1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the top level handling of macro expansion for the 10 // preprocessor. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/AttributeCommonInfo.h" 15 #include "clang/Basic/Attributes.h" 16 #include "clang/Basic/Builtins.h" 17 #include "clang/Basic/FileManager.h" 18 #include "clang/Basic/IdentifierTable.h" 19 #include "clang/Basic/LLVM.h" 20 #include "clang/Basic/LangOptions.h" 21 #include "clang/Basic/ObjCRuntime.h" 22 #include "clang/Basic/SourceLocation.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Lex/CodeCompletionHandler.h" 25 #include "clang/Lex/DirectoryLookup.h" 26 #include "clang/Lex/ExternalPreprocessorSource.h" 27 #include "clang/Lex/HeaderSearch.h" 28 #include "clang/Lex/LexDiagnostic.h" 29 #include "clang/Lex/LiteralSupport.h" 30 #include "clang/Lex/MacroArgs.h" 31 #include "clang/Lex/MacroInfo.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Lex/PreprocessorLexer.h" 34 #include "clang/Lex/PreprocessorOptions.h" 35 #include "clang/Lex/Token.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/DenseSet.h" 39 #include "llvm/ADT/FoldingSet.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/ADT/SmallString.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/ADT/StringRef.h" 44 #include "llvm/ADT/StringSwitch.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/Format.h" 48 #include "llvm/Support/Path.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstddef> 53 #include <cstring> 54 #include <ctime> 55 #include <optional> 56 #include <string> 57 #include <tuple> 58 #include <utility> 59 60 using namespace clang; 61 62 MacroDirective * 63 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { 64 if (!II->hadMacroDefinition()) 65 return nullptr; 66 auto Pos = CurSubmoduleState->Macros.find(II); 67 return Pos == CurSubmoduleState->Macros.end() ? nullptr 68 : Pos->second.getLatest(); 69 } 70 71 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ 72 assert(MD && "MacroDirective should be non-zero!"); 73 assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); 74 75 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 76 auto *OldMD = StoredMD.getLatest(); 77 MD->setPrevious(OldMD); 78 StoredMD.setLatest(MD); 79 StoredMD.overrideActiveModuleMacros(*this, II); 80 81 if (needModuleMacros()) { 82 // Track that we created a new macro directive, so we know we should 83 // consider building a ModuleMacro for it when we get to the end of 84 // the module. 85 PendingModuleMacroNames.push_back(II); 86 } 87 88 // Set up the identifier as having associated macro history. 89 II->setHasMacroDefinition(true); 90 if (!MD->isDefined() && !LeafModuleMacros.contains(II)) 91 II->setHasMacroDefinition(false); 92 if (II->isFromAST()) 93 II->setChangedSinceDeserialization(); 94 } 95 96 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, 97 MacroDirective *ED, 98 MacroDirective *MD) { 99 // Normally, when a macro is defined, it goes through appendMacroDirective() 100 // above, which chains a macro to previous defines, undefs, etc. 101 // However, in a pch, the whole macro history up to the end of the pch is 102 // stored, so ASTReader goes through this function instead. 103 // However, built-in macros are already registered in the Preprocessor 104 // ctor, and ASTWriter stops writing the macro chain at built-in macros, 105 // so in that case the chain from the pch needs to be spliced to the existing 106 // built-in. 107 108 assert(II && MD); 109 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 110 111 if (auto *OldMD = StoredMD.getLatest()) { 112 // shouldIgnoreMacro() in ASTWriter also stops at macros from the 113 // predefines buffer in module builds. However, in module builds, modules 114 // are loaded completely before predefines are processed, so StoredMD 115 // will be nullptr for them when they're loaded. StoredMD should only be 116 // non-nullptr for builtins read from a pch file. 117 assert(OldMD->getMacroInfo()->isBuiltinMacro() && 118 "only built-ins should have an entry here"); 119 assert(!OldMD->getPrevious() && "builtin should only have a single entry"); 120 ED->setPrevious(OldMD); 121 StoredMD.setLatest(MD); 122 } else { 123 StoredMD = MD; 124 } 125 126 // Setup the identifier as having associated macro history. 127 II->setHasMacroDefinition(true); 128 if (!MD->isDefined() && !LeafModuleMacros.contains(II)) 129 II->setHasMacroDefinition(false); 130 } 131 132 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, 133 MacroInfo *Macro, 134 ArrayRef<ModuleMacro *> Overrides, 135 bool &New) { 136 llvm::FoldingSetNodeID ID; 137 ModuleMacro::Profile(ID, Mod, II); 138 139 void *InsertPos; 140 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { 141 New = false; 142 return MM; 143 } 144 145 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides); 146 ModuleMacros.InsertNode(MM, InsertPos); 147 148 // Each overridden macro is now overridden by one more macro. 149 bool HidAny = false; 150 for (auto *O : Overrides) { 151 HidAny |= (O->NumOverriddenBy == 0); 152 ++O->NumOverriddenBy; 153 } 154 155 // If we were the first overrider for any macro, it's no longer a leaf. 156 auto &LeafMacros = LeafModuleMacros[II]; 157 if (HidAny) { 158 llvm::erase_if(LeafMacros, 159 [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; }); 160 } 161 162 // The new macro is always a leaf macro. 163 LeafMacros.push_back(MM); 164 // The identifier now has defined macros (that may or may not be visible). 165 II->setHasMacroDefinition(true); 166 167 New = true; 168 return MM; 169 } 170 171 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, 172 const IdentifierInfo *II) { 173 llvm::FoldingSetNodeID ID; 174 ModuleMacro::Profile(ID, Mod, II); 175 176 void *InsertPos; 177 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); 178 } 179 180 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, 181 ModuleMacroInfo &Info) { 182 assert(Info.ActiveModuleMacrosGeneration != 183 CurSubmoduleState->VisibleModules.getGeneration() && 184 "don't need to update this macro name info"); 185 Info.ActiveModuleMacrosGeneration = 186 CurSubmoduleState->VisibleModules.getGeneration(); 187 188 auto Leaf = LeafModuleMacros.find(II); 189 if (Leaf == LeafModuleMacros.end()) { 190 // No imported macros at all: nothing to do. 191 return; 192 } 193 194 Info.ActiveModuleMacros.clear(); 195 196 // Every macro that's locally overridden is overridden by a visible macro. 197 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides; 198 for (auto *O : Info.OverriddenMacros) 199 NumHiddenOverrides[O] = -1; 200 201 // Collect all macros that are not overridden by a visible macro. 202 llvm::SmallVector<ModuleMacro *, 16> Worklist; 203 for (auto *LeafMM : Leaf->second) { 204 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); 205 if (NumHiddenOverrides.lookup(LeafMM) == 0) 206 Worklist.push_back(LeafMM); 207 } 208 while (!Worklist.empty()) { 209 auto *MM = Worklist.pop_back_val(); 210 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) { 211 // We only care about collecting definitions; undefinitions only act 212 // to override other definitions. 213 if (MM->getMacroInfo()) 214 Info.ActiveModuleMacros.push_back(MM); 215 } else { 216 for (auto *O : MM->overrides()) 217 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) 218 Worklist.push_back(O); 219 } 220 } 221 // Our reverse postorder walk found the macros in reverse order. 222 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end()); 223 224 // Determine whether the macro name is ambiguous. 225 MacroInfo *MI = nullptr; 226 bool IsSystemMacro = true; 227 bool IsAmbiguous = false; 228 if (auto *MD = Info.MD) { 229 while (MD && isa<VisibilityMacroDirective>(MD)) 230 MD = MD->getPrevious(); 231 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) { 232 MI = DMD->getInfo(); 233 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation()); 234 } 235 } 236 for (auto *Active : Info.ActiveModuleMacros) { 237 auto *NewMI = Active->getMacroInfo(); 238 239 // Before marking the macro as ambiguous, check if this is a case where 240 // both macros are in system headers. If so, we trust that the system 241 // did not get it wrong. This also handles cases where Clang's own 242 // headers have a different spelling of certain system macros: 243 // #define LONG_MAX __LONG_MAX__ (clang's limits.h) 244 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) 245 // 246 // FIXME: Remove the defined-in-system-headers check. clang's limits.h 247 // overrides the system limits.h's macros, so there's no conflict here. 248 if (MI && NewMI != MI && 249 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true)) 250 IsAmbiguous = true; 251 IsSystemMacro &= Active->getOwningModule()->IsSystem || 252 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc()); 253 MI = NewMI; 254 } 255 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; 256 } 257 258 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { 259 ArrayRef<ModuleMacro*> Leaf; 260 auto LeafIt = LeafModuleMacros.find(II); 261 if (LeafIt != LeafModuleMacros.end()) 262 Leaf = LeafIt->second; 263 const MacroState *State = nullptr; 264 auto Pos = CurSubmoduleState->Macros.find(II); 265 if (Pos != CurSubmoduleState->Macros.end()) 266 State = &Pos->second; 267 268 llvm::errs() << "MacroState " << State << " " << II->getNameStart(); 269 if (State && State->isAmbiguous(*this, II)) 270 llvm::errs() << " ambiguous"; 271 if (State && !State->getOverriddenMacros().empty()) { 272 llvm::errs() << " overrides"; 273 for (auto *O : State->getOverriddenMacros()) 274 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 275 } 276 llvm::errs() << "\n"; 277 278 // Dump local macro directives. 279 for (auto *MD = State ? State->getLatest() : nullptr; MD; 280 MD = MD->getPrevious()) { 281 llvm::errs() << " "; 282 MD->dump(); 283 } 284 285 // Dump module macros. 286 llvm::DenseSet<ModuleMacro*> Active; 287 for (auto *MM : 288 State ? State->getActiveModuleMacros(*this, II) : std::nullopt) 289 Active.insert(MM); 290 llvm::DenseSet<ModuleMacro*> Visited; 291 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end()); 292 while (!Worklist.empty()) { 293 auto *MM = Worklist.pop_back_val(); 294 llvm::errs() << " ModuleMacro " << MM << " " 295 << MM->getOwningModule()->getFullModuleName(); 296 if (!MM->getMacroInfo()) 297 llvm::errs() << " undef"; 298 299 if (Active.count(MM)) 300 llvm::errs() << " active"; 301 else if (!CurSubmoduleState->VisibleModules.isVisible( 302 MM->getOwningModule())) 303 llvm::errs() << " hidden"; 304 else if (MM->getMacroInfo()) 305 llvm::errs() << " overridden"; 306 307 if (!MM->overrides().empty()) { 308 llvm::errs() << " overrides"; 309 for (auto *O : MM->overrides()) { 310 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 311 if (Visited.insert(O).second) 312 Worklist.push_back(O); 313 } 314 } 315 llvm::errs() << "\n"; 316 if (auto *MI = MM->getMacroInfo()) { 317 llvm::errs() << " "; 318 MI->dump(); 319 llvm::errs() << "\n"; 320 } 321 } 322 } 323 324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier 325 /// table and mark it as a builtin macro to be expanded. 326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ 327 // Get the identifier. 328 IdentifierInfo *Id = PP.getIdentifierInfo(Name); 329 330 // Mark it as being a macro that is builtin. 331 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); 332 MI->setIsBuiltinMacro(); 333 PP.appendDefMacroDirective(Id, MI); 334 return Id; 335 } 336 337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the 338 /// identifier table. 339 void Preprocessor::RegisterBuiltinMacros() { 340 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); 341 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); 342 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); 343 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); 344 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); 345 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); 346 Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro(*this, "__FLT_EVAL_METHOD__"); 347 348 // C++ Standing Document Extensions. 349 if (getLangOpts().CPlusPlus) 350 Ident__has_cpp_attribute = 351 RegisterBuiltinMacro(*this, "__has_cpp_attribute"); 352 else 353 Ident__has_cpp_attribute = nullptr; 354 355 // GCC Extensions. 356 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); 357 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); 358 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); 359 360 // Microsoft Extensions. 361 if (getLangOpts().MicrosoftExt) { 362 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier"); 363 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); 364 } else { 365 Ident__identifier = nullptr; 366 Ident__pragma = nullptr; 367 } 368 369 // Clang Extensions. 370 Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__"); 371 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); 372 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); 373 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); 374 Ident__has_constexpr_builtin = 375 RegisterBuiltinMacro(*this, "__has_constexpr_builtin"); 376 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); 377 if (!getLangOpts().CPlusPlus) 378 Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute"); 379 else 380 Ident__has_c_attribute = nullptr; 381 382 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute"); 383 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); 384 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); 385 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); 386 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier"); 387 Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch"); 388 Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor"); 389 Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os"); 390 Ident__is_target_environment = 391 RegisterBuiltinMacro(*this, "__is_target_environment"); 392 Ident__is_target_variant_os = 393 RegisterBuiltinMacro(*this, "__is_target_variant_os"); 394 Ident__is_target_variant_environment = 395 RegisterBuiltinMacro(*this, "__is_target_variant_environment"); 396 397 // Modules. 398 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module"); 399 if (!getLangOpts().CurrentModule.empty()) 400 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__"); 401 else 402 Ident__MODULE__ = nullptr; 403 } 404 405 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token 406 /// in its expansion, currently expands to that token literally. 407 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, 408 const IdentifierInfo *MacroIdent, 409 Preprocessor &PP) { 410 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); 411 412 // If the token isn't an identifier, it's always literally expanded. 413 if (!II) return true; 414 415 // If the information about this identifier is out of date, update it from 416 // the external source. 417 if (II->isOutOfDate()) 418 PP.getExternalSource()->updateOutOfDateIdentifier(*II); 419 420 // If the identifier is a macro, and if that macro is enabled, it may be 421 // expanded so it's not a trivial expansion. 422 if (auto *ExpansionMI = PP.getMacroInfo(II)) 423 if (ExpansionMI->isEnabled() && 424 // Fast expanding "#define X X" is ok, because X would be disabled. 425 II != MacroIdent) 426 return false; 427 428 // If this is an object-like macro invocation, it is safe to trivially expand 429 // it. 430 if (MI->isObjectLike()) return true; 431 432 // If this is a function-like macro invocation, it's safe to trivially expand 433 // as long as the identifier is not a macro argument. 434 return !llvm::is_contained(MI->params(), II); 435 } 436 437 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be 438 /// lexed is a '('. If so, consume the token and return true, if not, this 439 /// method should have no observable side-effect on the lexed tokens. 440 bool Preprocessor::isNextPPTokenLParen() { 441 // Do some quick tests for rejection cases. 442 unsigned Val; 443 if (CurLexer) 444 Val = CurLexer->isNextPPTokenLParen(); 445 else 446 Val = CurTokenLexer->isNextTokenLParen(); 447 448 if (Val == 2) { 449 // We have run off the end. If it's a source file we don't 450 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the 451 // macro stack. 452 if (CurPPLexer) 453 return false; 454 for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) { 455 if (Entry.TheLexer) 456 Val = Entry.TheLexer->isNextPPTokenLParen(); 457 else 458 Val = Entry.TheTokenLexer->isNextTokenLParen(); 459 460 if (Val != 2) 461 break; 462 463 // Ran off the end of a source file? 464 if (Entry.ThePPLexer) 465 return false; 466 } 467 } 468 469 // Okay, if we know that the token is a '(', lex it and return. Otherwise we 470 // have found something that isn't a '(' or we found the end of the 471 // translation unit. In either case, return false. 472 return Val == 1; 473 } 474 475 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be 476 /// expanded as a macro, handle it and return the next token as 'Identifier'. 477 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, 478 const MacroDefinition &M) { 479 emitMacroExpansionWarnings(Identifier); 480 481 MacroInfo *MI = M.getMacroInfo(); 482 483 // If this is a macro expansion in the "#if !defined(x)" line for the file, 484 // then the macro could expand to different things in other contexts, we need 485 // to disable the optimization in this case. 486 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); 487 488 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. 489 if (MI->isBuiltinMacro()) { 490 if (Callbacks) 491 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(), 492 /*Args=*/nullptr); 493 ExpandBuiltinMacro(Identifier); 494 return true; 495 } 496 497 /// Args - If this is a function-like macro expansion, this contains, 498 /// for each macro argument, the list of tokens that were provided to the 499 /// invocation. 500 MacroArgs *Args = nullptr; 501 502 // Remember where the end of the expansion occurred. For an object-like 503 // macro, this is the identifier. For a function-like macro, this is the ')'. 504 SourceLocation ExpansionEnd = Identifier.getLocation(); 505 506 // If this is a function-like macro, read the arguments. 507 if (MI->isFunctionLike()) { 508 // Remember that we are now parsing the arguments to a macro invocation. 509 // Preprocessor directives used inside macro arguments are not portable, and 510 // this enables the warning. 511 InMacroArgs = true; 512 ArgMacro = &Identifier; 513 514 Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd); 515 516 // Finished parsing args. 517 InMacroArgs = false; 518 ArgMacro = nullptr; 519 520 // If there was an error parsing the arguments, bail out. 521 if (!Args) return true; 522 523 ++NumFnMacroExpanded; 524 } else { 525 ++NumMacroExpanded; 526 } 527 528 // Notice that this macro has been used. 529 markMacroAsUsed(MI); 530 531 // Remember where the token is expanded. 532 SourceLocation ExpandLoc = Identifier.getLocation(); 533 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); 534 535 if (Callbacks) { 536 if (InMacroArgs) { 537 // We can have macro expansion inside a conditional directive while 538 // reading the function macro arguments. To ensure, in that case, that 539 // MacroExpands callbacks still happen in source order, queue this 540 // callback to have it happen after the function macro callback. 541 DelayedMacroExpandsCallbacks.push_back( 542 MacroExpandsInfo(Identifier, M, ExpansionRange)); 543 } else { 544 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args); 545 if (!DelayedMacroExpandsCallbacks.empty()) { 546 for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { 547 // FIXME: We lose macro args info with delayed callback. 548 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, 549 /*Args=*/nullptr); 550 } 551 DelayedMacroExpandsCallbacks.clear(); 552 } 553 } 554 } 555 556 // If the macro definition is ambiguous, complain. 557 if (M.isAmbiguous()) { 558 Diag(Identifier, diag::warn_pp_ambiguous_macro) 559 << Identifier.getIdentifierInfo(); 560 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) 561 << Identifier.getIdentifierInfo(); 562 M.forAllDefinitions([&](const MacroInfo *OtherMI) { 563 if (OtherMI != MI) 564 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) 565 << Identifier.getIdentifierInfo(); 566 }); 567 } 568 569 // If we started lexing a macro, enter the macro expansion body. 570 571 // If this macro expands to no tokens, don't bother to push it onto the 572 // expansion stack, only to take it right back off. 573 if (MI->getNumTokens() == 0) { 574 // No need for arg info. 575 if (Args) Args->destroy(*this); 576 577 // Propagate whitespace info as if we had pushed, then popped, 578 // a macro context. 579 Identifier.setFlag(Token::LeadingEmptyMacro); 580 PropagateLineStartLeadingSpaceInfo(Identifier); 581 ++NumFastMacroExpanded; 582 return false; 583 } else if (MI->getNumTokens() == 1 && 584 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), 585 *this)) { 586 // Otherwise, if this macro expands into a single trivially-expanded 587 // token: expand it now. This handles common cases like 588 // "#define VAL 42". 589 590 // No need for arg info. 591 if (Args) Args->destroy(*this); 592 593 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro 594 // identifier to the expanded token. 595 bool isAtStartOfLine = Identifier.isAtStartOfLine(); 596 bool hasLeadingSpace = Identifier.hasLeadingSpace(); 597 598 // Replace the result token. 599 Identifier = MI->getReplacementToken(0); 600 601 // Restore the StartOfLine/LeadingSpace markers. 602 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); 603 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); 604 605 // Update the tokens location to include both its expansion and physical 606 // locations. 607 SourceLocation Loc = 608 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, 609 ExpansionEnd,Identifier.getLength()); 610 Identifier.setLocation(Loc); 611 612 // If this is a disabled macro or #define X X, we must mark the result as 613 // unexpandable. 614 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { 615 if (MacroInfo *NewMI = getMacroInfo(NewII)) 616 if (!NewMI->isEnabled() || NewMI == MI) { 617 Identifier.setFlag(Token::DisableExpand); 618 // Don't warn for "#define X X" like "#define bool bool" from 619 // stdbool.h. 620 if (NewMI != MI || MI->isFunctionLike()) 621 Diag(Identifier, diag::pp_disabled_macro_expansion); 622 } 623 } 624 625 // Since this is not an identifier token, it can't be macro expanded, so 626 // we're done. 627 ++NumFastMacroExpanded; 628 return true; 629 } 630 631 // Start expanding the macro. 632 EnterMacro(Identifier, ExpansionEnd, MI, Args); 633 return false; 634 } 635 636 enum Bracket { 637 Brace, 638 Paren 639 }; 640 641 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the 642 /// token vector are properly nested. 643 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { 644 SmallVector<Bracket, 8> Brackets; 645 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), 646 E = Tokens.end(); 647 I != E; ++I) { 648 if (I->is(tok::l_paren)) { 649 Brackets.push_back(Paren); 650 } else if (I->is(tok::r_paren)) { 651 if (Brackets.empty() || Brackets.back() == Brace) 652 return false; 653 Brackets.pop_back(); 654 } else if (I->is(tok::l_brace)) { 655 Brackets.push_back(Brace); 656 } else if (I->is(tok::r_brace)) { 657 if (Brackets.empty() || Brackets.back() == Paren) 658 return false; 659 Brackets.pop_back(); 660 } 661 } 662 return Brackets.empty(); 663 } 664 665 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new 666 /// vector of tokens in NewTokens. The new number of arguments will be placed 667 /// in NumArgs and the ranges which need to surrounded in parentheses will be 668 /// in ParenHints. 669 /// Returns false if the token stream cannot be changed. If this is because 670 /// of an initializer list starting a macro argument, the range of those 671 /// initializer lists will be place in InitLists. 672 static bool GenerateNewArgTokens(Preprocessor &PP, 673 SmallVectorImpl<Token> &OldTokens, 674 SmallVectorImpl<Token> &NewTokens, 675 unsigned &NumArgs, 676 SmallVectorImpl<SourceRange> &ParenHints, 677 SmallVectorImpl<SourceRange> &InitLists) { 678 if (!CheckMatchedBrackets(OldTokens)) 679 return false; 680 681 // Once it is known that the brackets are matched, only a simple count of the 682 // braces is needed. 683 unsigned Braces = 0; 684 685 // First token of a new macro argument. 686 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); 687 688 // First closing brace in a new macro argument. Used to generate 689 // SourceRanges for InitLists. 690 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); 691 NumArgs = 0; 692 Token TempToken; 693 // Set to true when a macro separator token is found inside a braced list. 694 // If true, the fixed argument spans multiple old arguments and ParenHints 695 // will be updated. 696 bool FoundSeparatorToken = false; 697 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), 698 E = OldTokens.end(); 699 I != E; ++I) { 700 if (I->is(tok::l_brace)) { 701 ++Braces; 702 } else if (I->is(tok::r_brace)) { 703 --Braces; 704 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) 705 ClosingBrace = I; 706 } else if (I->is(tok::eof)) { 707 // EOF token is used to separate macro arguments 708 if (Braces != 0) { 709 // Assume comma separator is actually braced list separator and change 710 // it back to a comma. 711 FoundSeparatorToken = true; 712 I->setKind(tok::comma); 713 I->setLength(1); 714 } else { // Braces == 0 715 // Separator token still separates arguments. 716 ++NumArgs; 717 718 // If the argument starts with a brace, it can't be fixed with 719 // parentheses. A different diagnostic will be given. 720 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { 721 InitLists.push_back( 722 SourceRange(ArgStartIterator->getLocation(), 723 PP.getLocForEndOfToken(ClosingBrace->getLocation()))); 724 ClosingBrace = E; 725 } 726 727 // Add left paren 728 if (FoundSeparatorToken) { 729 TempToken.startToken(); 730 TempToken.setKind(tok::l_paren); 731 TempToken.setLocation(ArgStartIterator->getLocation()); 732 TempToken.setLength(0); 733 NewTokens.push_back(TempToken); 734 } 735 736 // Copy over argument tokens 737 NewTokens.insert(NewTokens.end(), ArgStartIterator, I); 738 739 // Add right paren and store the paren locations in ParenHints 740 if (FoundSeparatorToken) { 741 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); 742 TempToken.startToken(); 743 TempToken.setKind(tok::r_paren); 744 TempToken.setLocation(Loc); 745 TempToken.setLength(0); 746 NewTokens.push_back(TempToken); 747 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), 748 Loc)); 749 } 750 751 // Copy separator token 752 NewTokens.push_back(*I); 753 754 // Reset values 755 ArgStartIterator = I + 1; 756 FoundSeparatorToken = false; 757 } 758 } 759 } 760 761 return !ParenHints.empty() && InitLists.empty(); 762 } 763 764 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next 765 /// token is the '(' of the macro, this method is invoked to read all of the 766 /// actual arguments specified for the macro invocation. This returns null on 767 /// error. 768 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, 769 MacroInfo *MI, 770 SourceLocation &MacroEnd) { 771 // The number of fixed arguments to parse. 772 unsigned NumFixedArgsLeft = MI->getNumParams(); 773 bool isVariadic = MI->isVariadic(); 774 775 // Outer loop, while there are more arguments, keep reading them. 776 Token Tok; 777 778 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 779 // an argument value in a macro could expand to ',' or '(' or ')'. 780 LexUnexpandedToken(Tok); 781 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); 782 783 // ArgTokens - Build up a list of tokens that make up each argument. Each 784 // argument is separated by an EOF token. Use a SmallVector so we can avoid 785 // heap allocations in the common case. 786 SmallVector<Token, 64> ArgTokens; 787 bool ContainsCodeCompletionTok = false; 788 bool FoundElidedComma = false; 789 790 SourceLocation TooManyArgsLoc; 791 792 unsigned NumActuals = 0; 793 while (Tok.isNot(tok::r_paren)) { 794 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod)) 795 break; 796 797 assert(Tok.isOneOf(tok::l_paren, tok::comma) && 798 "only expect argument separators here"); 799 800 size_t ArgTokenStart = ArgTokens.size(); 801 SourceLocation ArgStartLoc = Tok.getLocation(); 802 803 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note 804 // that we already consumed the first one. 805 unsigned NumParens = 0; 806 807 while (true) { 808 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 809 // an argument value in a macro could expand to ',' or '(' or ')'. 810 LexUnexpandedToken(Tok); 811 812 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n" 813 if (!ContainsCodeCompletionTok) { 814 Diag(MacroName, diag::err_unterm_macro_invoc); 815 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 816 << MacroName.getIdentifierInfo(); 817 // Do not lose the EOF/EOD. Return it to the client. 818 MacroName = Tok; 819 return nullptr; 820 } 821 // Do not lose the EOF/EOD. 822 auto Toks = std::make_unique<Token[]>(1); 823 Toks[0] = Tok; 824 EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false); 825 break; 826 } else if (Tok.is(tok::r_paren)) { 827 // If we found the ) token, the macro arg list is done. 828 if (NumParens-- == 0) { 829 MacroEnd = Tok.getLocation(); 830 if (!ArgTokens.empty() && 831 ArgTokens.back().commaAfterElided()) { 832 FoundElidedComma = true; 833 } 834 break; 835 } 836 } else if (Tok.is(tok::l_paren)) { 837 ++NumParens; 838 } else if (Tok.is(tok::comma)) { 839 // In Microsoft-compatibility mode, single commas from nested macro 840 // expansions should not be considered as argument separators. We test 841 // for this with the IgnoredComma token flag. 842 if (Tok.getFlags() & Token::IgnoredComma) { 843 // However, in MSVC's preprocessor, subsequent expansions do treat 844 // these commas as argument separators. This leads to a common 845 // workaround used in macros that need to work in both MSVC and 846 // compliant preprocessors. Therefore, the IgnoredComma flag can only 847 // apply once to any given token. 848 Tok.clearFlag(Token::IgnoredComma); 849 } else if (NumParens == 0) { 850 // Comma ends this argument if there are more fixed arguments 851 // expected. However, if this is a variadic macro, and this is part of 852 // the variadic part, then the comma is just an argument token. 853 if (!isVariadic) 854 break; 855 if (NumFixedArgsLeft > 1) 856 break; 857 } 858 } else if (Tok.is(tok::comment) && !KeepMacroComments) { 859 // If this is a comment token in the argument list and we're just in 860 // -C mode (not -CC mode), discard the comment. 861 continue; 862 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { 863 // Reading macro arguments can cause macros that we are currently 864 // expanding from to be popped off the expansion stack. Doing so causes 865 // them to be reenabled for expansion. Here we record whether any 866 // identifiers we lex as macro arguments correspond to disabled macros. 867 // If so, we mark the token as noexpand. This is a subtle aspect of 868 // C99 6.10.3.4p2. 869 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) 870 if (!MI->isEnabled()) 871 Tok.setFlag(Token::DisableExpand); 872 } else if (Tok.is(tok::code_completion)) { 873 ContainsCodeCompletionTok = true; 874 if (CodeComplete) 875 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), 876 MI, NumActuals); 877 // Don't mark that we reached the code-completion point because the 878 // parser is going to handle the token and there will be another 879 // code-completion callback. 880 } 881 882 ArgTokens.push_back(Tok); 883 } 884 885 // If this was an empty argument list foo(), don't add this as an empty 886 // argument. 887 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) 888 break; 889 890 // If this is not a variadic macro, and too many args were specified, emit 891 // an error. 892 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { 893 if (ArgTokens.size() != ArgTokenStart) 894 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); 895 else 896 TooManyArgsLoc = ArgStartLoc; 897 } 898 899 // Empty arguments are standard in C99 and C++0x, and are supported as an 900 // extension in other modes. 901 if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99) 902 Diag(Tok, getLangOpts().CPlusPlus11 903 ? diag::warn_cxx98_compat_empty_fnmacro_arg 904 : diag::ext_empty_fnmacro_arg); 905 906 // Add a marker EOF token to the end of the token list for this argument. 907 Token EOFTok; 908 EOFTok.startToken(); 909 EOFTok.setKind(tok::eof); 910 EOFTok.setLocation(Tok.getLocation()); 911 EOFTok.setLength(0); 912 ArgTokens.push_back(EOFTok); 913 ++NumActuals; 914 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) 915 --NumFixedArgsLeft; 916 } 917 918 // Okay, we either found the r_paren. Check to see if we parsed too few 919 // arguments. 920 unsigned MinArgsExpected = MI->getNumParams(); 921 922 // If this is not a variadic macro, and too many args were specified, emit 923 // an error. 924 if (!isVariadic && NumActuals > MinArgsExpected && 925 !ContainsCodeCompletionTok) { 926 // Emit the diagnostic at the macro name in case there is a missing ). 927 // Emitting it at the , could be far away from the macro name. 928 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); 929 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 930 << MacroName.getIdentifierInfo(); 931 932 // Commas from braced initializer lists will be treated as argument 933 // separators inside macros. Attempt to correct for this with parentheses. 934 // TODO: See if this can be generalized to angle brackets for templates 935 // inside macro arguments. 936 937 SmallVector<Token, 4> FixedArgTokens; 938 unsigned FixedNumArgs = 0; 939 SmallVector<SourceRange, 4> ParenHints, InitLists; 940 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, 941 ParenHints, InitLists)) { 942 if (!InitLists.empty()) { 943 DiagnosticBuilder DB = 944 Diag(MacroName, 945 diag::note_init_list_at_beginning_of_macro_argument); 946 for (SourceRange Range : InitLists) 947 DB << Range; 948 } 949 return nullptr; 950 } 951 if (FixedNumArgs != MinArgsExpected) 952 return nullptr; 953 954 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); 955 for (SourceRange ParenLocation : ParenHints) { 956 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); 957 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); 958 } 959 ArgTokens.swap(FixedArgTokens); 960 NumActuals = FixedNumArgs; 961 } 962 963 // See MacroArgs instance var for description of this. 964 bool isVarargsElided = false; 965 966 if (ContainsCodeCompletionTok) { 967 // Recover from not-fully-formed macro invocation during code-completion. 968 Token EOFTok; 969 EOFTok.startToken(); 970 EOFTok.setKind(tok::eof); 971 EOFTok.setLocation(Tok.getLocation()); 972 EOFTok.setLength(0); 973 for (; NumActuals < MinArgsExpected; ++NumActuals) 974 ArgTokens.push_back(EOFTok); 975 } 976 977 if (NumActuals < MinArgsExpected) { 978 // There are several cases where too few arguments is ok, handle them now. 979 if (NumActuals == 0 && MinArgsExpected == 1) { 980 // #define A(X) or #define A(...) ---> A() 981 982 // If there is exactly one argument, and that argument is missing, 983 // then we have an empty "()" argument empty list. This is fine, even if 984 // the macro expects one argument (the argument is just empty). 985 isVarargsElided = MI->isVariadic(); 986 } else if ((FoundElidedComma || MI->isVariadic()) && 987 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) 988 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() 989 // Varargs where the named vararg parameter is missing: OK as extension. 990 // #define A(x, ...) 991 // A("blah") 992 // 993 // If the macro contains the comma pasting extension, the diagnostic 994 // is suppressed; we know we'll get another diagnostic later. 995 if (!MI->hasCommaPasting()) { 996 // C++20 allows this construct, but standards before C++20 and all C 997 // standards do not allow the construct (we allow it as an extension). 998 Diag(Tok, getLangOpts().CPlusPlus20 999 ? diag::warn_cxx17_compat_missing_varargs_arg 1000 : diag::ext_missing_varargs_arg); 1001 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1002 << MacroName.getIdentifierInfo(); 1003 } 1004 1005 // Remember this occurred, allowing us to elide the comma when used for 1006 // cases like: 1007 // #define A(x, foo...) blah(a, ## foo) 1008 // #define B(x, ...) blah(a, ## __VA_ARGS__) 1009 // #define C(...) blah(a, ## __VA_ARGS__) 1010 // A(x) B(x) C() 1011 isVarargsElided = true; 1012 } else if (!ContainsCodeCompletionTok) { 1013 // Otherwise, emit the error. 1014 Diag(Tok, diag::err_too_few_args_in_macro_invoc); 1015 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1016 << MacroName.getIdentifierInfo(); 1017 return nullptr; 1018 } 1019 1020 // Add a marker EOF token to the end of the token list for this argument. 1021 SourceLocation EndLoc = Tok.getLocation(); 1022 Tok.startToken(); 1023 Tok.setKind(tok::eof); 1024 Tok.setLocation(EndLoc); 1025 Tok.setLength(0); 1026 ArgTokens.push_back(Tok); 1027 1028 // If we expect two arguments, add both as empty. 1029 if (NumActuals == 0 && MinArgsExpected == 2) 1030 ArgTokens.push_back(Tok); 1031 1032 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && 1033 !ContainsCodeCompletionTok) { 1034 // Emit the diagnostic at the macro name in case there is a missing ). 1035 // Emitting it at the , could be far away from the macro name. 1036 Diag(MacroName, diag::err_too_many_args_in_macro_invoc); 1037 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1038 << MacroName.getIdentifierInfo(); 1039 return nullptr; 1040 } 1041 1042 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); 1043 } 1044 1045 /// Keeps macro expanded tokens for TokenLexers. 1046 // 1047 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is 1048 /// going to lex in the cache and when it finishes the tokens are removed 1049 /// from the end of the cache. 1050 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, 1051 ArrayRef<Token> tokens) { 1052 assert(tokLexer); 1053 if (tokens.empty()) 1054 return nullptr; 1055 1056 size_t newIndex = MacroExpandedTokens.size(); 1057 bool cacheNeedsToGrow = tokens.size() > 1058 MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); 1059 MacroExpandedTokens.append(tokens.begin(), tokens.end()); 1060 1061 if (cacheNeedsToGrow) { 1062 // Go through all the TokenLexers whose 'Tokens' pointer points in the 1063 // buffer and update the pointers to the (potential) new buffer array. 1064 for (const auto &Lexer : MacroExpandingLexersStack) { 1065 TokenLexer *prevLexer; 1066 size_t tokIndex; 1067 std::tie(prevLexer, tokIndex) = Lexer; 1068 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; 1069 } 1070 } 1071 1072 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); 1073 return MacroExpandedTokens.data() + newIndex; 1074 } 1075 1076 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { 1077 assert(!MacroExpandingLexersStack.empty()); 1078 size_t tokIndex = MacroExpandingLexersStack.back().second; 1079 assert(tokIndex < MacroExpandedTokens.size()); 1080 // Pop the cached macro expanded tokens from the end. 1081 MacroExpandedTokens.resize(tokIndex); 1082 MacroExpandingLexersStack.pop_back(); 1083 } 1084 1085 /// ComputeDATE_TIME - Compute the current time, enter it into the specified 1086 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of 1087 /// the identifier tokens inserted. 1088 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, 1089 Preprocessor &PP) { 1090 time_t TT; 1091 std::tm *TM; 1092 if (PP.getPreprocessorOpts().SourceDateEpoch) { 1093 TT = *PP.getPreprocessorOpts().SourceDateEpoch; 1094 TM = std::gmtime(&TT); 1095 } else { 1096 TT = std::time(nullptr); 1097 TM = std::localtime(&TT); 1098 } 1099 1100 static const char * const Months[] = { 1101 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" 1102 }; 1103 1104 { 1105 SmallString<32> TmpBuffer; 1106 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1107 if (TM) 1108 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], 1109 TM->tm_mday, TM->tm_year + 1900); 1110 else 1111 TmpStream << "??? ?? ????"; 1112 Token TmpTok; 1113 TmpTok.startToken(); 1114 PP.CreateString(TmpStream.str(), TmpTok); 1115 DATELoc = TmpTok.getLocation(); 1116 } 1117 1118 { 1119 SmallString<32> TmpBuffer; 1120 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1121 if (TM) 1122 TmpStream << llvm::format("\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, 1123 TM->tm_sec); 1124 else 1125 TmpStream << "??:??:??"; 1126 Token TmpTok; 1127 TmpTok.startToken(); 1128 PP.CreateString(TmpStream.str(), TmpTok); 1129 TIMELoc = TmpTok.getLocation(); 1130 } 1131 } 1132 1133 /// HasFeature - Return true if we recognize and implement the feature 1134 /// specified by the identifier as a standard language feature. 1135 static bool HasFeature(const Preprocessor &PP, StringRef Feature) { 1136 const LangOptions &LangOpts = PP.getLangOpts(); 1137 1138 // Normalize the feature name, __foo__ becomes foo. 1139 if (Feature.starts_with("__") && Feature.ends_with("__") && 1140 Feature.size() >= 4) 1141 Feature = Feature.substr(2, Feature.size() - 4); 1142 1143 #define FEATURE(Name, Predicate) .Case(#Name, Predicate) 1144 return llvm::StringSwitch<bool>(Feature) 1145 #include "clang/Basic/Features.def" 1146 .Default(false); 1147 #undef FEATURE 1148 } 1149 1150 /// HasExtension - Return true if we recognize and implement the feature 1151 /// specified by the identifier, either as an extension or a standard language 1152 /// feature. 1153 static bool HasExtension(const Preprocessor &PP, StringRef Extension) { 1154 if (HasFeature(PP, Extension)) 1155 return true; 1156 1157 // If the use of an extension results in an error diagnostic, extensions are 1158 // effectively unavailable, so just return false here. 1159 if (PP.getDiagnostics().getExtensionHandlingBehavior() >= 1160 diag::Severity::Error) 1161 return false; 1162 1163 const LangOptions &LangOpts = PP.getLangOpts(); 1164 1165 // Normalize the extension name, __foo__ becomes foo. 1166 if (Extension.starts_with("__") && Extension.ends_with("__") && 1167 Extension.size() >= 4) 1168 Extension = Extension.substr(2, Extension.size() - 4); 1169 1170 // Because we inherit the feature list from HasFeature, this string switch 1171 // must be less restrictive than HasFeature's. 1172 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate) 1173 return llvm::StringSwitch<bool>(Extension) 1174 #include "clang/Basic/Features.def" 1175 .Default(false); 1176 #undef EXTENSION 1177 } 1178 1179 /// EvaluateHasIncludeCommon - Process a '__has_include("path")' 1180 /// or '__has_include_next("path")' expression. 1181 /// Returns true if successful. 1182 static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II, 1183 Preprocessor &PP, 1184 ConstSearchDirIterator LookupFrom, 1185 const FileEntry *LookupFromFile) { 1186 // Save the location of the current token. If a '(' is later found, use 1187 // that location. If not, use the end of this location instead. 1188 SourceLocation LParenLoc = Tok.getLocation(); 1189 1190 // These expressions are only allowed within a preprocessor directive. 1191 if (!PP.isParsingIfOrElifDirective()) { 1192 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; 1193 // Return a valid identifier token. 1194 assert(Tok.is(tok::identifier)); 1195 Tok.setIdentifierInfo(II); 1196 return false; 1197 } 1198 1199 // Get '('. If we don't have a '(', try to form a header-name token. 1200 do { 1201 if (PP.LexHeaderName(Tok)) 1202 return false; 1203 } while (Tok.getKind() == tok::comment); 1204 1205 // Ensure we have a '('. 1206 if (Tok.isNot(tok::l_paren)) { 1207 // No '(', use end of last token. 1208 LParenLoc = PP.getLocForEndOfToken(LParenLoc); 1209 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; 1210 // If the next token looks like a filename or the start of one, 1211 // assume it is and process it as such. 1212 if (Tok.isNot(tok::header_name)) 1213 return false; 1214 } else { 1215 // Save '(' location for possible missing ')' message. 1216 LParenLoc = Tok.getLocation(); 1217 if (PP.LexHeaderName(Tok)) 1218 return false; 1219 } 1220 1221 if (Tok.isNot(tok::header_name)) { 1222 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); 1223 return false; 1224 } 1225 1226 // Reserve a buffer to get the spelling. 1227 SmallString<128> FilenameBuffer; 1228 bool Invalid = false; 1229 StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); 1230 if (Invalid) 1231 return false; 1232 1233 SourceLocation FilenameLoc = Tok.getLocation(); 1234 1235 // Get ')'. 1236 PP.LexNonComment(Tok); 1237 1238 // Ensure we have a trailing ). 1239 if (Tok.isNot(tok::r_paren)) { 1240 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) 1241 << II << tok::r_paren; 1242 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1243 return false; 1244 } 1245 1246 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); 1247 // If GetIncludeFilenameSpelling set the start ptr to null, there was an 1248 // error. 1249 if (Filename.empty()) 1250 return false; 1251 1252 // Passing this to LookupFile forces header search to check whether the found 1253 // file belongs to a module. Skipping that check could incorrectly mark 1254 // modular header as textual, causing issues down the line. 1255 ModuleMap::KnownHeader KH; 1256 1257 // Search include directories. 1258 OptionalFileEntryRef File = 1259 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, 1260 nullptr, nullptr, nullptr, &KH, nullptr, nullptr); 1261 1262 if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { 1263 SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; 1264 if (File) 1265 FileType = PP.getHeaderSearchInfo().getFileDirFlavor(*File); 1266 Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType); 1267 } 1268 1269 // Get the result value. A result of true means the file exists. 1270 return File.has_value(); 1271 } 1272 1273 bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) { 1274 return EvaluateHasIncludeCommon(Tok, II, *this, nullptr, nullptr); 1275 } 1276 1277 bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) { 1278 ConstSearchDirIterator Lookup = nullptr; 1279 const FileEntry *LookupFromFile; 1280 std::tie(Lookup, LookupFromFile) = getIncludeNextStart(Tok); 1281 1282 return EvaluateHasIncludeCommon(Tok, II, *this, Lookup, LookupFromFile); 1283 } 1284 1285 /// Process single-argument builtin feature-like macros that return 1286 /// integer values. 1287 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, 1288 Token &Tok, IdentifierInfo *II, 1289 Preprocessor &PP, bool ExpandArgs, 1290 llvm::function_ref< 1291 int(Token &Tok, 1292 bool &HasLexedNextTok)> Op) { 1293 // Parse the initial '('. 1294 PP.LexUnexpandedToken(Tok); 1295 if (Tok.isNot(tok::l_paren)) { 1296 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II 1297 << tok::l_paren; 1298 1299 // Provide a dummy '0' value on output stream to elide further errors. 1300 if (!Tok.isOneOf(tok::eof, tok::eod)) { 1301 OS << 0; 1302 Tok.setKind(tok::numeric_constant); 1303 } 1304 return; 1305 } 1306 1307 unsigned ParenDepth = 1; 1308 SourceLocation LParenLoc = Tok.getLocation(); 1309 std::optional<int> Result; 1310 1311 Token ResultTok; 1312 bool SuppressDiagnostic = false; 1313 while (true) { 1314 // Parse next token. 1315 if (ExpandArgs) 1316 PP.Lex(Tok); 1317 else 1318 PP.LexUnexpandedToken(Tok); 1319 1320 already_lexed: 1321 switch (Tok.getKind()) { 1322 case tok::eof: 1323 case tok::eod: 1324 // Don't provide even a dummy value if the eod or eof marker is 1325 // reached. Simply provide a diagnostic. 1326 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); 1327 return; 1328 1329 case tok::comma: 1330 if (!SuppressDiagnostic) { 1331 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); 1332 SuppressDiagnostic = true; 1333 } 1334 continue; 1335 1336 case tok::l_paren: 1337 ++ParenDepth; 1338 if (Result) 1339 break; 1340 if (!SuppressDiagnostic) { 1341 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; 1342 SuppressDiagnostic = true; 1343 } 1344 continue; 1345 1346 case tok::r_paren: 1347 if (--ParenDepth > 0) 1348 continue; 1349 1350 // The last ')' has been reached; return the value if one found or 1351 // a diagnostic and a dummy value. 1352 if (Result) { 1353 OS << *Result; 1354 // For strict conformance to __has_cpp_attribute rules, use 'L' 1355 // suffix for dated literals. 1356 if (*Result > 1) 1357 OS << 'L'; 1358 } else { 1359 OS << 0; 1360 if (!SuppressDiagnostic) 1361 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); 1362 } 1363 Tok.setKind(tok::numeric_constant); 1364 return; 1365 1366 default: { 1367 // Parse the macro argument, if one not found so far. 1368 if (Result) 1369 break; 1370 1371 bool HasLexedNextToken = false; 1372 Result = Op(Tok, HasLexedNextToken); 1373 ResultTok = Tok; 1374 if (HasLexedNextToken) 1375 goto already_lexed; 1376 continue; 1377 } 1378 } 1379 1380 // Diagnose missing ')'. 1381 if (!SuppressDiagnostic) { 1382 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { 1383 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) 1384 Diag << LastII; 1385 else 1386 Diag << ResultTok.getKind(); 1387 Diag << tok::r_paren << ResultTok.getLocation(); 1388 } 1389 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1390 SuppressDiagnostic = true; 1391 } 1392 } 1393 } 1394 1395 /// Helper function to return the IdentifierInfo structure of a Token 1396 /// or generate a diagnostic if none available. 1397 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, 1398 Preprocessor &PP, 1399 signed DiagID) { 1400 IdentifierInfo *II; 1401 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) 1402 return II; 1403 1404 PP.Diag(Tok.getLocation(), DiagID); 1405 return nullptr; 1406 } 1407 1408 /// Implements the __is_target_arch builtin macro. 1409 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { 1410 std::string ArchName = II->getName().lower() + "--"; 1411 llvm::Triple Arch(ArchName); 1412 const llvm::Triple &TT = TI.getTriple(); 1413 if (TT.isThumb()) { 1414 // arm matches thumb or thumbv7. armv7 matches thumbv7. 1415 if ((Arch.getSubArch() == llvm::Triple::NoSubArch || 1416 Arch.getSubArch() == TT.getSubArch()) && 1417 ((TT.getArch() == llvm::Triple::thumb && 1418 Arch.getArch() == llvm::Triple::arm) || 1419 (TT.getArch() == llvm::Triple::thumbeb && 1420 Arch.getArch() == llvm::Triple::armeb))) 1421 return true; 1422 } 1423 // Check the parsed arch when it has no sub arch to allow Clang to 1424 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. 1425 return (Arch.getSubArch() == llvm::Triple::NoSubArch || 1426 Arch.getSubArch() == TT.getSubArch()) && 1427 Arch.getArch() == TT.getArch(); 1428 } 1429 1430 /// Implements the __is_target_vendor builtin macro. 1431 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { 1432 StringRef VendorName = TI.getTriple().getVendorName(); 1433 if (VendorName.empty()) 1434 VendorName = "unknown"; 1435 return VendorName.equals_insensitive(II->getName()); 1436 } 1437 1438 /// Implements the __is_target_os builtin macro. 1439 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { 1440 std::string OSName = 1441 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1442 llvm::Triple OS(OSName); 1443 if (OS.getOS() == llvm::Triple::Darwin) { 1444 // Darwin matches macos, ios, etc. 1445 return TI.getTriple().isOSDarwin(); 1446 } 1447 return TI.getTriple().getOS() == OS.getOS(); 1448 } 1449 1450 /// Implements the __is_target_environment builtin macro. 1451 static bool isTargetEnvironment(const TargetInfo &TI, 1452 const IdentifierInfo *II) { 1453 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1454 llvm::Triple Env(EnvName); 1455 // The unknown environment is matched only if 1456 // '__is_target_environment(unknown)' is used. 1457 if (Env.getEnvironment() == llvm::Triple::UnknownEnvironment && 1458 EnvName != "---unknown") 1459 return false; 1460 return TI.getTriple().getEnvironment() == Env.getEnvironment(); 1461 } 1462 1463 /// Implements the __is_target_variant_os builtin macro. 1464 static bool isTargetVariantOS(const TargetInfo &TI, const IdentifierInfo *II) { 1465 if (TI.getTriple().isOSDarwin()) { 1466 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); 1467 if (!VariantTriple) 1468 return false; 1469 1470 std::string OSName = 1471 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1472 llvm::Triple OS(OSName); 1473 if (OS.getOS() == llvm::Triple::Darwin) { 1474 // Darwin matches macos, ios, etc. 1475 return VariantTriple->isOSDarwin(); 1476 } 1477 return VariantTriple->getOS() == OS.getOS(); 1478 } 1479 return false; 1480 } 1481 1482 /// Implements the __is_target_variant_environment builtin macro. 1483 static bool isTargetVariantEnvironment(const TargetInfo &TI, 1484 const IdentifierInfo *II) { 1485 if (TI.getTriple().isOSDarwin()) { 1486 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); 1487 if (!VariantTriple) 1488 return false; 1489 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1490 llvm::Triple Env(EnvName); 1491 return VariantTriple->getEnvironment() == Env.getEnvironment(); 1492 } 1493 return false; 1494 } 1495 1496 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded 1497 /// as a builtin macro, handle it and return the next token as 'Tok'. 1498 void Preprocessor::ExpandBuiltinMacro(Token &Tok) { 1499 // Figure out which token this is. 1500 IdentifierInfo *II = Tok.getIdentifierInfo(); 1501 assert(II && "Can't be a macro without id info!"); 1502 1503 // If this is an _Pragma or Microsoft __pragma directive, expand it, 1504 // invoke the pragma handler, then lex the token after it. 1505 if (II == Ident_Pragma) 1506 return Handle_Pragma(Tok); 1507 else if (II == Ident__pragma) // in non-MS mode this is null 1508 return HandleMicrosoft__pragma(Tok); 1509 1510 ++NumBuiltinMacroExpanded; 1511 1512 SmallString<128> TmpBuffer; 1513 llvm::raw_svector_ostream OS(TmpBuffer); 1514 1515 // Set up the return result. 1516 Tok.setIdentifierInfo(nullptr); 1517 Tok.clearFlag(Token::NeedsCleaning); 1518 bool IsAtStartOfLine = Tok.isAtStartOfLine(); 1519 bool HasLeadingSpace = Tok.hasLeadingSpace(); 1520 1521 if (II == Ident__LINE__) { 1522 // C99 6.10.8: "__LINE__: The presumed line number (within the current 1523 // source file) of the current source line (an integer constant)". This can 1524 // be affected by #line. 1525 SourceLocation Loc = Tok.getLocation(); 1526 1527 // Advance to the location of the first _, this might not be the first byte 1528 // of the token if it starts with an escaped newline. 1529 Loc = AdvanceToTokenCharacter(Loc, 0); 1530 1531 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of 1532 // a macro expansion. This doesn't matter for object-like macros, but 1533 // can matter for a function-like macro that expands to contain __LINE__. 1534 // Skip down through expansion points until we find a file loc for the 1535 // end of the expansion history. 1536 Loc = SourceMgr.getExpansionRange(Loc).getEnd(); 1537 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); 1538 1539 // __LINE__ expands to a simple numeric value. 1540 OS << (PLoc.isValid()? PLoc.getLine() : 1); 1541 Tok.setKind(tok::numeric_constant); 1542 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ || 1543 II == Ident__FILE_NAME__) { 1544 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a 1545 // character string literal)". This can be affected by #line. 1546 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1547 1548 // __BASE_FILE__ is a GNU extension that returns the top of the presumed 1549 // #include stack instead of the current file. 1550 if (II == Ident__BASE_FILE__ && PLoc.isValid()) { 1551 SourceLocation NextLoc = PLoc.getIncludeLoc(); 1552 while (NextLoc.isValid()) { 1553 PLoc = SourceMgr.getPresumedLoc(NextLoc); 1554 if (PLoc.isInvalid()) 1555 break; 1556 1557 NextLoc = PLoc.getIncludeLoc(); 1558 } 1559 } 1560 1561 // Escape this filename. Turn '\' -> '\\' '"' -> '\"' 1562 SmallString<256> FN; 1563 if (PLoc.isValid()) { 1564 // __FILE_NAME__ is a Clang-specific extension that expands to the 1565 // the last part of __FILE__. 1566 if (II == Ident__FILE_NAME__) { 1567 processPathToFileName(FN, PLoc, getLangOpts(), getTargetInfo()); 1568 } else { 1569 FN += PLoc.getFilename(); 1570 processPathForFileMacro(FN, getLangOpts(), getTargetInfo()); 1571 } 1572 Lexer::Stringify(FN); 1573 OS << '"' << FN << '"'; 1574 } 1575 Tok.setKind(tok::string_literal); 1576 } else if (II == Ident__DATE__) { 1577 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1578 if (!DATELoc.isValid()) 1579 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1580 Tok.setKind(tok::string_literal); 1581 Tok.setLength(strlen("\"Mmm dd yyyy\"")); 1582 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), 1583 Tok.getLocation(), 1584 Tok.getLength())); 1585 return; 1586 } else if (II == Ident__TIME__) { 1587 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1588 if (!TIMELoc.isValid()) 1589 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1590 Tok.setKind(tok::string_literal); 1591 Tok.setLength(strlen("\"hh:mm:ss\"")); 1592 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), 1593 Tok.getLocation(), 1594 Tok.getLength())); 1595 return; 1596 } else if (II == Ident__INCLUDE_LEVEL__) { 1597 // Compute the presumed include depth of this token. This can be affected 1598 // by GNU line markers. 1599 unsigned Depth = 0; 1600 1601 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1602 if (PLoc.isValid()) { 1603 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1604 for (; PLoc.isValid(); ++Depth) 1605 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1606 } 1607 1608 // __INCLUDE_LEVEL__ expands to a simple numeric value. 1609 OS << Depth; 1610 Tok.setKind(tok::numeric_constant); 1611 } else if (II == Ident__TIMESTAMP__) { 1612 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1613 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be 1614 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. 1615 const char *Result; 1616 if (getPreprocessorOpts().SourceDateEpoch) { 1617 time_t TT = *getPreprocessorOpts().SourceDateEpoch; 1618 std::tm *TM = std::gmtime(&TT); 1619 Result = asctime(TM); 1620 } else { 1621 // Get the file that we are lexing out of. If we're currently lexing from 1622 // a macro, dig into the include stack. 1623 const FileEntry *CurFile = nullptr; 1624 if (PreprocessorLexer *TheLexer = getCurrentFileLexer()) 1625 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); 1626 if (CurFile) { 1627 time_t TT = CurFile->getModificationTime(); 1628 struct tm *TM = localtime(&TT); 1629 Result = asctime(TM); 1630 } else { 1631 Result = "??? ??? ?? ??:??:?? ????\n"; 1632 } 1633 } 1634 // Surround the string with " and strip the trailing newline. 1635 OS << '"' << StringRef(Result).drop_back() << '"'; 1636 Tok.setKind(tok::string_literal); 1637 } else if (II == Ident__FLT_EVAL_METHOD__) { 1638 // __FLT_EVAL_METHOD__ is set to the default value. 1639 OS << getTUFPEvalMethod(); 1640 // __FLT_EVAL_METHOD__ expands to a simple numeric value. 1641 Tok.setKind(tok::numeric_constant); 1642 if (getLastFPEvalPragmaLocation().isValid()) { 1643 // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is altered 1644 // by the pragma. 1645 Diag(Tok, diag::err_illegal_use_of_flt_eval_macro); 1646 Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here); 1647 } 1648 } else if (II == Ident__COUNTER__) { 1649 // __COUNTER__ expands to a simple numeric value. 1650 OS << CounterValue++; 1651 Tok.setKind(tok::numeric_constant); 1652 } else if (II == Ident__has_feature) { 1653 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1654 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1655 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1656 diag::err_feature_check_malformed); 1657 return II && HasFeature(*this, II->getName()); 1658 }); 1659 } else if (II == Ident__has_extension) { 1660 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1661 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1662 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1663 diag::err_feature_check_malformed); 1664 return II && HasExtension(*this, II->getName()); 1665 }); 1666 } else if (II == Ident__has_builtin) { 1667 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1668 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1669 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1670 diag::err_feature_check_malformed); 1671 if (!II) 1672 return false; 1673 else if (II->getBuiltinID() != 0) { 1674 switch (II->getBuiltinID()) { 1675 case Builtin::BI__builtin_operator_new: 1676 case Builtin::BI__builtin_operator_delete: 1677 // denotes date of behavior change to support calling arbitrary 1678 // usual allocation and deallocation functions. Required by libc++ 1679 return 201802; 1680 default: 1681 return Builtin::evaluateRequiredTargetFeatures( 1682 getBuiltinInfo().getRequiredFeatures(II->getBuiltinID()), 1683 getTargetInfo().getTargetOpts().FeatureMap); 1684 } 1685 return true; 1686 } else if (II->getTokenID() != tok::identifier || 1687 II->hasRevertedTokenIDToIdentifier()) { 1688 // Treat all keywords that introduce a custom syntax of the form 1689 // 1690 // '__some_keyword' '(' [...] ')' 1691 // 1692 // as being "builtin functions", even if the syntax isn't a valid 1693 // function call (for example, because the builtin takes a type 1694 // argument). 1695 if (II->getName().starts_with("__builtin_") || 1696 II->getName().starts_with("__is_") || 1697 II->getName().starts_with("__has_")) 1698 return true; 1699 return llvm::StringSwitch<bool>(II->getName()) 1700 .Case("__array_rank", true) 1701 .Case("__array_extent", true) 1702 .Case("__reference_binds_to_temporary", true) 1703 .Case("__reference_constructs_from_temporary", true) 1704 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) .Case("__" #Trait, true) 1705 #include "clang/Basic/TransformTypeTraits.def" 1706 .Default(false); 1707 } else { 1708 return llvm::StringSwitch<bool>(II->getName()) 1709 // Report builtin templates as being builtins. 1710 .Case("__make_integer_seq", getLangOpts().CPlusPlus) 1711 .Case("__type_pack_element", getLangOpts().CPlusPlus) 1712 // Likewise for some builtin preprocessor macros. 1713 // FIXME: This is inconsistent; we usually suggest detecting 1714 // builtin macros via #ifdef. Don't add more cases here. 1715 .Case("__is_target_arch", true) 1716 .Case("__is_target_vendor", true) 1717 .Case("__is_target_os", true) 1718 .Case("__is_target_environment", true) 1719 .Case("__is_target_variant_os", true) 1720 .Case("__is_target_variant_environment", true) 1721 .Default(false); 1722 } 1723 }); 1724 } else if (II == Ident__has_constexpr_builtin) { 1725 EvaluateFeatureLikeBuiltinMacro( 1726 OS, Tok, II, *this, false, 1727 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1728 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1729 Tok, *this, diag::err_feature_check_malformed); 1730 if (!II) 1731 return false; 1732 unsigned BuiltinOp = II->getBuiltinID(); 1733 return BuiltinOp != 0 && 1734 this->getBuiltinInfo().isConstantEvaluated(BuiltinOp); 1735 }); 1736 } else if (II == Ident__is_identifier) { 1737 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1738 [](Token &Tok, bool &HasLexedNextToken) -> int { 1739 return Tok.is(tok::identifier); 1740 }); 1741 } else if (II == Ident__has_attribute) { 1742 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1743 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1744 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1745 diag::err_feature_check_malformed); 1746 return II ? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU, nullptr, 1747 II, getTargetInfo(), getLangOpts()) 1748 : 0; 1749 }); 1750 } else if (II == Ident__has_declspec) { 1751 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1752 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1753 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1754 diag::err_feature_check_malformed); 1755 if (II) { 1756 const LangOptions &LangOpts = getLangOpts(); 1757 return LangOpts.DeclSpecKeyword && 1758 hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr, 1759 II, getTargetInfo(), LangOpts); 1760 } 1761 1762 return false; 1763 }); 1764 } else if (II == Ident__has_cpp_attribute || 1765 II == Ident__has_c_attribute) { 1766 bool IsCXX = II == Ident__has_cpp_attribute; 1767 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1768 [&](Token &Tok, bool &HasLexedNextToken) -> int { 1769 IdentifierInfo *ScopeII = nullptr; 1770 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1771 Tok, *this, diag::err_feature_check_malformed); 1772 if (!II) 1773 return false; 1774 1775 // It is possible to receive a scope token. Read the "::", if it is 1776 // available, and the subsequent identifier. 1777 LexUnexpandedToken(Tok); 1778 if (Tok.isNot(tok::coloncolon)) 1779 HasLexedNextToken = true; 1780 else { 1781 ScopeII = II; 1782 // Lex an expanded token for the attribute name. 1783 Lex(Tok); 1784 II = ExpectFeatureIdentifierInfo(Tok, *this, 1785 diag::err_feature_check_malformed); 1786 } 1787 1788 AttributeCommonInfo::Syntax Syntax = 1789 IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11 1790 : AttributeCommonInfo::Syntax::AS_C23; 1791 return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(), 1792 getLangOpts()) 1793 : 0; 1794 }); 1795 } else if (II == Ident__has_include || 1796 II == Ident__has_include_next) { 1797 // The argument to these two builtins should be a parenthesized 1798 // file name string literal using angle brackets (<>) or 1799 // double-quotes (""). 1800 bool Value; 1801 if (II == Ident__has_include) 1802 Value = EvaluateHasInclude(Tok, II); 1803 else 1804 Value = EvaluateHasIncludeNext(Tok, II); 1805 1806 if (Tok.isNot(tok::r_paren)) 1807 return; 1808 OS << (int)Value; 1809 Tok.setKind(tok::numeric_constant); 1810 } else if (II == Ident__has_warning) { 1811 // The argument should be a parenthesized string literal. 1812 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1813 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1814 std::string WarningName; 1815 SourceLocation StrStartLoc = Tok.getLocation(); 1816 1817 HasLexedNextToken = Tok.is(tok::string_literal); 1818 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", 1819 /*AllowMacroExpansion=*/false)) 1820 return false; 1821 1822 // FIXME: Should we accept "-R..." flags here, or should that be 1823 // handled by a separate __has_remark? 1824 if (WarningName.size() < 3 || WarningName[0] != '-' || 1825 WarningName[1] != 'W') { 1826 Diag(StrStartLoc, diag::warn_has_warning_invalid_option); 1827 return false; 1828 } 1829 1830 // Finally, check if the warning flags maps to a diagnostic group. 1831 // We construct a SmallVector here to talk to getDiagnosticIDs(). 1832 // Although we don't use the result, this isn't a hot path, and not 1833 // worth special casing. 1834 SmallVector<diag::kind, 10> Diags; 1835 return !getDiagnostics().getDiagnosticIDs()-> 1836 getDiagnosticsInGroup(diag::Flavor::WarningOrError, 1837 WarningName.substr(2), Diags); 1838 }); 1839 } else if (II == Ident__building_module) { 1840 // The argument to this builtin should be an identifier. The 1841 // builtin evaluates to 1 when that identifier names the module we are 1842 // currently building. 1843 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1844 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1845 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1846 diag::err_expected_id_building_module); 1847 return getLangOpts().isCompilingModule() && II && 1848 (II->getName() == getLangOpts().CurrentModule); 1849 }); 1850 } else if (II == Ident__MODULE__) { 1851 // The current module as an identifier. 1852 OS << getLangOpts().CurrentModule; 1853 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); 1854 Tok.setIdentifierInfo(ModuleII); 1855 Tok.setKind(ModuleII->getTokenID()); 1856 } else if (II == Ident__identifier) { 1857 SourceLocation Loc = Tok.getLocation(); 1858 1859 // We're expecting '__identifier' '(' identifier ')'. Try to recover 1860 // if the parens are missing. 1861 LexNonComment(Tok); 1862 if (Tok.isNot(tok::l_paren)) { 1863 // No '(', use end of last token. 1864 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) 1865 << II << tok::l_paren; 1866 // If the next token isn't valid as our argument, we can't recover. 1867 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 1868 Tok.setKind(tok::identifier); 1869 return; 1870 } 1871 1872 SourceLocation LParenLoc = Tok.getLocation(); 1873 LexNonComment(Tok); 1874 1875 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 1876 Tok.setKind(tok::identifier); 1877 else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) { 1878 StringLiteralParser Literal(Tok, *this, 1879 StringLiteralEvalMethod::Unevaluated); 1880 if (Literal.hadError) 1881 return; 1882 1883 Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString())); 1884 Tok.setKind(tok::identifier); 1885 } else { 1886 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) 1887 << Tok.getKind(); 1888 // Don't walk past anything that's not a real token. 1889 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation()) 1890 return; 1891 } 1892 1893 // Discard the ')', preserving 'Tok' as our result. 1894 Token RParen; 1895 LexNonComment(RParen); 1896 if (RParen.isNot(tok::r_paren)) { 1897 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) 1898 << Tok.getKind() << tok::r_paren; 1899 Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1900 } 1901 return; 1902 } else if (II == Ident__is_target_arch) { 1903 EvaluateFeatureLikeBuiltinMacro( 1904 OS, Tok, II, *this, false, 1905 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1906 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1907 Tok, *this, diag::err_feature_check_malformed); 1908 return II && isTargetArch(getTargetInfo(), II); 1909 }); 1910 } else if (II == Ident__is_target_vendor) { 1911 EvaluateFeatureLikeBuiltinMacro( 1912 OS, Tok, II, *this, false, 1913 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1914 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1915 Tok, *this, diag::err_feature_check_malformed); 1916 return II && isTargetVendor(getTargetInfo(), II); 1917 }); 1918 } else if (II == Ident__is_target_os) { 1919 EvaluateFeatureLikeBuiltinMacro( 1920 OS, Tok, II, *this, false, 1921 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1922 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1923 Tok, *this, diag::err_feature_check_malformed); 1924 return II && isTargetOS(getTargetInfo(), II); 1925 }); 1926 } else if (II == Ident__is_target_environment) { 1927 EvaluateFeatureLikeBuiltinMacro( 1928 OS, Tok, II, *this, false, 1929 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1930 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1931 Tok, *this, diag::err_feature_check_malformed); 1932 return II && isTargetEnvironment(getTargetInfo(), II); 1933 }); 1934 } else if (II == Ident__is_target_variant_os) { 1935 EvaluateFeatureLikeBuiltinMacro( 1936 OS, Tok, II, *this, false, 1937 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1938 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1939 Tok, *this, diag::err_feature_check_malformed); 1940 return II && isTargetVariantOS(getTargetInfo(), II); 1941 }); 1942 } else if (II == Ident__is_target_variant_environment) { 1943 EvaluateFeatureLikeBuiltinMacro( 1944 OS, Tok, II, *this, false, 1945 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1946 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1947 Tok, *this, diag::err_feature_check_malformed); 1948 return II && isTargetVariantEnvironment(getTargetInfo(), II); 1949 }); 1950 } else { 1951 llvm_unreachable("Unknown identifier!"); 1952 } 1953 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); 1954 Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine); 1955 Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace); 1956 } 1957 1958 void Preprocessor::markMacroAsUsed(MacroInfo *MI) { 1959 // If the 'used' status changed, and the macro requires 'unused' warning, 1960 // remove its SourceLocation from the warn-for-unused-macro locations. 1961 if (MI->isWarnIfUnused() && !MI->isUsed()) 1962 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); 1963 MI->setIsUsed(true); 1964 } 1965 1966 void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path, 1967 const LangOptions &LangOpts, 1968 const TargetInfo &TI) { 1969 LangOpts.remapPathPrefix(Path); 1970 if (LangOpts.UseTargetPathSeparator) { 1971 if (TI.getTriple().isOSWindows()) 1972 llvm::sys::path::remove_dots(Path, false, 1973 llvm::sys::path::Style::windows_backslash); 1974 else 1975 llvm::sys::path::remove_dots(Path, false, llvm::sys::path::Style::posix); 1976 } 1977 } 1978 1979 void Preprocessor::processPathToFileName(SmallVectorImpl<char> &FileName, 1980 const PresumedLoc &PLoc, 1981 const LangOptions &LangOpts, 1982 const TargetInfo &TI) { 1983 // Try to get the last path component, failing that return the original 1984 // presumed location. 1985 StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename()); 1986 if (PLFileName.empty()) 1987 PLFileName = PLoc.getFilename(); 1988 FileName.append(PLFileName.begin(), PLFileName.end()); 1989 processPathForFileMacro(FileName, LangOpts, TI); 1990 } 1991