1 //===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Preprocessor interface. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // Options to support: 14 // -H - Print the name of each header file used. 15 // -d[DNI] - Dump various things. 16 // -fworking-directory - #line's with preprocessor's working dir. 17 // -fpreprocessed 18 // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD 19 // -W* 20 // -w 21 // 22 // Messages to emit: 23 // "Multiple include guards may be useful for:\n" 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "clang/Lex/Preprocessor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/FileManager.h" 30 #include "clang/Basic/FileSystemStatCache.h" 31 #include "clang/Basic/IdentifierTable.h" 32 #include "clang/Basic/LLVM.h" 33 #include "clang/Basic/LangOptions.h" 34 #include "clang/Basic/Module.h" 35 #include "clang/Basic/SourceLocation.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Lex/CodeCompletionHandler.h" 39 #include "clang/Lex/ExternalPreprocessorSource.h" 40 #include "clang/Lex/HeaderSearch.h" 41 #include "clang/Lex/LexDiagnostic.h" 42 #include "clang/Lex/Lexer.h" 43 #include "clang/Lex/LiteralSupport.h" 44 #include "clang/Lex/MacroArgs.h" 45 #include "clang/Lex/MacroInfo.h" 46 #include "clang/Lex/ModuleLoader.h" 47 #include "clang/Lex/Pragma.h" 48 #include "clang/Lex/PreprocessingRecord.h" 49 #include "clang/Lex/PreprocessorLexer.h" 50 #include "clang/Lex/PreprocessorOptions.h" 51 #include "clang/Lex/ScratchBuffer.h" 52 #include "clang/Lex/Token.h" 53 #include "clang/Lex/TokenLexer.h" 54 #include "llvm/ADT/APInt.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/DenseMap.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallString.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/Support/Capacity.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MemoryBuffer.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <memory> 68 #include <optional> 69 #include <string> 70 #include <utility> 71 #include <vector> 72 73 using namespace clang; 74 75 LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry) 76 77 ExternalPreprocessorSource::~ExternalPreprocessorSource() = default; 78 79 Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts, 80 DiagnosticsEngine &diags, const LangOptions &opts, 81 SourceManager &SM, HeaderSearch &Headers, 82 ModuleLoader &TheModuleLoader, 83 IdentifierInfoLookup *IILookup, bool OwnsHeaders, 84 TranslationUnitKind TUKind) 85 : PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts), 86 FileMgr(Headers.getFileMgr()), SourceMgr(SM), 87 ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers), 88 TheModuleLoader(TheModuleLoader), ExternalSource(nullptr), 89 // As the language options may have not been loaded yet (when 90 // deserializing an ASTUnit), adding keywords to the identifier table is 91 // deferred to Preprocessor::Initialize(). 92 Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())), 93 TUKind(TUKind), SkipMainFilePreamble(0, true), 94 CurSubmoduleState(&NullSubmoduleState) { 95 OwnsHeaderSearch = OwnsHeaders; 96 97 // Default to discarding comments. 98 KeepComments = false; 99 KeepMacroComments = false; 100 SuppressIncludeNotFoundError = false; 101 102 // Macro expansion is enabled. 103 DisableMacroExpansion = false; 104 MacroExpansionInDirectivesOverride = false; 105 InMacroArgs = false; 106 ArgMacro = nullptr; 107 InMacroArgPreExpansion = false; 108 NumCachedTokenLexers = 0; 109 PragmasEnabled = true; 110 ParsingIfOrElifDirective = false; 111 PreprocessedOutput = false; 112 113 // We haven't read anything from the external source. 114 ReadMacrosFromExternalSource = false; 115 116 BuiltinInfo = std::make_unique<Builtin::Context>(); 117 118 // "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of 119 // a macro. They get unpoisoned where it is allowed. 120 (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); 121 SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use); 122 (Ident__VA_OPT__ = getIdentifierInfo("__VA_OPT__"))->setIsPoisoned(); 123 SetPoisonReason(Ident__VA_OPT__,diag::ext_pp_bad_vaopt_use); 124 125 // Initialize the pragma handlers. 126 RegisterBuiltinPragmas(); 127 128 // Initialize builtin macros like __LINE__ and friends. 129 RegisterBuiltinMacros(); 130 131 if(LangOpts.Borland) { 132 Ident__exception_info = getIdentifierInfo("_exception_info"); 133 Ident___exception_info = getIdentifierInfo("__exception_info"); 134 Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation"); 135 Ident__exception_code = getIdentifierInfo("_exception_code"); 136 Ident___exception_code = getIdentifierInfo("__exception_code"); 137 Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode"); 138 Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination"); 139 Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination"); 140 Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination"); 141 } else { 142 Ident__exception_info = Ident__exception_code = nullptr; 143 Ident__abnormal_termination = Ident___exception_info = nullptr; 144 Ident___exception_code = Ident___abnormal_termination = nullptr; 145 Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr; 146 Ident_AbnormalTermination = nullptr; 147 } 148 149 // Default incremental processing to -fincremental-extensions, clients can 150 // override with `enableIncrementalProcessing` if desired. 151 IncrementalProcessing = LangOpts.IncrementalExtensions; 152 153 // If using a PCH where a #pragma hdrstop is expected, start skipping tokens. 154 if (usingPCHWithPragmaHdrStop()) 155 SkippingUntilPragmaHdrStop = true; 156 157 // If using a PCH with a through header, start skipping tokens. 158 if (!this->PPOpts->PCHThroughHeader.empty() && 159 !this->PPOpts->ImplicitPCHInclude.empty()) 160 SkippingUntilPCHThroughHeader = true; 161 162 if (this->PPOpts->GeneratePreamble) 163 PreambleConditionalStack.startRecording(); 164 165 MaxTokens = LangOpts.MaxTokens; 166 } 167 168 Preprocessor::~Preprocessor() { 169 assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!"); 170 171 IncludeMacroStack.clear(); 172 173 // Free any cached macro expanders. 174 // This populates MacroArgCache, so all TokenLexers need to be destroyed 175 // before the code below that frees up the MacroArgCache list. 176 std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr); 177 CurTokenLexer.reset(); 178 179 // Free any cached MacroArgs. 180 for (MacroArgs *ArgList = MacroArgCache; ArgList;) 181 ArgList = ArgList->deallocate(); 182 183 // Delete the header search info, if we own it. 184 if (OwnsHeaderSearch) 185 delete &HeaderInfo; 186 } 187 188 void Preprocessor::Initialize(const TargetInfo &Target, 189 const TargetInfo *AuxTarget) { 190 assert((!this->Target || this->Target == &Target) && 191 "Invalid override of target information"); 192 this->Target = &Target; 193 194 assert((!this->AuxTarget || this->AuxTarget == AuxTarget) && 195 "Invalid override of aux target information."); 196 this->AuxTarget = AuxTarget; 197 198 // Initialize information about built-ins. 199 BuiltinInfo->InitializeTarget(Target, AuxTarget); 200 HeaderInfo.setTarget(Target); 201 202 // Populate the identifier table with info about keywords for the current language. 203 Identifiers.AddKeywords(LangOpts); 204 205 // Initialize the __FTL_EVAL_METHOD__ macro to the TargetInfo. 206 setTUFPEvalMethod(getTargetInfo().getFPEvalMethod()); 207 208 if (getLangOpts().getFPEvalMethod() == LangOptions::FEM_UnsetOnCommandLine) 209 // Use setting from TargetInfo. 210 setCurrentFPEvalMethod(SourceLocation(), Target.getFPEvalMethod()); 211 else 212 // Set initial value of __FLT_EVAL_METHOD__ from the command line. 213 setCurrentFPEvalMethod(SourceLocation(), getLangOpts().getFPEvalMethod()); 214 } 215 216 void Preprocessor::InitializeForModelFile() { 217 NumEnteredSourceFiles = 0; 218 219 // Reset pragmas 220 PragmaHandlersBackup = std::move(PragmaHandlers); 221 PragmaHandlers = std::make_unique<PragmaNamespace>(StringRef()); 222 RegisterBuiltinPragmas(); 223 224 // Reset PredefinesFileID 225 PredefinesFileID = FileID(); 226 } 227 228 void Preprocessor::FinalizeForModelFile() { 229 NumEnteredSourceFiles = 1; 230 231 PragmaHandlers = std::move(PragmaHandlersBackup); 232 } 233 234 void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { 235 llvm::errs() << tok::getTokenName(Tok.getKind()); 236 237 if (!Tok.isAnnotation()) 238 llvm::errs() << " '" << getSpelling(Tok) << "'"; 239 240 if (!DumpFlags) return; 241 242 llvm::errs() << "\t"; 243 if (Tok.isAtStartOfLine()) 244 llvm::errs() << " [StartOfLine]"; 245 if (Tok.hasLeadingSpace()) 246 llvm::errs() << " [LeadingSpace]"; 247 if (Tok.isExpandDisabled()) 248 llvm::errs() << " [ExpandDisabled]"; 249 if (Tok.needsCleaning()) { 250 const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); 251 llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength()) 252 << "']"; 253 } 254 255 llvm::errs() << "\tLoc=<"; 256 DumpLocation(Tok.getLocation()); 257 llvm::errs() << ">"; 258 } 259 260 void Preprocessor::DumpLocation(SourceLocation Loc) const { 261 Loc.print(llvm::errs(), SourceMgr); 262 } 263 264 void Preprocessor::DumpMacro(const MacroInfo &MI) const { 265 llvm::errs() << "MACRO: "; 266 for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { 267 DumpToken(MI.getReplacementToken(i)); 268 llvm::errs() << " "; 269 } 270 llvm::errs() << "\n"; 271 } 272 273 void Preprocessor::PrintStats() { 274 llvm::errs() << "\n*** Preprocessor Stats:\n"; 275 llvm::errs() << NumDirectives << " directives found:\n"; 276 llvm::errs() << " " << NumDefined << " #define.\n"; 277 llvm::errs() << " " << NumUndefined << " #undef.\n"; 278 llvm::errs() << " #include/#include_next/#import:\n"; 279 llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n"; 280 llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n"; 281 llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n"; 282 llvm::errs() << " " << NumElse << " #else/#elif/#elifdef/#elifndef.\n"; 283 llvm::errs() << " " << NumEndif << " #endif.\n"; 284 llvm::errs() << " " << NumPragma << " #pragma.\n"; 285 llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; 286 287 llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" 288 << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " 289 << NumFastMacroExpanded << " on the fast path.\n"; 290 llvm::errs() << (NumFastTokenPaste+NumTokenPaste) 291 << " token paste (##) operations performed, " 292 << NumFastTokenPaste << " on the fast path.\n"; 293 294 llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total"; 295 296 llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory(); 297 llvm::errs() << "\n Macro Expanded Tokens: " 298 << llvm::capacity_in_bytes(MacroExpandedTokens); 299 llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity(); 300 // FIXME: List information for all submodules. 301 llvm::errs() << "\n Macros: " 302 << llvm::capacity_in_bytes(CurSubmoduleState->Macros); 303 llvm::errs() << "\n #pragma push_macro Info: " 304 << llvm::capacity_in_bytes(PragmaPushMacroInfo); 305 llvm::errs() << "\n Poison Reasons: " 306 << llvm::capacity_in_bytes(PoisonReasons); 307 llvm::errs() << "\n Comment Handlers: " 308 << llvm::capacity_in_bytes(CommentHandlers) << "\n"; 309 } 310 311 Preprocessor::macro_iterator 312 Preprocessor::macro_begin(bool IncludeExternalMacros) const { 313 if (IncludeExternalMacros && ExternalSource && 314 !ReadMacrosFromExternalSource) { 315 ReadMacrosFromExternalSource = true; 316 ExternalSource->ReadDefinedMacros(); 317 } 318 319 // Make sure we cover all macros in visible modules. 320 for (const ModuleMacro &Macro : ModuleMacros) 321 CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState())); 322 323 return CurSubmoduleState->Macros.begin(); 324 } 325 326 size_t Preprocessor::getTotalMemory() const { 327 return BP.getTotalMemory() 328 + llvm::capacity_in_bytes(MacroExpandedTokens) 329 + Predefines.capacity() /* Predefines buffer. */ 330 // FIXME: Include sizes from all submodules, and include MacroInfo sizes, 331 // and ModuleMacros. 332 + llvm::capacity_in_bytes(CurSubmoduleState->Macros) 333 + llvm::capacity_in_bytes(PragmaPushMacroInfo) 334 + llvm::capacity_in_bytes(PoisonReasons) 335 + llvm::capacity_in_bytes(CommentHandlers); 336 } 337 338 Preprocessor::macro_iterator 339 Preprocessor::macro_end(bool IncludeExternalMacros) const { 340 if (IncludeExternalMacros && ExternalSource && 341 !ReadMacrosFromExternalSource) { 342 ReadMacrosFromExternalSource = true; 343 ExternalSource->ReadDefinedMacros(); 344 } 345 346 return CurSubmoduleState->Macros.end(); 347 } 348 349 /// Compares macro tokens with a specified token value sequence. 350 static bool MacroDefinitionEquals(const MacroInfo *MI, 351 ArrayRef<TokenValue> Tokens) { 352 return Tokens.size() == MI->getNumTokens() && 353 std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin()); 354 } 355 356 StringRef Preprocessor::getLastMacroWithSpelling( 357 SourceLocation Loc, 358 ArrayRef<TokenValue> Tokens) const { 359 SourceLocation BestLocation; 360 StringRef BestSpelling; 361 for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end(); 362 I != E; ++I) { 363 const MacroDirective::DefInfo 364 Def = I->second.findDirectiveAtLoc(Loc, SourceMgr); 365 if (!Def || !Def.getMacroInfo()) 366 continue; 367 if (!Def.getMacroInfo()->isObjectLike()) 368 continue; 369 if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens)) 370 continue; 371 SourceLocation Location = Def.getLocation(); 372 // Choose the macro defined latest. 373 if (BestLocation.isInvalid() || 374 (Location.isValid() && 375 SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) { 376 BestLocation = Location; 377 BestSpelling = I->first->getName(); 378 } 379 } 380 return BestSpelling; 381 } 382 383 void Preprocessor::recomputeCurLexerKind() { 384 if (CurLexer) 385 CurLexerCallback = CurLexer->isDependencyDirectivesLexer() 386 ? CLK_DependencyDirectivesLexer 387 : CLK_Lexer; 388 else if (CurTokenLexer) 389 CurLexerCallback = CLK_TokenLexer; 390 else 391 CurLexerCallback = CLK_CachingLexer; 392 } 393 394 bool Preprocessor::SetCodeCompletionPoint(FileEntryRef File, 395 unsigned CompleteLine, 396 unsigned CompleteColumn) { 397 assert(CompleteLine && CompleteColumn && "Starts from 1:1"); 398 assert(!CodeCompletionFile && "Already set"); 399 400 // Load the actual file's contents. 401 std::optional<llvm::MemoryBufferRef> Buffer = 402 SourceMgr.getMemoryBufferForFileOrNone(File); 403 if (!Buffer) 404 return true; 405 406 // Find the byte position of the truncation point. 407 const char *Position = Buffer->getBufferStart(); 408 for (unsigned Line = 1; Line < CompleteLine; ++Line) { 409 for (; *Position; ++Position) { 410 if (*Position != '\r' && *Position != '\n') 411 continue; 412 413 // Eat \r\n or \n\r as a single line. 414 if ((Position[1] == '\r' || Position[1] == '\n') && 415 Position[0] != Position[1]) 416 ++Position; 417 ++Position; 418 break; 419 } 420 } 421 422 Position += CompleteColumn - 1; 423 424 // If pointing inside the preamble, adjust the position at the beginning of 425 // the file after the preamble. 426 if (SkipMainFilePreamble.first && 427 SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) { 428 if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first) 429 Position = Buffer->getBufferStart() + SkipMainFilePreamble.first; 430 } 431 432 if (Position > Buffer->getBufferEnd()) 433 Position = Buffer->getBufferEnd(); 434 435 CodeCompletionFile = File; 436 CodeCompletionOffset = Position - Buffer->getBufferStart(); 437 438 auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer( 439 Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier()); 440 char *NewBuf = NewBuffer->getBufferStart(); 441 char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf); 442 *NewPos = '\0'; 443 std::copy(Position, Buffer->getBufferEnd(), NewPos+1); 444 SourceMgr.overrideFileContents(File, std::move(NewBuffer)); 445 446 return false; 447 } 448 449 void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir, 450 bool IsAngled) { 451 setCodeCompletionReached(); 452 if (CodeComplete) 453 CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled); 454 } 455 456 void Preprocessor::CodeCompleteNaturalLanguage() { 457 setCodeCompletionReached(); 458 if (CodeComplete) 459 CodeComplete->CodeCompleteNaturalLanguage(); 460 } 461 462 /// getSpelling - This method is used to get the spelling of a token into a 463 /// SmallVector. Note that the returned StringRef may not point to the 464 /// supplied buffer if a copy can be avoided. 465 StringRef Preprocessor::getSpelling(const Token &Tok, 466 SmallVectorImpl<char> &Buffer, 467 bool *Invalid) const { 468 // NOTE: this has to be checked *before* testing for an IdentifierInfo. 469 if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) { 470 // Try the fast path. 471 if (const IdentifierInfo *II = Tok.getIdentifierInfo()) 472 return II->getName(); 473 } 474 475 // Resize the buffer if we need to copy into it. 476 if (Tok.needsCleaning()) 477 Buffer.resize(Tok.getLength()); 478 479 const char *Ptr = Buffer.data(); 480 unsigned Len = getSpelling(Tok, Ptr, Invalid); 481 return StringRef(Ptr, Len); 482 } 483 484 /// CreateString - Plop the specified string into a scratch buffer and return a 485 /// location for it. If specified, the source location provides a source 486 /// location for the token. 487 void Preprocessor::CreateString(StringRef Str, Token &Tok, 488 SourceLocation ExpansionLocStart, 489 SourceLocation ExpansionLocEnd) { 490 Tok.setLength(Str.size()); 491 492 const char *DestPtr; 493 SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr); 494 495 if (ExpansionLocStart.isValid()) 496 Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart, 497 ExpansionLocEnd, Str.size()); 498 Tok.setLocation(Loc); 499 500 // If this is a raw identifier or a literal token, set the pointer data. 501 if (Tok.is(tok::raw_identifier)) 502 Tok.setRawIdentifierData(DestPtr); 503 else if (Tok.isLiteral()) 504 Tok.setLiteralData(DestPtr); 505 } 506 507 SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) { 508 auto &SM = getSourceManager(); 509 SourceLocation SpellingLoc = SM.getSpellingLoc(Loc); 510 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(SpellingLoc); 511 bool Invalid = false; 512 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 513 if (Invalid) 514 return SourceLocation(); 515 516 // FIXME: We could consider re-using spelling for tokens we see repeatedly. 517 const char *DestPtr; 518 SourceLocation Spelling = 519 ScratchBuf->getToken(Buffer.data() + LocInfo.second, Length, DestPtr); 520 return SM.createTokenSplitLoc(Spelling, Loc, Loc.getLocWithOffset(Length)); 521 } 522 523 Module *Preprocessor::getCurrentModule() { 524 if (!getLangOpts().isCompilingModule()) 525 return nullptr; 526 527 return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule); 528 } 529 530 Module *Preprocessor::getCurrentModuleImplementation() { 531 if (!getLangOpts().isCompilingModuleImplementation()) 532 return nullptr; 533 534 return getHeaderSearchInfo().lookupModule(getLangOpts().ModuleName); 535 } 536 537 //===----------------------------------------------------------------------===// 538 // Preprocessor Initialization Methods 539 //===----------------------------------------------------------------------===// 540 541 /// EnterMainSourceFile - Enter the specified FileID as the main source file, 542 /// which implicitly adds the builtin defines etc. 543 void Preprocessor::EnterMainSourceFile() { 544 // We do not allow the preprocessor to reenter the main file. Doing so will 545 // cause FileID's to accumulate information from both runs (e.g. #line 546 // information) and predefined macros aren't guaranteed to be set properly. 547 assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!"); 548 FileID MainFileID = SourceMgr.getMainFileID(); 549 550 // If MainFileID is loaded it means we loaded an AST file, no need to enter 551 // a main file. 552 if (!SourceMgr.isLoadedFileID(MainFileID)) { 553 // Enter the main file source buffer. 554 EnterSourceFile(MainFileID, nullptr, SourceLocation()); 555 556 // If we've been asked to skip bytes in the main file (e.g., as part of a 557 // precompiled preamble), do so now. 558 if (SkipMainFilePreamble.first > 0) 559 CurLexer->SetByteOffset(SkipMainFilePreamble.first, 560 SkipMainFilePreamble.second); 561 562 // Tell the header info that the main file was entered. If the file is later 563 // #imported, it won't be re-entered. 564 if (OptionalFileEntryRef FE = SourceMgr.getFileEntryRefForID(MainFileID)) 565 markIncluded(*FE); 566 } 567 568 // Preprocess Predefines to populate the initial preprocessor state. 569 std::unique_ptr<llvm::MemoryBuffer> SB = 570 llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>"); 571 assert(SB && "Cannot create predefined source buffer"); 572 FileID FID = SourceMgr.createFileID(std::move(SB)); 573 assert(FID.isValid() && "Could not create FileID for predefines?"); 574 setPredefinesFileID(FID); 575 576 // Start parsing the predefines. 577 EnterSourceFile(FID, nullptr, SourceLocation()); 578 579 if (!PPOpts->PCHThroughHeader.empty()) { 580 // Lookup and save the FileID for the through header. If it isn't found 581 // in the search path, it's a fatal error. 582 OptionalFileEntryRef File = LookupFile( 583 SourceLocation(), PPOpts->PCHThroughHeader, 584 /*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr, 585 /*CurDir=*/nullptr, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr, 586 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 587 /*IsFrameworkFound=*/nullptr); 588 if (!File) { 589 Diag(SourceLocation(), diag::err_pp_through_header_not_found) 590 << PPOpts->PCHThroughHeader; 591 return; 592 } 593 setPCHThroughHeaderFileID( 594 SourceMgr.createFileID(*File, SourceLocation(), SrcMgr::C_User)); 595 } 596 597 // Skip tokens from the Predefines and if needed the main file. 598 if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) || 599 (usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop)) 600 SkipTokensWhileUsingPCH(); 601 } 602 603 void Preprocessor::setPCHThroughHeaderFileID(FileID FID) { 604 assert(PCHThroughHeaderFileID.isInvalid() && 605 "PCHThroughHeaderFileID already set!"); 606 PCHThroughHeaderFileID = FID; 607 } 608 609 bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) { 610 assert(PCHThroughHeaderFileID.isValid() && 611 "Invalid PCH through header FileID"); 612 return FE == SourceMgr.getFileEntryForID(PCHThroughHeaderFileID); 613 } 614 615 bool Preprocessor::creatingPCHWithThroughHeader() { 616 return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() && 617 PCHThroughHeaderFileID.isValid(); 618 } 619 620 bool Preprocessor::usingPCHWithThroughHeader() { 621 return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() && 622 PCHThroughHeaderFileID.isValid(); 623 } 624 625 bool Preprocessor::creatingPCHWithPragmaHdrStop() { 626 return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop; 627 } 628 629 bool Preprocessor::usingPCHWithPragmaHdrStop() { 630 return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop; 631 } 632 633 /// Skip tokens until after the #include of the through header or 634 /// until after a #pragma hdrstop is seen. Tokens in the predefines file 635 /// and the main file may be skipped. If the end of the predefines file 636 /// is reached, skipping continues into the main file. If the end of the 637 /// main file is reached, it's a fatal error. 638 void Preprocessor::SkipTokensWhileUsingPCH() { 639 bool ReachedMainFileEOF = false; 640 bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader; 641 bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop; 642 Token Tok; 643 while (true) { 644 bool InPredefines = 645 (CurLexer && CurLexer->getFileID() == getPredefinesFileID()); 646 CurLexerCallback(*this, Tok); 647 if (Tok.is(tok::eof) && !InPredefines) { 648 ReachedMainFileEOF = true; 649 break; 650 } 651 if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader) 652 break; 653 if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop) 654 break; 655 } 656 if (ReachedMainFileEOF) { 657 if (UsingPCHThroughHeader) 658 Diag(SourceLocation(), diag::err_pp_through_header_not_seen) 659 << PPOpts->PCHThroughHeader << 1; 660 else if (!PPOpts->PCHWithHdrStopCreate) 661 Diag(SourceLocation(), diag::err_pp_pragma_hdrstop_not_seen); 662 } 663 } 664 665 void Preprocessor::replayPreambleConditionalStack() { 666 // Restore the conditional stack from the preamble, if there is one. 667 if (PreambleConditionalStack.isReplaying()) { 668 assert(CurPPLexer && 669 "CurPPLexer is null when calling replayPreambleConditionalStack."); 670 CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack()); 671 PreambleConditionalStack.doneReplaying(); 672 if (PreambleConditionalStack.reachedEOFWhileSkipping()) 673 SkipExcludedConditionalBlock( 674 PreambleConditionalStack.SkipInfo->HashTokenLoc, 675 PreambleConditionalStack.SkipInfo->IfTokenLoc, 676 PreambleConditionalStack.SkipInfo->FoundNonSkipPortion, 677 PreambleConditionalStack.SkipInfo->FoundElse, 678 PreambleConditionalStack.SkipInfo->ElseLoc); 679 } 680 } 681 682 void Preprocessor::EndSourceFile() { 683 // Notify the client that we reached the end of the source file. 684 if (Callbacks) 685 Callbacks->EndOfMainFile(); 686 } 687 688 //===----------------------------------------------------------------------===// 689 // Lexer Event Handling. 690 //===----------------------------------------------------------------------===// 691 692 /// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the 693 /// identifier information for the token and install it into the token, 694 /// updating the token kind accordingly. 695 IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const { 696 assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!"); 697 698 // Look up this token, see if it is a macro, or if it is a language keyword. 699 IdentifierInfo *II; 700 if (!Identifier.needsCleaning() && !Identifier.hasUCN()) { 701 // No cleaning needed, just use the characters from the lexed buffer. 702 II = getIdentifierInfo(Identifier.getRawIdentifier()); 703 } else { 704 // Cleaning needed, alloca a buffer, clean into it, then use the buffer. 705 SmallString<64> IdentifierBuffer; 706 StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer); 707 708 if (Identifier.hasUCN()) { 709 SmallString<64> UCNIdentifierBuffer; 710 expandUCNs(UCNIdentifierBuffer, CleanedStr); 711 II = getIdentifierInfo(UCNIdentifierBuffer); 712 } else { 713 II = getIdentifierInfo(CleanedStr); 714 } 715 } 716 717 // Update the token info (identifier info and appropriate token kind). 718 // FIXME: the raw_identifier may contain leading whitespace which is removed 719 // from the cleaned identifier token. The SourceLocation should be updated to 720 // refer to the non-whitespace character. For instance, the text "\\\nB" (a 721 // line continuation before 'B') is parsed as a single tok::raw_identifier and 722 // is cleaned to tok::identifier "B". After cleaning the token's length is 723 // still 3 and the SourceLocation refers to the location of the backslash. 724 Identifier.setIdentifierInfo(II); 725 Identifier.setKind(II->getTokenID()); 726 727 return II; 728 } 729 730 void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) { 731 PoisonReasons[II] = DiagID; 732 } 733 734 void Preprocessor::PoisonSEHIdentifiers(bool Poison) { 735 assert(Ident__exception_code && Ident__exception_info); 736 assert(Ident___exception_code && Ident___exception_info); 737 Ident__exception_code->setIsPoisoned(Poison); 738 Ident___exception_code->setIsPoisoned(Poison); 739 Ident_GetExceptionCode->setIsPoisoned(Poison); 740 Ident__exception_info->setIsPoisoned(Poison); 741 Ident___exception_info->setIsPoisoned(Poison); 742 Ident_GetExceptionInfo->setIsPoisoned(Poison); 743 Ident__abnormal_termination->setIsPoisoned(Poison); 744 Ident___abnormal_termination->setIsPoisoned(Poison); 745 Ident_AbnormalTermination->setIsPoisoned(Poison); 746 } 747 748 void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) { 749 assert(Identifier.getIdentifierInfo() && 750 "Can't handle identifiers without identifier info!"); 751 llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it = 752 PoisonReasons.find(Identifier.getIdentifierInfo()); 753 if(it == PoisonReasons.end()) 754 Diag(Identifier, diag::err_pp_used_poisoned_id); 755 else 756 Diag(Identifier,it->second) << Identifier.getIdentifierInfo(); 757 } 758 759 void Preprocessor::updateOutOfDateIdentifier(IdentifierInfo &II) const { 760 assert(II.isOutOfDate() && "not out of date"); 761 getExternalSource()->updateOutOfDateIdentifier(II); 762 } 763 764 /// HandleIdentifier - This callback is invoked when the lexer reads an 765 /// identifier. This callback looks up the identifier in the map and/or 766 /// potentially macro expands it or turns it into a named token (like 'for'). 767 /// 768 /// Note that callers of this method are guarded by checking the 769 /// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the 770 /// IdentifierInfo methods that compute these properties will need to change to 771 /// match. 772 bool Preprocessor::HandleIdentifier(Token &Identifier) { 773 assert(Identifier.getIdentifierInfo() && 774 "Can't handle identifiers without identifier info!"); 775 776 IdentifierInfo &II = *Identifier.getIdentifierInfo(); 777 778 // If the information about this identifier is out of date, update it from 779 // the external source. 780 // We have to treat __VA_ARGS__ in a special way, since it gets 781 // serialized with isPoisoned = true, but our preprocessor may have 782 // unpoisoned it if we're defining a C99 macro. 783 if (II.isOutOfDate()) { 784 bool CurrentIsPoisoned = false; 785 const bool IsSpecialVariadicMacro = 786 &II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__; 787 if (IsSpecialVariadicMacro) 788 CurrentIsPoisoned = II.isPoisoned(); 789 790 updateOutOfDateIdentifier(II); 791 Identifier.setKind(II.getTokenID()); 792 793 if (IsSpecialVariadicMacro) 794 II.setIsPoisoned(CurrentIsPoisoned); 795 } 796 797 // If this identifier was poisoned, and if it was not produced from a macro 798 // expansion, emit an error. 799 if (II.isPoisoned() && CurPPLexer) { 800 HandlePoisonedIdentifier(Identifier); 801 } 802 803 // If this is a macro to be expanded, do it. 804 if (const MacroDefinition MD = getMacroDefinition(&II)) { 805 const auto *MI = MD.getMacroInfo(); 806 assert(MI && "macro definition with no macro info?"); 807 if (!DisableMacroExpansion) { 808 if (!Identifier.isExpandDisabled() && MI->isEnabled()) { 809 // C99 6.10.3p10: If the preprocessing token immediately after the 810 // macro name isn't a '(', this macro should not be expanded. 811 if (!MI->isFunctionLike() || isNextPPTokenLParen()) 812 return HandleMacroExpandedIdentifier(Identifier, MD); 813 } else { 814 // C99 6.10.3.4p2 says that a disabled macro may never again be 815 // expanded, even if it's in a context where it could be expanded in the 816 // future. 817 Identifier.setFlag(Token::DisableExpand); 818 if (MI->isObjectLike() || isNextPPTokenLParen()) 819 Diag(Identifier, diag::pp_disabled_macro_expansion); 820 } 821 } 822 } 823 824 // If this identifier is a keyword in a newer Standard or proposed Standard, 825 // produce a warning. Don't warn if we're not considering macro expansion, 826 // since this identifier might be the name of a macro. 827 // FIXME: This warning is disabled in cases where it shouldn't be, like 828 // "#define constexpr constexpr", "int constexpr;" 829 if (II.isFutureCompatKeyword() && !DisableMacroExpansion) { 830 Diag(Identifier, getIdentifierTable().getFutureCompatDiagKind(II, getLangOpts())) 831 << II.getName(); 832 // Don't diagnose this keyword again in this translation unit. 833 II.setIsFutureCompatKeyword(false); 834 } 835 836 // If this is an extension token, diagnose its use. 837 // We avoid diagnosing tokens that originate from macro definitions. 838 // FIXME: This warning is disabled in cases where it shouldn't be, 839 // like "#define TY typeof", "TY(1) x". 840 if (II.isExtensionToken() && !DisableMacroExpansion) 841 Diag(Identifier, diag::ext_token_used); 842 843 // If this is the 'import' contextual keyword following an '@', note 844 // that the next token indicates a module name. 845 // 846 // Note that we do not treat 'import' as a contextual 847 // keyword when we're in a caching lexer, because caching lexers only get 848 // used in contexts where import declarations are disallowed. 849 // 850 // Likewise if this is the standard C++ import keyword. 851 if (((LastTokenWasAt && II.isModulesImport()) || 852 Identifier.is(tok::kw_import)) && 853 !InMacroArgs && !DisableMacroExpansion && 854 (getLangOpts().Modules || getLangOpts().DebuggerSupport) && 855 CurLexerCallback != CLK_CachingLexer) { 856 ModuleImportLoc = Identifier.getLocation(); 857 NamedModuleImportPath.clear(); 858 IsAtImport = true; 859 ModuleImportExpectsIdentifier = true; 860 CurLexerCallback = CLK_LexAfterModuleImport; 861 } 862 return true; 863 } 864 865 void Preprocessor::Lex(Token &Result) { 866 ++LexLevel; 867 868 // We loop here until a lex function returns a token; this avoids recursion. 869 while (!CurLexerCallback(*this, Result)) 870 ; 871 872 if (Result.is(tok::unknown) && TheModuleLoader.HadFatalFailure) 873 return; 874 875 if (Result.is(tok::code_completion) && Result.getIdentifierInfo()) { 876 // Remember the identifier before code completion token. 877 setCodeCompletionIdentifierInfo(Result.getIdentifierInfo()); 878 setCodeCompletionTokenRange(Result.getLocation(), Result.getEndLoc()); 879 // Set IdenfitierInfo to null to avoid confusing code that handles both 880 // identifiers and completion tokens. 881 Result.setIdentifierInfo(nullptr); 882 } 883 884 // Update StdCXXImportSeqState to track our position within a C++20 import-seq 885 // if this token is being produced as a result of phase 4 of translation. 886 // Update TrackGMFState to decide if we are currently in a Global Module 887 // Fragment. GMF state updates should precede StdCXXImportSeq ones, since GMF state 888 // depends on the prevailing StdCXXImportSeq state in two cases. 889 if (getLangOpts().CPlusPlusModules && LexLevel == 1 && 890 !Result.getFlag(Token::IsReinjected)) { 891 switch (Result.getKind()) { 892 case tok::l_paren: case tok::l_square: case tok::l_brace: 893 StdCXXImportSeqState.handleOpenBracket(); 894 break; 895 case tok::r_paren: case tok::r_square: 896 StdCXXImportSeqState.handleCloseBracket(); 897 break; 898 case tok::r_brace: 899 StdCXXImportSeqState.handleCloseBrace(); 900 break; 901 // This token is injected to represent the translation of '#include "a.h"' 902 // into "import a.h;". Mimic the notional ';'. 903 case tok::annot_module_include: 904 case tok::semi: 905 TrackGMFState.handleSemi(); 906 StdCXXImportSeqState.handleSemi(); 907 ModuleDeclState.handleSemi(); 908 break; 909 case tok::header_name: 910 case tok::annot_header_unit: 911 StdCXXImportSeqState.handleHeaderName(); 912 break; 913 case tok::kw_export: 914 TrackGMFState.handleExport(); 915 StdCXXImportSeqState.handleExport(); 916 ModuleDeclState.handleExport(); 917 break; 918 case tok::colon: 919 ModuleDeclState.handleColon(); 920 break; 921 case tok::period: 922 ModuleDeclState.handlePeriod(); 923 break; 924 case tok::identifier: 925 // Check "import" and "module" when there is no open bracket. The two 926 // identifiers are not meaningful with open brackets. 927 if (StdCXXImportSeqState.atTopLevel()) { 928 if (Result.getIdentifierInfo()->isModulesImport()) { 929 TrackGMFState.handleImport(StdCXXImportSeqState.afterTopLevelSeq()); 930 StdCXXImportSeqState.handleImport(); 931 if (StdCXXImportSeqState.afterImportSeq()) { 932 ModuleImportLoc = Result.getLocation(); 933 NamedModuleImportPath.clear(); 934 IsAtImport = false; 935 ModuleImportExpectsIdentifier = true; 936 CurLexerCallback = CLK_LexAfterModuleImport; 937 } 938 break; 939 } else if (Result.getIdentifierInfo() == getIdentifierInfo("module")) { 940 TrackGMFState.handleModule(StdCXXImportSeqState.afterTopLevelSeq()); 941 ModuleDeclState.handleModule(); 942 break; 943 } 944 } 945 ModuleDeclState.handleIdentifier(Result.getIdentifierInfo()); 946 if (ModuleDeclState.isModuleCandidate()) 947 break; 948 [[fallthrough]]; 949 default: 950 TrackGMFState.handleMisc(); 951 StdCXXImportSeqState.handleMisc(); 952 ModuleDeclState.handleMisc(); 953 break; 954 } 955 } 956 957 LastTokenWasAt = Result.is(tok::at); 958 --LexLevel; 959 960 if ((LexLevel == 0 || PreprocessToken) && 961 !Result.getFlag(Token::IsReinjected)) { 962 if (LexLevel == 0) 963 ++TokenCount; 964 if (OnToken) 965 OnToken(Result); 966 } 967 } 968 969 void Preprocessor::LexTokensUntilEOF(std::vector<Token> *Tokens) { 970 while (1) { 971 Token Tok; 972 Lex(Tok); 973 if (Tok.isOneOf(tok::unknown, tok::eof, tok::eod, 974 tok::annot_repl_input_end)) 975 break; 976 if (Tokens != nullptr) 977 Tokens->push_back(Tok); 978 } 979 } 980 981 /// Lex a header-name token (including one formed from header-name-tokens if 982 /// \p AllowConcatenation is \c true). 983 /// 984 /// \param FilenameTok Filled in with the next token. On success, this will 985 /// be either a header_name token. On failure, it will be whatever other 986 /// token was found instead. 987 /// \param AllowMacroExpansion If \c true, allow the header name to be formed 988 /// by macro expansion (concatenating tokens as necessary if the first 989 /// token is a '<'). 990 /// \return \c true if we reached EOD or EOF while looking for a > token in 991 /// a concatenated header name and diagnosed it. \c false otherwise. 992 bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) { 993 // Lex using header-name tokenization rules if tokens are being lexed from 994 // a file. Just grab a token normally if we're in a macro expansion. 995 if (CurPPLexer) 996 CurPPLexer->LexIncludeFilename(FilenameTok); 997 else 998 Lex(FilenameTok); 999 1000 // This could be a <foo/bar.h> file coming from a macro expansion. In this 1001 // case, glue the tokens together into an angle_string_literal token. 1002 SmallString<128> FilenameBuffer; 1003 if (FilenameTok.is(tok::less) && AllowMacroExpansion) { 1004 bool StartOfLine = FilenameTok.isAtStartOfLine(); 1005 bool LeadingSpace = FilenameTok.hasLeadingSpace(); 1006 bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro(); 1007 1008 SourceLocation Start = FilenameTok.getLocation(); 1009 SourceLocation End; 1010 FilenameBuffer.push_back('<'); 1011 1012 // Consume tokens until we find a '>'. 1013 // FIXME: A header-name could be formed starting or ending with an 1014 // alternative token. It's not clear whether that's ill-formed in all 1015 // cases. 1016 while (FilenameTok.isNot(tok::greater)) { 1017 Lex(FilenameTok); 1018 if (FilenameTok.isOneOf(tok::eod, tok::eof)) { 1019 Diag(FilenameTok.getLocation(), diag::err_expected) << tok::greater; 1020 Diag(Start, diag::note_matching) << tok::less; 1021 return true; 1022 } 1023 1024 End = FilenameTok.getLocation(); 1025 1026 // FIXME: Provide code completion for #includes. 1027 if (FilenameTok.is(tok::code_completion)) { 1028 setCodeCompletionReached(); 1029 Lex(FilenameTok); 1030 continue; 1031 } 1032 1033 // Append the spelling of this token to the buffer. If there was a space 1034 // before it, add it now. 1035 if (FilenameTok.hasLeadingSpace()) 1036 FilenameBuffer.push_back(' '); 1037 1038 // Get the spelling of the token, directly into FilenameBuffer if 1039 // possible. 1040 size_t PreAppendSize = FilenameBuffer.size(); 1041 FilenameBuffer.resize(PreAppendSize + FilenameTok.getLength()); 1042 1043 const char *BufPtr = &FilenameBuffer[PreAppendSize]; 1044 unsigned ActualLen = getSpelling(FilenameTok, BufPtr); 1045 1046 // If the token was spelled somewhere else, copy it into FilenameBuffer. 1047 if (BufPtr != &FilenameBuffer[PreAppendSize]) 1048 memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen); 1049 1050 // Resize FilenameBuffer to the correct size. 1051 if (FilenameTok.getLength() != ActualLen) 1052 FilenameBuffer.resize(PreAppendSize + ActualLen); 1053 } 1054 1055 FilenameTok.startToken(); 1056 FilenameTok.setKind(tok::header_name); 1057 FilenameTok.setFlagValue(Token::StartOfLine, StartOfLine); 1058 FilenameTok.setFlagValue(Token::LeadingSpace, LeadingSpace); 1059 FilenameTok.setFlagValue(Token::LeadingEmptyMacro, LeadingEmptyMacro); 1060 CreateString(FilenameBuffer, FilenameTok, Start, End); 1061 } else if (FilenameTok.is(tok::string_literal) && AllowMacroExpansion) { 1062 // Convert a string-literal token of the form " h-char-sequence " 1063 // (produced by macro expansion) into a header-name token. 1064 // 1065 // The rules for header-names don't quite match the rules for 1066 // string-literals, but all the places where they differ result in 1067 // undefined behavior, so we can and do treat them the same. 1068 // 1069 // A string-literal with a prefix or suffix is not translated into a 1070 // header-name. This could theoretically be observable via the C++20 1071 // context-sensitive header-name formation rules. 1072 StringRef Str = getSpelling(FilenameTok, FilenameBuffer); 1073 if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"') 1074 FilenameTok.setKind(tok::header_name); 1075 } 1076 1077 return false; 1078 } 1079 1080 /// Collect the tokens of a C++20 pp-import-suffix. 1081 void Preprocessor::CollectPpImportSuffix(SmallVectorImpl<Token> &Toks) { 1082 // FIXME: For error recovery, consider recognizing attribute syntax here 1083 // and terminating / diagnosing a missing semicolon if we find anything 1084 // else? (Can we leave that to the parser?) 1085 unsigned BracketDepth = 0; 1086 while (true) { 1087 Toks.emplace_back(); 1088 Lex(Toks.back()); 1089 1090 switch (Toks.back().getKind()) { 1091 case tok::l_paren: case tok::l_square: case tok::l_brace: 1092 ++BracketDepth; 1093 break; 1094 1095 case tok::r_paren: case tok::r_square: case tok::r_brace: 1096 if (BracketDepth == 0) 1097 return; 1098 --BracketDepth; 1099 break; 1100 1101 case tok::semi: 1102 if (BracketDepth == 0) 1103 return; 1104 break; 1105 1106 case tok::eof: 1107 return; 1108 1109 default: 1110 break; 1111 } 1112 } 1113 } 1114 1115 1116 /// Lex a token following the 'import' contextual keyword. 1117 /// 1118 /// pp-import: [C++20] 1119 /// import header-name pp-import-suffix[opt] ; 1120 /// import header-name-tokens pp-import-suffix[opt] ; 1121 /// [ObjC] @ import module-name ; 1122 /// [Clang] import module-name ; 1123 /// 1124 /// header-name-tokens: 1125 /// string-literal 1126 /// < [any sequence of preprocessing-tokens other than >] > 1127 /// 1128 /// module-name: 1129 /// module-name-qualifier[opt] identifier 1130 /// 1131 /// module-name-qualifier 1132 /// module-name-qualifier[opt] identifier . 1133 /// 1134 /// We respond to a pp-import by importing macros from the named module. 1135 bool Preprocessor::LexAfterModuleImport(Token &Result) { 1136 // Figure out what kind of lexer we actually have. 1137 recomputeCurLexerKind(); 1138 1139 // Lex the next token. The header-name lexing rules are used at the start of 1140 // a pp-import. 1141 // 1142 // For now, we only support header-name imports in C++20 mode. 1143 // FIXME: Should we allow this in all language modes that support an import 1144 // declaration as an extension? 1145 if (NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules) { 1146 if (LexHeaderName(Result)) 1147 return true; 1148 1149 if (Result.is(tok::colon) && ModuleDeclState.isNamedModule()) { 1150 std::string Name = ModuleDeclState.getPrimaryName().str(); 1151 Name += ":"; 1152 NamedModuleImportPath.push_back( 1153 {getIdentifierInfo(Name), Result.getLocation()}); 1154 CurLexerCallback = CLK_LexAfterModuleImport; 1155 return true; 1156 } 1157 } else { 1158 Lex(Result); 1159 } 1160 1161 // Allocate a holding buffer for a sequence of tokens and introduce it into 1162 // the token stream. 1163 auto EnterTokens = [this](ArrayRef<Token> Toks) { 1164 auto ToksCopy = std::make_unique<Token[]>(Toks.size()); 1165 std::copy(Toks.begin(), Toks.end(), ToksCopy.get()); 1166 EnterTokenStream(std::move(ToksCopy), Toks.size(), 1167 /*DisableMacroExpansion*/ true, /*IsReinject*/ false); 1168 }; 1169 1170 bool ImportingHeader = Result.is(tok::header_name); 1171 // Check for a header-name. 1172 SmallVector<Token, 32> Suffix; 1173 if (ImportingHeader) { 1174 // Enter the header-name token into the token stream; a Lex action cannot 1175 // both return a token and cache tokens (doing so would corrupt the token 1176 // cache if the call to Lex comes from CachingLex / PeekAhead). 1177 Suffix.push_back(Result); 1178 1179 // Consume the pp-import-suffix and expand any macros in it now. We'll add 1180 // it back into the token stream later. 1181 CollectPpImportSuffix(Suffix); 1182 if (Suffix.back().isNot(tok::semi)) { 1183 // This is not a pp-import after all. 1184 EnterTokens(Suffix); 1185 return false; 1186 } 1187 1188 // C++2a [cpp.module]p1: 1189 // The ';' preprocessing-token terminating a pp-import shall not have 1190 // been produced by macro replacement. 1191 SourceLocation SemiLoc = Suffix.back().getLocation(); 1192 if (SemiLoc.isMacroID()) 1193 Diag(SemiLoc, diag::err_header_import_semi_in_macro); 1194 1195 // Reconstitute the import token. 1196 Token ImportTok; 1197 ImportTok.startToken(); 1198 ImportTok.setKind(tok::kw_import); 1199 ImportTok.setLocation(ModuleImportLoc); 1200 ImportTok.setIdentifierInfo(getIdentifierInfo("import")); 1201 ImportTok.setLength(6); 1202 1203 auto Action = HandleHeaderIncludeOrImport( 1204 /*HashLoc*/ SourceLocation(), ImportTok, Suffix.front(), SemiLoc); 1205 switch (Action.Kind) { 1206 case ImportAction::None: 1207 break; 1208 1209 case ImportAction::ModuleBegin: 1210 // Let the parser know we're textually entering the module. 1211 Suffix.emplace_back(); 1212 Suffix.back().startToken(); 1213 Suffix.back().setKind(tok::annot_module_begin); 1214 Suffix.back().setLocation(SemiLoc); 1215 Suffix.back().setAnnotationEndLoc(SemiLoc); 1216 Suffix.back().setAnnotationValue(Action.ModuleForHeader); 1217 [[fallthrough]]; 1218 1219 case ImportAction::ModuleImport: 1220 case ImportAction::HeaderUnitImport: 1221 case ImportAction::SkippedModuleImport: 1222 // We chose to import (or textually enter) the file. Convert the 1223 // header-name token into a header unit annotation token. 1224 Suffix[0].setKind(tok::annot_header_unit); 1225 Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation()); 1226 Suffix[0].setAnnotationValue(Action.ModuleForHeader); 1227 // FIXME: Call the moduleImport callback? 1228 break; 1229 case ImportAction::Failure: 1230 assert(TheModuleLoader.HadFatalFailure && 1231 "This should be an early exit only to a fatal error"); 1232 Result.setKind(tok::eof); 1233 CurLexer->cutOffLexing(); 1234 EnterTokens(Suffix); 1235 return true; 1236 } 1237 1238 EnterTokens(Suffix); 1239 return false; 1240 } 1241 1242 // The token sequence 1243 // 1244 // import identifier (. identifier)* 1245 // 1246 // indicates a module import directive. We already saw the 'import' 1247 // contextual keyword, so now we're looking for the identifiers. 1248 if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) { 1249 // We expected to see an identifier here, and we did; continue handling 1250 // identifiers. 1251 NamedModuleImportPath.push_back( 1252 std::make_pair(Result.getIdentifierInfo(), Result.getLocation())); 1253 ModuleImportExpectsIdentifier = false; 1254 CurLexerCallback = CLK_LexAfterModuleImport; 1255 return true; 1256 } 1257 1258 // If we're expecting a '.' or a ';', and we got a '.', then wait until we 1259 // see the next identifier. (We can also see a '[[' that begins an 1260 // attribute-specifier-seq here under the Standard C++ Modules.) 1261 if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) { 1262 ModuleImportExpectsIdentifier = true; 1263 CurLexerCallback = CLK_LexAfterModuleImport; 1264 return true; 1265 } 1266 1267 // If we didn't recognize a module name at all, this is not a (valid) import. 1268 if (NamedModuleImportPath.empty() || Result.is(tok::eof)) 1269 return true; 1270 1271 // Consume the pp-import-suffix and expand any macros in it now, if we're not 1272 // at the semicolon already. 1273 SourceLocation SemiLoc = Result.getLocation(); 1274 if (Result.isNot(tok::semi)) { 1275 Suffix.push_back(Result); 1276 CollectPpImportSuffix(Suffix); 1277 if (Suffix.back().isNot(tok::semi)) { 1278 // This is not an import after all. 1279 EnterTokens(Suffix); 1280 return false; 1281 } 1282 SemiLoc = Suffix.back().getLocation(); 1283 } 1284 1285 // Under the standard C++ Modules, the dot is just part of the module name, 1286 // and not a real hierarchy separator. Flatten such module names now. 1287 // 1288 // FIXME: Is this the right level to be performing this transformation? 1289 std::string FlatModuleName; 1290 if (getLangOpts().CPlusPlusModules) { 1291 for (auto &Piece : NamedModuleImportPath) { 1292 // If the FlatModuleName ends with colon, it implies it is a partition. 1293 if (!FlatModuleName.empty() && FlatModuleName.back() != ':') 1294 FlatModuleName += "."; 1295 FlatModuleName += Piece.first->getName(); 1296 } 1297 SourceLocation FirstPathLoc = NamedModuleImportPath[0].second; 1298 NamedModuleImportPath.clear(); 1299 NamedModuleImportPath.push_back( 1300 std::make_pair(getIdentifierInfo(FlatModuleName), FirstPathLoc)); 1301 } 1302 1303 Module *Imported = nullptr; 1304 // We don't/shouldn't load the standard c++20 modules when preprocessing. 1305 if (getLangOpts().Modules && !isInImportingCXXNamedModules()) { 1306 Imported = TheModuleLoader.loadModule(ModuleImportLoc, 1307 NamedModuleImportPath, 1308 Module::Hidden, 1309 /*IsInclusionDirective=*/false); 1310 if (Imported) 1311 makeModuleVisible(Imported, SemiLoc); 1312 } 1313 1314 if (Callbacks) 1315 Callbacks->moduleImport(ModuleImportLoc, NamedModuleImportPath, Imported); 1316 1317 if (!Suffix.empty()) { 1318 EnterTokens(Suffix); 1319 return false; 1320 } 1321 return true; 1322 } 1323 1324 void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) { 1325 CurSubmoduleState->VisibleModules.setVisible( 1326 M, Loc, [](Module *) {}, 1327 [&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) { 1328 // FIXME: Include the path in the diagnostic. 1329 // FIXME: Include the import location for the conflicting module. 1330 Diag(ModuleImportLoc, diag::warn_module_conflict) 1331 << Path[0]->getFullModuleName() 1332 << Conflict->getFullModuleName() 1333 << Message; 1334 }); 1335 1336 // Add this module to the imports list of the currently-built submodule. 1337 if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M) 1338 BuildingSubmoduleStack.back().M->Imports.insert(M); 1339 } 1340 1341 bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String, 1342 const char *DiagnosticTag, 1343 bool AllowMacroExpansion) { 1344 // We need at least one string literal. 1345 if (Result.isNot(tok::string_literal)) { 1346 Diag(Result, diag::err_expected_string_literal) 1347 << /*Source='in...'*/0 << DiagnosticTag; 1348 return false; 1349 } 1350 1351 // Lex string literal tokens, optionally with macro expansion. 1352 SmallVector<Token, 4> StrToks; 1353 do { 1354 StrToks.push_back(Result); 1355 1356 if (Result.hasUDSuffix()) 1357 Diag(Result, diag::err_invalid_string_udl); 1358 1359 if (AllowMacroExpansion) 1360 Lex(Result); 1361 else 1362 LexUnexpandedToken(Result); 1363 } while (Result.is(tok::string_literal)); 1364 1365 // Concatenate and parse the strings. 1366 StringLiteralParser Literal(StrToks, *this); 1367 assert(Literal.isOrdinary() && "Didn't allow wide strings in"); 1368 1369 if (Literal.hadError) 1370 return false; 1371 1372 if (Literal.Pascal) { 1373 Diag(StrToks[0].getLocation(), diag::err_expected_string_literal) 1374 << /*Source='in...'*/0 << DiagnosticTag; 1375 return false; 1376 } 1377 1378 String = std::string(Literal.GetString()); 1379 return true; 1380 } 1381 1382 bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) { 1383 assert(Tok.is(tok::numeric_constant)); 1384 SmallString<8> IntegerBuffer; 1385 bool NumberInvalid = false; 1386 StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid); 1387 if (NumberInvalid) 1388 return false; 1389 NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(), 1390 getLangOpts(), getTargetInfo(), 1391 getDiagnostics()); 1392 if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix()) 1393 return false; 1394 llvm::APInt APVal(64, 0); 1395 if (Literal.GetIntegerValue(APVal)) 1396 return false; 1397 Lex(Tok); 1398 Value = APVal.getLimitedValue(); 1399 return true; 1400 } 1401 1402 void Preprocessor::addCommentHandler(CommentHandler *Handler) { 1403 assert(Handler && "NULL comment handler"); 1404 assert(!llvm::is_contained(CommentHandlers, Handler) && 1405 "Comment handler already registered"); 1406 CommentHandlers.push_back(Handler); 1407 } 1408 1409 void Preprocessor::removeCommentHandler(CommentHandler *Handler) { 1410 std::vector<CommentHandler *>::iterator Pos = 1411 llvm::find(CommentHandlers, Handler); 1412 assert(Pos != CommentHandlers.end() && "Comment handler not registered"); 1413 CommentHandlers.erase(Pos); 1414 } 1415 1416 bool Preprocessor::HandleComment(Token &result, SourceRange Comment) { 1417 bool AnyPendingTokens = false; 1418 for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(), 1419 HEnd = CommentHandlers.end(); 1420 H != HEnd; ++H) { 1421 if ((*H)->HandleComment(*this, Comment)) 1422 AnyPendingTokens = true; 1423 } 1424 if (!AnyPendingTokens || getCommentRetentionState()) 1425 return false; 1426 Lex(result); 1427 return true; 1428 } 1429 1430 void Preprocessor::emitMacroDeprecationWarning(const Token &Identifier) const { 1431 const MacroAnnotations &A = 1432 getMacroAnnotations(Identifier.getIdentifierInfo()); 1433 assert(A.DeprecationInfo && 1434 "Macro deprecation warning without recorded annotation!"); 1435 const MacroAnnotationInfo &Info = *A.DeprecationInfo; 1436 if (Info.Message.empty()) 1437 Diag(Identifier, diag::warn_pragma_deprecated_macro_use) 1438 << Identifier.getIdentifierInfo() << 0; 1439 else 1440 Diag(Identifier, diag::warn_pragma_deprecated_macro_use) 1441 << Identifier.getIdentifierInfo() << 1 << Info.Message; 1442 Diag(Info.Location, diag::note_pp_macro_annotation) << 0; 1443 } 1444 1445 void Preprocessor::emitRestrictExpansionWarning(const Token &Identifier) const { 1446 const MacroAnnotations &A = 1447 getMacroAnnotations(Identifier.getIdentifierInfo()); 1448 assert(A.RestrictExpansionInfo && 1449 "Macro restricted expansion warning without recorded annotation!"); 1450 const MacroAnnotationInfo &Info = *A.RestrictExpansionInfo; 1451 if (Info.Message.empty()) 1452 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) 1453 << Identifier.getIdentifierInfo() << 0; 1454 else 1455 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) 1456 << Identifier.getIdentifierInfo() << 1 << Info.Message; 1457 Diag(Info.Location, diag::note_pp_macro_annotation) << 1; 1458 } 1459 1460 void Preprocessor::emitRestrictInfNaNWarning(const Token &Identifier, 1461 unsigned DiagSelection) const { 1462 Diag(Identifier, diag::warn_fp_nan_inf_when_disabled) << DiagSelection << 1; 1463 } 1464 1465 void Preprocessor::emitFinalMacroWarning(const Token &Identifier, 1466 bool IsUndef) const { 1467 const MacroAnnotations &A = 1468 getMacroAnnotations(Identifier.getIdentifierInfo()); 1469 assert(A.FinalAnnotationLoc && 1470 "Final macro warning without recorded annotation!"); 1471 1472 Diag(Identifier, diag::warn_pragma_final_macro) 1473 << Identifier.getIdentifierInfo() << (IsUndef ? 0 : 1); 1474 Diag(*A.FinalAnnotationLoc, diag::note_pp_macro_annotation) << 2; 1475 } 1476 1477 bool Preprocessor::isSafeBufferOptOut(const SourceManager &SourceMgr, 1478 const SourceLocation &Loc) const { 1479 // Try to find a region in `SafeBufferOptOutMap` where `Loc` is in: 1480 auto FirstRegionEndingAfterLoc = llvm::partition_point( 1481 SafeBufferOptOutMap, 1482 [&SourceMgr, 1483 &Loc](const std::pair<SourceLocation, SourceLocation> &Region) { 1484 return SourceMgr.isBeforeInTranslationUnit(Region.second, Loc); 1485 }); 1486 1487 if (FirstRegionEndingAfterLoc != SafeBufferOptOutMap.end()) { 1488 // To test if the start location of the found region precedes `Loc`: 1489 return SourceMgr.isBeforeInTranslationUnit(FirstRegionEndingAfterLoc->first, 1490 Loc); 1491 } 1492 // If we do not find a region whose end location passes `Loc`, we want to 1493 // check if the current region is still open: 1494 if (!SafeBufferOptOutMap.empty() && 1495 SafeBufferOptOutMap.back().first == SafeBufferOptOutMap.back().second) 1496 return SourceMgr.isBeforeInTranslationUnit(SafeBufferOptOutMap.back().first, 1497 Loc); 1498 return false; 1499 } 1500 1501 bool Preprocessor::enterOrExitSafeBufferOptOutRegion( 1502 bool isEnter, const SourceLocation &Loc) { 1503 if (isEnter) { 1504 if (isPPInSafeBufferOptOutRegion()) 1505 return true; // invalid enter action 1506 InSafeBufferOptOutRegion = true; 1507 CurrentSafeBufferOptOutStart = Loc; 1508 1509 // To set the start location of a new region: 1510 1511 if (!SafeBufferOptOutMap.empty()) { 1512 [[maybe_unused]] auto *PrevRegion = &SafeBufferOptOutMap.back(); 1513 assert(PrevRegion->first != PrevRegion->second && 1514 "Shall not begin a safe buffer opt-out region before closing the " 1515 "previous one."); 1516 } 1517 // If the start location equals to the end location, we call the region a 1518 // open region or a unclosed region (i.e., end location has not been set 1519 // yet). 1520 SafeBufferOptOutMap.emplace_back(Loc, Loc); 1521 } else { 1522 if (!isPPInSafeBufferOptOutRegion()) 1523 return true; // invalid enter action 1524 InSafeBufferOptOutRegion = false; 1525 1526 // To set the end location of the current open region: 1527 1528 assert(!SafeBufferOptOutMap.empty() && 1529 "Misordered safe buffer opt-out regions"); 1530 auto *CurrRegion = &SafeBufferOptOutMap.back(); 1531 assert(CurrRegion->first == CurrRegion->second && 1532 "Set end location to a closed safe buffer opt-out region"); 1533 CurrRegion->second = Loc; 1534 } 1535 return false; 1536 } 1537 1538 bool Preprocessor::isPPInSafeBufferOptOutRegion() { 1539 return InSafeBufferOptOutRegion; 1540 } 1541 bool Preprocessor::isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc) { 1542 StartLoc = CurrentSafeBufferOptOutStart; 1543 return InSafeBufferOptOutRegion; 1544 } 1545 1546 ModuleLoader::~ModuleLoader() = default; 1547 1548 CommentHandler::~CommentHandler() = default; 1549 1550 EmptylineHandler::~EmptylineHandler() = default; 1551 1552 CodeCompletionHandler::~CodeCompletionHandler() = default; 1553 1554 void Preprocessor::createPreprocessingRecord() { 1555 if (Record) 1556 return; 1557 1558 Record = new PreprocessingRecord(getSourceManager()); 1559 addPPCallbacks(std::unique_ptr<PPCallbacks>(Record)); 1560 } 1561