BalancedDelimiterTracker T(*this, tok::l_paren);
2637     T.consumeOpen();
2638 
2639     ExprVector Exprs;
2640 
2641     InitializerScopeRAII InitScope(*this, D, ThisDecl);
2642 
2643     auto ThisVarDecl = dyn_cast_or_null<VarDecl>(ThisDecl);
2644     auto RunSignatureHelp = [&]() {
2645       QualType PreferredType = Actions.ProduceConstructorSignatureHelp(
2646           ThisVarDecl->getType()->getCanonicalTypeInternal(),
2647           ThisDecl->getLocation(), Exprs, T.getOpenLocation(),
2648           /*Braced=*/false);
2649       CalledSignatureHelp = true;
2650       return PreferredType;
2651     };
2652     auto SetPreferredType = [&] {
2653       PreferredType.enterFunctionArgument(Tok.getLocation(), RunSignatureHelp);
2654     };
2655 
2656     llvm::function_ref<void()> ExpressionStarts;
2657     if (ThisVarDecl) {
2658       // ParseExpressionList can sometimes succeed even when ThisDecl is not
2659       // VarDecl. This is an error and it is reported in a call to
2660       // Actions.ActOnInitializerError(). However, we call
2661       // ProduceConstructorSignatureHelp only on VarDecls.
2662       ExpressionStarts = SetPreferredType;
2663     }
2664     if (ParseExpressionList(Exprs, ExpressionStarts)) {
2665       if (ThisVarDecl && PP.isCodeCompletionReached() && !CalledSignatureHelp) {
2666         Actions.ProduceConstructorSignatureHelp(
2667             ThisVarDecl->getType()->getCanonicalTypeInternal(),
2668             ThisDecl->getLocation(), Exprs, T.getOpenLocation(),
2669             /*Braced=*/false);
2670         CalledSignatureHelp = true;
2671       }
2672       Actions.ActOnInitializerError(ThisDecl);
2673       SkipUntil(tok::r_paren, StopAtSemi);
2674     } else {
2675       // Match the ')'.
2676       T.consumeClose();
2677       InitScope.pop();
2678 
2679       ExprResult Initializer = Actions.ActOnParenListExpr(T.getOpenLocation(),
2680                                                           T.getCloseLocation(),
2681                                                           Exprs);
2682       Actions.AddInitializerToDecl(ThisDecl, Initializer.get(),
2683                                    /*DirectInit=*/true);
2684     }
2685     break;
2686   }
2687   case InitKind::CXXBraced: {
2688     // Parse C++0x braced-init-list.
2689     Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
2690 
2691     InitializerScopeRAII InitScope(*this, D, ThisDecl);
2692 
2693     PreferredType.enterVariableInit(Tok.getLocation(), ThisDecl);
2694     ExprResult Init(ParseBraceInitializer());
2695 
2696     InitScope.pop();
2697 
2698     if (Init.isInvalid()) {
2699       Actions.ActOnInitializerError(ThisDecl);
2700     } else
2701       Actions.AddInitializerToDecl(ThisDecl, Init.get(), /*DirectInit=*/true);
2702     break;
2703   }
2704   case InitKind::Uninitialized: {
2705     Actions.ActOnUninitializedDecl(ThisDecl);
2706     break;
2707   }
2708   }
2709 
2710   Actions.FinalizeDeclaration(ThisDecl);
2711   return OuterDecl ? OuterDecl : ThisDecl;
2712 }
2713 
2714 /// ParseSpecifierQualifierList
2715 ///        specifier-qualifier-list:
2716 ///          type-specifier specifier-qualifier-list[opt]
2717 ///          type-qualifier specifier-qualifier-list[opt]
2718 /// [GNU]    attributes     specifier-qualifier-list[opt]
2719 ///
2720 void Parser::ParseSpecifierQualifierList(
2721     DeclSpec &DS, ImplicitTypenameContext AllowImplicitTypename,
2722     AccessSpecifier AS, DeclSpecContext DSC) {
2723   /// specifier-qualifier-list is a subset of declaration-specifiers.  Just
2724   /// parse declaration-specifiers and complain about extra stuff.
2725   /// TODO: diagnose attribute-specifiers and alignment-specifiers.
2726   ParseDeclarationSpecifiers(DS, ParsedTemplateInfo(), AS, DSC, nullptr,
2727                              AllowImplicitTypename);
2728 
2729   // Validate declspec for type-name.
2730   unsigned Specs = DS.getParsedSpecifiers();
2731   if (isTypeSpecifier(DSC) && !DS.hasTypeSpecifier()) {
2732     Diag(Tok, diag::err_expected_type);
2733     DS.SetTypeSpecError();
2734   } else if (Specs == DeclSpec::PQ_None && !DS.hasAttributes()) {
2735     Diag(Tok, diag::err_typename_requires_specqual);
2736     if (!DS.hasTypeSpecifier())
2737       DS.SetTypeSpecError();
2738   }
2739 
2740   // Issue diagnostic and remove storage class if present.
2741   if (Specs & DeclSpec::PQ_StorageClassSpecifier) {
2742     if (DS.getStorageClassSpecLoc().isValid())
2743       Diag(DS.getStorageClassSpecLoc(),diag::err_typename_invalid_storageclass);
2744     else
2745       Diag(DS.getThreadStorageClassSpecLoc(),
2746            diag::err_typename_invalid_storageclass);
2747     DS.ClearStorageClassSpecs();
2748   }
2749 
2750   // Issue diagnostic and remove function specifier if present.
2751   if (Specs & DeclSpec::PQ_FunctionSpecifier) {
2752     if (DS.isInlineSpecified())
2753       Diag(DS.getInlineSpecLoc(), diag::err_typename_invalid_functionspec);
2754     if (DS.isVirtualSpecified())
2755       Diag(DS.getVirtualSpecLoc(), diag::err_typename_invalid_functionspec);
2756     if (DS.hasExplicitSpecifier())
2757       Diag(DS.getExplicitSpecLoc(), diag::err_typename_invalid_functionspec);
2758     if (DS.isNoreturnSpecified())
2759       Diag(DS.getNoreturnSpecLoc(), diag::err_typename_invalid_functionspec);
2760     DS.ClearFunctionSpecs();
2761   }
2762 
2763   // Issue diagnostic and remove constexpr specifier if present.
2764   if (DS.hasConstexprSpecifier() && DSC != DeclSpecContext::DSC_condition) {
2765     Diag(DS.getConstexprSpecLoc(), diag::err_typename_invalid_constexpr)
2766         << static_cast<int>(DS.getConstexprSpecifier());
2767     DS.ClearConstexprSpec();
2768   }
2769 }
2770 
2771 /// isValidAfterIdentifierInDeclaratorAfterDeclSpec - Return true if the
2772 /// specified token is valid after the identifier in a declarator which
2773 /// immediately follows the declspec.  For example, these things are valid:
2774 ///
2775 ///      int x   [             4];         // direct-declarator
2776 ///      int x   (             int y);     // direct-declarator
2777 ///  int(int x   )                         // direct-declarator
2778 ///      int x   ;                         // simple-declaration
2779 ///      int x   =             17;         // init-declarator-list
2780 ///      int x   ,             y;          // init-declarator-list
2781 ///      int x   __asm__       ("foo");    // init-declarator-list
2782 ///      int x   :             4;          // struct-declarator
2783 ///      int x   {             5};         // C++'0x unified initializers
2784 ///
2785 /// This is not, because 'x' does not immediately follow the declspec (though
2786 /// ')' happens to be valid anyway).
2787 ///    int (x)
2788 ///
2789 static bool isValidAfterIdentifierInDeclarator(const Token &T) {
2790   return T.isOneOf(tok::l_square, tok::l_paren, tok::r_paren, tok::semi,
2791                    tok::comma, tok::equal, tok::kw_asm, tok::l_brace,
2792                    tok::colon);
2793 }
2794 
2795 /// ParseImplicitInt - This method is called when we have an non-typename
2796 /// identifier in a declspec (which normally terminates the decl spec) when
2797 /// the declspec has no type specifier.  In this case, the declspec is either
2798 /// malformed or is "implicit int" (in K&R and C89).
2799 ///
2800 /// This method handles diagnosing this prettily and returns false if the
2801 /// declspec is done being processed.  If it recovers and thinks there may be
2802 /// other pieces of declspec after it, it returns true.
2803 ///
2804 bool Parser::ParseImplicitInt(DeclSpec &DS, CXXScopeSpec *SS,
2805                               const ParsedTemplateInfo &TemplateInfo,
2806                               AccessSpecifier AS, DeclSpecContext DSC,
2807                               ParsedAttributes &Attrs) {
2808   assert(Tok.is(tok::identifier) && "should have identifier");
2809 
2810   SourceLocation Loc = Tok.getLocation();
2811   // If we see an identifier that is not a type name, we normally would
2812   // parse it as the identifier being declared.  However, when a typename
2813   // is typo'd or the definition is not included, this will incorrectly
2814   // parse the typename as the identifier name and fall over misparsing
2815   // later parts of the diagnostic.
2816   //
2817   // As such, we try to do some look-ahead in cases where this would
2818   // otherwise be an "implicit-int" case to see if this is invalid.  For
2819   // example: "static foo_t x = 4;"  In this case, if we parsed foo_t as
2820   // an identifier with implicit int, we'd get a parse error because the
2821   // next token is obviously invalid for a type.  Parse these as a case
2822   // with an invalid type specifier.
2823   assert(!DS.hasTypeSpecifier() && "Type specifier checked above");
2824 
2825   // Since we know that this either implicit int (which is rare) or an
2826   // error, do lookahead to try to do better recovery. This never applies
2827   // within a type specifier. Outside of C++, we allow this even if the
2828   // language doesn't "officially" support implicit int -- we support
2829   // implicit int as an extension in some language modes.
2830   if (!isTypeSpecifier(DSC) && getLangOpts().isImplicitIntAllowed() &&
2831       isValidAfterIdentifierInDeclarator(NextToken())) {
2832     // If this token is valid for implicit int, e.g. "static x = 4", then
2833     // we just avoid eating the identifier, so it will be parsed as the
2834     // identifier in the declarator.
2835     return false;
2836   }
2837 
2838   // Early exit as Sema has a dedicated missing_actual_pipe_type diagnostic
2839   // for incomplete declarations such as `pipe p`.
2840   if (getLangOpts().OpenCLCPlusPlus && DS.isTypeSpecPipe())
2841     return false;
2842 
2843   if (getLangOpts().CPlusPlus &&
2844       DS.getStorageClassSpec() == DeclSpec::SCS_auto) {
2845     // Don't require a type specifier if we have the 'auto' storage class
2846     // specifier in C++98 -- we'll promote it to a type specifier.
2847     if (SS)
2848       AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2849     return false;
2850   }
2851 
2852   if (getLangOpts().CPlusPlus && (!SS || SS->isEmpty()) &&
2853       getLangOpts().MSVCCompat) {
2854     // Lookup of an unqualified type name has failed in MSVC compatibility mode.
2855     // Give Sema a chance to recover if we are in a template with dependent base
2856     // classes.
2857     if (ParsedType T = Actions.ActOnMSVCUnknownTypeName(
2858             *Tok.getIdentifierInfo(), Tok.getLocation(),
2859             DSC == DeclSpecContext::DSC_template_type_arg)) {
2860       const char *PrevSpec;
2861       unsigned DiagID;
2862       DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
2863                          Actions.getASTContext().getPrintingPolicy());
2864       DS.SetRangeEnd(Tok.getLocation());
2865       ConsumeToken();
2866       return false;
2867     }
2868   }
2869 
2870   // Otherwise, if we don't consume this token, we are going to emit an
2871   // error anyway.  Try to recover from various common problems.  Check
2872   // to see if this was a reference to a tag name without a tag specified.
2873   // This is a common problem in C (saying 'foo' instead of 'struct foo').
2874   //
2875   // C++ doesn't need this, and isTagName doesn't take SS.
2876   if (SS == nullptr) {
2877     const char *TagName = nullptr, *FixitTagName = nullptr;
2878     tok::TokenKind TagKind = tok::unknown;
2879 
2880     switch (Actions.isTagName(*Tok.getIdentifierInfo(), getCurScope())) {
2881       default: break;
2882       case DeclSpec::TST_enum:
2883         TagName="enum"  ; FixitTagName = "enum "  ; TagKind=tok::kw_enum ;break;
2884       case DeclSpec::TST_union:
2885         TagName="union" ; FixitTagName = "union " ;TagKind=tok::kw_union ;break;
2886       case DeclSpec::TST_struct:
2887         TagName="struct"; FixitTagName = "struct ";TagKind=tok::kw_struct;break;
2888       case DeclSpec::TST_interface:
2889         TagName="__interface"; FixitTagName = "__interface ";
2890         TagKind=tok::kw___interface;break;
2891       case DeclSpec::TST_class:
2892         TagName="class" ; FixitTagName = "class " ;TagKind=tok::kw_class ;break;
2893     }
2894 
2895     if (TagName) {
2896       IdentifierInfo *TokenName = Tok.getIdentifierInfo();
2897       LookupResult R(Actions, TokenName, SourceLocation(),
2898                      Sema::LookupOrdinaryName);
2899 
2900       Diag(Loc, diag::err_use_of_tag_name_without_tag)
2901         << TokenName << TagName << getLangOpts().CPlusPlus
2902         << FixItHint::CreateInsertion(Tok.getLocation(), FixitTagName);
2903 
2904       if (Actions.LookupParsedName(R, getCurScope(), SS)) {
2905         for (LookupResult::iterator I = R.begin(), IEnd = R.end();
2906              I != IEnd; ++I)
2907           Diag((*I)->getLocation(), diag::note_decl_hiding_tag_type)
2908             << TokenName << TagName;
2909       }
2910 
2911       // Parse this as a tag as if the missing tag were present.
2912       if (TagKind == tok::kw_enum)
2913         ParseEnumSpecifier(Loc, DS, TemplateInfo, AS,
2914                            DeclSpecContext::DSC_normal);
2915       else
2916         ParseClassSpecifier(TagKind, Loc, DS, TemplateInfo, AS,
2917                             /*EnteringContext*/ false,
2918                             DeclSpecContext::DSC_normal, Attrs);
2919       return true;
2920     }
2921   }
2922 
2923   // Determine whether this identifier could plausibly be the name of something
2924   // being declared (with a missing type).
2925   if (!isTypeSpecifier(DSC) && (!SS || DSC == DeclSpecContext::DSC_top_level ||
2926                                 DSC == DeclSpecContext::DSC_class)) {
2927     // Look ahead to the next token to try to figure out what this declaration
2928     // was supposed to be.
2929     switch (NextToken().getKind()) {
2930     case tok::l_paren: {
2931       // static x(4); // 'x' is not a type
2932       // x(int n);    // 'x' is not a type
2933       // x (*p)[];    // 'x' is a type
2934       //
2935       // Since we're in an error case, we can afford to perform a tentative
2936       // parse to determine which case we're in.
2937       TentativeParsingAction PA(*this);
2938       ConsumeToken();
2939       TPResult TPR = TryParseDeclarator(/*mayBeAbstract*/false);
2940       PA.Revert();
2941 
2942       if (TPR != TPResult::False) {
2943         // The identifier is followed by a parenthesized declarator.
2944         // It's supposed to be a type.
2945         break;
2946       }
2947 
2948       // If we're in a context where we could be declaring a constructor,
2949       // check whether this is a constructor declaration with a bogus name.
2950       if (DSC == DeclSpecContext::DSC_class ||
2951           (DSC == DeclSpecContext::DSC_top_level && SS)) {
2952         IdentifierInfo *II = Tok.getIdentifierInfo();
2953         if (Actions.isCurrentClassNameTypo(II, SS)) {
2954           Diag(Loc, diag::err_constructor_bad_name)
2955             << Tok.getIdentifierInfo() << II
2956             << FixItHint::CreateReplacement(Tok.getLocation(), II->getName());
2957           Tok.setIdentifierInfo(II);
2958         }
2959       }
2960       // Fall through.
2961       [[fallthrough]];
2962     }
2963     case tok::comma:
2964     case tok::equal:
2965     case tok::kw_asm:
2966     case tok::l_brace:
2967     case tok::l_square:
2968     case tok::semi:
2969       // This looks like a variable or function declaration. The type is
2970       // probably missing. We're done parsing decl-specifiers.
2971       // But only if we are not in a function prototype scope.
2972       if (getCurScope()->isFunctionPrototypeScope())
2973         break;
2974       if (SS)
2975         AnnotateScopeToken(*SS, /*IsNewAnnotation*/false);
2976       return false;
2977 
2978     default:
2979       // This is probably supposed to be a type. This includes cases like:
2980       //   int f(itn);
2981       //   struct S { unsigned : 4; };
2982       break;
2983     }
2984   }
2985 
2986   // This is almost certainly an invalid type name. Let Sema emit a diagnostic
2987   // and attempt to recover.
2988   ParsedType T;
2989   IdentifierInfo *II = Tok.getIdentifierInfo();
2990   bool IsTemplateName = getLangOpts().CPlusPlus && NextToken().is(tok::less);
2991   Actions.DiagnoseUnknownTypeName(II, Loc, getCurScope(), SS, T,
2992                                   IsTemplateName);
2993   if (T) {
2994     // The action has suggested that the type T could be used. Set that as
2995     // the type in the declaration specifiers, consume the would-be type
2996     // name token, and we're done.
2997     const char *PrevSpec;
2998     unsigned DiagID;
2999     DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec, DiagID, T,
3000                        Actions.getASTContext().getPrintingPolicy());
3001     DS.SetRangeEnd(Tok.getLocation());
3002     ConsumeToken();
3003     // There may be other declaration specifiers after this.
3004     return true;
3005   } else if (II != Tok.getIdentifierInfo()) {
3006     // If no type was suggested, the correction is to a keyword
3007     Tok.setKind(II->getTokenID());
3008     // There may be other declaration specifiers after this.
3009     return true;
3010   }
3011 
3012   // Otherwise, the action had no suggestion for us.  Mark this as an error.
3013   DS.SetTypeSpecError();
3014   DS.SetRangeEnd(Tok.getLocation());
3015   ConsumeToken();
3016 
3017   // Eat any following template arguments.
3018   if (IsTemplateName) {
3019     SourceLocation LAngle, RAngle;
3020     TemplateArgList Args;
3021     ParseTemplateIdAfterTemplateName(true, LAngle, Args, RAngle);
3022   }
3023 
3024   // TODO: Could inject an invalid typedef decl in an enclosing scope to
3025   // avoid rippling error messages on subsequent uses of the same type,
3026   // could be useful if #include was forgotten.
3027   return true;
3028 }
3029 
3030 /// Determine the declaration specifier context from the declarator
3031 /// context.
3032 ///
3033 /// \param Context the declarator context, which is one of the
3034 /// DeclaratorContext enumerator values.
3035 Parser::DeclSpecContext
3036 Parser::getDeclSpecContextFromDeclaratorContext(DeclaratorContext Context) {
3037   switch (Context) {
3038   case DeclaratorContext::Member:
3039     return DeclSpecContext::DSC_class;
3040   case DeclaratorContext::File:
3041     return DeclSpecContext::DSC_top_level;
3042   case DeclaratorContext::TemplateParam:
3043     return DeclSpecContext::DSC_template_param;
3044   case DeclaratorContext::TemplateArg:
3045     return DeclSpecContext::DSC_template_arg;
3046   case DeclaratorContext::TemplateTypeArg:
3047     return DeclSpecContext::DSC_template_type_arg;
3048   case DeclaratorContext::TrailingReturn:
3049   case DeclaratorContext::TrailingReturnVar:
3050     return DeclSpecContext::DSC_trailing;
3051   case DeclaratorContext::AliasDecl:
3052   case DeclaratorContext::AliasTemplate:
3053     return DeclSpecContext::DSC_alias_declaration;
3054   case DeclaratorContext::Association:
3055     return DeclSpecContext::DSC_association;
3056   case DeclaratorContext::TypeName:
3057     return DeclSpecContext::DSC_type_specifier;
3058   case DeclaratorContext::Condition:
3059     return DeclSpecContext::DSC_condition;
3060   case DeclaratorContext::ConversionId:
3061     return DeclSpecContext::DSC_conv_operator;
3062   case DeclaratorContext::CXXNew:
3063     return DeclSpecContext::DSC_new;
3064   case DeclaratorContext::Prototype:
3065   case DeclaratorContext::ObjCResult:
3066   case DeclaratorContext::ObjCParameter:
3067   case DeclaratorContext::KNRTypeList:
3068   case DeclaratorContext::FunctionalCast:
3069   case DeclaratorContext::Block:
3070   case DeclaratorContext::ForInit:
3071   case DeclaratorContext::SelectionInit:
3072   case DeclaratorContext::CXXCatch:
3073   case DeclaratorContext::ObjCCatch:
3074   case DeclaratorContext::BlockLiteral:
3075   case DeclaratorContext::LambdaExpr:
3076   case DeclaratorContext::LambdaExprParameter:
3077   case DeclaratorContext::RequiresExpr:
3078     return DeclSpecContext::DSC_normal;
3079   }
3080 
3081   llvm_unreachable("Missing DeclaratorContext case");
3082 }
3083 
3084 /// ParseAlignArgument - Parse the argument to an alignment-specifier.
3085 ///
3086 /// [C11]   type-id
3087 /// [C11]   constant-expression
3088 /// [C++0x] type-id ...[opt]
3089 /// [C++0x] assignment-expression ...[opt]
3090 ExprResult Parser::ParseAlignArgument(StringRef KWName, SourceLocation Start,
3091                                       SourceLocation &EllipsisLoc, bool &IsType,
3092                                       ParsedType &TypeResult) {
3093   ExprResult ER;
3094   if (isTypeIdInParens()) {
3095     SourceLocation TypeLoc = Tok.getLocation();
3096     ParsedType Ty = ParseTypeName().get();
3097     SourceRange TypeRange(Start, Tok.getLocation());
3098     if (Actions.ActOnAlignasTypeArgument(KWName, Ty, TypeLoc, TypeRange))
3099       return ExprError();
3100     TypeResult = Ty;
3101     IsType = true;
3102   } else {
3103     ER = ParseConstantExpression();
3104     IsType = false;
3105   }
3106 
3107   if (getLangOpts().CPlusPlus11)
3108     TryConsumeToken(tok::ellipsis, EllipsisLoc);
3109 
3110   return ER;
3111 }
3112 
3113 /// ParseAlignmentSpecifier - Parse an alignment-specifier, and add the
3114 /// attribute to Attrs.
3115 ///
3116 /// alignment-specifier:
3117 /// [C11]   '_Alignas' '(' type-id ')'
3118 /// [C11]   '_Alignas' '(' constant-expression ')'
3119 /// [C++11] 'alignas' '(' type-id ...[opt] ')'
3120 /// [C++11] 'alignas' '(' assignment-expression ...[opt] ')'
3121 void Parser::ParseAlignmentSpecifier(ParsedAttributes &Attrs,
3122                                      SourceLocation *EndLoc) {
3123   assert(Tok.isOneOf(tok::kw_alignas, tok::kw__Alignas) &&
3124          "Not an alignment-specifier!");
3125   Token KWTok = Tok;
3126   IdentifierInfo *KWName = KWTok.getIdentifierInfo();
3127   auto Kind = KWTok.getKind();
3128   SourceLocation KWLoc = ConsumeToken();
3129 
3130   BalancedDelimiterTracker T(*this, tok::l_paren);
3131   if (T.expectAndConsume())
3132     return;
3133 
3134   bool IsType;
3135   ParsedType TypeResult;
3136   SourceLocation EllipsisLoc;
3137   ExprResult ArgExpr =
3138       ParseAlignArgument(PP.getSpelling(KWTok), T.getOpenLocation(),
3139                          EllipsisLoc, IsType, TypeResult);
3140   if (ArgExpr.isInvalid()) {
3141     T.skipToEnd();
3142     return;
3143   }
3144 
3145   T.consumeClose();
3146   if (EndLoc)
3147     *EndLoc = T.getCloseLocation();
3148 
3149   if (IsType) {
3150     Attrs.addNewTypeAttr(KWName, KWLoc, nullptr, KWLoc, TypeResult, Kind,
3151                          EllipsisLoc);
3152   } else {
3153     ArgsVector ArgExprs;
3154     ArgExprs.push_back(ArgExpr.get());
3155     Attrs.addNew(KWName, KWLoc, nullptr, KWLoc, ArgExprs.data(), 1, Kind,
3156                  EllipsisLoc);
3157   }
3158 }
3159 
3160 ExprResult Parser::ParseExtIntegerArgument() {
3161   assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) &&
3162          "Not an extended int type");
3163   ConsumeToken();
3164 
3165   BalancedDelimiterTracker T(*this, tok::l_paren);
3166   if (T.expectAndConsume())
3167     return ExprError();
3168 
3169   ExprResult ER = ParseConstantExpression();
3170   if (ER.isInvalid()) {
3171     T.skipToEnd();
3172     return ExprError();
3173   }
3174 
3175   if(T.consumeClose())
3176     return ExprError();
3177   return ER;
3178 }
3179 
3180 /// Determine whether we're looking at something that might be a declarator
3181 /// in a simple-declaration. If it can't possibly be a declarator, maybe
3182 /// diagnose a missing semicolon after a prior tag definition in the decl
3183 /// specifier.
3184 ///
3185 /// \return \c true if an error occurred and this can't be any kind of
3186 /// declaration.
3187 bool
3188 Parser::DiagnoseMissingSemiAfterTagDefinition(DeclSpec &DS, AccessSpecifier AS,
3189                                               DeclSpecContext DSContext,
3190                                               LateParsedAttrList *LateAttrs) {
3191   assert(DS.hasTagDefinition() && "shouldn't call this");
3192 
3193   bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3194                           DSContext == DeclSpecContext::DSC_top_level);
3195 
3196   if (getLangOpts().CPlusPlus &&
3197       Tok.isOneOf(tok::identifier, tok::coloncolon, tok::kw_decltype,
3198                   tok::annot_template_id) &&
3199       TryAnnotateCXXScopeToken(EnteringContext)) {
3200     SkipMalformedDecl();
3201     return true;
3202   }
3203 
3204   bool HasScope = Tok.is(tok::annot_cxxscope);
3205   // Make a copy in case GetLookAheadToken invalidates the result of NextToken.
3206   Token AfterScope = HasScope ? NextToken() : Tok;
3207 
3208   // Determine whether the following tokens could possibly be a
3209   // declarator.
3210   bool MightBeDeclarator = true;
3211   if (Tok.isOneOf(tok::kw_typename, tok::annot_typename)) {
3212     // A declarator-id can't start with 'typename'.
3213     MightBeDeclarator = false;
3214   } else if (AfterScope.is(tok::annot_template_id)) {
3215     // If we have a type expressed as a template-id, this cannot be a
3216     // declarator-id (such a type cannot be redeclared in a simple-declaration).
3217     TemplateIdAnnotation *Annot =
3218         static_cast<TemplateIdAnnotation *>(AfterScope.getAnnotationValue());
3219     if (Annot->Kind == TNK_Type_template)
3220       MightBeDeclarator = false;
3221   } else if (AfterScope.is(tok::identifier)) {
3222     const Token &Next = HasScope ? GetLookAheadToken(2) : NextToken();
3223 
3224     // These tokens cannot come after the declarator-id in a
3225     // simple-declaration, and are likely to come after a type-specifier.
3226     if (Next.isOneOf(tok::star, tok::amp, tok::ampamp, tok::identifier,
3227                      tok::annot_cxxscope, tok::coloncolon)) {
3228       // Missing a semicolon.
3229       MightBeDeclarator = false;
3230     } else if (HasScope) {
3231       // If the declarator-id has a scope specifier, it must redeclare a
3232       // previously-declared entity. If that's a type (and this is not a
3233       // typedef), that's an error.
3234       CXXScopeSpec SS;
3235       Actions.RestoreNestedNameSpecifierAnnotation(
3236           Tok.getAnnotationValue(), Tok.getAnnotationRange(), SS);
3237       IdentifierInfo *Name = AfterScope.getIdentifierInfo();
3238       Sema::NameClassification Classification = Actions.ClassifyName(
3239           getCurScope(), SS, Name, AfterScope.getLocation(), Next,
3240           /*CCC=*/nullptr);
3241       switch (Classification.getKind()) {
3242       case Sema::NC_Error:
3243         SkipMalformedDecl();
3244         return true;
3245 
3246       case Sema::NC_Keyword:
3247         llvm_unreachable("typo correction is not possible here");
3248 
3249       case Sema::NC_Type:
3250       case Sema::NC_TypeTemplate:
3251       case Sema::NC_UndeclaredNonType:
3252       case Sema::NC_UndeclaredTemplate:
3253         // Not a previously-declared non-type entity.
3254         MightBeDeclarator = false;
3255         break;
3256 
3257       case Sema::NC_Unknown:
3258       case Sema::NC_NonType:
3259       case Sema::NC_DependentNonType:
3260       case Sema::NC_OverloadSet:
3261       case Sema::NC_VarTemplate:
3262       case Sema::NC_FunctionTemplate:
3263       case Sema::NC_Concept:
3264         // Might be a redeclaration of a prior entity.
3265         break;
3266       }
3267     }
3268   }
3269 
3270   if (MightBeDeclarator)
3271     return false;
3272 
3273   const PrintingPolicy &PPol = Actions.getASTContext().getPrintingPolicy();
3274   Diag(PP.getLocForEndOfToken(DS.getRepAsDecl()->getEndLoc()),
3275        diag::err_expected_after)
3276       << DeclSpec::getSpecifierName(DS.getTypeSpecType(), PPol) << tok::semi;
3277 
3278   // Try to recover from the typo, by dropping the tag definition and parsing
3279   // the problematic tokens as a type.
3280   //
3281   // FIXME: Split the DeclSpec into pieces for the standalone
3282   // declaration and pieces for the following declaration, instead
3283   // of assuming that all the other pieces attach to new declaration,
3284   // and call ParsedFreeStandingDeclSpec as appropriate.
3285   DS.ClearTypeSpecType();
3286   ParsedTemplateInfo NotATemplate;
3287   ParseDeclarationSpecifiers(DS, NotATemplate, AS, DSContext, LateAttrs);
3288   return false;
3289 }
3290 
3291 /// ParseDeclarationSpecifiers
3292 ///       declaration-specifiers: [C99 6.7]
3293 ///         storage-class-specifier declaration-specifiers[opt]
3294 ///         type-specifier declaration-specifiers[opt]
3295 /// [C99]   function-specifier declaration-specifiers[opt]
3296 /// [C11]   alignment-specifier declaration-specifiers[opt]
3297 /// [GNU]   attributes declaration-specifiers[opt]
3298 /// [Clang] '__module_private__' declaration-specifiers[opt]
3299 /// [ObjC1] '__kindof' declaration-specifiers[opt]
3300 ///
3301 ///       storage-class-specifier: [C99 6.7.1]
3302 ///         'typedef'
3303 ///         'extern'
3304 ///         'static'
3305 ///         'auto'
3306 ///         'register'
3307 /// [C++]   'mutable'
3308 /// [C++11] 'thread_local'
3309 /// [C11]   '_Thread_local'
3310 /// [GNU]   '__thread'
3311 ///       function-specifier: [C99 6.7.4]
3312 /// [C99]   'inline'
3313 /// [C++]   'virtual'
3314 /// [C++]   'explicit'
3315 /// [OpenCL] '__kernel'
3316 ///       'friend': [C++ dcl.friend]
3317 ///       'constexpr': [C++0x dcl.constexpr]
3318 void Parser::ParseDeclarationSpecifiers(
3319     DeclSpec &DS, const ParsedTemplateInfo &TemplateInfo, AccessSpecifier AS,
3320     DeclSpecContext DSContext, LateParsedAttrList *LateAttrs,
3321     ImplicitTypenameContext AllowImplicitTypename) {
3322   if (DS.getSourceRange().isInvalid()) {
3323     // Start the range at the current token but make the end of the range
3324     // invalid.  This will make the entire range invalid unless we successfully
3325     // consume a token.
3326     DS.SetRangeStart(Tok.getLocation());
3327     DS.SetRangeEnd(SourceLocation());
3328   }
3329 
3330   // If we are in a operator context, convert it back into a type specifier
3331   // context for better error handling later on.
3332   if (DSContext == DeclSpecContext::DSC_conv_operator) {
3333     // No implicit typename here.
3334     AllowImplicitTypename = ImplicitTypenameContext::No;
3335     DSContext = DeclSpecContext::DSC_type_specifier;
3336   }
3337 
3338   bool EnteringContext = (DSContext == DeclSpecContext::DSC_class ||
3339                           DSContext == DeclSpecContext::DSC_top_level);
3340   bool AttrsLastTime = false;
3341   ParsedAttributes attrs(AttrFactory);
3342   // We use Sema's policy to get bool macros right.
3343   PrintingPolicy Policy = Actions.getPrintingPolicy();
3344   while (true) {
3345     bool isInvalid = false;
3346     bool isStorageClass = false;
3347     const char *PrevSpec = nullptr;
3348     unsigned DiagID = 0;
3349 
3350     // This value needs to be set to the location of the last token if the last
3351     // token of the specifier is already consumed.
3352     SourceLocation ConsumedEnd;
3353 
3354     // HACK: MSVC doesn't consider _Atomic to be a keyword and its STL
3355     // implementation for VS2013 uses _Atomic as an identifier for one of the
3356     // classes in <atomic>.
3357     //
3358     // A typedef declaration containing _Atomic<...> is among the places where
3359     // the class is used.  If we are currently parsing such a declaration, treat
3360     // the token as an identifier.
3361     if (getLangOpts().MSVCCompat && Tok.is(tok::kw__Atomic) &&
3362         DS.getStorageClassSpec() == clang::DeclSpec::SCS_typedef &&
3363         !DS.hasTypeSpecifier() && GetLookAheadToken(1).is(tok::less))
3364       Tok.setKind(tok::identifier);
3365 
3366     SourceLocation Loc = Tok.getLocation();
3367 
3368     // Helper for image types in OpenCL.
3369     auto handleOpenCLImageKW = [&] (StringRef Ext, TypeSpecifierType ImageTypeSpec) {
3370       // Check if the image type is supported and otherwise turn the keyword into an identifier
3371       // because image types from extensions are not reserved identifiers.
3372       if (!StringRef(Ext).empty() && !getActions().getOpenCLOptions().isSupported(Ext, getLangOpts())) {
3373         Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
3374         Tok.setKind(tok::identifier);
3375         return false;
3376       }
3377       isInvalid = DS.SetTypeSpecType(ImageTypeSpec, Loc, PrevSpec, DiagID, Policy);
3378       return true;
3379     };
3380 
3381     // Turn off usual access checking for template specializations and
3382     // instantiations.
3383     bool IsTemplateSpecOrInst =
3384         (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
3385          TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
3386 
3387     switch (Tok.getKind()) {
3388     default:
3389       if (Tok.isRegularKeywordAttribute())
3390         goto Attribute;
3391 
3392     DoneWithDeclSpec:
3393       if (!AttrsLastTime)
3394         ProhibitAttributes(attrs);
3395       else {
3396         // Reject C++11 / C23 attributes that aren't type attributes.
3397         for (const ParsedAttr &PA : attrs) {
3398           if (!PA.isCXX11Attribute() && !PA.isC23Attribute() &&
3399               !PA.isRegularKeywordAttribute())
3400             continue;
3401           if (PA.getKind() == ParsedAttr::UnknownAttribute)
3402             // We will warn about the unknown attribute elsewhere (in
3403             // SemaDeclAttr.cpp)
3404             continue;
3405           // GCC ignores this attribute when placed on the DeclSpec in [[]]
3406           // syntax, so we do the same.
3407           if (PA.getKind() == ParsedAttr::AT_VectorSize) {
3408             Diag(PA.getLoc(), diag::warn_attribute_ignored) << PA;
3409             PA.setInvalid();
3410             continue;
3411           }
3412           // We reject AT_LifetimeBound and AT_AnyX86NoCfCheck, even though they
3413           // are type attributes, because we historically haven't allowed these
3414           // to be used as type attributes in C++11 / C23 syntax.
3415           if (PA.isTypeAttr() && PA.getKind() != ParsedAttr::AT_LifetimeBound &&
3416               PA.getKind() != ParsedAttr::AT_AnyX86NoCfCheck)
3417             continue;
3418           Diag(PA.getLoc(), diag::err_attribute_not_type_attr)
3419               << PA << PA.isRegularKeywordAttribute();
3420           PA.setInvalid();
3421         }
3422 
3423         DS.takeAttributesFrom(attrs);
3424       }
3425 
3426       // If this is not a declaration specifier token, we're done reading decl
3427       // specifiers.  First verify that DeclSpec's are consistent.
3428       DS.Finish(Actions, Policy);
3429       return;
3430 
3431     case tok::l_square:
3432     case tok::kw_alignas:
3433       if (!isAllowedCXX11AttributeSpecifier())
3434         goto DoneWithDeclSpec;
3435 
3436     Attribute:
3437       ProhibitAttributes(attrs);
3438       // FIXME: It would be good to recover by accepting the attributes,
3439       //        but attempting to do that now would cause serious
3440       //        madness in terms of diagnostics.
3441       attrs.clear();
3442       attrs.Range = SourceRange();
3443 
3444       ParseCXX11Attributes(attrs);
3445       AttrsLastTime = true;
3446       continue;
3447 
3448     case tok::code_completion: {
3449       Sema::ParserCompletionContext CCC = Sema::PCC_Namespace;
3450       if (DS.hasTypeSpecifier()) {
3451         bool AllowNonIdentifiers
3452           = (getCurScope()->getFlags() & (Scope::ControlScope |
3453                                           Scope::BlockScope |
3454                                           Scope::TemplateParamScope |
3455                                           Scope::FunctionPrototypeScope |
3456                                           Scope::AtCatchScope)) == 0;
3457         bool AllowNestedNameSpecifiers
3458           = DSContext == DeclSpecContext::DSC_top_level ||
3459             (DSContext == DeclSpecContext::DSC_class && DS.isFriendSpecified());
3460 
3461         cutOffParsing();
3462         Actions.CodeCompleteDeclSpec(getCurScope(), DS,
3463                                      AllowNonIdentifiers,
3464                                      AllowNestedNameSpecifiers);
3465         return;
3466       }
3467 
3468       // Class context can appear inside a function/block, so prioritise that.
3469       if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate)
3470         CCC = DSContext == DeclSpecContext::DSC_class ? Sema::PCC_MemberTemplate
3471                                                       : Sema::PCC_Template;
3472       else if (DSContext == DeclSpecContext::DSC_class)
3473         CCC = Sema::PCC_Class;
3474       else if (getCurScope()->getFnParent() || getCurScope()->getBlockParent())
3475         CCC = Sema::PCC_LocalDeclarationSpecifiers;
3476       else if (CurParsedObjCImpl)
3477         CCC = Sema::PCC_ObjCImplementation;
3478 
3479       cutOffParsing();
3480       Actions.CodeCompleteOrdinaryName(getCurScope(), CCC);
3481       return;
3482     }
3483 
3484     case tok::coloncolon: // ::foo::bar
3485       // C++ scope specifier.  Annotate and loop, or bail out on error.
3486       if (getLangOpts().CPlusPlus &&
3487           TryAnnotateCXXScopeToken(EnteringContext)) {
3488         if (!DS.hasTypeSpecifier())
3489           DS.SetTypeSpecError();
3490         goto DoneWithDeclSpec;
3491       }
3492       if (Tok.is(tok::coloncolon)) // ::new or ::delete
3493         goto DoneWithDeclSpec;
3494       continue;
3495 
3496     case tok::annot_cxxscope: {
3497       if (DS.hasTypeSpecifier() || DS.isTypeAltiVecVector())
3498         goto DoneWithDeclSpec;
3499 
3500       CXXScopeSpec SS;
3501       if (TemplateInfo.TemplateParams)
3502         SS.setTemplateParamLists(*TemplateInfo.TemplateParams);
3503       Actions.RestoreNestedNameSpecifierAnnotation(Tok.getAnnotationValue(),
3504                                                    Tok.getAnnotationRange(),
3505                                                    SS);
3506 
3507       // We are looking for a qualified typename.
3508       Token Next = NextToken();
3509 
3510       TemplateIdAnnotation *TemplateId = Next.is(tok::annot_template_id)
3511                                              ? takeTemplateIdAnnotation(Next)
3512                                              : nullptr;
3513       if (TemplateId && TemplateId->hasInvalidName()) {
3514         // We found something like 'T::U<Args> x', but U is not a template.
3515         // Assume it was supposed to be a type.
3516         DS.SetTypeSpecError();
3517         ConsumeAnnotationToken();
3518         break;
3519       }
3520 
3521       if (TemplateId && TemplateId->Kind == TNK_Type_template) {
3522         // We have a qualified template-id, e.g., N::A<int>
3523 
3524         // If this would be a valid constructor declaration with template
3525         // arguments, we will reject the attempt to form an invalid type-id
3526         // referring to the injected-class-name when we annotate the token,
3527         // per C++ [class.qual]p2.
3528         //
3529         // To improve diagnostics for this case, parse the declaration as a
3530         // constructor (and reject the extra template arguments later).
3531         if ((DSContext == DeclSpecContext::DSC_top_level ||
3532              DSContext == DeclSpecContext::DSC_class) &&
3533             TemplateId->Name &&
3534             Actions.isCurrentClassName(*TemplateId->Name, getCurScope(), &SS) &&
3535             isConstructorDeclarator(/*Unqualified=*/false,
3536                                     /*DeductionGuide=*/false,
3537                                     DS.isFriendSpecified())) {
3538           // The user meant this to be an out-of-line constructor
3539           // definition, but template arguments are not allowed
3540           // there.  Just allow this as a constructor; we'll
3541           // complain about it later.
3542           goto DoneWithDeclSpec;
3543         }
3544 
3545         DS.getTypeSpecScope() = SS;
3546         ConsumeAnnotationToken(); // The C++ scope.
3547         assert(Tok.is(tok::annot_template_id) &&
3548                "ParseOptionalCXXScopeSpecifier not working");
3549         AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
3550         continue;
3551       }
3552 
3553       if (TemplateId && TemplateId->Kind == TNK_Concept_template) {
3554         DS.getTypeSpecScope() = SS;
3555         // This is probably a qualified placeholder-specifier, e.g., ::C<int>
3556         // auto ... Consume the scope annotation and continue to consume the
3557         // template-id as a placeholder-specifier. Let the next iteration
3558         // diagnose a missing auto.
3559         ConsumeAnnotationToken();
3560         continue;
3561       }
3562 
3563       if (Next.is(tok::annot_typename)) {
3564         DS.getTypeSpecScope() = SS;
3565         ConsumeAnnotationToken(); // The C++ scope.
3566         TypeResult T = getTypeAnnotation(Tok);
3567         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename,
3568                                        Tok.getAnnotationEndLoc(),
3569                                        PrevSpec, DiagID, T, Policy);
3570         if (isInvalid)
3571           break;
3572         DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3573         ConsumeAnnotationToken(); // The typename
3574       }
3575 
3576       if (AllowImplicitTypename == ImplicitTypenameContext::Yes &&
3577           Next.is(tok::annot_template_id) &&
3578           static_cast<TemplateIdAnnotation *>(Next.getAnnotationValue())
3579                   ->Kind == TNK_Dependent_template_name) {
3580         DS.getTypeSpecScope() = SS;
3581         ConsumeAnnotationToken(); // The C++ scope.
3582         AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
3583         continue;
3584       }
3585 
3586       if (Next.isNot(tok::identifier))
3587         goto DoneWithDeclSpec;
3588 
3589       // Check whether this is a constructor declaration. If we're in a
3590       // context where the identifier could be a class name, and it has the
3591       // shape of a constructor declaration, process it as one.
3592       if ((DSContext == DeclSpecContext::DSC_top_level ||
3593            DSContext == DeclSpecContext::DSC_class) &&
3594           Actions.isCurrentClassName(*Next.getIdentifierInfo(), getCurScope(),
3595                                      &SS) &&
3596           isConstructorDeclarator(/*Unqualified=*/false,
3597                                   /*DeductionGuide=*/false,
3598                                   DS.isFriendSpecified(),
3599                                   &TemplateInfo))
3600         goto DoneWithDeclSpec;
3601 
3602       // C++20 [temp.spec] 13.9/6.
3603       // This disables the access checking rules for function template explicit
3604       // instantiation and explicit specialization:
3605       // - `return type`.
3606       SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
3607 
3608       ParsedType TypeRep = Actions.getTypeName(
3609           *Next.getIdentifierInfo(), Next.getLocation(), getCurScope(), &SS,
3610           false, false, nullptr,
3611           /*IsCtorOrDtorName=*/false,
3612           /*WantNontrivialTypeSourceInfo=*/true,
3613           isClassTemplateDeductionContext(DSContext), AllowImplicitTypename);
3614 
3615       if (IsTemplateSpecOrInst)
3616         SAC.done();
3617 
3618       // If the referenced identifier is not a type, then this declspec is
3619       // erroneous: We already checked about that it has no type specifier, and
3620       // C++ doesn't have implicit int.  Diagnose it as a typo w.r.t. to the
3621       // typename.
3622       if (!TypeRep) {
3623         if (TryAnnotateTypeConstraint())
3624           goto DoneWithDeclSpec;
3625         if (Tok.isNot(tok::annot_cxxscope) ||
3626             NextToken().isNot(tok::identifier))
3627           continue;
3628         // Eat the scope spec so the identifier is current.
3629         ConsumeAnnotationToken();
3630         ParsedAttributes Attrs(AttrFactory);
3631         if (ParseImplicitInt(DS, &SS, TemplateInfo, AS, DSContext, Attrs)) {
3632           if (!Attrs.empty()) {
3633             AttrsLastTime = true;
3634             attrs.takeAllFrom(Attrs);
3635           }
3636           continue;
3637         }
3638         goto DoneWithDeclSpec;
3639       }
3640 
3641       DS.getTypeSpecScope() = SS;
3642       ConsumeAnnotationToken(); // The C++ scope.
3643 
3644       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3645                                      DiagID, TypeRep, Policy);
3646       if (isInvalid)
3647         break;
3648 
3649       DS.SetRangeEnd(Tok.getLocation());
3650       ConsumeToken(); // The typename.
3651 
3652       continue;
3653     }
3654 
3655     case tok::annot_typename: {
3656       // If we've previously seen a tag definition, we were almost surely
3657       // missing a semicolon after it.
3658       if (DS.hasTypeSpecifier() && DS.hasTagDefinition())
3659         goto DoneWithDeclSpec;
3660 
3661       TypeResult T = getTypeAnnotation(Tok);
3662       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3663                                      DiagID, T, Policy);
3664       if (isInvalid)
3665         break;
3666 
3667       DS.SetRangeEnd(Tok.getAnnotationEndLoc());
3668       ConsumeAnnotationToken(); // The typename
3669 
3670       continue;
3671     }
3672 
3673     case tok::kw___is_signed:
3674       // GNU libstdc++ 4.4 uses __is_signed as an identifier, but Clang
3675       // typically treats it as a trait. If we see __is_signed as it appears
3676       // in libstdc++, e.g.,
3677       //
3678       //   static const bool __is_signed;
3679       //
3680       // then treat __is_signed as an identifier rather than as a keyword.
3681       if (DS.getTypeSpecType() == TST_bool &&
3682           DS.getTypeQualifiers() == DeclSpec::TQ_const &&
3683           DS.getStorageClassSpec() == DeclSpec::SCS_static)
3684         TryKeywordIdentFallback(true);
3685 
3686       // We're done with the declaration-specifiers.
3687       goto DoneWithDeclSpec;
3688 
3689       // typedef-name
3690     case tok::kw___super:
3691     case tok::kw_decltype:
3692     case tok::identifier:
3693     ParseIdentifier: {
3694       // This identifier can only be a typedef name if we haven't already seen
3695       // a type-specifier.  Without this check we misparse:
3696       //  typedef int X; struct Y { short X; };  as 'short int'.
3697       if (DS.hasTypeSpecifier())
3698         goto DoneWithDeclSpec;
3699 
3700       // If the token is an identifier named "__declspec" and Microsoft
3701       // extensions are not enabled, it is likely that there will be cascading
3702       // parse errors if this really is a __declspec attribute. Attempt to
3703       // recognize that scenario and recover gracefully.
3704       if (!getLangOpts().DeclSpecKeyword && Tok.is(tok::identifier) &&
3705           Tok.getIdentifierInfo()->getName().equals("__declspec")) {
3706         Diag(Loc, diag::err_ms_attributes_not_enabled);
3707 
3708         // The next token should be an open paren. If it is, eat the entire
3709         // attribute declaration and continue.
3710         if (NextToken().is(tok::l_paren)) {
3711           // Consume the __declspec identifier.
3712           ConsumeToken();
3713 
3714           // Eat the parens and everything between them.
3715           BalancedDelimiterTracker T(*this, tok::l_paren);
3716           if (T.consumeOpen()) {
3717             assert(false && "Not a left paren?");
3718             return;
3719           }
3720           T.skipToEnd();
3721           continue;
3722         }
3723       }
3724 
3725       // In C++, check to see if this is a scope specifier like foo::bar::, if
3726       // so handle it as such.  This is important for ctor parsing.
3727       if (getLangOpts().CPlusPlus) {
3728         // C++20 [temp.spec] 13.9/6.
3729         // This disables the access checking rules for function template
3730         // explicit instantiation and explicit specialization:
3731         // - `return type`.
3732         SuppressAccessChecks SAC(*this, IsTemplateSpecOrInst);
3733 
3734         const bool Success = TryAnnotateCXXScopeToken(EnteringContext);
3735 
3736         if (IsTemplateSpecOrInst)
3737           SAC.done();
3738 
3739         if (Success) {
3740           if (IsTemplateSpecOrInst)
3741             SAC.redelay();
3742           DS.SetTypeSpecError();
3743           goto DoneWithDeclSpec;
3744         }
3745 
3746         if (!Tok.is(tok::identifier))
3747           continue;
3748       }
3749 
3750       // Check for need to substitute AltiVec keyword tokens.
3751       if (TryAltiVecToken(DS, Loc, PrevSpec, DiagID, isInvalid))
3752         break;
3753 
3754       // [AltiVec] 2.2: [If the 'vector' specifier is used] The syntax does not
3755       //                allow the use of a typedef name as a type specifier.
3756       if (DS.isTypeAltiVecVector())
3757         goto DoneWithDeclSpec;
3758 
3759       if (DSContext == DeclSpecContext::DSC_objc_method_result &&
3760           isObjCInstancetype()) {
3761         ParsedType TypeRep = Actions.ActOnObjCInstanceType(Loc);
3762         assert(TypeRep);
3763         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3764                                        DiagID, TypeRep, Policy);
3765         if (isInvalid)
3766           break;
3767 
3768         DS.SetRangeEnd(Loc);
3769         ConsumeToken();
3770         continue;
3771       }
3772 
3773       // If we're in a context where the identifier could be a class name,
3774       // check whether this is a constructor declaration.
3775       if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3776           Actions.isCurrentClassName(*Tok.getIdentifierInfo(), getCurScope()) &&
3777           isConstructorDeclarator(/*Unqualified=*/true,
3778                                   /*DeductionGuide=*/false,
3779                                   DS.isFriendSpecified()))
3780         goto DoneWithDeclSpec;
3781 
3782       ParsedType TypeRep = Actions.getTypeName(
3783           *Tok.getIdentifierInfo(), Tok.getLocation(), getCurScope(), nullptr,
3784           false, false, nullptr, false, false,
3785           isClassTemplateDeductionContext(DSContext));
3786 
3787       // If this is not a typedef name, don't parse it as part of the declspec,
3788       // it must be an implicit int or an error.
3789       if (!TypeRep) {
3790         if (TryAnnotateTypeConstraint())
3791           goto DoneWithDeclSpec;
3792         if (Tok.isNot(tok::identifier))
3793           continue;
3794         ParsedAttributes Attrs(AttrFactory);
3795         if (ParseImplicitInt(DS, nullptr, TemplateInfo, AS, DSContext, Attrs)) {
3796           if (!Attrs.empty()) {
3797             AttrsLastTime = true;
3798             attrs.takeAllFrom(Attrs);
3799           }
3800           continue;
3801         }
3802         goto DoneWithDeclSpec;
3803       }
3804 
3805       // Likewise, if this is a context where the identifier could be a template
3806       // name, check whether this is a deduction guide declaration.
3807       CXXScopeSpec SS;
3808       if (getLangOpts().CPlusPlus17 &&
3809           (DSContext == DeclSpecContext::DSC_class ||
3810            DSContext == DeclSpecContext::DSC_top_level) &&
3811           Actions.isDeductionGuideName(getCurScope(), *Tok.getIdentifierInfo(),
3812                                        Tok.getLocation(), SS) &&
3813           isConstructorDeclarator(/*Unqualified*/ true,
3814                                   /*DeductionGuide*/ true))
3815         goto DoneWithDeclSpec;
3816 
3817       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typename, Loc, PrevSpec,
3818                                      DiagID, TypeRep, Policy);
3819       if (isInvalid)
3820         break;
3821 
3822       DS.SetRangeEnd(Tok.getLocation());
3823       ConsumeToken(); // The identifier
3824 
3825       // Objective-C supports type arguments and protocol references
3826       // following an Objective-C object or object pointer
3827       // type. Handle either one of them.
3828       if (Tok.is(tok::less) && getLangOpts().ObjC) {
3829         SourceLocation NewEndLoc;
3830         TypeResult NewTypeRep = parseObjCTypeArgsAndProtocolQualifiers(
3831                                   Loc, TypeRep, /*consumeLastToken=*/true,
3832                                   NewEndLoc);
3833         if (NewTypeRep.isUsable()) {
3834           DS.UpdateTypeRep(NewTypeRep.get());
3835           DS.SetRangeEnd(NewEndLoc);
3836         }
3837       }
3838 
3839       // Need to support trailing type qualifiers (e.g. "id<p> const").
3840       // If a type specifier follows, it will be diagnosed elsewhere.
3841       continue;
3842     }
3843 
3844       // type-name or placeholder-specifier
3845     case tok::annot_template_id: {
3846       TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
3847 
3848       if (TemplateId->hasInvalidName()) {
3849         DS.SetTypeSpecError();
3850         break;
3851       }
3852 
3853       if (TemplateId->Kind == TNK_Concept_template) {
3854         // If we've already diagnosed that this type-constraint has invalid
3855         // arguments, drop it and just form 'auto' or 'decltype(auto)'.
3856         if (TemplateId->hasInvalidArgs())
3857           TemplateId = nullptr;
3858 
3859         // Any of the following tokens are likely the start of the user
3860         // forgetting 'auto' or 'decltype(auto)', so diagnose.
3861         // Note: if updating this list, please make sure we update
3862         // isCXXDeclarationSpecifier's check for IsPlaceholderSpecifier to have
3863         // a matching list.
3864         if (NextToken().isOneOf(tok::identifier, tok::kw_const,
3865                                 tok::kw_volatile, tok::kw_restrict, tok::amp,
3866                                 tok::ampamp)) {
3867           Diag(Loc, diag::err_placeholder_expected_auto_or_decltype_auto)
3868               << FixItHint::CreateInsertion(NextToken().getLocation(), "auto");
3869           // Attempt to continue as if 'auto' was placed here.
3870           isInvalid = DS.SetTypeSpecType(TST_auto, Loc, PrevSpec, DiagID,
3871                                          TemplateId, Policy);
3872           break;
3873         }
3874         if (!NextToken().isOneOf(tok::kw_auto, tok::kw_decltype))
3875             goto DoneWithDeclSpec;
3876 
3877         if (TemplateId && !isInvalid && Actions.CheckTypeConstraint(TemplateId))
3878             TemplateId = nullptr;
3879 
3880         ConsumeAnnotationToken();
3881         SourceLocation AutoLoc = Tok.getLocation();
3882         if (TryConsumeToken(tok::kw_decltype)) {
3883           BalancedDelimiterTracker Tracker(*this, tok::l_paren);
3884           if (Tracker.consumeOpen()) {
3885             // Something like `void foo(Iterator decltype i)`
3886             Diag(Tok, diag::err_expected) << tok::l_paren;
3887           } else {
3888             if (!TryConsumeToken(tok::kw_auto)) {
3889               // Something like `void foo(Iterator decltype(int) i)`
3890               Tracker.skipToEnd();
3891               Diag(Tok, diag::err_placeholder_expected_auto_or_decltype_auto)
3892                 << FixItHint::CreateReplacement(SourceRange(AutoLoc,
3893                                                             Tok.getLocation()),
3894                                                 "auto");
3895             } else {
3896               Tracker.consumeClose();
3897             }
3898           }
3899           ConsumedEnd = Tok.getLocation();
3900           DS.setTypeArgumentRange(Tracker.getRange());
3901           // Even if something went wrong above, continue as if we've seen
3902           // `decltype(auto)`.
3903           isInvalid = DS.SetTypeSpecType(TST_decltype_auto, Loc, PrevSpec,
3904                                          DiagID, TemplateId, Policy);
3905         } else {
3906           isInvalid = DS.SetTypeSpecType(TST_auto, AutoLoc, PrevSpec, DiagID,
3907                                          TemplateId, Policy);
3908         }
3909         break;
3910       }
3911 
3912       if (TemplateId->Kind != TNK_Type_template &&
3913           TemplateId->Kind != TNK_Undeclared_template) {
3914         // This template-id does not refer to a type name, so we're
3915         // done with the type-specifiers.
3916         goto DoneWithDeclSpec;
3917       }
3918 
3919       // If we're in a context where the template-id could be a
3920       // constructor name or specialization, check whether this is a
3921       // constructor declaration.
3922       if (getLangOpts().CPlusPlus && DSContext == DeclSpecContext::DSC_class &&
3923           Actions.isCurrentClassName(*TemplateId->Name, getCurScope()) &&
3924           isConstructorDeclarator(/*Unqualified=*/true,
3925                                   /*DeductionGuide=*/false,
3926                                   DS.isFriendSpecified()))
3927         goto DoneWithDeclSpec;
3928 
3929       // Turn the template-id annotation token into a type annotation
3930       // token, then try again to parse it as a type-specifier.
3931       CXXScopeSpec SS;
3932       AnnotateTemplateIdTokenAsType(SS, AllowImplicitTypename);
3933       continue;
3934     }
3935 
3936     // Attributes support.
3937     case tok::kw___attribute:
3938     case tok::kw___declspec:
3939       ParseAttributes(PAKM_GNU | PAKM_Declspec, DS.getAttributes(), LateAttrs);
3940       continue;
3941 
3942     // Microsoft single token adornments.
3943     case tok::kw___forceinline: {
3944       isInvalid = DS.setFunctionSpecForceInline(Loc, PrevSpec, DiagID);
3945       IdentifierInfo *AttrName = Tok.getIdentifierInfo();
3946       SourceLocation AttrNameLoc = Tok.getLocation();
3947       DS.getAttributes().addNew(AttrName, AttrNameLoc, nullptr, AttrNameLoc,
3948                                 nullptr, 0, tok::kw___forceinline);
3949       break;
3950     }
3951 
3952     case tok::kw___unaligned:
3953       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
3954                                  getLangOpts());
3955       break;
3956 
3957     case tok::kw___sptr:
3958     case tok::kw___uptr:
3959     case tok::kw___ptr64:
3960     case tok::kw___ptr32:
3961     case tok::kw___w64:
3962     case tok::kw___cdecl:
3963     case tok::kw___stdcall:
3964     case tok::kw___fastcall:
3965     case tok::kw___thiscall:
3966     case tok::kw___regcall:
3967     case tok::kw___vectorcall:
3968       ParseMicrosoftTypeAttributes(DS.getAttributes());
3969       continue;
3970 
3971     case tok::kw___funcref:
3972       ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes());
3973       continue;
3974 
3975     // Borland single token adornments.
3976     case tok::kw___pascal:
3977       ParseBorlandTypeAttributes(DS.getAttributes());
3978       continue;
3979 
3980     // OpenCL single token adornments.
3981     case tok::kw___kernel:
3982       ParseOpenCLKernelAttributes(DS.getAttributes());
3983       continue;
3984 
3985     // CUDA/HIP single token adornments.
3986     case tok::kw___noinline__:
3987       ParseCUDAFunctionAttributes(DS.getAttributes());
3988       continue;
3989 
3990     // Nullability type specifiers.
3991     case tok::kw__Nonnull:
3992     case tok::kw__Nullable:
3993     case tok::kw__Nullable_result:
3994     case tok::kw__Null_unspecified:
3995       ParseNullabilityTypeSpecifiers(DS.getAttributes());
3996       continue;
3997 
3998     // Objective-C 'kindof' types.
3999     case tok::kw___kindof:
4000       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
4001                                 nullptr, 0, tok::kw___kindof);
4002       (void)ConsumeToken();
4003       continue;
4004 
4005     // storage-class-specifier
4006     case tok::kw_typedef:
4007       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_typedef, Loc,
4008                                          PrevSpec, DiagID, Policy);
4009       isStorageClass = true;
4010       break;
4011     case tok::kw_extern:
4012       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
4013         Diag(Tok, diag::ext_thread_before) << "extern";
4014       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_extern, Loc,
4015                                          PrevSpec, DiagID, Policy);
4016       isStorageClass = true;
4017       break;
4018     case tok::kw___private_extern__:
4019       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_private_extern,
4020                                          Loc, PrevSpec, DiagID, Policy);
4021       isStorageClass = true;
4022       break;
4023     case tok::kw_static:
4024       if (DS.getThreadStorageClassSpec() == DeclSpec::TSCS___thread)
4025         Diag(Tok, diag::ext_thread_before) << "static";
4026       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_static, Loc,
4027                                          PrevSpec, DiagID, Policy);
4028       isStorageClass = true;
4029       break;
4030     case tok::kw_auto:
4031       if (getLangOpts().CPlusPlus11 || getLangOpts().C23) {
4032         if (isKnownToBeTypeSpecifier(GetLookAheadToken(1))) {
4033           isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
4034                                              PrevSpec, DiagID, Policy);
4035           if (!isInvalid && !getLangOpts().C23)
4036             Diag(Tok, diag::ext_auto_storage_class)
4037               << FixItHint::CreateRemoval(DS.getStorageClassSpecLoc());
4038         } else
4039           isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto, Loc, PrevSpec,
4040                                          DiagID, Policy);
4041       } else
4042         isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_auto, Loc,
4043                                            PrevSpec, DiagID, Policy);
4044       isStorageClass = true;
4045       break;
4046     case tok::kw___auto_type:
4047       Diag(Tok, diag::ext_auto_type);
4048       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_auto_type, Loc, PrevSpec,
4049                                      DiagID, Policy);
4050       break;
4051     case tok::kw_register:
4052       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_register, Loc,
4053                                          PrevSpec, DiagID, Policy);
4054       isStorageClass = true;
4055       break;
4056     case tok::kw_mutable:
4057       isInvalid = DS.SetStorageClassSpec(Actions, DeclSpec::SCS_mutable, Loc,
4058                                          PrevSpec, DiagID, Policy);
4059       isStorageClass = true;
4060       break;
4061     case tok::kw___thread:
4062       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS___thread, Loc,
4063                                                PrevSpec, DiagID);
4064       isStorageClass = true;
4065       break;
4066     case tok::kw_thread_local:
4067       if (getLangOpts().C23)
4068         Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
4069       // We map thread_local to _Thread_local in C23 mode so it retains the C
4070       // semantics rather than getting the C++ semantics.
4071       // FIXME: diagnostics will show _Thread_local when the user wrote
4072       // thread_local in source in C23 mode; we need some general way to
4073       // identify which way the user spelled the keyword in source.
4074       isInvalid = DS.SetStorageClassSpecThread(
4075           getLangOpts().C23 ? DeclSpec::TSCS__Thread_local
4076                             : DeclSpec::TSCS_thread_local,
4077           Loc, PrevSpec, DiagID);
4078       isStorageClass = true;
4079       break;
4080     case tok::kw__Thread_local:
4081       if (!getLangOpts().C11)
4082         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
4083       isInvalid = DS.SetStorageClassSpecThread(DeclSpec::TSCS__Thread_local,
4084                                                Loc, PrevSpec, DiagID);
4085       isStorageClass = true;
4086       break;
4087 
4088     // function-specifier
4089     case tok::kw_inline:
4090       isInvalid = DS.setFunctionSpecInline(Loc, PrevSpec, DiagID);
4091       break;
4092     case tok::kw_virtual:
4093       // C++ for OpenCL does not allow virtual function qualifier, to avoid
4094       // function pointers restricted in OpenCL v2.0 s6.9.a.
4095       if (getLangOpts().OpenCLCPlusPlus &&
4096           !getActions().getOpenCLOptions().isAvailableOption(
4097               "__cl_clang_function_pointers", getLangOpts())) {
4098         DiagID = diag::err_openclcxx_virtual_function;
4099         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4100         isInvalid = true;
4101       } else {
4102         isInvalid = DS.setFunctionSpecVirtual(Loc, PrevSpec, DiagID);
4103       }
4104       break;
4105     case tok::kw_explicit: {
4106       SourceLocation ExplicitLoc = Loc;
4107       SourceLocation CloseParenLoc;
4108       ExplicitSpecifier ExplicitSpec(nullptr, ExplicitSpecKind::ResolvedTrue);
4109       ConsumedEnd = ExplicitLoc;
4110       ConsumeToken(); // kw_explicit
4111       if (Tok.is(tok::l_paren)) {
4112         if (getLangOpts().CPlusPlus20 || isExplicitBool() == TPResult::True) {
4113           Diag(Tok.getLocation(), getLangOpts().CPlusPlus20
4114                                       ? diag::warn_cxx17_compat_explicit_bool
4115                                       : diag::ext_explicit_bool);
4116 
4117           ExprResult ExplicitExpr(static_cast<Expr *>(nullptr));
4118           BalancedDelimiterTracker Tracker(*this, tok::l_paren);
4119           Tracker.consumeOpen();
4120 
4121           EnterExpressionEvaluationContext ConstantEvaluated(
4122               Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
4123 
4124           ExplicitExpr = ParseConstantExpressionInExprEvalContext();
4125           ConsumedEnd = Tok.getLocation();
4126           if (ExplicitExpr.isUsable()) {
4127             CloseParenLoc = Tok.getLocation();
4128             Tracker.consumeClose();
4129             ExplicitSpec =
4130                 Actions.ActOnExplicitBoolSpecifier(ExplicitExpr.get());
4131           } else
4132             Tracker.skipToEnd();
4133         } else {
4134           Diag(Tok.getLocation(), diag::warn_cxx20_compat_explicit_bool);
4135         }
4136       }
4137       isInvalid = DS.setFunctionSpecExplicit(ExplicitLoc, PrevSpec, DiagID,
4138                                              ExplicitSpec, CloseParenLoc);
4139       break;
4140     }
4141     case tok::kw__Noreturn:
4142       if (!getLangOpts().C11)
4143         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
4144       isInvalid = DS.setFunctionSpecNoreturn(Loc, PrevSpec, DiagID);
4145       break;
4146 
4147     // alignment-specifier
4148     case tok::kw__Alignas:
4149       if (!getLangOpts().C11)
4150         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
4151       ParseAlignmentSpecifier(DS.getAttributes());
4152       continue;
4153 
4154     // friend
4155     case tok::kw_friend:
4156       if (DSContext == DeclSpecContext::DSC_class)
4157         isInvalid = DS.SetFriendSpec(Loc, PrevSpec, DiagID);
4158       else {
4159         PrevSpec = ""; // not actually used by the diagnostic
4160         DiagID = diag::err_friend_invalid_in_context;
4161         isInvalid = true;
4162       }
4163       break;
4164 
4165     // Modules
4166     case tok::kw___module_private__:
4167       isInvalid = DS.setModulePrivateSpec(Loc, PrevSpec, DiagID);
4168       break;
4169 
4170     // constexpr, consteval, constinit specifiers
4171     case tok::kw_constexpr:
4172       isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Constexpr, Loc,
4173                                       PrevSpec, DiagID);
4174       break;
4175     case tok::kw_consteval:
4176       isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Consteval, Loc,
4177                                       PrevSpec, DiagID);
4178       break;
4179     case tok::kw_constinit:
4180       isInvalid = DS.SetConstexprSpec(ConstexprSpecKind::Constinit, Loc,
4181                                       PrevSpec, DiagID);
4182       break;
4183 
4184     // type-specifier
4185     case tok::kw_short:
4186       isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::Short, Loc, PrevSpec,
4187                                       DiagID, Policy);
4188       break;
4189     case tok::kw_long:
4190       if (DS.getTypeSpecWidth() != TypeSpecifierWidth::Long)
4191         isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::Long, Loc, PrevSpec,
4192                                         DiagID, Policy);
4193       else
4194         isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc,
4195                                         PrevSpec, DiagID, Policy);
4196       break;
4197     case tok::kw___int64:
4198       isInvalid = DS.SetTypeSpecWidth(TypeSpecifierWidth::LongLong, Loc,
4199                                       PrevSpec, DiagID, Policy);
4200       break;
4201     case tok::kw_signed:
4202       isInvalid =
4203           DS.SetTypeSpecSign(TypeSpecifierSign::Signed, Loc, PrevSpec, DiagID);
4204       break;
4205     case tok::kw_unsigned:
4206       isInvalid = DS.SetTypeSpecSign(TypeSpecifierSign::Unsigned, Loc, PrevSpec,
4207                                      DiagID);
4208       break;
4209     case tok::kw__Complex:
4210       if (!getLangOpts().C99)
4211         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4212       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_complex, Loc, PrevSpec,
4213                                         DiagID);
4214       break;
4215     case tok::kw__Imaginary:
4216       if (!getLangOpts().C99)
4217         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4218       isInvalid = DS.SetTypeSpecComplex(DeclSpec::TSC_imaginary, Loc, PrevSpec,
4219                                         DiagID);
4220       break;
4221     case tok::kw_void:
4222       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_void, Loc, PrevSpec,
4223                                      DiagID, Policy);
4224       break;
4225     case tok::kw_char:
4226       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char, Loc, PrevSpec,
4227                                      DiagID, Policy);
4228       break;
4229     case tok::kw_int:
4230       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int, Loc, PrevSpec,
4231                                      DiagID, Policy);
4232       break;
4233     case tok::kw__ExtInt:
4234     case tok::kw__BitInt: {
4235       DiagnoseBitIntUse(Tok);
4236       ExprResult ER = ParseExtIntegerArgument();
4237       if (ER.isInvalid())
4238         continue;
4239       isInvalid = DS.SetBitIntType(Loc, ER.get(), PrevSpec, DiagID, Policy);
4240       ConsumedEnd = PrevTokLocation;
4241       break;
4242     }
4243     case tok::kw___int128:
4244       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_int128, Loc, PrevSpec,
4245                                      DiagID, Policy);
4246       break;
4247     case tok::kw_half:
4248       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_half, Loc, PrevSpec,
4249                                      DiagID, Policy);
4250       break;
4251     case tok::kw___bf16:
4252       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_BFloat16, Loc, PrevSpec,
4253                                      DiagID, Policy);
4254       break;
4255     case tok::kw_float:
4256       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float, Loc, PrevSpec,
4257                                      DiagID, Policy);
4258       break;
4259     case tok::kw_double:
4260       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_double, Loc, PrevSpec,
4261                                      DiagID, Policy);
4262       break;
4263     case tok::kw__Float16:
4264       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float16, Loc, PrevSpec,
4265                                      DiagID, Policy);
4266       break;
4267     case tok::kw__Accum:
4268       assert(getLangOpts().FixedPoint &&
4269              "This keyword is only used when fixed point types are enabled "
4270              "with `-ffixed-point`");
4271       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_accum, Loc, PrevSpec, DiagID,
4272                                      Policy);
4273       break;
4274     case tok::kw__Fract:
4275       assert(getLangOpts().FixedPoint &&
4276              "This keyword is only used when fixed point types are enabled "
4277              "with `-ffixed-point`");
4278       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_fract, Loc, PrevSpec, DiagID,
4279                                      Policy);
4280       break;
4281     case tok::kw__Sat:
4282       assert(getLangOpts().FixedPoint &&
4283              "This keyword is only used when fixed point types are enabled "
4284              "with `-ffixed-point`");
4285       isInvalid = DS.SetTypeSpecSat(Loc, PrevSpec, DiagID);
4286       break;
4287     case tok::kw___float128:
4288       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_float128, Loc, PrevSpec,
4289                                      DiagID, Policy);
4290       break;
4291     case tok::kw___ibm128:
4292       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_ibm128, Loc, PrevSpec,
4293                                      DiagID, Policy);
4294       break;
4295     case tok::kw_wchar_t:
4296       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_wchar, Loc, PrevSpec,
4297                                      DiagID, Policy);
4298       break;
4299     case tok::kw_char8_t:
4300       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char8, Loc, PrevSpec,
4301                                      DiagID, Policy);
4302       break;
4303     case tok::kw_char16_t:
4304       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char16, Loc, PrevSpec,
4305                                      DiagID, Policy);
4306       break;
4307     case tok::kw_char32_t:
4308       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_char32, Loc, PrevSpec,
4309                                      DiagID, Policy);
4310       break;
4311     case tok::kw_bool:
4312       if (getLangOpts().C23)
4313         Diag(Tok, diag::warn_c23_compat_keyword) << Tok.getName();
4314       [[fallthrough]];
4315     case tok::kw__Bool:
4316       if (Tok.is(tok::kw__Bool) && !getLangOpts().C99)
4317         Diag(Tok, diag::ext_c99_feature) << Tok.getName();
4318 
4319       if (Tok.is(tok::kw_bool) &&
4320           DS.getTypeSpecType() != DeclSpec::TST_unspecified &&
4321           DS.getStorageClassSpec() == DeclSpec::SCS_typedef) {
4322         PrevSpec = ""; // Not used by the diagnostic.
4323         DiagID = diag::err_bool_redeclaration;
4324         // For better error recovery.
4325         Tok.setKind(tok::identifier);
4326         isInvalid = true;
4327       } else {
4328         isInvalid = DS.SetTypeSpecType(DeclSpec::TST_bool, Loc, PrevSpec,
4329                                        DiagID, Policy);
4330       }
4331       break;
4332     case tok::kw__Decimal32:
4333       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal32, Loc, PrevSpec,
4334                                      DiagID, Policy);
4335       break;
4336     case tok::kw__Decimal64:
4337       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal64, Loc, PrevSpec,
4338                                      DiagID, Policy);
4339       break;
4340     case tok::kw__Decimal128:
4341       isInvalid = DS.SetTypeSpecType(DeclSpec::TST_decimal128, Loc, PrevSpec,
4342                                      DiagID, Policy);
4343       break;
4344     case tok::kw___vector:
4345       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
4346       break;
4347     case tok::kw___pixel:
4348       isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
4349       break;
4350     case tok::kw___bool:
4351       isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
4352       break;
4353     case tok::kw_pipe:
4354       if (!getLangOpts().OpenCL ||
4355           getLangOpts().getOpenCLCompatibleVersion() < 200) {
4356         // OpenCL 2.0 and later define this keyword. OpenCL 1.2 and earlier
4357         // should support the "pipe" word as identifier.
4358         Tok.getIdentifierInfo()->revertTokenIDToIdentifier();
4359         Tok.setKind(tok::identifier);
4360         goto DoneWithDeclSpec;
4361       } else if (!getLangOpts().OpenCLPipes) {
4362         DiagID = diag::err_opencl_unknown_type_specifier;
4363         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4364         isInvalid = true;
4365       } else
4366         isInvalid = DS.SetTypePipe(true, Loc, PrevSpec, DiagID, Policy);
4367       break;
4368 // We only need to enumerate each image type once.
4369 #define IMAGE_READ_WRITE_TYPE(Type, Id, Ext)
4370 #define IMAGE_WRITE_TYPE(Type, Id, Ext)
4371 #define IMAGE_READ_TYPE(ImgType, Id, Ext) \
4372     case tok::kw_##ImgType##_t: \
4373       if (!handleOpenCLImageKW(Ext, DeclSpec::TST_##ImgType##_t)) \
4374         goto DoneWithDeclSpec; \
4375       break;
4376 #include "clang/Basic/OpenCLImageTypes.def"
4377     case tok::kw___unknown_anytype:
4378       isInvalid = DS.SetTypeSpecType(TST_unknown_anytype, Loc,
4379                                      PrevSpec, DiagID, Policy);
4380       break;
4381 
4382     // class-specifier:
4383     case tok::kw_class:
4384     case tok::kw_struct:
4385     case tok::kw___interface:
4386     case tok::kw_union: {
4387       tok::TokenKind Kind = Tok.getKind();
4388       ConsumeToken();
4389 
4390       // These are attributes following class specifiers.
4391       // To produce better diagnostic, we parse them when
4392       // parsing class specifier.
4393       ParsedAttributes Attributes(AttrFactory);
4394       ParseClassSpecifier(Kind, Loc, DS, TemplateInfo, AS,
4395                           EnteringContext, DSContext, Attributes);
4396 
4397       // If there are attributes following class specifier,
4398       // take them over and handle them here.
4399       if (!Attributes.empty()) {
4400         AttrsLastTime = true;
4401         attrs.takeAllFrom(Attributes);
4402       }
4403       continue;
4404     }
4405 
4406     // enum-specifier:
4407     case tok::kw_enum:
4408       ConsumeToken();
4409       ParseEnumSpecifier(Loc, DS, TemplateInfo, AS, DSContext);
4410       continue;
4411 
4412     // cv-qualifier:
4413     case tok::kw_const:
4414       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const, Loc, PrevSpec, DiagID,
4415                                  getLangOpts());
4416       break;
4417     case tok::kw_volatile:
4418       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
4419                                  getLangOpts());
4420       break;
4421     case tok::kw_restrict:
4422       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
4423                                  getLangOpts());
4424       break;
4425 
4426     // C++ typename-specifier:
4427     case tok::kw_typename:
4428       if (TryAnnotateTypeOrScopeToken()) {
4429         DS.SetTypeSpecError();
4430         goto DoneWithDeclSpec;
4431       }
4432       if (!Tok.is(tok::kw_typename))
4433         continue;
4434       break;
4435 
4436     // C23/GNU typeof support.
4437     case tok::kw_typeof:
4438     case tok::kw_typeof_unqual:
4439       ParseTypeofSpecifier(DS);
4440       continue;
4441 
4442     case tok::annot_decltype:
4443       ParseDecltypeSpecifier(DS);
4444       continue;
4445 
4446     case tok::annot_pragma_pack:
4447       HandlePragmaPack();
4448       continue;
4449 
4450     case tok::annot_pragma_ms_pragma:
4451       HandlePragmaMSPragma();
4452       continue;
4453 
4454     case tok::annot_pragma_ms_vtordisp:
4455       HandlePragmaMSVtorDisp();
4456       continue;
4457 
4458     case tok::annot_pragma_ms_pointers_to_members:
4459       HandlePragmaMSPointersToMembers();
4460       continue;
4461 
4462 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) case tok::kw___##Trait:
4463 #include "clang/Basic/TransformTypeTraits.def"
4464       // HACK: libstdc++ already uses '__remove_cv' as an alias template so we
4465       // work around this by expecting all transform type traits to be suffixed
4466       // with '('. They're an identifier otherwise.
4467       if (!MaybeParseTypeTransformTypeSpecifier(DS))
4468         goto ParseIdentifier;
4469       continue;
4470 
4471     case tok::kw__Atomic:
4472       // C11 6.7.2.4/4:
4473       //   If the _Atomic keyword is immediately followed by a left parenthesis,
4474       //   it is interpreted as a type specifier (with a type name), not as a
4475       //   type qualifier.
4476       if (!getLangOpts().C11)
4477         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
4478 
4479       if (NextToken().is(tok::l_paren)) {
4480         ParseAtomicSpecifier(DS);
4481         continue;
4482       }
4483       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
4484                                  getLangOpts());
4485       break;
4486 
4487     // OpenCL address space qualifiers:
4488     case tok::kw___generic:
4489       // generic address space is introduced only in OpenCL v2.0
4490       // see OpenCL C Spec v2.0 s6.5.5
4491       // OpenCL v3.0 introduces __opencl_c_generic_address_space
4492       // feature macro to indicate if generic address space is supported
4493       if (!Actions.getLangOpts().OpenCLGenericAddressSpace) {
4494         DiagID = diag::err_opencl_unknown_type_specifier;
4495         PrevSpec = Tok.getIdentifierInfo()->getNameStart();
4496         isInvalid = true;
4497         break;
4498       }
4499       [[fallthrough]];
4500     case tok::kw_private:
4501       // It's fine (but redundant) to check this for __generic on the
4502       // fallthrough path; we only form the __generic token in OpenCL mode.
4503       if (!getLangOpts().OpenCL)
4504         goto DoneWithDeclSpec;
4505       [[fallthrough]];
4506     case tok::kw___private:
4507     case tok::kw___global:
4508     case tok::kw___local:
4509     case tok::kw___constant:
4510     // OpenCL access qualifiers:
4511     case tok::kw___read_only:
4512     case tok::kw___write_only:
4513     case tok::kw___read_write:
4514       ParseOpenCLQualifiers(DS.getAttributes());
4515       break;
4516 
4517     case tok::kw_groupshared:
4518     case tok::kw_in:
4519     case tok::kw_inout:
4520     case tok::kw_out:
4521       // NOTE: ParseHLSLQualifiers will consume the qualifier token.
4522       ParseHLSLQualifiers(DS.getAttributes());
4523       continue;
4524 
4525     case tok::less:
4526       // GCC ObjC supports types like "<SomeProtocol>" as a synonym for
4527       // "id<SomeProtocol>".  This is hopelessly old fashioned and dangerous,
4528       // but we support it.
4529       if (DS.hasTypeSpecifier() || !getLangOpts().ObjC)
4530         goto DoneWithDeclSpec;
4531 
4532       SourceLocation StartLoc = Tok.getLocation();
4533       SourceLocation EndLoc;
4534       TypeResult Type = parseObjCProtocolQualifierType(EndLoc);
4535       if (Type.isUsable()) {
4536         if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc, StartLoc,
4537                                PrevSpec, DiagID, Type.get(),
4538                                Actions.getASTContext().getPrintingPolicy()))
4539           Diag(StartLoc, DiagID) << PrevSpec;
4540 
4541         DS.SetRangeEnd(EndLoc);
4542       } else {
4543         DS.SetTypeSpecError();
4544       }
4545 
4546       // Need to support trailing type qualifiers (e.g. "id<p> const").
4547       // If a type specifier follows, it will be diagnosed elsewhere.
4548       continue;
4549     }
4550 
4551     DS.SetRangeEnd(ConsumedEnd.isValid() ? ConsumedEnd : Tok.getLocation());
4552 
4553     // If the specifier wasn't legal, issue a diagnostic.
4554     if (isInvalid) {
4555       assert(PrevSpec && "Method did not return previous specifier!");
4556       assert(DiagID);
4557 
4558       if (DiagID == diag::ext_duplicate_declspec ||
4559           DiagID == diag::ext_warn_duplicate_declspec ||
4560           DiagID == diag::err_duplicate_declspec)
4561         Diag(Loc, DiagID) << PrevSpec
4562                           << FixItHint::CreateRemoval(
4563                                  SourceRange(Loc, DS.getEndLoc()));
4564       else if (DiagID == diag::err_opencl_unknown_type_specifier) {
4565         Diag(Loc, DiagID) << getLangOpts().getOpenCLVersionString() << PrevSpec
4566                           << isStorageClass;
4567       } else
4568         Diag(Loc, DiagID) << PrevSpec;
4569     }
4570 
4571     if (DiagID != diag::err_bool_redeclaration && ConsumedEnd.isInvalid())
4572       // After an error the next token can be an annotation token.
4573       ConsumeAnyToken();
4574 
4575     AttrsLastTime = false;
4576   }
4577 }
4578 
4579 /// ParseStructDeclaration - Parse a struct declaration without the terminating
4580 /// semicolon.
4581 ///
4582 /// Note that a struct declaration refers to a declaration in a struct,
4583 /// not to the declaration of a struct.
4584 ///
4585 ///       struct-declaration:
4586 /// [C23]   attributes-specifier-seq[opt]
4587 ///           specifier-qualifier-list struct-declarator-list
4588 /// [GNU]   __extension__ struct-declaration
4589 /// [GNU]   specifier-qualifier-list
4590 ///       struct-declarator-list:
4591 ///         struct-declarator
4592 ///         struct-declarator-list ',' struct-declarator
4593 /// [GNU]   struct-declarator-list ',' attributes[opt] struct-declarator
4594 ///       struct-declarator:
4595 ///         declarator
4596 /// [GNU]   declarator attributes[opt]
4597 ///         declarator[opt] ':' constant-expression
4598 /// [GNU]   declarator[opt] ':' constant-expression attributes[opt]
4599 ///
4600 void Parser::ParseStructDeclaration(
4601     ParsingDeclSpec &DS,
4602     llvm::function_ref<void(ParsingFieldDeclarator &)> FieldsCallback) {
4603 
4604   if (Tok.is(tok::kw___extension__)) {
4605     // __extension__ silences extension warnings in the subexpression.
4606     ExtensionRAIIObject O(Diags);  // Use RAII to do this.
4607     ConsumeToken();
4608     return ParseStructDeclaration(DS, FieldsCallback);
4609   }
4610 
4611   // Parse leading attributes.
4612   ParsedAttributes Attrs(AttrFactory);
4613   MaybeParseCXX11Attributes(Attrs);
4614 
4615   // Parse the common specifier-qualifiers-list piece.
4616   ParseSpecifierQualifierList(DS);
4617 
4618   // If there are no declarators, this is a free-standing declaration
4619   // specifier. Let the actions module cope with it.
4620   if (Tok.is(tok::semi)) {
4621     // C23 6.7.2.1p9 : "The optional attribute specifier sequence in a
4622     // member declaration appertains to each of the members declared by the
4623     // member declarator list; it shall not appear if the optional member
4624     // declarator list is omitted."
4625     ProhibitAttributes(Attrs);
4626     RecordDecl *AnonRecord = nullptr;
4627     Decl *TheDecl = Actions.ParsedFreeStandingDeclSpec(
4628         getCurScope(), AS_none, DS, ParsedAttributesView::none(), AnonRecord);
4629     assert(!AnonRecord && "Did not expect anonymous struct or union here");
4630     DS.complete(TheDecl);
4631     return;
4632   }
4633 
4634   // Read struct-declarators until we find the semicolon.
4635   bool FirstDeclarator = true;
4636   SourceLocation CommaLoc;
4637   while (true) {
4638     ParsingFieldDeclarator DeclaratorInfo(*this, DS, Attrs);
4639     DeclaratorInfo.D.setCommaLoc(CommaLoc);
4640 
4641     // Attributes are only allowed here on successive declarators.
4642     if (!FirstDeclarator) {
4643       // However, this does not apply for [[]] attributes (which could show up
4644       // before or after the __attribute__ attributes).
4645       DiagnoseAndSkipCXX11Attributes();
4646       MaybeParseGNUAttributes(DeclaratorInfo.D);
4647       DiagnoseAndSkipCXX11Attributes();
4648     }
4649 
4650     /// struct-declarator: declarator
4651     /// struct-declarator: declarator[opt] ':' constant-expression
4652     if (Tok.isNot(tok::colon)) {
4653       // Don't parse FOO:BAR as if it were a typo for FOO::BAR.
4654       ColonProtectionRAIIObject X(*this);
4655       ParseDeclarator(DeclaratorInfo.D);
4656     } else
4657       DeclaratorInfo.D.SetIdentifier(nullptr, Tok.getLocation());
4658 
4659     if (TryConsumeToken(tok::colon)) {
4660       ExprResult Res(ParseConstantExpression());
4661       if (Res.isInvalid())
4662         SkipUntil(tok::semi, StopBeforeMatch);
4663       else
4664         DeclaratorInfo.BitfieldSize = Res.get();
4665     }
4666 
4667     // If attributes exist after the declarator, parse them.
4668     MaybeParseGNUAttributes(DeclaratorInfo.D);
4669 
4670     // We're done with this declarator;  invoke the callback.
4671     FieldsCallback(DeclaratorInfo);
4672 
4673     // If we don't have a comma, it is either the end of the list (a ';')
4674     // or an error, bail out.
4675     if (!TryConsumeToken(tok::comma, CommaLoc))
4676       return;
4677 
4678     FirstDeclarator = false;
4679   }
4680 }
4681 
4682 /// ParseStructUnionBody
4683 ///       struct-contents:
4684 ///         struct-declaration-list
4685 /// [EXT]   empty
4686 /// [GNU]   "struct-declaration-list" without terminating ';'
4687 ///       struct-declaration-list:
4688 ///         struct-declaration
4689 ///         struct-declaration-list struct-declaration
4690 /// [OBC]   '@' 'defs' '(' class-name ')'
4691 ///
4692 void Parser::ParseStructUnionBody(SourceLocation RecordLoc,
4693                                   DeclSpec::TST TagType, RecordDecl *TagDecl) {
4694   PrettyDeclStackTraceEntry CrashInfo(Actions.Context, TagDecl, RecordLoc,
4695                                       "parsing struct/union body");
4696   assert(!getLangOpts().CPlusPlus && "C++ declarations not supported");
4697 
4698   BalancedDelimiterTracker T(*this, tok::l_brace);
4699   if (T.consumeOpen())
4700     return;
4701 
4702   ParseScope StructScope(this, Scope::ClassScope|Scope::DeclScope);
4703   Actions.ActOnTagStartDefinition(getCurScope(), TagDecl);
4704 
4705   // While we still have something to read, read the declarations in the struct.
4706   while (!tryParseMisplacedModuleImport() && Tok.isNot(tok::r_brace) &&
4707          Tok.isNot(tok::eof)) {
4708     // Each iteration of this loop reads one struct-declaration.
4709 
4710     // Check for extraneous top-level semicolon.
4711     if (Tok.is(tok::semi)) {
4712       ConsumeExtraSemi(InsideStruct, TagType);
4713       continue;
4714     }
4715 
4716     // Parse _Static_assert declaration.
4717     if (Tok.isOneOf(tok::kw__Static_assert, tok::kw_static_assert)) {
4718       SourceLocation DeclEnd;
4719       ParseStaticAssertDeclaration(DeclEnd);
4720       continue;
4721     }
4722 
4723     if (Tok.is(tok::annot_pragma_pack)) {
4724       HandlePragmaPack();
4725       continue;
4726     }
4727 
4728     if (Tok.is(tok::annot_pragma_align)) {
4729       HandlePragmaAlign();
4730       continue;
4731     }
4732 
4733     if (Tok.isOneOf(tok::annot_pragma_openmp, tok::annot_attr_openmp)) {
4734       // Result can be ignored, because it must be always empty.
4735       AccessSpecifier AS = AS_none;
4736       ParsedAttributes Attrs(AttrFactory);
4737       (void)ParseOpenMPDeclarativeDirectiveWithExtDecl(AS, Attrs);
4738       continue;
4739     }
4740 
4741     if (Tok.is(tok::annot_pragma_openacc)) {
4742       ParseOpenACCDirectiveDecl();
4743       continue;
4744     }
4745 
4746     if (tok::isPragmaAnnotation(Tok.getKind())) {
4747       Diag(Tok.getLocation(), diag::err_pragma_misplaced_in_decl)
4748           << DeclSpec::getSpecifierName(
4749                  TagType, Actions.getASTContext().getPrintingPolicy());
4750       ConsumeAnnotationToken();
4751       continue;
4752     }
4753 
4754     if (!Tok.is(tok::at)) {
4755       auto CFieldCallback = [&](ParsingFieldDeclarator &FD) {
4756         // Install the declarator into the current TagDecl.
4757         Decl *Field =
4758             Actions.ActOnField(getCurScope(), TagDecl,
4759                                FD.D.getDeclSpec().getSourceRange().getBegin(),
4760                                FD.D, FD.BitfieldSize);
4761         FD.complete(Field);
4762       };
4763 
4764       // Parse all the comma separated declarators.
4765       ParsingDeclSpec DS(*this);
4766       ParseStructDeclaration(DS, CFieldCallback);
4767     } else { // Handle @defs
4768       ConsumeToken();
4769       if (!Tok.isObjCAtKeyword(tok::objc_defs)) {
4770         Diag(Tok, diag::err_unexpected_at);
4771         SkipUntil(tok::semi);
4772         continue;
4773       }
4774       ConsumeToken();
4775       ExpectAndConsume(tok::l_paren);
4776       if (!Tok.is(tok::identifier)) {
4777         Diag(Tok, diag::err_expected) << tok::identifier;
4778         SkipUntil(tok::semi);
4779         continue;
4780       }
4781       SmallVector<Decl *, 16> Fields;
4782       Actions.ActOnDefs(getCurScope(), TagDecl, Tok.getLocation(),
4783                         Tok.getIdentifierInfo(), Fields);
4784       ConsumeToken();
4785       ExpectAndConsume(tok::r_paren);
4786     }
4787 
4788     if (TryConsumeToken(tok::semi))
4789       continue;
4790 
4791     if (Tok.is(tok::r_brace)) {
4792       ExpectAndConsume(tok::semi, diag::ext_expected_semi_decl_list);
4793       break;
4794     }
4795 
4796     ExpectAndConsume(tok::semi, diag::err_expected_semi_decl_list);
4797     // Skip to end of block or statement to avoid ext-warning on extra ';'.
4798     SkipUntil(tok::r_brace, StopAtSemi | StopBeforeMatch);
4799     // If we stopped at a ';', eat it.
4800     TryConsumeToken(tok::semi);
4801   }
4802 
4803   T.consumeClose();
4804 
4805   ParsedAttributes attrs(AttrFactory);
4806   // If attributes exist after struct contents, parse them.
4807   MaybeParseGNUAttributes(attrs);
4808 
4809   SmallVector<Decl *, 32> FieldDecls(TagDecl->fields());
4810 
4811   Actions.ActOnFields(getCurScope(), RecordLoc, TagDecl, FieldDecls,
4812                       T.getOpenLocation(), T.getCloseLocation(), attrs);
4813   StructScope.Exit();
4814   Actions.ActOnTagFinishDefinition(getCurScope(), TagDecl, T.getRange());
4815 }
4816 
4817 /// ParseEnumSpecifier
4818 ///       enum-specifier: [C99 6.7.2.2]
4819 ///         'enum' identifier[opt] '{' enumerator-list '}'
4820 ///[C99/C++]'enum' identifier[opt] '{' enumerator-list ',' '}'
4821 /// [GNU]   'enum' attributes[opt] identifier[opt] '{' enumerator-list ',' [opt]
4822 ///                                                 '}' attributes[opt]
4823 /// [MS]    'enum' __declspec[opt] identifier[opt] '{' enumerator-list ',' [opt]
4824 ///                                                 '}'
4825 ///         'enum' identifier
4826 /// [GNU]   'enum' attributes[opt] identifier
4827 ///
4828 /// [C++11] enum-head '{' enumerator-list[opt] '}'
4829 /// [C++11] enum-head '{' enumerator-list ','  '}'
4830 ///
4831 ///       enum-head: [C++11]
4832 ///         enum-key attribute-specifier-seq[opt] identifier[opt] enum-base[opt]
4833 ///         enum-key attribute-specifier-seq[opt] nested-name-specifier
4834 ///             identifier enum-base[opt]
4835 ///
4836 ///       enum-key: [C++11]
4837 ///         'enum'
4838 ///         'enum' 'class'
4839 ///         'enum' 'struct'
4840 ///
4841 ///       enum-base: [C++11]
4842 ///         ':' type-specifier-seq
4843 ///
4844 /// [C++] elaborated-type-specifier:
4845 /// [C++]   'enum' nested-name-specifier[opt] identifier
4846 ///
4847 void Parser::ParseEnumSpecifier(SourceLocation StartLoc, DeclSpec &DS,
4848                                 const ParsedTemplateInfo &TemplateInfo,
4849                                 AccessSpecifier AS, DeclSpecContext DSC) {
4850   // Parse the tag portion of this.
4851   if (Tok.is(tok::code_completion)) {
4852     // Code completion for an enum name.
4853     cutOffParsing();
4854     Actions.CodeCompleteTag(getCurScope(), DeclSpec::TST_enum);
4855     DS.SetTypeSpecError(); // Needed by ActOnUsingDeclaration.
4856     return;
4857   }
4858 
4859   // If attributes exist after tag, parse them.
4860   ParsedAttributes attrs(AttrFactory);
4861   MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs);
4862 
4863   SourceLocation ScopedEnumKWLoc;
4864   bool IsScopedUsingClassTag = false;
4865 
4866   // In C++11, recognize 'enum class' and 'enum struct'.
4867   if (Tok.isOneOf(tok::kw_class, tok::kw_struct) && getLangOpts().CPlusPlus) {
4868     Diag(Tok, getLangOpts().CPlusPlus11 ? diag::warn_cxx98_compat_scoped_enum
4869                                         : diag::ext_scoped_enum);
4870     IsScopedUsingClassTag = Tok.is(tok::kw_class);
4871     ScopedEnumKWLoc = ConsumeToken();
4872 
4873     // Attributes are not allowed between these keywords.  Diagnose,
4874     // but then just treat them like they appeared in the right place.
4875     ProhibitAttributes(attrs);
4876 
4877     // They are allowed afterwards, though.
4878     MaybeParseAttributes(PAKM_GNU | PAKM_Declspec | PAKM_CXX11, attrs);
4879   }
4880 
4881   // C++11 [temp.explicit]p12:
4882   //   The usual access controls do not apply to names used to specify
4883   //   explicit instantiations.
4884   // We extend this to also cover explicit specializations.  Note that
4885   // we don't suppress if this turns out to be an elaborated type
4886   // specifier.
4887   bool shouldDelayDiagsInTag =
4888     (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation ||
4889      TemplateInfo.Kind == ParsedTemplateInfo::ExplicitSpecialization);
4890   SuppressAccessChecks diagsFromTag(*this, shouldDelayDiagsInTag);
4891 
4892   // Determine whether this declaration is permitted to have an enum-base.
4893   AllowDefiningTypeSpec AllowEnumSpecifier =
4894       isDefiningTypeSpecifierContext(DSC, getLangOpts().CPlusPlus);
4895   bool CanBeOpaqueEnumDeclaration =
4896       DS.isEmpty() && isOpaqueEnumDeclarationContext(DSC);
4897   bool CanHaveEnumBase = (getLangOpts().CPlusPlus11 || getLangOpts().ObjC ||
4898                           getLangOpts().MicrosoftExt) &&
4899                          (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes ||
4900                           CanBeOpaqueEnumDeclaration);
4901 
4902   CXXScopeSpec &SS = DS.getTypeSpecScope();
4903   if (getLangOpts().CPlusPlus) {
4904     // "enum foo : bar;" is not a potential typo for "enum foo::bar;".
4905     ColonProtectionRAIIObject X(*this);
4906 
4907     CXXScopeSpec Spec;
4908     if (ParseOptionalCXXScopeSpecifier(Spec, /*ObjectType=*/nullptr,
4909                                        /*ObjectHasErrors=*/false,
4910                                        /*EnteringContext=*/true))
4911       return;
4912 
4913     if (Spec.isSet() && Tok.isNot(tok::identifier)) {
4914       Diag(Tok, diag::err_expected) << tok::identifier;
4915       DS.SetTypeSpecError();
4916       if (Tok.isNot(tok::l_brace)) {
4917         // Has no name and is not a definition.
4918         // Skip the rest of this declarator, up until the comma or semicolon.
4919         SkipUntil(tok::comma, StopAtSemi);
4920         return;
4921       }
4922     }
4923 
4924     SS = Spec;
4925   }
4926 
4927   // Must have either 'enum name' or 'enum {...}' or (rarely) 'enum : T { ... }'.
4928   if (Tok.isNot(tok::identifier) && Tok.isNot(tok::l_brace) &&
4929       Tok.isNot(tok::colon)) {
4930     Diag(Tok, diag::err_expected_either) << tok::identifier << tok::l_brace;
4931 
4932     DS.SetTypeSpecError();
4933     // Skip the rest of this declarator, up until the comma or semicolon.
4934     SkipUntil(tok::comma, StopAtSemi);
4935     return;
4936   }
4937 
4938   // If an identifier is present, consume and remember it.
4939   IdentifierInfo *Name = nullptr;
4940   SourceLocation NameLoc;
4941   if (Tok.is(tok::identifier)) {
4942     Name = Tok.getIdentifierInfo();
4943     NameLoc = ConsumeToken();
4944   }
4945 
4946   if (!Name && ScopedEnumKWLoc.isValid()) {
4947     // C++0x 7.2p2: The optional identifier shall not be omitted in the
4948     // declaration of a scoped enumeration.
4949     Diag(Tok, diag::err_scoped_enum_missing_identifier);
4950     ScopedEnumKWLoc = SourceLocation();
4951     IsScopedUsingClassTag = false;
4952   }
4953 
4954   // Okay, end the suppression area.  We'll decide whether to emit the
4955   // diagnostics in a second.
4956   if (shouldDelayDiagsInTag)
4957     diagsFromTag.done();
4958 
4959   TypeResult BaseType;
4960   SourceRange BaseRange;
4961 
4962   bool CanBeBitfield =
4963       getCurScope()->isClassScope() && ScopedEnumKWLoc.isInvalid() && Name;
4964 
4965   // Parse the fixed underlying type.
4966   if (Tok.is(tok::colon)) {
4967     // This might be an enum-base or part of some unrelated enclosing context.
4968     //
4969     // 'enum E : base' is permitted in two circumstances:
4970     //
4971     // 1) As a defining-type-specifier, when followed by '{'.
4972     // 2) As the sole constituent of a complete declaration -- when DS is empty
4973     //    and the next token is ';'.
4974     //
4975     // The restriction to defining-type-specifiers is important to allow parsing
4976     //   a ? new enum E : int{}
4977     //   _Generic(a, enum E : int{})
4978     // properly.
4979     //
4980     // One additional consideration applies:
4981     //
4982     // C++ [dcl.enum]p1:
4983     //   A ':' following "enum nested-name-specifier[opt] identifier" within
4984     //   the decl-specifier-seq of a member-declaration is parsed as part of
4985     //   an enum-base.
4986     //
4987     // Other language modes supporting enumerations with fixed underlying types
4988     // do not have clear rules on this, so we disambiguate to determine whether
4989     // the tokens form a bit-field width or an enum-base.
4990 
4991     if (CanBeBitfield && !isEnumBase(CanBeOpaqueEnumDeclaration)) {
4992       // Outside C++11, do not interpret the tokens as an enum-base if they do
4993       // not make sense as one. In C++11, it's an error if this happens.
4994       if (getLangOpts().CPlusPlus11)
4995         Diag(Tok.getLocation(), diag::err_anonymous_enum_bitfield);
4996     } else if (CanHaveEnumBase || !ColonIsSacred) {
4997       SourceLocation ColonLoc = ConsumeToken();
4998 
4999       // Parse a type-specifier-seq as a type. We can't just ParseTypeName here,
5000       // because under -fms-extensions,
5001       //   enum E : int *p;
5002       // declares 'enum E : int; E *p;' not 'enum E : int*; E p;'.
5003       DeclSpec DS(AttrFactory);
5004       // enum-base is not assumed to be a type and therefore requires the
5005       // typename keyword [p0634r3].
5006       ParseSpecifierQualifierList(DS, ImplicitTypenameContext::No, AS,
5007                                   DeclSpecContext::DSC_type_specifier);
5008       Declarator DeclaratorInfo(DS, ParsedAttributesView::none(),
5009                                 DeclaratorContext::TypeName);
5010       BaseType = Actions.ActOnTypeName(getCurScope(), DeclaratorInfo);
5011 
5012       BaseRange = SourceRange(ColonLoc, DeclaratorInfo.getSourceRange().getEnd());
5013 
5014       if (!getLangOpts().ObjC && !getLangOpts().C23) {
5015         if (getLangOpts().CPlusPlus11)
5016           Diag(ColonLoc, diag::warn_cxx98_compat_enum_fixed_underlying_type)
5017               << BaseRange;
5018         else if (getLangOpts().CPlusPlus)
5019           Diag(ColonLoc, diag::ext_cxx11_enum_fixed_underlying_type)
5020               << BaseRange;
5021         else if (getLangOpts().MicrosoftExt)
5022           Diag(ColonLoc, diag::ext_ms_c_enum_fixed_underlying_type)
5023               << BaseRange;
5024         else
5025           Diag(ColonLoc, diag::ext_clang_c_enum_fixed_underlying_type)
5026               << BaseRange;
5027       }
5028     }
5029   }
5030 
5031   // There are four options here.  If we have 'friend enum foo;' then this is a
5032   // friend declaration, and cannot have an accompanying definition. If we have
5033   // 'enum foo;', then this is a forward declaration.  If we have
5034   // 'enum foo {...' then this is a definition. Otherwise we have something
5035   // like 'enum foo xyz', a reference.
5036   //
5037   // This is needed to handle stuff like this right (C99 6.7.2.3p11):
5038   // enum foo {..};  void bar() { enum foo; }    <- new foo in bar.
5039   // enum foo {..};  void bar() { enum foo x; }  <- use of old foo.
5040   //
5041   Sema::TagUseKind TUK;
5042   if (AllowEnumSpecifier == AllowDefiningTypeSpec::No)
5043     TUK = Sema::TUK_Reference;
5044   else if (Tok.is(tok::l_brace)) {
5045     if (DS.isFriendSpecified()) {
5046       Diag(Tok.getLocation(), diag::err_friend_decl_defines_type)
5047         << SourceRange(DS.getFriendSpecLoc());
5048       ConsumeBrace();
5049       SkipUntil(tok::r_brace, StopAtSemi);
5050       // Discard any other definition-only pieces.
5051       attrs.clear();
5052       ScopedEnumKWLoc = SourceLocation();
5053       IsScopedUsingClassTag = false;
5054       BaseType = TypeResult();
5055       TUK = Sema::TUK_Friend;
5056     } else {
5057       TUK = Sema::TUK_Definition;
5058     }
5059   } else if (!isTypeSpecifier(DSC) &&
5060              (Tok.is(tok::semi) ||
5061               (Tok.isAtStartOfLine() &&
5062                !isValidAfterTypeSpecifier(CanBeBitfield)))) {
5063     // An opaque-enum-declaration is required to be standalone (no preceding or
5064     // following tokens in the declaration). Sema enforces this separately by
5065     // diagnosing anything else in the DeclSpec.
5066     TUK = DS.isFriendSpecified() ? Sema::TUK_Friend : Sema::TUK_Declaration;
5067     if (Tok.isNot(tok::semi)) {
5068       // A semicolon was missing after this declaration. Diagnose and recover.
5069       ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
5070       PP.EnterToken(Tok, /*IsReinject=*/true);
5071       Tok.setKind(tok::semi);
5072     }
5073   } else {
5074     TUK = Sema::TUK_Reference;
5075   }
5076 
5077   bool IsElaboratedTypeSpecifier =
5078       TUK == Sema::TUK_Reference || TUK == Sema::TUK_Friend;
5079 
5080   // If this is an elaborated type specifier nested in a larger declaration,
5081   // and we delayed diagnostics before, just merge them into the current pool.
5082   if (TUK == Sema::TUK_Reference && shouldDelayDiagsInTag) {
5083     diagsFromTag.redelay();
5084   }
5085 
5086   MultiTemplateParamsArg TParams;
5087   if (TemplateInfo.Kind != ParsedTemplateInfo::NonTemplate &&
5088       TUK != Sema::TUK_Reference) {
5089     if (!getLangOpts().CPlusPlus11 || !SS.isSet()) {
5090       // Skip the rest of this declarator, up until the comma or semicolon.
5091       Diag(Tok, diag::err_enum_template);
5092       SkipUntil(tok::comma, StopAtSemi);
5093       return;
5094     }
5095 
5096     if (TemplateInfo.Kind == ParsedTemplateInfo::ExplicitInstantiation) {
5097       // Enumerations can't be explicitly instantiated.
5098       DS.SetTypeSpecError();
5099       Diag(StartLoc, diag::err_explicit_instantiation_enum);
5100       return;
5101     }
5102 
5103     assert(TemplateInfo.TemplateParams && "no template parameters");
5104     TParams = MultiTemplateParamsArg(TemplateInfo.TemplateParams->data(),
5105                                      TemplateInfo.TemplateParams->size());
5106     SS.setTemplateParamLists(TParams);
5107   }
5108 
5109   if (!Name && TUK != Sema::TUK_Definition) {
5110     Diag(Tok, diag::err_enumerator_unnamed_no_def);
5111 
5112     DS.SetTypeSpecError();
5113     // Skip the rest of this declarator, up until the comma or semicolon.
5114     SkipUntil(tok::comma, StopAtSemi);
5115     return;
5116   }
5117 
5118   // An elaborated-type-specifier has a much more constrained grammar:
5119   //
5120   //   'enum' nested-name-specifier[opt] identifier
5121   //
5122   // If we parsed any other bits, reject them now.
5123   //
5124   // MSVC and (for now at least) Objective-C permit a full enum-specifier
5125   // or opaque-enum-declaration anywhere.
5126   if (IsElaboratedTypeSpecifier && !getLangOpts().MicrosoftExt &&
5127       !getLangOpts().ObjC) {
5128     ProhibitCXX11Attributes(attrs, diag::err_attributes_not_allowed,
5129                             diag::err_keyword_not_allowed,
5130                             /*DiagnoseEmptyAttrs=*/true);
5131     if (BaseType.isUsable())
5132       Diag(BaseRange.getBegin(), diag::ext_enum_base_in_type_specifier)
5133           << (AllowEnumSpecifier == AllowDefiningTypeSpec::Yes) << BaseRange;
5134     else if (ScopedEnumKWLoc.isValid())
5135       Diag(ScopedEnumKWLoc, diag::ext_elaborated_enum_class)
5136         << FixItHint::CreateRemoval(ScopedEnumKWLoc) << IsScopedUsingClassTag;
5137   }
5138 
5139   stripTypeAttributesOffDeclSpec(attrs, DS, TUK);
5140 
5141   Sema::SkipBodyInfo SkipBody;
5142   if (!Name && TUK == Sema::TUK_Definition && Tok.is(tok::l_brace) &&
5143       NextToken().is(tok::identifier))
5144     SkipBody = Actions.shouldSkipAnonEnumBody(getCurScope(),
5145                                               NextToken().getIdentifierInfo(),
5146                                               NextToken().getLocation());
5147 
5148   bool Owned = false;
5149   bool IsDependent = false;
5150   const char *PrevSpec = nullptr;
5151   unsigned DiagID;
5152   Decl *TagDecl =
5153       Actions.ActOnTag(getCurScope(), DeclSpec::TST_enum, TUK, StartLoc, SS,
5154                     Name, NameLoc, attrs, AS, DS.getModulePrivateSpecLoc(),
5155                     TParams, Owned, IsDependent, ScopedEnumKWLoc,
5156                     IsScopedUsingClassTag,
5157                     BaseType, DSC == DeclSpecContext::DSC_type_specifier,
5158                     DSC == DeclSpecContext::DSC_template_param ||
5159                         DSC == DeclSpecContext::DSC_template_type_arg,
5160                     OffsetOfState, &SkipBody).get();
5161 
5162   if (SkipBody.ShouldSkip) {
5163     assert(TUK == Sema::TUK_Definition && "can only skip a definition");
5164 
5165     BalancedDelimiterTracker T(*this, tok::l_brace);
5166     T.consumeOpen();
5167     T.skipToEnd();
5168 
5169     if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
5170                            NameLoc.isValid() ? NameLoc : StartLoc,
5171                            PrevSpec, DiagID, TagDecl, Owned,
5172                            Actions.getASTContext().getPrintingPolicy()))
5173       Diag(StartLoc, DiagID) << PrevSpec;
5174     return;
5175   }
5176 
5177   if (IsDependent) {
5178     // This enum has a dependent nested-name-specifier. Handle it as a
5179     // dependent tag.
5180     if (!Name) {
5181       DS.SetTypeSpecError();
5182       Diag(Tok, diag::err_expected_type_name_after_typename);
5183       return;
5184     }
5185 
5186     TypeResult Type = Actions.ActOnDependentTag(
5187         getCurScope(), DeclSpec::TST_enum, TUK, SS, Name, StartLoc, NameLoc);
5188     if (Type.isInvalid()) {
5189       DS.SetTypeSpecError();
5190       return;
5191     }
5192 
5193     if (DS.SetTypeSpecType(DeclSpec::TST_typename, StartLoc,
5194                            NameLoc.isValid() ? NameLoc : StartLoc,
5195                            PrevSpec, DiagID, Type.get(),
5196                            Actions.getASTContext().getPrintingPolicy()))
5197       Diag(StartLoc, DiagID) << PrevSpec;
5198 
5199     return;
5200   }
5201 
5202   if (!TagDecl) {
5203     // The action failed to produce an enumeration tag. If this is a
5204     // definition, consume the entire definition.
5205     if (Tok.is(tok::l_brace) && TUK != Sema::TUK_Reference) {
5206       ConsumeBrace();
5207       SkipUntil(tok::r_brace, StopAtSemi);
5208     }
5209 
5210     DS.SetTypeSpecError();
5211     return;
5212   }
5213 
5214   if (Tok.is(tok::l_brace) && TUK == Sema::TUK_Definition) {
5215     Decl *D = SkipBody.CheckSameAsPrevious ? SkipBody.New : TagDecl;
5216     ParseEnumBody(StartLoc, D);
5217     if (SkipBody.CheckSameAsPrevious &&
5218         !Actions.ActOnDuplicateDefinition(TagDecl, SkipBody)) {
5219       DS.SetTypeSpecError();
5220       return;
5221     }
5222   }
5223 
5224   if (DS.SetTypeSpecType(DeclSpec::TST_enum, StartLoc,
5225                          NameLoc.isValid() ? NameLoc : StartLoc,
5226                          PrevSpec, DiagID, TagDecl, Owned,
5227                          Actions.getASTContext().getPrintingPolicy()))
5228     Diag(StartLoc, DiagID) << PrevSpec;
5229 }
5230 
5231 /// ParseEnumBody - Parse a {} enclosed enumerator-list.
5232 ///       enumerator-list:
5233 ///         enumerator
5234 ///         enumerator-list ',' enumerator
5235 ///       enumerator:
5236 ///         enumeration-constant attributes[opt]
5237 ///         enumeration-constant attributes[opt] '=' constant-expression
5238 ///       enumeration-constant:
5239 ///         identifier
5240 ///
5241 void Parser::ParseEnumBody(SourceLocation StartLoc, Decl *EnumDecl) {
5242   // Enter the scope of the enum body and start the definition.
5243   ParseScope EnumScope(this, Scope::DeclScope | Scope::EnumScope);
5244   Actions.ActOnTagStartDefinition(getCurScope(), EnumDecl);
5245 
5246   BalancedDelimiterTracker T(*this, tok::l_brace);
5247   T.consumeOpen();
5248 
5249   // C does not allow an empty enumerator-list, C++ does [dcl.enum].
5250   if (Tok.is(tok::r_brace) && !getLangOpts().CPlusPlus)
5251     Diag(Tok, diag::err_empty_enum);
5252 
5253   SmallVector<Decl *, 32> EnumConstantDecls;
5254   SmallVector<SuppressAccessChecks, 32> EnumAvailabilityDiags;
5255 
5256   Decl *LastEnumConstDecl = nullptr;
5257 
5258   // Parse the enumerator-list.
5259   while (Tok.isNot(tok::r_brace)) {
5260     // Parse enumerator. If failed, try skipping till the start of the next
5261     // enumerator definition.
5262     if (Tok.isNot(tok::identifier)) {
5263       Diag(Tok.getLocation(), diag::err_expected) << tok::identifier;
5264       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch) &&
5265           TryConsumeToken(tok::comma))
5266         continue;
5267       break;
5268     }
5269     IdentifierInfo *Ident = Tok.getIdentifierInfo();
5270     SourceLocation IdentLoc = ConsumeToken();
5271 
5272     // If attributes exist after the enumerator, parse them.
5273     ParsedAttributes attrs(AttrFactory);
5274     MaybeParseGNUAttributes(attrs);
5275     if (isAllowedCXX11AttributeSpecifier()) {
5276       if (getLangOpts().CPlusPlus)
5277         Diag(Tok.getLocation(), getLangOpts().CPlusPlus17
5278                                     ? diag::warn_cxx14_compat_ns_enum_attribute
5279                                     : diag::ext_ns_enum_attribute)
5280             << 1 /*enumerator*/;
5281       ParseCXX11Attributes(attrs);
5282     }
5283 
5284     SourceLocation EqualLoc;
5285     ExprResult AssignedVal;
5286     EnumAvailabilityDiags.emplace_back(*this);
5287 
5288     EnterExpressionEvaluationContext ConstantEvaluated(
5289         Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
5290     if (TryConsumeToken(tok::equal, EqualLoc)) {
5291       AssignedVal = ParseConstantExpressionInExprEvalContext();
5292       if (AssignedVal.isInvalid())
5293         SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch);
5294     }
5295 
5296     // Install the enumerator constant into EnumDecl.
5297     Decl *EnumConstDecl = Actions.ActOnEnumConstant(
5298         getCurScope(), EnumDecl, LastEnumConstDecl, IdentLoc, Ident, attrs,
5299         EqualLoc, AssignedVal.get());
5300     EnumAvailabilityDiags.back().done();
5301 
5302     EnumConstantDecls.push_back(EnumConstDecl);
5303     LastEnumConstDecl = EnumConstDecl;
5304 
5305     if (Tok.is(tok::identifier)) {
5306       // We're missing a comma between enumerators.
5307       SourceLocation Loc = getEndOfPreviousToken();
5308       Diag(Loc, diag::err_enumerator_list_missing_comma)
5309         << FixItHint::CreateInsertion(Loc, ", ");
5310       continue;
5311     }
5312 
5313     // Emumerator definition must be finished, only comma or r_brace are
5314     // allowed here.
5315     SourceLocation CommaLoc;
5316     if (Tok.isNot(tok::r_brace) && !TryConsumeToken(tok::comma, CommaLoc)) {
5317       if (EqualLoc.isValid())
5318         Diag(Tok.getLocation(), diag::err_expected_either) << tok::r_brace
5319                                                            << tok::comma;
5320       else
5321         Diag(Tok.getLocation(), diag::err_expected_end_of_enumerator);
5322       if (SkipUntil(tok::comma, tok::r_brace, StopBeforeMatch)) {
5323         if (TryConsumeToken(tok::comma, CommaLoc))
5324           continue;
5325       } else {
5326         break;
5327       }
5328     }
5329 
5330     // If comma is followed by r_brace, emit appropriate warning.
5331     if (Tok.is(tok::r_brace) && CommaLoc.isValid()) {
5332       if (!getLangOpts().C99 && !getLangOpts().CPlusPlus11)
5333         Diag(CommaLoc, getLangOpts().CPlusPlus ?
5334                diag::ext_enumerator_list_comma_cxx :
5335                diag::ext_enumerator_list_comma_c)
5336           << FixItHint::CreateRemoval(CommaLoc);
5337       else if (getLangOpts().CPlusPlus11)
5338         Diag(CommaLoc, diag::warn_cxx98_compat_enumerator_list_comma)
5339           << FixItHint::CreateRemoval(CommaLoc);
5340       break;
5341     }
5342   }
5343 
5344   // Eat the }.
5345   T.consumeClose();
5346 
5347   // If attributes exist after the identifier list, parse them.
5348   ParsedAttributes attrs(AttrFactory);
5349   MaybeParseGNUAttributes(attrs);
5350 
5351   Actions.ActOnEnumBody(StartLoc, T.getRange(), EnumDecl, EnumConstantDecls,
5352                         getCurScope(), attrs);
5353 
5354   // Now handle enum constant availability diagnostics.
5355   assert(EnumConstantDecls.size() == EnumAvailabilityDiags.size());
5356   for (size_t i = 0, e = EnumConstantDecls.size(); i != e; ++i) {
5357     ParsingDeclRAIIObject PD(*this, ParsingDeclRAIIObject::NoParent);
5358     EnumAvailabilityDiags[i].redelay();
5359     PD.complete(EnumConstantDecls[i]);
5360   }
5361 
5362   EnumScope.Exit();
5363   Actions.ActOnTagFinishDefinition(getCurScope(), EnumDecl, T.getRange());
5364 
5365   // The next token must be valid after an enum definition. If not, a ';'
5366   // was probably forgotten.
5367   bool CanBeBitfield = getCurScope()->isClassScope();
5368   if (!isValidAfterTypeSpecifier(CanBeBitfield)) {
5369     ExpectAndConsume(tok::semi, diag::err_expected_after, "enum");
5370     // Push this token back into the preprocessor and change our current token
5371     // to ';' so that the rest of the code recovers as though there were an
5372     // ';' after the definition.
5373     PP.EnterToken(Tok, /*IsReinject=*/true);
5374     Tok.setKind(tok::semi);
5375   }
5376 }
5377 
5378 /// isKnownToBeTypeSpecifier - Return true if we know that the specified token
5379 /// is definitely a type-specifier.  Return false if it isn't part of a type
5380 /// specifier or if we're not sure.
5381 bool Parser::isKnownToBeTypeSpecifier(const Token &Tok) const {
5382   switch (Tok.getKind()) {
5383   default: return false;
5384     // type-specifiers
5385   case tok::kw_short:
5386   case tok::kw_long:
5387   case tok::kw___int64:
5388   case tok::kw___int128:
5389   case tok::kw_signed:
5390   case tok::kw_unsigned:
5391   case tok::kw__Complex:
5392   case tok::kw__Imaginary:
5393   case tok::kw_void:
5394   case tok::kw_char:
5395   case tok::kw_wchar_t:
5396   case tok::kw_char8_t:
5397   case tok::kw_char16_t:
5398   case tok::kw_char32_t:
5399   case tok::kw_int:
5400   case tok::kw__ExtInt:
5401   case tok::kw__BitInt:
5402   case tok::kw___bf16:
5403   case tok::kw_half:
5404   case tok::kw_float:
5405   case tok::kw_double:
5406   case tok::kw__Accum:
5407   case tok::kw__Fract:
5408   case tok::kw__Float16:
5409   case tok::kw___float128:
5410   case tok::kw___ibm128:
5411   case tok::kw_bool:
5412   case tok::kw__Bool:
5413   case tok::kw__Decimal32:
5414   case tok::kw__Decimal64:
5415   case tok::kw__Decimal128:
5416   case tok::kw___vector:
5417 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5418 #include "clang/Basic/OpenCLImageTypes.def"
5419 
5420     // struct-or-union-specifier (C99) or class-specifier (C++)
5421   case tok::kw_class:
5422   case tok::kw_struct:
5423   case tok::kw___interface:
5424   case tok::kw_union:
5425     // enum-specifier
5426   case tok::kw_enum:
5427 
5428     // typedef-name
5429   case tok::annot_typename:
5430     return true;
5431   }
5432 }
5433 
5434 /// isTypeSpecifierQualifier - Return true if the current token could be the
5435 /// start of a specifier-qualifier-list.
5436 bool Parser::isTypeSpecifierQualifier() {
5437   switch (Tok.getKind()) {
5438   default: return false;
5439 
5440   case tok::identifier:   // foo::bar
5441     if (TryAltiVecVectorToken())
5442       return true;
5443     [[fallthrough]];
5444   case tok::kw_typename:  // typename T::type
5445     // Annotate typenames and C++ scope specifiers.  If we get one, just
5446     // recurse to handle whatever we get.
5447     if (TryAnnotateTypeOrScopeToken())
5448       return true;
5449     if (Tok.is(tok::identifier))
5450       return false;
5451     return isTypeSpecifierQualifier();
5452 
5453   case tok::coloncolon:   // ::foo::bar
5454     if (NextToken().is(tok::kw_new) ||    // ::new
5455         NextToken().is(tok::kw_delete))   // ::delete
5456       return false;
5457 
5458     if (TryAnnotateTypeOrScopeToken())
5459       return true;
5460     return isTypeSpecifierQualifier();
5461 
5462     // GNU attributes support.
5463   case tok::kw___attribute:
5464     // C23/GNU typeof support.
5465   case tok::kw_typeof:
5466   case tok::kw_typeof_unqual:
5467 
5468     // type-specifiers
5469   case tok::kw_short:
5470   case tok::kw_long:
5471   case tok::kw___int64:
5472   case tok::kw___int128:
5473   case tok::kw_signed:
5474   case tok::kw_unsigned:
5475   case tok::kw__Complex:
5476   case tok::kw__Imaginary:
5477   case tok::kw_void:
5478   case tok::kw_char:
5479   case tok::kw_wchar_t:
5480   case tok::kw_char8_t:
5481   case tok::kw_char16_t:
5482   case tok::kw_char32_t:
5483   case tok::kw_int:
5484   case tok::kw__ExtInt:
5485   case tok::kw__BitInt:
5486   case tok::kw_half:
5487   case tok::kw___bf16:
5488   case tok::kw_float:
5489   case tok::kw_double:
5490   case tok::kw__Accum:
5491   case tok::kw__Fract:
5492   case tok::kw__Float16:
5493   case tok::kw___float128:
5494   case tok::kw___ibm128:
5495   case tok::kw_bool:
5496   case tok::kw__Bool:
5497   case tok::kw__Decimal32:
5498   case tok::kw__Decimal64:
5499   case tok::kw__Decimal128:
5500   case tok::kw___vector:
5501 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5502 #include "clang/Basic/OpenCLImageTypes.def"
5503 
5504     // struct-or-union-specifier (C99) or class-specifier (C++)
5505   case tok::kw_class:
5506   case tok::kw_struct:
5507   case tok::kw___interface:
5508   case tok::kw_union:
5509     // enum-specifier
5510   case tok::kw_enum:
5511 
5512     // type-qualifier
5513   case tok::kw_const:
5514   case tok::kw_volatile:
5515   case tok::kw_restrict:
5516   case tok::kw__Sat:
5517 
5518     // Debugger support.
5519   case tok::kw___unknown_anytype:
5520 
5521     // typedef-name
5522   case tok::annot_typename:
5523     return true;
5524 
5525     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5526   case tok::less:
5527     return getLangOpts().ObjC;
5528 
5529   case tok::kw___cdecl:
5530   case tok::kw___stdcall:
5531   case tok::kw___fastcall:
5532   case tok::kw___thiscall:
5533   case tok::kw___regcall:
5534   case tok::kw___vectorcall:
5535   case tok::kw___w64:
5536   case tok::kw___ptr64:
5537   case tok::kw___ptr32:
5538   case tok::kw___pascal:
5539   case tok::kw___unaligned:
5540 
5541   case tok::kw__Nonnull:
5542   case tok::kw__Nullable:
5543   case tok::kw__Nullable_result:
5544   case tok::kw__Null_unspecified:
5545 
5546   case tok::kw___kindof:
5547 
5548   case tok::kw___private:
5549   case tok::kw___local:
5550   case tok::kw___global:
5551   case tok::kw___constant:
5552   case tok::kw___generic:
5553   case tok::kw___read_only:
5554   case tok::kw___read_write:
5555   case tok::kw___write_only:
5556   case tok::kw___funcref:
5557     return true;
5558 
5559   case tok::kw_private:
5560     return getLangOpts().OpenCL;
5561 
5562   // C11 _Atomic
5563   case tok::kw__Atomic:
5564     return true;
5565 
5566   // HLSL type qualifiers
5567   case tok::kw_groupshared:
5568   case tok::kw_in:
5569   case tok::kw_inout:
5570   case tok::kw_out:
5571     return getLangOpts().HLSL;
5572   }
5573 }
5574 
5575 Parser::DeclGroupPtrTy Parser::ParseTopLevelStmtDecl() {
5576   assert(PP.isIncrementalProcessingEnabled() && "Not in incremental mode");
5577 
5578   // Parse a top-level-stmt.
5579   Parser::StmtVector Stmts;
5580   ParsedStmtContext SubStmtCtx = ParsedStmtContext();
5581   Actions.PushFunctionScope();
5582   StmtResult R = ParseStatementOrDeclaration(Stmts, SubStmtCtx);
5583   Actions.PopFunctionScopeInfo();
5584   if (!R.isUsable())
5585     return nullptr;
5586 
5587   SmallVector<Decl *, 2> DeclsInGroup;
5588   DeclsInGroup.push_back(Actions.ActOnTopLevelStmtDecl(R.get()));
5589 
5590   if (Tok.is(tok::annot_repl_input_end) &&
5591       Tok.getAnnotationValue() != nullptr) {
5592     ConsumeAnnotationToken();
5593     cast<TopLevelStmtDecl>(DeclsInGroup.back())->setSemiMissing();
5594   }
5595 
5596   // Currently happens for things like  -fms-extensions and use `__if_exists`.
5597   for (Stmt *S : Stmts)
5598     DeclsInGroup.push_back(Actions.ActOnTopLevelStmtDecl(S));
5599 
5600   return Actions.BuildDeclaratorGroup(DeclsInGroup);
5601 }
5602 
5603 /// isDeclarationSpecifier() - Return true if the current token is part of a
5604 /// declaration specifier.
5605 ///
5606 /// \param AllowImplicitTypename whether this is a context where T::type [T
5607 /// dependent] can appear.
5608 /// \param DisambiguatingWithExpression True to indicate that the purpose of
5609 /// this check is to disambiguate between an expression and a declaration.
5610 bool Parser::isDeclarationSpecifier(
5611     ImplicitTypenameContext AllowImplicitTypename,
5612     bool DisambiguatingWithExpression) {
5613   switch (Tok.getKind()) {
5614   default: return false;
5615 
5616   // OpenCL 2.0 and later define this keyword.
5617   case tok::kw_pipe:
5618     return getLangOpts().OpenCL &&
5619            getLangOpts().getOpenCLCompatibleVersion() >= 200;
5620 
5621   case tok::identifier:   // foo::bar
5622     // Unfortunate hack to support "Class.factoryMethod" notation.
5623     if (getLangOpts().ObjC && NextToken().is(tok::period))
5624       return false;
5625     if (TryAltiVecVectorToken())
5626       return true;
5627     [[fallthrough]];
5628   case tok::kw_decltype: // decltype(T())::type
5629   case tok::kw_typename: // typename T::type
5630     // Annotate typenames and C++ scope specifiers.  If we get one, just
5631     // recurse to handle whatever we get.
5632     if (TryAnnotateTypeOrScopeToken(AllowImplicitTypename))
5633       return true;
5634     if (TryAnnotateTypeConstraint())
5635       return true;
5636     if (Tok.is(tok::identifier))
5637       return false;
5638 
5639     // If we're in Objective-C and we have an Objective-C class type followed
5640     // by an identifier and then either ':' or ']', in a place where an
5641     // expression is permitted, then this is probably a class message send
5642     // missing the initial '['. In this case, we won't consider this to be
5643     // the start of a declaration.
5644     if (DisambiguatingWithExpression &&
5645         isStartOfObjCClassMessageMissingOpenBracket())
5646       return false;
5647 
5648     return isDeclarationSpecifier(AllowImplicitTypename);
5649 
5650   case tok::coloncolon:   // ::foo::bar
5651     if (!getLangOpts().CPlusPlus)
5652       return false;
5653     if (NextToken().is(tok::kw_new) ||    // ::new
5654         NextToken().is(tok::kw_delete))   // ::delete
5655       return false;
5656 
5657     // Annotate typenames and C++ scope specifiers.  If we get one, just
5658     // recurse to handle whatever we get.
5659     if (TryAnnotateTypeOrScopeToken())
5660       return true;
5661     return isDeclarationSpecifier(ImplicitTypenameContext::No);
5662 
5663     // storage-class-specifier
5664   case tok::kw_typedef:
5665   case tok::kw_extern:
5666   case tok::kw___private_extern__:
5667   case tok::kw_static:
5668   case tok::kw_auto:
5669   case tok::kw___auto_type:
5670   case tok::kw_register:
5671   case tok::kw___thread:
5672   case tok::kw_thread_local:
5673   case tok::kw__Thread_local:
5674 
5675     // Modules
5676   case tok::kw___module_private__:
5677 
5678     // Debugger support
5679   case tok::kw___unknown_anytype:
5680 
5681     // type-specifiers
5682   case tok::kw_short:
5683   case tok::kw_long:
5684   case tok::kw___int64:
5685   case tok::kw___int128:
5686   case tok::kw_signed:
5687   case tok::kw_unsigned:
5688   case tok::kw__Complex:
5689   case tok::kw__Imaginary:
5690   case tok::kw_void:
5691   case tok::kw_char:
5692   case tok::kw_wchar_t:
5693   case tok::kw_char8_t:
5694   case tok::kw_char16_t:
5695   case tok::kw_char32_t:
5696 
5697   case tok::kw_int:
5698   case tok::kw__ExtInt:
5699   case tok::kw__BitInt:
5700   case tok::kw_half:
5701   case tok::kw___bf16:
5702   case tok::kw_float:
5703   case tok::kw_double:
5704   case tok::kw__Accum:
5705   case tok::kw__Fract:
5706   case tok::kw__Float16:
5707   case tok::kw___float128:
5708   case tok::kw___ibm128:
5709   case tok::kw_bool:
5710   case tok::kw__Bool:
5711   case tok::kw__Decimal32:
5712   case tok::kw__Decimal64:
5713   case tok::kw__Decimal128:
5714   case tok::kw___vector:
5715 
5716     // struct-or-union-specifier (C99) or class-specifier (C++)
5717   case tok::kw_class:
5718   case tok::kw_struct:
5719   case tok::kw_union:
5720   case tok::kw___interface:
5721     // enum-specifier
5722   case tok::kw_enum:
5723 
5724     // type-qualifier
5725   case tok::kw_const:
5726   case tok::kw_volatile:
5727   case tok::kw_restrict:
5728   case tok::kw__Sat:
5729 
5730     // function-specifier
5731   case tok::kw_inline:
5732   case tok::kw_virtual:
5733   case tok::kw_explicit:
5734   case tok::kw__Noreturn:
5735 
5736     // alignment-specifier
5737   case tok::kw__Alignas:
5738 
5739     // friend keyword.
5740   case tok::kw_friend:
5741 
5742     // static_assert-declaration
5743   case tok::kw_static_assert:
5744   case tok::kw__Static_assert:
5745 
5746     // C23/GNU typeof support.
5747   case tok::kw_typeof:
5748   case tok::kw_typeof_unqual:
5749 
5750     // GNU attributes.
5751   case tok::kw___attribute:
5752 
5753     // C++11 decltype and constexpr.
5754   case tok::annot_decltype:
5755   case tok::kw_constexpr:
5756 
5757     // C++20 consteval and constinit.
5758   case tok::kw_consteval:
5759   case tok::kw_constinit:
5760 
5761     // C11 _Atomic
5762   case tok::kw__Atomic:
5763     return true;
5764 
5765     // GNU ObjC bizarre protocol extension: <proto1,proto2> with implicit 'id'.
5766   case tok::less:
5767     return getLangOpts().ObjC;
5768 
5769     // typedef-name
5770   case tok::annot_typename:
5771     return !DisambiguatingWithExpression ||
5772            !isStartOfObjCClassMessageMissingOpenBracket();
5773 
5774     // placeholder-type-specifier
5775   case tok::annot_template_id: {
5776     TemplateIdAnnotation *TemplateId = takeTemplateIdAnnotation(Tok);
5777     if (TemplateId->hasInvalidName())
5778       return true;
5779     // FIXME: What about type templates that have only been annotated as
5780     // annot_template_id, not as annot_typename?
5781     return isTypeConstraintAnnotation() &&
5782            (NextToken().is(tok::kw_auto) || NextToken().is(tok::kw_decltype));
5783   }
5784 
5785   case tok::annot_cxxscope: {
5786     TemplateIdAnnotation *TemplateId =
5787         NextToken().is(tok::annot_template_id)
5788             ? takeTemplateIdAnnotation(NextToken())
5789             : nullptr;
5790     if (TemplateId && TemplateId->hasInvalidName())
5791       return true;
5792     // FIXME: What about type templates that have only been annotated as
5793     // annot_template_id, not as annot_typename?
5794     if (NextToken().is(tok::identifier) && TryAnnotateTypeConstraint())
5795       return true;
5796     return isTypeConstraintAnnotation() &&
5797         GetLookAheadToken(2).isOneOf(tok::kw_auto, tok::kw_decltype);
5798   }
5799 
5800   case tok::kw___declspec:
5801   case tok::kw___cdecl:
5802   case tok::kw___stdcall:
5803   case tok::kw___fastcall:
5804   case tok::kw___thiscall:
5805   case tok::kw___regcall:
5806   case tok::kw___vectorcall:
5807   case tok::kw___w64:
5808   case tok::kw___sptr:
5809   case tok::kw___uptr:
5810   case tok::kw___ptr64:
5811   case tok::kw___ptr32:
5812   case tok::kw___forceinline:
5813   case tok::kw___pascal:
5814   case tok::kw___unaligned:
5815 
5816   case tok::kw__Nonnull:
5817   case tok::kw__Nullable:
5818   case tok::kw__Nullable_result:
5819   case tok::kw__Null_unspecified:
5820 
5821   case tok::kw___kindof:
5822 
5823   case tok::kw___private:
5824   case tok::kw___local:
5825   case tok::kw___global:
5826   case tok::kw___constant:
5827   case tok::kw___generic:
5828   case tok::kw___read_only:
5829   case tok::kw___read_write:
5830   case tok::kw___write_only:
5831 #define GENERIC_IMAGE_TYPE(ImgType, Id) case tok::kw_##ImgType##_t:
5832 #include "clang/Basic/OpenCLImageTypes.def"
5833 
5834   case tok::kw___funcref:
5835   case tok::kw_groupshared:
5836     return true;
5837 
5838   case tok::kw_private:
5839     return getLangOpts().OpenCL;
5840   }
5841 }
5842 
5843 bool Parser::isConstructorDeclarator(bool IsUnqualified, bool DeductionGuide,
5844                                      DeclSpec::FriendSpecified IsFriend,
5845                                      const ParsedTemplateInfo *TemplateInfo) {
5846   RevertingTentativeParsingAction TPA(*this);
5847   // Parse the C++ scope specifier.
5848   CXXScopeSpec SS;
5849   if (TemplateInfo && TemplateInfo->TemplateParams)
5850     SS.setTemplateParamLists(*TemplateInfo->TemplateParams);
5851 
5852   if (ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
5853                                      /*ObjectHasErrors=*/false,
5854                                      /*EnteringContext=*/true)) {
5855     return false;
5856   }
5857 
5858   // Parse the constructor name.
5859   if (Tok.is(tok::identifier)) {
5860     // We already know that we have a constructor name; just consume
5861     // the token.
5862     ConsumeToken();
5863   } else if (Tok.is(tok::annot_template_id)) {
5864     ConsumeAnnotationToken();
5865   } else {
5866     return false;
5867   }
5868 
5869   // There may be attributes here, appertaining to the constructor name or type
5870   // we just stepped past.
5871   SkipCXX11Attributes();
5872 
5873   // Current class name must be followed by a left parenthesis.
5874   if (Tok.isNot(tok::l_paren)) {
5875     return false;
5876   }
5877   ConsumeParen();
5878 
5879   // A right parenthesis, or ellipsis followed by a right parenthesis signals
5880   // that we have a constructor.
5881   if (Tok.is(tok::r_paren) ||
5882       (Tok.is(tok::ellipsis) && NextToken().is(tok::r_paren))) {
5883     return true;
5884   }
5885 
5886   // A C++11 attribute here signals that we have a constructor, and is an
5887   // attribute on the first constructor parameter.
5888   if (getLangOpts().CPlusPlus11 &&
5889       isCXX11AttributeSpecifier(/*Disambiguate*/ false,
5890                                 /*OuterMightBeMessageSend*/ true)) {
5891     return true;
5892   }
5893 
5894   // If we need to, enter the specified scope.
5895   DeclaratorScopeObj DeclScopeObj(*this, SS);
5896   if (SS.isSet() && Actions.ShouldEnterDeclaratorScope(getCurScope(), SS))
5897     DeclScopeObj.EnterDeclaratorScope();
5898 
5899   // Optionally skip Microsoft attributes.
5900   ParsedAttributes Attrs(AttrFactory);
5901   MaybeParseMicrosoftAttributes(Attrs);
5902 
5903   // Check whether the next token(s) are part of a declaration
5904   // specifier, in which case we have the start of a parameter and,
5905   // therefore, we know that this is a constructor.
5906   // Due to an ambiguity with implicit typename, the above is not enough.
5907   // Additionally, check to see if we are a friend.
5908   // If we parsed a scope specifier as well as friend,
5909   // we might be parsing a friend constructor.
5910   bool IsConstructor = false;
5911   ImplicitTypenameContext ITC = IsFriend && !SS.isSet()
5912                                     ? ImplicitTypenameContext::No
5913                                     : ImplicitTypenameContext::Yes;
5914   // Constructors cannot have this parameters, but we support that scenario here
5915   // to improve diagnostic.
5916   if (Tok.is(tok::kw_this)) {
5917     ConsumeToken();
5918     return isDeclarationSpecifier(ITC);
5919   }
5920 
5921   if (isDeclarationSpecifier(ITC))
5922     IsConstructor = true;
5923   else if (Tok.is(tok::identifier) ||
5924            (Tok.is(tok::annot_cxxscope) && NextToken().is(tok::identifier))) {
5925     // We've seen "C ( X" or "C ( X::Y", but "X" / "X::Y" is not a type.
5926     // This might be a parenthesized member name, but is more likely to
5927     // be a constructor declaration with an invalid argument type. Keep
5928     // looking.
5929     if (Tok.is(tok::annot_cxxscope))
5930       ConsumeAnnotationToken();
5931     ConsumeToken();
5932 
5933     // If this is not a constructor, we must be parsing a declarator,
5934     // which must have one of the following syntactic forms (see the
5935     // grammar extract at the start of ParseDirectDeclarator):
5936     switch (Tok.getKind()) {
5937     case tok::l_paren:
5938       // C(X   (   int));
5939     case tok::l_square:
5940       // C(X   [   5]);
5941       // C(X   [   [attribute]]);
5942     case tok::coloncolon:
5943       // C(X   ::   Y);
5944       // C(X   ::   *p);
5945       // Assume this isn't a constructor, rather than assuming it's a
5946       // constructor with an unnamed parameter of an ill-formed type.
5947       break;
5948 
5949     case tok::r_paren:
5950       // C(X   )
5951 
5952       // Skip past the right-paren and any following attributes to get to
5953       // the function body or trailing-return-type.
5954       ConsumeParen();
5955       SkipCXX11Attributes();
5956 
5957       if (DeductionGuide) {
5958         // C(X) -> ... is a deduction guide.
5959         IsConstructor = Tok.is(tok::arrow);
5960         break;
5961       }
5962       if (Tok.is(tok::colon) || Tok.is(tok::kw_try)) {
5963         // Assume these were meant to be constructors:
5964         //   C(X)   :    (the name of a bit-field cannot be parenthesized).
5965         //   C(X)   try  (this is otherwise ill-formed).
5966         IsConstructor = true;
5967       }
5968       if (Tok.is(tok::semi) || Tok.is(tok::l_brace)) {
5969         // If we have a constructor name within the class definition,
5970         // assume these were meant to be constructors:
5971         //   C(X)   {
5972         //   C(X)   ;
5973         // ... because otherwise we would be declaring a non-static data
5974         // member that is ill-formed because it's of the same type as its
5975         // surrounding class.
5976         //
5977         // FIXME: We can actually do this whether or not the name is qualified,
5978         // because if it is qualified in this context it must be being used as
5979         // a constructor name.
5980         // currently, so we're somewhat conservative here.
5981         IsConstructor = IsUnqualified;
5982       }
5983       break;
5984 
5985     default:
5986       IsConstructor = true;
5987       break;
5988     }
5989   }
5990   return IsConstructor;
5991 }
5992 
5993 /// ParseTypeQualifierListOpt
5994 ///          type-qualifier-list: [C99 6.7.5]
5995 ///            type-qualifier
5996 /// [vendor]   attributes
5997 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
5998 ///            type-qualifier-list type-qualifier
5999 /// [vendor]   type-qualifier-list attributes
6000 ///              [ only if AttrReqs & AR_VendorAttributesParsed ]
6001 /// [C++0x]    attribute-specifier[opt] is allowed before cv-qualifier-seq
6002 ///              [ only if AttReqs & AR_CXX11AttributesParsed ]
6003 /// Note: vendor can be GNU, MS, etc and can be explicitly controlled via
6004 /// AttrRequirements bitmask values.
6005 void Parser::ParseTypeQualifierListOpt(
6006     DeclSpec &DS, unsigned AttrReqs, bool AtomicAllowed,
6007     bool IdentifierRequired,
6008     std::optional<llvm::function_ref<void()>> CodeCompletionHandler) {
6009   if ((AttrReqs & AR_CXX11AttributesParsed) &&
6010       isAllowedCXX11AttributeSpecifier()) {
6011     ParsedAttributes Attrs(AttrFactory);
6012     ParseCXX11Attributes(Attrs);
6013     DS.takeAttributesFrom(Attrs);
6014   }
6015 
6016   SourceLocation EndLoc;
6017 
6018   while (true) {
6019     bool isInvalid = false;
6020     const char *PrevSpec = nullptr;
6021     unsigned DiagID = 0;
6022     SourceLocation Loc = Tok.getLocation();
6023 
6024     switch (Tok.getKind()) {
6025     case tok::code_completion:
6026       cutOffParsing();
6027       if (CodeCompletionHandler)
6028         (*CodeCompletionHandler)();
6029       else
6030         Actions.CodeCompleteTypeQualifiers(DS);
6031       return;
6032 
6033     case tok::kw_const:
6034       isInvalid = DS.SetTypeQual(DeclSpec::TQ_const   , Loc, PrevSpec, DiagID,
6035                                  getLangOpts());
6036       break;
6037     case tok::kw_volatile:
6038       isInvalid = DS.SetTypeQual(DeclSpec::TQ_volatile, Loc, PrevSpec, DiagID,
6039                                  getLangOpts());
6040       break;
6041     case tok::kw_restrict:
6042       isInvalid = DS.SetTypeQual(DeclSpec::TQ_restrict, Loc, PrevSpec, DiagID,
6043                                  getLangOpts());
6044       break;
6045     case tok::kw__Atomic:
6046       if (!AtomicAllowed)
6047         goto DoneWithTypeQuals;
6048       if (!getLangOpts().C11)
6049         Diag(Tok, diag::ext_c11_feature) << Tok.getName();
6050       isInvalid = DS.SetTypeQual(DeclSpec::TQ_atomic, Loc, PrevSpec, DiagID,
6051                                  getLangOpts());
6052       break;
6053 
6054     // OpenCL qualifiers:
6055     case tok::kw_private:
6056       if (!getLangOpts().OpenCL)
6057         goto DoneWithTypeQuals;
6058       [[fallthrough]];
6059     case tok::kw___private:
6060     case tok::kw___global:
6061     case tok::kw___local:
6062     case tok::kw___constant:
6063     case tok::kw___generic:
6064     case tok::kw___read_only:
6065     case tok::kw___write_only:
6066     case tok::kw___read_write:
6067       ParseOpenCLQualifiers(DS.getAttributes());
6068       break;
6069 
6070     case tok::kw_groupshared:
6071     case tok::kw_in:
6072     case tok::kw_inout:
6073     case tok::kw_out:
6074       // NOTE: ParseHLSLQualifiers will consume the qualifier token.
6075       ParseHLSLQualifiers(DS.getAttributes());
6076       continue;
6077 
6078     case tok::kw___unaligned:
6079       isInvalid = DS.SetTypeQual(DeclSpec::TQ_unaligned, Loc, PrevSpec, DiagID,
6080                                  getLangOpts());
6081       break;
6082     case tok::kw___uptr:
6083       // GNU libc headers in C mode use '__uptr' as an identifier which conflicts
6084       // with the MS modifier keyword.
6085       if ((AttrReqs & AR_DeclspecAttributesParsed) && !getLangOpts().CPlusPlus &&
6086           IdentifierRequired && DS.isEmpty() && NextToken().is(tok::semi)) {
6087         if (TryKeywordIdentFallback(false))
6088           continue;
6089       }
6090       [[fallthrough]];
6091     case tok::kw___sptr:
6092     case tok::kw___w64:
6093     case tok::kw___ptr64:
6094     case tok::kw___ptr32:
6095     case tok::kw___cdecl:
6096     case tok::kw___stdcall:
6097     case tok::kw___fastcall:
6098     case tok::kw___thiscall:
6099     case tok::kw___regcall:
6100     case tok::kw___vectorcall:
6101       if (AttrReqs & AR_DeclspecAttributesParsed) {
6102         ParseMicrosoftTypeAttributes(DS.getAttributes());
6103         continue;
6104       }
6105       goto DoneWithTypeQuals;
6106 
6107     case tok::kw___funcref:
6108       ParseWebAssemblyFuncrefTypeAttribute(DS.getAttributes());
6109       continue;
6110       goto DoneWithTypeQuals;
6111 
6112     case tok::kw___pascal:
6113       if (AttrReqs & AR_VendorAttributesParsed) {
6114         ParseBorlandTypeAttributes(DS.getAttributes());
6115         continue;
6116       }
6117       goto DoneWithTypeQuals;
6118 
6119     // Nullability type specifiers.
6120     case tok::kw__Nonnull:
6121     case tok::kw__Nullable:
6122     case tok::kw__Nullable_result:
6123     case tok::kw__Null_unspecified:
6124       ParseNullabilityTypeSpecifiers(DS.getAttributes());
6125       continue;
6126 
6127     // Objective-C 'kindof' types.
6128     case tok::kw___kindof:
6129       DS.getAttributes().addNew(Tok.getIdentifierInfo(), Loc, nullptr, Loc,
6130                                 nullptr, 0, tok::kw___kindof);
6131       (void)ConsumeToken();
6132       continue;
6133 
6134     case tok::kw___attribute:
6135       if (AttrReqs & AR_GNUAttributesParsedAndRejected)
6136         // When GNU attributes are expressly forbidden, diagnose their usage.
6137         Diag(Tok, diag::err_attributes_not_allowed);
6138 
6139       // Parse the attributes even if they are rejected to ensure that error
6140       // recovery is graceful.
6141       if (AttrReqs & AR_GNUAttributesParsed ||
6142           AttrReqs & AR_GNUAttributesParsedAndRejected) {
6143         ParseGNUAttributes(DS.getAttributes());
6144         continue; // do *not* consume the next token!
6145       }
6146       // otherwise, FALL THROUGH!
6147       [[fallthrough]];
6148     default:
6149       DoneWithTypeQuals:
6150       // If this is not a type-qualifier token, we're done reading type
6151       // qualifiers.  First verify that DeclSpec's are consistent.
6152       DS.Finish(Actions, Actions.getASTContext().getPrintingPolicy());
6153       if (EndLoc.isValid())
6154         DS.SetRangeEnd(EndLoc);
6155       return;
6156     }
6157 
6158     // If the specifier combination wasn't legal, issue a diagnostic.
6159     if (isInvalid) {
6160       assert(PrevSpec && "Method did not return previous specifier!");
6161       Diag(Tok, DiagID) << PrevSpec;
6162     }
6163     EndLoc = ConsumeToken();
6164   }
6165 }
6166 
6167 /// ParseDeclarator - Parse and verify a newly-initialized declarator.
6168 void Parser::ParseDeclarator(Declarator &D) {
6169   /// This implements the 'declarator' production in the C grammar, then checks
6170   /// for well-formedness and issues diagnostics.
6171   Actions.runWithSufficientStackSpace(D.getBeginLoc(), [&] {
6172     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6173   });
6174 }
6175 
6176 static bool isPtrOperatorToken(tok::TokenKind Kind, const LangOptions &Lang,
6177                                DeclaratorContext TheContext) {
6178   if (Kind == tok::star || Kind == tok::caret)
6179     return true;
6180 
6181   // OpenCL 2.0 and later define this keyword.
6182   if (Kind == tok::kw_pipe && Lang.OpenCL &&
6183       Lang.getOpenCLCompatibleVersion() >= 200)
6184     return true;
6185 
6186   if (!Lang.CPlusPlus)
6187     return false;
6188 
6189   if (Kind == tok::amp)
6190     return true;
6191 
6192   // We parse rvalue refs in C++03, because otherwise the errors are scary.
6193   // But we must not parse them in conversion-type-ids and new-type-ids, since
6194   // those can be legitimately followed by a && operator.
6195   // (The same thing can in theory happen after a trailing-return-type, but
6196   // since those are a C++11 feature, there is no rejects-valid issue there.)
6197   if (Kind == tok::ampamp)
6198     return Lang.CPlusPlus11 || (TheContext != DeclaratorContext::ConversionId &&
6199                                 TheContext != DeclaratorContext::CXXNew);
6200 
6201   return false;
6202 }
6203 
6204 // Indicates whether the given declarator is a pipe declarator.
6205 static bool isPipeDeclarator(const Declarator &D) {
6206   const unsigned NumTypes = D.getNumTypeObjects();
6207 
6208   for (unsigned Idx = 0; Idx != NumTypes; ++Idx)
6209     if (DeclaratorChunk::Pipe == D.getTypeObject(Idx).Kind)
6210       return true;
6211 
6212   return false;
6213 }
6214 
6215 /// ParseDeclaratorInternal - Parse a C or C++ declarator. The direct-declarator
6216 /// is parsed by the function passed to it. Pass null, and the direct-declarator
6217 /// isn't parsed at all, making this function effectively parse the C++
6218 /// ptr-operator production.
6219 ///
6220 /// If the grammar of this construct is extended, matching changes must also be
6221 /// made to TryParseDeclarator and MightBeDeclarator, and possibly to
6222 /// isConstructorDeclarator.
6223 ///
6224 ///       declarator: [C99 6.7.5] [C++ 8p4, dcl.decl]
6225 /// [C]     pointer[opt] direct-declarator
6226 /// [C++]   direct-declarator
6227 /// [C++]   ptr-operator declarator
6228 ///
6229 ///       pointer: [C99 6.7.5]
6230 ///         '*' type-qualifier-list[opt]
6231 ///         '*' type-qualifier-list[opt] pointer
6232 ///
6233 ///       ptr-operator:
6234 ///         '*' cv-qualifier-seq[opt]
6235 ///         '&'
6236 /// [C++0x] '&&'
6237 /// [GNU]   '&' restrict[opt] attributes[opt]
6238 /// [GNU?]  '&&' restrict[opt] attributes[opt]
6239 ///         '::'[opt] nested-name-specifier '*' cv-qualifier-seq[opt]
6240 void Parser::ParseDeclaratorInternal(Declarator &D,
6241                                      DirectDeclParseFunction DirectDeclParser) {
6242   if (Diags.hasAllExtensionsSilenced())
6243     D.setExtension();
6244 
6245   // C++ member pointers start with a '::' or a nested-name.
6246   // Member pointers get special handling, since there's no place for the
6247   // scope spec in the generic path below.
6248   if (getLangOpts().CPlusPlus &&
6249       (Tok.is(tok::coloncolon) || Tok.is(tok::kw_decltype) ||
6250        (Tok.is(tok::identifier) &&
6251         (NextToken().is(tok::coloncolon) || NextToken().is(tok::less))) ||
6252        Tok.is(tok::annot_cxxscope))) {
6253     bool EnteringContext = D.getContext() == DeclaratorContext::File ||
6254                            D.getContext() == DeclaratorContext::Member;
6255     CXXScopeSpec SS;
6256     SS.setTemplateParamLists(D.getTemplateParameterLists());
6257     ParseOptionalCXXScopeSpecifier(SS, /*ObjectType=*/nullptr,
6258                                    /*ObjectHasErrors=*/false, EnteringContext);
6259 
6260     if (SS.isNotEmpty()) {
6261       if (Tok.isNot(tok::star)) {
6262         // The scope spec really belongs to the direct-declarator.
6263         if (D.mayHaveIdentifier())
6264           D.getCXXScopeSpec() = SS;
6265         else
6266           AnnotateScopeToken(SS, true);
6267 
6268         if (DirectDeclParser)
6269           (this->*DirectDeclParser)(D);
6270         return;
6271       }
6272 
6273       if (SS.isValid()) {
6274         checkCompoundToken(SS.getEndLoc(), tok::coloncolon,
6275                            CompoundToken::MemberPtr);
6276       }
6277 
6278       SourceLocation StarLoc = ConsumeToken();
6279       D.SetRangeEnd(StarLoc);
6280       DeclSpec DS(AttrFactory);
6281       ParseTypeQualifierListOpt(DS);
6282       D.ExtendWithDeclSpec(DS);
6283 
6284       // Recurse to parse whatever is left.
6285       Actions.runWithSufficientStackSpace(D.getBeginLoc(), [&] {
6286         ParseDeclaratorInternal(D, DirectDeclParser);
6287       });
6288 
6289       // Sema will have to catch (syntactically invalid) pointers into global
6290       // scope. It has to catch pointers into namespace scope anyway.
6291       D.AddTypeInfo(DeclaratorChunk::getMemberPointer(
6292                         SS, DS.getTypeQualifiers(), StarLoc, DS.getEndLoc()),
6293                     std::move(DS.getAttributes()),
6294                     /* Don't replace range end. */ SourceLocation());
6295       return;
6296     }
6297   }
6298 
6299   tok::TokenKind Kind = Tok.getKind();
6300 
6301   if (D.getDeclSpec().isTypeSpecPipe() && !isPipeDeclarator(D)) {
6302     DeclSpec DS(AttrFactory);
6303     ParseTypeQualifierListOpt(DS);
6304 
6305     D.AddTypeInfo(
6306         DeclaratorChunk::getPipe(DS.getTypeQualifiers(), DS.getPipeLoc()),
6307         std::move(DS.getAttributes()), SourceLocation());
6308   }
6309 
6310   // Not a pointer, C++ reference, or block.
6311   if (!isPtrOperatorToken(Kind, getLangOpts(), D.getContext())) {
6312     if (DirectDeclParser)
6313       (this->*DirectDeclParser)(D);
6314     return;
6315   }
6316 
6317   // Otherwise, '*' -> pointer, '^' -> block, '&' -> lvalue reference,
6318   // '&&' -> rvalue reference
6319   SourceLocation Loc = ConsumeToken();  // Eat the *, ^, & or &&.
6320   D.SetRangeEnd(Loc);
6321 
6322   if (Kind == tok::star || Kind == tok::caret) {
6323     // Is a pointer.
6324     DeclSpec DS(AttrFactory);
6325 
6326     // GNU attributes are not allowed here in a new-type-id, but Declspec and
6327     // C++11 attributes are allowed.
6328     unsigned Reqs = AR_CXX11AttributesParsed | AR_DeclspecAttributesParsed |
6329                     ((D.getContext() != DeclaratorContext::CXXNew)
6330                          ? AR_GNUAttributesParsed
6331                          : AR_GNUAttributesParsedAndRejected);
6332     ParseTypeQualifierListOpt(DS, Reqs, true, !D.mayOmitIdentifier());
6333     D.ExtendWithDeclSpec(DS);
6334 
6335     // Recursively parse the declarator.
6336     Actions.runWithSufficientStackSpace(
6337         D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); });
6338     if (Kind == tok::star)
6339       // Remember that we parsed a pointer type, and remember the type-quals.
6340       D.AddTypeInfo(DeclaratorChunk::getPointer(
6341                         DS.getTypeQualifiers(), Loc, DS.getConstSpecLoc(),
6342                         DS.getVolatileSpecLoc(), DS.getRestrictSpecLoc(),
6343                         DS.getAtomicSpecLoc(), DS.getUnalignedSpecLoc()),
6344                     std::move(DS.getAttributes()), SourceLocation());
6345     else
6346       // Remember that we parsed a Block type, and remember the type-quals.
6347       D.AddTypeInfo(
6348           DeclaratorChunk::getBlockPointer(DS.getTypeQualifiers(), Loc),
6349           std::move(DS.getAttributes()), SourceLocation());
6350   } else {
6351     // Is a reference
6352     DeclSpec DS(AttrFactory);
6353 
6354     // Complain about rvalue references in C++03, but then go on and build
6355     // the declarator.
6356     if (Kind == tok::ampamp)
6357       Diag(Loc, getLangOpts().CPlusPlus11 ?
6358            diag::warn_cxx98_compat_rvalue_reference :
6359            diag::ext_rvalue_reference);
6360 
6361     // GNU-style and C++11 attributes are allowed here, as is restrict.
6362     ParseTypeQualifierListOpt(DS);
6363     D.ExtendWithDeclSpec(DS);
6364 
6365     // C++ 8.3.2p1: cv-qualified references are ill-formed except when the
6366     // cv-qualifiers are introduced through the use of a typedef or of a
6367     // template type argument, in which case the cv-qualifiers are ignored.
6368     if (DS.getTypeQualifiers() != DeclSpec::TQ_unspecified) {
6369       if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
6370         Diag(DS.getConstSpecLoc(),
6371              diag::err_invalid_reference_qualifier_application) << "const";
6372       if (DS.getTypeQualifiers() & DeclSpec::TQ_volatile)
6373         Diag(DS.getVolatileSpecLoc(),
6374              diag::err_invalid_reference_qualifier_application) << "volatile";
6375       // 'restrict' is permitted as an extension.
6376       if (DS.getTypeQualifiers() & DeclSpec::TQ_atomic)
6377         Diag(DS.getAtomicSpecLoc(),
6378              diag::err_invalid_reference_qualifier_application) << "_Atomic";
6379     }
6380 
6381     // Recursively parse the declarator.
6382     Actions.runWithSufficientStackSpace(
6383         D.getBeginLoc(), [&] { ParseDeclaratorInternal(D, DirectDeclParser); });
6384 
6385     if (D.getNumTypeObjects() > 0) {
6386       // C++ [dcl.ref]p4: There shall be no references to references.
6387       DeclaratorChunk& InnerChunk = D.getTypeObject(D.getNumTypeObjects() - 1);
6388       if (InnerChunk.Kind == DeclaratorChunk::Reference) {
6389         if (const IdentifierInfo *II = D.getIdentifier())
6390           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
6391            << II;
6392         else
6393           Diag(InnerChunk.Loc, diag::err_illegal_decl_reference_to_reference)
6394             << "type name";
6395 
6396         // Once we've complained about the reference-to-reference, we
6397         // can go ahead and build the (technically ill-formed)
6398         // declarator: reference collapsing will take care of it.
6399       }
6400     }
6401 
6402     // Remember that we parsed a reference type.
6403     D.AddTypeInfo(DeclaratorChunk::getReference(DS.getTypeQualifiers(), Loc,
6404                                                 Kind == tok::amp),
6405                   std::move(DS.getAttributes()), SourceLocation());
6406   }
6407 }
6408 
6409 // When correcting from misplaced brackets before the identifier, the location
6410 // is saved inside the declarator so that other diagnostic messages can use
6411 // them.  This extracts and returns that location, or returns the provided
6412 // location if a stored location does not exist.
6413 static SourceLocation getMissingDeclaratorIdLoc(Declarator &D,
6414                                                 SourceLocation Loc) {
6415   if (D.getName().StartLocation.isInvalid() &&
6416       D.getName().EndLocation.isValid())
6417     return D.getName().EndLocation;
6418 
6419   return Loc;
6420 }
6421 
6422 /// ParseDirectDeclarator
6423 ///       direct-declarator: [C99 6.7.5]
6424 /// [C99]   identifier
6425 ///         '(' declarator ')'
6426 /// [GNU]   '(' attributes declarator ')'
6427 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
6428 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
6429 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
6430 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
6431 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
6432 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
6433 ///                    attribute-specifier-seq[opt]
6434 ///         direct-declarator '(' parameter-type-list ')'
6435 ///         direct-declarator '(' identifier-list[opt] ')'
6436 /// [GNU]   direct-declarator '(' parameter-forward-declarations
6437 ///                    parameter-type-list[opt] ')'
6438 /// [C++]   direct-declarator '(' parameter-declaration-clause ')'
6439 ///                    cv-qualifier-seq[opt] exception-specification[opt]
6440 /// [C++11] direct-declarator '(' parameter-declaration-clause ')'
6441 ///                    attribute-specifier-seq[opt] cv-qualifier-seq[opt]
6442 ///                    ref-qualifier[opt] exception-specification[opt]
6443 /// [C++]   declarator-id
6444 /// [C++11] declarator-id attribute-specifier-seq[opt]
6445 ///
6446 ///       declarator-id: [C++ 8]
6447 ///         '...'[opt] id-expression
6448 ///         '::'[opt] nested-name-specifier[opt] type-name
6449 ///
6450 ///       id-expression: [C++ 5.1]
6451 ///         unqualified-id
6452 ///         qualified-id
6453 ///
6454 ///       unqualified-id: [C++ 5.1]
6455 ///         identifier
6456 ///         operator-function-id
6457 ///         conversion-function-id
6458 ///          '~' class-name
6459 ///         template-id
6460 ///
6461 /// C++17 adds the following, which we also handle here:
6462 ///
6463 ///       simple-declaration:
6464 ///         <decl-spec> '[' identifier-list ']' brace-or-equal-initializer ';'
6465 ///
6466 /// Note, any additional constructs added here may need corresponding changes
6467 /// in isConstructorDeclarator.
6468 void Parser::ParseDirectDeclarator(Declarator &D) {
6469   DeclaratorScopeObj DeclScopeObj(*this, D.getCXXScopeSpec());
6470 
6471   if (getLangOpts().CPlusPlus && D.mayHaveIdentifier()) {
6472     // This might be a C++17 structured binding.
6473     if (Tok.is(tok::l_square) && !D.mayOmitIdentifier() &&
6474         D.getCXXScopeSpec().isEmpty())
6475       return ParseDecompositionDeclarator(D);
6476 
6477     // Don't parse FOO:BAR as if it were a typo for FOO::BAR inside a class, in
6478     // this context it is a bitfield. Also in range-based for statement colon
6479     // may delimit for-range-declaration.
6480     ColonProtectionRAIIObject X(
6481         *this, D.getContext() == DeclaratorContext::Member ||
6482                    (D.getContext() == DeclaratorContext::ForInit &&
6483                     getLangOpts().CPlusPlus11));
6484 
6485     // ParseDeclaratorInternal might already have parsed the scope.
6486     if (D.getCXXScopeSpec().isEmpty()) {
6487       bool EnteringContext = D.getContext() == DeclaratorContext::File ||
6488                              D.getContext() == DeclaratorContext::Member;
6489       ParseOptionalCXXScopeSpecifier(
6490           D.getCXXScopeSpec(), /*ObjectType=*/nullptr,
6491           /*ObjectHasErrors=*/false, EnteringContext);
6492     }
6493 
6494     if (D.getCXXScopeSpec().isValid()) {
6495       if (Actions.ShouldEnterDeclaratorScope(getCurScope(),
6496                                              D.getCXXScopeSpec()))
6497         // Change the declaration context for name lookup, until this function
6498         // is exited (and the declarator has been parsed).
6499         DeclScopeObj.EnterDeclaratorScope();
6500       else if (getObjCDeclContext()) {
6501         // Ensure that we don't interpret the next token as an identifier when
6502         // dealing with declarations in an Objective-C container.
6503         D.SetIdentifier(nullptr, Tok.getLocation());
6504         D.setInvalidType(true);
6505         ConsumeToken();
6506         goto PastIdentifier;
6507       }
6508     }
6509 
6510     // C++0x [dcl.fct]p14:
6511     //   There is a syntactic ambiguity when an ellipsis occurs at the end of a
6512     //   parameter-declaration-clause without a preceding comma. In this case,
6513     //   the ellipsis is parsed as part of the abstract-declarator if the type
6514     //   of the parameter either names a template parameter pack that has not
6515     //   been expanded or contains auto; otherwise, it is parsed as part of the
6516     //   parameter-declaration-clause.
6517     if (Tok.is(tok::ellipsis) && D.getCXXScopeSpec().isEmpty() &&
6518         !((D.getContext() == DeclaratorContext::Prototype ||
6519            D.getContext() == DeclaratorContext::LambdaExprParameter ||
6520            D.getContext() == DeclaratorContext::BlockLiteral) &&
6521           NextToken().is(tok::r_paren) && !D.hasGroupingParens() &&
6522           !Actions.containsUnexpandedParameterPacks(D) &&
6523           D.getDeclSpec().getTypeSpecType() != TST_auto)) {
6524       SourceLocation EllipsisLoc = ConsumeToken();
6525       if (isPtrOperatorToken(Tok.getKind(), getLangOpts(), D.getContext())) {
6526         // The ellipsis was put in the wrong place. Recover, and explain to
6527         // the user what they should have done.
6528         ParseDeclarator(D);
6529         if (EllipsisLoc.isValid())
6530           DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
6531         return;
6532       } else
6533         D.setEllipsisLoc(EllipsisLoc);
6534 
6535       // The ellipsis can't be followed by a parenthesized declarator. We
6536       // check for that in ParseParenDeclarator, after we have disambiguated
6537       // the l_paren token.
6538     }
6539 
6540     if (Tok.isOneOf(tok::identifier, tok::kw_operator, tok::annot_template_id,
6541                     tok::tilde)) {
6542       // We found something that indicates the start of an unqualified-id.
6543       // Parse that unqualified-id.
6544       bool AllowConstructorName;
6545       bool AllowDeductionGuide;
6546       if (D.getDeclSpec().hasTypeSpecifier()) {
6547         AllowConstructorName = false;
6548         AllowDeductionGuide = false;
6549       } else if (D.getCXXScopeSpec().isSet()) {
6550         AllowConstructorName = (D.getContext() == DeclaratorContext::File ||
6551                                 D.getContext() == DeclaratorContext::Member);
6552         AllowDeductionGuide = false;
6553       } else {
6554         AllowConstructorName = (D.getContext() == DeclaratorContext::Member);
6555         AllowDeductionGuide = (D.getContext() == DeclaratorContext::File ||
6556                                D.getContext() == DeclaratorContext::Member);
6557       }
6558 
6559       bool HadScope = D.getCXXScopeSpec().isValid();
6560       if (ParseUnqualifiedId(D.getCXXScopeSpec(),
6561                              /*ObjectType=*/nullptr,
6562                              /*ObjectHadErrors=*/false,
6563                              /*EnteringContext=*/true,
6564                              /*AllowDestructorName=*/true, AllowConstructorName,
6565                              AllowDeductionGuide, nullptr, D.getName()) ||
6566           // Once we're past the identifier, if the scope was bad, mark the
6567           // whole declarator bad.
6568           D.getCXXScopeSpec().isInvalid()) {
6569         D.SetIdentifier(nullptr, Tok.getLocation());
6570         D.setInvalidType(true);
6571       } else {
6572         // ParseUnqualifiedId might have parsed a scope specifier during error
6573         // recovery. If it did so, enter that scope.
6574         if (!HadScope && D.getCXXScopeSpec().isValid() &&
6575             Actions.ShouldEnterDeclaratorScope(getCurScope(),
6576                                                D.getCXXScopeSpec()))
6577           DeclScopeObj.EnterDeclaratorScope();
6578 
6579         // Parsed the unqualified-id; update range information and move along.
6580         if (D.getSourceRange().getBegin().isInvalid())
6581           D.SetRangeBegin(D.getName().getSourceRange().getBegin());
6582         D.SetRangeEnd(D.getName().getSourceRange().getEnd());
6583       }
6584       goto PastIdentifier;
6585     }
6586 
6587     if (D.getCXXScopeSpec().isNotEmpty()) {
6588       // We have a scope specifier but no following unqualified-id.
6589       Diag(PP.getLocForEndOfToken(D.getCXXScopeSpec().getEndLoc()),
6590            diag::err_expected_unqualified_id)
6591           << /*C++*/1;
6592       D.SetIdentifier(nullptr, Tok.getLocation());
6593       goto PastIdentifier;
6594     }
6595   } else if (Tok.is(tok::identifier) && D.mayHaveIdentifier()) {
6596     assert(!getLangOpts().CPlusPlus &&
6597            "There's a C++-specific check for tok::identifier above");
6598     assert(Tok.getIdentifierInfo() && "Not an identifier?");
6599     D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
6600     D.SetRangeEnd(Tok.getLocation());
6601     ConsumeToken();
6602     goto PastIdentifier;
6603   } else if (Tok.is(tok::identifier) && !D.mayHaveIdentifier()) {
6604     // We're not allowed an identifier here, but we got one. Try to figure out
6605     // if the user was trying to attach a name to the type, or whether the name
6606     // is some unrelated trailing syntax.
6607     bool DiagnoseIdentifier = false;
6608     if (D.hasGroupingParens())
6609       // An identifier within parens is unlikely to be intended to be anything
6610       // other than a name being "declared".
6611       DiagnoseIdentifier = true;
6612     else if (D.getContext() == DeclaratorContext::TemplateArg)
6613       // T<int N> is an accidental identifier; T<int N indicates a missing '>'.
6614       DiagnoseIdentifier =
6615           NextToken().isOneOf(tok::comma, tok::greater, tok::greatergreater);
6616     else if (D.getContext() == DeclaratorContext::AliasDecl ||
6617              D.getContext() == DeclaratorContext::AliasTemplate)
6618       // The most likely error is that the ';' was forgotten.
6619       DiagnoseIdentifier = NextToken().isOneOf(tok::comma, tok::semi);
6620     else if ((D.getContext() == DeclaratorContext::TrailingReturn ||
6621               D.getContext() == DeclaratorContext::TrailingReturnVar) &&
6622              !isCXX11VirtSpecifier(Tok))
6623       DiagnoseIdentifier = NextToken().isOneOf(
6624           tok::comma, tok::semi, tok::equal, tok::l_brace, tok::kw_try);
6625     if (DiagnoseIdentifier) {
6626       Diag(Tok.getLocation(), diag::err_unexpected_unqualified_id)
6627         << FixItHint::CreateRemoval(Tok.getLocation());
6628       D.SetIdentifier(nullptr, Tok.getLocation());
6629       ConsumeToken();
6630       goto PastIdentifier;
6631     }
6632   }
6633 
6634   if (Tok.is(tok::l_paren)) {
6635     // If this might be an abstract-declarator followed by a direct-initializer,
6636     // check whether this is a valid declarator chunk. If it can't be, assume
6637     // that it's an initializer instead.
6638     if (D.mayOmitIdentifier() && D.mayBeFollowedByCXXDirectInit()) {
6639       RevertingTentativeParsingAction PA(*this);
6640       if (TryParseDeclarator(true, D.mayHaveIdentifier(), true,
6641                              D.getDeclSpec().getTypeSpecType() == TST_auto) ==
6642           TPResult::False) {
6643         D.SetIdentifier(nullptr, Tok.getLocation());
6644         goto PastIdentifier;
6645       }
6646     }
6647 
6648     // direct-declarator: '(' declarator ')'
6649     // direct-declarator: '(' attributes declarator ')'
6650     // Example: 'char (*X)'   or 'int (*XX)(void)'
6651     ParseParenDeclarator(D);
6652 
6653     // If the declarator was parenthesized, we entered the declarator
6654     // scope when parsing the parenthesized declarator, then exited
6655     // the scope already. Re-enter the scope, if we need to.
6656     if (D.getCXXScopeSpec().isSet()) {
6657       // If there was an error parsing parenthesized declarator, declarator
6658       // scope may have been entered before. Don't do it again.
6659       if (!D.isInvalidType() &&
6660           Actions.ShouldEnterDeclaratorScope(getCurScope(),
6661                                              D.getCXXScopeSpec()))
6662         // Change the declaration context for name lookup, until this function
6663         // is exited (and the declarator has been parsed).
6664         DeclScopeObj.EnterDeclaratorScope();
6665     }
6666   } else if (D.mayOmitIdentifier()) {
6667     // This could be something simple like "int" (in which case the declarator
6668     // portion is empty), if an abstract-declarator is allowed.
6669     D.SetIdentifier(nullptr, Tok.getLocation());
6670 
6671     // The grammar for abstract-pack-declarator does not allow grouping parens.
6672     // FIXME: Revisit this once core issue 1488 is resolved.
6673     if (D.hasEllipsis() && D.hasGroupingParens())
6674       Diag(PP.getLocForEndOfToken(D.getEllipsisLoc()),
6675            diag::ext_abstract_pack_declarator_parens);
6676   } else {
6677     if (Tok.getKind() == tok::annot_pragma_parser_crash)
6678       LLVM_BUILTIN_TRAP;
6679     if (Tok.is(tok::l_square))
6680       return ParseMisplacedBracketDeclarator(D);
6681     if (D.getContext() == DeclaratorContext::Member) {
6682       // Objective-C++: Detect C++ keywords and try to prevent further errors by
6683       // treating these keyword as valid member names.
6684       if (getLangOpts().ObjC && getLangOpts().CPlusPlus &&
6685           !Tok.isAnnotation() && Tok.getIdentifierInfo() &&
6686           Tok.getIdentifierInfo()->isCPlusPlusKeyword(getLangOpts())) {
6687         Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6688              diag::err_expected_member_name_or_semi_objcxx_keyword)
6689             << Tok.getIdentifierInfo()
6690             << (D.getDeclSpec().isEmpty() ? SourceRange()
6691                                           : D.getDeclSpec().getSourceRange());
6692         D.SetIdentifier(Tok.getIdentifierInfo(), Tok.getLocation());
6693         D.SetRangeEnd(Tok.getLocation());
6694         ConsumeToken();
6695         goto PastIdentifier;
6696       }
6697       Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6698            diag::err_expected_member_name_or_semi)
6699           << (D.getDeclSpec().isEmpty() ? SourceRange()
6700                                         : D.getDeclSpec().getSourceRange());
6701     } else {
6702       if (Tok.getKind() == tok::TokenKind::kw_while) {
6703         Diag(Tok, diag::err_while_loop_outside_of_a_function);
6704       } else if (getLangOpts().CPlusPlus) {
6705         if (Tok.isOneOf(tok::period, tok::arrow))
6706           Diag(Tok, diag::err_invalid_operator_on_type) << Tok.is(tok::arrow);
6707         else {
6708           SourceLocation Loc = D.getCXXScopeSpec().getEndLoc();
6709           if (Tok.isAtStartOfLine() && Loc.isValid())
6710             Diag(PP.getLocForEndOfToken(Loc), diag::err_expected_unqualified_id)
6711                 << getLangOpts().CPlusPlus;
6712           else
6713             Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6714                  diag::err_expected_unqualified_id)
6715                 << getLangOpts().CPlusPlus;
6716         }
6717       } else {
6718         Diag(getMissingDeclaratorIdLoc(D, Tok.getLocation()),
6719              diag::err_expected_either)
6720             << tok::identifier << tok::l_paren;
6721       }
6722     }
6723     D.SetIdentifier(nullptr, Tok.getLocation());
6724     D.setInvalidType(true);
6725   }
6726 
6727  PastIdentifier:
6728   assert(D.isPastIdentifier() &&
6729          "Haven't past the location of the identifier yet?");
6730 
6731   // Don't parse attributes unless we have parsed an unparenthesized name.
6732   if (D.hasName() && !D.getNumTypeObjects())
6733     MaybeParseCXX11Attributes(D);
6734 
6735   while (true) {
6736     if (Tok.is(tok::l_paren)) {
6737       bool IsFunctionDeclaration = D.isFunctionDeclaratorAFunctionDeclaration();
6738       // Enter function-declaration scope, limiting any declarators to the
6739       // function prototype scope, including parameter declarators.
6740       ParseScope PrototypeScope(this,
6741                                 Scope::FunctionPrototypeScope|Scope::DeclScope|
6742                                 (IsFunctionDeclaration
6743                                    ? Scope::FunctionDeclarationScope : 0));
6744 
6745       // The paren may be part of a C++ direct initializer, eg. "int x(1);".
6746       // In such a case, check if we actually have a function declarator; if it
6747       // is not, the declarator has been fully parsed.
6748       bool IsAmbiguous = false;
6749       if (getLangOpts().CPlusPlus && D.mayBeFollowedByCXXDirectInit()) {
6750         // C++2a [temp.res]p5
6751         // A qualified-id is assumed to name a type if
6752         //   - [...]
6753         //   - it is a decl-specifier of the decl-specifier-seq of a
6754         //     - [...]
6755         //     - parameter-declaration in a member-declaration [...]
6756         //     - parameter-declaration in a declarator of a function or function
6757         //       template declaration whose declarator-id is qualified [...]
6758         auto AllowImplicitTypename = ImplicitTypenameContext::No;
6759         if (D.getCXXScopeSpec().isSet())
6760           AllowImplicitTypename =
6761               (ImplicitTypenameContext)Actions.isDeclaratorFunctionLike(D);
6762         else if (D.getContext() == DeclaratorContext::Member) {
6763           AllowImplicitTypename = ImplicitTypenameContext::Yes;
6764         }
6765 
6766         // The name of the declarator, if any, is tentatively declared within
6767         // a possible direct initializer.
6768         TentativelyDeclaredIdentifiers.push_back(D.getIdentifier());
6769         bool IsFunctionDecl =
6770             isCXXFunctionDeclarator(&IsAmbiguous, AllowImplicitTypename);
6771         TentativelyDeclaredIdentifiers.pop_back();
6772         if (!IsFunctionDecl)
6773           break;
6774       }
6775       ParsedAttributes attrs(AttrFactory);
6776       BalancedDelimiterTracker T(*this, tok::l_paren);
6777       T.consumeOpen();
6778       if (IsFunctionDeclaration)
6779         Actions.ActOnStartFunctionDeclarationDeclarator(D,
6780                                                         TemplateParameterDepth);
6781       ParseFunctionDeclarator(D, attrs, T, IsAmbiguous);
6782       if (IsFunctionDeclaration)
6783         Actions.ActOnFinishFunctionDeclarationDeclarator(D);
6784       PrototypeScope.Exit();
6785     } else if (Tok.is(tok::l_square)) {
6786       ParseBracketDeclarator(D);
6787     } else if (Tok.isRegularKeywordAttribute()) {
6788       // For consistency with attribute parsing.
6789       Diag(Tok, diag::err_keyword_not_allowed) << Tok.getIdentifierInfo();
6790       ConsumeToken();
6791     } else if (Tok.is(tok::kw_requires) && D.hasGroupingParens()) {
6792       // This declarator is declaring a function, but the requires clause is
6793       // in the wrong place:
6794       //   void (f() requires true);
6795       // instead of
6796       //   void f() requires true;
6797       // or
6798       //   void (f()) requires true;
6799       Diag(Tok, diag::err_requires_clause_inside_parens);
6800       ConsumeToken();
6801       ExprResult TrailingRequiresClause = Actions.CorrectDelayedTyposInExpr(
6802          ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
6803       if (TrailingRequiresClause.isUsable() && D.isFunctionDeclarator() &&
6804           !D.hasTrailingRequiresClause())
6805         // We're already ill-formed if we got here but we'll accept it anyway.
6806         D.setTrailingRequiresClause(TrailingRequiresClause.get());
6807     } else {
6808       break;
6809     }
6810   }
6811 }
6812 
6813 void Parser::ParseDecompositionDeclarator(Declarator &D) {
6814   assert(Tok.is(tok::l_square));
6815 
6816   // If this doesn't look like a structured binding, maybe it's a misplaced
6817   // array declarator.
6818   // FIXME: Consume the l_square first so we don't need extra lookahead for
6819   // this.
6820   if (!(NextToken().is(tok::identifier) &&
6821         GetLookAheadToken(2).isOneOf(tok::comma, tok::r_square)) &&
6822       !(NextToken().is(tok::r_square) &&
6823         GetLookAheadToken(2).isOneOf(tok::equal, tok::l_brace)))
6824     return ParseMisplacedBracketDeclarator(D);
6825 
6826   BalancedDelimiterTracker T(*this, tok::l_square);
6827   T.consumeOpen();
6828 
6829   SmallVector<DecompositionDeclarator::Binding, 32> Bindings;
6830   while (Tok.isNot(tok::r_square)) {
6831     if (!Bindings.empty()) {
6832       if (Tok.is(tok::comma))
6833         ConsumeToken();
6834       else {
6835         if (Tok.is(tok::identifier)) {
6836           SourceLocation EndLoc = getEndOfPreviousToken();
6837           Diag(EndLoc, diag::err_expected)
6838               << tok::comma << FixItHint::CreateInsertion(EndLoc, ",");
6839         } else {
6840           Diag(Tok, diag::err_expected_comma_or_rsquare);
6841         }
6842 
6843         SkipUntil(tok::r_square, tok::comma, tok::identifier,
6844                   StopAtSemi | StopBeforeMatch);
6845         if (Tok.is(tok::comma))
6846           ConsumeToken();
6847         else if (Tok.isNot(tok::identifier))
6848           break;
6849       }
6850     }
6851 
6852     if (Tok.isNot(tok::identifier)) {
6853       Diag(Tok, diag::err_expected) << tok::identifier;
6854       break;
6855     }
6856 
6857     Bindings.push_back({Tok.getIdentifierInfo(), Tok.getLocation()});
6858     ConsumeToken();
6859   }
6860 
6861   if (Tok.isNot(tok::r_square))
6862     // We've already diagnosed a problem here.
6863     T.skipToEnd();
6864   else {
6865     // C++17 does not allow the identifier-list in a structured binding
6866     // to be empty.
6867     if (Bindings.empty())
6868       Diag(Tok.getLocation(), diag::ext_decomp_decl_empty);
6869 
6870     T.consumeClose();
6871   }
6872 
6873   return D.setDecompositionBindings(T.getOpenLocation(), Bindings,
6874                                     T.getCloseLocation());
6875 }
6876 
6877 /// ParseParenDeclarator - We parsed the declarator D up to a paren.  This is
6878 /// only called before the identifier, so these are most likely just grouping
6879 /// parens for precedence.  If we find that these are actually function
6880 /// parameter parens in an abstract-declarator, we call ParseFunctionDeclarator.
6881 ///
6882 ///       direct-declarator:
6883 ///         '(' declarator ')'
6884 /// [GNU]   '(' attributes declarator ')'
6885 ///         direct-declarator '(' parameter-type-list ')'
6886 ///         direct-declarator '(' identifier-list[opt] ')'
6887 /// [GNU]   direct-declarator '(' parameter-forward-declarations
6888 ///                    parameter-type-list[opt] ')'
6889 ///
6890 void Parser::ParseParenDeclarator(Declarator &D) {
6891   BalancedDelimiterTracker T(*this, tok::l_paren);
6892   T.consumeOpen();
6893 
6894   assert(!D.isPastIdentifier() && "Should be called before passing identifier");
6895 
6896   // Eat any attributes before we look at whether this is a grouping or function
6897   // declarator paren.  If this is a grouping paren, the attribute applies to
6898   // the type being built up, for example:
6899   //     int (__attribute__(()) *x)(long y)
6900   // If this ends up not being a grouping paren, the attribute applies to the
6901   // first argument, for example:
6902   //     int (__attribute__(()) int x)
6903   // In either case, we need to eat any attributes to be able to determine what
6904   // sort of paren this is.
6905   //
6906   ParsedAttributes attrs(AttrFactory);
6907   bool RequiresArg = false;
6908   if (Tok.is(tok::kw___attribute)) {
6909     ParseGNUAttributes(attrs);
6910 
6911     // We require that the argument list (if this is a non-grouping paren) be
6912     // present even if the attribute list was empty.
6913     RequiresArg = true;
6914   }
6915 
6916   // Eat any Microsoft extensions.
6917   ParseMicrosoftTypeAttributes(attrs);
6918 
6919   // Eat any Borland extensions.
6920   if  (Tok.is(tok::kw___pascal))
6921     ParseBorlandTypeAttributes(attrs);
6922 
6923   // If we haven't past the identifier yet (or where the identifier would be
6924   // stored, if this is an abstract declarator), then this is probably just
6925   // grouping parens. However, if this could be an abstract-declarator, then
6926   // this could also be the start of function arguments (consider 'void()').
6927   bool isGrouping;
6928 
6929   if (!D.mayOmitIdentifier()) {
6930     // If this can't be an abstract-declarator, this *must* be a grouping
6931     // paren, because we haven't seen the identifier yet.
6932     isGrouping = true;
6933   } else if (Tok.is(tok::r_paren) || // 'int()' is a function.
6934              (getLangOpts().CPlusPlus && Tok.is(tok::ellipsis) &&
6935               NextToken().is(tok::r_paren)) || // C++ int(...)
6936              isDeclarationSpecifier(
6937                  ImplicitTypenameContext::No) || // 'int(int)' is a function.
6938              isCXX11AttributeSpecifier()) { // 'int([[]]int)' is a function.
6939     // This handles C99 6.7.5.3p11: in "typedef int X; void foo(X)", X is
6940     // considered to be a type, not a K&R identifier-list.
6941     isGrouping = false;
6942   } else {
6943     // Otherwise, this is a grouping paren, e.g. 'int (*X)' or 'int(X)'.
6944     isGrouping = true;
6945   }
6946 
6947   // If this is a grouping paren, handle:
6948   // direct-declarator: '(' declarator ')'
6949   // direct-declarator: '(' attributes declarator ')'
6950   if (isGrouping) {
6951     SourceLocation EllipsisLoc = D.getEllipsisLoc();
6952     D.setEllipsisLoc(SourceLocation());
6953 
6954     bool hadGroupingParens = D.hasGroupingParens();
6955     D.setGroupingParens(true);
6956     ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
6957     // Match the ')'.
6958     T.consumeClose();
6959     D.AddTypeInfo(
6960         DeclaratorChunk::getParen(T.getOpenLocation(), T.getCloseLocation()),
6961         std::move(attrs), T.getCloseLocation());
6962 
6963     D.setGroupingParens(hadGroupingParens);
6964 
6965     // An ellipsis cannot be placed outside parentheses.
6966     if (EllipsisLoc.isValid())
6967       DiagnoseMisplacedEllipsisInDeclarator(EllipsisLoc, D);
6968 
6969     return;
6970   }
6971 
6972   // Okay, if this wasn't a grouping paren, it must be the start of a function
6973   // argument list.  Recognize that this declarator will never have an
6974   // identifier (and remember where it would have been), then call into
6975   // ParseFunctionDeclarator to handle of argument list.
6976   D.SetIdentifier(nullptr, Tok.getLocation());
6977 
6978   // Enter function-declaration scope, limiting any declarators to the
6979   // function prototype scope, including parameter declarators.
6980   ParseScope PrototypeScope(this,
6981                             Scope::FunctionPrototypeScope | Scope::DeclScope |
6982                             (D.isFunctionDeclaratorAFunctionDeclaration()
6983                                ? Scope::FunctionDeclarationScope : 0));
6984   ParseFunctionDeclarator(D, attrs, T, false, RequiresArg);
6985   PrototypeScope.Exit();
6986 }
6987 
6988 void Parser::InitCXXThisScopeForDeclaratorIfRelevant(
6989     const Declarator &D, const DeclSpec &DS,
6990     std::optional<Sema::CXXThisScopeRAII> &ThisScope) {
6991   // C++11 [expr.prim.general]p3:
6992   //   If a declaration declares a member function or member function
6993   //   template of a class X, the expression this is a prvalue of type
6994   //   "pointer to cv-qualifier-seq X" between the optional cv-qualifer-seq
6995   //   and the end of the function-definition, member-declarator, or
6996   //   declarator.
6997   // FIXME: currently, "static" case isn't handled correctly.
6998   bool IsCXX11MemberFunction =
6999       getLangOpts().CPlusPlus11 &&
7000       D.getDeclSpec().getStorageClassSpec() != DeclSpec::SCS_typedef &&
7001       (D.getContext() == DeclaratorContext::Member
7002            ? !D.getDeclSpec().isFriendSpecified()
7003            : D.getContext() == DeclaratorContext::File &&
7004                  D.getCXXScopeSpec().isValid() &&
7005                  Actions.CurContext->isRecord());
7006   if (!IsCXX11MemberFunction)
7007     return;
7008 
7009   Qualifiers Q = Qualifiers::fromCVRUMask(DS.getTypeQualifiers());
7010   if (D.getDeclSpec().hasConstexprSpecifier() && !getLangOpts().CPlusPlus14)
7011     Q.addConst();
7012   // FIXME: Collect C++ address spaces.
7013   // If there are multiple different address spaces, the source is invalid.
7014   // Carry on using the first addr space for the qualifiers of 'this'.
7015   // The diagnostic will be given later while creating the function
7016   // prototype for the method.
7017   if (getLangOpts().OpenCLCPlusPlus) {
7018     for (ParsedAttr &attr : DS.getAttributes()) {
7019       LangAS ASIdx = attr.asOpenCLLangAS();
7020       if (ASIdx != LangAS::Default) {
7021         Q.addAddressSpace(ASIdx);
7022         break;
7023       }
7024     }
7025   }
7026   ThisScope.emplace(Actions, dyn_cast<CXXRecordDecl>(Actions.CurContext), Q,
7027                     IsCXX11MemberFunction);
7028 }
7029 
7030 /// ParseFunctionDeclarator - We are after the identifier and have parsed the
7031 /// declarator D up to a paren, which indicates that we are parsing function
7032 /// arguments.
7033 ///
7034 /// If FirstArgAttrs is non-null, then the caller parsed those attributes
7035 /// immediately after the open paren - they will be applied to the DeclSpec
7036 /// of the first parameter.
7037 ///
7038 /// If RequiresArg is true, then the first argument of the function is required
7039 /// to be present and required to not be an identifier list.
7040 ///
7041 /// For C++, after the parameter-list, it also parses the cv-qualifier-seq[opt],
7042 /// (C++11) ref-qualifier[opt], exception-specification[opt],
7043 /// (C++11) attribute-specifier-seq[opt], (C++11) trailing-return-type[opt] and
7044 /// (C++2a) the trailing requires-clause.
7045 ///
7046 /// [C++11] exception-specification:
7047 ///           dynamic-exception-specification
7048 ///           noexcept-specification
7049 ///
7050 void Parser::ParseFunctionDeclarator(Declarator &D,
7051                                      ParsedAttributes &FirstArgAttrs,
7052                                      BalancedDelimiterTracker &Tracker,
7053                                      bool IsAmbiguous,
7054                                      bool RequiresArg) {
7055   assert(getCurScope()->isFunctionPrototypeScope() &&
7056          "Should call from a Function scope");
7057   // lparen is already consumed!
7058   assert(D.isPastIdentifier() && "Should not call before identifier!");
7059 
7060   // This should be true when the function has typed arguments.
7061   // Otherwise, it is treated as a K&R-style function.
7062   bool HasProto = false;
7063   // Build up an array of information about the parsed arguments.
7064   SmallVector<DeclaratorChunk::ParamInfo, 16> ParamInfo;
7065   // Remember where we see an ellipsis, if any.
7066   SourceLocation EllipsisLoc;
7067 
7068   DeclSpec DS(AttrFactory);
7069   bool RefQualifierIsLValueRef = true;
7070   SourceLocation RefQualifierLoc;
7071   ExceptionSpecificationType ESpecType = EST_None;
7072   SourceRange ESpecRange;
7073   SmallVector<ParsedType, 2> DynamicExceptions;
7074   SmallVector<SourceRange, 2> DynamicExceptionRanges;
7075   ExprResult NoexceptExpr;
7076   CachedTokens *ExceptionSpecTokens = nullptr;
7077   ParsedAttributes FnAttrs(AttrFactory);
7078   TypeResult TrailingReturnType;
7079   SourceLocation TrailingReturnTypeLoc;
7080 
7081   /* LocalEndLoc is the end location for the local FunctionTypeLoc.
7082      EndLoc is the end location for the function declarator.
7083      They differ for trailing return types. */
7084   SourceLocation StartLoc, LocalEndLoc, EndLoc;
7085   SourceLocation LParenLoc, RParenLoc;
7086   LParenLoc = Tracker.getOpenLocation();
7087   StartLoc = LParenLoc;
7088 
7089   if (isFunctionDeclaratorIdentifierList()) {
7090     if (RequiresArg)
7091       Diag(Tok, diag::err_argument_required_after_attribute);
7092 
7093     ParseFunctionDeclaratorIdentifierList(D, ParamInfo);
7094 
7095     Tracker.consumeClose();
7096     RParenLoc = Tracker.getCloseLocation();
7097     LocalEndLoc = RParenLoc;
7098     EndLoc = RParenLoc;
7099 
7100     // If there are attributes following the identifier list, parse them and
7101     // prohibit them.
7102     MaybeParseCXX11Attributes(FnAttrs);
7103     ProhibitAttributes(FnAttrs);
7104   } else {
7105     if (Tok.isNot(tok::r_paren))
7106       ParseParameterDeclarationClause(D, FirstArgAttrs, ParamInfo, EllipsisLoc);
7107     else if (RequiresArg)
7108       Diag(Tok, diag::err_argument_required_after_attribute);
7109 
7110     // OpenCL disallows functions without a prototype, but it doesn't enforce
7111     // strict prototypes as in C23 because it allows a function definition to
7112     // have an identifier list. See OpenCL 3.0 6.11/g for more details.
7113     HasProto = ParamInfo.size() || getLangOpts().requiresStrictPrototypes() ||
7114                getLangOpts().OpenCL;
7115 
7116     // If we have the closing ')', eat it.
7117     Tracker.consumeClose();
7118     RParenLoc = Tracker.getCloseLocation();
7119     LocalEndLoc = RParenLoc;
7120     EndLoc = RParenLoc;
7121 
7122     if (getLangOpts().CPlusPlus) {
7123       // FIXME: Accept these components in any order, and produce fixits to
7124       // correct the order if the user gets it wrong. Ideally we should deal
7125       // with the pure-specifier in the same way.
7126 
7127       // Parse cv-qualifier-seq[opt].
7128       ParseTypeQualifierListOpt(DS, AR_NoAttributesParsed,
7129                                 /*AtomicAllowed*/ false,
7130                                 /*IdentifierRequired=*/false,
7131                                 llvm::function_ref<void()>([&]() {
7132                                   Actions.CodeCompleteFunctionQualifiers(DS, D);
7133                                 }));
7134       if (!DS.getSourceRange().getEnd().isInvalid()) {
7135         EndLoc = DS.getSourceRange().getEnd();
7136       }
7137 
7138       // Parse ref-qualifier[opt].
7139       if (ParseRefQualifier(RefQualifierIsLValueRef, RefQualifierLoc))
7140         EndLoc = RefQualifierLoc;
7141 
7142       std::optional<Sema::CXXThisScopeRAII> ThisScope;
7143       InitCXXThisScopeForDeclaratorIfRelevant(D, DS, ThisScope);
7144 
7145       // Parse exception-specification[opt].
7146       // FIXME: Per [class.mem]p6, all exception-specifications at class scope
7147       // should be delayed, including those for non-members (eg, friend
7148       // declarations). But only applying this to member declarations is
7149       // consistent with what other implementations do.
7150       bool Delayed = D.isFirstDeclarationOfMember() &&
7151                      D.isFunctionDeclaratorAFunctionDeclaration();
7152       if (Delayed && Actions.isLibstdcxxEagerExceptionSpecHack(D) &&
7153           GetLookAheadToken(0).is(tok::kw_noexcept) &&
7154           GetLookAheadToken(1).is(tok::l_paren) &&
7155           GetLookAheadToken(2).is(tok::kw_noexcept) &&
7156           GetLookAheadToken(3).is(tok::l_paren) &&
7157           GetLookAheadToken(4).is(tok::identifier) &&
7158           GetLookAheadToken(4).getIdentifierInfo()->isStr("swap")) {
7159         // HACK: We've got an exception-specification
7160         //   noexcept(noexcept(swap(...)))
7161         // or
7162         //   noexcept(noexcept(swap(...)) && noexcept(swap(...)))
7163         // on a 'swap' member function. This is a libstdc++ bug; the lookup
7164         // for 'swap' will only find the function we're currently declaring,
7165         // whereas it expects to find a non-member swap through ADL. Turn off
7166         // delayed parsing to give it a chance to find what it expects.
7167         Delayed = false;
7168       }
7169       ESpecType = tryParseExceptionSpecification(Delayed,
7170                                                  ESpecRange,
7171                                                  DynamicExceptions,
7172                                                  DynamicExceptionRanges,
7173                                                  NoexceptExpr,
7174                                                  ExceptionSpecTokens);
7175       if (ESpecType != EST_None)
7176         EndLoc = ESpecRange.getEnd();
7177 
7178       // Parse attribute-specifier-seq[opt]. Per DR 979 and DR 1297, this goes
7179       // after the exception-specification.
7180       MaybeParseCXX11Attributes(FnAttrs);
7181 
7182       // Parse trailing-return-type[opt].
7183       LocalEndLoc = EndLoc;
7184       if (getLangOpts().CPlusPlus11 && Tok.is(tok::arrow)) {
7185         Diag(Tok, diag::warn_cxx98_compat_trailing_return_type);
7186         if (D.getDeclSpec().getTypeSpecType() == TST_auto)
7187           StartLoc = D.getDeclSpec().getTypeSpecTypeLoc();
7188         LocalEndLoc = Tok.getLocation();
7189         SourceRange Range;
7190         TrailingReturnType =
7191             ParseTrailingReturnType(Range, D.mayBeFollowedByCXXDirectInit());
7192         TrailingReturnTypeLoc = Range.getBegin();
7193         EndLoc = Range.getEnd();
7194       }
7195     } else {
7196       MaybeParseCXX11Attributes(FnAttrs);
7197     }
7198   }
7199 
7200   // Collect non-parameter declarations from the prototype if this is a function
7201   // declaration. They will be moved into the scope of the function. Only do
7202   // this in C and not C++, where the decls will continue to live in the
7203   // surrounding context.
7204   SmallVector<NamedDecl *, 0> DeclsInPrototype;
7205   if (getCurScope()->isFunctionDeclarationScope() && !getLangOpts().CPlusPlus) {
7206     for (Decl *D : getCurScope()->decls()) {
7207       NamedDecl *ND = dyn_cast<NamedDecl>(D);
7208       if (!ND || isa<ParmVarDecl>(ND))
7209         continue;
7210       DeclsInPrototype.push_back(ND);
7211     }
7212     // Sort DeclsInPrototype based on raw encoding of the source location.
7213     // Scope::decls() is iterating over a SmallPtrSet so sort the Decls before
7214     // moving to DeclContext. This provides a stable ordering for traversing
7215     // Decls in DeclContext, which is important for tasks like ASTWriter for
7216     // deterministic output.
7217     llvm::sort(DeclsInPrototype, [](Decl *D1, Decl *D2) {
7218       return D1->getLocation().getRawEncoding() <
7219              D2->getLocation().getRawEncoding();
7220     });
7221   }
7222 
7223   // Remember that we parsed a function type, and remember the attributes.
7224   D.AddTypeInfo(DeclaratorChunk::getFunction(
7225                     HasProto, IsAmbiguous, LParenLoc, ParamInfo.data(),
7226                     ParamInfo.size(), EllipsisLoc, RParenLoc,
7227                     RefQualifierIsLValueRef, RefQualifierLoc,
7228                     /*MutableLoc=*/SourceLocation(),
7229                     ESpecType, ESpecRange, DynamicExceptions.data(),
7230                     DynamicExceptionRanges.data(), DynamicExceptions.size(),
7231                     NoexceptExpr.isUsable() ? NoexceptExpr.get() : nullptr,
7232                     ExceptionSpecTokens, DeclsInPrototype, StartLoc,
7233                     LocalEndLoc, D, TrailingReturnType, TrailingReturnTypeLoc,
7234                     &DS),
7235                 std::move(FnAttrs), EndLoc);
7236 }
7237 
7238 /// ParseRefQualifier - Parses a member function ref-qualifier. Returns
7239 /// true if a ref-qualifier is found.
7240 bool Parser::ParseRefQualifier(bool &RefQualifierIsLValueRef,
7241                                SourceLocation &RefQualifierLoc) {
7242   if (Tok.isOneOf(tok::amp, tok::ampamp)) {
7243     Diag(Tok, getLangOpts().CPlusPlus11 ?
7244          diag::warn_cxx98_compat_ref_qualifier :
7245          diag::ext_ref_qualifier);
7246 
7247     RefQualifierIsLValueRef = Tok.is(tok::amp);
7248     RefQualifierLoc = ConsumeToken();
7249     return true;
7250   }
7251   return false;
7252 }
7253 
7254 /// isFunctionDeclaratorIdentifierList - This parameter list may have an
7255 /// identifier list form for a K&R-style function:  void foo(a,b,c)
7256 ///
7257 /// Note that identifier-lists are only allowed for normal declarators, not for
7258 /// abstract-declarators.
7259 bool Parser::isFunctionDeclaratorIdentifierList() {
7260   return !getLangOpts().requiresStrictPrototypes()
7261          && Tok.is(tok::identifier)
7262          && !TryAltiVecVectorToken()
7263          // K&R identifier lists can't have typedefs as identifiers, per C99
7264          // 6.7.5.3p11.
7265          && (TryAnnotateTypeOrScopeToken() || !Tok.is(tok::annot_typename))
7266          // Identifier lists follow a really simple grammar: the identifiers can
7267          // be followed *only* by a ", identifier" or ")".  However, K&R
7268          // identifier lists are really rare in the brave new modern world, and
7269          // it is very common for someone to typo a type in a non-K&R style
7270          // list.  If we are presented with something like: "void foo(intptr x,
7271          // float y)", we don't want to start parsing the function declarator as
7272          // though it is a K&R style declarator just because intptr is an
7273          // invalid type.
7274          //
7275          // To handle this, we check to see if the token after the first
7276          // identifier is a "," or ")".  Only then do we parse it as an
7277          // identifier list.
7278          && (!Tok.is(tok::eof) &&
7279              (NextToken().is(tok::comma) || NextToken().is(tok::r_paren)));
7280 }
7281 
7282 /// ParseFunctionDeclaratorIdentifierList - While parsing a function declarator
7283 /// we found a K&R-style identifier list instead of a typed parameter list.
7284 ///
7285 /// After returning, ParamInfo will hold the parsed parameters.
7286 ///
7287 ///       identifier-list: [C99 6.7.5]
7288 ///         identifier
7289 ///         identifier-list ',' identifier
7290 ///
7291 void Parser::ParseFunctionDeclaratorIdentifierList(
7292        Declarator &D,
7293        SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo) {
7294   // We should never reach this point in C23 or C++.
7295   assert(!getLangOpts().requiresStrictPrototypes() &&
7296          "Cannot parse an identifier list in C23 or C++");
7297 
7298   // If there was no identifier specified for the declarator, either we are in
7299   // an abstract-declarator, or we are in a parameter declarator which was found
7300   // to be abstract.  In abstract-declarators, identifier lists are not valid:
7301   // diagnose this.
7302   if (!D.getIdentifier())
7303     Diag(Tok, diag::ext_ident_list_in_param);
7304 
7305   // Maintain an efficient lookup of params we have seen so far.
7306   llvm::SmallSet<const IdentifierInfo*, 16> ParamsSoFar;
7307 
7308   do {
7309     // If this isn't an identifier, report the error and skip until ')'.
7310     if (Tok.isNot(tok::identifier)) {
7311       Diag(Tok, diag::err_expected) << tok::identifier;
7312       SkipUntil(tok::r_paren, StopAtSemi | StopBeforeMatch);
7313       // Forget we parsed anything.
7314       ParamInfo.clear();
7315       return;
7316     }
7317 
7318     IdentifierInfo *ParmII = Tok.getIdentifierInfo();
7319 
7320     // Reject 'typedef int y; int test(x, y)', but continue parsing.
7321     if (Actions.getTypeName(*ParmII, Tok.getLocation(), getCurScope()))
7322       Diag(Tok, diag::err_unexpected_typedef_ident) << ParmII;
7323 
7324     // Verify that the argument identifier has not already been mentioned.
7325     if (!ParamsSoFar.insert(ParmII).second) {
7326       Diag(Tok, diag::err_param_redefinition) << ParmII;
7327     } else {
7328       // Remember this identifier in ParamInfo.
7329       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
7330                                                      Tok.getLocation(),
7331                                                      nullptr));
7332     }
7333 
7334     // Eat the identifier.
7335     ConsumeToken();
7336     // The list continues if we see a comma.
7337   } while (TryConsumeToken(tok::comma));
7338 }
7339 
7340 /// ParseParameterDeclarationClause - Parse a (possibly empty) parameter-list
7341 /// after the opening parenthesis. This function will not parse a K&R-style
7342 /// identifier list.
7343 ///
7344 /// DeclContext is the context of the declarator being parsed.  If FirstArgAttrs
7345 /// is non-null, then the caller parsed those attributes immediately after the
7346 /// open paren - they will be applied to the DeclSpec of the first parameter.
7347 ///
7348 /// After returning, ParamInfo will hold the parsed parameters. EllipsisLoc will
7349 /// be the location of the ellipsis, if any was parsed.
7350 ///
7351 ///       parameter-type-list: [C99 6.7.5]
7352 ///         parameter-list
7353 ///         parameter-list ',' '...'
7354 /// [C++]   parameter-list '...'
7355 ///
7356 ///       parameter-list: [C99 6.7.5]
7357 ///         parameter-declaration
7358 ///         parameter-list ',' parameter-declaration
7359 ///
7360 ///       parameter-declaration: [C99 6.7.5]
7361 ///         declaration-specifiers declarator
7362 /// [C++]   declaration-specifiers declarator '=' assignment-expression
7363 /// [C++11]                                       initializer-clause
7364 /// [GNU]   declaration-specifiers declarator attributes
7365 ///         declaration-specifiers abstract-declarator[opt]
7366 /// [C++]   declaration-specifiers abstract-declarator[opt]
7367 ///           '=' assignment-expression
7368 /// [GNU]   declaration-specifiers abstract-declarator[opt] attributes
7369 /// [C++11] attribute-specifier-seq parameter-declaration
7370 /// [C++2b] attribute-specifier-seq 'this' parameter-declaration
7371 ///
7372 void Parser::ParseParameterDeclarationClause(
7373     DeclaratorContext DeclaratorCtx, ParsedAttributes &FirstArgAttrs,
7374     SmallVectorImpl<DeclaratorChunk::ParamInfo> &ParamInfo,
7375     SourceLocation &EllipsisLoc, bool IsACXXFunctionDeclaration) {
7376 
7377   // Avoid exceeding the maximum function scope depth.
7378   // See https://bugs.llvm.org/show_bug.cgi?id=19607
7379   // Note Sema::ActOnParamDeclarator calls ParmVarDecl::setScopeInfo with
7380   // getFunctionPrototypeDepth() - 1.
7381   if (getCurScope()->getFunctionPrototypeDepth() - 1 >
7382       ParmVarDecl::getMaxFunctionScopeDepth()) {
7383     Diag(Tok.getLocation(), diag::err_function_scope_depth_exceeded)
7384         << ParmVarDecl::getMaxFunctionScopeDepth();
7385     cutOffParsing();
7386     return;
7387   }
7388 
7389   // C++2a [temp.res]p5
7390   // A qualified-id is assumed to name a type if
7391   //   - [...]
7392   //   - it is a decl-specifier of the decl-specifier-seq of a
7393   //     - [...]
7394   //     - parameter-declaration in a member-declaration [...]
7395   //     - parameter-declaration in a declarator of a function or function
7396   //       template declaration whose declarator-id is qualified [...]
7397   //     - parameter-declaration in a lambda-declarator [...]
7398   auto AllowImplicitTypename = ImplicitTypenameContext::No;
7399   if (DeclaratorCtx == DeclaratorContext::Member ||
7400       DeclaratorCtx == DeclaratorContext::LambdaExpr ||
7401       DeclaratorCtx == DeclaratorContext::RequiresExpr ||
7402       IsACXXFunctionDeclaration) {
7403     AllowImplicitTypename = ImplicitTypenameContext::Yes;
7404   }
7405 
7406   do {
7407     // FIXME: Issue a diagnostic if we parsed an attribute-specifier-seq
7408     // before deciding this was a parameter-declaration-clause.
7409     if (TryConsumeToken(tok::ellipsis, EllipsisLoc))
7410       break;
7411 
7412     // Parse the declaration-specifiers.
7413     // Just use the ParsingDeclaration "scope" of the declarator.
7414     DeclSpec DS(AttrFactory);
7415 
7416     ParsedAttributes ArgDeclAttrs(AttrFactory);
7417     ParsedAttributes ArgDeclSpecAttrs(AttrFactory);
7418 
7419     if (FirstArgAttrs.Range.isValid()) {
7420       // If the caller parsed attributes for the first argument, add them now.
7421       // Take them so that we only apply the attributes to the first parameter.
7422       // We have already started parsing the decl-specifier sequence, so don't
7423       // parse any parameter-declaration pieces that precede it.
7424       ArgDeclSpecAttrs.takeAllFrom(FirstArgAttrs);
7425     } else {
7426       // Parse any C++11 attributes.
7427       MaybeParseCXX11Attributes(ArgDeclAttrs);
7428 
7429       // Skip any Microsoft attributes before a param.
7430       MaybeParseMicrosoftAttributes(ArgDeclSpecAttrs);
7431     }
7432 
7433     SourceLocation DSStart = Tok.getLocation();
7434 
7435     // Parse a C++23 Explicit Object Parameter
7436     // We do that in all language modes to produce a better diagnostic.
7437     SourceLocation ThisLoc;
7438     if (getLangOpts().CPlusPlus && Tok.is(tok::kw_this))
7439       ThisLoc = ConsumeToken();
7440 
7441     ParseDeclarationSpecifiers(DS, /*TemplateInfo=*/ParsedTemplateInfo(),
7442                                AS_none, DeclSpecContext::DSC_normal,
7443                                /*LateAttrs=*/nullptr, AllowImplicitTypename);
7444 
7445     DS.takeAttributesFrom(ArgDeclSpecAttrs);
7446 
7447     // Parse the declarator.  This is "PrototypeContext" or
7448     // "LambdaExprParameterContext", because we must accept either
7449     // 'declarator' or 'abstract-declarator' here.
7450     Declarator ParmDeclarator(DS, ArgDeclAttrs,
7451                               DeclaratorCtx == DeclaratorContext::RequiresExpr
7452                                   ? DeclaratorContext::RequiresExpr
7453                               : DeclaratorCtx == DeclaratorContext::LambdaExpr
7454                                   ? DeclaratorContext::LambdaExprParameter
7455                                   : DeclaratorContext::Prototype);
7456     ParseDeclarator(ParmDeclarator);
7457 
7458     if (ThisLoc.isValid())
7459       ParmDeclarator.SetRangeBegin(ThisLoc);
7460 
7461     // Parse GNU attributes, if present.
7462     MaybeParseGNUAttributes(ParmDeclarator);
7463     if (getLangOpts().HLSL)
7464       MaybeParseHLSLSemantics(DS.getAttributes());
7465 
7466     if (Tok.is(tok::kw_requires)) {
7467       // User tried to define a requires clause in a parameter declaration,
7468       // which is surely not a function declaration.
7469       // void f(int (*g)(int, int) requires true);
7470       Diag(Tok,
7471            diag::err_requires_clause_on_declarator_not_declaring_a_function);
7472       ConsumeToken();
7473       Actions.CorrectDelayedTyposInExpr(
7474          ParseConstraintLogicalOrExpression(/*IsTrailingRequiresClause=*/true));
7475     }
7476 
7477     // Remember this parsed parameter in ParamInfo.
7478     IdentifierInfo *ParmII = ParmDeclarator.getIdentifier();
7479 
7480     // DefArgToks is used when the parsing of default arguments needs
7481     // to be delayed.
7482     std::unique_ptr<CachedTokens> DefArgToks;
7483 
7484     // If no parameter was specified, verify that *something* was specified,
7485     // otherwise we have a missing type and identifier.
7486     if (DS.isEmpty() && ParmDeclarator.getIdentifier() == nullptr &&
7487         ParmDeclarator.getNumTypeObjects() == 0) {
7488       // Completely missing, emit error.
7489       Diag(DSStart, diag::err_missing_param);
7490     } else {
7491       // Otherwise, we have something.  Add it and let semantic analysis try
7492       // to grok it and add the result to the ParamInfo we are building.
7493 
7494       // Last chance to recover from a misplaced ellipsis in an attempted
7495       // parameter pack declaration.
7496       if (Tok.is(tok::ellipsis) &&
7497           (NextToken().isNot(tok::r_paren) ||
7498            (!ParmDeclarator.getEllipsisLoc().isValid() &&
7499             !Actions.isUnexpandedParameterPackPermitted())) &&
7500           Actions.containsUnexpandedParameterPacks(ParmDeclarator))
7501         DiagnoseMisplacedEllipsisInDeclarator(ConsumeToken(), ParmDeclarator);
7502 
7503       // Now we are at the point where declarator parsing is finished.
7504       //
7505       // Try to catch keywords in place of the identifier in a declarator, and
7506       // in particular the common case where:
7507       //   1 identifier comes at the end of the declarator
7508       //   2 if the identifier is dropped, the declarator is valid but anonymous
7509       //     (no identifier)
7510       //   3 declarator parsing succeeds, and then we have a trailing keyword,
7511       //     which is never valid in a param list (e.g. missing a ',')
7512       // And we can't handle this in ParseDeclarator because in general keywords
7513       // may be allowed to follow the declarator. (And in some cases there'd be
7514       // better recovery like inserting punctuation). ParseDeclarator is just
7515       // treating this as an anonymous parameter, and fortunately at this point
7516       // we've already almost done that.
7517       //
7518       // We care about case 1) where the declarator type should be known, and
7519       // the identifier should be null.
7520       if (!ParmDeclarator.isInvalidType() && !ParmDeclarator.hasName() &&
7521           Tok.isNot(tok::raw_identifier) && !Tok.isAnnotation() &&
7522           Tok.getIdentifierInfo() &&
7523           Tok.getIdentifierInfo()->isKeyword(getLangOpts())) {
7524         Diag(Tok, diag::err_keyword_as_parameter) << PP.getSpelling(Tok);
7525         // Consume the keyword.
7526         ConsumeToken();
7527       }
7528       // Inform the actions module about the parameter declarator, so it gets
7529       // added to the current scope.
7530       Decl *Param =
7531           Actions.ActOnParamDeclarator(getCurScope(), ParmDeclarator, ThisLoc);
7532       // Parse the default argument, if any. We parse the default
7533       // arguments in all dialects; the semantic analysis in
7534       // ActOnParamDefaultArgument will reject the default argument in
7535       // C.
7536       if (Tok.is(tok::equal)) {
7537         SourceLocation EqualLoc = Tok.getLocation();
7538 
7539         // Parse the default argument
7540         if (DeclaratorCtx == DeclaratorContext::Member) {
7541           // If we're inside a class definition, cache the tokens
7542           // corresponding to the default argument. We'll actually parse
7543           // them when we see the end of the class definition.
7544           DefArgToks.reset(new CachedTokens);
7545 
7546           SourceLocation ArgStartLoc = NextToken().getLocation();
7547           ConsumeAndStoreInitializer(*DefArgToks, CIK_DefaultArgument);
7548           Actions.ActOnParamUnparsedDefaultArgument(Param, EqualLoc,
7549                                                     ArgStartLoc);
7550         } else {
7551           // Consume the '='.
7552           ConsumeToken();
7553 
7554           // The argument isn't actually potentially evaluated unless it is
7555           // used.
7556           EnterExpressionEvaluationContext Eval(
7557               Actions,
7558               Sema::ExpressionEvaluationContext::PotentiallyEvaluatedIfUsed,
7559               Param);
7560 
7561           ExprResult DefArgResult;
7562           if (getLangOpts().CPlusPlus11 && Tok.is(tok::l_brace)) {
7563             Diag(Tok, diag::warn_cxx98_compat_generalized_initializer_lists);
7564             DefArgResult = ParseBraceInitializer();
7565           } else {
7566             if (Tok.is(tok::l_paren) && NextToken().is(tok::l_brace)) {
7567               Diag(Tok, diag::err_stmt_expr_in_default_arg) << 0;
7568               Actions.ActOnParamDefaultArgumentError(Param, EqualLoc,
7569                                                      /*DefaultArg=*/nullptr);
7570               // Skip the statement expression and continue parsing
7571               SkipUntil(tok::comma, StopBeforeMatch);
7572               continue;
7573             }
7574             DefArgResult = ParseAssignmentExpression();
7575           }
7576           DefArgResult = Actions.CorrectDelayedTyposInExpr(DefArgResult);
7577           if (DefArgResult.isInvalid()) {
7578             Actions.ActOnParamDefaultArgumentError(Param, EqualLoc,
7579                                                    /*DefaultArg=*/nullptr);
7580             SkipUntil(tok::comma, tok::r_paren, StopAtSemi | StopBeforeMatch);
7581           } else {
7582             // Inform the actions module about the default argument
7583             Actions.ActOnParamDefaultArgument(Param, EqualLoc,
7584                                               DefArgResult.get());
7585           }
7586         }
7587       }
7588 
7589       ParamInfo.push_back(DeclaratorChunk::ParamInfo(ParmII,
7590                                           ParmDeclarator.getIdentifierLoc(),
7591                                           Param, std::move(DefArgToks)));
7592     }
7593 
7594     if (TryConsumeToken(tok::ellipsis, EllipsisLoc)) {
7595       if (!getLangOpts().CPlusPlus) {
7596         // We have ellipsis without a preceding ',', which is ill-formed
7597         // in C. Complain and provide the fix.
7598         Diag(EllipsisLoc, diag::err_missing_comma_before_ellipsis)
7599             << FixItHint::CreateInsertion(EllipsisLoc, ", ");
7600       } else if (ParmDeclarator.getEllipsisLoc().isValid() ||
7601                  Actions.containsUnexpandedParameterPacks(ParmDeclarator)) {
7602         // It looks like this was supposed to be a parameter pack. Warn and
7603         // point out where the ellipsis should have gone.
7604         SourceLocation ParmEllipsis = ParmDeclarator.getEllipsisLoc();
7605         Diag(EllipsisLoc, diag::warn_misplaced_ellipsis_vararg)
7606           << ParmEllipsis.isValid() << ParmEllipsis;
7607         if (ParmEllipsis.isValid()) {
7608           Diag(ParmEllipsis,
7609                diag::note_misplaced_ellipsis_vararg_existing_ellipsis);
7610         } else {
7611           Diag(ParmDeclarator.getIdentifierLoc(),
7612                diag::note_misplaced_ellipsis_vararg_add_ellipsis)
7613             << FixItHint::CreateInsertion(ParmDeclarator.getIdentifierLoc(),
7614                                           "...")
7615             << !ParmDeclarator.hasName();
7616         }
7617         Diag(EllipsisLoc, diag::note_misplaced_ellipsis_vararg_add_comma)
7618           << FixItHint::CreateInsertion(EllipsisLoc, ", ");
7619       }
7620 
7621       // We can't have any more parameters after an ellipsis.
7622       break;
7623     }
7624 
7625     // If the next token is a comma, consume it and keep reading arguments.
7626   } while (TryConsumeToken(tok::comma));
7627 }
7628 
7629 /// [C90]   direct-declarator '[' constant-expression[opt] ']'
7630 /// [C99]   direct-declarator '[' type-qual-list[opt] assignment-expr[opt] ']'
7631 /// [C99]   direct-declarator '[' 'static' type-qual-list[opt] assign-expr ']'
7632 /// [C99]   direct-declarator '[' type-qual-list 'static' assignment-expr ']'
7633 /// [C99]   direct-declarator '[' type-qual-list[opt] '*' ']'
7634 /// [C++11] direct-declarator '[' constant-expression[opt] ']'
7635 ///                           attribute-specifier-seq[opt]
7636 void Parser::ParseBracketDeclarator(Declarator &D) {
7637   if (CheckProhibitedCXX11Attribute())
7638     return;
7639 
7640   BalancedDelimiterTracker T(*this, tok::l_square);
7641   T.consumeOpen();
7642 
7643   // C array syntax has many features, but by-far the most common is [] and [4].
7644   // This code does a fast path to handle some of the most obvious cases.
7645   if (Tok.getKind() == tok::r_square) {
7646     T.consumeClose();
7647     ParsedAttributes attrs(AttrFactory);
7648     MaybeParseCXX11Attributes(attrs);
7649 
7650     // Remember that we parsed the empty array type.
7651     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, nullptr,
7652                                             T.getOpenLocation(),
7653                                             T.getCloseLocation()),
7654                   std::move(attrs), T.getCloseLocation());
7655     return;
7656   } else if (Tok.getKind() == tok::numeric_constant &&
7657              GetLookAheadToken(1).is(tok::r_square)) {
7658     // [4] is very common.  Parse the numeric constant expression.
7659     ExprResult ExprRes(Actions.ActOnNumericConstant(Tok, getCurScope()));
7660     ConsumeToken();
7661 
7662     T.consumeClose();
7663     ParsedAttributes attrs(AttrFactory);
7664     MaybeParseCXX11Attributes(attrs);
7665 
7666     // Remember that we parsed a array type, and remember its features.
7667     D.AddTypeInfo(DeclaratorChunk::getArray(0, false, false, ExprRes.get(),
7668                                             T.getOpenLocation(),
7669                                             T.getCloseLocation()),
7670                   std::move(attrs), T.getCloseLocation());
7671     return;
7672   } else if (Tok.getKind() == tok::code_completion) {
7673     cutOffParsing();
7674     Actions.CodeCompleteBracketDeclarator(getCurScope());
7675     return;
7676   }
7677 
7678   // If valid, this location is the position where we read the 'static' keyword.
7679   SourceLocation StaticLoc;
7680   TryConsumeToken(tok::kw_static, StaticLoc);
7681 
7682   // If there is a type-qualifier-list, read it now.
7683   // Type qualifiers in an array subscript are a C99 feature.
7684   DeclSpec DS(AttrFactory);
7685   ParseTypeQualifierListOpt(DS, AR_CXX11AttributesParsed);
7686 
7687   // If we haven't already read 'static', check to see if there is one after the
7688   // type-qualifier-list.
7689   if (!StaticLoc.isValid())
7690     TryConsumeToken(tok::kw_static, StaticLoc);
7691 
7692   // Handle "direct-declarator [ type-qual-list[opt] * ]".
7693   bool isStar = false;
7694   ExprResult NumElements;
7695 
7696   // Handle the case where we have '[*]' as the array size.  However, a leading
7697   // star could be the start of an expression, for example 'X[*p + 4]'.  Verify
7698   // the token after the star is a ']'.  Since stars in arrays are
7699   // infrequent, use of lookahead is not costly here.
7700   if (Tok.is(tok::star) && GetLookAheadToken(1).is(tok::r_square)) {
7701     ConsumeToken();  // Eat the '*'.
7702 
7703     if (StaticLoc.isValid()) {
7704       Diag(StaticLoc, diag::err_unspecified_vla_size_with_static);
7705       StaticLoc = SourceLocation();  // Drop the static.
7706     }
7707     isStar = true;
7708   } else if (Tok.isNot(tok::r_square)) {
7709     // Note, in C89, this production uses the constant-expr production instead
7710     // of assignment-expr.  The only difference is that assignment-expr allows
7711     // things like '=' and '*='.  Sema rejects these in C89 mode because they
7712     // are not i-c-e's, so we don't need to distinguish between the two here.
7713 
7714     // Parse the constant-expression or assignment-expression now (depending
7715     // on dialect).
7716     if (getLangOpts().CPlusPlus) {
7717       NumElements = ParseArrayBoundExpression();
7718     } else {
7719       EnterExpressionEvaluationContext Unevaluated(
7720           Actions, Sema::ExpressionEvaluationContext::ConstantEvaluated);
7721       NumElements =
7722           Actions.CorrectDelayedTyposInExpr(ParseAssignmentExpression());
7723     }
7724   } else {
7725     if (StaticLoc.isValid()) {
7726       Diag(StaticLoc, diag::err_unspecified_size_with_static);
7727       StaticLoc = SourceLocation();  // Drop the static.
7728     }
7729   }
7730 
7731   // If there was an error parsing the assignment-expression, recover.
7732   if (NumElements.isInvalid()) {
7733     D.setInvalidType(true);
7734     // If the expression was invalid, skip it.
7735     SkipUntil(tok::r_square, StopAtSemi);
7736     return;
7737   }
7738 
7739   T.consumeClose();
7740 
7741   MaybeParseCXX11Attributes(DS.getAttributes());
7742 
7743   // Remember that we parsed a array type, and remember its features.
7744   D.AddTypeInfo(
7745       DeclaratorChunk::getArray(DS.getTypeQualifiers(), StaticLoc.isValid(),
7746                                 isStar, NumElements.get(), T.getOpenLocation(),
7747                                 T.getCloseLocation()),
7748       std::move(DS.getAttributes()), T.getCloseLocation());
7749 }
7750 
7751 /// Diagnose brackets before an identifier.
7752 void Parser::ParseMisplacedBracketDeclarator(Declarator &D) {
7753   assert(Tok.is(tok::l_square) && "Missing opening bracket");
7754   assert(!D.mayOmitIdentifier() && "Declarator cannot omit identifier");
7755 
7756   SourceLocation StartBracketLoc = Tok.getLocation();
7757   Declarator TempDeclarator(D.getDeclSpec(), ParsedAttributesView::none(),
7758                             D.getContext());
7759 
7760   while (Tok.is(tok::l_square)) {
7761     ParseBracketDeclarator(TempDeclarator);
7762   }
7763 
7764   // Stuff the location of the start of the brackets into the Declarator.
7765   // The diagnostics from ParseDirectDeclarator will make more sense if
7766   // they use this location instead.
7767   if (Tok.is(tok::semi))
7768     D.getName().EndLocation = StartBracketLoc;
7769 
7770   SourceLocation SuggestParenLoc = Tok.getLocation();
7771 
7772   // Now that the brackets are removed, try parsing the declarator again.
7773   ParseDeclaratorInternal(D, &Parser::ParseDirectDeclarator);
7774 
7775   // Something went wrong parsing the brackets, in which case,
7776   // ParseBracketDeclarator has emitted an error, and we don't need to emit
7777   // one here.
7778   if (TempDeclarator.getNumTypeObjects() == 0)
7779     return;
7780 
7781   // Determine if parens will need to be suggested in the diagnostic.
7782   bool NeedParens = false;
7783   if (D.getNumTypeObjects() != 0) {
7784     switch (D.getTypeObject(D.getNumTypeObjects() - 1).Kind) {
7785     case DeclaratorChunk::Pointer:
7786     case DeclaratorChunk::Reference:
7787     case DeclaratorChunk::BlockPointer:
7788     case DeclaratorChunk::MemberPointer:
7789     case DeclaratorChunk::Pipe:
7790       NeedParens = true;
7791       break;
7792     case DeclaratorChunk::Array:
7793     case DeclaratorChunk::Function:
7794     case DeclaratorChunk::Paren:
7795       break;
7796     }
7797   }
7798 
7799   if (NeedParens) {
7800     // Create a DeclaratorChunk for the inserted parens.
7801     SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
7802     D.AddTypeInfo(DeclaratorChunk::getParen(SuggestParenLoc, EndLoc),
7803                   SourceLocation());
7804   }
7805 
7806   // Adding back the bracket info to the end of the Declarator.
7807   for (unsigned i = 0, e = TempDeclarator.getNumTypeObjects(); i < e; ++i) {
7808     const DeclaratorChunk &Chunk = TempDeclarator.getTypeObject(i);
7809     D.AddTypeInfo(Chunk, SourceLocation());
7810   }
7811 
7812   // The missing identifier would have been diagnosed in ParseDirectDeclarator.
7813   // If parentheses are required, always suggest them.
7814   if (!D.getIdentifier() && !NeedParens)
7815     return;
7816 
7817   SourceLocation EndBracketLoc = TempDeclarator.getEndLoc();
7818 
7819   // Generate the move bracket error message.
7820   SourceRange BracketRange(StartBracketLoc, EndBracketLoc);
7821   SourceLocation EndLoc = PP.getLocForEndOfToken(D.getEndLoc());
7822 
7823   if (NeedParens) {
7824     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
7825         << getLangOpts().CPlusPlus
7826         << FixItHint::CreateInsertion(SuggestParenLoc, "(")
7827         << FixItHint::CreateInsertion(EndLoc, ")")
7828         << FixItHint::CreateInsertionFromRange(
7829                EndLoc, CharSourceRange(BracketRange, true))
7830         << FixItHint::CreateRemoval(BracketRange);
7831   } else {
7832     Diag(EndLoc, diag::err_brackets_go_after_unqualified_id)
7833         << getLangOpts().CPlusPlus
7834         << FixItHint::CreateInsertionFromRange(
7835                EndLoc, CharSourceRange(BracketRange, true))
7836         << FixItHint::CreateRemoval(BracketRange);
7837   }
7838 }
7839 
7840 /// [GNU]   typeof-specifier:
7841 ///           typeof ( expressions )
7842 ///           typeof ( type-name )
7843 /// [GNU/C++] typeof unary-expression
7844 /// [C23]   typeof-specifier:
7845 ///           typeof '(' typeof-specifier-argument ')'
7846 ///           typeof_unqual '(' typeof-specifier-argument ')'
7847 ///
7848 ///         typeof-specifier-argument:
7849 ///           expression
7850 ///           type-name
7851 ///
7852 void Parser::ParseTypeofSpecifier(DeclSpec &DS) {
7853   assert(Tok.isOneOf(tok::kw_typeof, tok::kw_typeof_unqual) &&
7854          "Not a typeof specifier");
7855 
7856   bool IsUnqual = Tok.is(tok::kw_typeof_unqual);
7857   const IdentifierInfo *II = Tok.getIdentifierInfo();
7858   if (getLangOpts().C23 && !II->getName().starts_with("__"))
7859     Diag(Tok.getLocation(), diag::warn_c23_compat_keyword) << Tok.getName();
7860 
7861   Token OpTok = Tok;
7862   SourceLocation StartLoc = ConsumeToken();
7863   bool HasParens = Tok.is(tok::l_paren);
7864 
7865   EnterExpressionEvaluationContext Unevaluated(
7866       Actions, Sema::ExpressionEvaluationContext::Unevaluated,
7867       Sema::ReuseLambdaContextDecl);
7868 
7869   bool isCastExpr;
7870   ParsedType CastTy;
7871   SourceRange CastRange;
7872   ExprResult Operand = Actions.CorrectDelayedTyposInExpr(
7873       ParseExprAfterUnaryExprOrTypeTrait(OpTok, isCastExpr, CastTy, CastRange));
7874   if (HasParens)
7875     DS.setTypeArgumentRange(CastRange);
7876 
7877   if (CastRange.getEnd().isInvalid())
7878     // FIXME: Not accurate, the range gets one token more than it should.
7879     DS.SetRangeEnd(Tok.getLocation());
7880   else
7881     DS.SetRangeEnd(CastRange.getEnd());
7882 
7883   if (isCastExpr) {
7884     if (!CastTy) {
7885       DS.SetTypeSpecError();
7886       return;
7887     }
7888 
7889     const char *PrevSpec = nullptr;
7890     unsigned DiagID;
7891     // Check for duplicate type specifiers (e.g. "int typeof(int)").
7892     if (DS.SetTypeSpecType(IsUnqual ? DeclSpec::TST_typeof_unqualType
7893                                     : DeclSpec::TST_typeofType,
7894                            StartLoc, PrevSpec,
7895                            DiagID, CastTy,
7896                            Actions.getASTContext().getPrintingPolicy()))
7897       Diag(StartLoc, DiagID) << PrevSpec;
7898     return;
7899   }
7900 
7901   // If we get here, the operand to the typeof was an expression.
7902   if (Operand.isInvalid()) {
7903     DS.SetTypeSpecError();
7904     return;
7905   }
7906 
7907   // We might need to transform the operand if it is potentially evaluated.
7908   Operand = Actions.HandleExprEvaluationContextForTypeof(Operand.get());
7909   if (Operand.isInvalid()) {
7910     DS.SetTypeSpecError();
7911     return;
7912   }
7913 
7914   const char *PrevSpec = nullptr;
7915   unsigned DiagID;
7916   // Check for duplicate type specifiers (e.g. "int typeof(int)").
7917   if (DS.SetTypeSpecType(IsUnqual ? DeclSpec::TST_typeof_unqualExpr
7918                                   : DeclSpec::TST_typeofExpr,
7919                          StartLoc, PrevSpec,
7920                          DiagID, Operand.get(),
7921                          Actions.getASTContext().getPrintingPolicy()))
7922     Diag(StartLoc, DiagID) << PrevSpec;
7923 }
7924 
7925 /// [C11]   atomic-specifier:
7926 ///           _Atomic ( type-name )
7927 ///
7928 void Parser::ParseAtomicSpecifier(DeclSpec &DS) {
7929   assert(Tok.is(tok::kw__Atomic) && NextToken().is(tok::l_paren) &&
7930          "Not an atomic specifier");
7931 
7932   SourceLocation StartLoc = ConsumeToken();
7933   BalancedDelimiterTracker T(*this, tok::l_paren);
7934   if (T.consumeOpen())
7935     return;
7936 
7937   TypeResult Result = ParseTypeName();
7938   if (Result.isInvalid()) {
7939     SkipUntil(tok::r_paren, StopAtSemi);
7940     return;
7941   }
7942 
7943   // Match the ')'
7944   T.consumeClose();
7945 
7946   if (T.getCloseLocation().isInvalid())
7947     return;
7948 
7949   DS.setTypeArgumentRange(T.getRange());
7950   DS.SetRangeEnd(T.getCloseLocation());
7951 
7952   const char *PrevSpec = nullptr;
7953   unsigned DiagID;
7954   if (DS.SetTypeSpecType(DeclSpec::TST_atomic, StartLoc, PrevSpec,
7955                          DiagID, Result.get(),
7956                          Actions.getASTContext().getPrintingPolicy()))
7957     Diag(StartLoc, DiagID) << PrevSpec;
7958 }
7959 
7960 /// TryAltiVecVectorTokenOutOfLine - Out of line body that should only be called
7961 /// from TryAltiVecVectorToken.
7962 bool Parser::TryAltiVecVectorTokenOutOfLine() {
7963   Token Next = NextToken();
7964   switch (Next.getKind()) {
7965   default: return false;
7966   case tok::kw_short:
7967   case tok::kw_long:
7968   case tok::kw_signed:
7969   case tok::kw_unsigned:
7970   case tok::kw_void:
7971   case tok::kw_char:
7972   case tok::kw_int:
7973   case tok::kw_float:
7974   case tok::kw_double:
7975   case tok::kw_bool:
7976   case tok::kw__Bool:
7977   case tok::kw___bool:
7978   case tok::kw___pixel:
7979     Tok.setKind(tok::kw___vector);
7980     return true;
7981   case tok::identifier:
7982     if (Next.getIdentifierInfo() == Ident_pixel) {
7983       Tok.setKind(tok::kw___vector);
7984       return true;
7985     }
7986     if (Next.getIdentifierInfo() == Ident_bool ||
7987         Next.getIdentifierInfo() == Ident_Bool) {
7988       Tok.setKind(tok::kw___vector);
7989       return true;
7990     }
7991     return false;
7992   }
7993 }
7994 
7995 bool Parser::TryAltiVecTokenOutOfLine(DeclSpec &DS, SourceLocation Loc,
7996                                       const char *&PrevSpec, unsigned &DiagID,
7997                                       bool &isInvalid) {
7998   const PrintingPolicy &Policy = Actions.getASTContext().getPrintingPolicy();
7999   if (Tok.getIdentifierInfo() == Ident_vector) {
8000     Token Next = NextToken();
8001     switch (Next.getKind()) {
8002     case tok::kw_short:
8003     case tok::kw_long:
8004     case tok::kw_signed:
8005     case tok::kw_unsigned:
8006     case tok::kw_void:
8007     case tok::kw_char:
8008     case tok::kw_int:
8009     case tok::kw_float:
8010     case tok::kw_double:
8011     case tok::kw_bool:
8012     case tok::kw__Bool:
8013     case tok::kw___bool:
8014     case tok::kw___pixel:
8015       isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
8016       return true;
8017     case tok::identifier:
8018       if (Next.getIdentifierInfo() == Ident_pixel) {
8019         isInvalid = DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID,Policy);
8020         return true;
8021       }
8022       if (Next.getIdentifierInfo() == Ident_bool ||
8023           Next.getIdentifierInfo() == Ident_Bool) {
8024         isInvalid =
8025             DS.SetTypeAltiVecVector(true, Loc, PrevSpec, DiagID, Policy);
8026         return true;
8027       }
8028       break;
8029     default:
8030       break;
8031     }
8032   } else if ((Tok.getIdentifierInfo() == Ident_pixel) &&
8033              DS.isTypeAltiVecVector()) {
8034     isInvalid = DS.SetTypeAltiVecPixel(true, Loc, PrevSpec, DiagID, Policy);
8035     return true;
8036   } else if ((Tok.getIdentifierInfo() == Ident_bool) &&
8037              DS.isTypeAltiVecVector()) {
8038     isInvalid = DS.SetTypeAltiVecBool(true, Loc, PrevSpec, DiagID, Policy);
8039     return true;
8040   }
8041   return false;
8042 }
8043 
8044 void Parser::DiagnoseBitIntUse(const Token &Tok) {
8045   // If the token is for _ExtInt, diagnose it as being deprecated. Otherwise,
8046   // the token is about _BitInt and gets (potentially) diagnosed as use of an
8047   // extension.
8048   assert(Tok.isOneOf(tok::kw__ExtInt, tok::kw__BitInt) &&
8049          "expected either an _ExtInt or _BitInt token!");
8050 
8051   SourceLocation Loc = Tok.getLocation();
8052   if (Tok.is(tok::kw__ExtInt)) {
8053     Diag(Loc, diag::warn_ext_int_deprecated)
8054         << FixItHint::CreateReplacement(Loc, "_BitInt");
8055   } else {
8056     // In C23 mode, diagnose that the use is not compatible with pre-C23 modes.
8057     // Otherwise, diagnose that the use is a Clang extension.
8058     if (getLangOpts().C23)
8059       Diag(Loc, diag::warn_c23_compat_keyword) << Tok.getName();
8060     else
8061       Diag(Loc, diag::ext_bit_int) << getLangOpts().CPlusPlus;
8062   }
8063 }
8064