xref: /freebsd/contrib/llvm-project/clang/lib/Lex/PPMacroExpansion.cpp (revision 6966ac055c3b7a39266fb982493330df7a097997)
1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the top level handling of macro expansion for the
10 // preprocessor.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Basic/Attributes.h"
15 #include "clang/Basic/FileManager.h"
16 #include "clang/Basic/IdentifierTable.h"
17 #include "clang/Basic/LLVM.h"
18 #include "clang/Basic/LangOptions.h"
19 #include "clang/Basic/ObjCRuntime.h"
20 #include "clang/Basic/SourceLocation.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "clang/Lex/CodeCompletionHandler.h"
23 #include "clang/Lex/DirectoryLookup.h"
24 #include "clang/Lex/ExternalPreprocessorSource.h"
25 #include "clang/Lex/HeaderSearch.h"
26 #include "clang/Lex/LexDiagnostic.h"
27 #include "clang/Lex/MacroArgs.h"
28 #include "clang/Lex/MacroInfo.h"
29 #include "clang/Lex/Preprocessor.h"
30 #include "clang/Lex/PreprocessorLexer.h"
31 #include "clang/Lex/Token.h"
32 #include "llvm/ADT/ArrayRef.h"
33 #include "llvm/ADT/DenseMap.h"
34 #include "llvm/ADT/DenseSet.h"
35 #include "llvm/ADT/FoldingSet.h"
36 #include "llvm/ADT/None.h"
37 #include "llvm/ADT/Optional.h"
38 #include "llvm/ADT/SmallString.h"
39 #include "llvm/ADT/SmallVector.h"
40 #include "llvm/ADT/STLExtras.h"
41 #include "llvm/ADT/StringRef.h"
42 #include "llvm/ADT/StringSwitch.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/Format.h"
46 #include "llvm/Support/Path.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstring>
52 #include <ctime>
53 #include <string>
54 #include <tuple>
55 #include <utility>
56 
57 using namespace clang;
58 
59 MacroDirective *
60 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const {
61   if (!II->hadMacroDefinition())
62     return nullptr;
63   auto Pos = CurSubmoduleState->Macros.find(II);
64   return Pos == CurSubmoduleState->Macros.end() ? nullptr
65                                                 : Pos->second.getLatest();
66 }
67 
68 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){
69   assert(MD && "MacroDirective should be non-zero!");
70   assert(!MD->getPrevious() && "Already attached to a MacroDirective history.");
71 
72   MacroState &StoredMD = CurSubmoduleState->Macros[II];
73   auto *OldMD = StoredMD.getLatest();
74   MD->setPrevious(OldMD);
75   StoredMD.setLatest(MD);
76   StoredMD.overrideActiveModuleMacros(*this, II);
77 
78   if (needModuleMacros()) {
79     // Track that we created a new macro directive, so we know we should
80     // consider building a ModuleMacro for it when we get to the end of
81     // the module.
82     PendingModuleMacroNames.push_back(II);
83   }
84 
85   // Set up the identifier as having associated macro history.
86   II->setHasMacroDefinition(true);
87   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
88     II->setHasMacroDefinition(false);
89   if (II->isFromAST())
90     II->setChangedSinceDeserialization();
91 }
92 
93 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II,
94                                            MacroDirective *ED,
95                                            MacroDirective *MD) {
96   // Normally, when a macro is defined, it goes through appendMacroDirective()
97   // above, which chains a macro to previous defines, undefs, etc.
98   // However, in a pch, the whole macro history up to the end of the pch is
99   // stored, so ASTReader goes through this function instead.
100   // However, built-in macros are already registered in the Preprocessor
101   // ctor, and ASTWriter stops writing the macro chain at built-in macros,
102   // so in that case the chain from the pch needs to be spliced to the existing
103   // built-in.
104 
105   assert(II && MD);
106   MacroState &StoredMD = CurSubmoduleState->Macros[II];
107 
108   if (auto *OldMD = StoredMD.getLatest()) {
109     // shouldIgnoreMacro() in ASTWriter also stops at macros from the
110     // predefines buffer in module builds. However, in module builds, modules
111     // are loaded completely before predefines are processed, so StoredMD
112     // will be nullptr for them when they're loaded. StoredMD should only be
113     // non-nullptr for builtins read from a pch file.
114     assert(OldMD->getMacroInfo()->isBuiltinMacro() &&
115            "only built-ins should have an entry here");
116     assert(!OldMD->getPrevious() && "builtin should only have a single entry");
117     ED->setPrevious(OldMD);
118     StoredMD.setLatest(MD);
119   } else {
120     StoredMD = MD;
121   }
122 
123   // Setup the identifier as having associated macro history.
124   II->setHasMacroDefinition(true);
125   if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end())
126     II->setHasMacroDefinition(false);
127 }
128 
129 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II,
130                                           MacroInfo *Macro,
131                                           ArrayRef<ModuleMacro *> Overrides,
132                                           bool &New) {
133   llvm::FoldingSetNodeID ID;
134   ModuleMacro::Profile(ID, Mod, II);
135 
136   void *InsertPos;
137   if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) {
138     New = false;
139     return MM;
140   }
141 
142   auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides);
143   ModuleMacros.InsertNode(MM, InsertPos);
144 
145   // Each overridden macro is now overridden by one more macro.
146   bool HidAny = false;
147   for (auto *O : Overrides) {
148     HidAny |= (O->NumOverriddenBy == 0);
149     ++O->NumOverriddenBy;
150   }
151 
152   // If we were the first overrider for any macro, it's no longer a leaf.
153   auto &LeafMacros = LeafModuleMacros[II];
154   if (HidAny) {
155     LeafMacros.erase(std::remove_if(LeafMacros.begin(), LeafMacros.end(),
156                                     [](ModuleMacro *MM) {
157                                       return MM->NumOverriddenBy != 0;
158                                     }),
159                      LeafMacros.end());
160   }
161 
162   // The new macro is always a leaf macro.
163   LeafMacros.push_back(MM);
164   // The identifier now has defined macros (that may or may not be visible).
165   II->setHasMacroDefinition(true);
166 
167   New = true;
168   return MM;
169 }
170 
171 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, IdentifierInfo *II) {
172   llvm::FoldingSetNodeID ID;
173   ModuleMacro::Profile(ID, Mod, II);
174 
175   void *InsertPos;
176   return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos);
177 }
178 
179 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II,
180                                          ModuleMacroInfo &Info) {
181   assert(Info.ActiveModuleMacrosGeneration !=
182              CurSubmoduleState->VisibleModules.getGeneration() &&
183          "don't need to update this macro name info");
184   Info.ActiveModuleMacrosGeneration =
185       CurSubmoduleState->VisibleModules.getGeneration();
186 
187   auto Leaf = LeafModuleMacros.find(II);
188   if (Leaf == LeafModuleMacros.end()) {
189     // No imported macros at all: nothing to do.
190     return;
191   }
192 
193   Info.ActiveModuleMacros.clear();
194 
195   // Every macro that's locally overridden is overridden by a visible macro.
196   llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides;
197   for (auto *O : Info.OverriddenMacros)
198     NumHiddenOverrides[O] = -1;
199 
200   // Collect all macros that are not overridden by a visible macro.
201   llvm::SmallVector<ModuleMacro *, 16> Worklist;
202   for (auto *LeafMM : Leaf->second) {
203     assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden");
204     if (NumHiddenOverrides.lookup(LeafMM) == 0)
205       Worklist.push_back(LeafMM);
206   }
207   while (!Worklist.empty()) {
208     auto *MM = Worklist.pop_back_val();
209     if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) {
210       // We only care about collecting definitions; undefinitions only act
211       // to override other definitions.
212       if (MM->getMacroInfo())
213         Info.ActiveModuleMacros.push_back(MM);
214     } else {
215       for (auto *O : MM->overrides())
216         if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros())
217           Worklist.push_back(O);
218     }
219   }
220   // Our reverse postorder walk found the macros in reverse order.
221   std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end());
222 
223   // Determine whether the macro name is ambiguous.
224   MacroInfo *MI = nullptr;
225   bool IsSystemMacro = true;
226   bool IsAmbiguous = false;
227   if (auto *MD = Info.MD) {
228     while (MD && isa<VisibilityMacroDirective>(MD))
229       MD = MD->getPrevious();
230     if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) {
231       MI = DMD->getInfo();
232       IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation());
233     }
234   }
235   for (auto *Active : Info.ActiveModuleMacros) {
236     auto *NewMI = Active->getMacroInfo();
237 
238     // Before marking the macro as ambiguous, check if this is a case where
239     // both macros are in system headers. If so, we trust that the system
240     // did not get it wrong. This also handles cases where Clang's own
241     // headers have a different spelling of certain system macros:
242     //   #define LONG_MAX __LONG_MAX__ (clang's limits.h)
243     //   #define LONG_MAX 0x7fffffffffffffffL (system's limits.h)
244     //
245     // FIXME: Remove the defined-in-system-headers check. clang's limits.h
246     // overrides the system limits.h's macros, so there's no conflict here.
247     if (MI && NewMI != MI &&
248         !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true))
249       IsAmbiguous = true;
250     IsSystemMacro &= Active->getOwningModule()->IsSystem ||
251                      SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc());
252     MI = NewMI;
253   }
254   Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro;
255 }
256 
257 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) {
258   ArrayRef<ModuleMacro*> Leaf;
259   auto LeafIt = LeafModuleMacros.find(II);
260   if (LeafIt != LeafModuleMacros.end())
261     Leaf = LeafIt->second;
262   const MacroState *State = nullptr;
263   auto Pos = CurSubmoduleState->Macros.find(II);
264   if (Pos != CurSubmoduleState->Macros.end())
265     State = &Pos->second;
266 
267   llvm::errs() << "MacroState " << State << " " << II->getNameStart();
268   if (State && State->isAmbiguous(*this, II))
269     llvm::errs() << " ambiguous";
270   if (State && !State->getOverriddenMacros().empty()) {
271     llvm::errs() << " overrides";
272     for (auto *O : State->getOverriddenMacros())
273       llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
274   }
275   llvm::errs() << "\n";
276 
277   // Dump local macro directives.
278   for (auto *MD = State ? State->getLatest() : nullptr; MD;
279        MD = MD->getPrevious()) {
280     llvm::errs() << " ";
281     MD->dump();
282   }
283 
284   // Dump module macros.
285   llvm::DenseSet<ModuleMacro*> Active;
286   for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None)
287     Active.insert(MM);
288   llvm::DenseSet<ModuleMacro*> Visited;
289   llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end());
290   while (!Worklist.empty()) {
291     auto *MM = Worklist.pop_back_val();
292     llvm::errs() << " ModuleMacro " << MM << " "
293                  << MM->getOwningModule()->getFullModuleName();
294     if (!MM->getMacroInfo())
295       llvm::errs() << " undef";
296 
297     if (Active.count(MM))
298       llvm::errs() << " active";
299     else if (!CurSubmoduleState->VisibleModules.isVisible(
300                  MM->getOwningModule()))
301       llvm::errs() << " hidden";
302     else if (MM->getMacroInfo())
303       llvm::errs() << " overridden";
304 
305     if (!MM->overrides().empty()) {
306       llvm::errs() << " overrides";
307       for (auto *O : MM->overrides()) {
308         llvm::errs() << " " << O->getOwningModule()->getFullModuleName();
309         if (Visited.insert(O).second)
310           Worklist.push_back(O);
311       }
312     }
313     llvm::errs() << "\n";
314     if (auto *MI = MM->getMacroInfo()) {
315       llvm::errs() << "  ";
316       MI->dump();
317       llvm::errs() << "\n";
318     }
319   }
320 }
321 
322 /// RegisterBuiltinMacro - Register the specified identifier in the identifier
323 /// table and mark it as a builtin macro to be expanded.
324 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){
325   // Get the identifier.
326   IdentifierInfo *Id = PP.getIdentifierInfo(Name);
327 
328   // Mark it as being a macro that is builtin.
329   MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation());
330   MI->setIsBuiltinMacro();
331   PP.appendDefMacroDirective(Id, MI);
332   return Id;
333 }
334 
335 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the
336 /// identifier table.
337 void Preprocessor::RegisterBuiltinMacros() {
338   Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__");
339   Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__");
340   Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__");
341   Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__");
342   Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__");
343   Ident_Pragma  = RegisterBuiltinMacro(*this, "_Pragma");
344 
345   // C++ Standing Document Extensions.
346   if (LangOpts.CPlusPlus)
347     Ident__has_cpp_attribute =
348         RegisterBuiltinMacro(*this, "__has_cpp_attribute");
349   else
350     Ident__has_cpp_attribute = nullptr;
351 
352   // GCC Extensions.
353   Ident__BASE_FILE__     = RegisterBuiltinMacro(*this, "__BASE_FILE__");
354   Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__");
355   Ident__TIMESTAMP__     = RegisterBuiltinMacro(*this, "__TIMESTAMP__");
356 
357   // Microsoft Extensions.
358   if (LangOpts.MicrosoftExt) {
359     Ident__identifier = RegisterBuiltinMacro(*this, "__identifier");
360     Ident__pragma = RegisterBuiltinMacro(*this, "__pragma");
361   } else {
362     Ident__identifier = nullptr;
363     Ident__pragma = nullptr;
364   }
365 
366   // Clang Extensions.
367   Ident__FILE_NAME__      = RegisterBuiltinMacro(*this, "__FILE_NAME__");
368   Ident__has_feature      = RegisterBuiltinMacro(*this, "__has_feature");
369   Ident__has_extension    = RegisterBuiltinMacro(*this, "__has_extension");
370   Ident__has_builtin      = RegisterBuiltinMacro(*this, "__has_builtin");
371   Ident__has_attribute    = RegisterBuiltinMacro(*this, "__has_attribute");
372   Ident__has_c_attribute  = RegisterBuiltinMacro(*this, "__has_c_attribute");
373   Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute");
374   Ident__has_include      = RegisterBuiltinMacro(*this, "__has_include");
375   Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next");
376   Ident__has_warning      = RegisterBuiltinMacro(*this, "__has_warning");
377   Ident__is_identifier    = RegisterBuiltinMacro(*this, "__is_identifier");
378   Ident__is_target_arch   = RegisterBuiltinMacro(*this, "__is_target_arch");
379   Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor");
380   Ident__is_target_os     = RegisterBuiltinMacro(*this, "__is_target_os");
381   Ident__is_target_environment =
382       RegisterBuiltinMacro(*this, "__is_target_environment");
383 
384   // Modules.
385   Ident__building_module  = RegisterBuiltinMacro(*this, "__building_module");
386   if (!LangOpts.CurrentModule.empty())
387     Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__");
388   else
389     Ident__MODULE__ = nullptr;
390 }
391 
392 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token
393 /// in its expansion, currently expands to that token literally.
394 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI,
395                                           const IdentifierInfo *MacroIdent,
396                                           Preprocessor &PP) {
397   IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo();
398 
399   // If the token isn't an identifier, it's always literally expanded.
400   if (!II) return true;
401 
402   // If the information about this identifier is out of date, update it from
403   // the external source.
404   if (II->isOutOfDate())
405     PP.getExternalSource()->updateOutOfDateIdentifier(*II);
406 
407   // If the identifier is a macro, and if that macro is enabled, it may be
408   // expanded so it's not a trivial expansion.
409   if (auto *ExpansionMI = PP.getMacroInfo(II))
410     if (ExpansionMI->isEnabled() &&
411         // Fast expanding "#define X X" is ok, because X would be disabled.
412         II != MacroIdent)
413       return false;
414 
415   // If this is an object-like macro invocation, it is safe to trivially expand
416   // it.
417   if (MI->isObjectLike()) return true;
418 
419   // If this is a function-like macro invocation, it's safe to trivially expand
420   // as long as the identifier is not a macro argument.
421   return std::find(MI->param_begin(), MI->param_end(), II) == MI->param_end();
422 }
423 
424 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be
425 /// lexed is a '('.  If so, consume the token and return true, if not, this
426 /// method should have no observable side-effect on the lexed tokens.
427 bool Preprocessor::isNextPPTokenLParen() {
428   // Do some quick tests for rejection cases.
429   unsigned Val;
430   if (CurLexer)
431     Val = CurLexer->isNextPPTokenLParen();
432   else
433     Val = CurTokenLexer->isNextTokenLParen();
434 
435   if (Val == 2) {
436     // We have run off the end.  If it's a source file we don't
437     // examine enclosing ones (C99 5.1.1.2p4).  Otherwise walk up the
438     // macro stack.
439     if (CurPPLexer)
440       return false;
441     for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) {
442       if (Entry.TheLexer)
443         Val = Entry.TheLexer->isNextPPTokenLParen();
444       else
445         Val = Entry.TheTokenLexer->isNextTokenLParen();
446 
447       if (Val != 2)
448         break;
449 
450       // Ran off the end of a source file?
451       if (Entry.ThePPLexer)
452         return false;
453     }
454   }
455 
456   // Okay, if we know that the token is a '(', lex it and return.  Otherwise we
457   // have found something that isn't a '(' or we found the end of the
458   // translation unit.  In either case, return false.
459   return Val == 1;
460 }
461 
462 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be
463 /// expanded as a macro, handle it and return the next token as 'Identifier'.
464 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier,
465                                                  const MacroDefinition &M) {
466   MacroInfo *MI = M.getMacroInfo();
467 
468   // If this is a macro expansion in the "#if !defined(x)" line for the file,
469   // then the macro could expand to different things in other contexts, we need
470   // to disable the optimization in this case.
471   if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro();
472 
473   // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially.
474   if (MI->isBuiltinMacro()) {
475     if (Callbacks)
476       Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(),
477                               /*Args=*/nullptr);
478     ExpandBuiltinMacro(Identifier);
479     return true;
480   }
481 
482   /// Args - If this is a function-like macro expansion, this contains,
483   /// for each macro argument, the list of tokens that were provided to the
484   /// invocation.
485   MacroArgs *Args = nullptr;
486 
487   // Remember where the end of the expansion occurred.  For an object-like
488   // macro, this is the identifier.  For a function-like macro, this is the ')'.
489   SourceLocation ExpansionEnd = Identifier.getLocation();
490 
491   // If this is a function-like macro, read the arguments.
492   if (MI->isFunctionLike()) {
493     // Remember that we are now parsing the arguments to a macro invocation.
494     // Preprocessor directives used inside macro arguments are not portable, and
495     // this enables the warning.
496     InMacroArgs = true;
497     ArgMacro = &Identifier;
498 
499     Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd);
500 
501     // Finished parsing args.
502     InMacroArgs = false;
503     ArgMacro = nullptr;
504 
505     // If there was an error parsing the arguments, bail out.
506     if (!Args) return true;
507 
508     ++NumFnMacroExpanded;
509   } else {
510     ++NumMacroExpanded;
511   }
512 
513   // Notice that this macro has been used.
514   markMacroAsUsed(MI);
515 
516   // Remember where the token is expanded.
517   SourceLocation ExpandLoc = Identifier.getLocation();
518   SourceRange ExpansionRange(ExpandLoc, ExpansionEnd);
519 
520   if (Callbacks) {
521     if (InMacroArgs) {
522       // We can have macro expansion inside a conditional directive while
523       // reading the function macro arguments. To ensure, in that case, that
524       // MacroExpands callbacks still happen in source order, queue this
525       // callback to have it happen after the function macro callback.
526       DelayedMacroExpandsCallbacks.push_back(
527           MacroExpandsInfo(Identifier, M, ExpansionRange));
528     } else {
529       Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args);
530       if (!DelayedMacroExpandsCallbacks.empty()) {
531         for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) {
532           // FIXME: We lose macro args info with delayed callback.
533           Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range,
534                                   /*Args=*/nullptr);
535         }
536         DelayedMacroExpandsCallbacks.clear();
537       }
538     }
539   }
540 
541   // If the macro definition is ambiguous, complain.
542   if (M.isAmbiguous()) {
543     Diag(Identifier, diag::warn_pp_ambiguous_macro)
544       << Identifier.getIdentifierInfo();
545     Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen)
546       << Identifier.getIdentifierInfo();
547     M.forAllDefinitions([&](const MacroInfo *OtherMI) {
548       if (OtherMI != MI)
549         Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other)
550           << Identifier.getIdentifierInfo();
551     });
552   }
553 
554   // If we started lexing a macro, enter the macro expansion body.
555 
556   // If this macro expands to no tokens, don't bother to push it onto the
557   // expansion stack, only to take it right back off.
558   if (MI->getNumTokens() == 0) {
559     // No need for arg info.
560     if (Args) Args->destroy(*this);
561 
562     // Propagate whitespace info as if we had pushed, then popped,
563     // a macro context.
564     Identifier.setFlag(Token::LeadingEmptyMacro);
565     PropagateLineStartLeadingSpaceInfo(Identifier);
566     ++NumFastMacroExpanded;
567     return false;
568   } else if (MI->getNumTokens() == 1 &&
569              isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(),
570                                            *this)) {
571     // Otherwise, if this macro expands into a single trivially-expanded
572     // token: expand it now.  This handles common cases like
573     // "#define VAL 42".
574 
575     // No need for arg info.
576     if (Args) Args->destroy(*this);
577 
578     // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro
579     // identifier to the expanded token.
580     bool isAtStartOfLine = Identifier.isAtStartOfLine();
581     bool hasLeadingSpace = Identifier.hasLeadingSpace();
582 
583     // Replace the result token.
584     Identifier = MI->getReplacementToken(0);
585 
586     // Restore the StartOfLine/LeadingSpace markers.
587     Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine);
588     Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace);
589 
590     // Update the tokens location to include both its expansion and physical
591     // locations.
592     SourceLocation Loc =
593       SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc,
594                                    ExpansionEnd,Identifier.getLength());
595     Identifier.setLocation(Loc);
596 
597     // If this is a disabled macro or #define X X, we must mark the result as
598     // unexpandable.
599     if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) {
600       if (MacroInfo *NewMI = getMacroInfo(NewII))
601         if (!NewMI->isEnabled() || NewMI == MI) {
602           Identifier.setFlag(Token::DisableExpand);
603           // Don't warn for "#define X X" like "#define bool bool" from
604           // stdbool.h.
605           if (NewMI != MI || MI->isFunctionLike())
606             Diag(Identifier, diag::pp_disabled_macro_expansion);
607         }
608     }
609 
610     // Since this is not an identifier token, it can't be macro expanded, so
611     // we're done.
612     ++NumFastMacroExpanded;
613     return true;
614   }
615 
616   // Start expanding the macro.
617   EnterMacro(Identifier, ExpansionEnd, MI, Args);
618   return false;
619 }
620 
621 enum Bracket {
622   Brace,
623   Paren
624 };
625 
626 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the
627 /// token vector are properly nested.
628 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) {
629   SmallVector<Bracket, 8> Brackets;
630   for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(),
631                                               E = Tokens.end();
632        I != E; ++I) {
633     if (I->is(tok::l_paren)) {
634       Brackets.push_back(Paren);
635     } else if (I->is(tok::r_paren)) {
636       if (Brackets.empty() || Brackets.back() == Brace)
637         return false;
638       Brackets.pop_back();
639     } else if (I->is(tok::l_brace)) {
640       Brackets.push_back(Brace);
641     } else if (I->is(tok::r_brace)) {
642       if (Brackets.empty() || Brackets.back() == Paren)
643         return false;
644       Brackets.pop_back();
645     }
646   }
647   return Brackets.empty();
648 }
649 
650 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new
651 /// vector of tokens in NewTokens.  The new number of arguments will be placed
652 /// in NumArgs and the ranges which need to surrounded in parentheses will be
653 /// in ParenHints.
654 /// Returns false if the token stream cannot be changed.  If this is because
655 /// of an initializer list starting a macro argument, the range of those
656 /// initializer lists will be place in InitLists.
657 static bool GenerateNewArgTokens(Preprocessor &PP,
658                                  SmallVectorImpl<Token> &OldTokens,
659                                  SmallVectorImpl<Token> &NewTokens,
660                                  unsigned &NumArgs,
661                                  SmallVectorImpl<SourceRange> &ParenHints,
662                                  SmallVectorImpl<SourceRange> &InitLists) {
663   if (!CheckMatchedBrackets(OldTokens))
664     return false;
665 
666   // Once it is known that the brackets are matched, only a simple count of the
667   // braces is needed.
668   unsigned Braces = 0;
669 
670   // First token of a new macro argument.
671   SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin();
672 
673   // First closing brace in a new macro argument.  Used to generate
674   // SourceRanges for InitLists.
675   SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end();
676   NumArgs = 0;
677   Token TempToken;
678   // Set to true when a macro separator token is found inside a braced list.
679   // If true, the fixed argument spans multiple old arguments and ParenHints
680   // will be updated.
681   bool FoundSeparatorToken = false;
682   for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(),
683                                         E = OldTokens.end();
684        I != E; ++I) {
685     if (I->is(tok::l_brace)) {
686       ++Braces;
687     } else if (I->is(tok::r_brace)) {
688       --Braces;
689       if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken)
690         ClosingBrace = I;
691     } else if (I->is(tok::eof)) {
692       // EOF token is used to separate macro arguments
693       if (Braces != 0) {
694         // Assume comma separator is actually braced list separator and change
695         // it back to a comma.
696         FoundSeparatorToken = true;
697         I->setKind(tok::comma);
698         I->setLength(1);
699       } else { // Braces == 0
700         // Separator token still separates arguments.
701         ++NumArgs;
702 
703         // If the argument starts with a brace, it can't be fixed with
704         // parentheses.  A different diagnostic will be given.
705         if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) {
706           InitLists.push_back(
707               SourceRange(ArgStartIterator->getLocation(),
708                           PP.getLocForEndOfToken(ClosingBrace->getLocation())));
709           ClosingBrace = E;
710         }
711 
712         // Add left paren
713         if (FoundSeparatorToken) {
714           TempToken.startToken();
715           TempToken.setKind(tok::l_paren);
716           TempToken.setLocation(ArgStartIterator->getLocation());
717           TempToken.setLength(0);
718           NewTokens.push_back(TempToken);
719         }
720 
721         // Copy over argument tokens
722         NewTokens.insert(NewTokens.end(), ArgStartIterator, I);
723 
724         // Add right paren and store the paren locations in ParenHints
725         if (FoundSeparatorToken) {
726           SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation());
727           TempToken.startToken();
728           TempToken.setKind(tok::r_paren);
729           TempToken.setLocation(Loc);
730           TempToken.setLength(0);
731           NewTokens.push_back(TempToken);
732           ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(),
733                                            Loc));
734         }
735 
736         // Copy separator token
737         NewTokens.push_back(*I);
738 
739         // Reset values
740         ArgStartIterator = I + 1;
741         FoundSeparatorToken = false;
742       }
743     }
744   }
745 
746   return !ParenHints.empty() && InitLists.empty();
747 }
748 
749 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next
750 /// token is the '(' of the macro, this method is invoked to read all of the
751 /// actual arguments specified for the macro invocation.  This returns null on
752 /// error.
753 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName,
754                                                    MacroInfo *MI,
755                                                    SourceLocation &MacroEnd) {
756   // The number of fixed arguments to parse.
757   unsigned NumFixedArgsLeft = MI->getNumParams();
758   bool isVariadic = MI->isVariadic();
759 
760   // Outer loop, while there are more arguments, keep reading them.
761   Token Tok;
762 
763   // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
764   // an argument value in a macro could expand to ',' or '(' or ')'.
765   LexUnexpandedToken(Tok);
766   assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?");
767 
768   // ArgTokens - Build up a list of tokens that make up each argument.  Each
769   // argument is separated by an EOF token.  Use a SmallVector so we can avoid
770   // heap allocations in the common case.
771   SmallVector<Token, 64> ArgTokens;
772   bool ContainsCodeCompletionTok = false;
773   bool FoundElidedComma = false;
774 
775   SourceLocation TooManyArgsLoc;
776 
777   unsigned NumActuals = 0;
778   while (Tok.isNot(tok::r_paren)) {
779     if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod))
780       break;
781 
782     assert(Tok.isOneOf(tok::l_paren, tok::comma) &&
783            "only expect argument separators here");
784 
785     size_t ArgTokenStart = ArgTokens.size();
786     SourceLocation ArgStartLoc = Tok.getLocation();
787 
788     // C99 6.10.3p11: Keep track of the number of l_parens we have seen.  Note
789     // that we already consumed the first one.
790     unsigned NumParens = 0;
791 
792     while (true) {
793       // Read arguments as unexpanded tokens.  This avoids issues, e.g., where
794       // an argument value in a macro could expand to ',' or '(' or ')'.
795       LexUnexpandedToken(Tok);
796 
797       if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n"
798         if (!ContainsCodeCompletionTok) {
799           Diag(MacroName, diag::err_unterm_macro_invoc);
800           Diag(MI->getDefinitionLoc(), diag::note_macro_here)
801             << MacroName.getIdentifierInfo();
802           // Do not lose the EOF/EOD.  Return it to the client.
803           MacroName = Tok;
804           return nullptr;
805         }
806         // Do not lose the EOF/EOD.
807         auto Toks = llvm::make_unique<Token[]>(1);
808         Toks[0] = Tok;
809         EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false);
810         break;
811       } else if (Tok.is(tok::r_paren)) {
812         // If we found the ) token, the macro arg list is done.
813         if (NumParens-- == 0) {
814           MacroEnd = Tok.getLocation();
815           if (!ArgTokens.empty() &&
816               ArgTokens.back().commaAfterElided()) {
817             FoundElidedComma = true;
818           }
819           break;
820         }
821       } else if (Tok.is(tok::l_paren)) {
822         ++NumParens;
823       } else if (Tok.is(tok::comma) && NumParens == 0 &&
824                  !(Tok.getFlags() & Token::IgnoredComma)) {
825         // In Microsoft-compatibility mode, single commas from nested macro
826         // expansions should not be considered as argument separators. We test
827         // for this with the IgnoredComma token flag above.
828 
829         // Comma ends this argument if there are more fixed arguments expected.
830         // However, if this is a variadic macro, and this is part of the
831         // variadic part, then the comma is just an argument token.
832         if (!isVariadic) break;
833         if (NumFixedArgsLeft > 1)
834           break;
835       } else if (Tok.is(tok::comment) && !KeepMacroComments) {
836         // If this is a comment token in the argument list and we're just in
837         // -C mode (not -CC mode), discard the comment.
838         continue;
839       } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) {
840         // Reading macro arguments can cause macros that we are currently
841         // expanding from to be popped off the expansion stack.  Doing so causes
842         // them to be reenabled for expansion.  Here we record whether any
843         // identifiers we lex as macro arguments correspond to disabled macros.
844         // If so, we mark the token as noexpand.  This is a subtle aspect of
845         // C99 6.10.3.4p2.
846         if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo()))
847           if (!MI->isEnabled())
848             Tok.setFlag(Token::DisableExpand);
849       } else if (Tok.is(tok::code_completion)) {
850         ContainsCodeCompletionTok = true;
851         if (CodeComplete)
852           CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(),
853                                                   MI, NumActuals);
854         // Don't mark that we reached the code-completion point because the
855         // parser is going to handle the token and there will be another
856         // code-completion callback.
857       }
858 
859       ArgTokens.push_back(Tok);
860     }
861 
862     // If this was an empty argument list foo(), don't add this as an empty
863     // argument.
864     if (ArgTokens.empty() && Tok.getKind() == tok::r_paren)
865       break;
866 
867     // If this is not a variadic macro, and too many args were specified, emit
868     // an error.
869     if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) {
870       if (ArgTokens.size() != ArgTokenStart)
871         TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation();
872       else
873         TooManyArgsLoc = ArgStartLoc;
874     }
875 
876     // Empty arguments are standard in C99 and C++0x, and are supported as an
877     // extension in other modes.
878     if (ArgTokens.size() == ArgTokenStart && !LangOpts.C99)
879       Diag(Tok, LangOpts.CPlusPlus11 ?
880            diag::warn_cxx98_compat_empty_fnmacro_arg :
881            diag::ext_empty_fnmacro_arg);
882 
883     // Add a marker EOF token to the end of the token list for this argument.
884     Token EOFTok;
885     EOFTok.startToken();
886     EOFTok.setKind(tok::eof);
887     EOFTok.setLocation(Tok.getLocation());
888     EOFTok.setLength(0);
889     ArgTokens.push_back(EOFTok);
890     ++NumActuals;
891     if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0)
892       --NumFixedArgsLeft;
893   }
894 
895   // Okay, we either found the r_paren.  Check to see if we parsed too few
896   // arguments.
897   unsigned MinArgsExpected = MI->getNumParams();
898 
899   // If this is not a variadic macro, and too many args were specified, emit
900   // an error.
901   if (!isVariadic && NumActuals > MinArgsExpected &&
902       !ContainsCodeCompletionTok) {
903     // Emit the diagnostic at the macro name in case there is a missing ).
904     // Emitting it at the , could be far away from the macro name.
905     Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc);
906     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
907       << MacroName.getIdentifierInfo();
908 
909     // Commas from braced initializer lists will be treated as argument
910     // separators inside macros.  Attempt to correct for this with parentheses.
911     // TODO: See if this can be generalized to angle brackets for templates
912     // inside macro arguments.
913 
914     SmallVector<Token, 4> FixedArgTokens;
915     unsigned FixedNumArgs = 0;
916     SmallVector<SourceRange, 4> ParenHints, InitLists;
917     if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs,
918                               ParenHints, InitLists)) {
919       if (!InitLists.empty()) {
920         DiagnosticBuilder DB =
921             Diag(MacroName,
922                  diag::note_init_list_at_beginning_of_macro_argument);
923         for (SourceRange Range : InitLists)
924           DB << Range;
925       }
926       return nullptr;
927     }
928     if (FixedNumArgs != MinArgsExpected)
929       return nullptr;
930 
931     DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro);
932     for (SourceRange ParenLocation : ParenHints) {
933       DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "(");
934       DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")");
935     }
936     ArgTokens.swap(FixedArgTokens);
937     NumActuals = FixedNumArgs;
938   }
939 
940   // See MacroArgs instance var for description of this.
941   bool isVarargsElided = false;
942 
943   if (ContainsCodeCompletionTok) {
944     // Recover from not-fully-formed macro invocation during code-completion.
945     Token EOFTok;
946     EOFTok.startToken();
947     EOFTok.setKind(tok::eof);
948     EOFTok.setLocation(Tok.getLocation());
949     EOFTok.setLength(0);
950     for (; NumActuals < MinArgsExpected; ++NumActuals)
951       ArgTokens.push_back(EOFTok);
952   }
953 
954   if (NumActuals < MinArgsExpected) {
955     // There are several cases where too few arguments is ok, handle them now.
956     if (NumActuals == 0 && MinArgsExpected == 1) {
957       // #define A(X)  or  #define A(...)   ---> A()
958 
959       // If there is exactly one argument, and that argument is missing,
960       // then we have an empty "()" argument empty list.  This is fine, even if
961       // the macro expects one argument (the argument is just empty).
962       isVarargsElided = MI->isVariadic();
963     } else if ((FoundElidedComma || MI->isVariadic()) &&
964                (NumActuals+1 == MinArgsExpected ||  // A(x, ...) -> A(X)
965                 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A()
966       // Varargs where the named vararg parameter is missing: OK as extension.
967       //   #define A(x, ...)
968       //   A("blah")
969       //
970       // If the macro contains the comma pasting extension, the diagnostic
971       // is suppressed; we know we'll get another diagnostic later.
972       if (!MI->hasCommaPasting()) {
973         Diag(Tok, diag::ext_missing_varargs_arg);
974         Diag(MI->getDefinitionLoc(), diag::note_macro_here)
975           << MacroName.getIdentifierInfo();
976       }
977 
978       // Remember this occurred, allowing us to elide the comma when used for
979       // cases like:
980       //   #define A(x, foo...) blah(a, ## foo)
981       //   #define B(x, ...) blah(a, ## __VA_ARGS__)
982       //   #define C(...) blah(a, ## __VA_ARGS__)
983       //  A(x) B(x) C()
984       isVarargsElided = true;
985     } else if (!ContainsCodeCompletionTok) {
986       // Otherwise, emit the error.
987       Diag(Tok, diag::err_too_few_args_in_macro_invoc);
988       Diag(MI->getDefinitionLoc(), diag::note_macro_here)
989         << MacroName.getIdentifierInfo();
990       return nullptr;
991     }
992 
993     // Add a marker EOF token to the end of the token list for this argument.
994     SourceLocation EndLoc = Tok.getLocation();
995     Tok.startToken();
996     Tok.setKind(tok::eof);
997     Tok.setLocation(EndLoc);
998     Tok.setLength(0);
999     ArgTokens.push_back(Tok);
1000 
1001     // If we expect two arguments, add both as empty.
1002     if (NumActuals == 0 && MinArgsExpected == 2)
1003       ArgTokens.push_back(Tok);
1004 
1005   } else if (NumActuals > MinArgsExpected && !MI->isVariadic() &&
1006              !ContainsCodeCompletionTok) {
1007     // Emit the diagnostic at the macro name in case there is a missing ).
1008     // Emitting it at the , could be far away from the macro name.
1009     Diag(MacroName, diag::err_too_many_args_in_macro_invoc);
1010     Diag(MI->getDefinitionLoc(), diag::note_macro_here)
1011       << MacroName.getIdentifierInfo();
1012     return nullptr;
1013   }
1014 
1015   return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this);
1016 }
1017 
1018 /// Keeps macro expanded tokens for TokenLexers.
1019 //
1020 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is
1021 /// going to lex in the cache and when it finishes the tokens are removed
1022 /// from the end of the cache.
1023 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer,
1024                                               ArrayRef<Token> tokens) {
1025   assert(tokLexer);
1026   if (tokens.empty())
1027     return nullptr;
1028 
1029   size_t newIndex = MacroExpandedTokens.size();
1030   bool cacheNeedsToGrow = tokens.size() >
1031                       MacroExpandedTokens.capacity()-MacroExpandedTokens.size();
1032   MacroExpandedTokens.append(tokens.begin(), tokens.end());
1033 
1034   if (cacheNeedsToGrow) {
1035     // Go through all the TokenLexers whose 'Tokens' pointer points in the
1036     // buffer and update the pointers to the (potential) new buffer array.
1037     for (const auto &Lexer : MacroExpandingLexersStack) {
1038       TokenLexer *prevLexer;
1039       size_t tokIndex;
1040       std::tie(prevLexer, tokIndex) = Lexer;
1041       prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex;
1042     }
1043   }
1044 
1045   MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex));
1046   return MacroExpandedTokens.data() + newIndex;
1047 }
1048 
1049 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() {
1050   assert(!MacroExpandingLexersStack.empty());
1051   size_t tokIndex = MacroExpandingLexersStack.back().second;
1052   assert(tokIndex < MacroExpandedTokens.size());
1053   // Pop the cached macro expanded tokens from the end.
1054   MacroExpandedTokens.resize(tokIndex);
1055   MacroExpandingLexersStack.pop_back();
1056 }
1057 
1058 /// ComputeDATE_TIME - Compute the current time, enter it into the specified
1059 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of
1060 /// the identifier tokens inserted.
1061 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc,
1062                              Preprocessor &PP) {
1063   time_t TT = time(nullptr);
1064   struct tm *TM = localtime(&TT);
1065 
1066   static const char * const Months[] = {
1067     "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec"
1068   };
1069 
1070   {
1071     SmallString<32> TmpBuffer;
1072     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1073     TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon],
1074                               TM->tm_mday, TM->tm_year + 1900);
1075     Token TmpTok;
1076     TmpTok.startToken();
1077     PP.CreateString(TmpStream.str(), TmpTok);
1078     DATELoc = TmpTok.getLocation();
1079   }
1080 
1081   {
1082     SmallString<32> TmpBuffer;
1083     llvm::raw_svector_ostream TmpStream(TmpBuffer);
1084     TmpStream << llvm::format("\"%02d:%02d:%02d\"",
1085                               TM->tm_hour, TM->tm_min, TM->tm_sec);
1086     Token TmpTok;
1087     TmpTok.startToken();
1088     PP.CreateString(TmpStream.str(), TmpTok);
1089     TIMELoc = TmpTok.getLocation();
1090   }
1091 }
1092 
1093 /// HasFeature - Return true if we recognize and implement the feature
1094 /// specified by the identifier as a standard language feature.
1095 static bool HasFeature(const Preprocessor &PP, StringRef Feature) {
1096   const LangOptions &LangOpts = PP.getLangOpts();
1097 
1098   // Normalize the feature name, __foo__ becomes foo.
1099   if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4)
1100     Feature = Feature.substr(2, Feature.size() - 4);
1101 
1102 #define FEATURE(Name, Predicate) .Case(#Name, Predicate)
1103   return llvm::StringSwitch<bool>(Feature)
1104 #include "clang/Basic/Features.def"
1105       .Default(false);
1106 #undef FEATURE
1107 }
1108 
1109 /// HasExtension - Return true if we recognize and implement the feature
1110 /// specified by the identifier, either as an extension or a standard language
1111 /// feature.
1112 static bool HasExtension(const Preprocessor &PP, StringRef Extension) {
1113   if (HasFeature(PP, Extension))
1114     return true;
1115 
1116   // If the use of an extension results in an error diagnostic, extensions are
1117   // effectively unavailable, so just return false here.
1118   if (PP.getDiagnostics().getExtensionHandlingBehavior() >=
1119       diag::Severity::Error)
1120     return false;
1121 
1122   const LangOptions &LangOpts = PP.getLangOpts();
1123 
1124   // Normalize the extension name, __foo__ becomes foo.
1125   if (Extension.startswith("__") && Extension.endswith("__") &&
1126       Extension.size() >= 4)
1127     Extension = Extension.substr(2, Extension.size() - 4);
1128 
1129     // Because we inherit the feature list from HasFeature, this string switch
1130     // must be less restrictive than HasFeature's.
1131 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate)
1132   return llvm::StringSwitch<bool>(Extension)
1133 #include "clang/Basic/Features.def"
1134       .Default(false);
1135 #undef EXTENSION
1136 }
1137 
1138 /// EvaluateHasIncludeCommon - Process a '__has_include("path")'
1139 /// or '__has_include_next("path")' expression.
1140 /// Returns true if successful.
1141 static bool EvaluateHasIncludeCommon(Token &Tok,
1142                                      IdentifierInfo *II, Preprocessor &PP,
1143                                      const DirectoryLookup *LookupFrom,
1144                                      const FileEntry *LookupFromFile) {
1145   // Save the location of the current token.  If a '(' is later found, use
1146   // that location.  If not, use the end of this location instead.
1147   SourceLocation LParenLoc = Tok.getLocation();
1148 
1149   // These expressions are only allowed within a preprocessor directive.
1150   if (!PP.isParsingIfOrElifDirective()) {
1151     PP.Diag(LParenLoc, diag::err_pp_directive_required) << II;
1152     // Return a valid identifier token.
1153     assert(Tok.is(tok::identifier));
1154     Tok.setIdentifierInfo(II);
1155     return false;
1156   }
1157 
1158   // Get '('. If we don't have a '(', try to form a header-name token.
1159   do {
1160     if (PP.LexHeaderName(Tok))
1161       return false;
1162   } while (Tok.getKind() == tok::comment);
1163 
1164   // Ensure we have a '('.
1165   if (Tok.isNot(tok::l_paren)) {
1166     // No '(', use end of last token.
1167     LParenLoc = PP.getLocForEndOfToken(LParenLoc);
1168     PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren;
1169     // If the next token looks like a filename or the start of one,
1170     // assume it is and process it as such.
1171     if (Tok.isNot(tok::header_name))
1172       return false;
1173   } else {
1174     // Save '(' location for possible missing ')' message.
1175     LParenLoc = Tok.getLocation();
1176     if (PP.LexHeaderName(Tok))
1177       return false;
1178   }
1179 
1180   if (Tok.isNot(tok::header_name)) {
1181     PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename);
1182     return false;
1183   }
1184 
1185   // Reserve a buffer to get the spelling.
1186   SmallString<128> FilenameBuffer;
1187   bool Invalid = false;
1188   StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid);
1189   if (Invalid)
1190     return false;
1191 
1192   SourceLocation FilenameLoc = Tok.getLocation();
1193 
1194   // Get ')'.
1195   PP.LexNonComment(Tok);
1196 
1197   // Ensure we have a trailing ).
1198   if (Tok.isNot(tok::r_paren)) {
1199     PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after)
1200         << II << tok::r_paren;
1201     PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1202     return false;
1203   }
1204 
1205   bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename);
1206   // If GetIncludeFilenameSpelling set the start ptr to null, there was an
1207   // error.
1208   if (Filename.empty())
1209     return false;
1210 
1211   // Search include directories.
1212   const DirectoryLookup *CurDir;
1213   const FileEntry *File =
1214       PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile,
1215                     CurDir, nullptr, nullptr, nullptr, nullptr, nullptr);
1216 
1217   if (PPCallbacks *Callbacks = PP.getPPCallbacks()) {
1218     SrcMgr::CharacteristicKind FileType = SrcMgr::C_User;
1219     if (File)
1220       FileType = PP.getHeaderSearchInfo().getFileDirFlavor(File);
1221     Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType);
1222   }
1223 
1224   // Get the result value.  A result of true means the file exists.
1225   return File != nullptr;
1226 }
1227 
1228 /// EvaluateHasInclude - Process a '__has_include("path")' expression.
1229 /// Returns true if successful.
1230 static bool EvaluateHasInclude(Token &Tok, IdentifierInfo *II,
1231                                Preprocessor &PP) {
1232   return EvaluateHasIncludeCommon(Tok, II, PP, nullptr, nullptr);
1233 }
1234 
1235 /// EvaluateHasIncludeNext - Process '__has_include_next("path")' expression.
1236 /// Returns true if successful.
1237 static bool EvaluateHasIncludeNext(Token &Tok,
1238                                    IdentifierInfo *II, Preprocessor &PP) {
1239   // __has_include_next is like __has_include, except that we start
1240   // searching after the current found directory.  If we can't do this,
1241   // issue a diagnostic.
1242   // FIXME: Factor out duplication with
1243   // Preprocessor::HandleIncludeNextDirective.
1244   const DirectoryLookup *Lookup = PP.GetCurDirLookup();
1245   const FileEntry *LookupFromFile = nullptr;
1246   if (PP.isInPrimaryFile() && PP.getLangOpts().IsHeaderFile) {
1247     // If the main file is a header, then it's either for PCH/AST generation,
1248     // or libclang opened it. Either way, handle it as a normal include below
1249     // and do not complain about __has_include_next.
1250   } else if (PP.isInPrimaryFile()) {
1251     Lookup = nullptr;
1252     PP.Diag(Tok, diag::pp_include_next_in_primary);
1253   } else if (PP.getCurrentLexerSubmodule()) {
1254     // Start looking up in the directory *after* the one in which the current
1255     // file would be found, if any.
1256     assert(PP.getCurrentLexer() && "#include_next directive in macro?");
1257     LookupFromFile = PP.getCurrentLexer()->getFileEntry();
1258     Lookup = nullptr;
1259   } else if (!Lookup) {
1260     PP.Diag(Tok, diag::pp_include_next_absolute_path);
1261   } else {
1262     // Start looking up in the next directory.
1263     ++Lookup;
1264   }
1265 
1266   return EvaluateHasIncludeCommon(Tok, II, PP, Lookup, LookupFromFile);
1267 }
1268 
1269 /// Process single-argument builtin feature-like macros that return
1270 /// integer values.
1271 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS,
1272                                             Token &Tok, IdentifierInfo *II,
1273                                             Preprocessor &PP,
1274                                             llvm::function_ref<
1275                                               int(Token &Tok,
1276                                                   bool &HasLexedNextTok)> Op) {
1277   // Parse the initial '('.
1278   PP.LexUnexpandedToken(Tok);
1279   if (Tok.isNot(tok::l_paren)) {
1280     PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II
1281                                                             << tok::l_paren;
1282 
1283     // Provide a dummy '0' value on output stream to elide further errors.
1284     if (!Tok.isOneOf(tok::eof, tok::eod)) {
1285       OS << 0;
1286       Tok.setKind(tok::numeric_constant);
1287     }
1288     return;
1289   }
1290 
1291   unsigned ParenDepth = 1;
1292   SourceLocation LParenLoc = Tok.getLocation();
1293   llvm::Optional<int> Result;
1294 
1295   Token ResultTok;
1296   bool SuppressDiagnostic = false;
1297   while (true) {
1298     // Parse next token.
1299     PP.LexUnexpandedToken(Tok);
1300 
1301 already_lexed:
1302     switch (Tok.getKind()) {
1303       case tok::eof:
1304       case tok::eod:
1305         // Don't provide even a dummy value if the eod or eof marker is
1306         // reached.  Simply provide a diagnostic.
1307         PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc);
1308         return;
1309 
1310       case tok::comma:
1311         if (!SuppressDiagnostic) {
1312           PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc);
1313           SuppressDiagnostic = true;
1314         }
1315         continue;
1316 
1317       case tok::l_paren:
1318         ++ParenDepth;
1319         if (Result.hasValue())
1320           break;
1321         if (!SuppressDiagnostic) {
1322           PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II;
1323           SuppressDiagnostic = true;
1324         }
1325         continue;
1326 
1327       case tok::r_paren:
1328         if (--ParenDepth > 0)
1329           continue;
1330 
1331         // The last ')' has been reached; return the value if one found or
1332         // a diagnostic and a dummy value.
1333         if (Result.hasValue()) {
1334           OS << Result.getValue();
1335           // For strict conformance to __has_cpp_attribute rules, use 'L'
1336           // suffix for dated literals.
1337           if (Result.getValue() > 1)
1338             OS << 'L';
1339         } else {
1340           OS << 0;
1341           if (!SuppressDiagnostic)
1342             PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc);
1343         }
1344         Tok.setKind(tok::numeric_constant);
1345         return;
1346 
1347       default: {
1348         // Parse the macro argument, if one not found so far.
1349         if (Result.hasValue())
1350           break;
1351 
1352         bool HasLexedNextToken = false;
1353         Result = Op(Tok, HasLexedNextToken);
1354         ResultTok = Tok;
1355         if (HasLexedNextToken)
1356           goto already_lexed;
1357         continue;
1358       }
1359     }
1360 
1361     // Diagnose missing ')'.
1362     if (!SuppressDiagnostic) {
1363       if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) {
1364         if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo())
1365           Diag << LastII;
1366         else
1367           Diag << ResultTok.getKind();
1368         Diag << tok::r_paren << ResultTok.getLocation();
1369       }
1370       PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1371       SuppressDiagnostic = true;
1372     }
1373   }
1374 }
1375 
1376 /// Helper function to return the IdentifierInfo structure of a Token
1377 /// or generate a diagnostic if none available.
1378 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok,
1379                                                    Preprocessor &PP,
1380                                                    signed DiagID) {
1381   IdentifierInfo *II;
1382   if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo()))
1383     return II;
1384 
1385   PP.Diag(Tok.getLocation(), DiagID);
1386   return nullptr;
1387 }
1388 
1389 /// Implements the __is_target_arch builtin macro.
1390 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) {
1391   std::string ArchName = II->getName().lower() + "--";
1392   llvm::Triple Arch(ArchName);
1393   const llvm::Triple &TT = TI.getTriple();
1394   if (TT.isThumb()) {
1395     // arm matches thumb or thumbv7. armv7 matches thumbv7.
1396     if ((Arch.getSubArch() == llvm::Triple::NoSubArch ||
1397          Arch.getSubArch() == TT.getSubArch()) &&
1398         ((TT.getArch() == llvm::Triple::thumb &&
1399           Arch.getArch() == llvm::Triple::arm) ||
1400          (TT.getArch() == llvm::Triple::thumbeb &&
1401           Arch.getArch() == llvm::Triple::armeb)))
1402       return true;
1403   }
1404   // Check the parsed arch when it has no sub arch to allow Clang to
1405   // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7.
1406   return (Arch.getSubArch() == llvm::Triple::NoSubArch ||
1407           Arch.getSubArch() == TT.getSubArch()) &&
1408          Arch.getArch() == TT.getArch();
1409 }
1410 
1411 /// Implements the __is_target_vendor builtin macro.
1412 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) {
1413   StringRef VendorName = TI.getTriple().getVendorName();
1414   if (VendorName.empty())
1415     VendorName = "unknown";
1416   return VendorName.equals_lower(II->getName());
1417 }
1418 
1419 /// Implements the __is_target_os builtin macro.
1420 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) {
1421   std::string OSName =
1422       (llvm::Twine("unknown-unknown-") + II->getName().lower()).str();
1423   llvm::Triple OS(OSName);
1424   if (OS.getOS() == llvm::Triple::Darwin) {
1425     // Darwin matches macos, ios, etc.
1426     return TI.getTriple().isOSDarwin();
1427   }
1428   return TI.getTriple().getOS() == OS.getOS();
1429 }
1430 
1431 /// Implements the __is_target_environment builtin macro.
1432 static bool isTargetEnvironment(const TargetInfo &TI,
1433                                 const IdentifierInfo *II) {
1434   std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str();
1435   llvm::Triple Env(EnvName);
1436   return TI.getTriple().getEnvironment() == Env.getEnvironment();
1437 }
1438 
1439 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded
1440 /// as a builtin macro, handle it and return the next token as 'Tok'.
1441 void Preprocessor::ExpandBuiltinMacro(Token &Tok) {
1442   // Figure out which token this is.
1443   IdentifierInfo *II = Tok.getIdentifierInfo();
1444   assert(II && "Can't be a macro without id info!");
1445 
1446   // If this is an _Pragma or Microsoft __pragma directive, expand it,
1447   // invoke the pragma handler, then lex the token after it.
1448   if (II == Ident_Pragma)
1449     return Handle_Pragma(Tok);
1450   else if (II == Ident__pragma) // in non-MS mode this is null
1451     return HandleMicrosoft__pragma(Tok);
1452 
1453   ++NumBuiltinMacroExpanded;
1454 
1455   SmallString<128> TmpBuffer;
1456   llvm::raw_svector_ostream OS(TmpBuffer);
1457 
1458   // Set up the return result.
1459   Tok.setIdentifierInfo(nullptr);
1460   Tok.clearFlag(Token::NeedsCleaning);
1461   bool IsAtStartOfLine = Tok.isAtStartOfLine();
1462   bool HasLeadingSpace = Tok.hasLeadingSpace();
1463 
1464   if (II == Ident__LINE__) {
1465     // C99 6.10.8: "__LINE__: The presumed line number (within the current
1466     // source file) of the current source line (an integer constant)".  This can
1467     // be affected by #line.
1468     SourceLocation Loc = Tok.getLocation();
1469 
1470     // Advance to the location of the first _, this might not be the first byte
1471     // of the token if it starts with an escaped newline.
1472     Loc = AdvanceToTokenCharacter(Loc, 0);
1473 
1474     // One wrinkle here is that GCC expands __LINE__ to location of the *end* of
1475     // a macro expansion.  This doesn't matter for object-like macros, but
1476     // can matter for a function-like macro that expands to contain __LINE__.
1477     // Skip down through expansion points until we find a file loc for the
1478     // end of the expansion history.
1479     Loc = SourceMgr.getExpansionRange(Loc).getEnd();
1480     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc);
1481 
1482     // __LINE__ expands to a simple numeric value.
1483     OS << (PLoc.isValid()? PLoc.getLine() : 1);
1484     Tok.setKind(tok::numeric_constant);
1485   } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ ||
1486              II == Ident__FILE_NAME__) {
1487     // C99 6.10.8: "__FILE__: The presumed name of the current source file (a
1488     // character string literal)". This can be affected by #line.
1489     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1490 
1491     // __BASE_FILE__ is a GNU extension that returns the top of the presumed
1492     // #include stack instead of the current file.
1493     if (II == Ident__BASE_FILE__ && PLoc.isValid()) {
1494       SourceLocation NextLoc = PLoc.getIncludeLoc();
1495       while (NextLoc.isValid()) {
1496         PLoc = SourceMgr.getPresumedLoc(NextLoc);
1497         if (PLoc.isInvalid())
1498           break;
1499 
1500         NextLoc = PLoc.getIncludeLoc();
1501       }
1502     }
1503 
1504     // Escape this filename.  Turn '\' -> '\\' '"' -> '\"'
1505     SmallString<128> FN;
1506     if (PLoc.isValid()) {
1507       // __FILE_NAME__ is a Clang-specific extension that expands to the
1508       // the last part of __FILE__.
1509       if (II == Ident__FILE_NAME__) {
1510         // Try to get the last path component, failing that return the original
1511         // presumed location.
1512         StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename());
1513         if (PLFileName != "")
1514           FN += PLFileName;
1515         else
1516           FN += PLoc.getFilename();
1517       } else {
1518         FN += PLoc.getFilename();
1519       }
1520       Lexer::Stringify(FN);
1521       OS << '"' << FN << '"';
1522     }
1523     Tok.setKind(tok::string_literal);
1524   } else if (II == Ident__DATE__) {
1525     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1526     if (!DATELoc.isValid())
1527       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1528     Tok.setKind(tok::string_literal);
1529     Tok.setLength(strlen("\"Mmm dd yyyy\""));
1530     Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(),
1531                                                  Tok.getLocation(),
1532                                                  Tok.getLength()));
1533     return;
1534   } else if (II == Ident__TIME__) {
1535     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1536     if (!TIMELoc.isValid())
1537       ComputeDATE_TIME(DATELoc, TIMELoc, *this);
1538     Tok.setKind(tok::string_literal);
1539     Tok.setLength(strlen("\"hh:mm:ss\""));
1540     Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(),
1541                                                  Tok.getLocation(),
1542                                                  Tok.getLength()));
1543     return;
1544   } else if (II == Ident__INCLUDE_LEVEL__) {
1545     // Compute the presumed include depth of this token.  This can be affected
1546     // by GNU line markers.
1547     unsigned Depth = 0;
1548 
1549     PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation());
1550     if (PLoc.isValid()) {
1551       PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1552       for (; PLoc.isValid(); ++Depth)
1553         PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc());
1554     }
1555 
1556     // __INCLUDE_LEVEL__ expands to a simple numeric value.
1557     OS << Depth;
1558     Tok.setKind(tok::numeric_constant);
1559   } else if (II == Ident__TIMESTAMP__) {
1560     Diag(Tok.getLocation(), diag::warn_pp_date_time);
1561     // MSVC, ICC, GCC, VisualAge C++ extension.  The generated string should be
1562     // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime.
1563 
1564     // Get the file that we are lexing out of.  If we're currently lexing from
1565     // a macro, dig into the include stack.
1566     const FileEntry *CurFile = nullptr;
1567     PreprocessorLexer *TheLexer = getCurrentFileLexer();
1568 
1569     if (TheLexer)
1570       CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID());
1571 
1572     const char *Result;
1573     if (CurFile) {
1574       time_t TT = CurFile->getModificationTime();
1575       struct tm *TM = localtime(&TT);
1576       Result = asctime(TM);
1577     } else {
1578       Result = "??? ??? ?? ??:??:?? ????\n";
1579     }
1580     // Surround the string with " and strip the trailing newline.
1581     OS << '"' << StringRef(Result).drop_back() << '"';
1582     Tok.setKind(tok::string_literal);
1583   } else if (II == Ident__COUNTER__) {
1584     // __COUNTER__ expands to a simple numeric value.
1585     OS << CounterValue++;
1586     Tok.setKind(tok::numeric_constant);
1587   } else if (II == Ident__has_feature) {
1588     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1589       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1590         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1591                                            diag::err_feature_check_malformed);
1592         return II && HasFeature(*this, II->getName());
1593       });
1594   } else if (II == Ident__has_extension) {
1595     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1596       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1597         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1598                                            diag::err_feature_check_malformed);
1599         return II && HasExtension(*this, II->getName());
1600       });
1601   } else if (II == Ident__has_builtin) {
1602     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1603       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1604         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1605                                            diag::err_feature_check_malformed);
1606         const LangOptions &LangOpts = getLangOpts();
1607         if (!II)
1608           return false;
1609         else if (II->getBuiltinID() != 0) {
1610           switch (II->getBuiltinID()) {
1611           case Builtin::BI__builtin_operator_new:
1612           case Builtin::BI__builtin_operator_delete:
1613             // denotes date of behavior change to support calling arbitrary
1614             // usual allocation and deallocation functions. Required by libc++
1615             return 201802;
1616           default:
1617             return true;
1618           }
1619           return true;
1620         } else {
1621           return llvm::StringSwitch<bool>(II->getName())
1622                       .Case("__make_integer_seq", LangOpts.CPlusPlus)
1623                       .Case("__type_pack_element", LangOpts.CPlusPlus)
1624                       .Case("__builtin_available", true)
1625                       .Case("__is_target_arch", true)
1626                       .Case("__is_target_vendor", true)
1627                       .Case("__is_target_os", true)
1628                       .Case("__is_target_environment", true)
1629                       .Case("__builtin_LINE", true)
1630                       .Case("__builtin_FILE", true)
1631                       .Case("__builtin_FUNCTION", true)
1632                       .Case("__builtin_COLUMN", true)
1633                       .Case("__builtin_bit_cast", true)
1634                       .Default(false);
1635         }
1636       });
1637   } else if (II == Ident__is_identifier) {
1638     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1639       [](Token &Tok, bool &HasLexedNextToken) -> int {
1640         return Tok.is(tok::identifier);
1641       });
1642   } else if (II == Ident__has_attribute) {
1643     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1644       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1645         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1646                                            diag::err_feature_check_malformed);
1647         return II ? hasAttribute(AttrSyntax::GNU, nullptr, II,
1648                                  getTargetInfo(), getLangOpts()) : 0;
1649       });
1650   } else if (II == Ident__has_declspec) {
1651     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1652       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1653         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1654                                            diag::err_feature_check_malformed);
1655         return II ? hasAttribute(AttrSyntax::Declspec, nullptr, II,
1656                                  getTargetInfo(), getLangOpts()) : 0;
1657       });
1658   } else if (II == Ident__has_cpp_attribute ||
1659              II == Ident__has_c_attribute) {
1660     bool IsCXX = II == Ident__has_cpp_attribute;
1661     EvaluateFeatureLikeBuiltinMacro(
1662         OS, Tok, II, *this, [&](Token &Tok, bool &HasLexedNextToken) -> int {
1663           IdentifierInfo *ScopeII = nullptr;
1664           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1665               Tok, *this, diag::err_feature_check_malformed);
1666           if (!II)
1667             return false;
1668 
1669           // It is possible to receive a scope token.  Read the "::", if it is
1670           // available, and the subsequent identifier.
1671           LexUnexpandedToken(Tok);
1672           if (Tok.isNot(tok::coloncolon))
1673             HasLexedNextToken = true;
1674           else {
1675             ScopeII = II;
1676             LexUnexpandedToken(Tok);
1677             II = ExpectFeatureIdentifierInfo(Tok, *this,
1678                                              diag::err_feature_check_malformed);
1679           }
1680 
1681           AttrSyntax Syntax = IsCXX ? AttrSyntax::CXX : AttrSyntax::C;
1682           return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(),
1683                                    getLangOpts())
1684                     : 0;
1685         });
1686   } else if (II == Ident__has_include ||
1687              II == Ident__has_include_next) {
1688     // The argument to these two builtins should be a parenthesized
1689     // file name string literal using angle brackets (<>) or
1690     // double-quotes ("").
1691     bool Value;
1692     if (II == Ident__has_include)
1693       Value = EvaluateHasInclude(Tok, II, *this);
1694     else
1695       Value = EvaluateHasIncludeNext(Tok, II, *this);
1696 
1697     if (Tok.isNot(tok::r_paren))
1698       return;
1699     OS << (int)Value;
1700     Tok.setKind(tok::numeric_constant);
1701   } else if (II == Ident__has_warning) {
1702     // The argument should be a parenthesized string literal.
1703     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1704       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1705         std::string WarningName;
1706         SourceLocation StrStartLoc = Tok.getLocation();
1707 
1708         HasLexedNextToken = Tok.is(tok::string_literal);
1709         if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'",
1710                                     /*AllowMacroExpansion=*/false))
1711           return false;
1712 
1713         // FIXME: Should we accept "-R..." flags here, or should that be
1714         // handled by a separate __has_remark?
1715         if (WarningName.size() < 3 || WarningName[0] != '-' ||
1716             WarningName[1] != 'W') {
1717           Diag(StrStartLoc, diag::warn_has_warning_invalid_option);
1718           return false;
1719         }
1720 
1721         // Finally, check if the warning flags maps to a diagnostic group.
1722         // We construct a SmallVector here to talk to getDiagnosticIDs().
1723         // Although we don't use the result, this isn't a hot path, and not
1724         // worth special casing.
1725         SmallVector<diag::kind, 10> Diags;
1726         return !getDiagnostics().getDiagnosticIDs()->
1727                 getDiagnosticsInGroup(diag::Flavor::WarningOrError,
1728                                       WarningName.substr(2), Diags);
1729       });
1730   } else if (II == Ident__building_module) {
1731     // The argument to this builtin should be an identifier. The
1732     // builtin evaluates to 1 when that identifier names the module we are
1733     // currently building.
1734     EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this,
1735       [this](Token &Tok, bool &HasLexedNextToken) -> int {
1736         IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this,
1737                                        diag::err_expected_id_building_module);
1738         return getLangOpts().isCompilingModule() && II &&
1739                (II->getName() == getLangOpts().CurrentModule);
1740       });
1741   } else if (II == Ident__MODULE__) {
1742     // The current module as an identifier.
1743     OS << getLangOpts().CurrentModule;
1744     IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule);
1745     Tok.setIdentifierInfo(ModuleII);
1746     Tok.setKind(ModuleII->getTokenID());
1747   } else if (II == Ident__identifier) {
1748     SourceLocation Loc = Tok.getLocation();
1749 
1750     // We're expecting '__identifier' '(' identifier ')'. Try to recover
1751     // if the parens are missing.
1752     LexNonComment(Tok);
1753     if (Tok.isNot(tok::l_paren)) {
1754       // No '(', use end of last token.
1755       Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after)
1756         << II << tok::l_paren;
1757       // If the next token isn't valid as our argument, we can't recover.
1758       if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1759         Tok.setKind(tok::identifier);
1760       return;
1761     }
1762 
1763     SourceLocation LParenLoc = Tok.getLocation();
1764     LexNonComment(Tok);
1765 
1766     if (!Tok.isAnnotation() && Tok.getIdentifierInfo())
1767       Tok.setKind(tok::identifier);
1768     else {
1769       Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier)
1770         << Tok.getKind();
1771       // Don't walk past anything that's not a real token.
1772       if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation())
1773         return;
1774     }
1775 
1776     // Discard the ')', preserving 'Tok' as our result.
1777     Token RParen;
1778     LexNonComment(RParen);
1779     if (RParen.isNot(tok::r_paren)) {
1780       Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after)
1781         << Tok.getKind() << tok::r_paren;
1782       Diag(LParenLoc, diag::note_matching) << tok::l_paren;
1783     }
1784     return;
1785   } else if (II == Ident__is_target_arch) {
1786     EvaluateFeatureLikeBuiltinMacro(
1787         OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
1788           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1789               Tok, *this, diag::err_feature_check_malformed);
1790           return II && isTargetArch(getTargetInfo(), II);
1791         });
1792   } else if (II == Ident__is_target_vendor) {
1793     EvaluateFeatureLikeBuiltinMacro(
1794         OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
1795           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1796               Tok, *this, diag::err_feature_check_malformed);
1797           return II && isTargetVendor(getTargetInfo(), II);
1798         });
1799   } else if (II == Ident__is_target_os) {
1800     EvaluateFeatureLikeBuiltinMacro(
1801         OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
1802           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1803               Tok, *this, diag::err_feature_check_malformed);
1804           return II && isTargetOS(getTargetInfo(), II);
1805         });
1806   } else if (II == Ident__is_target_environment) {
1807     EvaluateFeatureLikeBuiltinMacro(
1808         OS, Tok, II, *this, [this](Token &Tok, bool &HasLexedNextToken) -> int {
1809           IdentifierInfo *II = ExpectFeatureIdentifierInfo(
1810               Tok, *this, diag::err_feature_check_malformed);
1811           return II && isTargetEnvironment(getTargetInfo(), II);
1812         });
1813   } else {
1814     llvm_unreachable("Unknown identifier!");
1815   }
1816   CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation());
1817   Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine);
1818   Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
1819 }
1820 
1821 void Preprocessor::markMacroAsUsed(MacroInfo *MI) {
1822   // If the 'used' status changed, and the macro requires 'unused' warning,
1823   // remove its SourceLocation from the warn-for-unused-macro locations.
1824   if (MI->isWarnIfUnused() && !MI->isUsed())
1825     WarnUnusedMacroLocs.erase(MI->getDefinitionLoc());
1826   MI->setIsUsed(true);
1827 }
1828