1 //===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Preprocessor interface. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // Options to support: 14 // -H - Print the name of each header file used. 15 // -d[DNI] - Dump various things. 16 // -fworking-directory - #line's with preprocessor's working dir. 17 // -fpreprocessed 18 // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD 19 // -W* 20 // -w 21 // 22 // Messages to emit: 23 // "Multiple include guards may be useful for:\n" 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "clang/Lex/Preprocessor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/FileManager.h" 30 #include "clang/Basic/FileSystemStatCache.h" 31 #include "clang/Basic/IdentifierTable.h" 32 #include "clang/Basic/LLVM.h" 33 #include "clang/Basic/LangOptions.h" 34 #include "clang/Basic/Module.h" 35 #include "clang/Basic/SourceLocation.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Lex/CodeCompletionHandler.h" 39 #include "clang/Lex/ExternalPreprocessorSource.h" 40 #include "clang/Lex/HeaderSearch.h" 41 #include "clang/Lex/LexDiagnostic.h" 42 #include "clang/Lex/Lexer.h" 43 #include "clang/Lex/LiteralSupport.h" 44 #include "clang/Lex/MacroArgs.h" 45 #include "clang/Lex/MacroInfo.h" 46 #include "clang/Lex/ModuleLoader.h" 47 #include "clang/Lex/Pragma.h" 48 #include "clang/Lex/PreprocessingRecord.h" 49 #include "clang/Lex/PreprocessorLexer.h" 50 #include "clang/Lex/PreprocessorOptions.h" 51 #include "clang/Lex/ScratchBuffer.h" 52 #include "clang/Lex/Token.h" 53 #include "clang/Lex/TokenLexer.h" 54 #include "llvm/ADT/APInt.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/DenseMap.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallString.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/ADT/iterator_range.h" 62 #include "llvm/Support/Capacity.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/MemoryBuffer.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <memory> 69 #include <optional> 70 #include <string> 71 #include <utility> 72 #include <vector> 73 74 using namespace clang; 75 76 /// Minimum distance between two check points, in tokens. 77 static constexpr unsigned CheckPointStepSize = 1024; 78 79 LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry) 80 81 ExternalPreprocessorSource::~ExternalPreprocessorSource() = default; 82 83 Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts, 84 DiagnosticsEngine &diags, const LangOptions &opts, 85 SourceManager &SM, HeaderSearch &Headers, 86 ModuleLoader &TheModuleLoader, 87 IdentifierInfoLookup *IILookup, bool OwnsHeaders, 88 TranslationUnitKind TUKind) 89 : PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts), 90 FileMgr(Headers.getFileMgr()), SourceMgr(SM), 91 ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers), 92 TheModuleLoader(TheModuleLoader), ExternalSource(nullptr), 93 // As the language options may have not been loaded yet (when 94 // deserializing an ASTUnit), adding keywords to the identifier table is 95 // deferred to Preprocessor::Initialize(). 96 Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())), 97 TUKind(TUKind), SkipMainFilePreamble(0, true), 98 CurSubmoduleState(&NullSubmoduleState) { 99 OwnsHeaderSearch = OwnsHeaders; 100 101 // Default to discarding comments. 102 KeepComments = false; 103 KeepMacroComments = false; 104 SuppressIncludeNotFoundError = false; 105 106 // Macro expansion is enabled. 107 DisableMacroExpansion = false; 108 MacroExpansionInDirectivesOverride = false; 109 InMacroArgs = false; 110 ArgMacro = nullptr; 111 InMacroArgPreExpansion = false; 112 NumCachedTokenLexers = 0; 113 PragmasEnabled = true; 114 ParsingIfOrElifDirective = false; 115 PreprocessedOutput = false; 116 117 // We haven't read anything from the external source. 118 ReadMacrosFromExternalSource = false; 119 120 BuiltinInfo = std::make_unique<Builtin::Context>(); 121 122 // "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of 123 // a macro. They get unpoisoned where it is allowed. 124 (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); 125 SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use); 126 (Ident__VA_OPT__ = getIdentifierInfo("__VA_OPT__"))->setIsPoisoned(); 127 SetPoisonReason(Ident__VA_OPT__,diag::ext_pp_bad_vaopt_use); 128 129 // Initialize the pragma handlers. 130 RegisterBuiltinPragmas(); 131 132 // Initialize builtin macros like __LINE__ and friends. 133 RegisterBuiltinMacros(); 134 135 if(LangOpts.Borland) { 136 Ident__exception_info = getIdentifierInfo("_exception_info"); 137 Ident___exception_info = getIdentifierInfo("__exception_info"); 138 Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation"); 139 Ident__exception_code = getIdentifierInfo("_exception_code"); 140 Ident___exception_code = getIdentifierInfo("__exception_code"); 141 Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode"); 142 Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination"); 143 Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination"); 144 Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination"); 145 } else { 146 Ident__exception_info = Ident__exception_code = nullptr; 147 Ident__abnormal_termination = Ident___exception_info = nullptr; 148 Ident___exception_code = Ident___abnormal_termination = nullptr; 149 Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr; 150 Ident_AbnormalTermination = nullptr; 151 } 152 153 // Default incremental processing to -fincremental-extensions, clients can 154 // override with `enableIncrementalProcessing` if desired. 155 IncrementalProcessing = LangOpts.IncrementalExtensions; 156 157 // If using a PCH where a #pragma hdrstop is expected, start skipping tokens. 158 if (usingPCHWithPragmaHdrStop()) 159 SkippingUntilPragmaHdrStop = true; 160 161 // If using a PCH with a through header, start skipping tokens. 162 if (!this->PPOpts->PCHThroughHeader.empty() && 163 !this->PPOpts->ImplicitPCHInclude.empty()) 164 SkippingUntilPCHThroughHeader = true; 165 166 if (this->PPOpts->GeneratePreamble) 167 PreambleConditionalStack.startRecording(); 168 169 MaxTokens = LangOpts.MaxTokens; 170 } 171 172 Preprocessor::~Preprocessor() { 173 assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!"); 174 175 IncludeMacroStack.clear(); 176 177 // Free any cached macro expanders. 178 // This populates MacroArgCache, so all TokenLexers need to be destroyed 179 // before the code below that frees up the MacroArgCache list. 180 std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr); 181 CurTokenLexer.reset(); 182 183 // Free any cached MacroArgs. 184 for (MacroArgs *ArgList = MacroArgCache; ArgList;) 185 ArgList = ArgList->deallocate(); 186 187 // Delete the header search info, if we own it. 188 if (OwnsHeaderSearch) 189 delete &HeaderInfo; 190 } 191 192 void Preprocessor::Initialize(const TargetInfo &Target, 193 const TargetInfo *AuxTarget) { 194 assert((!this->Target || this->Target == &Target) && 195 "Invalid override of target information"); 196 this->Target = &Target; 197 198 assert((!this->AuxTarget || this->AuxTarget == AuxTarget) && 199 "Invalid override of aux target information."); 200 this->AuxTarget = AuxTarget; 201 202 // Initialize information about built-ins. 203 BuiltinInfo->InitializeTarget(Target, AuxTarget); 204 HeaderInfo.setTarget(Target); 205 206 // Populate the identifier table with info about keywords for the current language. 207 Identifiers.AddKeywords(LangOpts); 208 209 // Initialize the __FTL_EVAL_METHOD__ macro to the TargetInfo. 210 setTUFPEvalMethod(getTargetInfo().getFPEvalMethod()); 211 212 if (getLangOpts().getFPEvalMethod() == LangOptions::FEM_UnsetOnCommandLine) 213 // Use setting from TargetInfo. 214 setCurrentFPEvalMethod(SourceLocation(), Target.getFPEvalMethod()); 215 else 216 // Set initial value of __FLT_EVAL_METHOD__ from the command line. 217 setCurrentFPEvalMethod(SourceLocation(), getLangOpts().getFPEvalMethod()); 218 } 219 220 void Preprocessor::InitializeForModelFile() { 221 NumEnteredSourceFiles = 0; 222 223 // Reset pragmas 224 PragmaHandlersBackup = std::move(PragmaHandlers); 225 PragmaHandlers = std::make_unique<PragmaNamespace>(StringRef()); 226 RegisterBuiltinPragmas(); 227 228 // Reset PredefinesFileID 229 PredefinesFileID = FileID(); 230 } 231 232 void Preprocessor::FinalizeForModelFile() { 233 NumEnteredSourceFiles = 1; 234 235 PragmaHandlers = std::move(PragmaHandlersBackup); 236 } 237 238 void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { 239 llvm::errs() << tok::getTokenName(Tok.getKind()); 240 241 if (!Tok.isAnnotation()) 242 llvm::errs() << " '" << getSpelling(Tok) << "'"; 243 244 if (!DumpFlags) return; 245 246 llvm::errs() << "\t"; 247 if (Tok.isAtStartOfLine()) 248 llvm::errs() << " [StartOfLine]"; 249 if (Tok.hasLeadingSpace()) 250 llvm::errs() << " [LeadingSpace]"; 251 if (Tok.isExpandDisabled()) 252 llvm::errs() << " [ExpandDisabled]"; 253 if (Tok.needsCleaning()) { 254 const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); 255 llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength()) 256 << "']"; 257 } 258 259 llvm::errs() << "\tLoc=<"; 260 DumpLocation(Tok.getLocation()); 261 llvm::errs() << ">"; 262 } 263 264 void Preprocessor::DumpLocation(SourceLocation Loc) const { 265 Loc.print(llvm::errs(), SourceMgr); 266 } 267 268 void Preprocessor::DumpMacro(const MacroInfo &MI) const { 269 llvm::errs() << "MACRO: "; 270 for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { 271 DumpToken(MI.getReplacementToken(i)); 272 llvm::errs() << " "; 273 } 274 llvm::errs() << "\n"; 275 } 276 277 void Preprocessor::PrintStats() { 278 llvm::errs() << "\n*** Preprocessor Stats:\n"; 279 llvm::errs() << NumDirectives << " directives found:\n"; 280 llvm::errs() << " " << NumDefined << " #define.\n"; 281 llvm::errs() << " " << NumUndefined << " #undef.\n"; 282 llvm::errs() << " #include/#include_next/#import:\n"; 283 llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n"; 284 llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n"; 285 llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n"; 286 llvm::errs() << " " << NumElse << " #else/#elif/#elifdef/#elifndef.\n"; 287 llvm::errs() << " " << NumEndif << " #endif.\n"; 288 llvm::errs() << " " << NumPragma << " #pragma.\n"; 289 llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; 290 291 llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" 292 << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " 293 << NumFastMacroExpanded << " on the fast path.\n"; 294 llvm::errs() << (NumFastTokenPaste+NumTokenPaste) 295 << " token paste (##) operations performed, " 296 << NumFastTokenPaste << " on the fast path.\n"; 297 298 llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total"; 299 300 llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory(); 301 llvm::errs() << "\n Macro Expanded Tokens: " 302 << llvm::capacity_in_bytes(MacroExpandedTokens); 303 llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity(); 304 // FIXME: List information for all submodules. 305 llvm::errs() << "\n Macros: " 306 << llvm::capacity_in_bytes(CurSubmoduleState->Macros); 307 llvm::errs() << "\n #pragma push_macro Info: " 308 << llvm::capacity_in_bytes(PragmaPushMacroInfo); 309 llvm::errs() << "\n Poison Reasons: " 310 << llvm::capacity_in_bytes(PoisonReasons); 311 llvm::errs() << "\n Comment Handlers: " 312 << llvm::capacity_in_bytes(CommentHandlers) << "\n"; 313 } 314 315 Preprocessor::macro_iterator 316 Preprocessor::macro_begin(bool IncludeExternalMacros) const { 317 if (IncludeExternalMacros && ExternalSource && 318 !ReadMacrosFromExternalSource) { 319 ReadMacrosFromExternalSource = true; 320 ExternalSource->ReadDefinedMacros(); 321 } 322 323 // Make sure we cover all macros in visible modules. 324 for (const ModuleMacro &Macro : ModuleMacros) 325 CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState())); 326 327 return CurSubmoduleState->Macros.begin(); 328 } 329 330 size_t Preprocessor::getTotalMemory() const { 331 return BP.getTotalMemory() 332 + llvm::capacity_in_bytes(MacroExpandedTokens) 333 + Predefines.capacity() /* Predefines buffer. */ 334 // FIXME: Include sizes from all submodules, and include MacroInfo sizes, 335 // and ModuleMacros. 336 + llvm::capacity_in_bytes(CurSubmoduleState->Macros) 337 + llvm::capacity_in_bytes(PragmaPushMacroInfo) 338 + llvm::capacity_in_bytes(PoisonReasons) 339 + llvm::capacity_in_bytes(CommentHandlers); 340 } 341 342 Preprocessor::macro_iterator 343 Preprocessor::macro_end(bool IncludeExternalMacros) const { 344 if (IncludeExternalMacros && ExternalSource && 345 !ReadMacrosFromExternalSource) { 346 ReadMacrosFromExternalSource = true; 347 ExternalSource->ReadDefinedMacros(); 348 } 349 350 return CurSubmoduleState->Macros.end(); 351 } 352 353 /// Compares macro tokens with a specified token value sequence. 354 static bool MacroDefinitionEquals(const MacroInfo *MI, 355 ArrayRef<TokenValue> Tokens) { 356 return Tokens.size() == MI->getNumTokens() && 357 std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin()); 358 } 359 360 StringRef Preprocessor::getLastMacroWithSpelling( 361 SourceLocation Loc, 362 ArrayRef<TokenValue> Tokens) const { 363 SourceLocation BestLocation; 364 StringRef BestSpelling; 365 for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end(); 366 I != E; ++I) { 367 const MacroDirective::DefInfo 368 Def = I->second.findDirectiveAtLoc(Loc, SourceMgr); 369 if (!Def || !Def.getMacroInfo()) 370 continue; 371 if (!Def.getMacroInfo()->isObjectLike()) 372 continue; 373 if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens)) 374 continue; 375 SourceLocation Location = Def.getLocation(); 376 // Choose the macro defined latest. 377 if (BestLocation.isInvalid() || 378 (Location.isValid() && 379 SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) { 380 BestLocation = Location; 381 BestSpelling = I->first->getName(); 382 } 383 } 384 return BestSpelling; 385 } 386 387 void Preprocessor::recomputeCurLexerKind() { 388 if (CurLexer) 389 CurLexerCallback = CurLexer->isDependencyDirectivesLexer() 390 ? CLK_DependencyDirectivesLexer 391 : CLK_Lexer; 392 else if (CurTokenLexer) 393 CurLexerCallback = CLK_TokenLexer; 394 else 395 CurLexerCallback = CLK_CachingLexer; 396 } 397 398 bool Preprocessor::SetCodeCompletionPoint(FileEntryRef File, 399 unsigned CompleteLine, 400 unsigned CompleteColumn) { 401 assert(CompleteLine && CompleteColumn && "Starts from 1:1"); 402 assert(!CodeCompletionFile && "Already set"); 403 404 // Load the actual file's contents. 405 std::optional<llvm::MemoryBufferRef> Buffer = 406 SourceMgr.getMemoryBufferForFileOrNone(File); 407 if (!Buffer) 408 return true; 409 410 // Find the byte position of the truncation point. 411 const char *Position = Buffer->getBufferStart(); 412 for (unsigned Line = 1; Line < CompleteLine; ++Line) { 413 for (; *Position; ++Position) { 414 if (*Position != '\r' && *Position != '\n') 415 continue; 416 417 // Eat \r\n or \n\r as a single line. 418 if ((Position[1] == '\r' || Position[1] == '\n') && 419 Position[0] != Position[1]) 420 ++Position; 421 ++Position; 422 break; 423 } 424 } 425 426 Position += CompleteColumn - 1; 427 428 // If pointing inside the preamble, adjust the position at the beginning of 429 // the file after the preamble. 430 if (SkipMainFilePreamble.first && 431 SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) { 432 if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first) 433 Position = Buffer->getBufferStart() + SkipMainFilePreamble.first; 434 } 435 436 if (Position > Buffer->getBufferEnd()) 437 Position = Buffer->getBufferEnd(); 438 439 CodeCompletionFile = File; 440 CodeCompletionOffset = Position - Buffer->getBufferStart(); 441 442 auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer( 443 Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier()); 444 char *NewBuf = NewBuffer->getBufferStart(); 445 char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf); 446 *NewPos = '\0'; 447 std::copy(Position, Buffer->getBufferEnd(), NewPos+1); 448 SourceMgr.overrideFileContents(File, std::move(NewBuffer)); 449 450 return false; 451 } 452 453 void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir, 454 bool IsAngled) { 455 setCodeCompletionReached(); 456 if (CodeComplete) 457 CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled); 458 } 459 460 void Preprocessor::CodeCompleteNaturalLanguage() { 461 setCodeCompletionReached(); 462 if (CodeComplete) 463 CodeComplete->CodeCompleteNaturalLanguage(); 464 } 465 466 /// getSpelling - This method is used to get the spelling of a token into a 467 /// SmallVector. Note that the returned StringRef may not point to the 468 /// supplied buffer if a copy can be avoided. 469 StringRef Preprocessor::getSpelling(const Token &Tok, 470 SmallVectorImpl<char> &Buffer, 471 bool *Invalid) const { 472 // NOTE: this has to be checked *before* testing for an IdentifierInfo. 473 if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) { 474 // Try the fast path. 475 if (const IdentifierInfo *II = Tok.getIdentifierInfo()) 476 return II->getName(); 477 } 478 479 // Resize the buffer if we need to copy into it. 480 if (Tok.needsCleaning()) 481 Buffer.resize(Tok.getLength()); 482 483 const char *Ptr = Buffer.data(); 484 unsigned Len = getSpelling(Tok, Ptr, Invalid); 485 return StringRef(Ptr, Len); 486 } 487 488 /// CreateString - Plop the specified string into a scratch buffer and return a 489 /// location for it. If specified, the source location provides a source 490 /// location for the token. 491 void Preprocessor::CreateString(StringRef Str, Token &Tok, 492 SourceLocation ExpansionLocStart, 493 SourceLocation ExpansionLocEnd) { 494 Tok.setLength(Str.size()); 495 496 const char *DestPtr; 497 SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr); 498 499 if (ExpansionLocStart.isValid()) 500 Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart, 501 ExpansionLocEnd, Str.size()); 502 Tok.setLocation(Loc); 503 504 // If this is a raw identifier or a literal token, set the pointer data. 505 if (Tok.is(tok::raw_identifier)) 506 Tok.setRawIdentifierData(DestPtr); 507 else if (Tok.isLiteral()) 508 Tok.setLiteralData(DestPtr); 509 } 510 511 SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) { 512 auto &SM = getSourceManager(); 513 SourceLocation SpellingLoc = SM.getSpellingLoc(Loc); 514 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(SpellingLoc); 515 bool Invalid = false; 516 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 517 if (Invalid) 518 return SourceLocation(); 519 520 // FIXME: We could consider re-using spelling for tokens we see repeatedly. 521 const char *DestPtr; 522 SourceLocation Spelling = 523 ScratchBuf->getToken(Buffer.data() + LocInfo.second, Length, DestPtr); 524 return SM.createTokenSplitLoc(Spelling, Loc, Loc.getLocWithOffset(Length)); 525 } 526 527 Module *Preprocessor::getCurrentModule() { 528 if (!getLangOpts().isCompilingModule()) 529 return nullptr; 530 531 return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule); 532 } 533 534 Module *Preprocessor::getCurrentModuleImplementation() { 535 if (!getLangOpts().isCompilingModuleImplementation()) 536 return nullptr; 537 538 return getHeaderSearchInfo().lookupModule(getLangOpts().ModuleName); 539 } 540 541 //===----------------------------------------------------------------------===// 542 // Preprocessor Initialization Methods 543 //===----------------------------------------------------------------------===// 544 545 /// EnterMainSourceFile - Enter the specified FileID as the main source file, 546 /// which implicitly adds the builtin defines etc. 547 void Preprocessor::EnterMainSourceFile() { 548 // We do not allow the preprocessor to reenter the main file. Doing so will 549 // cause FileID's to accumulate information from both runs (e.g. #line 550 // information) and predefined macros aren't guaranteed to be set properly. 551 assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!"); 552 FileID MainFileID = SourceMgr.getMainFileID(); 553 554 // If MainFileID is loaded it means we loaded an AST file, no need to enter 555 // a main file. 556 if (!SourceMgr.isLoadedFileID(MainFileID)) { 557 // Enter the main file source buffer. 558 EnterSourceFile(MainFileID, nullptr, SourceLocation()); 559 560 // If we've been asked to skip bytes in the main file (e.g., as part of a 561 // precompiled preamble), do so now. 562 if (SkipMainFilePreamble.first > 0) 563 CurLexer->SetByteOffset(SkipMainFilePreamble.first, 564 SkipMainFilePreamble.second); 565 566 // Tell the header info that the main file was entered. If the file is later 567 // #imported, it won't be re-entered. 568 if (OptionalFileEntryRef FE = SourceMgr.getFileEntryRefForID(MainFileID)) 569 markIncluded(*FE); 570 } 571 572 // Preprocess Predefines to populate the initial preprocessor state. 573 std::unique_ptr<llvm::MemoryBuffer> SB = 574 llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>"); 575 assert(SB && "Cannot create predefined source buffer"); 576 FileID FID = SourceMgr.createFileID(std::move(SB)); 577 assert(FID.isValid() && "Could not create FileID for predefines?"); 578 setPredefinesFileID(FID); 579 580 // Start parsing the predefines. 581 EnterSourceFile(FID, nullptr, SourceLocation()); 582 583 if (!PPOpts->PCHThroughHeader.empty()) { 584 // Lookup and save the FileID for the through header. If it isn't found 585 // in the search path, it's a fatal error. 586 OptionalFileEntryRef File = LookupFile( 587 SourceLocation(), PPOpts->PCHThroughHeader, 588 /*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr, 589 /*CurDir=*/nullptr, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr, 590 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 591 /*IsFrameworkFound=*/nullptr); 592 if (!File) { 593 Diag(SourceLocation(), diag::err_pp_through_header_not_found) 594 << PPOpts->PCHThroughHeader; 595 return; 596 } 597 setPCHThroughHeaderFileID( 598 SourceMgr.createFileID(*File, SourceLocation(), SrcMgr::C_User)); 599 } 600 601 // Skip tokens from the Predefines and if needed the main file. 602 if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) || 603 (usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop)) 604 SkipTokensWhileUsingPCH(); 605 } 606 607 void Preprocessor::setPCHThroughHeaderFileID(FileID FID) { 608 assert(PCHThroughHeaderFileID.isInvalid() && 609 "PCHThroughHeaderFileID already set!"); 610 PCHThroughHeaderFileID = FID; 611 } 612 613 bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) { 614 assert(PCHThroughHeaderFileID.isValid() && 615 "Invalid PCH through header FileID"); 616 return FE == SourceMgr.getFileEntryForID(PCHThroughHeaderFileID); 617 } 618 619 bool Preprocessor::creatingPCHWithThroughHeader() { 620 return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() && 621 PCHThroughHeaderFileID.isValid(); 622 } 623 624 bool Preprocessor::usingPCHWithThroughHeader() { 625 return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() && 626 PCHThroughHeaderFileID.isValid(); 627 } 628 629 bool Preprocessor::creatingPCHWithPragmaHdrStop() { 630 return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop; 631 } 632 633 bool Preprocessor::usingPCHWithPragmaHdrStop() { 634 return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop; 635 } 636 637 /// Skip tokens until after the #include of the through header or 638 /// until after a #pragma hdrstop is seen. Tokens in the predefines file 639 /// and the main file may be skipped. If the end of the predefines file 640 /// is reached, skipping continues into the main file. If the end of the 641 /// main file is reached, it's a fatal error. 642 void Preprocessor::SkipTokensWhileUsingPCH() { 643 bool ReachedMainFileEOF = false; 644 bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader; 645 bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop; 646 Token Tok; 647 while (true) { 648 bool InPredefines = 649 (CurLexer && CurLexer->getFileID() == getPredefinesFileID()); 650 CurLexerCallback(*this, Tok); 651 if (Tok.is(tok::eof) && !InPredefines) { 652 ReachedMainFileEOF = true; 653 break; 654 } 655 if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader) 656 break; 657 if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop) 658 break; 659 } 660 if (ReachedMainFileEOF) { 661 if (UsingPCHThroughHeader) 662 Diag(SourceLocation(), diag::err_pp_through_header_not_seen) 663 << PPOpts->PCHThroughHeader << 1; 664 else if (!PPOpts->PCHWithHdrStopCreate) 665 Diag(SourceLocation(), diag::err_pp_pragma_hdrstop_not_seen); 666 } 667 } 668 669 void Preprocessor::replayPreambleConditionalStack() { 670 // Restore the conditional stack from the preamble, if there is one. 671 if (PreambleConditionalStack.isReplaying()) { 672 assert(CurPPLexer && 673 "CurPPLexer is null when calling replayPreambleConditionalStack."); 674 CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack()); 675 PreambleConditionalStack.doneReplaying(); 676 if (PreambleConditionalStack.reachedEOFWhileSkipping()) 677 SkipExcludedConditionalBlock( 678 PreambleConditionalStack.SkipInfo->HashTokenLoc, 679 PreambleConditionalStack.SkipInfo->IfTokenLoc, 680 PreambleConditionalStack.SkipInfo->FoundNonSkipPortion, 681 PreambleConditionalStack.SkipInfo->FoundElse, 682 PreambleConditionalStack.SkipInfo->ElseLoc); 683 } 684 } 685 686 void Preprocessor::EndSourceFile() { 687 // Notify the client that we reached the end of the source file. 688 if (Callbacks) 689 Callbacks->EndOfMainFile(); 690 } 691 692 //===----------------------------------------------------------------------===// 693 // Lexer Event Handling. 694 //===----------------------------------------------------------------------===// 695 696 /// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the 697 /// identifier information for the token and install it into the token, 698 /// updating the token kind accordingly. 699 IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const { 700 assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!"); 701 702 // Look up this token, see if it is a macro, or if it is a language keyword. 703 IdentifierInfo *II; 704 if (!Identifier.needsCleaning() && !Identifier.hasUCN()) { 705 // No cleaning needed, just use the characters from the lexed buffer. 706 II = getIdentifierInfo(Identifier.getRawIdentifier()); 707 } else { 708 // Cleaning needed, alloca a buffer, clean into it, then use the buffer. 709 SmallString<64> IdentifierBuffer; 710 StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer); 711 712 if (Identifier.hasUCN()) { 713 SmallString<64> UCNIdentifierBuffer; 714 expandUCNs(UCNIdentifierBuffer, CleanedStr); 715 II = getIdentifierInfo(UCNIdentifierBuffer); 716 } else { 717 II = getIdentifierInfo(CleanedStr); 718 } 719 } 720 721 // Update the token info (identifier info and appropriate token kind). 722 // FIXME: the raw_identifier may contain leading whitespace which is removed 723 // from the cleaned identifier token. The SourceLocation should be updated to 724 // refer to the non-whitespace character. For instance, the text "\\\nB" (a 725 // line continuation before 'B') is parsed as a single tok::raw_identifier and 726 // is cleaned to tok::identifier "B". After cleaning the token's length is 727 // still 3 and the SourceLocation refers to the location of the backslash. 728 Identifier.setIdentifierInfo(II); 729 Identifier.setKind(II->getTokenID()); 730 731 return II; 732 } 733 734 void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) { 735 PoisonReasons[II] = DiagID; 736 } 737 738 void Preprocessor::PoisonSEHIdentifiers(bool Poison) { 739 assert(Ident__exception_code && Ident__exception_info); 740 assert(Ident___exception_code && Ident___exception_info); 741 Ident__exception_code->setIsPoisoned(Poison); 742 Ident___exception_code->setIsPoisoned(Poison); 743 Ident_GetExceptionCode->setIsPoisoned(Poison); 744 Ident__exception_info->setIsPoisoned(Poison); 745 Ident___exception_info->setIsPoisoned(Poison); 746 Ident_GetExceptionInfo->setIsPoisoned(Poison); 747 Ident__abnormal_termination->setIsPoisoned(Poison); 748 Ident___abnormal_termination->setIsPoisoned(Poison); 749 Ident_AbnormalTermination->setIsPoisoned(Poison); 750 } 751 752 void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) { 753 assert(Identifier.getIdentifierInfo() && 754 "Can't handle identifiers without identifier info!"); 755 llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it = 756 PoisonReasons.find(Identifier.getIdentifierInfo()); 757 if(it == PoisonReasons.end()) 758 Diag(Identifier, diag::err_pp_used_poisoned_id); 759 else 760 Diag(Identifier,it->second) << Identifier.getIdentifierInfo(); 761 } 762 763 void Preprocessor::updateOutOfDateIdentifier(const IdentifierInfo &II) const { 764 assert(II.isOutOfDate() && "not out of date"); 765 getExternalSource()->updateOutOfDateIdentifier(II); 766 } 767 768 /// HandleIdentifier - This callback is invoked when the lexer reads an 769 /// identifier. This callback looks up the identifier in the map and/or 770 /// potentially macro expands it or turns it into a named token (like 'for'). 771 /// 772 /// Note that callers of this method are guarded by checking the 773 /// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the 774 /// IdentifierInfo methods that compute these properties will need to change to 775 /// match. 776 bool Preprocessor::HandleIdentifier(Token &Identifier) { 777 assert(Identifier.getIdentifierInfo() && 778 "Can't handle identifiers without identifier info!"); 779 780 IdentifierInfo &II = *Identifier.getIdentifierInfo(); 781 782 // If the information about this identifier is out of date, update it from 783 // the external source. 784 // We have to treat __VA_ARGS__ in a special way, since it gets 785 // serialized with isPoisoned = true, but our preprocessor may have 786 // unpoisoned it if we're defining a C99 macro. 787 if (II.isOutOfDate()) { 788 bool CurrentIsPoisoned = false; 789 const bool IsSpecialVariadicMacro = 790 &II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__; 791 if (IsSpecialVariadicMacro) 792 CurrentIsPoisoned = II.isPoisoned(); 793 794 updateOutOfDateIdentifier(II); 795 Identifier.setKind(II.getTokenID()); 796 797 if (IsSpecialVariadicMacro) 798 II.setIsPoisoned(CurrentIsPoisoned); 799 } 800 801 // If this identifier was poisoned, and if it was not produced from a macro 802 // expansion, emit an error. 803 if (II.isPoisoned() && CurPPLexer) { 804 HandlePoisonedIdentifier(Identifier); 805 } 806 807 // If this is a macro to be expanded, do it. 808 if (const MacroDefinition MD = getMacroDefinition(&II)) { 809 const auto *MI = MD.getMacroInfo(); 810 assert(MI && "macro definition with no macro info?"); 811 if (!DisableMacroExpansion) { 812 if (!Identifier.isExpandDisabled() && MI->isEnabled()) { 813 // C99 6.10.3p10: If the preprocessing token immediately after the 814 // macro name isn't a '(', this macro should not be expanded. 815 if (!MI->isFunctionLike() || isNextPPTokenLParen()) 816 return HandleMacroExpandedIdentifier(Identifier, MD); 817 } else { 818 // C99 6.10.3.4p2 says that a disabled macro may never again be 819 // expanded, even if it's in a context where it could be expanded in the 820 // future. 821 Identifier.setFlag(Token::DisableExpand); 822 if (MI->isObjectLike() || isNextPPTokenLParen()) 823 Diag(Identifier, diag::pp_disabled_macro_expansion); 824 } 825 } 826 } 827 828 // If this identifier is a keyword in a newer Standard or proposed Standard, 829 // produce a warning. Don't warn if we're not considering macro expansion, 830 // since this identifier might be the name of a macro. 831 // FIXME: This warning is disabled in cases where it shouldn't be, like 832 // "#define constexpr constexpr", "int constexpr;" 833 if (II.isFutureCompatKeyword() && !DisableMacroExpansion) { 834 Diag(Identifier, getIdentifierTable().getFutureCompatDiagKind(II, getLangOpts())) 835 << II.getName(); 836 // Don't diagnose this keyword again in this translation unit. 837 II.setIsFutureCompatKeyword(false); 838 } 839 840 // If this is an extension token, diagnose its use. 841 // We avoid diagnosing tokens that originate from macro definitions. 842 // FIXME: This warning is disabled in cases where it shouldn't be, 843 // like "#define TY typeof", "TY(1) x". 844 if (II.isExtensionToken() && !DisableMacroExpansion) 845 Diag(Identifier, diag::ext_token_used); 846 847 // If this is the 'import' contextual keyword following an '@', note 848 // that the next token indicates a module name. 849 // 850 // Note that we do not treat 'import' as a contextual 851 // keyword when we're in a caching lexer, because caching lexers only get 852 // used in contexts where import declarations are disallowed. 853 // 854 // Likewise if this is the standard C++ import keyword. 855 if (((LastTokenWasAt && II.isModulesImport()) || 856 Identifier.is(tok::kw_import)) && 857 !InMacroArgs && !DisableMacroExpansion && 858 (getLangOpts().Modules || getLangOpts().DebuggerSupport) && 859 CurLexerCallback != CLK_CachingLexer) { 860 ModuleImportLoc = Identifier.getLocation(); 861 NamedModuleImportPath.clear(); 862 IsAtImport = true; 863 ModuleImportExpectsIdentifier = true; 864 CurLexerCallback = CLK_LexAfterModuleImport; 865 } 866 return true; 867 } 868 869 void Preprocessor::Lex(Token &Result) { 870 ++LexLevel; 871 872 // We loop here until a lex function returns a token; this avoids recursion. 873 while (!CurLexerCallback(*this, Result)) 874 ; 875 876 if (Result.is(tok::unknown) && TheModuleLoader.HadFatalFailure) 877 return; 878 879 if (Result.is(tok::code_completion) && Result.getIdentifierInfo()) { 880 // Remember the identifier before code completion token. 881 setCodeCompletionIdentifierInfo(Result.getIdentifierInfo()); 882 setCodeCompletionTokenRange(Result.getLocation(), Result.getEndLoc()); 883 // Set IdenfitierInfo to null to avoid confusing code that handles both 884 // identifiers and completion tokens. 885 Result.setIdentifierInfo(nullptr); 886 } 887 888 // Update StdCXXImportSeqState to track our position within a C++20 import-seq 889 // if this token is being produced as a result of phase 4 of translation. 890 // Update TrackGMFState to decide if we are currently in a Global Module 891 // Fragment. GMF state updates should precede StdCXXImportSeq ones, since GMF state 892 // depends on the prevailing StdCXXImportSeq state in two cases. 893 if (getLangOpts().CPlusPlusModules && LexLevel == 1 && 894 !Result.getFlag(Token::IsReinjected)) { 895 switch (Result.getKind()) { 896 case tok::l_paren: case tok::l_square: case tok::l_brace: 897 StdCXXImportSeqState.handleOpenBracket(); 898 break; 899 case tok::r_paren: case tok::r_square: 900 StdCXXImportSeqState.handleCloseBracket(); 901 break; 902 case tok::r_brace: 903 StdCXXImportSeqState.handleCloseBrace(); 904 break; 905 // This token is injected to represent the translation of '#include "a.h"' 906 // into "import a.h;". Mimic the notional ';'. 907 case tok::annot_module_include: 908 case tok::semi: 909 TrackGMFState.handleSemi(); 910 StdCXXImportSeqState.handleSemi(); 911 ModuleDeclState.handleSemi(); 912 break; 913 case tok::header_name: 914 case tok::annot_header_unit: 915 StdCXXImportSeqState.handleHeaderName(); 916 break; 917 case tok::kw_export: 918 TrackGMFState.handleExport(); 919 StdCXXImportSeqState.handleExport(); 920 ModuleDeclState.handleExport(); 921 break; 922 case tok::colon: 923 ModuleDeclState.handleColon(); 924 break; 925 case tok::period: 926 ModuleDeclState.handlePeriod(); 927 break; 928 case tok::identifier: 929 // Check "import" and "module" when there is no open bracket. The two 930 // identifiers are not meaningful with open brackets. 931 if (StdCXXImportSeqState.atTopLevel()) { 932 if (Result.getIdentifierInfo()->isModulesImport()) { 933 TrackGMFState.handleImport(StdCXXImportSeqState.afterTopLevelSeq()); 934 StdCXXImportSeqState.handleImport(); 935 if (StdCXXImportSeqState.afterImportSeq()) { 936 ModuleImportLoc = Result.getLocation(); 937 NamedModuleImportPath.clear(); 938 IsAtImport = false; 939 ModuleImportExpectsIdentifier = true; 940 CurLexerCallback = CLK_LexAfterModuleImport; 941 } 942 break; 943 } else if (Result.getIdentifierInfo() == getIdentifierInfo("module")) { 944 TrackGMFState.handleModule(StdCXXImportSeqState.afterTopLevelSeq()); 945 ModuleDeclState.handleModule(); 946 break; 947 } 948 } 949 ModuleDeclState.handleIdentifier(Result.getIdentifierInfo()); 950 if (ModuleDeclState.isModuleCandidate()) 951 break; 952 [[fallthrough]]; 953 default: 954 TrackGMFState.handleMisc(); 955 StdCXXImportSeqState.handleMisc(); 956 ModuleDeclState.handleMisc(); 957 break; 958 } 959 } 960 961 if (CurLexer && ++CheckPointCounter == CheckPointStepSize) { 962 CheckPoints[CurLexer->getFileID()].push_back(CurLexer->BufferPtr); 963 CheckPointCounter = 0; 964 } 965 966 LastTokenWasAt = Result.is(tok::at); 967 --LexLevel; 968 969 if ((LexLevel == 0 || PreprocessToken) && 970 !Result.getFlag(Token::IsReinjected)) { 971 if (LexLevel == 0) 972 ++TokenCount; 973 if (OnToken) 974 OnToken(Result); 975 } 976 } 977 978 void Preprocessor::LexTokensUntilEOF(std::vector<Token> *Tokens) { 979 while (1) { 980 Token Tok; 981 Lex(Tok); 982 if (Tok.isOneOf(tok::unknown, tok::eof, tok::eod, 983 tok::annot_repl_input_end)) 984 break; 985 if (Tokens != nullptr) 986 Tokens->push_back(Tok); 987 } 988 } 989 990 /// Lex a header-name token (including one formed from header-name-tokens if 991 /// \p AllowMacroExpansion is \c true). 992 /// 993 /// \param FilenameTok Filled in with the next token. On success, this will 994 /// be either a header_name token. On failure, it will be whatever other 995 /// token was found instead. 996 /// \param AllowMacroExpansion If \c true, allow the header name to be formed 997 /// by macro expansion (concatenating tokens as necessary if the first 998 /// token is a '<'). 999 /// \return \c true if we reached EOD or EOF while looking for a > token in 1000 /// a concatenated header name and diagnosed it. \c false otherwise. 1001 bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) { 1002 // Lex using header-name tokenization rules if tokens are being lexed from 1003 // a file. Just grab a token normally if we're in a macro expansion. 1004 if (CurPPLexer) 1005 CurPPLexer->LexIncludeFilename(FilenameTok); 1006 else 1007 Lex(FilenameTok); 1008 1009 // This could be a <foo/bar.h> file coming from a macro expansion. In this 1010 // case, glue the tokens together into an angle_string_literal token. 1011 SmallString<128> FilenameBuffer; 1012 if (FilenameTok.is(tok::less) && AllowMacroExpansion) { 1013 bool StartOfLine = FilenameTok.isAtStartOfLine(); 1014 bool LeadingSpace = FilenameTok.hasLeadingSpace(); 1015 bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro(); 1016 1017 SourceLocation Start = FilenameTok.getLocation(); 1018 SourceLocation End; 1019 FilenameBuffer.push_back('<'); 1020 1021 // Consume tokens until we find a '>'. 1022 // FIXME: A header-name could be formed starting or ending with an 1023 // alternative token. It's not clear whether that's ill-formed in all 1024 // cases. 1025 while (FilenameTok.isNot(tok::greater)) { 1026 Lex(FilenameTok); 1027 if (FilenameTok.isOneOf(tok::eod, tok::eof)) { 1028 Diag(FilenameTok.getLocation(), diag::err_expected) << tok::greater; 1029 Diag(Start, diag::note_matching) << tok::less; 1030 return true; 1031 } 1032 1033 End = FilenameTok.getLocation(); 1034 1035 // FIXME: Provide code completion for #includes. 1036 if (FilenameTok.is(tok::code_completion)) { 1037 setCodeCompletionReached(); 1038 Lex(FilenameTok); 1039 continue; 1040 } 1041 1042 // Append the spelling of this token to the buffer. If there was a space 1043 // before it, add it now. 1044 if (FilenameTok.hasLeadingSpace()) 1045 FilenameBuffer.push_back(' '); 1046 1047 // Get the spelling of the token, directly into FilenameBuffer if 1048 // possible. 1049 size_t PreAppendSize = FilenameBuffer.size(); 1050 FilenameBuffer.resize(PreAppendSize + FilenameTok.getLength()); 1051 1052 const char *BufPtr = &FilenameBuffer[PreAppendSize]; 1053 unsigned ActualLen = getSpelling(FilenameTok, BufPtr); 1054 1055 // If the token was spelled somewhere else, copy it into FilenameBuffer. 1056 if (BufPtr != &FilenameBuffer[PreAppendSize]) 1057 memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen); 1058 1059 // Resize FilenameBuffer to the correct size. 1060 if (FilenameTok.getLength() != ActualLen) 1061 FilenameBuffer.resize(PreAppendSize + ActualLen); 1062 } 1063 1064 FilenameTok.startToken(); 1065 FilenameTok.setKind(tok::header_name); 1066 FilenameTok.setFlagValue(Token::StartOfLine, StartOfLine); 1067 FilenameTok.setFlagValue(Token::LeadingSpace, LeadingSpace); 1068 FilenameTok.setFlagValue(Token::LeadingEmptyMacro, LeadingEmptyMacro); 1069 CreateString(FilenameBuffer, FilenameTok, Start, End); 1070 } else if (FilenameTok.is(tok::string_literal) && AllowMacroExpansion) { 1071 // Convert a string-literal token of the form " h-char-sequence " 1072 // (produced by macro expansion) into a header-name token. 1073 // 1074 // The rules for header-names don't quite match the rules for 1075 // string-literals, but all the places where they differ result in 1076 // undefined behavior, so we can and do treat them the same. 1077 // 1078 // A string-literal with a prefix or suffix is not translated into a 1079 // header-name. This could theoretically be observable via the C++20 1080 // context-sensitive header-name formation rules. 1081 StringRef Str = getSpelling(FilenameTok, FilenameBuffer); 1082 if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"') 1083 FilenameTok.setKind(tok::header_name); 1084 } 1085 1086 return false; 1087 } 1088 1089 /// Collect the tokens of a C++20 pp-import-suffix. 1090 void Preprocessor::CollectPpImportSuffix(SmallVectorImpl<Token> &Toks) { 1091 // FIXME: For error recovery, consider recognizing attribute syntax here 1092 // and terminating / diagnosing a missing semicolon if we find anything 1093 // else? (Can we leave that to the parser?) 1094 unsigned BracketDepth = 0; 1095 while (true) { 1096 Toks.emplace_back(); 1097 Lex(Toks.back()); 1098 1099 switch (Toks.back().getKind()) { 1100 case tok::l_paren: case tok::l_square: case tok::l_brace: 1101 ++BracketDepth; 1102 break; 1103 1104 case tok::r_paren: case tok::r_square: case tok::r_brace: 1105 if (BracketDepth == 0) 1106 return; 1107 --BracketDepth; 1108 break; 1109 1110 case tok::semi: 1111 if (BracketDepth == 0) 1112 return; 1113 break; 1114 1115 case tok::eof: 1116 return; 1117 1118 default: 1119 break; 1120 } 1121 } 1122 } 1123 1124 1125 /// Lex a token following the 'import' contextual keyword. 1126 /// 1127 /// pp-import: [C++20] 1128 /// import header-name pp-import-suffix[opt] ; 1129 /// import header-name-tokens pp-import-suffix[opt] ; 1130 /// [ObjC] @ import module-name ; 1131 /// [Clang] import module-name ; 1132 /// 1133 /// header-name-tokens: 1134 /// string-literal 1135 /// < [any sequence of preprocessing-tokens other than >] > 1136 /// 1137 /// module-name: 1138 /// module-name-qualifier[opt] identifier 1139 /// 1140 /// module-name-qualifier 1141 /// module-name-qualifier[opt] identifier . 1142 /// 1143 /// We respond to a pp-import by importing macros from the named module. 1144 bool Preprocessor::LexAfterModuleImport(Token &Result) { 1145 // Figure out what kind of lexer we actually have. 1146 recomputeCurLexerKind(); 1147 1148 // Lex the next token. The header-name lexing rules are used at the start of 1149 // a pp-import. 1150 // 1151 // For now, we only support header-name imports in C++20 mode. 1152 // FIXME: Should we allow this in all language modes that support an import 1153 // declaration as an extension? 1154 if (NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules) { 1155 if (LexHeaderName(Result)) 1156 return true; 1157 1158 if (Result.is(tok::colon) && ModuleDeclState.isNamedModule()) { 1159 std::string Name = ModuleDeclState.getPrimaryName().str(); 1160 Name += ":"; 1161 NamedModuleImportPath.push_back( 1162 {getIdentifierInfo(Name), Result.getLocation()}); 1163 CurLexerCallback = CLK_LexAfterModuleImport; 1164 return true; 1165 } 1166 } else { 1167 Lex(Result); 1168 } 1169 1170 // Allocate a holding buffer for a sequence of tokens and introduce it into 1171 // the token stream. 1172 auto EnterTokens = [this](ArrayRef<Token> Toks) { 1173 auto ToksCopy = std::make_unique<Token[]>(Toks.size()); 1174 std::copy(Toks.begin(), Toks.end(), ToksCopy.get()); 1175 EnterTokenStream(std::move(ToksCopy), Toks.size(), 1176 /*DisableMacroExpansion*/ true, /*IsReinject*/ false); 1177 }; 1178 1179 bool ImportingHeader = Result.is(tok::header_name); 1180 // Check for a header-name. 1181 SmallVector<Token, 32> Suffix; 1182 if (ImportingHeader) { 1183 // Enter the header-name token into the token stream; a Lex action cannot 1184 // both return a token and cache tokens (doing so would corrupt the token 1185 // cache if the call to Lex comes from CachingLex / PeekAhead). 1186 Suffix.push_back(Result); 1187 1188 // Consume the pp-import-suffix and expand any macros in it now. We'll add 1189 // it back into the token stream later. 1190 CollectPpImportSuffix(Suffix); 1191 if (Suffix.back().isNot(tok::semi)) { 1192 // This is not a pp-import after all. 1193 EnterTokens(Suffix); 1194 return false; 1195 } 1196 1197 // C++2a [cpp.module]p1: 1198 // The ';' preprocessing-token terminating a pp-import shall not have 1199 // been produced by macro replacement. 1200 SourceLocation SemiLoc = Suffix.back().getLocation(); 1201 if (SemiLoc.isMacroID()) 1202 Diag(SemiLoc, diag::err_header_import_semi_in_macro); 1203 1204 // Reconstitute the import token. 1205 Token ImportTok; 1206 ImportTok.startToken(); 1207 ImportTok.setKind(tok::kw_import); 1208 ImportTok.setLocation(ModuleImportLoc); 1209 ImportTok.setIdentifierInfo(getIdentifierInfo("import")); 1210 ImportTok.setLength(6); 1211 1212 auto Action = HandleHeaderIncludeOrImport( 1213 /*HashLoc*/ SourceLocation(), ImportTok, Suffix.front(), SemiLoc); 1214 switch (Action.Kind) { 1215 case ImportAction::None: 1216 break; 1217 1218 case ImportAction::ModuleBegin: 1219 // Let the parser know we're textually entering the module. 1220 Suffix.emplace_back(); 1221 Suffix.back().startToken(); 1222 Suffix.back().setKind(tok::annot_module_begin); 1223 Suffix.back().setLocation(SemiLoc); 1224 Suffix.back().setAnnotationEndLoc(SemiLoc); 1225 Suffix.back().setAnnotationValue(Action.ModuleForHeader); 1226 [[fallthrough]]; 1227 1228 case ImportAction::ModuleImport: 1229 case ImportAction::HeaderUnitImport: 1230 case ImportAction::SkippedModuleImport: 1231 // We chose to import (or textually enter) the file. Convert the 1232 // header-name token into a header unit annotation token. 1233 Suffix[0].setKind(tok::annot_header_unit); 1234 Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation()); 1235 Suffix[0].setAnnotationValue(Action.ModuleForHeader); 1236 // FIXME: Call the moduleImport callback? 1237 break; 1238 case ImportAction::Failure: 1239 assert(TheModuleLoader.HadFatalFailure && 1240 "This should be an early exit only to a fatal error"); 1241 Result.setKind(tok::eof); 1242 CurLexer->cutOffLexing(); 1243 EnterTokens(Suffix); 1244 return true; 1245 } 1246 1247 EnterTokens(Suffix); 1248 return false; 1249 } 1250 1251 // The token sequence 1252 // 1253 // import identifier (. identifier)* 1254 // 1255 // indicates a module import directive. We already saw the 'import' 1256 // contextual keyword, so now we're looking for the identifiers. 1257 if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) { 1258 // We expected to see an identifier here, and we did; continue handling 1259 // identifiers. 1260 NamedModuleImportPath.push_back( 1261 std::make_pair(Result.getIdentifierInfo(), Result.getLocation())); 1262 ModuleImportExpectsIdentifier = false; 1263 CurLexerCallback = CLK_LexAfterModuleImport; 1264 return true; 1265 } 1266 1267 // If we're expecting a '.' or a ';', and we got a '.', then wait until we 1268 // see the next identifier. (We can also see a '[[' that begins an 1269 // attribute-specifier-seq here under the Standard C++ Modules.) 1270 if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) { 1271 ModuleImportExpectsIdentifier = true; 1272 CurLexerCallback = CLK_LexAfterModuleImport; 1273 return true; 1274 } 1275 1276 // If we didn't recognize a module name at all, this is not a (valid) import. 1277 if (NamedModuleImportPath.empty() || Result.is(tok::eof)) 1278 return true; 1279 1280 // Consume the pp-import-suffix and expand any macros in it now, if we're not 1281 // at the semicolon already. 1282 SourceLocation SemiLoc = Result.getLocation(); 1283 if (Result.isNot(tok::semi)) { 1284 Suffix.push_back(Result); 1285 CollectPpImportSuffix(Suffix); 1286 if (Suffix.back().isNot(tok::semi)) { 1287 // This is not an import after all. 1288 EnterTokens(Suffix); 1289 return false; 1290 } 1291 SemiLoc = Suffix.back().getLocation(); 1292 } 1293 1294 // Under the standard C++ Modules, the dot is just part of the module name, 1295 // and not a real hierarchy separator. Flatten such module names now. 1296 // 1297 // FIXME: Is this the right level to be performing this transformation? 1298 std::string FlatModuleName; 1299 if (getLangOpts().CPlusPlusModules) { 1300 for (auto &Piece : NamedModuleImportPath) { 1301 // If the FlatModuleName ends with colon, it implies it is a partition. 1302 if (!FlatModuleName.empty() && FlatModuleName.back() != ':') 1303 FlatModuleName += "."; 1304 FlatModuleName += Piece.first->getName(); 1305 } 1306 SourceLocation FirstPathLoc = NamedModuleImportPath[0].second; 1307 NamedModuleImportPath.clear(); 1308 NamedModuleImportPath.push_back( 1309 std::make_pair(getIdentifierInfo(FlatModuleName), FirstPathLoc)); 1310 } 1311 1312 Module *Imported = nullptr; 1313 // We don't/shouldn't load the standard c++20 modules when preprocessing. 1314 if (getLangOpts().Modules && !isInImportingCXXNamedModules()) { 1315 Imported = TheModuleLoader.loadModule(ModuleImportLoc, 1316 NamedModuleImportPath, 1317 Module::Hidden, 1318 /*IsInclusionDirective=*/false); 1319 if (Imported) 1320 makeModuleVisible(Imported, SemiLoc); 1321 } 1322 1323 if (Callbacks) 1324 Callbacks->moduleImport(ModuleImportLoc, NamedModuleImportPath, Imported); 1325 1326 if (!Suffix.empty()) { 1327 EnterTokens(Suffix); 1328 return false; 1329 } 1330 return true; 1331 } 1332 1333 void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) { 1334 CurSubmoduleState->VisibleModules.setVisible( 1335 M, Loc, [](Module *) {}, 1336 [&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) { 1337 // FIXME: Include the path in the diagnostic. 1338 // FIXME: Include the import location for the conflicting module. 1339 Diag(ModuleImportLoc, diag::warn_module_conflict) 1340 << Path[0]->getFullModuleName() 1341 << Conflict->getFullModuleName() 1342 << Message; 1343 }); 1344 1345 // Add this module to the imports list of the currently-built submodule. 1346 if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M) 1347 BuildingSubmoduleStack.back().M->Imports.insert(M); 1348 } 1349 1350 bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String, 1351 const char *DiagnosticTag, 1352 bool AllowMacroExpansion) { 1353 // We need at least one string literal. 1354 if (Result.isNot(tok::string_literal)) { 1355 Diag(Result, diag::err_expected_string_literal) 1356 << /*Source='in...'*/0 << DiagnosticTag; 1357 return false; 1358 } 1359 1360 // Lex string literal tokens, optionally with macro expansion. 1361 SmallVector<Token, 4> StrToks; 1362 do { 1363 StrToks.push_back(Result); 1364 1365 if (Result.hasUDSuffix()) 1366 Diag(Result, diag::err_invalid_string_udl); 1367 1368 if (AllowMacroExpansion) 1369 Lex(Result); 1370 else 1371 LexUnexpandedToken(Result); 1372 } while (Result.is(tok::string_literal)); 1373 1374 // Concatenate and parse the strings. 1375 StringLiteralParser Literal(StrToks, *this); 1376 assert(Literal.isOrdinary() && "Didn't allow wide strings in"); 1377 1378 if (Literal.hadError) 1379 return false; 1380 1381 if (Literal.Pascal) { 1382 Diag(StrToks[0].getLocation(), diag::err_expected_string_literal) 1383 << /*Source='in...'*/0 << DiagnosticTag; 1384 return false; 1385 } 1386 1387 String = std::string(Literal.GetString()); 1388 return true; 1389 } 1390 1391 bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) { 1392 assert(Tok.is(tok::numeric_constant)); 1393 SmallString<8> IntegerBuffer; 1394 bool NumberInvalid = false; 1395 StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid); 1396 if (NumberInvalid) 1397 return false; 1398 NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(), 1399 getLangOpts(), getTargetInfo(), 1400 getDiagnostics()); 1401 if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix()) 1402 return false; 1403 llvm::APInt APVal(64, 0); 1404 if (Literal.GetIntegerValue(APVal)) 1405 return false; 1406 Lex(Tok); 1407 Value = APVal.getLimitedValue(); 1408 return true; 1409 } 1410 1411 void Preprocessor::addCommentHandler(CommentHandler *Handler) { 1412 assert(Handler && "NULL comment handler"); 1413 assert(!llvm::is_contained(CommentHandlers, Handler) && 1414 "Comment handler already registered"); 1415 CommentHandlers.push_back(Handler); 1416 } 1417 1418 void Preprocessor::removeCommentHandler(CommentHandler *Handler) { 1419 std::vector<CommentHandler *>::iterator Pos = 1420 llvm::find(CommentHandlers, Handler); 1421 assert(Pos != CommentHandlers.end() && "Comment handler not registered"); 1422 CommentHandlers.erase(Pos); 1423 } 1424 1425 bool Preprocessor::HandleComment(Token &result, SourceRange Comment) { 1426 bool AnyPendingTokens = false; 1427 for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(), 1428 HEnd = CommentHandlers.end(); 1429 H != HEnd; ++H) { 1430 if ((*H)->HandleComment(*this, Comment)) 1431 AnyPendingTokens = true; 1432 } 1433 if (!AnyPendingTokens || getCommentRetentionState()) 1434 return false; 1435 Lex(result); 1436 return true; 1437 } 1438 1439 void Preprocessor::emitMacroDeprecationWarning(const Token &Identifier) const { 1440 const MacroAnnotations &A = 1441 getMacroAnnotations(Identifier.getIdentifierInfo()); 1442 assert(A.DeprecationInfo && 1443 "Macro deprecation warning without recorded annotation!"); 1444 const MacroAnnotationInfo &Info = *A.DeprecationInfo; 1445 if (Info.Message.empty()) 1446 Diag(Identifier, diag::warn_pragma_deprecated_macro_use) 1447 << Identifier.getIdentifierInfo() << 0; 1448 else 1449 Diag(Identifier, diag::warn_pragma_deprecated_macro_use) 1450 << Identifier.getIdentifierInfo() << 1 << Info.Message; 1451 Diag(Info.Location, diag::note_pp_macro_annotation) << 0; 1452 } 1453 1454 void Preprocessor::emitRestrictExpansionWarning(const Token &Identifier) const { 1455 const MacroAnnotations &A = 1456 getMacroAnnotations(Identifier.getIdentifierInfo()); 1457 assert(A.RestrictExpansionInfo && 1458 "Macro restricted expansion warning without recorded annotation!"); 1459 const MacroAnnotationInfo &Info = *A.RestrictExpansionInfo; 1460 if (Info.Message.empty()) 1461 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) 1462 << Identifier.getIdentifierInfo() << 0; 1463 else 1464 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) 1465 << Identifier.getIdentifierInfo() << 1 << Info.Message; 1466 Diag(Info.Location, diag::note_pp_macro_annotation) << 1; 1467 } 1468 1469 void Preprocessor::emitRestrictInfNaNWarning(const Token &Identifier, 1470 unsigned DiagSelection) const { 1471 Diag(Identifier, diag::warn_fp_nan_inf_when_disabled) << DiagSelection << 1; 1472 } 1473 1474 void Preprocessor::emitFinalMacroWarning(const Token &Identifier, 1475 bool IsUndef) const { 1476 const MacroAnnotations &A = 1477 getMacroAnnotations(Identifier.getIdentifierInfo()); 1478 assert(A.FinalAnnotationLoc && 1479 "Final macro warning without recorded annotation!"); 1480 1481 Diag(Identifier, diag::warn_pragma_final_macro) 1482 << Identifier.getIdentifierInfo() << (IsUndef ? 0 : 1); 1483 Diag(*A.FinalAnnotationLoc, diag::note_pp_macro_annotation) << 2; 1484 } 1485 1486 bool Preprocessor::isSafeBufferOptOut(const SourceManager &SourceMgr, 1487 const SourceLocation &Loc) const { 1488 // The lambda that tests if a `Loc` is in an opt-out region given one opt-out 1489 // region map: 1490 auto TestInMap = [&SourceMgr](const SafeBufferOptOutRegionsTy &Map, 1491 const SourceLocation &Loc) -> bool { 1492 // Try to find a region in `SafeBufferOptOutMap` where `Loc` is in: 1493 auto FirstRegionEndingAfterLoc = llvm::partition_point( 1494 Map, [&SourceMgr, 1495 &Loc](const std::pair<SourceLocation, SourceLocation> &Region) { 1496 return SourceMgr.isBeforeInTranslationUnit(Region.second, Loc); 1497 }); 1498 1499 if (FirstRegionEndingAfterLoc != Map.end()) { 1500 // To test if the start location of the found region precedes `Loc`: 1501 return SourceMgr.isBeforeInTranslationUnit( 1502 FirstRegionEndingAfterLoc->first, Loc); 1503 } 1504 // If we do not find a region whose end location passes `Loc`, we want to 1505 // check if the current region is still open: 1506 if (!Map.empty() && Map.back().first == Map.back().second) 1507 return SourceMgr.isBeforeInTranslationUnit(Map.back().first, Loc); 1508 return false; 1509 }; 1510 1511 // What the following does: 1512 // 1513 // If `Loc` belongs to the local TU, we just look up `SafeBufferOptOutMap`. 1514 // Otherwise, `Loc` is from a loaded AST. We look up the 1515 // `LoadedSafeBufferOptOutMap` first to get the opt-out region map of the 1516 // loaded AST where `Loc` is at. Then we find if `Loc` is in an opt-out 1517 // region w.r.t. the region map. If the region map is absent, it means there 1518 // is no opt-out pragma in that loaded AST. 1519 // 1520 // Opt-out pragmas in the local TU or a loaded AST is not visible to another 1521 // one of them. That means if you put the pragmas around a `#include 1522 // "module.h"`, where module.h is a module, it is not actually suppressing 1523 // warnings in module.h. This is fine because warnings in module.h will be 1524 // reported when module.h is compiled in isolation and nothing in module.h 1525 // will be analyzed ever again. So you will not see warnings from the file 1526 // that imports module.h anyway. And you can't even do the same thing for PCHs 1527 // because they can only be included from the command line. 1528 1529 if (SourceMgr.isLocalSourceLocation(Loc)) 1530 return TestInMap(SafeBufferOptOutMap, Loc); 1531 1532 const SafeBufferOptOutRegionsTy *LoadedRegions = 1533 LoadedSafeBufferOptOutMap.lookupLoadedOptOutMap(Loc, SourceMgr); 1534 1535 if (LoadedRegions) 1536 return TestInMap(*LoadedRegions, Loc); 1537 return false; 1538 } 1539 1540 bool Preprocessor::enterOrExitSafeBufferOptOutRegion( 1541 bool isEnter, const SourceLocation &Loc) { 1542 if (isEnter) { 1543 if (isPPInSafeBufferOptOutRegion()) 1544 return true; // invalid enter action 1545 InSafeBufferOptOutRegion = true; 1546 CurrentSafeBufferOptOutStart = Loc; 1547 1548 // To set the start location of a new region: 1549 1550 if (!SafeBufferOptOutMap.empty()) { 1551 [[maybe_unused]] auto *PrevRegion = &SafeBufferOptOutMap.back(); 1552 assert(PrevRegion->first != PrevRegion->second && 1553 "Shall not begin a safe buffer opt-out region before closing the " 1554 "previous one."); 1555 } 1556 // If the start location equals to the end location, we call the region a 1557 // open region or a unclosed region (i.e., end location has not been set 1558 // yet). 1559 SafeBufferOptOutMap.emplace_back(Loc, Loc); 1560 } else { 1561 if (!isPPInSafeBufferOptOutRegion()) 1562 return true; // invalid enter action 1563 InSafeBufferOptOutRegion = false; 1564 1565 // To set the end location of the current open region: 1566 1567 assert(!SafeBufferOptOutMap.empty() && 1568 "Misordered safe buffer opt-out regions"); 1569 auto *CurrRegion = &SafeBufferOptOutMap.back(); 1570 assert(CurrRegion->first == CurrRegion->second && 1571 "Set end location to a closed safe buffer opt-out region"); 1572 CurrRegion->second = Loc; 1573 } 1574 return false; 1575 } 1576 1577 bool Preprocessor::isPPInSafeBufferOptOutRegion() { 1578 return InSafeBufferOptOutRegion; 1579 } 1580 bool Preprocessor::isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc) { 1581 StartLoc = CurrentSafeBufferOptOutStart; 1582 return InSafeBufferOptOutRegion; 1583 } 1584 1585 SmallVector<SourceLocation, 64> 1586 Preprocessor::serializeSafeBufferOptOutMap() const { 1587 assert(!InSafeBufferOptOutRegion && 1588 "Attempt to serialize safe buffer opt-out regions before file being " 1589 "completely preprocessed"); 1590 1591 SmallVector<SourceLocation, 64> SrcSeq; 1592 1593 for (const auto &[begin, end] : SafeBufferOptOutMap) { 1594 SrcSeq.push_back(begin); 1595 SrcSeq.push_back(end); 1596 } 1597 // Only `SafeBufferOptOutMap` gets serialized. No need to serialize 1598 // `LoadedSafeBufferOptOutMap` because if this TU loads a pch/module, every 1599 // pch/module in the pch-chain/module-DAG will be loaded one by one in order. 1600 // It means that for each loading pch/module m, it just needs to load m's own 1601 // `SafeBufferOptOutMap`. 1602 return SrcSeq; 1603 } 1604 1605 bool Preprocessor::setDeserializedSafeBufferOptOutMap( 1606 const SmallVectorImpl<SourceLocation> &SourceLocations) { 1607 if (SourceLocations.size() == 0) 1608 return false; 1609 1610 assert(SourceLocations.size() % 2 == 0 && 1611 "ill-formed SourceLocation sequence"); 1612 1613 auto It = SourceLocations.begin(); 1614 SafeBufferOptOutRegionsTy &Regions = 1615 LoadedSafeBufferOptOutMap.findAndConsLoadedOptOutMap(*It, SourceMgr); 1616 1617 do { 1618 SourceLocation Begin = *It++; 1619 SourceLocation End = *It++; 1620 1621 Regions.emplace_back(Begin, End); 1622 } while (It != SourceLocations.end()); 1623 return true; 1624 } 1625 1626 ModuleLoader::~ModuleLoader() = default; 1627 1628 CommentHandler::~CommentHandler() = default; 1629 1630 EmptylineHandler::~EmptylineHandler() = default; 1631 1632 CodeCompletionHandler::~CodeCompletionHandler() = default; 1633 1634 void Preprocessor::createPreprocessingRecord() { 1635 if (Record) 1636 return; 1637 1638 Record = new PreprocessingRecord(getSourceManager()); 1639 addPPCallbacks(std::unique_ptr<PPCallbacks>(Record)); 1640 } 1641 1642 const char *Preprocessor::getCheckPoint(FileID FID, const char *Start) const { 1643 if (auto It = CheckPoints.find(FID); It != CheckPoints.end()) { 1644 const SmallVector<const char *> &FileCheckPoints = It->second; 1645 const char *Last = nullptr; 1646 // FIXME: Do better than a linear search. 1647 for (const char *P : FileCheckPoints) { 1648 if (P > Start) 1649 break; 1650 Last = P; 1651 } 1652 return Last; 1653 } 1654 1655 return nullptr; 1656 } 1657