1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the top level handling of macro expansion for the 10 // preprocessor. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/AttributeCommonInfo.h" 15 #include "clang/Basic/Attributes.h" 16 #include "clang/Basic/Builtins.h" 17 #include "clang/Basic/FileManager.h" 18 #include "clang/Basic/IdentifierTable.h" 19 #include "clang/Basic/LLVM.h" 20 #include "clang/Basic/LangOptions.h" 21 #include "clang/Basic/ObjCRuntime.h" 22 #include "clang/Basic/SourceLocation.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Lex/CodeCompletionHandler.h" 25 #include "clang/Lex/DirectoryLookup.h" 26 #include "clang/Lex/ExternalPreprocessorSource.h" 27 #include "clang/Lex/HeaderSearch.h" 28 #include "clang/Lex/LexDiagnostic.h" 29 #include "clang/Lex/LiteralSupport.h" 30 #include "clang/Lex/MacroArgs.h" 31 #include "clang/Lex/MacroInfo.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Lex/PreprocessorLexer.h" 34 #include "clang/Lex/PreprocessorOptions.h" 35 #include "clang/Lex/Token.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/DenseSet.h" 39 #include "llvm/ADT/FoldingSet.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/ADT/SmallString.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/ADT/StringRef.h" 44 #include "llvm/ADT/StringSwitch.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/Format.h" 48 #include "llvm/Support/Path.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstddef> 53 #include <cstring> 54 #include <ctime> 55 #include <optional> 56 #include <string> 57 #include <tuple> 58 #include <utility> 59 60 using namespace clang; 61 62 MacroDirective * 63 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { 64 if (!II->hadMacroDefinition()) 65 return nullptr; 66 auto Pos = CurSubmoduleState->Macros.find(II); 67 return Pos == CurSubmoduleState->Macros.end() ? nullptr 68 : Pos->second.getLatest(); 69 } 70 71 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ 72 assert(MD && "MacroDirective should be non-zero!"); 73 assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); 74 75 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 76 auto *OldMD = StoredMD.getLatest(); 77 MD->setPrevious(OldMD); 78 StoredMD.setLatest(MD); 79 StoredMD.overrideActiveModuleMacros(*this, II); 80 81 if (needModuleMacros()) { 82 // Track that we created a new macro directive, so we know we should 83 // consider building a ModuleMacro for it when we get to the end of 84 // the module. 85 PendingModuleMacroNames.push_back(II); 86 } 87 88 // Set up the identifier as having associated macro history. 89 II->setHasMacroDefinition(true); 90 if (!MD->isDefined() && !LeafModuleMacros.contains(II)) 91 II->setHasMacroDefinition(false); 92 if (II->isFromAST()) 93 II->setChangedSinceDeserialization(); 94 } 95 96 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, 97 MacroDirective *ED, 98 MacroDirective *MD) { 99 // Normally, when a macro is defined, it goes through appendMacroDirective() 100 // above, which chains a macro to previous defines, undefs, etc. 101 // However, in a pch, the whole macro history up to the end of the pch is 102 // stored, so ASTReader goes through this function instead. 103 // However, built-in macros are already registered in the Preprocessor 104 // ctor, and ASTWriter stops writing the macro chain at built-in macros, 105 // so in that case the chain from the pch needs to be spliced to the existing 106 // built-in. 107 108 assert(II && MD); 109 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 110 111 if (auto *OldMD = StoredMD.getLatest()) { 112 // shouldIgnoreMacro() in ASTWriter also stops at macros from the 113 // predefines buffer in module builds. However, in module builds, modules 114 // are loaded completely before predefines are processed, so StoredMD 115 // will be nullptr for them when they're loaded. StoredMD should only be 116 // non-nullptr for builtins read from a pch file. 117 assert(OldMD->getMacroInfo()->isBuiltinMacro() && 118 "only built-ins should have an entry here"); 119 assert(!OldMD->getPrevious() && "builtin should only have a single entry"); 120 ED->setPrevious(OldMD); 121 StoredMD.setLatest(MD); 122 } else { 123 StoredMD = MD; 124 } 125 126 // Setup the identifier as having associated macro history. 127 II->setHasMacroDefinition(true); 128 if (!MD->isDefined() && !LeafModuleMacros.contains(II)) 129 II->setHasMacroDefinition(false); 130 } 131 132 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, 133 MacroInfo *Macro, 134 ArrayRef<ModuleMacro *> Overrides, 135 bool &New) { 136 llvm::FoldingSetNodeID ID; 137 ModuleMacro::Profile(ID, Mod, II); 138 139 void *InsertPos; 140 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { 141 New = false; 142 return MM; 143 } 144 145 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides); 146 ModuleMacros.InsertNode(MM, InsertPos); 147 148 // Each overridden macro is now overridden by one more macro. 149 bool HidAny = false; 150 for (auto *O : Overrides) { 151 HidAny |= (O->NumOverriddenBy == 0); 152 ++O->NumOverriddenBy; 153 } 154 155 // If we were the first overrider for any macro, it's no longer a leaf. 156 auto &LeafMacros = LeafModuleMacros[II]; 157 if (HidAny) { 158 llvm::erase_if(LeafMacros, 159 [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; }); 160 } 161 162 // The new macro is always a leaf macro. 163 LeafMacros.push_back(MM); 164 // The identifier now has defined macros (that may or may not be visible). 165 II->setHasMacroDefinition(true); 166 167 New = true; 168 return MM; 169 } 170 171 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, 172 const IdentifierInfo *II) { 173 llvm::FoldingSetNodeID ID; 174 ModuleMacro::Profile(ID, Mod, II); 175 176 void *InsertPos; 177 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); 178 } 179 180 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, 181 ModuleMacroInfo &Info) { 182 assert(Info.ActiveModuleMacrosGeneration != 183 CurSubmoduleState->VisibleModules.getGeneration() && 184 "don't need to update this macro name info"); 185 Info.ActiveModuleMacrosGeneration = 186 CurSubmoduleState->VisibleModules.getGeneration(); 187 188 auto Leaf = LeafModuleMacros.find(II); 189 if (Leaf == LeafModuleMacros.end()) { 190 // No imported macros at all: nothing to do. 191 return; 192 } 193 194 Info.ActiveModuleMacros.clear(); 195 196 // Every macro that's locally overridden is overridden by a visible macro. 197 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides; 198 for (auto *O : Info.OverriddenMacros) 199 NumHiddenOverrides[O] = -1; 200 201 // Collect all macros that are not overridden by a visible macro. 202 llvm::SmallVector<ModuleMacro *, 16> Worklist; 203 for (auto *LeafMM : Leaf->second) { 204 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); 205 if (NumHiddenOverrides.lookup(LeafMM) == 0) 206 Worklist.push_back(LeafMM); 207 } 208 while (!Worklist.empty()) { 209 auto *MM = Worklist.pop_back_val(); 210 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) { 211 // We only care about collecting definitions; undefinitions only act 212 // to override other definitions. 213 if (MM->getMacroInfo()) 214 Info.ActiveModuleMacros.push_back(MM); 215 } else { 216 for (auto *O : MM->overrides()) 217 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) 218 Worklist.push_back(O); 219 } 220 } 221 // Our reverse postorder walk found the macros in reverse order. 222 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end()); 223 224 // Determine whether the macro name is ambiguous. 225 MacroInfo *MI = nullptr; 226 bool IsSystemMacro = true; 227 bool IsAmbiguous = false; 228 if (auto *MD = Info.MD) { 229 while (isa_and_nonnull<VisibilityMacroDirective>(MD)) 230 MD = MD->getPrevious(); 231 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) { 232 MI = DMD->getInfo(); 233 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation()); 234 } 235 } 236 for (auto *Active : Info.ActiveModuleMacros) { 237 auto *NewMI = Active->getMacroInfo(); 238 239 // Before marking the macro as ambiguous, check if this is a case where 240 // both macros are in system headers. If so, we trust that the system 241 // did not get it wrong. This also handles cases where Clang's own 242 // headers have a different spelling of certain system macros: 243 // #define LONG_MAX __LONG_MAX__ (clang's limits.h) 244 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) 245 // 246 // FIXME: Remove the defined-in-system-headers check. clang's limits.h 247 // overrides the system limits.h's macros, so there's no conflict here. 248 if (MI && NewMI != MI && 249 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true)) 250 IsAmbiguous = true; 251 IsSystemMacro &= Active->getOwningModule()->IsSystem || 252 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc()); 253 MI = NewMI; 254 } 255 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; 256 } 257 258 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { 259 ArrayRef<ModuleMacro*> Leaf; 260 auto LeafIt = LeafModuleMacros.find(II); 261 if (LeafIt != LeafModuleMacros.end()) 262 Leaf = LeafIt->second; 263 const MacroState *State = nullptr; 264 auto Pos = CurSubmoduleState->Macros.find(II); 265 if (Pos != CurSubmoduleState->Macros.end()) 266 State = &Pos->second; 267 268 llvm::errs() << "MacroState " << State << " " << II->getNameStart(); 269 if (State && State->isAmbiguous(*this, II)) 270 llvm::errs() << " ambiguous"; 271 if (State && !State->getOverriddenMacros().empty()) { 272 llvm::errs() << " overrides"; 273 for (auto *O : State->getOverriddenMacros()) 274 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 275 } 276 llvm::errs() << "\n"; 277 278 // Dump local macro directives. 279 for (auto *MD = State ? State->getLatest() : nullptr; MD; 280 MD = MD->getPrevious()) { 281 llvm::errs() << " "; 282 MD->dump(); 283 } 284 285 // Dump module macros. 286 llvm::DenseSet<ModuleMacro*> Active; 287 for (auto *MM : 288 State ? State->getActiveModuleMacros(*this, II) : std::nullopt) 289 Active.insert(MM); 290 llvm::DenseSet<ModuleMacro*> Visited; 291 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end()); 292 while (!Worklist.empty()) { 293 auto *MM = Worklist.pop_back_val(); 294 llvm::errs() << " ModuleMacro " << MM << " " 295 << MM->getOwningModule()->getFullModuleName(); 296 if (!MM->getMacroInfo()) 297 llvm::errs() << " undef"; 298 299 if (Active.count(MM)) 300 llvm::errs() << " active"; 301 else if (!CurSubmoduleState->VisibleModules.isVisible( 302 MM->getOwningModule())) 303 llvm::errs() << " hidden"; 304 else if (MM->getMacroInfo()) 305 llvm::errs() << " overridden"; 306 307 if (!MM->overrides().empty()) { 308 llvm::errs() << " overrides"; 309 for (auto *O : MM->overrides()) { 310 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 311 if (Visited.insert(O).second) 312 Worklist.push_back(O); 313 } 314 } 315 llvm::errs() << "\n"; 316 if (auto *MI = MM->getMacroInfo()) { 317 llvm::errs() << " "; 318 MI->dump(); 319 llvm::errs() << "\n"; 320 } 321 } 322 } 323 324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier 325 /// table and mark it as a builtin macro to be expanded. 326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ 327 // Get the identifier. 328 IdentifierInfo *Id = PP.getIdentifierInfo(Name); 329 330 // Mark it as being a macro that is builtin. 331 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); 332 MI->setIsBuiltinMacro(); 333 PP.appendDefMacroDirective(Id, MI); 334 return Id; 335 } 336 337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the 338 /// identifier table. 339 void Preprocessor::RegisterBuiltinMacros() { 340 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); 341 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); 342 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); 343 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); 344 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); 345 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); 346 Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro(*this, "__FLT_EVAL_METHOD__"); 347 348 // C++ Standing Document Extensions. 349 if (getLangOpts().CPlusPlus) 350 Ident__has_cpp_attribute = 351 RegisterBuiltinMacro(*this, "__has_cpp_attribute"); 352 else 353 Ident__has_cpp_attribute = nullptr; 354 355 // GCC Extensions. 356 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); 357 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); 358 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); 359 360 // Microsoft Extensions. 361 if (getLangOpts().MicrosoftExt) { 362 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier"); 363 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); 364 } else { 365 Ident__identifier = nullptr; 366 Ident__pragma = nullptr; 367 } 368 369 // Clang Extensions. 370 Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__"); 371 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); 372 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); 373 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); 374 Ident__has_constexpr_builtin = 375 RegisterBuiltinMacro(*this, "__has_constexpr_builtin"); 376 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); 377 if (!getLangOpts().CPlusPlus) 378 Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute"); 379 else 380 Ident__has_c_attribute = nullptr; 381 382 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute"); 383 Ident__has_embed = RegisterBuiltinMacro(*this, "__has_embed"); 384 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); 385 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); 386 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); 387 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier"); 388 Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch"); 389 Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor"); 390 Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os"); 391 Ident__is_target_environment = 392 RegisterBuiltinMacro(*this, "__is_target_environment"); 393 Ident__is_target_variant_os = 394 RegisterBuiltinMacro(*this, "__is_target_variant_os"); 395 Ident__is_target_variant_environment = 396 RegisterBuiltinMacro(*this, "__is_target_variant_environment"); 397 398 // Modules. 399 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module"); 400 if (!getLangOpts().CurrentModule.empty()) 401 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__"); 402 else 403 Ident__MODULE__ = nullptr; 404 } 405 406 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token 407 /// in its expansion, currently expands to that token literally. 408 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, 409 const IdentifierInfo *MacroIdent, 410 Preprocessor &PP) { 411 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); 412 413 // If the token isn't an identifier, it's always literally expanded. 414 if (!II) return true; 415 416 // If the information about this identifier is out of date, update it from 417 // the external source. 418 if (II->isOutOfDate()) 419 PP.getExternalSource()->updateOutOfDateIdentifier(*II); 420 421 // If the identifier is a macro, and if that macro is enabled, it may be 422 // expanded so it's not a trivial expansion. 423 if (auto *ExpansionMI = PP.getMacroInfo(II)) 424 if (ExpansionMI->isEnabled() && 425 // Fast expanding "#define X X" is ok, because X would be disabled. 426 II != MacroIdent) 427 return false; 428 429 // If this is an object-like macro invocation, it is safe to trivially expand 430 // it. 431 if (MI->isObjectLike()) return true; 432 433 // If this is a function-like macro invocation, it's safe to trivially expand 434 // as long as the identifier is not a macro argument. 435 return !llvm::is_contained(MI->params(), II); 436 } 437 438 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be 439 /// lexed is a '('. If so, consume the token and return true, if not, this 440 /// method should have no observable side-effect on the lexed tokens. 441 bool Preprocessor::isNextPPTokenLParen() { 442 // Do some quick tests for rejection cases. 443 unsigned Val; 444 if (CurLexer) 445 Val = CurLexer->isNextPPTokenLParen(); 446 else 447 Val = CurTokenLexer->isNextTokenLParen(); 448 449 if (Val == 2) { 450 // We have run off the end. If it's a source file we don't 451 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the 452 // macro stack. 453 if (CurPPLexer) 454 return false; 455 for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) { 456 if (Entry.TheLexer) 457 Val = Entry.TheLexer->isNextPPTokenLParen(); 458 else 459 Val = Entry.TheTokenLexer->isNextTokenLParen(); 460 461 if (Val != 2) 462 break; 463 464 // Ran off the end of a source file? 465 if (Entry.ThePPLexer) 466 return false; 467 } 468 } 469 470 // Okay, if we know that the token is a '(', lex it and return. Otherwise we 471 // have found something that isn't a '(' or we found the end of the 472 // translation unit. In either case, return false. 473 return Val == 1; 474 } 475 476 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be 477 /// expanded as a macro, handle it and return the next token as 'Identifier'. 478 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, 479 const MacroDefinition &M) { 480 emitMacroExpansionWarnings(Identifier); 481 482 MacroInfo *MI = M.getMacroInfo(); 483 484 // If this is a macro expansion in the "#if !defined(x)" line for the file, 485 // then the macro could expand to different things in other contexts, we need 486 // to disable the optimization in this case. 487 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); 488 489 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. 490 if (MI->isBuiltinMacro()) { 491 if (Callbacks) 492 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(), 493 /*Args=*/nullptr); 494 ExpandBuiltinMacro(Identifier); 495 return true; 496 } 497 498 /// Args - If this is a function-like macro expansion, this contains, 499 /// for each macro argument, the list of tokens that were provided to the 500 /// invocation. 501 MacroArgs *Args = nullptr; 502 503 // Remember where the end of the expansion occurred. For an object-like 504 // macro, this is the identifier. For a function-like macro, this is the ')'. 505 SourceLocation ExpansionEnd = Identifier.getLocation(); 506 507 // If this is a function-like macro, read the arguments. 508 if (MI->isFunctionLike()) { 509 // Remember that we are now parsing the arguments to a macro invocation. 510 // Preprocessor directives used inside macro arguments are not portable, and 511 // this enables the warning. 512 InMacroArgs = true; 513 ArgMacro = &Identifier; 514 515 Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd); 516 517 // Finished parsing args. 518 InMacroArgs = false; 519 ArgMacro = nullptr; 520 521 // If there was an error parsing the arguments, bail out. 522 if (!Args) return true; 523 524 ++NumFnMacroExpanded; 525 } else { 526 ++NumMacroExpanded; 527 } 528 529 // Notice that this macro has been used. 530 markMacroAsUsed(MI); 531 532 // Remember where the token is expanded. 533 SourceLocation ExpandLoc = Identifier.getLocation(); 534 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); 535 536 if (Callbacks) { 537 if (InMacroArgs) { 538 // We can have macro expansion inside a conditional directive while 539 // reading the function macro arguments. To ensure, in that case, that 540 // MacroExpands callbacks still happen in source order, queue this 541 // callback to have it happen after the function macro callback. 542 DelayedMacroExpandsCallbacks.push_back( 543 MacroExpandsInfo(Identifier, M, ExpansionRange)); 544 } else { 545 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args); 546 if (!DelayedMacroExpandsCallbacks.empty()) { 547 for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { 548 // FIXME: We lose macro args info with delayed callback. 549 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, 550 /*Args=*/nullptr); 551 } 552 DelayedMacroExpandsCallbacks.clear(); 553 } 554 } 555 } 556 557 // If the macro definition is ambiguous, complain. 558 if (M.isAmbiguous()) { 559 Diag(Identifier, diag::warn_pp_ambiguous_macro) 560 << Identifier.getIdentifierInfo(); 561 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) 562 << Identifier.getIdentifierInfo(); 563 M.forAllDefinitions([&](const MacroInfo *OtherMI) { 564 if (OtherMI != MI) 565 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) 566 << Identifier.getIdentifierInfo(); 567 }); 568 } 569 570 // If we started lexing a macro, enter the macro expansion body. 571 572 // If this macro expands to no tokens, don't bother to push it onto the 573 // expansion stack, only to take it right back off. 574 if (MI->getNumTokens() == 0) { 575 // No need for arg info. 576 if (Args) Args->destroy(*this); 577 578 // Propagate whitespace info as if we had pushed, then popped, 579 // a macro context. 580 Identifier.setFlag(Token::LeadingEmptyMacro); 581 PropagateLineStartLeadingSpaceInfo(Identifier); 582 ++NumFastMacroExpanded; 583 return false; 584 } else if (MI->getNumTokens() == 1 && 585 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), 586 *this)) { 587 // Otherwise, if this macro expands into a single trivially-expanded 588 // token: expand it now. This handles common cases like 589 // "#define VAL 42". 590 591 // No need for arg info. 592 if (Args) Args->destroy(*this); 593 594 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro 595 // identifier to the expanded token. 596 bool isAtStartOfLine = Identifier.isAtStartOfLine(); 597 bool hasLeadingSpace = Identifier.hasLeadingSpace(); 598 599 // Replace the result token. 600 Identifier = MI->getReplacementToken(0); 601 602 // Restore the StartOfLine/LeadingSpace markers. 603 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); 604 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); 605 606 // Update the tokens location to include both its expansion and physical 607 // locations. 608 SourceLocation Loc = 609 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, 610 ExpansionEnd,Identifier.getLength()); 611 Identifier.setLocation(Loc); 612 613 // If this is a disabled macro or #define X X, we must mark the result as 614 // unexpandable. 615 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { 616 if (MacroInfo *NewMI = getMacroInfo(NewII)) 617 if (!NewMI->isEnabled() || NewMI == MI) { 618 Identifier.setFlag(Token::DisableExpand); 619 // Don't warn for "#define X X" like "#define bool bool" from 620 // stdbool.h. 621 if (NewMI != MI || MI->isFunctionLike()) 622 Diag(Identifier, diag::pp_disabled_macro_expansion); 623 } 624 } 625 626 // Since this is not an identifier token, it can't be macro expanded, so 627 // we're done. 628 ++NumFastMacroExpanded; 629 return true; 630 } 631 632 // Start expanding the macro. 633 EnterMacro(Identifier, ExpansionEnd, MI, Args); 634 return false; 635 } 636 637 enum Bracket { 638 Brace, 639 Paren 640 }; 641 642 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the 643 /// token vector are properly nested. 644 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { 645 SmallVector<Bracket, 8> Brackets; 646 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), 647 E = Tokens.end(); 648 I != E; ++I) { 649 if (I->is(tok::l_paren)) { 650 Brackets.push_back(Paren); 651 } else if (I->is(tok::r_paren)) { 652 if (Brackets.empty() || Brackets.back() == Brace) 653 return false; 654 Brackets.pop_back(); 655 } else if (I->is(tok::l_brace)) { 656 Brackets.push_back(Brace); 657 } else if (I->is(tok::r_brace)) { 658 if (Brackets.empty() || Brackets.back() == Paren) 659 return false; 660 Brackets.pop_back(); 661 } 662 } 663 return Brackets.empty(); 664 } 665 666 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new 667 /// vector of tokens in NewTokens. The new number of arguments will be placed 668 /// in NumArgs and the ranges which need to surrounded in parentheses will be 669 /// in ParenHints. 670 /// Returns false if the token stream cannot be changed. If this is because 671 /// of an initializer list starting a macro argument, the range of those 672 /// initializer lists will be place in InitLists. 673 static bool GenerateNewArgTokens(Preprocessor &PP, 674 SmallVectorImpl<Token> &OldTokens, 675 SmallVectorImpl<Token> &NewTokens, 676 unsigned &NumArgs, 677 SmallVectorImpl<SourceRange> &ParenHints, 678 SmallVectorImpl<SourceRange> &InitLists) { 679 if (!CheckMatchedBrackets(OldTokens)) 680 return false; 681 682 // Once it is known that the brackets are matched, only a simple count of the 683 // braces is needed. 684 unsigned Braces = 0; 685 686 // First token of a new macro argument. 687 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); 688 689 // First closing brace in a new macro argument. Used to generate 690 // SourceRanges for InitLists. 691 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); 692 NumArgs = 0; 693 Token TempToken; 694 // Set to true when a macro separator token is found inside a braced list. 695 // If true, the fixed argument spans multiple old arguments and ParenHints 696 // will be updated. 697 bool FoundSeparatorToken = false; 698 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), 699 E = OldTokens.end(); 700 I != E; ++I) { 701 if (I->is(tok::l_brace)) { 702 ++Braces; 703 } else if (I->is(tok::r_brace)) { 704 --Braces; 705 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) 706 ClosingBrace = I; 707 } else if (I->is(tok::eof)) { 708 // EOF token is used to separate macro arguments 709 if (Braces != 0) { 710 // Assume comma separator is actually braced list separator and change 711 // it back to a comma. 712 FoundSeparatorToken = true; 713 I->setKind(tok::comma); 714 I->setLength(1); 715 } else { // Braces == 0 716 // Separator token still separates arguments. 717 ++NumArgs; 718 719 // If the argument starts with a brace, it can't be fixed with 720 // parentheses. A different diagnostic will be given. 721 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { 722 InitLists.push_back( 723 SourceRange(ArgStartIterator->getLocation(), 724 PP.getLocForEndOfToken(ClosingBrace->getLocation()))); 725 ClosingBrace = E; 726 } 727 728 // Add left paren 729 if (FoundSeparatorToken) { 730 TempToken.startToken(); 731 TempToken.setKind(tok::l_paren); 732 TempToken.setLocation(ArgStartIterator->getLocation()); 733 TempToken.setLength(0); 734 NewTokens.push_back(TempToken); 735 } 736 737 // Copy over argument tokens 738 NewTokens.insert(NewTokens.end(), ArgStartIterator, I); 739 740 // Add right paren and store the paren locations in ParenHints 741 if (FoundSeparatorToken) { 742 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); 743 TempToken.startToken(); 744 TempToken.setKind(tok::r_paren); 745 TempToken.setLocation(Loc); 746 TempToken.setLength(0); 747 NewTokens.push_back(TempToken); 748 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), 749 Loc)); 750 } 751 752 // Copy separator token 753 NewTokens.push_back(*I); 754 755 // Reset values 756 ArgStartIterator = I + 1; 757 FoundSeparatorToken = false; 758 } 759 } 760 } 761 762 return !ParenHints.empty() && InitLists.empty(); 763 } 764 765 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next 766 /// token is the '(' of the macro, this method is invoked to read all of the 767 /// actual arguments specified for the macro invocation. This returns null on 768 /// error. 769 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, 770 MacroInfo *MI, 771 SourceLocation &MacroEnd) { 772 // The number of fixed arguments to parse. 773 unsigned NumFixedArgsLeft = MI->getNumParams(); 774 bool isVariadic = MI->isVariadic(); 775 776 // Outer loop, while there are more arguments, keep reading them. 777 Token Tok; 778 779 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 780 // an argument value in a macro could expand to ',' or '(' or ')'. 781 LexUnexpandedToken(Tok); 782 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); 783 784 // ArgTokens - Build up a list of tokens that make up each argument. Each 785 // argument is separated by an EOF token. Use a SmallVector so we can avoid 786 // heap allocations in the common case. 787 SmallVector<Token, 64> ArgTokens; 788 bool ContainsCodeCompletionTok = false; 789 bool FoundElidedComma = false; 790 791 SourceLocation TooManyArgsLoc; 792 793 unsigned NumActuals = 0; 794 while (Tok.isNot(tok::r_paren)) { 795 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod)) 796 break; 797 798 assert(Tok.isOneOf(tok::l_paren, tok::comma) && 799 "only expect argument separators here"); 800 801 size_t ArgTokenStart = ArgTokens.size(); 802 SourceLocation ArgStartLoc = Tok.getLocation(); 803 804 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note 805 // that we already consumed the first one. 806 unsigned NumParens = 0; 807 808 while (true) { 809 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 810 // an argument value in a macro could expand to ',' or '(' or ')'. 811 LexUnexpandedToken(Tok); 812 813 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n" 814 if (!ContainsCodeCompletionTok) { 815 Diag(MacroName, diag::err_unterm_macro_invoc); 816 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 817 << MacroName.getIdentifierInfo(); 818 // Do not lose the EOF/EOD. Return it to the client. 819 MacroName = Tok; 820 return nullptr; 821 } 822 // Do not lose the EOF/EOD. 823 auto Toks = std::make_unique<Token[]>(1); 824 Toks[0] = Tok; 825 EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false); 826 break; 827 } else if (Tok.is(tok::r_paren)) { 828 // If we found the ) token, the macro arg list is done. 829 if (NumParens-- == 0) { 830 MacroEnd = Tok.getLocation(); 831 if (!ArgTokens.empty() && 832 ArgTokens.back().commaAfterElided()) { 833 FoundElidedComma = true; 834 } 835 break; 836 } 837 } else if (Tok.is(tok::l_paren)) { 838 ++NumParens; 839 } else if (Tok.is(tok::comma)) { 840 // In Microsoft-compatibility mode, single commas from nested macro 841 // expansions should not be considered as argument separators. We test 842 // for this with the IgnoredComma token flag. 843 if (Tok.getFlags() & Token::IgnoredComma) { 844 // However, in MSVC's preprocessor, subsequent expansions do treat 845 // these commas as argument separators. This leads to a common 846 // workaround used in macros that need to work in both MSVC and 847 // compliant preprocessors. Therefore, the IgnoredComma flag can only 848 // apply once to any given token. 849 Tok.clearFlag(Token::IgnoredComma); 850 } else if (NumParens == 0) { 851 // Comma ends this argument if there are more fixed arguments 852 // expected. However, if this is a variadic macro, and this is part of 853 // the variadic part, then the comma is just an argument token. 854 if (!isVariadic) 855 break; 856 if (NumFixedArgsLeft > 1) 857 break; 858 } 859 } else if (Tok.is(tok::comment) && !KeepMacroComments) { 860 // If this is a comment token in the argument list and we're just in 861 // -C mode (not -CC mode), discard the comment. 862 continue; 863 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { 864 // Reading macro arguments can cause macros that we are currently 865 // expanding from to be popped off the expansion stack. Doing so causes 866 // them to be reenabled for expansion. Here we record whether any 867 // identifiers we lex as macro arguments correspond to disabled macros. 868 // If so, we mark the token as noexpand. This is a subtle aspect of 869 // C99 6.10.3.4p2. 870 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) 871 if (!MI->isEnabled()) 872 Tok.setFlag(Token::DisableExpand); 873 } else if (Tok.is(tok::code_completion)) { 874 ContainsCodeCompletionTok = true; 875 if (CodeComplete) 876 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), 877 MI, NumActuals); 878 // Don't mark that we reached the code-completion point because the 879 // parser is going to handle the token and there will be another 880 // code-completion callback. 881 } 882 883 ArgTokens.push_back(Tok); 884 } 885 886 // If this was an empty argument list foo(), don't add this as an empty 887 // argument. 888 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) 889 break; 890 891 // If this is not a variadic macro, and too many args were specified, emit 892 // an error. 893 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { 894 if (ArgTokens.size() != ArgTokenStart) 895 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); 896 else 897 TooManyArgsLoc = ArgStartLoc; 898 } 899 900 // Empty arguments are standard in C99 and C++0x, and are supported as an 901 // extension in other modes. 902 if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99) 903 Diag(Tok, getLangOpts().CPlusPlus11 904 ? diag::warn_cxx98_compat_empty_fnmacro_arg 905 : diag::ext_empty_fnmacro_arg); 906 907 // Add a marker EOF token to the end of the token list for this argument. 908 Token EOFTok; 909 EOFTok.startToken(); 910 EOFTok.setKind(tok::eof); 911 EOFTok.setLocation(Tok.getLocation()); 912 EOFTok.setLength(0); 913 ArgTokens.push_back(EOFTok); 914 ++NumActuals; 915 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) 916 --NumFixedArgsLeft; 917 } 918 919 // Okay, we either found the r_paren. Check to see if we parsed too few 920 // arguments. 921 unsigned MinArgsExpected = MI->getNumParams(); 922 923 // If this is not a variadic macro, and too many args were specified, emit 924 // an error. 925 if (!isVariadic && NumActuals > MinArgsExpected && 926 !ContainsCodeCompletionTok) { 927 // Emit the diagnostic at the macro name in case there is a missing ). 928 // Emitting it at the , could be far away from the macro name. 929 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); 930 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 931 << MacroName.getIdentifierInfo(); 932 933 // Commas from braced initializer lists will be treated as argument 934 // separators inside macros. Attempt to correct for this with parentheses. 935 // TODO: See if this can be generalized to angle brackets for templates 936 // inside macro arguments. 937 938 SmallVector<Token, 4> FixedArgTokens; 939 unsigned FixedNumArgs = 0; 940 SmallVector<SourceRange, 4> ParenHints, InitLists; 941 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, 942 ParenHints, InitLists)) { 943 if (!InitLists.empty()) { 944 DiagnosticBuilder DB = 945 Diag(MacroName, 946 diag::note_init_list_at_beginning_of_macro_argument); 947 for (SourceRange Range : InitLists) 948 DB << Range; 949 } 950 return nullptr; 951 } 952 if (FixedNumArgs != MinArgsExpected) 953 return nullptr; 954 955 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); 956 for (SourceRange ParenLocation : ParenHints) { 957 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); 958 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); 959 } 960 ArgTokens.swap(FixedArgTokens); 961 NumActuals = FixedNumArgs; 962 } 963 964 // See MacroArgs instance var for description of this. 965 bool isVarargsElided = false; 966 967 if (ContainsCodeCompletionTok) { 968 // Recover from not-fully-formed macro invocation during code-completion. 969 Token EOFTok; 970 EOFTok.startToken(); 971 EOFTok.setKind(tok::eof); 972 EOFTok.setLocation(Tok.getLocation()); 973 EOFTok.setLength(0); 974 for (; NumActuals < MinArgsExpected; ++NumActuals) 975 ArgTokens.push_back(EOFTok); 976 } 977 978 if (NumActuals < MinArgsExpected) { 979 // There are several cases where too few arguments is ok, handle them now. 980 if (NumActuals == 0 && MinArgsExpected == 1) { 981 // #define A(X) or #define A(...) ---> A() 982 983 // If there is exactly one argument, and that argument is missing, 984 // then we have an empty "()" argument empty list. This is fine, even if 985 // the macro expects one argument (the argument is just empty). 986 isVarargsElided = MI->isVariadic(); 987 } else if ((FoundElidedComma || MI->isVariadic()) && 988 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) 989 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() 990 // Varargs where the named vararg parameter is missing: OK as extension. 991 // #define A(x, ...) 992 // A("blah") 993 // 994 // If the macro contains the comma pasting extension, the diagnostic 995 // is suppressed; we know we'll get another diagnostic later. 996 if (!MI->hasCommaPasting()) { 997 // C++20 [cpp.replace]p15, C23 6.10.5p12 998 // 999 // C++20 and C23 allow this construct, but standards before that 1000 // do not (we allow it as an extension). 1001 unsigned ID; 1002 if (getLangOpts().CPlusPlus20) 1003 ID = diag::warn_cxx17_compat_missing_varargs_arg; 1004 else if (getLangOpts().CPlusPlus) 1005 ID = diag::ext_cxx_missing_varargs_arg; 1006 else if (getLangOpts().C23) 1007 ID = diag::warn_c17_compat_missing_varargs_arg; 1008 else 1009 ID = diag::ext_c_missing_varargs_arg; 1010 Diag(Tok, ID); 1011 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1012 << MacroName.getIdentifierInfo(); 1013 } 1014 1015 // Remember this occurred, allowing us to elide the comma when used for 1016 // cases like: 1017 // #define A(x, foo...) blah(a, ## foo) 1018 // #define B(x, ...) blah(a, ## __VA_ARGS__) 1019 // #define C(...) blah(a, ## __VA_ARGS__) 1020 // A(x) B(x) C() 1021 isVarargsElided = true; 1022 } else if (!ContainsCodeCompletionTok) { 1023 // Otherwise, emit the error. 1024 Diag(Tok, diag::err_too_few_args_in_macro_invoc); 1025 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1026 << MacroName.getIdentifierInfo(); 1027 return nullptr; 1028 } 1029 1030 // Add a marker EOF token to the end of the token list for this argument. 1031 SourceLocation EndLoc = Tok.getLocation(); 1032 Tok.startToken(); 1033 Tok.setKind(tok::eof); 1034 Tok.setLocation(EndLoc); 1035 Tok.setLength(0); 1036 ArgTokens.push_back(Tok); 1037 1038 // If we expect two arguments, add both as empty. 1039 if (NumActuals == 0 && MinArgsExpected == 2) 1040 ArgTokens.push_back(Tok); 1041 1042 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && 1043 !ContainsCodeCompletionTok) { 1044 // Emit the diagnostic at the macro name in case there is a missing ). 1045 // Emitting it at the , could be far away from the macro name. 1046 Diag(MacroName, diag::err_too_many_args_in_macro_invoc); 1047 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1048 << MacroName.getIdentifierInfo(); 1049 return nullptr; 1050 } 1051 1052 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); 1053 } 1054 1055 /// Keeps macro expanded tokens for TokenLexers. 1056 // 1057 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is 1058 /// going to lex in the cache and when it finishes the tokens are removed 1059 /// from the end of the cache. 1060 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, 1061 ArrayRef<Token> tokens) { 1062 assert(tokLexer); 1063 if (tokens.empty()) 1064 return nullptr; 1065 1066 size_t newIndex = MacroExpandedTokens.size(); 1067 bool cacheNeedsToGrow = tokens.size() > 1068 MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); 1069 MacroExpandedTokens.append(tokens.begin(), tokens.end()); 1070 1071 if (cacheNeedsToGrow) { 1072 // Go through all the TokenLexers whose 'Tokens' pointer points in the 1073 // buffer and update the pointers to the (potential) new buffer array. 1074 for (const auto &Lexer : MacroExpandingLexersStack) { 1075 TokenLexer *prevLexer; 1076 size_t tokIndex; 1077 std::tie(prevLexer, tokIndex) = Lexer; 1078 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; 1079 } 1080 } 1081 1082 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); 1083 return MacroExpandedTokens.data() + newIndex; 1084 } 1085 1086 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { 1087 assert(!MacroExpandingLexersStack.empty()); 1088 size_t tokIndex = MacroExpandingLexersStack.back().second; 1089 assert(tokIndex < MacroExpandedTokens.size()); 1090 // Pop the cached macro expanded tokens from the end. 1091 MacroExpandedTokens.resize(tokIndex); 1092 MacroExpandingLexersStack.pop_back(); 1093 } 1094 1095 /// ComputeDATE_TIME - Compute the current time, enter it into the specified 1096 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of 1097 /// the identifier tokens inserted. 1098 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, 1099 Preprocessor &PP) { 1100 time_t TT; 1101 std::tm *TM; 1102 if (PP.getPreprocessorOpts().SourceDateEpoch) { 1103 TT = *PP.getPreprocessorOpts().SourceDateEpoch; 1104 TM = std::gmtime(&TT); 1105 } else { 1106 TT = std::time(nullptr); 1107 TM = std::localtime(&TT); 1108 } 1109 1110 static const char * const Months[] = { 1111 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" 1112 }; 1113 1114 { 1115 SmallString<32> TmpBuffer; 1116 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1117 if (TM) 1118 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], 1119 TM->tm_mday, TM->tm_year + 1900); 1120 else 1121 TmpStream << "??? ?? ????"; 1122 Token TmpTok; 1123 TmpTok.startToken(); 1124 PP.CreateString(TmpStream.str(), TmpTok); 1125 DATELoc = TmpTok.getLocation(); 1126 } 1127 1128 { 1129 SmallString<32> TmpBuffer; 1130 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1131 if (TM) 1132 TmpStream << llvm::format("\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, 1133 TM->tm_sec); 1134 else 1135 TmpStream << "??:??:??"; 1136 Token TmpTok; 1137 TmpTok.startToken(); 1138 PP.CreateString(TmpStream.str(), TmpTok); 1139 TIMELoc = TmpTok.getLocation(); 1140 } 1141 } 1142 1143 /// HasFeature - Return true if we recognize and implement the feature 1144 /// specified by the identifier as a standard language feature. 1145 static bool HasFeature(const Preprocessor &PP, StringRef Feature) { 1146 const LangOptions &LangOpts = PP.getLangOpts(); 1147 1148 // Normalize the feature name, __foo__ becomes foo. 1149 if (Feature.starts_with("__") && Feature.ends_with("__") && 1150 Feature.size() >= 4) 1151 Feature = Feature.substr(2, Feature.size() - 4); 1152 1153 #define FEATURE(Name, Predicate) .Case(#Name, Predicate) 1154 return llvm::StringSwitch<bool>(Feature) 1155 #include "clang/Basic/Features.def" 1156 .Default(false); 1157 #undef FEATURE 1158 } 1159 1160 /// HasExtension - Return true if we recognize and implement the feature 1161 /// specified by the identifier, either as an extension or a standard language 1162 /// feature. 1163 static bool HasExtension(const Preprocessor &PP, StringRef Extension) { 1164 if (HasFeature(PP, Extension)) 1165 return true; 1166 1167 // If the use of an extension results in an error diagnostic, extensions are 1168 // effectively unavailable, so just return false here. 1169 if (PP.getDiagnostics().getExtensionHandlingBehavior() >= 1170 diag::Severity::Error) 1171 return false; 1172 1173 const LangOptions &LangOpts = PP.getLangOpts(); 1174 1175 // Normalize the extension name, __foo__ becomes foo. 1176 if (Extension.starts_with("__") && Extension.ends_with("__") && 1177 Extension.size() >= 4) 1178 Extension = Extension.substr(2, Extension.size() - 4); 1179 1180 // Because we inherit the feature list from HasFeature, this string switch 1181 // must be less restrictive than HasFeature's. 1182 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate) 1183 return llvm::StringSwitch<bool>(Extension) 1184 #include "clang/Basic/Features.def" 1185 .Default(false); 1186 #undef EXTENSION 1187 } 1188 1189 /// EvaluateHasIncludeCommon - Process a '__has_include("path")' 1190 /// or '__has_include_next("path")' expression. 1191 /// Returns true if successful. 1192 static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II, 1193 Preprocessor &PP, 1194 ConstSearchDirIterator LookupFrom, 1195 const FileEntry *LookupFromFile) { 1196 // Save the location of the current token. If a '(' is later found, use 1197 // that location. If not, use the end of this location instead. 1198 SourceLocation LParenLoc = Tok.getLocation(); 1199 1200 // These expressions are only allowed within a preprocessor directive. 1201 if (!PP.isParsingIfOrElifDirective()) { 1202 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; 1203 // Return a valid identifier token. 1204 assert(Tok.is(tok::identifier)); 1205 Tok.setIdentifierInfo(II); 1206 return false; 1207 } 1208 1209 // Get '('. If we don't have a '(', try to form a header-name token. 1210 do { 1211 if (PP.LexHeaderName(Tok)) 1212 return false; 1213 } while (Tok.getKind() == tok::comment); 1214 1215 // Ensure we have a '('. 1216 if (Tok.isNot(tok::l_paren)) { 1217 // No '(', use end of last token. 1218 LParenLoc = PP.getLocForEndOfToken(LParenLoc); 1219 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; 1220 // If the next token looks like a filename or the start of one, 1221 // assume it is and process it as such. 1222 if (Tok.isNot(tok::header_name)) 1223 return false; 1224 } else { 1225 // Save '(' location for possible missing ')' message. 1226 LParenLoc = Tok.getLocation(); 1227 if (PP.LexHeaderName(Tok)) 1228 return false; 1229 } 1230 1231 if (Tok.isNot(tok::header_name)) { 1232 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); 1233 return false; 1234 } 1235 1236 // Reserve a buffer to get the spelling. 1237 SmallString<128> FilenameBuffer; 1238 bool Invalid = false; 1239 StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); 1240 if (Invalid) 1241 return false; 1242 1243 SourceLocation FilenameLoc = Tok.getLocation(); 1244 1245 // Get ')'. 1246 PP.LexNonComment(Tok); 1247 1248 // Ensure we have a trailing ). 1249 if (Tok.isNot(tok::r_paren)) { 1250 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) 1251 << II << tok::r_paren; 1252 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1253 return false; 1254 } 1255 1256 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); 1257 // If GetIncludeFilenameSpelling set the start ptr to null, there was an 1258 // error. 1259 if (Filename.empty()) 1260 return false; 1261 1262 // Passing this to LookupFile forces header search to check whether the found 1263 // file belongs to a module. Skipping that check could incorrectly mark 1264 // modular header as textual, causing issues down the line. 1265 ModuleMap::KnownHeader KH; 1266 1267 // Search include directories. 1268 OptionalFileEntryRef File = 1269 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, 1270 nullptr, nullptr, nullptr, &KH, nullptr, nullptr); 1271 1272 if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { 1273 SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; 1274 if (File) 1275 FileType = PP.getHeaderSearchInfo().getFileDirFlavor(*File); 1276 Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType); 1277 } 1278 1279 // Get the result value. A result of true means the file exists. 1280 return File.has_value(); 1281 } 1282 1283 /// EvaluateHasEmbed - Process a '__has_embed("foo" params...)' expression. 1284 /// Returns a filled optional with the value if successful; otherwise, empty. 1285 EmbedResult Preprocessor::EvaluateHasEmbed(Token &Tok, IdentifierInfo *II) { 1286 // These expressions are only allowed within a preprocessor directive. 1287 if (!this->isParsingIfOrElifDirective()) { 1288 Diag(Tok, diag::err_pp_directive_required) << II; 1289 // Return a valid identifier token. 1290 assert(Tok.is(tok::identifier)); 1291 Tok.setIdentifierInfo(II); 1292 return EmbedResult::Invalid; 1293 } 1294 1295 // Ensure we have a '('. 1296 LexUnexpandedToken(Tok); 1297 if (Tok.isNot(tok::l_paren)) { 1298 Diag(Tok, diag::err_pp_expected_after) << II << tok::l_paren; 1299 // If the next token looks like a filename or the start of one, 1300 // assume it is and process it as such. 1301 return EmbedResult::Invalid; 1302 } 1303 1304 // Save '(' location for possible missing ')' message and then lex the header 1305 // name token for the embed resource. 1306 SourceLocation LParenLoc = Tok.getLocation(); 1307 if (this->LexHeaderName(Tok)) 1308 return EmbedResult::Invalid; 1309 1310 if (Tok.isNot(tok::header_name)) { 1311 Diag(Tok.getLocation(), diag::err_pp_expects_filename); 1312 return EmbedResult::Invalid; 1313 } 1314 1315 SourceLocation FilenameLoc = Tok.getLocation(); 1316 Token FilenameTok = Tok; 1317 1318 std::optional<LexEmbedParametersResult> Params = 1319 this->LexEmbedParameters(Tok, /*ForHasEmbed=*/true); 1320 assert((Params || Tok.is(tok::eod)) && 1321 "expected success or to be at the end of the directive"); 1322 1323 if (!Params) 1324 return EmbedResult::Invalid; 1325 1326 if (Params->UnrecognizedParams > 0) 1327 return EmbedResult::NotFound; 1328 1329 if (!Tok.is(tok::r_paren)) { 1330 Diag(this->getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) 1331 << II << tok::r_paren; 1332 Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1333 if (Tok.isNot(tok::eod)) 1334 DiscardUntilEndOfDirective(); 1335 return EmbedResult::Invalid; 1336 } 1337 1338 SmallString<128> FilenameBuffer; 1339 StringRef Filename = this->getSpelling(FilenameTok, FilenameBuffer); 1340 bool isAngled = 1341 this->GetIncludeFilenameSpelling(FilenameTok.getLocation(), Filename); 1342 // If GetIncludeFilenameSpelling set the start ptr to null, there was an 1343 // error. 1344 assert(!Filename.empty()); 1345 const FileEntry *LookupFromFile = 1346 this->getCurrentFileLexer() ? *this->getCurrentFileLexer()->getFileEntry() 1347 : static_cast<FileEntry *>(nullptr); 1348 OptionalFileEntryRef MaybeFileEntry = 1349 this->LookupEmbedFile(Filename, isAngled, false, LookupFromFile); 1350 if (Callbacks) { 1351 Callbacks->HasEmbed(LParenLoc, Filename, isAngled, MaybeFileEntry); 1352 } 1353 if (!MaybeFileEntry) 1354 return EmbedResult::NotFound; 1355 1356 size_t FileSize = MaybeFileEntry->getSize(); 1357 // First, "offset" into the file (this reduces the amount of data we can read 1358 // from the file). 1359 if (Params->MaybeOffsetParam) { 1360 if (Params->MaybeOffsetParam->Offset > FileSize) 1361 FileSize = 0; 1362 else 1363 FileSize -= Params->MaybeOffsetParam->Offset; 1364 } 1365 1366 // Second, limit the data from the file (this also reduces the amount of data 1367 // we can read from the file). 1368 if (Params->MaybeLimitParam) { 1369 if (Params->MaybeLimitParam->Limit > FileSize) 1370 FileSize = 0; 1371 else 1372 FileSize = Params->MaybeLimitParam->Limit; 1373 } 1374 1375 // If we have no data left to read, the file is empty, otherwise we have the 1376 // expected resource. 1377 if (FileSize == 0) 1378 return EmbedResult::Empty; 1379 return EmbedResult::Found; 1380 } 1381 1382 bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) { 1383 return EvaluateHasIncludeCommon(Tok, II, *this, nullptr, nullptr); 1384 } 1385 1386 bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) { 1387 ConstSearchDirIterator Lookup = nullptr; 1388 const FileEntry *LookupFromFile; 1389 std::tie(Lookup, LookupFromFile) = getIncludeNextStart(Tok); 1390 1391 return EvaluateHasIncludeCommon(Tok, II, *this, Lookup, LookupFromFile); 1392 } 1393 1394 /// Process single-argument builtin feature-like macros that return 1395 /// integer values. 1396 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, 1397 Token &Tok, IdentifierInfo *II, 1398 Preprocessor &PP, bool ExpandArgs, 1399 llvm::function_ref< 1400 int(Token &Tok, 1401 bool &HasLexedNextTok)> Op) { 1402 // Parse the initial '('. 1403 PP.LexUnexpandedToken(Tok); 1404 if (Tok.isNot(tok::l_paren)) { 1405 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II 1406 << tok::l_paren; 1407 1408 // Provide a dummy '0' value on output stream to elide further errors. 1409 if (!Tok.isOneOf(tok::eof, tok::eod)) { 1410 OS << 0; 1411 Tok.setKind(tok::numeric_constant); 1412 } 1413 return; 1414 } 1415 1416 unsigned ParenDepth = 1; 1417 SourceLocation LParenLoc = Tok.getLocation(); 1418 std::optional<int> Result; 1419 1420 Token ResultTok; 1421 bool SuppressDiagnostic = false; 1422 while (true) { 1423 // Parse next token. 1424 if (ExpandArgs) 1425 PP.Lex(Tok); 1426 else 1427 PP.LexUnexpandedToken(Tok); 1428 1429 already_lexed: 1430 switch (Tok.getKind()) { 1431 case tok::eof: 1432 case tok::eod: 1433 // Don't provide even a dummy value if the eod or eof marker is 1434 // reached. Simply provide a diagnostic. 1435 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); 1436 return; 1437 1438 case tok::comma: 1439 if (!SuppressDiagnostic) { 1440 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); 1441 SuppressDiagnostic = true; 1442 } 1443 continue; 1444 1445 case tok::l_paren: 1446 ++ParenDepth; 1447 if (Result) 1448 break; 1449 if (!SuppressDiagnostic) { 1450 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; 1451 SuppressDiagnostic = true; 1452 } 1453 continue; 1454 1455 case tok::r_paren: 1456 if (--ParenDepth > 0) 1457 continue; 1458 1459 // The last ')' has been reached; return the value if one found or 1460 // a diagnostic and a dummy value. 1461 if (Result) { 1462 OS << *Result; 1463 // For strict conformance to __has_cpp_attribute rules, use 'L' 1464 // suffix for dated literals. 1465 if (*Result > 1) 1466 OS << 'L'; 1467 } else { 1468 OS << 0; 1469 if (!SuppressDiagnostic) 1470 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); 1471 } 1472 Tok.setKind(tok::numeric_constant); 1473 return; 1474 1475 default: { 1476 // Parse the macro argument, if one not found so far. 1477 if (Result) 1478 break; 1479 1480 bool HasLexedNextToken = false; 1481 Result = Op(Tok, HasLexedNextToken); 1482 ResultTok = Tok; 1483 if (HasLexedNextToken) 1484 goto already_lexed; 1485 continue; 1486 } 1487 } 1488 1489 // Diagnose missing ')'. 1490 if (!SuppressDiagnostic) { 1491 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { 1492 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) 1493 Diag << LastII; 1494 else 1495 Diag << ResultTok.getKind(); 1496 Diag << tok::r_paren << ResultTok.getLocation(); 1497 } 1498 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1499 SuppressDiagnostic = true; 1500 } 1501 } 1502 } 1503 1504 /// Helper function to return the IdentifierInfo structure of a Token 1505 /// or generate a diagnostic if none available. 1506 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, 1507 Preprocessor &PP, 1508 signed DiagID) { 1509 IdentifierInfo *II; 1510 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) 1511 return II; 1512 1513 PP.Diag(Tok.getLocation(), DiagID); 1514 return nullptr; 1515 } 1516 1517 /// Implements the __is_target_arch builtin macro. 1518 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { 1519 std::string ArchName = II->getName().lower() + "--"; 1520 llvm::Triple Arch(ArchName); 1521 const llvm::Triple &TT = TI.getTriple(); 1522 if (TT.isThumb()) { 1523 // arm matches thumb or thumbv7. armv7 matches thumbv7. 1524 if ((Arch.getSubArch() == llvm::Triple::NoSubArch || 1525 Arch.getSubArch() == TT.getSubArch()) && 1526 ((TT.getArch() == llvm::Triple::thumb && 1527 Arch.getArch() == llvm::Triple::arm) || 1528 (TT.getArch() == llvm::Triple::thumbeb && 1529 Arch.getArch() == llvm::Triple::armeb))) 1530 return true; 1531 } 1532 // Check the parsed arch when it has no sub arch to allow Clang to 1533 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. 1534 return (Arch.getSubArch() == llvm::Triple::NoSubArch || 1535 Arch.getSubArch() == TT.getSubArch()) && 1536 Arch.getArch() == TT.getArch(); 1537 } 1538 1539 /// Implements the __is_target_vendor builtin macro. 1540 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { 1541 StringRef VendorName = TI.getTriple().getVendorName(); 1542 if (VendorName.empty()) 1543 VendorName = "unknown"; 1544 return VendorName.equals_insensitive(II->getName()); 1545 } 1546 1547 /// Implements the __is_target_os builtin macro. 1548 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { 1549 std::string OSName = 1550 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1551 llvm::Triple OS(OSName); 1552 if (OS.getOS() == llvm::Triple::Darwin) { 1553 // Darwin matches macos, ios, etc. 1554 return TI.getTriple().isOSDarwin(); 1555 } 1556 return TI.getTriple().getOS() == OS.getOS(); 1557 } 1558 1559 /// Implements the __is_target_environment builtin macro. 1560 static bool isTargetEnvironment(const TargetInfo &TI, 1561 const IdentifierInfo *II) { 1562 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1563 llvm::Triple Env(EnvName); 1564 // The unknown environment is matched only if 1565 // '__is_target_environment(unknown)' is used. 1566 if (Env.getEnvironment() == llvm::Triple::UnknownEnvironment && 1567 EnvName != "---unknown") 1568 return false; 1569 return TI.getTriple().getEnvironment() == Env.getEnvironment(); 1570 } 1571 1572 /// Implements the __is_target_variant_os builtin macro. 1573 static bool isTargetVariantOS(const TargetInfo &TI, const IdentifierInfo *II) { 1574 if (TI.getTriple().isOSDarwin()) { 1575 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); 1576 if (!VariantTriple) 1577 return false; 1578 1579 std::string OSName = 1580 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1581 llvm::Triple OS(OSName); 1582 if (OS.getOS() == llvm::Triple::Darwin) { 1583 // Darwin matches macos, ios, etc. 1584 return VariantTriple->isOSDarwin(); 1585 } 1586 return VariantTriple->getOS() == OS.getOS(); 1587 } 1588 return false; 1589 } 1590 1591 /// Implements the __is_target_variant_environment builtin macro. 1592 static bool isTargetVariantEnvironment(const TargetInfo &TI, 1593 const IdentifierInfo *II) { 1594 if (TI.getTriple().isOSDarwin()) { 1595 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); 1596 if (!VariantTriple) 1597 return false; 1598 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1599 llvm::Triple Env(EnvName); 1600 return VariantTriple->getEnvironment() == Env.getEnvironment(); 1601 } 1602 return false; 1603 } 1604 1605 static bool IsBuiltinTrait(Token &Tok) { 1606 1607 #define TYPE_TRAIT_1(Spelling, Name, Key) \ 1608 case tok::kw_##Spelling: \ 1609 return true; 1610 #define TYPE_TRAIT_2(Spelling, Name, Key) \ 1611 case tok::kw_##Spelling: \ 1612 return true; 1613 #define TYPE_TRAIT_N(Spelling, Name, Key) \ 1614 case tok::kw_##Spelling: \ 1615 return true; 1616 #define ARRAY_TYPE_TRAIT(Spelling, Name, Key) \ 1617 case tok::kw_##Spelling: \ 1618 return true; 1619 #define EXPRESSION_TRAIT(Spelling, Name, Key) \ 1620 case tok::kw_##Spelling: \ 1621 return true; 1622 #define TRANSFORM_TYPE_TRAIT_DEF(K, Spelling) \ 1623 case tok::kw___##Spelling: \ 1624 return true; 1625 1626 switch (Tok.getKind()) { 1627 default: 1628 return false; 1629 #include "clang/Basic/TokenKinds.def" 1630 } 1631 } 1632 1633 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded 1634 /// as a builtin macro, handle it and return the next token as 'Tok'. 1635 void Preprocessor::ExpandBuiltinMacro(Token &Tok) { 1636 // Figure out which token this is. 1637 IdentifierInfo *II = Tok.getIdentifierInfo(); 1638 assert(II && "Can't be a macro without id info!"); 1639 1640 // If this is an _Pragma or Microsoft __pragma directive, expand it, 1641 // invoke the pragma handler, then lex the token after it. 1642 if (II == Ident_Pragma) 1643 return Handle_Pragma(Tok); 1644 else if (II == Ident__pragma) // in non-MS mode this is null 1645 return HandleMicrosoft__pragma(Tok); 1646 1647 ++NumBuiltinMacroExpanded; 1648 1649 SmallString<128> TmpBuffer; 1650 llvm::raw_svector_ostream OS(TmpBuffer); 1651 1652 // Set up the return result. 1653 Tok.setIdentifierInfo(nullptr); 1654 Tok.clearFlag(Token::NeedsCleaning); 1655 bool IsAtStartOfLine = Tok.isAtStartOfLine(); 1656 bool HasLeadingSpace = Tok.hasLeadingSpace(); 1657 1658 if (II == Ident__LINE__) { 1659 // C99 6.10.8: "__LINE__: The presumed line number (within the current 1660 // source file) of the current source line (an integer constant)". This can 1661 // be affected by #line. 1662 SourceLocation Loc = Tok.getLocation(); 1663 1664 // Advance to the location of the first _, this might not be the first byte 1665 // of the token if it starts with an escaped newline. 1666 Loc = AdvanceToTokenCharacter(Loc, 0); 1667 1668 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of 1669 // a macro expansion. This doesn't matter for object-like macros, but 1670 // can matter for a function-like macro that expands to contain __LINE__. 1671 // Skip down through expansion points until we find a file loc for the 1672 // end of the expansion history. 1673 Loc = SourceMgr.getExpansionRange(Loc).getEnd(); 1674 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); 1675 1676 // __LINE__ expands to a simple numeric value. 1677 OS << (PLoc.isValid()? PLoc.getLine() : 1); 1678 Tok.setKind(tok::numeric_constant); 1679 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ || 1680 II == Ident__FILE_NAME__) { 1681 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a 1682 // character string literal)". This can be affected by #line. 1683 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1684 1685 // __BASE_FILE__ is a GNU extension that returns the top of the presumed 1686 // #include stack instead of the current file. 1687 if (II == Ident__BASE_FILE__ && PLoc.isValid()) { 1688 SourceLocation NextLoc = PLoc.getIncludeLoc(); 1689 while (NextLoc.isValid()) { 1690 PLoc = SourceMgr.getPresumedLoc(NextLoc); 1691 if (PLoc.isInvalid()) 1692 break; 1693 1694 NextLoc = PLoc.getIncludeLoc(); 1695 } 1696 } 1697 1698 // Escape this filename. Turn '\' -> '\\' '"' -> '\"' 1699 SmallString<256> FN; 1700 if (PLoc.isValid()) { 1701 // __FILE_NAME__ is a Clang-specific extension that expands to the 1702 // the last part of __FILE__. 1703 if (II == Ident__FILE_NAME__) { 1704 processPathToFileName(FN, PLoc, getLangOpts(), getTargetInfo()); 1705 } else { 1706 FN += PLoc.getFilename(); 1707 processPathForFileMacro(FN, getLangOpts(), getTargetInfo()); 1708 } 1709 Lexer::Stringify(FN); 1710 OS << '"' << FN << '"'; 1711 } 1712 Tok.setKind(tok::string_literal); 1713 } else if (II == Ident__DATE__) { 1714 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1715 if (!DATELoc.isValid()) 1716 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1717 Tok.setKind(tok::string_literal); 1718 Tok.setLength(strlen("\"Mmm dd yyyy\"")); 1719 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), 1720 Tok.getLocation(), 1721 Tok.getLength())); 1722 return; 1723 } else if (II == Ident__TIME__) { 1724 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1725 if (!TIMELoc.isValid()) 1726 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1727 Tok.setKind(tok::string_literal); 1728 Tok.setLength(strlen("\"hh:mm:ss\"")); 1729 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), 1730 Tok.getLocation(), 1731 Tok.getLength())); 1732 return; 1733 } else if (II == Ident__INCLUDE_LEVEL__) { 1734 // Compute the presumed include depth of this token. This can be affected 1735 // by GNU line markers. 1736 unsigned Depth = 0; 1737 1738 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1739 if (PLoc.isValid()) { 1740 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1741 for (; PLoc.isValid(); ++Depth) 1742 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1743 } 1744 1745 // __INCLUDE_LEVEL__ expands to a simple numeric value. 1746 OS << Depth; 1747 Tok.setKind(tok::numeric_constant); 1748 } else if (II == Ident__TIMESTAMP__) { 1749 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1750 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be 1751 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. 1752 const char *Result; 1753 if (getPreprocessorOpts().SourceDateEpoch) { 1754 time_t TT = *getPreprocessorOpts().SourceDateEpoch; 1755 std::tm *TM = std::gmtime(&TT); 1756 Result = asctime(TM); 1757 } else { 1758 // Get the file that we are lexing out of. If we're currently lexing from 1759 // a macro, dig into the include stack. 1760 const FileEntry *CurFile = nullptr; 1761 if (PreprocessorLexer *TheLexer = getCurrentFileLexer()) 1762 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); 1763 if (CurFile) { 1764 time_t TT = CurFile->getModificationTime(); 1765 struct tm *TM = localtime(&TT); 1766 Result = asctime(TM); 1767 } else { 1768 Result = "??? ??? ?? ??:??:?? ????\n"; 1769 } 1770 } 1771 // Surround the string with " and strip the trailing newline. 1772 OS << '"' << StringRef(Result).drop_back() << '"'; 1773 Tok.setKind(tok::string_literal); 1774 } else if (II == Ident__FLT_EVAL_METHOD__) { 1775 // __FLT_EVAL_METHOD__ is set to the default value. 1776 OS << getTUFPEvalMethod(); 1777 // __FLT_EVAL_METHOD__ expands to a simple numeric value. 1778 Tok.setKind(tok::numeric_constant); 1779 if (getLastFPEvalPragmaLocation().isValid()) { 1780 // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is altered 1781 // by the pragma. 1782 Diag(Tok, diag::err_illegal_use_of_flt_eval_macro); 1783 Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here); 1784 } 1785 } else if (II == Ident__COUNTER__) { 1786 // __COUNTER__ expands to a simple numeric value. 1787 OS << CounterValue++; 1788 Tok.setKind(tok::numeric_constant); 1789 } else if (II == Ident__has_feature) { 1790 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1791 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1792 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1793 diag::err_feature_check_malformed); 1794 return II && HasFeature(*this, II->getName()); 1795 }); 1796 } else if (II == Ident__has_extension) { 1797 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1798 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1799 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1800 diag::err_feature_check_malformed); 1801 return II && HasExtension(*this, II->getName()); 1802 }); 1803 } else if (II == Ident__has_builtin) { 1804 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1805 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1806 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1807 diag::err_feature_check_malformed); 1808 if (!II) 1809 return false; 1810 else if (II->getBuiltinID() != 0) { 1811 switch (II->getBuiltinID()) { 1812 case Builtin::BI__builtin_cpu_is: 1813 return getTargetInfo().supportsCpuIs(); 1814 case Builtin::BI__builtin_cpu_init: 1815 return getTargetInfo().supportsCpuInit(); 1816 case Builtin::BI__builtin_cpu_supports: 1817 return getTargetInfo().supportsCpuSupports(); 1818 case Builtin::BI__builtin_operator_new: 1819 case Builtin::BI__builtin_operator_delete: 1820 // denotes date of behavior change to support calling arbitrary 1821 // usual allocation and deallocation functions. Required by libc++ 1822 return 201802; 1823 default: 1824 return Builtin::evaluateRequiredTargetFeatures( 1825 getBuiltinInfo().getRequiredFeatures(II->getBuiltinID()), 1826 getTargetInfo().getTargetOpts().FeatureMap); 1827 } 1828 return true; 1829 } else if (IsBuiltinTrait(Tok)) { 1830 return true; 1831 } else if (II->getTokenID() != tok::identifier && 1832 II->getName().starts_with("__builtin_")) { 1833 return true; 1834 } else { 1835 return llvm::StringSwitch<bool>(II->getName()) 1836 // Report builtin templates as being builtins. 1837 .Case("__make_integer_seq", getLangOpts().CPlusPlus) 1838 .Case("__type_pack_element", getLangOpts().CPlusPlus) 1839 // Likewise for some builtin preprocessor macros. 1840 // FIXME: This is inconsistent; we usually suggest detecting 1841 // builtin macros via #ifdef. Don't add more cases here. 1842 .Case("__is_target_arch", true) 1843 .Case("__is_target_vendor", true) 1844 .Case("__is_target_os", true) 1845 .Case("__is_target_environment", true) 1846 .Case("__is_target_variant_os", true) 1847 .Case("__is_target_variant_environment", true) 1848 .Default(false); 1849 } 1850 }); 1851 } else if (II == Ident__has_constexpr_builtin) { 1852 EvaluateFeatureLikeBuiltinMacro( 1853 OS, Tok, II, *this, false, 1854 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1855 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1856 Tok, *this, diag::err_feature_check_malformed); 1857 if (!II) 1858 return false; 1859 unsigned BuiltinOp = II->getBuiltinID(); 1860 return BuiltinOp != 0 && 1861 this->getBuiltinInfo().isConstantEvaluated(BuiltinOp); 1862 }); 1863 } else if (II == Ident__is_identifier) { 1864 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1865 [](Token &Tok, bool &HasLexedNextToken) -> int { 1866 return Tok.is(tok::identifier); 1867 }); 1868 } else if (II == Ident__has_attribute) { 1869 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1870 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1871 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1872 diag::err_feature_check_malformed); 1873 return II ? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU, nullptr, 1874 II, getTargetInfo(), getLangOpts()) 1875 : 0; 1876 }); 1877 } else if (II == Ident__has_declspec) { 1878 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1879 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1880 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1881 diag::err_feature_check_malformed); 1882 if (II) { 1883 const LangOptions &LangOpts = getLangOpts(); 1884 return LangOpts.DeclSpecKeyword && 1885 hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr, 1886 II, getTargetInfo(), LangOpts); 1887 } 1888 1889 return false; 1890 }); 1891 } else if (II == Ident__has_cpp_attribute || 1892 II == Ident__has_c_attribute) { 1893 bool IsCXX = II == Ident__has_cpp_attribute; 1894 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1895 [&](Token &Tok, bool &HasLexedNextToken) -> int { 1896 IdentifierInfo *ScopeII = nullptr; 1897 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1898 Tok, *this, diag::err_feature_check_malformed); 1899 if (!II) 1900 return false; 1901 1902 // It is possible to receive a scope token. Read the "::", if it is 1903 // available, and the subsequent identifier. 1904 LexUnexpandedToken(Tok); 1905 if (Tok.isNot(tok::coloncolon)) 1906 HasLexedNextToken = true; 1907 else { 1908 ScopeII = II; 1909 // Lex an expanded token for the attribute name. 1910 Lex(Tok); 1911 II = ExpectFeatureIdentifierInfo(Tok, *this, 1912 diag::err_feature_check_malformed); 1913 } 1914 1915 AttributeCommonInfo::Syntax Syntax = 1916 IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11 1917 : AttributeCommonInfo::Syntax::AS_C23; 1918 return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(), 1919 getLangOpts()) 1920 : 0; 1921 }); 1922 } else if (II == Ident__has_include || 1923 II == Ident__has_include_next) { 1924 // The argument to these two builtins should be a parenthesized 1925 // file name string literal using angle brackets (<>) or 1926 // double-quotes (""). 1927 bool Value; 1928 if (II == Ident__has_include) 1929 Value = EvaluateHasInclude(Tok, II); 1930 else 1931 Value = EvaluateHasIncludeNext(Tok, II); 1932 1933 if (Tok.isNot(tok::r_paren)) 1934 return; 1935 OS << (int)Value; 1936 Tok.setKind(tok::numeric_constant); 1937 } else if (II == Ident__has_embed) { 1938 // The argument to these two builtins should be a parenthesized 1939 // file name string literal using angle brackets (<>) or 1940 // double-quotes (""), optionally followed by a series of 1941 // arguments similar to form like attributes. 1942 EmbedResult Value = EvaluateHasEmbed(Tok, II); 1943 if (Value == EmbedResult::Invalid) 1944 return; 1945 1946 Tok.setKind(tok::numeric_constant); 1947 OS << static_cast<int>(Value); 1948 } else if (II == Ident__has_warning) { 1949 // The argument should be a parenthesized string literal. 1950 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1951 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1952 std::string WarningName; 1953 SourceLocation StrStartLoc = Tok.getLocation(); 1954 1955 HasLexedNextToken = Tok.is(tok::string_literal); 1956 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", 1957 /*AllowMacroExpansion=*/false)) 1958 return false; 1959 1960 // FIXME: Should we accept "-R..." flags here, or should that be 1961 // handled by a separate __has_remark? 1962 if (WarningName.size() < 3 || WarningName[0] != '-' || 1963 WarningName[1] != 'W') { 1964 Diag(StrStartLoc, diag::warn_has_warning_invalid_option); 1965 return false; 1966 } 1967 1968 // Finally, check if the warning flags maps to a diagnostic group. 1969 // We construct a SmallVector here to talk to getDiagnosticIDs(). 1970 // Although we don't use the result, this isn't a hot path, and not 1971 // worth special casing. 1972 SmallVector<diag::kind, 10> Diags; 1973 return !getDiagnostics().getDiagnosticIDs()-> 1974 getDiagnosticsInGroup(diag::Flavor::WarningOrError, 1975 WarningName.substr(2), Diags); 1976 }); 1977 } else if (II == Ident__building_module) { 1978 // The argument to this builtin should be an identifier. The 1979 // builtin evaluates to 1 when that identifier names the module we are 1980 // currently building. 1981 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1982 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1983 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1984 diag::err_expected_id_building_module); 1985 return getLangOpts().isCompilingModule() && II && 1986 (II->getName() == getLangOpts().CurrentModule); 1987 }); 1988 } else if (II == Ident__MODULE__) { 1989 // The current module as an identifier. 1990 OS << getLangOpts().CurrentModule; 1991 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); 1992 Tok.setIdentifierInfo(ModuleII); 1993 Tok.setKind(ModuleII->getTokenID()); 1994 } else if (II == Ident__identifier) { 1995 SourceLocation Loc = Tok.getLocation(); 1996 1997 // We're expecting '__identifier' '(' identifier ')'. Try to recover 1998 // if the parens are missing. 1999 LexNonComment(Tok); 2000 if (Tok.isNot(tok::l_paren)) { 2001 // No '(', use end of last token. 2002 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) 2003 << II << tok::l_paren; 2004 // If the next token isn't valid as our argument, we can't recover. 2005 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 2006 Tok.setKind(tok::identifier); 2007 return; 2008 } 2009 2010 SourceLocation LParenLoc = Tok.getLocation(); 2011 LexNonComment(Tok); 2012 2013 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 2014 Tok.setKind(tok::identifier); 2015 else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) { 2016 StringLiteralParser Literal(Tok, *this, 2017 StringLiteralEvalMethod::Unevaluated); 2018 if (Literal.hadError) 2019 return; 2020 2021 Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString())); 2022 Tok.setKind(tok::identifier); 2023 } else { 2024 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) 2025 << Tok.getKind(); 2026 // Don't walk past anything that's not a real token. 2027 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation()) 2028 return; 2029 } 2030 2031 // Discard the ')', preserving 'Tok' as our result. 2032 Token RParen; 2033 LexNonComment(RParen); 2034 if (RParen.isNot(tok::r_paren)) { 2035 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) 2036 << Tok.getKind() << tok::r_paren; 2037 Diag(LParenLoc, diag::note_matching) << tok::l_paren; 2038 } 2039 return; 2040 } else if (II == Ident__is_target_arch) { 2041 EvaluateFeatureLikeBuiltinMacro( 2042 OS, Tok, II, *this, false, 2043 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2044 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2045 Tok, *this, diag::err_feature_check_malformed); 2046 return II && isTargetArch(getTargetInfo(), II); 2047 }); 2048 } else if (II == Ident__is_target_vendor) { 2049 EvaluateFeatureLikeBuiltinMacro( 2050 OS, Tok, II, *this, false, 2051 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2052 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2053 Tok, *this, diag::err_feature_check_malformed); 2054 return II && isTargetVendor(getTargetInfo(), II); 2055 }); 2056 } else if (II == Ident__is_target_os) { 2057 EvaluateFeatureLikeBuiltinMacro( 2058 OS, Tok, II, *this, false, 2059 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2060 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2061 Tok, *this, diag::err_feature_check_malformed); 2062 return II && isTargetOS(getTargetInfo(), II); 2063 }); 2064 } else if (II == Ident__is_target_environment) { 2065 EvaluateFeatureLikeBuiltinMacro( 2066 OS, Tok, II, *this, false, 2067 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2068 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2069 Tok, *this, diag::err_feature_check_malformed); 2070 return II && isTargetEnvironment(getTargetInfo(), II); 2071 }); 2072 } else if (II == Ident__is_target_variant_os) { 2073 EvaluateFeatureLikeBuiltinMacro( 2074 OS, Tok, II, *this, false, 2075 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2076 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2077 Tok, *this, diag::err_feature_check_malformed); 2078 return II && isTargetVariantOS(getTargetInfo(), II); 2079 }); 2080 } else if (II == Ident__is_target_variant_environment) { 2081 EvaluateFeatureLikeBuiltinMacro( 2082 OS, Tok, II, *this, false, 2083 [this](Token &Tok, bool &HasLexedNextToken) -> int { 2084 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 2085 Tok, *this, diag::err_feature_check_malformed); 2086 return II && isTargetVariantEnvironment(getTargetInfo(), II); 2087 }); 2088 } else { 2089 llvm_unreachable("Unknown identifier!"); 2090 } 2091 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); 2092 Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine); 2093 Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace); 2094 } 2095 2096 void Preprocessor::markMacroAsUsed(MacroInfo *MI) { 2097 // If the 'used' status changed, and the macro requires 'unused' warning, 2098 // remove its SourceLocation from the warn-for-unused-macro locations. 2099 if (MI->isWarnIfUnused() && !MI->isUsed()) 2100 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); 2101 MI->setIsUsed(true); 2102 } 2103 2104 void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path, 2105 const LangOptions &LangOpts, 2106 const TargetInfo &TI) { 2107 LangOpts.remapPathPrefix(Path); 2108 if (LangOpts.UseTargetPathSeparator) { 2109 if (TI.getTriple().isOSWindows()) 2110 llvm::sys::path::remove_dots(Path, false, 2111 llvm::sys::path::Style::windows_backslash); 2112 else 2113 llvm::sys::path::remove_dots(Path, false, llvm::sys::path::Style::posix); 2114 } 2115 } 2116 2117 void Preprocessor::processPathToFileName(SmallVectorImpl<char> &FileName, 2118 const PresumedLoc &PLoc, 2119 const LangOptions &LangOpts, 2120 const TargetInfo &TI) { 2121 // Try to get the last path component, failing that return the original 2122 // presumed location. 2123 StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename()); 2124 if (PLFileName.empty()) 2125 PLFileName = PLoc.getFilename(); 2126 FileName.append(PLFileName.begin(), PLFileName.end()); 2127 processPathForFileMacro(FileName, LangOpts, TI); 2128 } 2129