1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the top level handling of macro expansion for the 10 // preprocessor. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/Attributes.h" 15 #include "clang/Basic/Builtins.h" 16 #include "clang/Basic/FileManager.h" 17 #include "clang/Basic/IdentifierTable.h" 18 #include "clang/Basic/LLVM.h" 19 #include "clang/Basic/LangOptions.h" 20 #include "clang/Basic/ObjCRuntime.h" 21 #include "clang/Basic/SourceLocation.h" 22 #include "clang/Basic/TargetInfo.h" 23 #include "clang/Lex/CodeCompletionHandler.h" 24 #include "clang/Lex/DirectoryLookup.h" 25 #include "clang/Lex/ExternalPreprocessorSource.h" 26 #include "clang/Lex/HeaderSearch.h" 27 #include "clang/Lex/LexDiagnostic.h" 28 #include "clang/Lex/MacroArgs.h" 29 #include "clang/Lex/MacroInfo.h" 30 #include "clang/Lex/Preprocessor.h" 31 #include "clang/Lex/PreprocessorLexer.h" 32 #include "clang/Lex/PreprocessorOptions.h" 33 #include "clang/Lex/Token.h" 34 #include "llvm/ADT/ArrayRef.h" 35 #include "llvm/ADT/DenseMap.h" 36 #include "llvm/ADT/DenseSet.h" 37 #include "llvm/ADT/FoldingSet.h" 38 #include "llvm/ADT/None.h" 39 #include "llvm/ADT/Optional.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/ADT/SmallString.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/ADT/StringRef.h" 44 #include "llvm/ADT/StringSwitch.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/Format.h" 48 #include "llvm/Support/Path.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstddef> 53 #include <cstring> 54 #include <ctime> 55 #include <string> 56 #include <tuple> 57 #include <utility> 58 59 using namespace clang; 60 61 MacroDirective * 62 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { 63 if (!II->hadMacroDefinition()) 64 return nullptr; 65 auto Pos = CurSubmoduleState->Macros.find(II); 66 return Pos == CurSubmoduleState->Macros.end() ? nullptr 67 : Pos->second.getLatest(); 68 } 69 70 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ 71 assert(MD && "MacroDirective should be non-zero!"); 72 assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); 73 74 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 75 auto *OldMD = StoredMD.getLatest(); 76 MD->setPrevious(OldMD); 77 StoredMD.setLatest(MD); 78 StoredMD.overrideActiveModuleMacros(*this, II); 79 80 if (needModuleMacros()) { 81 // Track that we created a new macro directive, so we know we should 82 // consider building a ModuleMacro for it when we get to the end of 83 // the module. 84 PendingModuleMacroNames.push_back(II); 85 } 86 87 // Set up the identifier as having associated macro history. 88 II->setHasMacroDefinition(true); 89 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) 90 II->setHasMacroDefinition(false); 91 if (II->isFromAST()) 92 II->setChangedSinceDeserialization(); 93 } 94 95 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, 96 MacroDirective *ED, 97 MacroDirective *MD) { 98 // Normally, when a macro is defined, it goes through appendMacroDirective() 99 // above, which chains a macro to previous defines, undefs, etc. 100 // However, in a pch, the whole macro history up to the end of the pch is 101 // stored, so ASTReader goes through this function instead. 102 // However, built-in macros are already registered in the Preprocessor 103 // ctor, and ASTWriter stops writing the macro chain at built-in macros, 104 // so in that case the chain from the pch needs to be spliced to the existing 105 // built-in. 106 107 assert(II && MD); 108 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 109 110 if (auto *OldMD = StoredMD.getLatest()) { 111 // shouldIgnoreMacro() in ASTWriter also stops at macros from the 112 // predefines buffer in module builds. However, in module builds, modules 113 // are loaded completely before predefines are processed, so StoredMD 114 // will be nullptr for them when they're loaded. StoredMD should only be 115 // non-nullptr for builtins read from a pch file. 116 assert(OldMD->getMacroInfo()->isBuiltinMacro() && 117 "only built-ins should have an entry here"); 118 assert(!OldMD->getPrevious() && "builtin should only have a single entry"); 119 ED->setPrevious(OldMD); 120 StoredMD.setLatest(MD); 121 } else { 122 StoredMD = MD; 123 } 124 125 // Setup the identifier as having associated macro history. 126 II->setHasMacroDefinition(true); 127 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) 128 II->setHasMacroDefinition(false); 129 } 130 131 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, 132 MacroInfo *Macro, 133 ArrayRef<ModuleMacro *> Overrides, 134 bool &New) { 135 llvm::FoldingSetNodeID ID; 136 ModuleMacro::Profile(ID, Mod, II); 137 138 void *InsertPos; 139 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { 140 New = false; 141 return MM; 142 } 143 144 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides); 145 ModuleMacros.InsertNode(MM, InsertPos); 146 147 // Each overridden macro is now overridden by one more macro. 148 bool HidAny = false; 149 for (auto *O : Overrides) { 150 HidAny |= (O->NumOverriddenBy == 0); 151 ++O->NumOverriddenBy; 152 } 153 154 // If we were the first overrider for any macro, it's no longer a leaf. 155 auto &LeafMacros = LeafModuleMacros[II]; 156 if (HidAny) { 157 LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(), 158 [](ModuleMacro *MM) { 159 return MM->NumOverriddenBy != 0; 160 }), 161 LeafMacros.end()); 162 } 163 164 // The new macro is always a leaf macro. 165 LeafMacros.push_back(MM); 166 // The identifier now has defined macros (that may or may not be visible). 167 II->setHasMacroDefinition(true); 168 169 New = true; 170 return MM; 171 } 172 173 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) { 174 llvm::FoldingSetNodeID ID; 175 ModuleMacro::Profile(ID, Mod, II); 176 177 void *InsertPos; 178 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); 179 } 180 181 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, 182 ModuleMacroInfo &Info) { 183 assert(Info.ActiveModuleMacrosGeneration != 184 CurSubmoduleState->VisibleModules.getGeneration() && 185 "don't need to update this macro name info"); 186 Info.ActiveModuleMacrosGeneration = 187 CurSubmoduleState->VisibleModules.getGeneration(); 188 189 auto Leaf = LeafModuleMacros.find(II); 190 if (Leaf == LeafModuleMacros.end()) { 191 // No imported macros at all: nothing to do. 192 return; 193 } 194 195 Info.ActiveModuleMacros.clear(); 196 197 // Every macro that's locally overridden is overridden by a visible macro. 198 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides; 199 for (auto *O : Info.OverriddenMacros) 200 NumHiddenOverrides[O] = -1; 201 202 // Collect all macros that are not overridden by a visible macro. 203 llvm::SmallVector<ModuleMacro *, 16> Worklist; 204 for (auto *LeafMM : Leaf->second) { 205 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); 206 if (NumHiddenOverrides.lookup(LeafMM) == 0) 207 Worklist.push_back(LeafMM); 208 } 209 while (!Worklist.empty()) { 210 auto *MM = Worklist.pop_back_val(); 211 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) { 212 // We only care about collecting definitions; undefinitions only act 213 // to override other definitions. 214 if (MM->getMacroInfo()) 215 Info.ActiveModuleMacros.push_back(MM); 216 } else { 217 for (auto *O : MM->overrides()) 218 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) 219 Worklist.push_back(O); 220 } 221 } 222 // Our reverse postorder walk found the macros in reverse order. 223 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end()); 224 225 // Determine whether the macro name is ambiguous. 226 MacroInfo *MI = nullptr; 227 bool IsSystemMacro = true; 228 bool IsAmbiguous = false; 229 if (auto *MD = Info.MD) { 230 while (MD && isa<VisibilityMacroDirective>(MD)) 231 MD = MD->getPrevious(); 232 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) { 233 MI = DMD->getInfo(); 234 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation()); 235 } 236 } 237 for (auto *Active : Info.ActiveModuleMacros) { 238 auto *NewMI = Active->getMacroInfo(); 239 240 // Before marking the macro as ambiguous, check if this is a case where 241 // both macros are in system headers. If so, we trust that the system 242 // did not get it wrong. This also handles cases where Clang's own 243 // headers have a different spelling of certain system macros: 244 // #define LONG_MAX __LONG_MAX__ (clang's limits.h) 245 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) 246 // 247 // FIXME: Remove the defined-in-system-headers check. clang's limits.h 248 // overrides the system limits.h's macros, so there's no conflict here. 249 if (MI && NewMI != MI && 250 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true)) 251 IsAmbiguous = true; 252 IsSystemMacro &= Active->getOwningModule()->IsSystem || 253 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc()); 254 MI = NewMI; 255 } 256 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; 257 } 258 259 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { 260 ArrayRef<ModuleMacro*> Leaf; 261 auto LeafIt = LeafModuleMacros.find(II); 262 if (LeafIt != LeafModuleMacros.end()) 263 Leaf = LeafIt->second; 264 const MacroState *State = nullptr; 265 auto Pos = CurSubmoduleState->Macros.find(II); 266 if (Pos != CurSubmoduleState->Macros.end()) 267 State = &Pos->second; 268 269 llvm::errs() << "MacroState " << State << " " << II->getNameStart(); 270 if (State && State->isAmbiguous(*this, II)) 271 llvm::errs() << " ambiguous"; 272 if (State && !State->getOverriddenMacros().empty()) { 273 llvm::errs() << " overrides"; 274 for (auto *O : State->getOverriddenMacros()) 275 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 276 } 277 llvm::errs() << "\n"; 278 279 // Dump local macro directives. 280 for (auto *MD = State ? State->getLatest() : nullptr; MD; 281 MD = MD->getPrevious()) { 282 llvm::errs() << " "; 283 MD->dump(); 284 } 285 286 // Dump module macros. 287 llvm::DenseSet<ModuleMacro*> Active; 288 for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None) 289 Active.insert(MM); 290 llvm::DenseSet<ModuleMacro*> Visited; 291 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end()); 292 while (!Worklist.empty()) { 293 auto *MM = Worklist.pop_back_val(); 294 llvm::errs() << " ModuleMacro " << MM << " " 295 << MM->getOwningModule()->getFullModuleName(); 296 if (!MM->getMacroInfo()) 297 llvm::errs() << " undef"; 298 299 if (Active.count(MM)) 300 llvm::errs() << " active"; 301 else if (!CurSubmoduleState->VisibleModules.isVisible( 302 MM->getOwningModule())) 303 llvm::errs() << " hidden"; 304 else if (MM->getMacroInfo()) 305 llvm::errs() << " overridden"; 306 307 if (!MM->overrides().empty()) { 308 llvm::errs() << " overrides"; 309 for (auto *O : MM->overrides()) { 310 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 311 if (Visited.insert(O).second) 312 Worklist.push_back(O); 313 } 314 } 315 llvm::errs() << "\n"; 316 if (auto *MI = MM->getMacroInfo()) { 317 llvm::errs() << " "; 318 MI->dump(); 319 llvm::errs() << "\n"; 320 } 321 } 322 } 323 324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier 325 /// table and mark it as a builtin macro to be expanded. 326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ 327 // Get the identifier. 328 IdentifierInfo *Id = PP.getIdentifierInfo(Name); 329 330 // Mark it as being a macro that is builtin. 331 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); 332 MI->setIsBuiltinMacro(); 333 PP.appendDefMacroDirective(Id, MI); 334 return Id; 335 } 336 337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the 338 /// identifier table. 339 void Preprocessor::RegisterBuiltinMacros() { 340 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); 341 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); 342 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); 343 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); 344 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); 345 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); 346 347 // C++ Standing Document Extensions. 348 if (LangOpts.CPlusPlus) 349 Ident__has_cpp_attribute = 350 RegisterBuiltinMacro(*this, "__has_cpp_attribute"); 351 else 352 Ident__has_cpp_attribute = nullptr; 353 354 // GCC Extensions. 355 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); 356 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); 357 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); 358 359 // Microsoft Extensions. 360 if (LangOpts.MicrosoftExt) { 361 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier"); 362 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); 363 } else { 364 Ident__identifier = nullptr; 365 Ident__pragma = nullptr; 366 } 367 368 // Clang Extensions. 369 Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__"); 370 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); 371 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); 372 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); 373 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); 374 if (!LangOpts.CPlusPlus) 375 Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute"); 376 else 377 Ident__has_c_attribute = nullptr; 378 379 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute"); 380 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); 381 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); 382 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); 383 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier"); 384 Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch"); 385 Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor"); 386 Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os"); 387 Ident__is_target_environment = 388 RegisterBuiltinMacro(*this, "__is_target_environment"); 389 390 // Modules. 391 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module"); 392 if (!LangOpts.CurrentModule.empty()) 393 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__"); 394 else 395 Ident__MODULE__ = nullptr; 396 } 397 398 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token 399 /// in its expansion, currently expands to that token literally. 400 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, 401 const IdentifierInfo *MacroIdent, 402 Preprocessor &PP) { 403 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); 404 405 // If the token isn't an identifier, it's always literally expanded. 406 if (!II) return true; 407 408 // If the information about this identifier is out of date, update it from 409 // the external source. 410 if (II->isOutOfDate()) 411 PP.getExternalSource()->updateOutOfDateIdentifier(*II); 412 413 // If the identifier is a macro, and if that macro is enabled, it may be 414 // expanded so it's not a trivial expansion. 415 if (auto *ExpansionMI = PP.getMacroInfo(II)) 416 if (ExpansionMI->isEnabled() && 417 // Fast expanding "#define X X" is ok, because X would be disabled. 418 II != MacroIdent) 419 return false; 420 421 // If this is an object-like macro invocation, it is safe to trivially expand 422 // it. 423 if (MI->isObjectLike()) return true; 424 425 // If this is a function-like macro invocation, it's safe to trivially expand 426 // as long as the identifier is not a macro argument. 427 return std::find(MI->param_begin(), MI->param_end(), II) == MI->param_end(); 428 } 429 430 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be 431 /// lexed is a '('. If so, consume the token and return true, if not, this 432 /// method should have no observable side-effect on the lexed tokens. 433 bool Preprocessor::isNextPPTokenLParen() { 434 // Do some quick tests for rejection cases. 435 unsigned Val; 436 if (CurLexer) 437 Val = CurLexer->isNextPPTokenLParen(); 438 else 439 Val = CurTokenLexer->isNextTokenLParen(); 440 441 if (Val == 2) { 442 // We have run off the end. If it's a source file we don't 443 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the 444 // macro stack. 445 if (CurPPLexer) 446 return false; 447 for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) { 448 if (Entry.TheLexer) 449 Val = Entry.TheLexer->isNextPPTokenLParen(); 450 else 451 Val = Entry.TheTokenLexer->isNextTokenLParen(); 452 453 if (Val != 2) 454 break; 455 456 // Ran off the end of a source file? 457 if (Entry.ThePPLexer) 458 return false; 459 } 460 } 461 462 // Okay, if we know that the token is a '(', lex it and return. Otherwise we 463 // have found something that isn't a '(' or we found the end of the 464 // translation unit. In either case, return false. 465 return Val == 1; 466 } 467 468 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be 469 /// expanded as a macro, handle it and return the next token as 'Identifier'. 470 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, 471 const MacroDefinition &M) { 472 MacroInfo *MI = M.getMacroInfo(); 473 474 // If this is a macro expansion in the "#if !defined(x)" line for the file, 475 // then the macro could expand to different things in other contexts, we need 476 // to disable the optimization in this case. 477 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); 478 479 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. 480 if (MI->isBuiltinMacro()) { 481 if (Callbacks) 482 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(), 483 /*Args=*/nullptr); 484 ExpandBuiltinMacro(Identifier); 485 return true; 486 } 487 488 /// Args - If this is a function-like macro expansion, this contains, 489 /// for each macro argument, the list of tokens that were provided to the 490 /// invocation. 491 MacroArgs *Args = nullptr; 492 493 // Remember where the end of the expansion occurred. For an object-like 494 // macro, this is the identifier. For a function-like macro, this is the ')'. 495 SourceLocation ExpansionEnd = Identifier.getLocation(); 496 497 // If this is a function-like macro, read the arguments. 498 if (MI->isFunctionLike()) { 499 // Remember that we are now parsing the arguments to a macro invocation. 500 // Preprocessor directives used inside macro arguments are not portable, and 501 // this enables the warning. 502 InMacroArgs = true; 503 ArgMacro = &Identifier; 504 505 Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd); 506 507 // Finished parsing args. 508 InMacroArgs = false; 509 ArgMacro = nullptr; 510 511 // If there was an error parsing the arguments, bail out. 512 if (!Args) return true; 513 514 ++NumFnMacroExpanded; 515 } else { 516 ++NumMacroExpanded; 517 } 518 519 // Notice that this macro has been used. 520 markMacroAsUsed(MI); 521 522 // Remember where the token is expanded. 523 SourceLocation ExpandLoc = Identifier.getLocation(); 524 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); 525 526 if (Callbacks) { 527 if (InMacroArgs) { 528 // We can have macro expansion inside a conditional directive while 529 // reading the function macro arguments. To ensure, in that case, that 530 // MacroExpands callbacks still happen in source order, queue this 531 // callback to have it happen after the function macro callback. 532 DelayedMacroExpandsCallbacks.push_back( 533 MacroExpandsInfo(Identifier, M, ExpansionRange)); 534 } else { 535 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args); 536 if (!DelayedMacroExpandsCallbacks.empty()) { 537 for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { 538 // FIXME: We lose macro args info with delayed callback. 539 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, 540 /*Args=*/nullptr); 541 } 542 DelayedMacroExpandsCallbacks.clear(); 543 } 544 } 545 } 546 547 // If the macro definition is ambiguous, complain. 548 if (M.isAmbiguous()) { 549 Diag(Identifier, diag::warn_pp_ambiguous_macro) 550 << Identifier.getIdentifierInfo(); 551 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) 552 << Identifier.getIdentifierInfo(); 553 M.forAllDefinitions([&](const MacroInfo *OtherMI) { 554 if (OtherMI != MI) 555 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) 556 << Identifier.getIdentifierInfo(); 557 }); 558 } 559 560 // If we started lexing a macro, enter the macro expansion body. 561 562 // If this macro expands to no tokens, don't bother to push it onto the 563 // expansion stack, only to take it right back off. 564 if (MI->getNumTokens() == 0) { 565 // No need for arg info. 566 if (Args) Args->destroy(*this); 567 568 // Propagate whitespace info as if we had pushed, then popped, 569 // a macro context. 570 Identifier.setFlag(Token::LeadingEmptyMacro); 571 PropagateLineStartLeadingSpaceInfo(Identifier); 572 ++NumFastMacroExpanded; 573 return false; 574 } else if (MI->getNumTokens() == 1 && 575 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), 576 *this)) { 577 // Otherwise, if this macro expands into a single trivially-expanded 578 // token: expand it now. This handles common cases like 579 // "#define VAL 42". 580 581 // No need for arg info. 582 if (Args) Args->destroy(*this); 583 584 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro 585 // identifier to the expanded token. 586 bool isAtStartOfLine = Identifier.isAtStartOfLine(); 587 bool hasLeadingSpace = Identifier.hasLeadingSpace(); 588 589 // Replace the result token. 590 Identifier = MI->getReplacementToken(0); 591 592 // Restore the StartOfLine/LeadingSpace markers. 593 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); 594 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); 595 596 // Update the tokens location to include both its expansion and physical 597 // locations. 598 SourceLocation Loc = 599 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, 600 ExpansionEnd,Identifier.getLength()); 601 Identifier.setLocation(Loc); 602 603 // If this is a disabled macro or #define X X, we must mark the result as 604 // unexpandable. 605 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { 606 if (MacroInfo *NewMI = getMacroInfo(NewII)) 607 if (!NewMI->isEnabled() || NewMI == MI) { 608 Identifier.setFlag(Token::DisableExpand); 609 // Don't warn for "#define X X" like "#define bool bool" from 610 // stdbool.h. 611 if (NewMI != MI || MI->isFunctionLike()) 612 Diag(Identifier, diag::pp_disabled_macro_expansion); 613 } 614 } 615 616 // Since this is not an identifier token, it can't be macro expanded, so 617 // we're done. 618 ++NumFastMacroExpanded; 619 return true; 620 } 621 622 // Start expanding the macro. 623 EnterMacro(Identifier, ExpansionEnd, MI, Args); 624 return false; 625 } 626 627 enum Bracket { 628 Brace, 629 Paren 630 }; 631 632 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the 633 /// token vector are properly nested. 634 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { 635 SmallVector<Bracket, 8> Brackets; 636 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), 637 E = Tokens.end(); 638 I != E; ++I) { 639 if (I->is(tok::l_paren)) { 640 Brackets.push_back(Paren); 641 } else if (I->is(tok::r_paren)) { 642 if (Brackets.empty() || Brackets.back() == Brace) 643 return false; 644 Brackets.pop_back(); 645 } else if (I->is(tok::l_brace)) { 646 Brackets.push_back(Brace); 647 } else if (I->is(tok::r_brace)) { 648 if (Brackets.empty() || Brackets.back() == Paren) 649 return false; 650 Brackets.pop_back(); 651 } 652 } 653 return Brackets.empty(); 654 } 655 656 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new 657 /// vector of tokens in NewTokens. The new number of arguments will be placed 658 /// in NumArgs and the ranges which need to surrounded in parentheses will be 659 /// in ParenHints. 660 /// Returns false if the token stream cannot be changed. If this is because 661 /// of an initializer list starting a macro argument, the range of those 662 /// initializer lists will be place in InitLists. 663 static bool GenerateNewArgTokens(Preprocessor &PP, 664 SmallVectorImpl<Token> &OldTokens, 665 SmallVectorImpl<Token> &NewTokens, 666 unsigned &NumArgs, 667 SmallVectorImpl<SourceRange> &ParenHints, 668 SmallVectorImpl<SourceRange> &InitLists) { 669 if (!CheckMatchedBrackets(OldTokens)) 670 return false; 671 672 // Once it is known that the brackets are matched, only a simple count of the 673 // braces is needed. 674 unsigned Braces = 0; 675 676 // First token of a new macro argument. 677 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); 678 679 // First closing brace in a new macro argument. Used to generate 680 // SourceRanges for InitLists. 681 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); 682 NumArgs = 0; 683 Token TempToken; 684 // Set to true when a macro separator token is found inside a braced list. 685 // If true, the fixed argument spans multiple old arguments and ParenHints 686 // will be updated. 687 bool FoundSeparatorToken = false; 688 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), 689 E = OldTokens.end(); 690 I != E; ++I) { 691 if (I->is(tok::l_brace)) { 692 ++Braces; 693 } else if (I->is(tok::r_brace)) { 694 --Braces; 695 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) 696 ClosingBrace = I; 697 } else if (I->is(tok::eof)) { 698 // EOF token is used to separate macro arguments 699 if (Braces != 0) { 700 // Assume comma separator is actually braced list separator and change 701 // it back to a comma. 702 FoundSeparatorToken = true; 703 I->setKind(tok::comma); 704 I->setLength(1); 705 } else { // Braces == 0 706 // Separator token still separates arguments. 707 ++NumArgs; 708 709 // If the argument starts with a brace, it can't be fixed with 710 // parentheses. A different diagnostic will be given. 711 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { 712 InitLists.push_back( 713 SourceRange(ArgStartIterator->getLocation(), 714 PP.getLocForEndOfToken(ClosingBrace->getLocation()))); 715 ClosingBrace = E; 716 } 717 718 // Add left paren 719 if (FoundSeparatorToken) { 720 TempToken.startToken(); 721 TempToken.setKind(tok::l_paren); 722 TempToken.setLocation(ArgStartIterator->getLocation()); 723 TempToken.setLength(0); 724 NewTokens.push_back(TempToken); 725 } 726 727 // Copy over argument tokens 728 NewTokens.insert(NewTokens.end(), ArgStartIterator, I); 729 730 // Add right paren and store the paren locations in ParenHints 731 if (FoundSeparatorToken) { 732 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); 733 TempToken.startToken(); 734 TempToken.setKind(tok::r_paren); 735 TempToken.setLocation(Loc); 736 TempToken.setLength(0); 737 NewTokens.push_back(TempToken); 738 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), 739 Loc)); 740 } 741 742 // Copy separator token 743 NewTokens.push_back(*I); 744 745 // Reset values 746 ArgStartIterator = I + 1; 747 FoundSeparatorToken = false; 748 } 749 } 750 } 751 752 return !ParenHints.empty() && InitLists.empty(); 753 } 754 755 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next 756 /// token is the '(' of the macro, this method is invoked to read all of the 757 /// actual arguments specified for the macro invocation. This returns null on 758 /// error. 759 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, 760 MacroInfo *MI, 761 SourceLocation &MacroEnd) { 762 // The number of fixed arguments to parse. 763 unsigned NumFixedArgsLeft = MI->getNumParams(); 764 bool isVariadic = MI->isVariadic(); 765 766 // Outer loop, while there are more arguments, keep reading them. 767 Token Tok; 768 769 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 770 // an argument value in a macro could expand to ',' or '(' or ')'. 771 LexUnexpandedToken(Tok); 772 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); 773 774 // ArgTokens - Build up a list of tokens that make up each argument. Each 775 // argument is separated by an EOF token. Use a SmallVector so we can avoid 776 // heap allocations in the common case. 777 SmallVector<Token, 64> ArgTokens; 778 bool ContainsCodeCompletionTok = false; 779 bool FoundElidedComma = false; 780 781 SourceLocation TooManyArgsLoc; 782 783 unsigned NumActuals = 0; 784 while (Tok.isNot(tok::r_paren)) { 785 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod)) 786 break; 787 788 assert(Tok.isOneOf(tok::l_paren, tok::comma) && 789 "only expect argument separators here"); 790 791 size_t ArgTokenStart = ArgTokens.size(); 792 SourceLocation ArgStartLoc = Tok.getLocation(); 793 794 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note 795 // that we already consumed the first one. 796 unsigned NumParens = 0; 797 798 while (true) { 799 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 800 // an argument value in a macro could expand to ',' or '(' or ')'. 801 LexUnexpandedToken(Tok); 802 803 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n" 804 if (!ContainsCodeCompletionTok) { 805 Diag(MacroName, diag::err_unterm_macro_invoc); 806 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 807 << MacroName.getIdentifierInfo(); 808 // Do not lose the EOF/EOD. Return it to the client. 809 MacroName = Tok; 810 return nullptr; 811 } 812 // Do not lose the EOF/EOD. 813 auto Toks = std::make_unique<Token[]>(1); 814 Toks[0] = Tok; 815 EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false); 816 break; 817 } else if (Tok.is(tok::r_paren)) { 818 // If we found the ) token, the macro arg list is done. 819 if (NumParens-- == 0) { 820 MacroEnd = Tok.getLocation(); 821 if (!ArgTokens.empty() && 822 ArgTokens.back().commaAfterElided()) { 823 FoundElidedComma = true; 824 } 825 break; 826 } 827 } else if (Tok.is(tok::l_paren)) { 828 ++NumParens; 829 } else if (Tok.is(tok::comma)) { 830 // In Microsoft-compatibility mode, single commas from nested macro 831 // expansions should not be considered as argument separators. We test 832 // for this with the IgnoredComma token flag. 833 if (Tok.getFlags() & Token::IgnoredComma) { 834 // However, in MSVC's preprocessor, subsequent expansions do treat 835 // these commas as argument separators. This leads to a common 836 // workaround used in macros that need to work in both MSVC and 837 // compliant preprocessors. Therefore, the IgnoredComma flag can only 838 // apply once to any given token. 839 Tok.clearFlag(Token::IgnoredComma); 840 } else if (NumParens == 0) { 841 // Comma ends this argument if there are more fixed arguments 842 // expected. However, if this is a variadic macro, and this is part of 843 // the variadic part, then the comma is just an argument token. 844 if (!isVariadic) 845 break; 846 if (NumFixedArgsLeft > 1) 847 break; 848 } 849 } else if (Tok.is(tok::comment) && !KeepMacroComments) { 850 // If this is a comment token in the argument list and we're just in 851 // -C mode (not -CC mode), discard the comment. 852 continue; 853 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { 854 // Reading macro arguments can cause macros that we are currently 855 // expanding from to be popped off the expansion stack. Doing so causes 856 // them to be reenabled for expansion. Here we record whether any 857 // identifiers we lex as macro arguments correspond to disabled macros. 858 // If so, we mark the token as noexpand. This is a subtle aspect of 859 // C99 6.10.3.4p2. 860 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) 861 if (!MI->isEnabled()) 862 Tok.setFlag(Token::DisableExpand); 863 } else if (Tok.is(tok::code_completion)) { 864 ContainsCodeCompletionTok = true; 865 if (CodeComplete) 866 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), 867 MI, NumActuals); 868 // Don't mark that we reached the code-completion point because the 869 // parser is going to handle the token and there will be another 870 // code-completion callback. 871 } 872 873 ArgTokens.push_back(Tok); 874 } 875 876 // If this was an empty argument list foo(), don't add this as an empty 877 // argument. 878 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) 879 break; 880 881 // If this is not a variadic macro, and too many args were specified, emit 882 // an error. 883 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { 884 if (ArgTokens.size() != ArgTokenStart) 885 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); 886 else 887 TooManyArgsLoc = ArgStartLoc; 888 } 889 890 // Empty arguments are standard in C99 and C++0x, and are supported as an 891 // extension in other modes. 892 if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99) 893 Diag(Tok, LangOpts.CPlusPlus11 ? 894 diag::warn_cxx98_compat_empty_fnmacro_arg : 895 diag::ext_empty_fnmacro_arg); 896 897 // Add a marker EOF token to the end of the token list for this argument. 898 Token EOFTok; 899 EOFTok.startToken(); 900 EOFTok.setKind(tok::eof); 901 EOFTok.setLocation(Tok.getLocation()); 902 EOFTok.setLength(0); 903 ArgTokens.push_back(EOFTok); 904 ++NumActuals; 905 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) 906 --NumFixedArgsLeft; 907 } 908 909 // Okay, we either found the r_paren. Check to see if we parsed too few 910 // arguments. 911 unsigned MinArgsExpected = MI->getNumParams(); 912 913 // If this is not a variadic macro, and too many args were specified, emit 914 // an error. 915 if (!isVariadic && NumActuals > MinArgsExpected && 916 !ContainsCodeCompletionTok) { 917 // Emit the diagnostic at the macro name in case there is a missing ). 918 // Emitting it at the , could be far away from the macro name. 919 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); 920 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 921 << MacroName.getIdentifierInfo(); 922 923 // Commas from braced initializer lists will be treated as argument 924 // separators inside macros. Attempt to correct for this with parentheses. 925 // TODO: See if this can be generalized to angle brackets for templates 926 // inside macro arguments. 927 928 SmallVector<Token, 4> FixedArgTokens; 929 unsigned FixedNumArgs = 0; 930 SmallVector<SourceRange, 4> ParenHints, InitLists; 931 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, 932 ParenHints, InitLists)) { 933 if (!InitLists.empty()) { 934 DiagnosticBuilder DB = 935 Diag(MacroName, 936 diag::note_init_list_at_beginning_of_macro_argument); 937 for (SourceRange Range : InitLists) 938 DB << Range; 939 } 940 return nullptr; 941 } 942 if (FixedNumArgs != MinArgsExpected) 943 return nullptr; 944 945 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); 946 for (SourceRange ParenLocation : ParenHints) { 947 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); 948 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); 949 } 950 ArgTokens.swap(FixedArgTokens); 951 NumActuals = FixedNumArgs; 952 } 953 954 // See MacroArgs instance var for description of this. 955 bool isVarargsElided = false; 956 957 if (ContainsCodeCompletionTok) { 958 // Recover from not-fully-formed macro invocation during code-completion. 959 Token EOFTok; 960 EOFTok.startToken(); 961 EOFTok.setKind(tok::eof); 962 EOFTok.setLocation(Tok.getLocation()); 963 EOFTok.setLength(0); 964 for (; NumActuals < MinArgsExpected; ++NumActuals) 965 ArgTokens.push_back(EOFTok); 966 } 967 968 if (NumActuals < MinArgsExpected) { 969 // There are several cases where too few arguments is ok, handle them now. 970 if (NumActuals == 0 && MinArgsExpected == 1) { 971 // #define A(X) or #define A(...) ---> A() 972 973 // If there is exactly one argument, and that argument is missing, 974 // then we have an empty "()" argument empty list. This is fine, even if 975 // the macro expects one argument (the argument is just empty). 976 isVarargsElided = MI->isVariadic(); 977 } else if ((FoundElidedComma || MI->isVariadic()) && 978 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) 979 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() 980 // Varargs where the named vararg parameter is missing: OK as extension. 981 // #define A(x, ...) 982 // A("blah") 983 // 984 // If the macro contains the comma pasting extension, the diagnostic 985 // is suppressed; we know we'll get another diagnostic later. 986 if (!MI->hasCommaPasting()) { 987 Diag(Tok, diag::ext_missing_varargs_arg); 988 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 989 << MacroName.getIdentifierInfo(); 990 } 991 992 // Remember this occurred, allowing us to elide the comma when used for 993 // cases like: 994 // #define A(x, foo...) blah(a, ## foo) 995 // #define B(x, ...) blah(a, ## __VA_ARGS__) 996 // #define C(...) blah(a, ## __VA_ARGS__) 997 // A(x) B(x) C() 998 isVarargsElided = true; 999 } else if (!ContainsCodeCompletionTok) { 1000 // Otherwise, emit the error. 1001 Diag(Tok, diag::err_too_few_args_in_macro_invoc); 1002 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1003 << MacroName.getIdentifierInfo(); 1004 return nullptr; 1005 } 1006 1007 // Add a marker EOF token to the end of the token list for this argument. 1008 SourceLocation EndLoc = Tok.getLocation(); 1009 Tok.startToken(); 1010 Tok.setKind(tok::eof); 1011 Tok.setLocation(EndLoc); 1012 Tok.setLength(0); 1013 ArgTokens.push_back(Tok); 1014 1015 // If we expect two arguments, add both as empty. 1016 if (NumActuals == 0 && MinArgsExpected == 2) 1017 ArgTokens.push_back(Tok); 1018 1019 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && 1020 !ContainsCodeCompletionTok) { 1021 // Emit the diagnostic at the macro name in case there is a missing ). 1022 // Emitting it at the , could be far away from the macro name. 1023 Diag(MacroName, diag::err_too_many_args_in_macro_invoc); 1024 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1025 << MacroName.getIdentifierInfo(); 1026 return nullptr; 1027 } 1028 1029 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); 1030 } 1031 1032 /// Keeps macro expanded tokens for TokenLexers. 1033 // 1034 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is 1035 /// going to lex in the cache and when it finishes the tokens are removed 1036 /// from the end of the cache. 1037 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, 1038 ArrayRef<Token> tokens) { 1039 assert(tokLexer); 1040 if (tokens.empty()) 1041 return nullptr; 1042 1043 size_t newIndex = MacroExpandedTokens.size(); 1044 bool cacheNeedsToGrow = tokens.size() > 1045 MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); 1046 MacroExpandedTokens.append(tokens.begin(), tokens.end()); 1047 1048 if (cacheNeedsToGrow) { 1049 // Go through all the TokenLexers whose 'Tokens' pointer points in the 1050 // buffer and update the pointers to the (potential) new buffer array. 1051 for (const auto &Lexer : MacroExpandingLexersStack) { 1052 TokenLexer *prevLexer; 1053 size_t tokIndex; 1054 std::tie(prevLexer, tokIndex) = Lexer; 1055 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; 1056 } 1057 } 1058 1059 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); 1060 return MacroExpandedTokens.data() + newIndex; 1061 } 1062 1063 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { 1064 assert(!MacroExpandingLexersStack.empty()); 1065 size_t tokIndex = MacroExpandingLexersStack.back().second; 1066 assert(tokIndex < MacroExpandedTokens.size()); 1067 // Pop the cached macro expanded tokens from the end. 1068 MacroExpandedTokens.resize(tokIndex); 1069 MacroExpandingLexersStack.pop_back(); 1070 } 1071 1072 /// ComputeDATE_TIME - Compute the current time, enter it into the specified 1073 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of 1074 /// the identifier tokens inserted. 1075 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, 1076 Preprocessor &PP) { 1077 time_t TT = time(nullptr); 1078 struct tm *TM = localtime(&TT); 1079 1080 static const char * const Months[] = { 1081 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" 1082 }; 1083 1084 { 1085 SmallString<32> TmpBuffer; 1086 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1087 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], 1088 TM->tm_mday, TM->tm_year + 1900); 1089 Token TmpTok; 1090 TmpTok.startToken(); 1091 PP.CreateString(TmpStream.str(), TmpTok); 1092 DATELoc = TmpTok.getLocation(); 1093 } 1094 1095 { 1096 SmallString<32> TmpBuffer; 1097 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1098 TmpStream << llvm::format("\"%02d:%02d:%02d\"", 1099 TM->tm_hour, TM->tm_min, TM->tm_sec); 1100 Token TmpTok; 1101 TmpTok.startToken(); 1102 PP.CreateString(TmpStream.str(), TmpTok); 1103 TIMELoc = TmpTok.getLocation(); 1104 } 1105 } 1106 1107 /// HasFeature - Return true if we recognize and implement the feature 1108 /// specified by the identifier as a standard language feature. 1109 static bool HasFeature(const Preprocessor &PP, StringRef Feature) { 1110 const LangOptions &LangOpts = PP.getLangOpts(); 1111 1112 // Normalize the feature name, __foo__ becomes foo. 1113 if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4) 1114 Feature = Feature.substr(2, Feature.size() - 4); 1115 1116 #define FEATURE(Name, Predicate) .Case(#Name, Predicate) 1117 return llvm::StringSwitch<bool>(Feature) 1118 #include "clang/Basic/Features.def" 1119 .Default(false); 1120 #undef FEATURE 1121 } 1122 1123 /// HasExtension - Return true if we recognize and implement the feature 1124 /// specified by the identifier, either as an extension or a standard language 1125 /// feature. 1126 static bool HasExtension(const Preprocessor &PP, StringRef Extension) { 1127 if (HasFeature(PP, Extension)) 1128 return true; 1129 1130 // If the use of an extension results in an error diagnostic, extensions are 1131 // effectively unavailable, so just return false here. 1132 if (PP.getDiagnostics().getExtensionHandlingBehavior() >= 1133 diag::Severity::Error) 1134 return false; 1135 1136 const LangOptions &LangOpts = PP.getLangOpts(); 1137 1138 // Normalize the extension name, __foo__ becomes foo. 1139 if (Extension.startswith("__") && Extension.endswith("__") && 1140 Extension.size() >= 4) 1141 Extension = Extension.substr(2, Extension.size() - 4); 1142 1143 // Because we inherit the feature list from HasFeature, this string switch 1144 // must be less restrictive than HasFeature's. 1145 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate) 1146 return llvm::StringSwitch<bool>(Extension) 1147 #include "clang/Basic/Features.def" 1148 .Default(false); 1149 #undef EXTENSION 1150 } 1151 1152 /// EvaluateHasIncludeCommon - Process a '__has_include("path")' 1153 /// or '__has_include_next("path")' expression. 1154 /// Returns true if successful. 1155 static bool EvaluateHasIncludeCommon(Token &Tok, 1156 IdentifierInfo *II, Preprocessor &PP, 1157 const DirectoryLookup *LookupFrom, 1158 const FileEntry *LookupFromFile) { 1159 // Save the location of the current token. If a '(' is later found, use 1160 // that location. If not, use the end of this location instead. 1161 SourceLocation LParenLoc = Tok.getLocation(); 1162 1163 // These expressions are only allowed within a preprocessor directive. 1164 if (!PP.isParsingIfOrElifDirective()) { 1165 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; 1166 // Return a valid identifier token. 1167 assert(Tok.is(tok::identifier)); 1168 Tok.setIdentifierInfo(II); 1169 return false; 1170 } 1171 1172 // Get '('. If we don't have a '(', try to form a header-name token. 1173 do { 1174 if (PP.LexHeaderName(Tok)) 1175 return false; 1176 } while (Tok.getKind() == tok::comment); 1177 1178 // Ensure we have a '('. 1179 if (Tok.isNot(tok::l_paren)) { 1180 // No '(', use end of last token. 1181 LParenLoc = PP.getLocForEndOfToken(LParenLoc); 1182 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; 1183 // If the next token looks like a filename or the start of one, 1184 // assume it is and process it as such. 1185 if (Tok.isNot(tok::header_name)) 1186 return false; 1187 } else { 1188 // Save '(' location for possible missing ')' message. 1189 LParenLoc = Tok.getLocation(); 1190 if (PP.LexHeaderName(Tok)) 1191 return false; 1192 } 1193 1194 if (Tok.isNot(tok::header_name)) { 1195 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); 1196 return false; 1197 } 1198 1199 // Reserve a buffer to get the spelling. 1200 SmallString<128> FilenameBuffer; 1201 bool Invalid = false; 1202 StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); 1203 if (Invalid) 1204 return false; 1205 1206 SourceLocation FilenameLoc = Tok.getLocation(); 1207 1208 // Get ')'. 1209 PP.LexNonComment(Tok); 1210 1211 // Ensure we have a trailing ). 1212 if (Tok.isNot(tok::r_paren)) { 1213 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) 1214 << II << tok::r_paren; 1215 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1216 return false; 1217 } 1218 1219 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); 1220 // If GetIncludeFilenameSpelling set the start ptr to null, there was an 1221 // error. 1222 if (Filename.empty()) 1223 return false; 1224 1225 // Search include directories. 1226 const DirectoryLookup *CurDir; 1227 Optional<FileEntryRef> File = 1228 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, 1229 CurDir, nullptr, nullptr, nullptr, nullptr, nullptr); 1230 1231 if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { 1232 SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; 1233 if (File) 1234 FileType = 1235 PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry()); 1236 Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType); 1237 } 1238 1239 // Get the result value. A result of true means the file exists. 1240 return File.hasValue(); 1241 } 1242 1243 /// EvaluateHasInclude - Process a '__has_include("path")' expression. 1244 /// Returns true if successful. 1245 static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II, 1246 Preprocessor &PP) { 1247 return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr); 1248 } 1249 1250 /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression. 1251 /// Returns true if successful. 1252 static bool EvaluateHasIncludeNext(Token &Tok, 1253 IdentifierInfo *II, Preprocessor &PP) { 1254 // __has_include_next is like __has_include, except that we start 1255 // searching after the current found directory. If we can't do this, 1256 // issue a diagnostic. 1257 // FIXME: Factor out duplication with 1258 // Preprocessor::HandleIncludeNextDirective. 1259 const DirectoryLookup *Lookup = PP.GetCurDirLookup(); 1260 const FileEntry *LookupFromFile = nullptr; 1261 if (PP.isInPrimaryFile() && PP.getLangOpts().IsHeaderFile) { 1262 // If the main file is a header, then it's either for PCH/AST generation, 1263 // or libclang opened it. Either way, handle it as a normal include below 1264 // and do not complain about __has_include_next. 1265 } else if (PP.isInPrimaryFile()) { 1266 Lookup = nullptr; 1267 PP.Diag(Tok, diag::pp_include_next_in_primary); 1268 } else if (PP.getCurrentLexerSubmodule()) { 1269 // Start looking up in the directory *after* the one in which the current 1270 // file would be found, if any. 1271 assert(PP.getCurrentLexer() && "#include_next directive in macro?"); 1272 LookupFromFile = PP.getCurrentLexer()->getFileEntry(); 1273 Lookup = nullptr; 1274 } else if (!Lookup) { 1275 PP.Diag(Tok, diag::pp_include_next_absolute_path); 1276 } else { 1277 // Start looking up in the next directory. 1278 ++Lookup; 1279 } 1280 1281 return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile); 1282 } 1283 1284 /// Process single-argument builtin feature-like macros that return 1285 /// integer values. 1286 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, 1287 Token &Tok, IdentifierInfo *II, 1288 Preprocessor &PP, 1289 llvm::function_ref< 1290 int(Token &Tok, 1291 bool &HasLexedNextTok)> Op) { 1292 // Parse the initial '('. 1293 PP.LexUnexpandedToken(Tok); 1294 if (Tok.isNot(tok::l_paren)) { 1295 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II 1296 << tok::l_paren; 1297 1298 // Provide a dummy '0' value on output stream to elide further errors. 1299 if (!Tok.isOneOf(tok::eof, tok::eod)) { 1300 OS << 0; 1301 Tok.setKind(tok::numeric_constant); 1302 } 1303 return; 1304 } 1305 1306 unsigned ParenDepth = 1; 1307 SourceLocation LParenLoc = Tok.getLocation(); 1308 llvm::Optional<int> Result; 1309 1310 Token ResultTok; 1311 bool SuppressDiagnostic = false; 1312 while (true) { 1313 // Parse next token. 1314 PP.LexUnexpandedToken(Tok); 1315 1316 already_lexed: 1317 switch (Tok.getKind()) { 1318 case tok::eof: 1319 case tok::eod: 1320 // Don't provide even a dummy value if the eod or eof marker is 1321 // reached. Simply provide a diagnostic. 1322 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); 1323 return; 1324 1325 case tok::comma: 1326 if (!SuppressDiagnostic) { 1327 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); 1328 SuppressDiagnostic = true; 1329 } 1330 continue; 1331 1332 case tok::l_paren: 1333 ++ParenDepth; 1334 if (Result.hasValue()) 1335 break; 1336 if (!SuppressDiagnostic) { 1337 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; 1338 SuppressDiagnostic = true; 1339 } 1340 continue; 1341 1342 case tok::r_paren: 1343 if (--ParenDepth > 0) 1344 continue; 1345 1346 // The last ')' has been reached; return the value if one found or 1347 // a diagnostic and a dummy value. 1348 if (Result.hasValue()) { 1349 OS << Result.getValue(); 1350 // For strict conformance to __has_cpp_attribute rules, use 'L' 1351 // suffix for dated literals. 1352 if (Result.getValue() > 1) 1353 OS << 'L'; 1354 } else { 1355 OS << 0; 1356 if (!SuppressDiagnostic) 1357 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); 1358 } 1359 Tok.setKind(tok::numeric_constant); 1360 return; 1361 1362 default: { 1363 // Parse the macro argument, if one not found so far. 1364 if (Result.hasValue()) 1365 break; 1366 1367 bool HasLexedNextToken = false; 1368 Result = Op(Tok, HasLexedNextToken); 1369 ResultTok = Tok; 1370 if (HasLexedNextToken) 1371 goto already_lexed; 1372 continue; 1373 } 1374 } 1375 1376 // Diagnose missing ')'. 1377 if (!SuppressDiagnostic) { 1378 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { 1379 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) 1380 Diag << LastII; 1381 else 1382 Diag << ResultTok.getKind(); 1383 Diag << tok::r_paren << ResultTok.getLocation(); 1384 } 1385 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1386 SuppressDiagnostic = true; 1387 } 1388 } 1389 } 1390 1391 /// Helper function to return the IdentifierInfo structure of a Token 1392 /// or generate a diagnostic if none available. 1393 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, 1394 Preprocessor &PP, 1395 signed DiagID) { 1396 IdentifierInfo *II; 1397 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) 1398 return II; 1399 1400 PP.Diag(Tok.getLocation(), DiagID); 1401 return nullptr; 1402 } 1403 1404 /// Implements the __is_target_arch builtin macro. 1405 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { 1406 std::string ArchName = II->getName().lower() + "--"; 1407 llvm::Triple Arch(ArchName); 1408 const llvm::Triple &TT = TI.getTriple(); 1409 if (TT.isThumb()) { 1410 // arm matches thumb or thumbv7. armv7 matches thumbv7. 1411 if ((Arch.getSubArch() == llvm::Triple::NoSubArch || 1412 Arch.getSubArch() == TT.getSubArch()) && 1413 ((TT.getArch() == llvm::Triple::thumb && 1414 Arch.getArch() == llvm::Triple::arm) || 1415 (TT.getArch() == llvm::Triple::thumbeb && 1416 Arch.getArch() == llvm::Triple::armeb))) 1417 return true; 1418 } 1419 // Check the parsed arch when it has no sub arch to allow Clang to 1420 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. 1421 return (Arch.getSubArch() == llvm::Triple::NoSubArch || 1422 Arch.getSubArch() == TT.getSubArch()) && 1423 Arch.getArch() == TT.getArch(); 1424 } 1425 1426 /// Implements the __is_target_vendor builtin macro. 1427 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { 1428 StringRef VendorName = TI.getTriple().getVendorName(); 1429 if (VendorName.empty()) 1430 VendorName = "unknown"; 1431 return VendorName.equals_lower(II->getName()); 1432 } 1433 1434 /// Implements the __is_target_os builtin macro. 1435 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { 1436 std::string OSName = 1437 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1438 llvm::Triple OS(OSName); 1439 if (OS.getOS() == llvm::Triple::Darwin) { 1440 // Darwin matches macos, ios, etc. 1441 return TI.getTriple().isOSDarwin(); 1442 } 1443 return TI.getTriple().getOS() == OS.getOS(); 1444 } 1445 1446 /// Implements the __is_target_environment builtin macro. 1447 static bool isTargetEnvironment(const TargetInfo &TI, 1448 const IdentifierInfo *II) { 1449 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1450 llvm::Triple Env(EnvName); 1451 return TI.getTriple().getEnvironment() == Env.getEnvironment(); 1452 } 1453 1454 static void remapMacroPath( 1455 SmallString<256> &Path, 1456 const std::map<std::string, std::string, std::greater<std::string>> 1457 &MacroPrefixMap) { 1458 for (const auto &Entry : MacroPrefixMap) 1459 if (llvm::sys::path::replace_path_prefix(Path, Entry.first, Entry.second)) 1460 break; 1461 } 1462 1463 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded 1464 /// as a builtin macro, handle it and return the next token as 'Tok'. 1465 void Preprocessor::ExpandBuiltinMacro(Token &Tok) { 1466 // Figure out which token this is. 1467 IdentifierInfo *II = Tok.getIdentifierInfo(); 1468 assert(II && "Can't be a macro without id info!"); 1469 1470 // If this is an _Pragma or Microsoft __pragma directive, expand it, 1471 // invoke the pragma handler, then lex the token after it. 1472 if (II == Ident_Pragma) 1473 return Handle_Pragma(Tok); 1474 else if (II == Ident__pragma) // in non-MS mode this is null 1475 return HandleMicrosoft__pragma(Tok); 1476 1477 ++NumBuiltinMacroExpanded; 1478 1479 SmallString<128> TmpBuffer; 1480 llvm::raw_svector_ostream OS(TmpBuffer); 1481 1482 // Set up the return result. 1483 Tok.setIdentifierInfo(nullptr); 1484 Tok.clearFlag(Token::NeedsCleaning); 1485 bool IsAtStartOfLine = Tok.isAtStartOfLine(); 1486 bool HasLeadingSpace = Tok.hasLeadingSpace(); 1487 1488 if (II == Ident__LINE__) { 1489 // C99 6.10.8: "__LINE__: The presumed line number (within the current 1490 // source file) of the current source line (an integer constant)". This can 1491 // be affected by #line. 1492 SourceLocation Loc = Tok.getLocation(); 1493 1494 // Advance to the location of the first _, this might not be the first byte 1495 // of the token if it starts with an escaped newline. 1496 Loc = AdvanceToTokenCharacter(Loc, 0); 1497 1498 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of 1499 // a macro expansion. This doesn't matter for object-like macros, but 1500 // can matter for a function-like macro that expands to contain __LINE__. 1501 // Skip down through expansion points until we find a file loc for the 1502 // end of the expansion history. 1503 Loc = SourceMgr.getExpansionRange(Loc).getEnd(); 1504 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); 1505 1506 // __LINE__ expands to a simple numeric value. 1507 OS << (PLoc.isValid()? PLoc.getLine() : 1); 1508 Tok.setKind(tok::numeric_constant); 1509 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ || 1510 II == Ident__FILE_NAME__) { 1511 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a 1512 // character string literal)". This can be affected by #line. 1513 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1514 1515 // __BASE_FILE__ is a GNU extension that returns the top of the presumed 1516 // #include stack instead of the current file. 1517 if (II == Ident__BASE_FILE__ && PLoc.isValid()) { 1518 SourceLocation NextLoc = PLoc.getIncludeLoc(); 1519 while (NextLoc.isValid()) { 1520 PLoc = SourceMgr.getPresumedLoc(NextLoc); 1521 if (PLoc.isInvalid()) 1522 break; 1523 1524 NextLoc = PLoc.getIncludeLoc(); 1525 } 1526 } 1527 1528 // Escape this filename. Turn '\' -> '\\' '"' -> '\"' 1529 SmallString<256> FN; 1530 if (PLoc.isValid()) { 1531 // __FILE_NAME__ is a Clang-specific extension that expands to the 1532 // the last part of __FILE__. 1533 if (II == Ident__FILE_NAME__) { 1534 // Try to get the last path component, failing that return the original 1535 // presumed location. 1536 StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename()); 1537 if (PLFileName != "") 1538 FN += PLFileName; 1539 else 1540 FN += PLoc.getFilename(); 1541 } else { 1542 FN += PLoc.getFilename(); 1543 } 1544 remapMacroPath(FN, PPOpts->MacroPrefixMap); 1545 Lexer::Stringify(FN); 1546 OS << '"' << FN << '"'; 1547 } 1548 Tok.setKind(tok::string_literal); 1549 } else if (II == Ident__DATE__) { 1550 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1551 if (!DATELoc.isValid()) 1552 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1553 Tok.setKind(tok::string_literal); 1554 Tok.setLength(strlen("\"Mmm dd yyyy\"")); 1555 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), 1556 Tok.getLocation(), 1557 Tok.getLength())); 1558 return; 1559 } else if (II == Ident__TIME__) { 1560 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1561 if (!TIMELoc.isValid()) 1562 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1563 Tok.setKind(tok::string_literal); 1564 Tok.setLength(strlen("\"hh:mm:ss\"")); 1565 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), 1566 Tok.getLocation(), 1567 Tok.getLength())); 1568 return; 1569 } else if (II == Ident__INCLUDE_LEVEL__) { 1570 // Compute the presumed include depth of this token. This can be affected 1571 // by GNU line markers. 1572 unsigned Depth = 0; 1573 1574 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1575 if (PLoc.isValid()) { 1576 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1577 for (; PLoc.isValid(); ++Depth) 1578 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1579 } 1580 1581 // __INCLUDE_LEVEL__ expands to a simple numeric value. 1582 OS << Depth; 1583 Tok.setKind(tok::numeric_constant); 1584 } else if (II == Ident__TIMESTAMP__) { 1585 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1586 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be 1587 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. 1588 1589 // Get the file that we are lexing out of. If we're currently lexing from 1590 // a macro, dig into the include stack. 1591 const FileEntry *CurFile = nullptr; 1592 PreprocessorLexer *TheLexer = getCurrentFileLexer(); 1593 1594 if (TheLexer) 1595 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); 1596 1597 const char *Result; 1598 if (CurFile) { 1599 time_t TT = CurFile->getModificationTime(); 1600 struct tm *TM = localtime(&TT); 1601 Result = asctime(TM); 1602 } else { 1603 Result = "??? ??? ?? ??:??:?? ????\n"; 1604 } 1605 // Surround the string with " and strip the trailing newline. 1606 OS << '"' << StringRef(Result).drop_back() << '"'; 1607 Tok.setKind(tok::string_literal); 1608 } else if (II == Ident__COUNTER__) { 1609 // __COUNTER__ expands to a simple numeric value. 1610 OS << CounterValue++; 1611 Tok.setKind(tok::numeric_constant); 1612 } else if (II == Ident__has_feature) { 1613 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, 1614 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1615 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1616 diag::err_feature_check_malformed); 1617 return II && HasFeature(*this, II->getName()); 1618 }); 1619 } else if (II == Ident__has_extension) { 1620 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, 1621 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1622 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1623 diag::err_feature_check_malformed); 1624 return II && HasExtension(*this, II->getName()); 1625 }); 1626 } else if (II == Ident__has_builtin) { 1627 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, 1628 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1629 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1630 diag::err_feature_check_malformed); 1631 const LangOptions &LangOpts = getLangOpts(); 1632 if (!II) 1633 return false; 1634 else if (II->getBuiltinID() != 0) { 1635 switch (II->getBuiltinID()) { 1636 case Builtin::BI__builtin_operator_new: 1637 case Builtin::BI__builtin_operator_delete: 1638 // denotes date of behavior change to support calling arbitrary 1639 // usual allocation and deallocation functions. Required by libc++ 1640 return 201802; 1641 default: 1642 return true; 1643 } 1644 return true; 1645 } else if (II->getTokenID() != tok::identifier || 1646 II->hasRevertedTokenIDToIdentifier()) { 1647 // Treat all keywords that introduce a custom syntax of the form 1648 // 1649 // '__some_keyword' '(' [...] ')' 1650 // 1651 // as being "builtin functions", even if the syntax isn't a valid 1652 // function call (for example, because the builtin takes a type 1653 // argument). 1654 if (II->getName().startswith("__builtin_") || 1655 II->getName().startswith("__is_") || 1656 II->getName().startswith("__has_")) 1657 return true; 1658 return llvm::StringSwitch<bool>(II->getName()) 1659 .Case("__array_rank", true) 1660 .Case("__array_extent", true) 1661 .Case("__reference_binds_to_temporary", true) 1662 .Case("__underlying_type", true) 1663 .Default(false); 1664 } else { 1665 return llvm::StringSwitch<bool>(II->getName()) 1666 // Report builtin templates as being builtins. 1667 .Case("__make_integer_seq", LangOpts.CPlusPlus) 1668 .Case("__type_pack_element", LangOpts.CPlusPlus) 1669 // Likewise for some builtin preprocessor macros. 1670 // FIXME: This is inconsistent; we usually suggest detecting 1671 // builtin macros via #ifdef. Don't add more cases here. 1672 .Case("__is_target_arch", true) 1673 .Case("__is_target_vendor", true) 1674 .Case("__is_target_os", true) 1675 .Case("__is_target_environment", true) 1676 .Default(false); 1677 } 1678 }); 1679 } else if (II == Ident__is_identifier) { 1680 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, 1681 [](Token &Tok, bool &HasLexedNextToken) -> int { 1682 return Tok.is(tok::identifier); 1683 }); 1684 } else if (II == Ident__has_attribute) { 1685 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, 1686 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1687 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1688 diag::err_feature_check_malformed); 1689 return II ? hasAttribute(AttrSyntax::GNU, nullptr, II, 1690 getTargetInfo(), getLangOpts()) : 0; 1691 }); 1692 } else if (II == Ident__has_declspec) { 1693 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, 1694 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1695 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1696 diag::err_feature_check_malformed); 1697 return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II, 1698 getTargetInfo(), getLangOpts()) : 0; 1699 }); 1700 } else if (II == Ident__has_cpp_attribute || 1701 II == Ident__has_c_attribute) { 1702 bool IsCXX = II == Ident__has_cpp_attribute; 1703 EvaluateFeatureLikeBuiltinMacro( 1704 OS, Tok, II, *this, [&](Token &Tok, bool &HasLexedNextToken) -> int { 1705 IdentifierInfo *ScopeII = nullptr; 1706 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1707 Tok, *this, diag::err_feature_check_malformed); 1708 if (!II) 1709 return false; 1710 1711 // It is possible to receive a scope token. Read the "::", if it is 1712 // available, and the subsequent identifier. 1713 LexUnexpandedToken(Tok); 1714 if (Tok.isNot(tok::coloncolon)) 1715 HasLexedNextToken = true; 1716 else { 1717 ScopeII = II; 1718 LexUnexpandedToken(Tok); 1719 II = ExpectFeatureIdentifierInfo(Tok, *this, 1720 diag::err_feature_check_malformed); 1721 } 1722 1723 AttrSyntax Syntax = IsCXX ? AttrSyntax::CXX : AttrSyntax::C; 1724 return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(), 1725 getLangOpts()) 1726 : 0; 1727 }); 1728 } else if (II == Ident__has_include || 1729 II == Ident__has_include_next) { 1730 // The argument to these two builtins should be a parenthesized 1731 // file name string literal using angle brackets (<>) or 1732 // double-quotes (""). 1733 bool Value; 1734 if (II == Ident__has_include) 1735 Value = EvaluateHasInclude(Tok, II, *this); 1736 else 1737 Value = EvaluateHasIncludeNext(Tok, II, *this); 1738 1739 if (Tok.isNot(tok::r_paren)) 1740 return; 1741 OS << (int)Value; 1742 Tok.setKind(tok::numeric_constant); 1743 } else if (II == Ident__has_warning) { 1744 // The argument should be a parenthesized string literal. 1745 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, 1746 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1747 std::string WarningName; 1748 SourceLocation StrStartLoc = Tok.getLocation(); 1749 1750 HasLexedNextToken = Tok.is(tok::string_literal); 1751 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", 1752 /*AllowMacroExpansion=*/false)) 1753 return false; 1754 1755 // FIXME: Should we accept "-R..." flags here, or should that be 1756 // handled by a separate __has_remark? 1757 if (WarningName.size() < 3 || WarningName[0] != '-' || 1758 WarningName[1] != 'W') { 1759 Diag(StrStartLoc, diag::warn_has_warning_invalid_option); 1760 return false; 1761 } 1762 1763 // Finally, check if the warning flags maps to a diagnostic group. 1764 // We construct a SmallVector here to talk to getDiagnosticIDs(). 1765 // Although we don't use the result, this isn't a hot path, and not 1766 // worth special casing. 1767 SmallVector<diag::kind, 10> Diags; 1768 return !getDiagnostics().getDiagnosticIDs()-> 1769 getDiagnosticsInGroup(diag::Flavor::WarningOrError, 1770 WarningName.substr(2), Diags); 1771 }); 1772 } else if (II == Ident__building_module) { 1773 // The argument to this builtin should be an identifier. The 1774 // builtin evaluates to 1 when that identifier names the module we are 1775 // currently building. 1776 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, 1777 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1778 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1779 diag::err_expected_id_building_module); 1780 return getLangOpts().isCompilingModule() && II && 1781 (II->getName() == getLangOpts().CurrentModule); 1782 }); 1783 } else if (II == Ident__MODULE__) { 1784 // The current module as an identifier. 1785 OS << getLangOpts().CurrentModule; 1786 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); 1787 Tok.setIdentifierInfo(ModuleII); 1788 Tok.setKind(ModuleII->getTokenID()); 1789 } else if (II == Ident__identifier) { 1790 SourceLocation Loc = Tok.getLocation(); 1791 1792 // We're expecting '__identifier' '(' identifier ')'. Try to recover 1793 // if the parens are missing. 1794 LexNonComment(Tok); 1795 if (Tok.isNot(tok::l_paren)) { 1796 // No '(', use end of last token. 1797 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) 1798 << II << tok::l_paren; 1799 // If the next token isn't valid as our argument, we can't recover. 1800 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 1801 Tok.setKind(tok::identifier); 1802 return; 1803 } 1804 1805 SourceLocation LParenLoc = Tok.getLocation(); 1806 LexNonComment(Tok); 1807 1808 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 1809 Tok.setKind(tok::identifier); 1810 else { 1811 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) 1812 << Tok.getKind(); 1813 // Don't walk past anything that's not a real token. 1814 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation()) 1815 return; 1816 } 1817 1818 // Discard the ')', preserving 'Tok' as our result. 1819 Token RParen; 1820 LexNonComment(RParen); 1821 if (RParen.isNot(tok::r_paren)) { 1822 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) 1823 << Tok.getKind() << tok::r_paren; 1824 Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1825 } 1826 return; 1827 } else if (II == Ident__is_target_arch) { 1828 EvaluateFeatureLikeBuiltinMacro( 1829 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { 1830 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1831 Tok, *this, diag::err_feature_check_malformed); 1832 return II && isTargetArch(getTargetInfo(), II); 1833 }); 1834 } else if (II == Ident__is_target_vendor) { 1835 EvaluateFeatureLikeBuiltinMacro( 1836 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { 1837 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1838 Tok, *this, diag::err_feature_check_malformed); 1839 return II && isTargetVendor(getTargetInfo(), II); 1840 }); 1841 } else if (II == Ident__is_target_os) { 1842 EvaluateFeatureLikeBuiltinMacro( 1843 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { 1844 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1845 Tok, *this, diag::err_feature_check_malformed); 1846 return II && isTargetOS(getTargetInfo(), II); 1847 }); 1848 } else if (II == Ident__is_target_environment) { 1849 EvaluateFeatureLikeBuiltinMacro( 1850 OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int { 1851 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1852 Tok, *this, diag::err_feature_check_malformed); 1853 return II && isTargetEnvironment(getTargetInfo(), II); 1854 }); 1855 } else { 1856 llvm_unreachable("Unknown identifier!"); 1857 } 1858 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); 1859 Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine); 1860 Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace); 1861 } 1862 1863 void Preprocessor::markMacroAsUsed(MacroInfo *MI) { 1864 // If the 'used' status changed, and the macro requires 'unused' warning, 1865 // remove its SourceLocation from the warn-for-unused-macro locations. 1866 if (MI->isWarnIfUnused() && !MI->isUsed()) 1867 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); 1868 MI->setIsUsed(true); 1869 } 1870