1 //===- Preprocessor.cpp - C Language Family Preprocessor Implementation ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Preprocessor interface. 10 // 11 //===----------------------------------------------------------------------===// 12 // 13 // Options to support: 14 // -H - Print the name of each header file used. 15 // -d[DNI] - Dump various things. 16 // -fworking-directory - #line's with preprocessor's working dir. 17 // -fpreprocessed 18 // -dependency-file,-M,-MM,-MF,-MG,-MP,-MT,-MQ,-MD,-MMD 19 // -W* 20 // -w 21 // 22 // Messages to emit: 23 // "Multiple include guards may be useful for:\n" 24 // 25 //===----------------------------------------------------------------------===// 26 27 #include "clang/Lex/Preprocessor.h" 28 #include "clang/Basic/Builtins.h" 29 #include "clang/Basic/FileManager.h" 30 #include "clang/Basic/FileSystemStatCache.h" 31 #include "clang/Basic/IdentifierTable.h" 32 #include "clang/Basic/LLVM.h" 33 #include "clang/Basic/LangOptions.h" 34 #include "clang/Basic/Module.h" 35 #include "clang/Basic/SourceLocation.h" 36 #include "clang/Basic/SourceManager.h" 37 #include "clang/Basic/TargetInfo.h" 38 #include "clang/Lex/CodeCompletionHandler.h" 39 #include "clang/Lex/ExternalPreprocessorSource.h" 40 #include "clang/Lex/HeaderSearch.h" 41 #include "clang/Lex/LexDiagnostic.h" 42 #include "clang/Lex/Lexer.h" 43 #include "clang/Lex/LiteralSupport.h" 44 #include "clang/Lex/MacroArgs.h" 45 #include "clang/Lex/MacroInfo.h" 46 #include "clang/Lex/ModuleLoader.h" 47 #include "clang/Lex/Pragma.h" 48 #include "clang/Lex/PreprocessingRecord.h" 49 #include "clang/Lex/PreprocessorLexer.h" 50 #include "clang/Lex/PreprocessorOptions.h" 51 #include "clang/Lex/ScratchBuffer.h" 52 #include "clang/Lex/Token.h" 53 #include "clang/Lex/TokenLexer.h" 54 #include "llvm/ADT/APInt.h" 55 #include "llvm/ADT/ArrayRef.h" 56 #include "llvm/ADT/DenseMap.h" 57 #include "llvm/ADT/STLExtras.h" 58 #include "llvm/ADT/SmallString.h" 59 #include "llvm/ADT/SmallVector.h" 60 #include "llvm/ADT/StringRef.h" 61 #include "llvm/Support/Capacity.h" 62 #include "llvm/Support/ErrorHandling.h" 63 #include "llvm/Support/MemoryBuffer.h" 64 #include "llvm/Support/raw_ostream.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <memory> 68 #include <optional> 69 #include <string> 70 #include <utility> 71 #include <vector> 72 73 using namespace clang; 74 75 LLVM_INSTANTIATE_REGISTRY(PragmaHandlerRegistry) 76 77 ExternalPreprocessorSource::~ExternalPreprocessorSource() = default; 78 79 Preprocessor::Preprocessor(std::shared_ptr<PreprocessorOptions> PPOpts, 80 DiagnosticsEngine &diags, LangOptions &opts, 81 SourceManager &SM, HeaderSearch &Headers, 82 ModuleLoader &TheModuleLoader, 83 IdentifierInfoLookup *IILookup, bool OwnsHeaders, 84 TranslationUnitKind TUKind) 85 : PPOpts(std::move(PPOpts)), Diags(&diags), LangOpts(opts), 86 FileMgr(Headers.getFileMgr()), SourceMgr(SM), 87 ScratchBuf(new ScratchBuffer(SourceMgr)), HeaderInfo(Headers), 88 TheModuleLoader(TheModuleLoader), ExternalSource(nullptr), 89 // As the language options may have not been loaded yet (when 90 // deserializing an ASTUnit), adding keywords to the identifier table is 91 // deferred to Preprocessor::Initialize(). 92 Identifiers(IILookup), PragmaHandlers(new PragmaNamespace(StringRef())), 93 TUKind(TUKind), SkipMainFilePreamble(0, true), 94 CurSubmoduleState(&NullSubmoduleState) { 95 OwnsHeaderSearch = OwnsHeaders; 96 97 // Default to discarding comments. 98 KeepComments = false; 99 KeepMacroComments = false; 100 SuppressIncludeNotFoundError = false; 101 102 // Macro expansion is enabled. 103 DisableMacroExpansion = false; 104 MacroExpansionInDirectivesOverride = false; 105 InMacroArgs = false; 106 ArgMacro = nullptr; 107 InMacroArgPreExpansion = false; 108 NumCachedTokenLexers = 0; 109 PragmasEnabled = true; 110 ParsingIfOrElifDirective = false; 111 PreprocessedOutput = false; 112 113 // We haven't read anything from the external source. 114 ReadMacrosFromExternalSource = false; 115 116 BuiltinInfo = std::make_unique<Builtin::Context>(); 117 118 // "Poison" __VA_ARGS__, __VA_OPT__ which can only appear in the expansion of 119 // a macro. They get unpoisoned where it is allowed. 120 (Ident__VA_ARGS__ = getIdentifierInfo("__VA_ARGS__"))->setIsPoisoned(); 121 SetPoisonReason(Ident__VA_ARGS__,diag::ext_pp_bad_vaargs_use); 122 (Ident__VA_OPT__ = getIdentifierInfo("__VA_OPT__"))->setIsPoisoned(); 123 SetPoisonReason(Ident__VA_OPT__,diag::ext_pp_bad_vaopt_use); 124 125 // Initialize the pragma handlers. 126 RegisterBuiltinPragmas(); 127 128 // Initialize builtin macros like __LINE__ and friends. 129 RegisterBuiltinMacros(); 130 131 if(LangOpts.Borland) { 132 Ident__exception_info = getIdentifierInfo("_exception_info"); 133 Ident___exception_info = getIdentifierInfo("__exception_info"); 134 Ident_GetExceptionInfo = getIdentifierInfo("GetExceptionInformation"); 135 Ident__exception_code = getIdentifierInfo("_exception_code"); 136 Ident___exception_code = getIdentifierInfo("__exception_code"); 137 Ident_GetExceptionCode = getIdentifierInfo("GetExceptionCode"); 138 Ident__abnormal_termination = getIdentifierInfo("_abnormal_termination"); 139 Ident___abnormal_termination = getIdentifierInfo("__abnormal_termination"); 140 Ident_AbnormalTermination = getIdentifierInfo("AbnormalTermination"); 141 } else { 142 Ident__exception_info = Ident__exception_code = nullptr; 143 Ident__abnormal_termination = Ident___exception_info = nullptr; 144 Ident___exception_code = Ident___abnormal_termination = nullptr; 145 Ident_GetExceptionInfo = Ident_GetExceptionCode = nullptr; 146 Ident_AbnormalTermination = nullptr; 147 } 148 149 // If using a PCH where a #pragma hdrstop is expected, start skipping tokens. 150 if (usingPCHWithPragmaHdrStop()) 151 SkippingUntilPragmaHdrStop = true; 152 153 // If using a PCH with a through header, start skipping tokens. 154 if (!this->PPOpts->PCHThroughHeader.empty() && 155 !this->PPOpts->ImplicitPCHInclude.empty()) 156 SkippingUntilPCHThroughHeader = true; 157 158 if (this->PPOpts->GeneratePreamble) 159 PreambleConditionalStack.startRecording(); 160 161 MaxTokens = LangOpts.MaxTokens; 162 } 163 164 Preprocessor::~Preprocessor() { 165 assert(BacktrackPositions.empty() && "EnableBacktrack/Backtrack imbalance!"); 166 167 IncludeMacroStack.clear(); 168 169 // Free any cached macro expanders. 170 // This populates MacroArgCache, so all TokenLexers need to be destroyed 171 // before the code below that frees up the MacroArgCache list. 172 std::fill(TokenLexerCache, TokenLexerCache + NumCachedTokenLexers, nullptr); 173 CurTokenLexer.reset(); 174 175 // Free any cached MacroArgs. 176 for (MacroArgs *ArgList = MacroArgCache; ArgList;) 177 ArgList = ArgList->deallocate(); 178 179 // Delete the header search info, if we own it. 180 if (OwnsHeaderSearch) 181 delete &HeaderInfo; 182 } 183 184 void Preprocessor::Initialize(const TargetInfo &Target, 185 const TargetInfo *AuxTarget) { 186 assert((!this->Target || this->Target == &Target) && 187 "Invalid override of target information"); 188 this->Target = &Target; 189 190 assert((!this->AuxTarget || this->AuxTarget == AuxTarget) && 191 "Invalid override of aux target information."); 192 this->AuxTarget = AuxTarget; 193 194 // Initialize information about built-ins. 195 BuiltinInfo->InitializeTarget(Target, AuxTarget); 196 HeaderInfo.setTarget(Target); 197 198 // Populate the identifier table with info about keywords for the current language. 199 Identifiers.AddKeywords(LangOpts); 200 201 // Initialize the __FTL_EVAL_METHOD__ macro to the TargetInfo. 202 setTUFPEvalMethod(getTargetInfo().getFPEvalMethod()); 203 204 if (getLangOpts().getFPEvalMethod() == LangOptions::FEM_UnsetOnCommandLine) 205 // Use setting from TargetInfo. 206 setCurrentFPEvalMethod(SourceLocation(), Target.getFPEvalMethod()); 207 else 208 // Set initial value of __FLT_EVAL_METHOD__ from the command line. 209 setCurrentFPEvalMethod(SourceLocation(), getLangOpts().getFPEvalMethod()); 210 } 211 212 void Preprocessor::InitializeForModelFile() { 213 NumEnteredSourceFiles = 0; 214 215 // Reset pragmas 216 PragmaHandlersBackup = std::move(PragmaHandlers); 217 PragmaHandlers = std::make_unique<PragmaNamespace>(StringRef()); 218 RegisterBuiltinPragmas(); 219 220 // Reset PredefinesFileID 221 PredefinesFileID = FileID(); 222 } 223 224 void Preprocessor::FinalizeForModelFile() { 225 NumEnteredSourceFiles = 1; 226 227 PragmaHandlers = std::move(PragmaHandlersBackup); 228 } 229 230 void Preprocessor::DumpToken(const Token &Tok, bool DumpFlags) const { 231 llvm::errs() << tok::getTokenName(Tok.getKind()); 232 233 if (!Tok.isAnnotation()) 234 llvm::errs() << " '" << getSpelling(Tok) << "'"; 235 236 if (!DumpFlags) return; 237 238 llvm::errs() << "\t"; 239 if (Tok.isAtStartOfLine()) 240 llvm::errs() << " [StartOfLine]"; 241 if (Tok.hasLeadingSpace()) 242 llvm::errs() << " [LeadingSpace]"; 243 if (Tok.isExpandDisabled()) 244 llvm::errs() << " [ExpandDisabled]"; 245 if (Tok.needsCleaning()) { 246 const char *Start = SourceMgr.getCharacterData(Tok.getLocation()); 247 llvm::errs() << " [UnClean='" << StringRef(Start, Tok.getLength()) 248 << "']"; 249 } 250 251 llvm::errs() << "\tLoc=<"; 252 DumpLocation(Tok.getLocation()); 253 llvm::errs() << ">"; 254 } 255 256 void Preprocessor::DumpLocation(SourceLocation Loc) const { 257 Loc.print(llvm::errs(), SourceMgr); 258 } 259 260 void Preprocessor::DumpMacro(const MacroInfo &MI) const { 261 llvm::errs() << "MACRO: "; 262 for (unsigned i = 0, e = MI.getNumTokens(); i != e; ++i) { 263 DumpToken(MI.getReplacementToken(i)); 264 llvm::errs() << " "; 265 } 266 llvm::errs() << "\n"; 267 } 268 269 void Preprocessor::PrintStats() { 270 llvm::errs() << "\n*** Preprocessor Stats:\n"; 271 llvm::errs() << NumDirectives << " directives found:\n"; 272 llvm::errs() << " " << NumDefined << " #define.\n"; 273 llvm::errs() << " " << NumUndefined << " #undef.\n"; 274 llvm::errs() << " #include/#include_next/#import:\n"; 275 llvm::errs() << " " << NumEnteredSourceFiles << " source files entered.\n"; 276 llvm::errs() << " " << MaxIncludeStackDepth << " max include stack depth\n"; 277 llvm::errs() << " " << NumIf << " #if/#ifndef/#ifdef.\n"; 278 llvm::errs() << " " << NumElse << " #else/#elif/#elifdef/#elifndef.\n"; 279 llvm::errs() << " " << NumEndif << " #endif.\n"; 280 llvm::errs() << " " << NumPragma << " #pragma.\n"; 281 llvm::errs() << NumSkipped << " #if/#ifndef#ifdef regions skipped\n"; 282 283 llvm::errs() << NumMacroExpanded << "/" << NumFnMacroExpanded << "/" 284 << NumBuiltinMacroExpanded << " obj/fn/builtin macros expanded, " 285 << NumFastMacroExpanded << " on the fast path.\n"; 286 llvm::errs() << (NumFastTokenPaste+NumTokenPaste) 287 << " token paste (##) operations performed, " 288 << NumFastTokenPaste << " on the fast path.\n"; 289 290 llvm::errs() << "\nPreprocessor Memory: " << getTotalMemory() << "B total"; 291 292 llvm::errs() << "\n BumpPtr: " << BP.getTotalMemory(); 293 llvm::errs() << "\n Macro Expanded Tokens: " 294 << llvm::capacity_in_bytes(MacroExpandedTokens); 295 llvm::errs() << "\n Predefines Buffer: " << Predefines.capacity(); 296 // FIXME: List information for all submodules. 297 llvm::errs() << "\n Macros: " 298 << llvm::capacity_in_bytes(CurSubmoduleState->Macros); 299 llvm::errs() << "\n #pragma push_macro Info: " 300 << llvm::capacity_in_bytes(PragmaPushMacroInfo); 301 llvm::errs() << "\n Poison Reasons: " 302 << llvm::capacity_in_bytes(PoisonReasons); 303 llvm::errs() << "\n Comment Handlers: " 304 << llvm::capacity_in_bytes(CommentHandlers) << "\n"; 305 } 306 307 Preprocessor::macro_iterator 308 Preprocessor::macro_begin(bool IncludeExternalMacros) const { 309 if (IncludeExternalMacros && ExternalSource && 310 !ReadMacrosFromExternalSource) { 311 ReadMacrosFromExternalSource = true; 312 ExternalSource->ReadDefinedMacros(); 313 } 314 315 // Make sure we cover all macros in visible modules. 316 for (const ModuleMacro &Macro : ModuleMacros) 317 CurSubmoduleState->Macros.insert(std::make_pair(Macro.II, MacroState())); 318 319 return CurSubmoduleState->Macros.begin(); 320 } 321 322 size_t Preprocessor::getTotalMemory() const { 323 return BP.getTotalMemory() 324 + llvm::capacity_in_bytes(MacroExpandedTokens) 325 + Predefines.capacity() /* Predefines buffer. */ 326 // FIXME: Include sizes from all submodules, and include MacroInfo sizes, 327 // and ModuleMacros. 328 + llvm::capacity_in_bytes(CurSubmoduleState->Macros) 329 + llvm::capacity_in_bytes(PragmaPushMacroInfo) 330 + llvm::capacity_in_bytes(PoisonReasons) 331 + llvm::capacity_in_bytes(CommentHandlers); 332 } 333 334 Preprocessor::macro_iterator 335 Preprocessor::macro_end(bool IncludeExternalMacros) const { 336 if (IncludeExternalMacros && ExternalSource && 337 !ReadMacrosFromExternalSource) { 338 ReadMacrosFromExternalSource = true; 339 ExternalSource->ReadDefinedMacros(); 340 } 341 342 return CurSubmoduleState->Macros.end(); 343 } 344 345 /// Compares macro tokens with a specified token value sequence. 346 static bool MacroDefinitionEquals(const MacroInfo *MI, 347 ArrayRef<TokenValue> Tokens) { 348 return Tokens.size() == MI->getNumTokens() && 349 std::equal(Tokens.begin(), Tokens.end(), MI->tokens_begin()); 350 } 351 352 StringRef Preprocessor::getLastMacroWithSpelling( 353 SourceLocation Loc, 354 ArrayRef<TokenValue> Tokens) const { 355 SourceLocation BestLocation; 356 StringRef BestSpelling; 357 for (Preprocessor::macro_iterator I = macro_begin(), E = macro_end(); 358 I != E; ++I) { 359 const MacroDirective::DefInfo 360 Def = I->second.findDirectiveAtLoc(Loc, SourceMgr); 361 if (!Def || !Def.getMacroInfo()) 362 continue; 363 if (!Def.getMacroInfo()->isObjectLike()) 364 continue; 365 if (!MacroDefinitionEquals(Def.getMacroInfo(), Tokens)) 366 continue; 367 SourceLocation Location = Def.getLocation(); 368 // Choose the macro defined latest. 369 if (BestLocation.isInvalid() || 370 (Location.isValid() && 371 SourceMgr.isBeforeInTranslationUnit(BestLocation, Location))) { 372 BestLocation = Location; 373 BestSpelling = I->first->getName(); 374 } 375 } 376 return BestSpelling; 377 } 378 379 void Preprocessor::recomputeCurLexerKind() { 380 if (CurLexer) 381 CurLexerKind = CurLexer->isDependencyDirectivesLexer() 382 ? CLK_DependencyDirectivesLexer 383 : CLK_Lexer; 384 else if (CurTokenLexer) 385 CurLexerKind = CLK_TokenLexer; 386 else 387 CurLexerKind = CLK_CachingLexer; 388 } 389 390 bool Preprocessor::SetCodeCompletionPoint(const FileEntry *File, 391 unsigned CompleteLine, 392 unsigned CompleteColumn) { 393 assert(File); 394 assert(CompleteLine && CompleteColumn && "Starts from 1:1"); 395 assert(!CodeCompletionFile && "Already set"); 396 397 // Load the actual file's contents. 398 std::optional<llvm::MemoryBufferRef> Buffer = 399 SourceMgr.getMemoryBufferForFileOrNone(File); 400 if (!Buffer) 401 return true; 402 403 // Find the byte position of the truncation point. 404 const char *Position = Buffer->getBufferStart(); 405 for (unsigned Line = 1; Line < CompleteLine; ++Line) { 406 for (; *Position; ++Position) { 407 if (*Position != '\r' && *Position != '\n') 408 continue; 409 410 // Eat \r\n or \n\r as a single line. 411 if ((Position[1] == '\r' || Position[1] == '\n') && 412 Position[0] != Position[1]) 413 ++Position; 414 ++Position; 415 break; 416 } 417 } 418 419 Position += CompleteColumn - 1; 420 421 // If pointing inside the preamble, adjust the position at the beginning of 422 // the file after the preamble. 423 if (SkipMainFilePreamble.first && 424 SourceMgr.getFileEntryForID(SourceMgr.getMainFileID()) == File) { 425 if (Position - Buffer->getBufferStart() < SkipMainFilePreamble.first) 426 Position = Buffer->getBufferStart() + SkipMainFilePreamble.first; 427 } 428 429 if (Position > Buffer->getBufferEnd()) 430 Position = Buffer->getBufferEnd(); 431 432 CodeCompletionFile = File; 433 CodeCompletionOffset = Position - Buffer->getBufferStart(); 434 435 auto NewBuffer = llvm::WritableMemoryBuffer::getNewUninitMemBuffer( 436 Buffer->getBufferSize() + 1, Buffer->getBufferIdentifier()); 437 char *NewBuf = NewBuffer->getBufferStart(); 438 char *NewPos = std::copy(Buffer->getBufferStart(), Position, NewBuf); 439 *NewPos = '\0'; 440 std::copy(Position, Buffer->getBufferEnd(), NewPos+1); 441 SourceMgr.overrideFileContents(File, std::move(NewBuffer)); 442 443 return false; 444 } 445 446 void Preprocessor::CodeCompleteIncludedFile(llvm::StringRef Dir, 447 bool IsAngled) { 448 setCodeCompletionReached(); 449 if (CodeComplete) 450 CodeComplete->CodeCompleteIncludedFile(Dir, IsAngled); 451 } 452 453 void Preprocessor::CodeCompleteNaturalLanguage() { 454 setCodeCompletionReached(); 455 if (CodeComplete) 456 CodeComplete->CodeCompleteNaturalLanguage(); 457 } 458 459 /// getSpelling - This method is used to get the spelling of a token into a 460 /// SmallVector. Note that the returned StringRef may not point to the 461 /// supplied buffer if a copy can be avoided. 462 StringRef Preprocessor::getSpelling(const Token &Tok, 463 SmallVectorImpl<char> &Buffer, 464 bool *Invalid) const { 465 // NOTE: this has to be checked *before* testing for an IdentifierInfo. 466 if (Tok.isNot(tok::raw_identifier) && !Tok.hasUCN()) { 467 // Try the fast path. 468 if (const IdentifierInfo *II = Tok.getIdentifierInfo()) 469 return II->getName(); 470 } 471 472 // Resize the buffer if we need to copy into it. 473 if (Tok.needsCleaning()) 474 Buffer.resize(Tok.getLength()); 475 476 const char *Ptr = Buffer.data(); 477 unsigned Len = getSpelling(Tok, Ptr, Invalid); 478 return StringRef(Ptr, Len); 479 } 480 481 /// CreateString - Plop the specified string into a scratch buffer and return a 482 /// location for it. If specified, the source location provides a source 483 /// location for the token. 484 void Preprocessor::CreateString(StringRef Str, Token &Tok, 485 SourceLocation ExpansionLocStart, 486 SourceLocation ExpansionLocEnd) { 487 Tok.setLength(Str.size()); 488 489 const char *DestPtr; 490 SourceLocation Loc = ScratchBuf->getToken(Str.data(), Str.size(), DestPtr); 491 492 if (ExpansionLocStart.isValid()) 493 Loc = SourceMgr.createExpansionLoc(Loc, ExpansionLocStart, 494 ExpansionLocEnd, Str.size()); 495 Tok.setLocation(Loc); 496 497 // If this is a raw identifier or a literal token, set the pointer data. 498 if (Tok.is(tok::raw_identifier)) 499 Tok.setRawIdentifierData(DestPtr); 500 else if (Tok.isLiteral()) 501 Tok.setLiteralData(DestPtr); 502 } 503 504 SourceLocation Preprocessor::SplitToken(SourceLocation Loc, unsigned Length) { 505 auto &SM = getSourceManager(); 506 SourceLocation SpellingLoc = SM.getSpellingLoc(Loc); 507 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(SpellingLoc); 508 bool Invalid = false; 509 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 510 if (Invalid) 511 return SourceLocation(); 512 513 // FIXME: We could consider re-using spelling for tokens we see repeatedly. 514 const char *DestPtr; 515 SourceLocation Spelling = 516 ScratchBuf->getToken(Buffer.data() + LocInfo.second, Length, DestPtr); 517 return SM.createTokenSplitLoc(Spelling, Loc, Loc.getLocWithOffset(Length)); 518 } 519 520 Module *Preprocessor::getCurrentModule() { 521 if (!getLangOpts().isCompilingModule()) 522 return nullptr; 523 524 return getHeaderSearchInfo().lookupModule(getLangOpts().CurrentModule); 525 } 526 527 Module *Preprocessor::getCurrentModuleImplementation() { 528 if (!getLangOpts().isCompilingModuleImplementation()) 529 return nullptr; 530 531 return getHeaderSearchInfo().lookupModule(getLangOpts().ModuleName); 532 } 533 534 //===----------------------------------------------------------------------===// 535 // Preprocessor Initialization Methods 536 //===----------------------------------------------------------------------===// 537 538 /// EnterMainSourceFile - Enter the specified FileID as the main source file, 539 /// which implicitly adds the builtin defines etc. 540 void Preprocessor::EnterMainSourceFile() { 541 // We do not allow the preprocessor to reenter the main file. Doing so will 542 // cause FileID's to accumulate information from both runs (e.g. #line 543 // information) and predefined macros aren't guaranteed to be set properly. 544 assert(NumEnteredSourceFiles == 0 && "Cannot reenter the main file!"); 545 FileID MainFileID = SourceMgr.getMainFileID(); 546 547 // If MainFileID is loaded it means we loaded an AST file, no need to enter 548 // a main file. 549 if (!SourceMgr.isLoadedFileID(MainFileID)) { 550 // Enter the main file source buffer. 551 EnterSourceFile(MainFileID, nullptr, SourceLocation()); 552 553 // If we've been asked to skip bytes in the main file (e.g., as part of a 554 // precompiled preamble), do so now. 555 if (SkipMainFilePreamble.first > 0) 556 CurLexer->SetByteOffset(SkipMainFilePreamble.first, 557 SkipMainFilePreamble.second); 558 559 // Tell the header info that the main file was entered. If the file is later 560 // #imported, it won't be re-entered. 561 if (const FileEntry *FE = SourceMgr.getFileEntryForID(MainFileID)) 562 markIncluded(FE); 563 } 564 565 // Preprocess Predefines to populate the initial preprocessor state. 566 std::unique_ptr<llvm::MemoryBuffer> SB = 567 llvm::MemoryBuffer::getMemBufferCopy(Predefines, "<built-in>"); 568 assert(SB && "Cannot create predefined source buffer"); 569 FileID FID = SourceMgr.createFileID(std::move(SB)); 570 assert(FID.isValid() && "Could not create FileID for predefines?"); 571 setPredefinesFileID(FID); 572 573 // Start parsing the predefines. 574 EnterSourceFile(FID, nullptr, SourceLocation()); 575 576 if (!PPOpts->PCHThroughHeader.empty()) { 577 // Lookup and save the FileID for the through header. If it isn't found 578 // in the search path, it's a fatal error. 579 OptionalFileEntryRef File = LookupFile( 580 SourceLocation(), PPOpts->PCHThroughHeader, 581 /*isAngled=*/false, /*FromDir=*/nullptr, /*FromFile=*/nullptr, 582 /*CurDir=*/nullptr, /*SearchPath=*/nullptr, /*RelativePath=*/nullptr, 583 /*SuggestedModule=*/nullptr, /*IsMapped=*/nullptr, 584 /*IsFrameworkFound=*/nullptr); 585 if (!File) { 586 Diag(SourceLocation(), diag::err_pp_through_header_not_found) 587 << PPOpts->PCHThroughHeader; 588 return; 589 } 590 setPCHThroughHeaderFileID( 591 SourceMgr.createFileID(*File, SourceLocation(), SrcMgr::C_User)); 592 } 593 594 // Skip tokens from the Predefines and if needed the main file. 595 if ((usingPCHWithThroughHeader() && SkippingUntilPCHThroughHeader) || 596 (usingPCHWithPragmaHdrStop() && SkippingUntilPragmaHdrStop)) 597 SkipTokensWhileUsingPCH(); 598 } 599 600 void Preprocessor::setPCHThroughHeaderFileID(FileID FID) { 601 assert(PCHThroughHeaderFileID.isInvalid() && 602 "PCHThroughHeaderFileID already set!"); 603 PCHThroughHeaderFileID = FID; 604 } 605 606 bool Preprocessor::isPCHThroughHeader(const FileEntry *FE) { 607 assert(PCHThroughHeaderFileID.isValid() && 608 "Invalid PCH through header FileID"); 609 return FE == SourceMgr.getFileEntryForID(PCHThroughHeaderFileID); 610 } 611 612 bool Preprocessor::creatingPCHWithThroughHeader() { 613 return TUKind == TU_Prefix && !PPOpts->PCHThroughHeader.empty() && 614 PCHThroughHeaderFileID.isValid(); 615 } 616 617 bool Preprocessor::usingPCHWithThroughHeader() { 618 return TUKind != TU_Prefix && !PPOpts->PCHThroughHeader.empty() && 619 PCHThroughHeaderFileID.isValid(); 620 } 621 622 bool Preprocessor::creatingPCHWithPragmaHdrStop() { 623 return TUKind == TU_Prefix && PPOpts->PCHWithHdrStop; 624 } 625 626 bool Preprocessor::usingPCHWithPragmaHdrStop() { 627 return TUKind != TU_Prefix && PPOpts->PCHWithHdrStop; 628 } 629 630 /// Skip tokens until after the #include of the through header or 631 /// until after a #pragma hdrstop is seen. Tokens in the predefines file 632 /// and the main file may be skipped. If the end of the predefines file 633 /// is reached, skipping continues into the main file. If the end of the 634 /// main file is reached, it's a fatal error. 635 void Preprocessor::SkipTokensWhileUsingPCH() { 636 bool ReachedMainFileEOF = false; 637 bool UsingPCHThroughHeader = SkippingUntilPCHThroughHeader; 638 bool UsingPragmaHdrStop = SkippingUntilPragmaHdrStop; 639 Token Tok; 640 while (true) { 641 bool InPredefines = 642 (CurLexer && CurLexer->getFileID() == getPredefinesFileID()); 643 switch (CurLexerKind) { 644 case CLK_Lexer: 645 CurLexer->Lex(Tok); 646 break; 647 case CLK_TokenLexer: 648 CurTokenLexer->Lex(Tok); 649 break; 650 case CLK_CachingLexer: 651 CachingLex(Tok); 652 break; 653 case CLK_DependencyDirectivesLexer: 654 CurLexer->LexDependencyDirectiveToken(Tok); 655 break; 656 case CLK_LexAfterModuleImport: 657 LexAfterModuleImport(Tok); 658 break; 659 } 660 if (Tok.is(tok::eof) && !InPredefines) { 661 ReachedMainFileEOF = true; 662 break; 663 } 664 if (UsingPCHThroughHeader && !SkippingUntilPCHThroughHeader) 665 break; 666 if (UsingPragmaHdrStop && !SkippingUntilPragmaHdrStop) 667 break; 668 } 669 if (ReachedMainFileEOF) { 670 if (UsingPCHThroughHeader) 671 Diag(SourceLocation(), diag::err_pp_through_header_not_seen) 672 << PPOpts->PCHThroughHeader << 1; 673 else if (!PPOpts->PCHWithHdrStopCreate) 674 Diag(SourceLocation(), diag::err_pp_pragma_hdrstop_not_seen); 675 } 676 } 677 678 void Preprocessor::replayPreambleConditionalStack() { 679 // Restore the conditional stack from the preamble, if there is one. 680 if (PreambleConditionalStack.isReplaying()) { 681 assert(CurPPLexer && 682 "CurPPLexer is null when calling replayPreambleConditionalStack."); 683 CurPPLexer->setConditionalLevels(PreambleConditionalStack.getStack()); 684 PreambleConditionalStack.doneReplaying(); 685 if (PreambleConditionalStack.reachedEOFWhileSkipping()) 686 SkipExcludedConditionalBlock( 687 PreambleConditionalStack.SkipInfo->HashTokenLoc, 688 PreambleConditionalStack.SkipInfo->IfTokenLoc, 689 PreambleConditionalStack.SkipInfo->FoundNonSkipPortion, 690 PreambleConditionalStack.SkipInfo->FoundElse, 691 PreambleConditionalStack.SkipInfo->ElseLoc); 692 } 693 } 694 695 void Preprocessor::EndSourceFile() { 696 // Notify the client that we reached the end of the source file. 697 if (Callbacks) 698 Callbacks->EndOfMainFile(); 699 } 700 701 //===----------------------------------------------------------------------===// 702 // Lexer Event Handling. 703 //===----------------------------------------------------------------------===// 704 705 /// LookUpIdentifierInfo - Given a tok::raw_identifier token, look up the 706 /// identifier information for the token and install it into the token, 707 /// updating the token kind accordingly. 708 IdentifierInfo *Preprocessor::LookUpIdentifierInfo(Token &Identifier) const { 709 assert(!Identifier.getRawIdentifier().empty() && "No raw identifier data!"); 710 711 // Look up this token, see if it is a macro, or if it is a language keyword. 712 IdentifierInfo *II; 713 if (!Identifier.needsCleaning() && !Identifier.hasUCN()) { 714 // No cleaning needed, just use the characters from the lexed buffer. 715 II = getIdentifierInfo(Identifier.getRawIdentifier()); 716 } else { 717 // Cleaning needed, alloca a buffer, clean into it, then use the buffer. 718 SmallString<64> IdentifierBuffer; 719 StringRef CleanedStr = getSpelling(Identifier, IdentifierBuffer); 720 721 if (Identifier.hasUCN()) { 722 SmallString<64> UCNIdentifierBuffer; 723 expandUCNs(UCNIdentifierBuffer, CleanedStr); 724 II = getIdentifierInfo(UCNIdentifierBuffer); 725 } else { 726 II = getIdentifierInfo(CleanedStr); 727 } 728 } 729 730 // Update the token info (identifier info and appropriate token kind). 731 // FIXME: the raw_identifier may contain leading whitespace which is removed 732 // from the cleaned identifier token. The SourceLocation should be updated to 733 // refer to the non-whitespace character. For instance, the text "\\\nB" (a 734 // line continuation before 'B') is parsed as a single tok::raw_identifier and 735 // is cleaned to tok::identifier "B". After cleaning the token's length is 736 // still 3 and the SourceLocation refers to the location of the backslash. 737 Identifier.setIdentifierInfo(II); 738 Identifier.setKind(II->getTokenID()); 739 740 return II; 741 } 742 743 void Preprocessor::SetPoisonReason(IdentifierInfo *II, unsigned DiagID) { 744 PoisonReasons[II] = DiagID; 745 } 746 747 void Preprocessor::PoisonSEHIdentifiers(bool Poison) { 748 assert(Ident__exception_code && Ident__exception_info); 749 assert(Ident___exception_code && Ident___exception_info); 750 Ident__exception_code->setIsPoisoned(Poison); 751 Ident___exception_code->setIsPoisoned(Poison); 752 Ident_GetExceptionCode->setIsPoisoned(Poison); 753 Ident__exception_info->setIsPoisoned(Poison); 754 Ident___exception_info->setIsPoisoned(Poison); 755 Ident_GetExceptionInfo->setIsPoisoned(Poison); 756 Ident__abnormal_termination->setIsPoisoned(Poison); 757 Ident___abnormal_termination->setIsPoisoned(Poison); 758 Ident_AbnormalTermination->setIsPoisoned(Poison); 759 } 760 761 void Preprocessor::HandlePoisonedIdentifier(Token & Identifier) { 762 assert(Identifier.getIdentifierInfo() && 763 "Can't handle identifiers without identifier info!"); 764 llvm::DenseMap<IdentifierInfo*,unsigned>::const_iterator it = 765 PoisonReasons.find(Identifier.getIdentifierInfo()); 766 if(it == PoisonReasons.end()) 767 Diag(Identifier, diag::err_pp_used_poisoned_id); 768 else 769 Diag(Identifier,it->second) << Identifier.getIdentifierInfo(); 770 } 771 772 void Preprocessor::updateOutOfDateIdentifier(IdentifierInfo &II) const { 773 assert(II.isOutOfDate() && "not out of date"); 774 getExternalSource()->updateOutOfDateIdentifier(II); 775 } 776 777 /// HandleIdentifier - This callback is invoked when the lexer reads an 778 /// identifier. This callback looks up the identifier in the map and/or 779 /// potentially macro expands it or turns it into a named token (like 'for'). 780 /// 781 /// Note that callers of this method are guarded by checking the 782 /// IdentifierInfo's 'isHandleIdentifierCase' bit. If this method changes, the 783 /// IdentifierInfo methods that compute these properties will need to change to 784 /// match. 785 bool Preprocessor::HandleIdentifier(Token &Identifier) { 786 assert(Identifier.getIdentifierInfo() && 787 "Can't handle identifiers without identifier info!"); 788 789 IdentifierInfo &II = *Identifier.getIdentifierInfo(); 790 791 // If the information about this identifier is out of date, update it from 792 // the external source. 793 // We have to treat __VA_ARGS__ in a special way, since it gets 794 // serialized with isPoisoned = true, but our preprocessor may have 795 // unpoisoned it if we're defining a C99 macro. 796 if (II.isOutOfDate()) { 797 bool CurrentIsPoisoned = false; 798 const bool IsSpecialVariadicMacro = 799 &II == Ident__VA_ARGS__ || &II == Ident__VA_OPT__; 800 if (IsSpecialVariadicMacro) 801 CurrentIsPoisoned = II.isPoisoned(); 802 803 updateOutOfDateIdentifier(II); 804 Identifier.setKind(II.getTokenID()); 805 806 if (IsSpecialVariadicMacro) 807 II.setIsPoisoned(CurrentIsPoisoned); 808 } 809 810 // If this identifier was poisoned, and if it was not produced from a macro 811 // expansion, emit an error. 812 if (II.isPoisoned() && CurPPLexer) { 813 HandlePoisonedIdentifier(Identifier); 814 } 815 816 // If this is a macro to be expanded, do it. 817 if (MacroDefinition MD = getMacroDefinition(&II)) { 818 auto *MI = MD.getMacroInfo(); 819 assert(MI && "macro definition with no macro info?"); 820 if (!DisableMacroExpansion) { 821 if (!Identifier.isExpandDisabled() && MI->isEnabled()) { 822 // C99 6.10.3p10: If the preprocessing token immediately after the 823 // macro name isn't a '(', this macro should not be expanded. 824 if (!MI->isFunctionLike() || isNextPPTokenLParen()) 825 return HandleMacroExpandedIdentifier(Identifier, MD); 826 } else { 827 // C99 6.10.3.4p2 says that a disabled macro may never again be 828 // expanded, even if it's in a context where it could be expanded in the 829 // future. 830 Identifier.setFlag(Token::DisableExpand); 831 if (MI->isObjectLike() || isNextPPTokenLParen()) 832 Diag(Identifier, diag::pp_disabled_macro_expansion); 833 } 834 } 835 } 836 837 // If this identifier is a keyword in a newer Standard or proposed Standard, 838 // produce a warning. Don't warn if we're not considering macro expansion, 839 // since this identifier might be the name of a macro. 840 // FIXME: This warning is disabled in cases where it shouldn't be, like 841 // "#define constexpr constexpr", "int constexpr;" 842 if (II.isFutureCompatKeyword() && !DisableMacroExpansion) { 843 Diag(Identifier, getIdentifierTable().getFutureCompatDiagKind(II, getLangOpts())) 844 << II.getName(); 845 // Don't diagnose this keyword again in this translation unit. 846 II.setIsFutureCompatKeyword(false); 847 } 848 849 // If this is an extension token, diagnose its use. 850 // We avoid diagnosing tokens that originate from macro definitions. 851 // FIXME: This warning is disabled in cases where it shouldn't be, 852 // like "#define TY typeof", "TY(1) x". 853 if (II.isExtensionToken() && !DisableMacroExpansion) 854 Diag(Identifier, diag::ext_token_used); 855 856 // If this is the 'import' contextual keyword following an '@', note 857 // that the next token indicates a module name. 858 // 859 // Note that we do not treat 'import' as a contextual 860 // keyword when we're in a caching lexer, because caching lexers only get 861 // used in contexts where import declarations are disallowed. 862 // 863 // Likewise if this is the standard C++ import keyword. 864 if (((LastTokenWasAt && II.isModulesImport()) || 865 Identifier.is(tok::kw_import)) && 866 !InMacroArgs && !DisableMacroExpansion && 867 (getLangOpts().Modules || getLangOpts().DebuggerSupport) && 868 CurLexerKind != CLK_CachingLexer) { 869 ModuleImportLoc = Identifier.getLocation(); 870 NamedModuleImportPath.clear(); 871 IsAtImport = true; 872 ModuleImportExpectsIdentifier = true; 873 CurLexerKind = CLK_LexAfterModuleImport; 874 } 875 return true; 876 } 877 878 void Preprocessor::Lex(Token &Result) { 879 ++LexLevel; 880 881 // We loop here until a lex function returns a token; this avoids recursion. 882 bool ReturnedToken; 883 do { 884 switch (CurLexerKind) { 885 case CLK_Lexer: 886 ReturnedToken = CurLexer->Lex(Result); 887 break; 888 case CLK_TokenLexer: 889 ReturnedToken = CurTokenLexer->Lex(Result); 890 break; 891 case CLK_CachingLexer: 892 CachingLex(Result); 893 ReturnedToken = true; 894 break; 895 case CLK_DependencyDirectivesLexer: 896 ReturnedToken = CurLexer->LexDependencyDirectiveToken(Result); 897 break; 898 case CLK_LexAfterModuleImport: 899 ReturnedToken = LexAfterModuleImport(Result); 900 break; 901 } 902 } while (!ReturnedToken); 903 904 if (Result.is(tok::unknown) && TheModuleLoader.HadFatalFailure) 905 return; 906 907 if (Result.is(tok::code_completion) && Result.getIdentifierInfo()) { 908 // Remember the identifier before code completion token. 909 setCodeCompletionIdentifierInfo(Result.getIdentifierInfo()); 910 setCodeCompletionTokenRange(Result.getLocation(), Result.getEndLoc()); 911 // Set IdenfitierInfo to null to avoid confusing code that handles both 912 // identifiers and completion tokens. 913 Result.setIdentifierInfo(nullptr); 914 } 915 916 // Update StdCXXImportSeqState to track our position within a C++20 import-seq 917 // if this token is being produced as a result of phase 4 of translation. 918 // Update TrackGMFState to decide if we are currently in a Global Module 919 // Fragment. GMF state updates should precede StdCXXImportSeq ones, since GMF state 920 // depends on the prevailing StdCXXImportSeq state in two cases. 921 if (getLangOpts().CPlusPlusModules && LexLevel == 1 && 922 !Result.getFlag(Token::IsReinjected)) { 923 switch (Result.getKind()) { 924 case tok::l_paren: case tok::l_square: case tok::l_brace: 925 StdCXXImportSeqState.handleOpenBracket(); 926 break; 927 case tok::r_paren: case tok::r_square: 928 StdCXXImportSeqState.handleCloseBracket(); 929 break; 930 case tok::r_brace: 931 StdCXXImportSeqState.handleCloseBrace(); 932 break; 933 // This token is injected to represent the translation of '#include "a.h"' 934 // into "import a.h;". Mimic the notional ';'. 935 case tok::annot_module_include: 936 case tok::semi: 937 TrackGMFState.handleSemi(); 938 StdCXXImportSeqState.handleSemi(); 939 ModuleDeclState.handleSemi(); 940 break; 941 case tok::header_name: 942 case tok::annot_header_unit: 943 StdCXXImportSeqState.handleHeaderName(); 944 break; 945 case tok::kw_export: 946 TrackGMFState.handleExport(); 947 StdCXXImportSeqState.handleExport(); 948 ModuleDeclState.handleExport(); 949 break; 950 case tok::colon: 951 ModuleDeclState.handleColon(); 952 break; 953 case tok::period: 954 ModuleDeclState.handlePeriod(); 955 break; 956 case tok::identifier: 957 if (Result.getIdentifierInfo()->isModulesImport()) { 958 TrackGMFState.handleImport(StdCXXImportSeqState.afterTopLevelSeq()); 959 StdCXXImportSeqState.handleImport(); 960 if (StdCXXImportSeqState.afterImportSeq()) { 961 ModuleImportLoc = Result.getLocation(); 962 NamedModuleImportPath.clear(); 963 IsAtImport = false; 964 ModuleImportExpectsIdentifier = true; 965 CurLexerKind = CLK_LexAfterModuleImport; 966 } 967 break; 968 } else if (Result.getIdentifierInfo() == getIdentifierInfo("module")) { 969 TrackGMFState.handleModule(StdCXXImportSeqState.afterTopLevelSeq()); 970 ModuleDeclState.handleModule(); 971 break; 972 } else { 973 ModuleDeclState.handleIdentifier(Result.getIdentifierInfo()); 974 if (ModuleDeclState.isModuleCandidate()) 975 break; 976 } 977 [[fallthrough]]; 978 default: 979 TrackGMFState.handleMisc(); 980 StdCXXImportSeqState.handleMisc(); 981 ModuleDeclState.handleMisc(); 982 break; 983 } 984 } 985 986 LastTokenWasAt = Result.is(tok::at); 987 --LexLevel; 988 989 if ((LexLevel == 0 || PreprocessToken) && 990 !Result.getFlag(Token::IsReinjected)) { 991 if (LexLevel == 0) 992 ++TokenCount; 993 if (OnToken) 994 OnToken(Result); 995 } 996 } 997 998 /// Lex a header-name token (including one formed from header-name-tokens if 999 /// \p AllowConcatenation is \c true). 1000 /// 1001 /// \param FilenameTok Filled in with the next token. On success, this will 1002 /// be either a header_name token. On failure, it will be whatever other 1003 /// token was found instead. 1004 /// \param AllowMacroExpansion If \c true, allow the header name to be formed 1005 /// by macro expansion (concatenating tokens as necessary if the first 1006 /// token is a '<'). 1007 /// \return \c true if we reached EOD or EOF while looking for a > token in 1008 /// a concatenated header name and diagnosed it. \c false otherwise. 1009 bool Preprocessor::LexHeaderName(Token &FilenameTok, bool AllowMacroExpansion) { 1010 // Lex using header-name tokenization rules if tokens are being lexed from 1011 // a file. Just grab a token normally if we're in a macro expansion. 1012 if (CurPPLexer) 1013 CurPPLexer->LexIncludeFilename(FilenameTok); 1014 else 1015 Lex(FilenameTok); 1016 1017 // This could be a <foo/bar.h> file coming from a macro expansion. In this 1018 // case, glue the tokens together into an angle_string_literal token. 1019 SmallString<128> FilenameBuffer; 1020 if (FilenameTok.is(tok::less) && AllowMacroExpansion) { 1021 bool StartOfLine = FilenameTok.isAtStartOfLine(); 1022 bool LeadingSpace = FilenameTok.hasLeadingSpace(); 1023 bool LeadingEmptyMacro = FilenameTok.hasLeadingEmptyMacro(); 1024 1025 SourceLocation Start = FilenameTok.getLocation(); 1026 SourceLocation End; 1027 FilenameBuffer.push_back('<'); 1028 1029 // Consume tokens until we find a '>'. 1030 // FIXME: A header-name could be formed starting or ending with an 1031 // alternative token. It's not clear whether that's ill-formed in all 1032 // cases. 1033 while (FilenameTok.isNot(tok::greater)) { 1034 Lex(FilenameTok); 1035 if (FilenameTok.isOneOf(tok::eod, tok::eof)) { 1036 Diag(FilenameTok.getLocation(), diag::err_expected) << tok::greater; 1037 Diag(Start, diag::note_matching) << tok::less; 1038 return true; 1039 } 1040 1041 End = FilenameTok.getLocation(); 1042 1043 // FIXME: Provide code completion for #includes. 1044 if (FilenameTok.is(tok::code_completion)) { 1045 setCodeCompletionReached(); 1046 Lex(FilenameTok); 1047 continue; 1048 } 1049 1050 // Append the spelling of this token to the buffer. If there was a space 1051 // before it, add it now. 1052 if (FilenameTok.hasLeadingSpace()) 1053 FilenameBuffer.push_back(' '); 1054 1055 // Get the spelling of the token, directly into FilenameBuffer if 1056 // possible. 1057 size_t PreAppendSize = FilenameBuffer.size(); 1058 FilenameBuffer.resize(PreAppendSize + FilenameTok.getLength()); 1059 1060 const char *BufPtr = &FilenameBuffer[PreAppendSize]; 1061 unsigned ActualLen = getSpelling(FilenameTok, BufPtr); 1062 1063 // If the token was spelled somewhere else, copy it into FilenameBuffer. 1064 if (BufPtr != &FilenameBuffer[PreAppendSize]) 1065 memcpy(&FilenameBuffer[PreAppendSize], BufPtr, ActualLen); 1066 1067 // Resize FilenameBuffer to the correct size. 1068 if (FilenameTok.getLength() != ActualLen) 1069 FilenameBuffer.resize(PreAppendSize + ActualLen); 1070 } 1071 1072 FilenameTok.startToken(); 1073 FilenameTok.setKind(tok::header_name); 1074 FilenameTok.setFlagValue(Token::StartOfLine, StartOfLine); 1075 FilenameTok.setFlagValue(Token::LeadingSpace, LeadingSpace); 1076 FilenameTok.setFlagValue(Token::LeadingEmptyMacro, LeadingEmptyMacro); 1077 CreateString(FilenameBuffer, FilenameTok, Start, End); 1078 } else if (FilenameTok.is(tok::string_literal) && AllowMacroExpansion) { 1079 // Convert a string-literal token of the form " h-char-sequence " 1080 // (produced by macro expansion) into a header-name token. 1081 // 1082 // The rules for header-names don't quite match the rules for 1083 // string-literals, but all the places where they differ result in 1084 // undefined behavior, so we can and do treat them the same. 1085 // 1086 // A string-literal with a prefix or suffix is not translated into a 1087 // header-name. This could theoretically be observable via the C++20 1088 // context-sensitive header-name formation rules. 1089 StringRef Str = getSpelling(FilenameTok, FilenameBuffer); 1090 if (Str.size() >= 2 && Str.front() == '"' && Str.back() == '"') 1091 FilenameTok.setKind(tok::header_name); 1092 } 1093 1094 return false; 1095 } 1096 1097 /// Collect the tokens of a C++20 pp-import-suffix. 1098 void Preprocessor::CollectPpImportSuffix(SmallVectorImpl<Token> &Toks) { 1099 // FIXME: For error recovery, consider recognizing attribute syntax here 1100 // and terminating / diagnosing a missing semicolon if we find anything 1101 // else? (Can we leave that to the parser?) 1102 unsigned BracketDepth = 0; 1103 while (true) { 1104 Toks.emplace_back(); 1105 Lex(Toks.back()); 1106 1107 switch (Toks.back().getKind()) { 1108 case tok::l_paren: case tok::l_square: case tok::l_brace: 1109 ++BracketDepth; 1110 break; 1111 1112 case tok::r_paren: case tok::r_square: case tok::r_brace: 1113 if (BracketDepth == 0) 1114 return; 1115 --BracketDepth; 1116 break; 1117 1118 case tok::semi: 1119 if (BracketDepth == 0) 1120 return; 1121 break; 1122 1123 case tok::eof: 1124 return; 1125 1126 default: 1127 break; 1128 } 1129 } 1130 } 1131 1132 1133 /// Lex a token following the 'import' contextual keyword. 1134 /// 1135 /// pp-import: [C++20] 1136 /// import header-name pp-import-suffix[opt] ; 1137 /// import header-name-tokens pp-import-suffix[opt] ; 1138 /// [ObjC] @ import module-name ; 1139 /// [Clang] import module-name ; 1140 /// 1141 /// header-name-tokens: 1142 /// string-literal 1143 /// < [any sequence of preprocessing-tokens other than >] > 1144 /// 1145 /// module-name: 1146 /// module-name-qualifier[opt] identifier 1147 /// 1148 /// module-name-qualifier 1149 /// module-name-qualifier[opt] identifier . 1150 /// 1151 /// We respond to a pp-import by importing macros from the named module. 1152 bool Preprocessor::LexAfterModuleImport(Token &Result) { 1153 // Figure out what kind of lexer we actually have. 1154 recomputeCurLexerKind(); 1155 1156 // Lex the next token. The header-name lexing rules are used at the start of 1157 // a pp-import. 1158 // 1159 // For now, we only support header-name imports in C++20 mode. 1160 // FIXME: Should we allow this in all language modes that support an import 1161 // declaration as an extension? 1162 if (NamedModuleImportPath.empty() && getLangOpts().CPlusPlusModules) { 1163 if (LexHeaderName(Result)) 1164 return true; 1165 1166 if (Result.is(tok::colon) && ModuleDeclState.isNamedModule()) { 1167 std::string Name = ModuleDeclState.getPrimaryName().str(); 1168 Name += ":"; 1169 NamedModuleImportPath.push_back( 1170 {getIdentifierInfo(Name), Result.getLocation()}); 1171 CurLexerKind = CLK_LexAfterModuleImport; 1172 return true; 1173 } 1174 } else { 1175 Lex(Result); 1176 } 1177 1178 // Allocate a holding buffer for a sequence of tokens and introduce it into 1179 // the token stream. 1180 auto EnterTokens = [this](ArrayRef<Token> Toks) { 1181 auto ToksCopy = std::make_unique<Token[]>(Toks.size()); 1182 std::copy(Toks.begin(), Toks.end(), ToksCopy.get()); 1183 EnterTokenStream(std::move(ToksCopy), Toks.size(), 1184 /*DisableMacroExpansion*/ true, /*IsReinject*/ false); 1185 }; 1186 1187 bool ImportingHeader = Result.is(tok::header_name); 1188 // Check for a header-name. 1189 SmallVector<Token, 32> Suffix; 1190 if (ImportingHeader) { 1191 // Enter the header-name token into the token stream; a Lex action cannot 1192 // both return a token and cache tokens (doing so would corrupt the token 1193 // cache if the call to Lex comes from CachingLex / PeekAhead). 1194 Suffix.push_back(Result); 1195 1196 // Consume the pp-import-suffix and expand any macros in it now. We'll add 1197 // it back into the token stream later. 1198 CollectPpImportSuffix(Suffix); 1199 if (Suffix.back().isNot(tok::semi)) { 1200 // This is not a pp-import after all. 1201 EnterTokens(Suffix); 1202 return false; 1203 } 1204 1205 // C++2a [cpp.module]p1: 1206 // The ';' preprocessing-token terminating a pp-import shall not have 1207 // been produced by macro replacement. 1208 SourceLocation SemiLoc = Suffix.back().getLocation(); 1209 if (SemiLoc.isMacroID()) 1210 Diag(SemiLoc, diag::err_header_import_semi_in_macro); 1211 1212 // Reconstitute the import token. 1213 Token ImportTok; 1214 ImportTok.startToken(); 1215 ImportTok.setKind(tok::kw_import); 1216 ImportTok.setLocation(ModuleImportLoc); 1217 ImportTok.setIdentifierInfo(getIdentifierInfo("import")); 1218 ImportTok.setLength(6); 1219 1220 auto Action = HandleHeaderIncludeOrImport( 1221 /*HashLoc*/ SourceLocation(), ImportTok, Suffix.front(), SemiLoc); 1222 switch (Action.Kind) { 1223 case ImportAction::None: 1224 break; 1225 1226 case ImportAction::ModuleBegin: 1227 // Let the parser know we're textually entering the module. 1228 Suffix.emplace_back(); 1229 Suffix.back().startToken(); 1230 Suffix.back().setKind(tok::annot_module_begin); 1231 Suffix.back().setLocation(SemiLoc); 1232 Suffix.back().setAnnotationEndLoc(SemiLoc); 1233 Suffix.back().setAnnotationValue(Action.ModuleForHeader); 1234 [[fallthrough]]; 1235 1236 case ImportAction::ModuleImport: 1237 case ImportAction::HeaderUnitImport: 1238 case ImportAction::SkippedModuleImport: 1239 // We chose to import (or textually enter) the file. Convert the 1240 // header-name token into a header unit annotation token. 1241 Suffix[0].setKind(tok::annot_header_unit); 1242 Suffix[0].setAnnotationEndLoc(Suffix[0].getLocation()); 1243 Suffix[0].setAnnotationValue(Action.ModuleForHeader); 1244 // FIXME: Call the moduleImport callback? 1245 break; 1246 case ImportAction::Failure: 1247 assert(TheModuleLoader.HadFatalFailure && 1248 "This should be an early exit only to a fatal error"); 1249 Result.setKind(tok::eof); 1250 CurLexer->cutOffLexing(); 1251 EnterTokens(Suffix); 1252 return true; 1253 } 1254 1255 EnterTokens(Suffix); 1256 return false; 1257 } 1258 1259 // The token sequence 1260 // 1261 // import identifier (. identifier)* 1262 // 1263 // indicates a module import directive. We already saw the 'import' 1264 // contextual keyword, so now we're looking for the identifiers. 1265 if (ModuleImportExpectsIdentifier && Result.getKind() == tok::identifier) { 1266 // We expected to see an identifier here, and we did; continue handling 1267 // identifiers. 1268 NamedModuleImportPath.push_back( 1269 std::make_pair(Result.getIdentifierInfo(), Result.getLocation())); 1270 ModuleImportExpectsIdentifier = false; 1271 CurLexerKind = CLK_LexAfterModuleImport; 1272 return true; 1273 } 1274 1275 // If we're expecting a '.' or a ';', and we got a '.', then wait until we 1276 // see the next identifier. (We can also see a '[[' that begins an 1277 // attribute-specifier-seq here under the Standard C++ Modules.) 1278 if (!ModuleImportExpectsIdentifier && Result.getKind() == tok::period) { 1279 ModuleImportExpectsIdentifier = true; 1280 CurLexerKind = CLK_LexAfterModuleImport; 1281 return true; 1282 } 1283 1284 // If we didn't recognize a module name at all, this is not a (valid) import. 1285 if (NamedModuleImportPath.empty() || Result.is(tok::eof)) 1286 return true; 1287 1288 // Consume the pp-import-suffix and expand any macros in it now, if we're not 1289 // at the semicolon already. 1290 SourceLocation SemiLoc = Result.getLocation(); 1291 if (Result.isNot(tok::semi)) { 1292 Suffix.push_back(Result); 1293 CollectPpImportSuffix(Suffix); 1294 if (Suffix.back().isNot(tok::semi)) { 1295 // This is not an import after all. 1296 EnterTokens(Suffix); 1297 return false; 1298 } 1299 SemiLoc = Suffix.back().getLocation(); 1300 } 1301 1302 // Under the standard C++ Modules, the dot is just part of the module name, 1303 // and not a real hierarchy separator. Flatten such module names now. 1304 // 1305 // FIXME: Is this the right level to be performing this transformation? 1306 std::string FlatModuleName; 1307 if (getLangOpts().CPlusPlusModules) { 1308 for (auto &Piece : NamedModuleImportPath) { 1309 // If the FlatModuleName ends with colon, it implies it is a partition. 1310 if (!FlatModuleName.empty() && FlatModuleName.back() != ':') 1311 FlatModuleName += "."; 1312 FlatModuleName += Piece.first->getName(); 1313 } 1314 SourceLocation FirstPathLoc = NamedModuleImportPath[0].second; 1315 NamedModuleImportPath.clear(); 1316 NamedModuleImportPath.push_back( 1317 std::make_pair(getIdentifierInfo(FlatModuleName), FirstPathLoc)); 1318 } 1319 1320 Module *Imported = nullptr; 1321 // We don't/shouldn't load the standard c++20 modules when preprocessing. 1322 if (getLangOpts().Modules && !isInImportingCXXNamedModules()) { 1323 Imported = TheModuleLoader.loadModule(ModuleImportLoc, 1324 NamedModuleImportPath, 1325 Module::Hidden, 1326 /*IsInclusionDirective=*/false); 1327 if (Imported) 1328 makeModuleVisible(Imported, SemiLoc); 1329 } 1330 1331 if (Callbacks) 1332 Callbacks->moduleImport(ModuleImportLoc, NamedModuleImportPath, Imported); 1333 1334 if (!Suffix.empty()) { 1335 EnterTokens(Suffix); 1336 return false; 1337 } 1338 return true; 1339 } 1340 1341 void Preprocessor::makeModuleVisible(Module *M, SourceLocation Loc) { 1342 CurSubmoduleState->VisibleModules.setVisible( 1343 M, Loc, [](Module *) {}, 1344 [&](ArrayRef<Module *> Path, Module *Conflict, StringRef Message) { 1345 // FIXME: Include the path in the diagnostic. 1346 // FIXME: Include the import location for the conflicting module. 1347 Diag(ModuleImportLoc, diag::warn_module_conflict) 1348 << Path[0]->getFullModuleName() 1349 << Conflict->getFullModuleName() 1350 << Message; 1351 }); 1352 1353 // Add this module to the imports list of the currently-built submodule. 1354 if (!BuildingSubmoduleStack.empty() && M != BuildingSubmoduleStack.back().M) 1355 BuildingSubmoduleStack.back().M->Imports.insert(M); 1356 } 1357 1358 bool Preprocessor::FinishLexStringLiteral(Token &Result, std::string &String, 1359 const char *DiagnosticTag, 1360 bool AllowMacroExpansion) { 1361 // We need at least one string literal. 1362 if (Result.isNot(tok::string_literal)) { 1363 Diag(Result, diag::err_expected_string_literal) 1364 << /*Source='in...'*/0 << DiagnosticTag; 1365 return false; 1366 } 1367 1368 // Lex string literal tokens, optionally with macro expansion. 1369 SmallVector<Token, 4> StrToks; 1370 do { 1371 StrToks.push_back(Result); 1372 1373 if (Result.hasUDSuffix()) 1374 Diag(Result, diag::err_invalid_string_udl); 1375 1376 if (AllowMacroExpansion) 1377 Lex(Result); 1378 else 1379 LexUnexpandedToken(Result); 1380 } while (Result.is(tok::string_literal)); 1381 1382 // Concatenate and parse the strings. 1383 StringLiteralParser Literal(StrToks, *this); 1384 assert(Literal.isOrdinary() && "Didn't allow wide strings in"); 1385 1386 if (Literal.hadError) 1387 return false; 1388 1389 if (Literal.Pascal) { 1390 Diag(StrToks[0].getLocation(), diag::err_expected_string_literal) 1391 << /*Source='in...'*/0 << DiagnosticTag; 1392 return false; 1393 } 1394 1395 String = std::string(Literal.GetString()); 1396 return true; 1397 } 1398 1399 bool Preprocessor::parseSimpleIntegerLiteral(Token &Tok, uint64_t &Value) { 1400 assert(Tok.is(tok::numeric_constant)); 1401 SmallString<8> IntegerBuffer; 1402 bool NumberInvalid = false; 1403 StringRef Spelling = getSpelling(Tok, IntegerBuffer, &NumberInvalid); 1404 if (NumberInvalid) 1405 return false; 1406 NumericLiteralParser Literal(Spelling, Tok.getLocation(), getSourceManager(), 1407 getLangOpts(), getTargetInfo(), 1408 getDiagnostics()); 1409 if (Literal.hadError || !Literal.isIntegerLiteral() || Literal.hasUDSuffix()) 1410 return false; 1411 llvm::APInt APVal(64, 0); 1412 if (Literal.GetIntegerValue(APVal)) 1413 return false; 1414 Lex(Tok); 1415 Value = APVal.getLimitedValue(); 1416 return true; 1417 } 1418 1419 void Preprocessor::addCommentHandler(CommentHandler *Handler) { 1420 assert(Handler && "NULL comment handler"); 1421 assert(!llvm::is_contained(CommentHandlers, Handler) && 1422 "Comment handler already registered"); 1423 CommentHandlers.push_back(Handler); 1424 } 1425 1426 void Preprocessor::removeCommentHandler(CommentHandler *Handler) { 1427 std::vector<CommentHandler *>::iterator Pos = 1428 llvm::find(CommentHandlers, Handler); 1429 assert(Pos != CommentHandlers.end() && "Comment handler not registered"); 1430 CommentHandlers.erase(Pos); 1431 } 1432 1433 bool Preprocessor::HandleComment(Token &result, SourceRange Comment) { 1434 bool AnyPendingTokens = false; 1435 for (std::vector<CommentHandler *>::iterator H = CommentHandlers.begin(), 1436 HEnd = CommentHandlers.end(); 1437 H != HEnd; ++H) { 1438 if ((*H)->HandleComment(*this, Comment)) 1439 AnyPendingTokens = true; 1440 } 1441 if (!AnyPendingTokens || getCommentRetentionState()) 1442 return false; 1443 Lex(result); 1444 return true; 1445 } 1446 1447 void Preprocessor::emitMacroDeprecationWarning(const Token &Identifier) const { 1448 const MacroAnnotations &A = 1449 getMacroAnnotations(Identifier.getIdentifierInfo()); 1450 assert(A.DeprecationInfo && 1451 "Macro deprecation warning without recorded annotation!"); 1452 const MacroAnnotationInfo &Info = *A.DeprecationInfo; 1453 if (Info.Message.empty()) 1454 Diag(Identifier, diag::warn_pragma_deprecated_macro_use) 1455 << Identifier.getIdentifierInfo() << 0; 1456 else 1457 Diag(Identifier, diag::warn_pragma_deprecated_macro_use) 1458 << Identifier.getIdentifierInfo() << 1 << Info.Message; 1459 Diag(Info.Location, diag::note_pp_macro_annotation) << 0; 1460 } 1461 1462 void Preprocessor::emitRestrictExpansionWarning(const Token &Identifier) const { 1463 const MacroAnnotations &A = 1464 getMacroAnnotations(Identifier.getIdentifierInfo()); 1465 assert(A.RestrictExpansionInfo && 1466 "Macro restricted expansion warning without recorded annotation!"); 1467 const MacroAnnotationInfo &Info = *A.RestrictExpansionInfo; 1468 if (Info.Message.empty()) 1469 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) 1470 << Identifier.getIdentifierInfo() << 0; 1471 else 1472 Diag(Identifier, diag::warn_pragma_restrict_expansion_macro_use) 1473 << Identifier.getIdentifierInfo() << 1 << Info.Message; 1474 Diag(Info.Location, diag::note_pp_macro_annotation) << 1; 1475 } 1476 1477 void Preprocessor::emitFinalMacroWarning(const Token &Identifier, 1478 bool IsUndef) const { 1479 const MacroAnnotations &A = 1480 getMacroAnnotations(Identifier.getIdentifierInfo()); 1481 assert(A.FinalAnnotationLoc && 1482 "Final macro warning without recorded annotation!"); 1483 1484 Diag(Identifier, diag::warn_pragma_final_macro) 1485 << Identifier.getIdentifierInfo() << (IsUndef ? 0 : 1); 1486 Diag(*A.FinalAnnotationLoc, diag::note_pp_macro_annotation) << 2; 1487 } 1488 1489 bool Preprocessor::isSafeBufferOptOut(const SourceManager &SourceMgr, 1490 const SourceLocation &Loc) const { 1491 // Try to find a region in `SafeBufferOptOutMap` where `Loc` is in: 1492 auto FirstRegionEndingAfterLoc = llvm::partition_point( 1493 SafeBufferOptOutMap, 1494 [&SourceMgr, 1495 &Loc](const std::pair<SourceLocation, SourceLocation> &Region) { 1496 return SourceMgr.isBeforeInTranslationUnit(Region.second, Loc); 1497 }); 1498 1499 if (FirstRegionEndingAfterLoc != SafeBufferOptOutMap.end()) { 1500 // To test if the start location of the found region precedes `Loc`: 1501 return SourceMgr.isBeforeInTranslationUnit(FirstRegionEndingAfterLoc->first, 1502 Loc); 1503 } 1504 // If we do not find a region whose end location passes `Loc`, we want to 1505 // check if the current region is still open: 1506 if (!SafeBufferOptOutMap.empty() && 1507 SafeBufferOptOutMap.back().first == SafeBufferOptOutMap.back().second) 1508 return SourceMgr.isBeforeInTranslationUnit(SafeBufferOptOutMap.back().first, 1509 Loc); 1510 return false; 1511 } 1512 1513 bool Preprocessor::enterOrExitSafeBufferOptOutRegion( 1514 bool isEnter, const SourceLocation &Loc) { 1515 if (isEnter) { 1516 if (isPPInSafeBufferOptOutRegion()) 1517 return true; // invalid enter action 1518 InSafeBufferOptOutRegion = true; 1519 CurrentSafeBufferOptOutStart = Loc; 1520 1521 // To set the start location of a new region: 1522 1523 if (!SafeBufferOptOutMap.empty()) { 1524 [[maybe_unused]] auto *PrevRegion = &SafeBufferOptOutMap.back(); 1525 assert(PrevRegion->first != PrevRegion->second && 1526 "Shall not begin a safe buffer opt-out region before closing the " 1527 "previous one."); 1528 } 1529 // If the start location equals to the end location, we call the region a 1530 // open region or a unclosed region (i.e., end location has not been set 1531 // yet). 1532 SafeBufferOptOutMap.emplace_back(Loc, Loc); 1533 } else { 1534 if (!isPPInSafeBufferOptOutRegion()) 1535 return true; // invalid enter action 1536 InSafeBufferOptOutRegion = false; 1537 1538 // To set the end location of the current open region: 1539 1540 assert(!SafeBufferOptOutMap.empty() && 1541 "Misordered safe buffer opt-out regions"); 1542 auto *CurrRegion = &SafeBufferOptOutMap.back(); 1543 assert(CurrRegion->first == CurrRegion->second && 1544 "Set end location to a closed safe buffer opt-out region"); 1545 CurrRegion->second = Loc; 1546 } 1547 return false; 1548 } 1549 1550 bool Preprocessor::isPPInSafeBufferOptOutRegion() { 1551 return InSafeBufferOptOutRegion; 1552 } 1553 bool Preprocessor::isPPInSafeBufferOptOutRegion(SourceLocation &StartLoc) { 1554 StartLoc = CurrentSafeBufferOptOutStart; 1555 return InSafeBufferOptOutRegion; 1556 } 1557 1558 ModuleLoader::~ModuleLoader() = default; 1559 1560 CommentHandler::~CommentHandler() = default; 1561 1562 EmptylineHandler::~EmptylineHandler() = default; 1563 1564 CodeCompletionHandler::~CodeCompletionHandler() = default; 1565 1566 void Preprocessor::createPreprocessingRecord() { 1567 if (Record) 1568 return; 1569 1570 Record = new PreprocessingRecord(getSourceManager()); 1571 addPPCallbacks(std::unique_ptr<PPCallbacks>(Record)); 1572 } 1573