1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the top level handling of macro expansion for the 10 // preprocessor. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/AttributeCommonInfo.h" 15 #include "clang/Basic/Attributes.h" 16 #include "clang/Basic/Builtins.h" 17 #include "clang/Basic/FileManager.h" 18 #include "clang/Basic/IdentifierTable.h" 19 #include "clang/Basic/LLVM.h" 20 #include "clang/Basic/LangOptions.h" 21 #include "clang/Basic/ObjCRuntime.h" 22 #include "clang/Basic/SourceLocation.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Lex/CodeCompletionHandler.h" 25 #include "clang/Lex/DirectoryLookup.h" 26 #include "clang/Lex/ExternalPreprocessorSource.h" 27 #include "clang/Lex/HeaderSearch.h" 28 #include "clang/Lex/LexDiagnostic.h" 29 #include "clang/Lex/LiteralSupport.h" 30 #include "clang/Lex/MacroArgs.h" 31 #include "clang/Lex/MacroInfo.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Lex/PreprocessorLexer.h" 34 #include "clang/Lex/PreprocessorOptions.h" 35 #include "clang/Lex/Token.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/DenseSet.h" 39 #include "llvm/ADT/FoldingSet.h" 40 #include "llvm/ADT/STLExtras.h" 41 #include "llvm/ADT/SmallString.h" 42 #include "llvm/ADT/SmallVector.h" 43 #include "llvm/ADT/StringRef.h" 44 #include "llvm/ADT/StringSwitch.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/ErrorHandling.h" 47 #include "llvm/Support/Format.h" 48 #include "llvm/Support/Path.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstddef> 53 #include <cstring> 54 #include <ctime> 55 #include <optional> 56 #include <string> 57 #include <tuple> 58 #include <utility> 59 60 using namespace clang; 61 62 MacroDirective * 63 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { 64 if (!II->hadMacroDefinition()) 65 return nullptr; 66 auto Pos = CurSubmoduleState->Macros.find(II); 67 return Pos == CurSubmoduleState->Macros.end() ? nullptr 68 : Pos->second.getLatest(); 69 } 70 71 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ 72 assert(MD && "MacroDirective should be non-zero!"); 73 assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); 74 75 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 76 auto *OldMD = StoredMD.getLatest(); 77 MD->setPrevious(OldMD); 78 StoredMD.setLatest(MD); 79 StoredMD.overrideActiveModuleMacros(*this, II); 80 81 if (needModuleMacros()) { 82 // Track that we created a new macro directive, so we know we should 83 // consider building a ModuleMacro for it when we get to the end of 84 // the module. 85 PendingModuleMacroNames.push_back(II); 86 } 87 88 // Set up the identifier as having associated macro history. 89 II->setHasMacroDefinition(true); 90 if (!MD->isDefined() && !LeafModuleMacros.contains(II)) 91 II->setHasMacroDefinition(false); 92 if (II->isFromAST()) 93 II->setChangedSinceDeserialization(); 94 } 95 96 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, 97 MacroDirective *ED, 98 MacroDirective *MD) { 99 // Normally, when a macro is defined, it goes through appendMacroDirective() 100 // above, which chains a macro to previous defines, undefs, etc. 101 // However, in a pch, the whole macro history up to the end of the pch is 102 // stored, so ASTReader goes through this function instead. 103 // However, built-in macros are already registered in the Preprocessor 104 // ctor, and ASTWriter stops writing the macro chain at built-in macros, 105 // so in that case the chain from the pch needs to be spliced to the existing 106 // built-in. 107 108 assert(II && MD); 109 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 110 111 if (auto *OldMD = StoredMD.getLatest()) { 112 // shouldIgnoreMacro() in ASTWriter also stops at macros from the 113 // predefines buffer in module builds. However, in module builds, modules 114 // are loaded completely before predefines are processed, so StoredMD 115 // will be nullptr for them when they're loaded. StoredMD should only be 116 // non-nullptr for builtins read from a pch file. 117 assert(OldMD->getMacroInfo()->isBuiltinMacro() && 118 "only built-ins should have an entry here"); 119 assert(!OldMD->getPrevious() && "builtin should only have a single entry"); 120 ED->setPrevious(OldMD); 121 StoredMD.setLatest(MD); 122 } else { 123 StoredMD = MD; 124 } 125 126 // Setup the identifier as having associated macro history. 127 II->setHasMacroDefinition(true); 128 if (!MD->isDefined() && !LeafModuleMacros.contains(II)) 129 II->setHasMacroDefinition(false); 130 } 131 132 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, 133 MacroInfo *Macro, 134 ArrayRef<ModuleMacro *> Overrides, 135 bool &New) { 136 llvm::FoldingSetNodeID ID; 137 ModuleMacro::Profile(ID, Mod, II); 138 139 void *InsertPos; 140 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { 141 New = false; 142 return MM; 143 } 144 145 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides); 146 ModuleMacros.InsertNode(MM, InsertPos); 147 148 // Each overridden macro is now overridden by one more macro. 149 bool HidAny = false; 150 for (auto *O : Overrides) { 151 HidAny |= (O->NumOverriddenBy == 0); 152 ++O->NumOverriddenBy; 153 } 154 155 // If we were the first overrider for any macro, it's no longer a leaf. 156 auto &LeafMacros = LeafModuleMacros[II]; 157 if (HidAny) { 158 llvm::erase_if(LeafMacros, 159 [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; }); 160 } 161 162 // The new macro is always a leaf macro. 163 LeafMacros.push_back(MM); 164 // The identifier now has defined macros (that may or may not be visible). 165 II->setHasMacroDefinition(true); 166 167 New = true; 168 return MM; 169 } 170 171 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, 172 const IdentifierInfo *II) { 173 llvm::FoldingSetNodeID ID; 174 ModuleMacro::Profile(ID, Mod, II); 175 176 void *InsertPos; 177 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); 178 } 179 180 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, 181 ModuleMacroInfo &Info) { 182 assert(Info.ActiveModuleMacrosGeneration != 183 CurSubmoduleState->VisibleModules.getGeneration() && 184 "don't need to update this macro name info"); 185 Info.ActiveModuleMacrosGeneration = 186 CurSubmoduleState->VisibleModules.getGeneration(); 187 188 auto Leaf = LeafModuleMacros.find(II); 189 if (Leaf == LeafModuleMacros.end()) { 190 // No imported macros at all: nothing to do. 191 return; 192 } 193 194 Info.ActiveModuleMacros.clear(); 195 196 // Every macro that's locally overridden is overridden by a visible macro. 197 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides; 198 for (auto *O : Info.OverriddenMacros) 199 NumHiddenOverrides[O] = -1; 200 201 // Collect all macros that are not overridden by a visible macro. 202 llvm::SmallVector<ModuleMacro *, 16> Worklist; 203 for (auto *LeafMM : Leaf->second) { 204 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); 205 if (NumHiddenOverrides.lookup(LeafMM) == 0) 206 Worklist.push_back(LeafMM); 207 } 208 while (!Worklist.empty()) { 209 auto *MM = Worklist.pop_back_val(); 210 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) { 211 // We only care about collecting definitions; undefinitions only act 212 // to override other definitions. 213 if (MM->getMacroInfo()) 214 Info.ActiveModuleMacros.push_back(MM); 215 } else { 216 for (auto *O : MM->overrides()) 217 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) 218 Worklist.push_back(O); 219 } 220 } 221 // Our reverse postorder walk found the macros in reverse order. 222 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end()); 223 224 // Determine whether the macro name is ambiguous. 225 MacroInfo *MI = nullptr; 226 bool IsSystemMacro = true; 227 bool IsAmbiguous = false; 228 if (auto *MD = Info.MD) { 229 while (MD && isa<VisibilityMacroDirective>(MD)) 230 MD = MD->getPrevious(); 231 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) { 232 MI = DMD->getInfo(); 233 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation()); 234 } 235 } 236 for (auto *Active : Info.ActiveModuleMacros) { 237 auto *NewMI = Active->getMacroInfo(); 238 239 // Before marking the macro as ambiguous, check if this is a case where 240 // both macros are in system headers. If so, we trust that the system 241 // did not get it wrong. This also handles cases where Clang's own 242 // headers have a different spelling of certain system macros: 243 // #define LONG_MAX __LONG_MAX__ (clang's limits.h) 244 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) 245 // 246 // FIXME: Remove the defined-in-system-headers check. clang's limits.h 247 // overrides the system limits.h's macros, so there's no conflict here. 248 if (MI && NewMI != MI && 249 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true)) 250 IsAmbiguous = true; 251 IsSystemMacro &= Active->getOwningModule()->IsSystem || 252 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc()); 253 MI = NewMI; 254 } 255 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; 256 } 257 258 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { 259 ArrayRef<ModuleMacro*> Leaf; 260 auto LeafIt = LeafModuleMacros.find(II); 261 if (LeafIt != LeafModuleMacros.end()) 262 Leaf = LeafIt->second; 263 const MacroState *State = nullptr; 264 auto Pos = CurSubmoduleState->Macros.find(II); 265 if (Pos != CurSubmoduleState->Macros.end()) 266 State = &Pos->second; 267 268 llvm::errs() << "MacroState " << State << " " << II->getNameStart(); 269 if (State && State->isAmbiguous(*this, II)) 270 llvm::errs() << " ambiguous"; 271 if (State && !State->getOverriddenMacros().empty()) { 272 llvm::errs() << " overrides"; 273 for (auto *O : State->getOverriddenMacros()) 274 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 275 } 276 llvm::errs() << "\n"; 277 278 // Dump local macro directives. 279 for (auto *MD = State ? State->getLatest() : nullptr; MD; 280 MD = MD->getPrevious()) { 281 llvm::errs() << " "; 282 MD->dump(); 283 } 284 285 // Dump module macros. 286 llvm::DenseSet<ModuleMacro*> Active; 287 for (auto *MM : 288 State ? State->getActiveModuleMacros(*this, II) : std::nullopt) 289 Active.insert(MM); 290 llvm::DenseSet<ModuleMacro*> Visited; 291 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end()); 292 while (!Worklist.empty()) { 293 auto *MM = Worklist.pop_back_val(); 294 llvm::errs() << " ModuleMacro " << MM << " " 295 << MM->getOwningModule()->getFullModuleName(); 296 if (!MM->getMacroInfo()) 297 llvm::errs() << " undef"; 298 299 if (Active.count(MM)) 300 llvm::errs() << " active"; 301 else if (!CurSubmoduleState->VisibleModules.isVisible( 302 MM->getOwningModule())) 303 llvm::errs() << " hidden"; 304 else if (MM->getMacroInfo()) 305 llvm::errs() << " overridden"; 306 307 if (!MM->overrides().empty()) { 308 llvm::errs() << " overrides"; 309 for (auto *O : MM->overrides()) { 310 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 311 if (Visited.insert(O).second) 312 Worklist.push_back(O); 313 } 314 } 315 llvm::errs() << "\n"; 316 if (auto *MI = MM->getMacroInfo()) { 317 llvm::errs() << " "; 318 MI->dump(); 319 llvm::errs() << "\n"; 320 } 321 } 322 } 323 324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier 325 /// table and mark it as a builtin macro to be expanded. 326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ 327 // Get the identifier. 328 IdentifierInfo *Id = PP.getIdentifierInfo(Name); 329 330 // Mark it as being a macro that is builtin. 331 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); 332 MI->setIsBuiltinMacro(); 333 PP.appendDefMacroDirective(Id, MI); 334 return Id; 335 } 336 337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the 338 /// identifier table. 339 void Preprocessor::RegisterBuiltinMacros() { 340 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); 341 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); 342 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); 343 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); 344 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); 345 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); 346 Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro(*this, "__FLT_EVAL_METHOD__"); 347 348 // C++ Standing Document Extensions. 349 if (getLangOpts().CPlusPlus) 350 Ident__has_cpp_attribute = 351 RegisterBuiltinMacro(*this, "__has_cpp_attribute"); 352 else 353 Ident__has_cpp_attribute = nullptr; 354 355 // GCC Extensions. 356 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); 357 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); 358 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); 359 360 // Microsoft Extensions. 361 if (getLangOpts().MicrosoftExt) { 362 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier"); 363 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); 364 } else { 365 Ident__identifier = nullptr; 366 Ident__pragma = nullptr; 367 } 368 369 // Clang Extensions. 370 Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__"); 371 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); 372 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); 373 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); 374 Ident__has_constexpr_builtin = 375 RegisterBuiltinMacro(*this, "__has_constexpr_builtin"); 376 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); 377 if (!getLangOpts().CPlusPlus) 378 Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute"); 379 else 380 Ident__has_c_attribute = nullptr; 381 382 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute"); 383 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); 384 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); 385 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); 386 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier"); 387 Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch"); 388 Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor"); 389 Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os"); 390 Ident__is_target_environment = 391 RegisterBuiltinMacro(*this, "__is_target_environment"); 392 Ident__is_target_variant_os = 393 RegisterBuiltinMacro(*this, "__is_target_variant_os"); 394 Ident__is_target_variant_environment = 395 RegisterBuiltinMacro(*this, "__is_target_variant_environment"); 396 397 // Modules. 398 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module"); 399 if (!getLangOpts().CurrentModule.empty()) 400 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__"); 401 else 402 Ident__MODULE__ = nullptr; 403 } 404 405 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token 406 /// in its expansion, currently expands to that token literally. 407 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, 408 const IdentifierInfo *MacroIdent, 409 Preprocessor &PP) { 410 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); 411 412 // If the token isn't an identifier, it's always literally expanded. 413 if (!II) return true; 414 415 // If the information about this identifier is out of date, update it from 416 // the external source. 417 if (II->isOutOfDate()) 418 PP.getExternalSource()->updateOutOfDateIdentifier(*II); 419 420 // If the identifier is a macro, and if that macro is enabled, it may be 421 // expanded so it's not a trivial expansion. 422 if (auto *ExpansionMI = PP.getMacroInfo(II)) 423 if (ExpansionMI->isEnabled() && 424 // Fast expanding "#define X X" is ok, because X would be disabled. 425 II != MacroIdent) 426 return false; 427 428 // If this is an object-like macro invocation, it is safe to trivially expand 429 // it. 430 if (MI->isObjectLike()) return true; 431 432 // If this is a function-like macro invocation, it's safe to trivially expand 433 // as long as the identifier is not a macro argument. 434 return !llvm::is_contained(MI->params(), II); 435 } 436 437 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be 438 /// lexed is a '('. If so, consume the token and return true, if not, this 439 /// method should have no observable side-effect on the lexed tokens. 440 bool Preprocessor::isNextPPTokenLParen() { 441 // Do some quick tests for rejection cases. 442 unsigned Val; 443 if (CurLexer) 444 Val = CurLexer->isNextPPTokenLParen(); 445 else 446 Val = CurTokenLexer->isNextTokenLParen(); 447 448 if (Val == 2) { 449 // We have run off the end. If it's a source file we don't 450 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the 451 // macro stack. 452 if (CurPPLexer) 453 return false; 454 for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) { 455 if (Entry.TheLexer) 456 Val = Entry.TheLexer->isNextPPTokenLParen(); 457 else 458 Val = Entry.TheTokenLexer->isNextTokenLParen(); 459 460 if (Val != 2) 461 break; 462 463 // Ran off the end of a source file? 464 if (Entry.ThePPLexer) 465 return false; 466 } 467 } 468 469 // Okay, if we know that the token is a '(', lex it and return. Otherwise we 470 // have found something that isn't a '(' or we found the end of the 471 // translation unit. In either case, return false. 472 return Val == 1; 473 } 474 475 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be 476 /// expanded as a macro, handle it and return the next token as 'Identifier'. 477 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, 478 const MacroDefinition &M) { 479 emitMacroExpansionWarnings(Identifier); 480 481 MacroInfo *MI = M.getMacroInfo(); 482 483 // If this is a macro expansion in the "#if !defined(x)" line for the file, 484 // then the macro could expand to different things in other contexts, we need 485 // to disable the optimization in this case. 486 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); 487 488 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. 489 if (MI->isBuiltinMacro()) { 490 if (Callbacks) 491 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(), 492 /*Args=*/nullptr); 493 ExpandBuiltinMacro(Identifier); 494 return true; 495 } 496 497 /// Args - If this is a function-like macro expansion, this contains, 498 /// for each macro argument, the list of tokens that were provided to the 499 /// invocation. 500 MacroArgs *Args = nullptr; 501 502 // Remember where the end of the expansion occurred. For an object-like 503 // macro, this is the identifier. For a function-like macro, this is the ')'. 504 SourceLocation ExpansionEnd = Identifier.getLocation(); 505 506 // If this is a function-like macro, read the arguments. 507 if (MI->isFunctionLike()) { 508 // Remember that we are now parsing the arguments to a macro invocation. 509 // Preprocessor directives used inside macro arguments are not portable, and 510 // this enables the warning. 511 InMacroArgs = true; 512 ArgMacro = &Identifier; 513 514 Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd); 515 516 // Finished parsing args. 517 InMacroArgs = false; 518 ArgMacro = nullptr; 519 520 // If there was an error parsing the arguments, bail out. 521 if (!Args) return true; 522 523 ++NumFnMacroExpanded; 524 } else { 525 ++NumMacroExpanded; 526 } 527 528 // Notice that this macro has been used. 529 markMacroAsUsed(MI); 530 531 // Remember where the token is expanded. 532 SourceLocation ExpandLoc = Identifier.getLocation(); 533 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); 534 535 if (Callbacks) { 536 if (InMacroArgs) { 537 // We can have macro expansion inside a conditional directive while 538 // reading the function macro arguments. To ensure, in that case, that 539 // MacroExpands callbacks still happen in source order, queue this 540 // callback to have it happen after the function macro callback. 541 DelayedMacroExpandsCallbacks.push_back( 542 MacroExpandsInfo(Identifier, M, ExpansionRange)); 543 } else { 544 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args); 545 if (!DelayedMacroExpandsCallbacks.empty()) { 546 for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { 547 // FIXME: We lose macro args info with delayed callback. 548 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, 549 /*Args=*/nullptr); 550 } 551 DelayedMacroExpandsCallbacks.clear(); 552 } 553 } 554 } 555 556 // If the macro definition is ambiguous, complain. 557 if (M.isAmbiguous()) { 558 Diag(Identifier, diag::warn_pp_ambiguous_macro) 559 << Identifier.getIdentifierInfo(); 560 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) 561 << Identifier.getIdentifierInfo(); 562 M.forAllDefinitions([&](const MacroInfo *OtherMI) { 563 if (OtherMI != MI) 564 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) 565 << Identifier.getIdentifierInfo(); 566 }); 567 } 568 569 // If we started lexing a macro, enter the macro expansion body. 570 571 // If this macro expands to no tokens, don't bother to push it onto the 572 // expansion stack, only to take it right back off. 573 if (MI->getNumTokens() == 0) { 574 // No need for arg info. 575 if (Args) Args->destroy(*this); 576 577 // Propagate whitespace info as if we had pushed, then popped, 578 // a macro context. 579 Identifier.setFlag(Token::LeadingEmptyMacro); 580 PropagateLineStartLeadingSpaceInfo(Identifier); 581 ++NumFastMacroExpanded; 582 return false; 583 } else if (MI->getNumTokens() == 1 && 584 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), 585 *this)) { 586 // Otherwise, if this macro expands into a single trivially-expanded 587 // token: expand it now. This handles common cases like 588 // "#define VAL 42". 589 590 // No need for arg info. 591 if (Args) Args->destroy(*this); 592 593 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro 594 // identifier to the expanded token. 595 bool isAtStartOfLine = Identifier.isAtStartOfLine(); 596 bool hasLeadingSpace = Identifier.hasLeadingSpace(); 597 598 // Replace the result token. 599 Identifier = MI->getReplacementToken(0); 600 601 // Restore the StartOfLine/LeadingSpace markers. 602 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); 603 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); 604 605 // Update the tokens location to include both its expansion and physical 606 // locations. 607 SourceLocation Loc = 608 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, 609 ExpansionEnd,Identifier.getLength()); 610 Identifier.setLocation(Loc); 611 612 // If this is a disabled macro or #define X X, we must mark the result as 613 // unexpandable. 614 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { 615 if (MacroInfo *NewMI = getMacroInfo(NewII)) 616 if (!NewMI->isEnabled() || NewMI == MI) { 617 Identifier.setFlag(Token::DisableExpand); 618 // Don't warn for "#define X X" like "#define bool bool" from 619 // stdbool.h. 620 if (NewMI != MI || MI->isFunctionLike()) 621 Diag(Identifier, diag::pp_disabled_macro_expansion); 622 } 623 } 624 625 // Since this is not an identifier token, it can't be macro expanded, so 626 // we're done. 627 ++NumFastMacroExpanded; 628 return true; 629 } 630 631 // Start expanding the macro. 632 EnterMacro(Identifier, ExpansionEnd, MI, Args); 633 return false; 634 } 635 636 enum Bracket { 637 Brace, 638 Paren 639 }; 640 641 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the 642 /// token vector are properly nested. 643 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { 644 SmallVector<Bracket, 8> Brackets; 645 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), 646 E = Tokens.end(); 647 I != E; ++I) { 648 if (I->is(tok::l_paren)) { 649 Brackets.push_back(Paren); 650 } else if (I->is(tok::r_paren)) { 651 if (Brackets.empty() || Brackets.back() == Brace) 652 return false; 653 Brackets.pop_back(); 654 } else if (I->is(tok::l_brace)) { 655 Brackets.push_back(Brace); 656 } else if (I->is(tok::r_brace)) { 657 if (Brackets.empty() || Brackets.back() == Paren) 658 return false; 659 Brackets.pop_back(); 660 } 661 } 662 return Brackets.empty(); 663 } 664 665 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new 666 /// vector of tokens in NewTokens. The new number of arguments will be placed 667 /// in NumArgs and the ranges which need to surrounded in parentheses will be 668 /// in ParenHints. 669 /// Returns false if the token stream cannot be changed. If this is because 670 /// of an initializer list starting a macro argument, the range of those 671 /// initializer lists will be place in InitLists. 672 static bool GenerateNewArgTokens(Preprocessor &PP, 673 SmallVectorImpl<Token> &OldTokens, 674 SmallVectorImpl<Token> &NewTokens, 675 unsigned &NumArgs, 676 SmallVectorImpl<SourceRange> &ParenHints, 677 SmallVectorImpl<SourceRange> &InitLists) { 678 if (!CheckMatchedBrackets(OldTokens)) 679 return false; 680 681 // Once it is known that the brackets are matched, only a simple count of the 682 // braces is needed. 683 unsigned Braces = 0; 684 685 // First token of a new macro argument. 686 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); 687 688 // First closing brace in a new macro argument. Used to generate 689 // SourceRanges for InitLists. 690 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); 691 NumArgs = 0; 692 Token TempToken; 693 // Set to true when a macro separator token is found inside a braced list. 694 // If true, the fixed argument spans multiple old arguments and ParenHints 695 // will be updated. 696 bool FoundSeparatorToken = false; 697 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), 698 E = OldTokens.end(); 699 I != E; ++I) { 700 if (I->is(tok::l_brace)) { 701 ++Braces; 702 } else if (I->is(tok::r_brace)) { 703 --Braces; 704 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) 705 ClosingBrace = I; 706 } else if (I->is(tok::eof)) { 707 // EOF token is used to separate macro arguments 708 if (Braces != 0) { 709 // Assume comma separator is actually braced list separator and change 710 // it back to a comma. 711 FoundSeparatorToken = true; 712 I->setKind(tok::comma); 713 I->setLength(1); 714 } else { // Braces == 0 715 // Separator token still separates arguments. 716 ++NumArgs; 717 718 // If the argument starts with a brace, it can't be fixed with 719 // parentheses. A different diagnostic will be given. 720 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { 721 InitLists.push_back( 722 SourceRange(ArgStartIterator->getLocation(), 723 PP.getLocForEndOfToken(ClosingBrace->getLocation()))); 724 ClosingBrace = E; 725 } 726 727 // Add left paren 728 if (FoundSeparatorToken) { 729 TempToken.startToken(); 730 TempToken.setKind(tok::l_paren); 731 TempToken.setLocation(ArgStartIterator->getLocation()); 732 TempToken.setLength(0); 733 NewTokens.push_back(TempToken); 734 } 735 736 // Copy over argument tokens 737 NewTokens.insert(NewTokens.end(), ArgStartIterator, I); 738 739 // Add right paren and store the paren locations in ParenHints 740 if (FoundSeparatorToken) { 741 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); 742 TempToken.startToken(); 743 TempToken.setKind(tok::r_paren); 744 TempToken.setLocation(Loc); 745 TempToken.setLength(0); 746 NewTokens.push_back(TempToken); 747 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), 748 Loc)); 749 } 750 751 // Copy separator token 752 NewTokens.push_back(*I); 753 754 // Reset values 755 ArgStartIterator = I + 1; 756 FoundSeparatorToken = false; 757 } 758 } 759 } 760 761 return !ParenHints.empty() && InitLists.empty(); 762 } 763 764 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next 765 /// token is the '(' of the macro, this method is invoked to read all of the 766 /// actual arguments specified for the macro invocation. This returns null on 767 /// error. 768 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, 769 MacroInfo *MI, 770 SourceLocation &MacroEnd) { 771 // The number of fixed arguments to parse. 772 unsigned NumFixedArgsLeft = MI->getNumParams(); 773 bool isVariadic = MI->isVariadic(); 774 775 // Outer loop, while there are more arguments, keep reading them. 776 Token Tok; 777 778 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 779 // an argument value in a macro could expand to ',' or '(' or ')'. 780 LexUnexpandedToken(Tok); 781 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); 782 783 // ArgTokens - Build up a list of tokens that make up each argument. Each 784 // argument is separated by an EOF token. Use a SmallVector so we can avoid 785 // heap allocations in the common case. 786 SmallVector<Token, 64> ArgTokens; 787 bool ContainsCodeCompletionTok = false; 788 bool FoundElidedComma = false; 789 790 SourceLocation TooManyArgsLoc; 791 792 unsigned NumActuals = 0; 793 while (Tok.isNot(tok::r_paren)) { 794 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod)) 795 break; 796 797 assert(Tok.isOneOf(tok::l_paren, tok::comma) && 798 "only expect argument separators here"); 799 800 size_t ArgTokenStart = ArgTokens.size(); 801 SourceLocation ArgStartLoc = Tok.getLocation(); 802 803 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note 804 // that we already consumed the first one. 805 unsigned NumParens = 0; 806 807 while (true) { 808 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 809 // an argument value in a macro could expand to ',' or '(' or ')'. 810 LexUnexpandedToken(Tok); 811 812 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n" 813 if (!ContainsCodeCompletionTok) { 814 Diag(MacroName, diag::err_unterm_macro_invoc); 815 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 816 << MacroName.getIdentifierInfo(); 817 // Do not lose the EOF/EOD. Return it to the client. 818 MacroName = Tok; 819 return nullptr; 820 } 821 // Do not lose the EOF/EOD. 822 auto Toks = std::make_unique<Token[]>(1); 823 Toks[0] = Tok; 824 EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false); 825 break; 826 } else if (Tok.is(tok::r_paren)) { 827 // If we found the ) token, the macro arg list is done. 828 if (NumParens-- == 0) { 829 MacroEnd = Tok.getLocation(); 830 if (!ArgTokens.empty() && 831 ArgTokens.back().commaAfterElided()) { 832 FoundElidedComma = true; 833 } 834 break; 835 } 836 } else if (Tok.is(tok::l_paren)) { 837 ++NumParens; 838 } else if (Tok.is(tok::comma)) { 839 // In Microsoft-compatibility mode, single commas from nested macro 840 // expansions should not be considered as argument separators. We test 841 // for this with the IgnoredComma token flag. 842 if (Tok.getFlags() & Token::IgnoredComma) { 843 // However, in MSVC's preprocessor, subsequent expansions do treat 844 // these commas as argument separators. This leads to a common 845 // workaround used in macros that need to work in both MSVC and 846 // compliant preprocessors. Therefore, the IgnoredComma flag can only 847 // apply once to any given token. 848 Tok.clearFlag(Token::IgnoredComma); 849 } else if (NumParens == 0) { 850 // Comma ends this argument if there are more fixed arguments 851 // expected. However, if this is a variadic macro, and this is part of 852 // the variadic part, then the comma is just an argument token. 853 if (!isVariadic) 854 break; 855 if (NumFixedArgsLeft > 1) 856 break; 857 } 858 } else if (Tok.is(tok::comment) && !KeepMacroComments) { 859 // If this is a comment token in the argument list and we're just in 860 // -C mode (not -CC mode), discard the comment. 861 continue; 862 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { 863 // Reading macro arguments can cause macros that we are currently 864 // expanding from to be popped off the expansion stack. Doing so causes 865 // them to be reenabled for expansion. Here we record whether any 866 // identifiers we lex as macro arguments correspond to disabled macros. 867 // If so, we mark the token as noexpand. This is a subtle aspect of 868 // C99 6.10.3.4p2. 869 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) 870 if (!MI->isEnabled()) 871 Tok.setFlag(Token::DisableExpand); 872 } else if (Tok.is(tok::code_completion)) { 873 ContainsCodeCompletionTok = true; 874 if (CodeComplete) 875 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), 876 MI, NumActuals); 877 // Don't mark that we reached the code-completion point because the 878 // parser is going to handle the token and there will be another 879 // code-completion callback. 880 } 881 882 ArgTokens.push_back(Tok); 883 } 884 885 // If this was an empty argument list foo(), don't add this as an empty 886 // argument. 887 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) 888 break; 889 890 // If this is not a variadic macro, and too many args were specified, emit 891 // an error. 892 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { 893 if (ArgTokens.size() != ArgTokenStart) 894 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); 895 else 896 TooManyArgsLoc = ArgStartLoc; 897 } 898 899 // Empty arguments are standard in C99 and C++0x, and are supported as an 900 // extension in other modes. 901 if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99) 902 Diag(Tok, getLangOpts().CPlusPlus11 903 ? diag::warn_cxx98_compat_empty_fnmacro_arg 904 : diag::ext_empty_fnmacro_arg); 905 906 // Add a marker EOF token to the end of the token list for this argument. 907 Token EOFTok; 908 EOFTok.startToken(); 909 EOFTok.setKind(tok::eof); 910 EOFTok.setLocation(Tok.getLocation()); 911 EOFTok.setLength(0); 912 ArgTokens.push_back(EOFTok); 913 ++NumActuals; 914 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) 915 --NumFixedArgsLeft; 916 } 917 918 // Okay, we either found the r_paren. Check to see if we parsed too few 919 // arguments. 920 unsigned MinArgsExpected = MI->getNumParams(); 921 922 // If this is not a variadic macro, and too many args were specified, emit 923 // an error. 924 if (!isVariadic && NumActuals > MinArgsExpected && 925 !ContainsCodeCompletionTok) { 926 // Emit the diagnostic at the macro name in case there is a missing ). 927 // Emitting it at the , could be far away from the macro name. 928 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); 929 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 930 << MacroName.getIdentifierInfo(); 931 932 // Commas from braced initializer lists will be treated as argument 933 // separators inside macros. Attempt to correct for this with parentheses. 934 // TODO: See if this can be generalized to angle brackets for templates 935 // inside macro arguments. 936 937 SmallVector<Token, 4> FixedArgTokens; 938 unsigned FixedNumArgs = 0; 939 SmallVector<SourceRange, 4> ParenHints, InitLists; 940 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, 941 ParenHints, InitLists)) { 942 if (!InitLists.empty()) { 943 DiagnosticBuilder DB = 944 Diag(MacroName, 945 diag::note_init_list_at_beginning_of_macro_argument); 946 for (SourceRange Range : InitLists) 947 DB << Range; 948 } 949 return nullptr; 950 } 951 if (FixedNumArgs != MinArgsExpected) 952 return nullptr; 953 954 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); 955 for (SourceRange ParenLocation : ParenHints) { 956 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); 957 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); 958 } 959 ArgTokens.swap(FixedArgTokens); 960 NumActuals = FixedNumArgs; 961 } 962 963 // See MacroArgs instance var for description of this. 964 bool isVarargsElided = false; 965 966 if (ContainsCodeCompletionTok) { 967 // Recover from not-fully-formed macro invocation during code-completion. 968 Token EOFTok; 969 EOFTok.startToken(); 970 EOFTok.setKind(tok::eof); 971 EOFTok.setLocation(Tok.getLocation()); 972 EOFTok.setLength(0); 973 for (; NumActuals < MinArgsExpected; ++NumActuals) 974 ArgTokens.push_back(EOFTok); 975 } 976 977 if (NumActuals < MinArgsExpected) { 978 // There are several cases where too few arguments is ok, handle them now. 979 if (NumActuals == 0 && MinArgsExpected == 1) { 980 // #define A(X) or #define A(...) ---> A() 981 982 // If there is exactly one argument, and that argument is missing, 983 // then we have an empty "()" argument empty list. This is fine, even if 984 // the macro expects one argument (the argument is just empty). 985 isVarargsElided = MI->isVariadic(); 986 } else if ((FoundElidedComma || MI->isVariadic()) && 987 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) 988 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() 989 // Varargs where the named vararg parameter is missing: OK as extension. 990 // #define A(x, ...) 991 // A("blah") 992 // 993 // If the macro contains the comma pasting extension, the diagnostic 994 // is suppressed; we know we'll get another diagnostic later. 995 if (!MI->hasCommaPasting()) { 996 // C++20 allows this construct, but standards before C++20 and all C 997 // standards do not allow the construct (we allow it as an extension). 998 Diag(Tok, getLangOpts().CPlusPlus20 999 ? diag::warn_cxx17_compat_missing_varargs_arg 1000 : diag::ext_missing_varargs_arg); 1001 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1002 << MacroName.getIdentifierInfo(); 1003 } 1004 1005 // Remember this occurred, allowing us to elide the comma when used for 1006 // cases like: 1007 // #define A(x, foo...) blah(a, ## foo) 1008 // #define B(x, ...) blah(a, ## __VA_ARGS__) 1009 // #define C(...) blah(a, ## __VA_ARGS__) 1010 // A(x) B(x) C() 1011 isVarargsElided = true; 1012 } else if (!ContainsCodeCompletionTok) { 1013 // Otherwise, emit the error. 1014 Diag(Tok, diag::err_too_few_args_in_macro_invoc); 1015 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1016 << MacroName.getIdentifierInfo(); 1017 return nullptr; 1018 } 1019 1020 // Add a marker EOF token to the end of the token list for this argument. 1021 SourceLocation EndLoc = Tok.getLocation(); 1022 Tok.startToken(); 1023 Tok.setKind(tok::eof); 1024 Tok.setLocation(EndLoc); 1025 Tok.setLength(0); 1026 ArgTokens.push_back(Tok); 1027 1028 // If we expect two arguments, add both as empty. 1029 if (NumActuals == 0 && MinArgsExpected == 2) 1030 ArgTokens.push_back(Tok); 1031 1032 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && 1033 !ContainsCodeCompletionTok) { 1034 // Emit the diagnostic at the macro name in case there is a missing ). 1035 // Emitting it at the , could be far away from the macro name. 1036 Diag(MacroName, diag::err_too_many_args_in_macro_invoc); 1037 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1038 << MacroName.getIdentifierInfo(); 1039 return nullptr; 1040 } 1041 1042 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); 1043 } 1044 1045 /// Keeps macro expanded tokens for TokenLexers. 1046 // 1047 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is 1048 /// going to lex in the cache and when it finishes the tokens are removed 1049 /// from the end of the cache. 1050 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, 1051 ArrayRef<Token> tokens) { 1052 assert(tokLexer); 1053 if (tokens.empty()) 1054 return nullptr; 1055 1056 size_t newIndex = MacroExpandedTokens.size(); 1057 bool cacheNeedsToGrow = tokens.size() > 1058 MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); 1059 MacroExpandedTokens.append(tokens.begin(), tokens.end()); 1060 1061 if (cacheNeedsToGrow) { 1062 // Go through all the TokenLexers whose 'Tokens' pointer points in the 1063 // buffer and update the pointers to the (potential) new buffer array. 1064 for (const auto &Lexer : MacroExpandingLexersStack) { 1065 TokenLexer *prevLexer; 1066 size_t tokIndex; 1067 std::tie(prevLexer, tokIndex) = Lexer; 1068 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; 1069 } 1070 } 1071 1072 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); 1073 return MacroExpandedTokens.data() + newIndex; 1074 } 1075 1076 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { 1077 assert(!MacroExpandingLexersStack.empty()); 1078 size_t tokIndex = MacroExpandingLexersStack.back().second; 1079 assert(tokIndex < MacroExpandedTokens.size()); 1080 // Pop the cached macro expanded tokens from the end. 1081 MacroExpandedTokens.resize(tokIndex); 1082 MacroExpandingLexersStack.pop_back(); 1083 } 1084 1085 /// ComputeDATE_TIME - Compute the current time, enter it into the specified 1086 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of 1087 /// the identifier tokens inserted. 1088 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, 1089 Preprocessor &PP) { 1090 time_t TT; 1091 std::tm *TM; 1092 if (PP.getPreprocessorOpts().SourceDateEpoch) { 1093 TT = *PP.getPreprocessorOpts().SourceDateEpoch; 1094 TM = std::gmtime(&TT); 1095 } else { 1096 TT = std::time(nullptr); 1097 TM = std::localtime(&TT); 1098 } 1099 1100 static const char * const Months[] = { 1101 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" 1102 }; 1103 1104 { 1105 SmallString<32> TmpBuffer; 1106 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1107 if (TM) 1108 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], 1109 TM->tm_mday, TM->tm_year + 1900); 1110 else 1111 TmpStream << "??? ?? ????"; 1112 Token TmpTok; 1113 TmpTok.startToken(); 1114 PP.CreateString(TmpStream.str(), TmpTok); 1115 DATELoc = TmpTok.getLocation(); 1116 } 1117 1118 { 1119 SmallString<32> TmpBuffer; 1120 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1121 if (TM) 1122 TmpStream << llvm::format("\"%02d:%02d:%02d\"", TM->tm_hour, TM->tm_min, 1123 TM->tm_sec); 1124 else 1125 TmpStream << "??:??:??"; 1126 Token TmpTok; 1127 TmpTok.startToken(); 1128 PP.CreateString(TmpStream.str(), TmpTok); 1129 TIMELoc = TmpTok.getLocation(); 1130 } 1131 } 1132 1133 /// HasFeature - Return true if we recognize and implement the feature 1134 /// specified by the identifier as a standard language feature. 1135 static bool HasFeature(const Preprocessor &PP, StringRef Feature) { 1136 const LangOptions &LangOpts = PP.getLangOpts(); 1137 1138 // Normalize the feature name, __foo__ becomes foo. 1139 if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4) 1140 Feature = Feature.substr(2, Feature.size() - 4); 1141 1142 #define FEATURE(Name, Predicate) .Case(#Name, Predicate) 1143 return llvm::StringSwitch<bool>(Feature) 1144 #include "clang/Basic/Features.def" 1145 .Default(false); 1146 #undef FEATURE 1147 } 1148 1149 /// HasExtension - Return true if we recognize and implement the feature 1150 /// specified by the identifier, either as an extension or a standard language 1151 /// feature. 1152 static bool HasExtension(const Preprocessor &PP, StringRef Extension) { 1153 if (HasFeature(PP, Extension)) 1154 return true; 1155 1156 // If the use of an extension results in an error diagnostic, extensions are 1157 // effectively unavailable, so just return false here. 1158 if (PP.getDiagnostics().getExtensionHandlingBehavior() >= 1159 diag::Severity::Error) 1160 return false; 1161 1162 const LangOptions &LangOpts = PP.getLangOpts(); 1163 1164 // Normalize the extension name, __foo__ becomes foo. 1165 if (Extension.startswith("__") && Extension.endswith("__") && 1166 Extension.size() >= 4) 1167 Extension = Extension.substr(2, Extension.size() - 4); 1168 1169 // Because we inherit the feature list from HasFeature, this string switch 1170 // must be less restrictive than HasFeature's. 1171 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate) 1172 return llvm::StringSwitch<bool>(Extension) 1173 #include "clang/Basic/Features.def" 1174 .Default(false); 1175 #undef EXTENSION 1176 } 1177 1178 /// EvaluateHasIncludeCommon - Process a '__has_include("path")' 1179 /// or '__has_include_next("path")' expression. 1180 /// Returns true if successful. 1181 static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II, 1182 Preprocessor &PP, 1183 ConstSearchDirIterator LookupFrom, 1184 const FileEntry *LookupFromFile) { 1185 // Save the location of the current token. If a '(' is later found, use 1186 // that location. If not, use the end of this location instead. 1187 SourceLocation LParenLoc = Tok.getLocation(); 1188 1189 // These expressions are only allowed within a preprocessor directive. 1190 if (!PP.isParsingIfOrElifDirective()) { 1191 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; 1192 // Return a valid identifier token. 1193 assert(Tok.is(tok::identifier)); 1194 Tok.setIdentifierInfo(II); 1195 return false; 1196 } 1197 1198 // Get '('. If we don't have a '(', try to form a header-name token. 1199 do { 1200 if (PP.LexHeaderName(Tok)) 1201 return false; 1202 } while (Tok.getKind() == tok::comment); 1203 1204 // Ensure we have a '('. 1205 if (Tok.isNot(tok::l_paren)) { 1206 // No '(', use end of last token. 1207 LParenLoc = PP.getLocForEndOfToken(LParenLoc); 1208 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; 1209 // If the next token looks like a filename or the start of one, 1210 // assume it is and process it as such. 1211 if (Tok.isNot(tok::header_name)) 1212 return false; 1213 } else { 1214 // Save '(' location for possible missing ')' message. 1215 LParenLoc = Tok.getLocation(); 1216 if (PP.LexHeaderName(Tok)) 1217 return false; 1218 } 1219 1220 if (Tok.isNot(tok::header_name)) { 1221 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); 1222 return false; 1223 } 1224 1225 // Reserve a buffer to get the spelling. 1226 SmallString<128> FilenameBuffer; 1227 bool Invalid = false; 1228 StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); 1229 if (Invalid) 1230 return false; 1231 1232 SourceLocation FilenameLoc = Tok.getLocation(); 1233 1234 // Get ')'. 1235 PP.LexNonComment(Tok); 1236 1237 // Ensure we have a trailing ). 1238 if (Tok.isNot(tok::r_paren)) { 1239 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) 1240 << II << tok::r_paren; 1241 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1242 return false; 1243 } 1244 1245 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); 1246 // If GetIncludeFilenameSpelling set the start ptr to null, there was an 1247 // error. 1248 if (Filename.empty()) 1249 return false; 1250 1251 // Search include directories. 1252 OptionalFileEntryRef File = 1253 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, 1254 nullptr, nullptr, nullptr, nullptr, nullptr, nullptr); 1255 1256 if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { 1257 SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; 1258 if (File) 1259 FileType = 1260 PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry()); 1261 Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType); 1262 } 1263 1264 // Get the result value. A result of true means the file exists. 1265 return File.has_value(); 1266 } 1267 1268 bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) { 1269 return EvaluateHasIncludeCommon(Tok, II, *this, nullptr, nullptr); 1270 } 1271 1272 bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) { 1273 ConstSearchDirIterator Lookup = nullptr; 1274 const FileEntry *LookupFromFile; 1275 std::tie(Lookup, LookupFromFile) = getIncludeNextStart(Tok); 1276 1277 return EvaluateHasIncludeCommon(Tok, II, *this, Lookup, LookupFromFile); 1278 } 1279 1280 /// Process single-argument builtin feature-like macros that return 1281 /// integer values. 1282 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, 1283 Token &Tok, IdentifierInfo *II, 1284 Preprocessor &PP, bool ExpandArgs, 1285 llvm::function_ref< 1286 int(Token &Tok, 1287 bool &HasLexedNextTok)> Op) { 1288 // Parse the initial '('. 1289 PP.LexUnexpandedToken(Tok); 1290 if (Tok.isNot(tok::l_paren)) { 1291 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II 1292 << tok::l_paren; 1293 1294 // Provide a dummy '0' value on output stream to elide further errors. 1295 if (!Tok.isOneOf(tok::eof, tok::eod)) { 1296 OS << 0; 1297 Tok.setKind(tok::numeric_constant); 1298 } 1299 return; 1300 } 1301 1302 unsigned ParenDepth = 1; 1303 SourceLocation LParenLoc = Tok.getLocation(); 1304 std::optional<int> Result; 1305 1306 Token ResultTok; 1307 bool SuppressDiagnostic = false; 1308 while (true) { 1309 // Parse next token. 1310 if (ExpandArgs) 1311 PP.Lex(Tok); 1312 else 1313 PP.LexUnexpandedToken(Tok); 1314 1315 already_lexed: 1316 switch (Tok.getKind()) { 1317 case tok::eof: 1318 case tok::eod: 1319 // Don't provide even a dummy value if the eod or eof marker is 1320 // reached. Simply provide a diagnostic. 1321 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); 1322 return; 1323 1324 case tok::comma: 1325 if (!SuppressDiagnostic) { 1326 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); 1327 SuppressDiagnostic = true; 1328 } 1329 continue; 1330 1331 case tok::l_paren: 1332 ++ParenDepth; 1333 if (Result) 1334 break; 1335 if (!SuppressDiagnostic) { 1336 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; 1337 SuppressDiagnostic = true; 1338 } 1339 continue; 1340 1341 case tok::r_paren: 1342 if (--ParenDepth > 0) 1343 continue; 1344 1345 // The last ')' has been reached; return the value if one found or 1346 // a diagnostic and a dummy value. 1347 if (Result) { 1348 OS << *Result; 1349 // For strict conformance to __has_cpp_attribute rules, use 'L' 1350 // suffix for dated literals. 1351 if (*Result > 1) 1352 OS << 'L'; 1353 } else { 1354 OS << 0; 1355 if (!SuppressDiagnostic) 1356 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); 1357 } 1358 Tok.setKind(tok::numeric_constant); 1359 return; 1360 1361 default: { 1362 // Parse the macro argument, if one not found so far. 1363 if (Result) 1364 break; 1365 1366 bool HasLexedNextToken = false; 1367 Result = Op(Tok, HasLexedNextToken); 1368 ResultTok = Tok; 1369 if (HasLexedNextToken) 1370 goto already_lexed; 1371 continue; 1372 } 1373 } 1374 1375 // Diagnose missing ')'. 1376 if (!SuppressDiagnostic) { 1377 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { 1378 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) 1379 Diag << LastII; 1380 else 1381 Diag << ResultTok.getKind(); 1382 Diag << tok::r_paren << ResultTok.getLocation(); 1383 } 1384 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1385 SuppressDiagnostic = true; 1386 } 1387 } 1388 } 1389 1390 /// Helper function to return the IdentifierInfo structure of a Token 1391 /// or generate a diagnostic if none available. 1392 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, 1393 Preprocessor &PP, 1394 signed DiagID) { 1395 IdentifierInfo *II; 1396 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) 1397 return II; 1398 1399 PP.Diag(Tok.getLocation(), DiagID); 1400 return nullptr; 1401 } 1402 1403 /// Implements the __is_target_arch builtin macro. 1404 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { 1405 std::string ArchName = II->getName().lower() + "--"; 1406 llvm::Triple Arch(ArchName); 1407 const llvm::Triple &TT = TI.getTriple(); 1408 if (TT.isThumb()) { 1409 // arm matches thumb or thumbv7. armv7 matches thumbv7. 1410 if ((Arch.getSubArch() == llvm::Triple::NoSubArch || 1411 Arch.getSubArch() == TT.getSubArch()) && 1412 ((TT.getArch() == llvm::Triple::thumb && 1413 Arch.getArch() == llvm::Triple::arm) || 1414 (TT.getArch() == llvm::Triple::thumbeb && 1415 Arch.getArch() == llvm::Triple::armeb))) 1416 return true; 1417 } 1418 // Check the parsed arch when it has no sub arch to allow Clang to 1419 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. 1420 return (Arch.getSubArch() == llvm::Triple::NoSubArch || 1421 Arch.getSubArch() == TT.getSubArch()) && 1422 Arch.getArch() == TT.getArch(); 1423 } 1424 1425 /// Implements the __is_target_vendor builtin macro. 1426 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { 1427 StringRef VendorName = TI.getTriple().getVendorName(); 1428 if (VendorName.empty()) 1429 VendorName = "unknown"; 1430 return VendorName.equals_insensitive(II->getName()); 1431 } 1432 1433 /// Implements the __is_target_os builtin macro. 1434 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { 1435 std::string OSName = 1436 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1437 llvm::Triple OS(OSName); 1438 if (OS.getOS() == llvm::Triple::Darwin) { 1439 // Darwin matches macos, ios, etc. 1440 return TI.getTriple().isOSDarwin(); 1441 } 1442 return TI.getTriple().getOS() == OS.getOS(); 1443 } 1444 1445 /// Implements the __is_target_environment builtin macro. 1446 static bool isTargetEnvironment(const TargetInfo &TI, 1447 const IdentifierInfo *II) { 1448 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1449 llvm::Triple Env(EnvName); 1450 // The unknown environment is matched only if 1451 // '__is_target_environment(unknown)' is used. 1452 if (Env.getEnvironment() == llvm::Triple::UnknownEnvironment && 1453 EnvName != "---unknown") 1454 return false; 1455 return TI.getTriple().getEnvironment() == Env.getEnvironment(); 1456 } 1457 1458 /// Implements the __is_target_variant_os builtin macro. 1459 static bool isTargetVariantOS(const TargetInfo &TI, const IdentifierInfo *II) { 1460 if (TI.getTriple().isOSDarwin()) { 1461 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); 1462 if (!VariantTriple) 1463 return false; 1464 1465 std::string OSName = 1466 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1467 llvm::Triple OS(OSName); 1468 if (OS.getOS() == llvm::Triple::Darwin) { 1469 // Darwin matches macos, ios, etc. 1470 return VariantTriple->isOSDarwin(); 1471 } 1472 return VariantTriple->getOS() == OS.getOS(); 1473 } 1474 return false; 1475 } 1476 1477 /// Implements the __is_target_variant_environment builtin macro. 1478 static bool isTargetVariantEnvironment(const TargetInfo &TI, 1479 const IdentifierInfo *II) { 1480 if (TI.getTriple().isOSDarwin()) { 1481 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); 1482 if (!VariantTriple) 1483 return false; 1484 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1485 llvm::Triple Env(EnvName); 1486 return VariantTriple->getEnvironment() == Env.getEnvironment(); 1487 } 1488 return false; 1489 } 1490 1491 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded 1492 /// as a builtin macro, handle it and return the next token as 'Tok'. 1493 void Preprocessor::ExpandBuiltinMacro(Token &Tok) { 1494 // Figure out which token this is. 1495 IdentifierInfo *II = Tok.getIdentifierInfo(); 1496 assert(II && "Can't be a macro without id info!"); 1497 1498 // If this is an _Pragma or Microsoft __pragma directive, expand it, 1499 // invoke the pragma handler, then lex the token after it. 1500 if (II == Ident_Pragma) 1501 return Handle_Pragma(Tok); 1502 else if (II == Ident__pragma) // in non-MS mode this is null 1503 return HandleMicrosoft__pragma(Tok); 1504 1505 ++NumBuiltinMacroExpanded; 1506 1507 SmallString<128> TmpBuffer; 1508 llvm::raw_svector_ostream OS(TmpBuffer); 1509 1510 // Set up the return result. 1511 Tok.setIdentifierInfo(nullptr); 1512 Tok.clearFlag(Token::NeedsCleaning); 1513 bool IsAtStartOfLine = Tok.isAtStartOfLine(); 1514 bool HasLeadingSpace = Tok.hasLeadingSpace(); 1515 1516 if (II == Ident__LINE__) { 1517 // C99 6.10.8: "__LINE__: The presumed line number (within the current 1518 // source file) of the current source line (an integer constant)". This can 1519 // be affected by #line. 1520 SourceLocation Loc = Tok.getLocation(); 1521 1522 // Advance to the location of the first _, this might not be the first byte 1523 // of the token if it starts with an escaped newline. 1524 Loc = AdvanceToTokenCharacter(Loc, 0); 1525 1526 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of 1527 // a macro expansion. This doesn't matter for object-like macros, but 1528 // can matter for a function-like macro that expands to contain __LINE__. 1529 // Skip down through expansion points until we find a file loc for the 1530 // end of the expansion history. 1531 Loc = SourceMgr.getExpansionRange(Loc).getEnd(); 1532 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); 1533 1534 // __LINE__ expands to a simple numeric value. 1535 OS << (PLoc.isValid()? PLoc.getLine() : 1); 1536 Tok.setKind(tok::numeric_constant); 1537 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ || 1538 II == Ident__FILE_NAME__) { 1539 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a 1540 // character string literal)". This can be affected by #line. 1541 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1542 1543 // __BASE_FILE__ is a GNU extension that returns the top of the presumed 1544 // #include stack instead of the current file. 1545 if (II == Ident__BASE_FILE__ && PLoc.isValid()) { 1546 SourceLocation NextLoc = PLoc.getIncludeLoc(); 1547 while (NextLoc.isValid()) { 1548 PLoc = SourceMgr.getPresumedLoc(NextLoc); 1549 if (PLoc.isInvalid()) 1550 break; 1551 1552 NextLoc = PLoc.getIncludeLoc(); 1553 } 1554 } 1555 1556 // Escape this filename. Turn '\' -> '\\' '"' -> '\"' 1557 SmallString<256> FN; 1558 if (PLoc.isValid()) { 1559 // __FILE_NAME__ is a Clang-specific extension that expands to the 1560 // the last part of __FILE__. 1561 if (II == Ident__FILE_NAME__) { 1562 processPathToFileName(FN, PLoc, getLangOpts(), getTargetInfo()); 1563 } else { 1564 FN += PLoc.getFilename(); 1565 processPathForFileMacro(FN, getLangOpts(), getTargetInfo()); 1566 } 1567 Lexer::Stringify(FN); 1568 OS << '"' << FN << '"'; 1569 } 1570 Tok.setKind(tok::string_literal); 1571 } else if (II == Ident__DATE__) { 1572 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1573 if (!DATELoc.isValid()) 1574 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1575 Tok.setKind(tok::string_literal); 1576 Tok.setLength(strlen("\"Mmm dd yyyy\"")); 1577 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), 1578 Tok.getLocation(), 1579 Tok.getLength())); 1580 return; 1581 } else if (II == Ident__TIME__) { 1582 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1583 if (!TIMELoc.isValid()) 1584 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1585 Tok.setKind(tok::string_literal); 1586 Tok.setLength(strlen("\"hh:mm:ss\"")); 1587 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), 1588 Tok.getLocation(), 1589 Tok.getLength())); 1590 return; 1591 } else if (II == Ident__INCLUDE_LEVEL__) { 1592 // Compute the presumed include depth of this token. This can be affected 1593 // by GNU line markers. 1594 unsigned Depth = 0; 1595 1596 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1597 if (PLoc.isValid()) { 1598 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1599 for (; PLoc.isValid(); ++Depth) 1600 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1601 } 1602 1603 // __INCLUDE_LEVEL__ expands to a simple numeric value. 1604 OS << Depth; 1605 Tok.setKind(tok::numeric_constant); 1606 } else if (II == Ident__TIMESTAMP__) { 1607 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1608 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be 1609 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. 1610 const char *Result; 1611 if (getPreprocessorOpts().SourceDateEpoch) { 1612 time_t TT = *getPreprocessorOpts().SourceDateEpoch; 1613 std::tm *TM = std::gmtime(&TT); 1614 Result = asctime(TM); 1615 } else { 1616 // Get the file that we are lexing out of. If we're currently lexing from 1617 // a macro, dig into the include stack. 1618 const FileEntry *CurFile = nullptr; 1619 if (PreprocessorLexer *TheLexer = getCurrentFileLexer()) 1620 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); 1621 if (CurFile) { 1622 time_t TT = CurFile->getModificationTime(); 1623 struct tm *TM = localtime(&TT); 1624 Result = asctime(TM); 1625 } else { 1626 Result = "??? ??? ?? ??:??:?? ????\n"; 1627 } 1628 } 1629 // Surround the string with " and strip the trailing newline. 1630 OS << '"' << StringRef(Result).drop_back() << '"'; 1631 Tok.setKind(tok::string_literal); 1632 } else if (II == Ident__FLT_EVAL_METHOD__) { 1633 // __FLT_EVAL_METHOD__ is set to the default value. 1634 OS << getTUFPEvalMethod(); 1635 // __FLT_EVAL_METHOD__ expands to a simple numeric value. 1636 Tok.setKind(tok::numeric_constant); 1637 if (getLastFPEvalPragmaLocation().isValid()) { 1638 // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is altered 1639 // by the pragma. 1640 Diag(Tok, diag::err_illegal_use_of_flt_eval_macro); 1641 Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here); 1642 } 1643 } else if (II == Ident__COUNTER__) { 1644 // __COUNTER__ expands to a simple numeric value. 1645 OS << CounterValue++; 1646 Tok.setKind(tok::numeric_constant); 1647 } else if (II == Ident__has_feature) { 1648 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1649 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1650 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1651 diag::err_feature_check_malformed); 1652 return II && HasFeature(*this, II->getName()); 1653 }); 1654 } else if (II == Ident__has_extension) { 1655 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1656 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1657 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1658 diag::err_feature_check_malformed); 1659 return II && HasExtension(*this, II->getName()); 1660 }); 1661 } else if (II == Ident__has_builtin) { 1662 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1663 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1664 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1665 diag::err_feature_check_malformed); 1666 if (!II) 1667 return false; 1668 else if (II->getBuiltinID() != 0) { 1669 switch (II->getBuiltinID()) { 1670 case Builtin::BI__builtin_operator_new: 1671 case Builtin::BI__builtin_operator_delete: 1672 // denotes date of behavior change to support calling arbitrary 1673 // usual allocation and deallocation functions. Required by libc++ 1674 return 201802; 1675 default: 1676 return Builtin::evaluateRequiredTargetFeatures( 1677 getBuiltinInfo().getRequiredFeatures(II->getBuiltinID()), 1678 getTargetInfo().getTargetOpts().FeatureMap); 1679 } 1680 return true; 1681 } else if (II->getTokenID() != tok::identifier || 1682 II->hasRevertedTokenIDToIdentifier()) { 1683 // Treat all keywords that introduce a custom syntax of the form 1684 // 1685 // '__some_keyword' '(' [...] ')' 1686 // 1687 // as being "builtin functions", even if the syntax isn't a valid 1688 // function call (for example, because the builtin takes a type 1689 // argument). 1690 if (II->getName().startswith("__builtin_") || 1691 II->getName().startswith("__is_") || 1692 II->getName().startswith("__has_")) 1693 return true; 1694 return llvm::StringSwitch<bool>(II->getName()) 1695 .Case("__array_rank", true) 1696 .Case("__array_extent", true) 1697 .Case("__reference_binds_to_temporary", true) 1698 #define TRANSFORM_TYPE_TRAIT_DEF(_, Trait) .Case("__" #Trait, true) 1699 #include "clang/Basic/TransformTypeTraits.def" 1700 .Default(false); 1701 } else { 1702 return llvm::StringSwitch<bool>(II->getName()) 1703 // Report builtin templates as being builtins. 1704 .Case("__make_integer_seq", getLangOpts().CPlusPlus) 1705 .Case("__type_pack_element", getLangOpts().CPlusPlus) 1706 // Likewise for some builtin preprocessor macros. 1707 // FIXME: This is inconsistent; we usually suggest detecting 1708 // builtin macros via #ifdef. Don't add more cases here. 1709 .Case("__is_target_arch", true) 1710 .Case("__is_target_vendor", true) 1711 .Case("__is_target_os", true) 1712 .Case("__is_target_environment", true) 1713 .Case("__is_target_variant_os", true) 1714 .Case("__is_target_variant_environment", true) 1715 .Default(false); 1716 } 1717 }); 1718 } else if (II == Ident__has_constexpr_builtin) { 1719 EvaluateFeatureLikeBuiltinMacro( 1720 OS, Tok, II, *this, false, 1721 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1722 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1723 Tok, *this, diag::err_feature_check_malformed); 1724 if (!II) 1725 return false; 1726 unsigned BuiltinOp = II->getBuiltinID(); 1727 return BuiltinOp != 0 && 1728 this->getBuiltinInfo().isConstantEvaluated(BuiltinOp); 1729 }); 1730 } else if (II == Ident__is_identifier) { 1731 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1732 [](Token &Tok, bool &HasLexedNextToken) -> int { 1733 return Tok.is(tok::identifier); 1734 }); 1735 } else if (II == Ident__has_attribute) { 1736 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1737 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1738 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1739 diag::err_feature_check_malformed); 1740 return II ? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU, nullptr, 1741 II, getTargetInfo(), getLangOpts()) 1742 : 0; 1743 }); 1744 } else if (II == Ident__has_declspec) { 1745 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1746 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1747 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1748 diag::err_feature_check_malformed); 1749 if (II) { 1750 const LangOptions &LangOpts = getLangOpts(); 1751 return LangOpts.DeclSpecKeyword && 1752 hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr, 1753 II, getTargetInfo(), LangOpts); 1754 } 1755 1756 return false; 1757 }); 1758 } else if (II == Ident__has_cpp_attribute || 1759 II == Ident__has_c_attribute) { 1760 bool IsCXX = II == Ident__has_cpp_attribute; 1761 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1762 [&](Token &Tok, bool &HasLexedNextToken) -> int { 1763 IdentifierInfo *ScopeII = nullptr; 1764 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1765 Tok, *this, diag::err_feature_check_malformed); 1766 if (!II) 1767 return false; 1768 1769 // It is possible to receive a scope token. Read the "::", if it is 1770 // available, and the subsequent identifier. 1771 LexUnexpandedToken(Tok); 1772 if (Tok.isNot(tok::coloncolon)) 1773 HasLexedNextToken = true; 1774 else { 1775 ScopeII = II; 1776 // Lex an expanded token for the attribute name. 1777 Lex(Tok); 1778 II = ExpectFeatureIdentifierInfo(Tok, *this, 1779 diag::err_feature_check_malformed); 1780 } 1781 1782 AttributeCommonInfo::Syntax Syntax = 1783 IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11 1784 : AttributeCommonInfo::Syntax::AS_C2x; 1785 return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(), 1786 getLangOpts()) 1787 : 0; 1788 }); 1789 } else if (II == Ident__has_include || 1790 II == Ident__has_include_next) { 1791 // The argument to these two builtins should be a parenthesized 1792 // file name string literal using angle brackets (<>) or 1793 // double-quotes (""). 1794 bool Value; 1795 if (II == Ident__has_include) 1796 Value = EvaluateHasInclude(Tok, II); 1797 else 1798 Value = EvaluateHasIncludeNext(Tok, II); 1799 1800 if (Tok.isNot(tok::r_paren)) 1801 return; 1802 OS << (int)Value; 1803 Tok.setKind(tok::numeric_constant); 1804 } else if (II == Ident__has_warning) { 1805 // The argument should be a parenthesized string literal. 1806 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1807 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1808 std::string WarningName; 1809 SourceLocation StrStartLoc = Tok.getLocation(); 1810 1811 HasLexedNextToken = Tok.is(tok::string_literal); 1812 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", 1813 /*AllowMacroExpansion=*/false)) 1814 return false; 1815 1816 // FIXME: Should we accept "-R..." flags here, or should that be 1817 // handled by a separate __has_remark? 1818 if (WarningName.size() < 3 || WarningName[0] != '-' || 1819 WarningName[1] != 'W') { 1820 Diag(StrStartLoc, diag::warn_has_warning_invalid_option); 1821 return false; 1822 } 1823 1824 // Finally, check if the warning flags maps to a diagnostic group. 1825 // We construct a SmallVector here to talk to getDiagnosticIDs(). 1826 // Although we don't use the result, this isn't a hot path, and not 1827 // worth special casing. 1828 SmallVector<diag::kind, 10> Diags; 1829 return !getDiagnostics().getDiagnosticIDs()-> 1830 getDiagnosticsInGroup(diag::Flavor::WarningOrError, 1831 WarningName.substr(2), Diags); 1832 }); 1833 } else if (II == Ident__building_module) { 1834 // The argument to this builtin should be an identifier. The 1835 // builtin evaluates to 1 when that identifier names the module we are 1836 // currently building. 1837 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1838 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1839 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1840 diag::err_expected_id_building_module); 1841 return getLangOpts().isCompilingModule() && II && 1842 (II->getName() == getLangOpts().CurrentModule); 1843 }); 1844 } else if (II == Ident__MODULE__) { 1845 // The current module as an identifier. 1846 OS << getLangOpts().CurrentModule; 1847 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); 1848 Tok.setIdentifierInfo(ModuleII); 1849 Tok.setKind(ModuleII->getTokenID()); 1850 } else if (II == Ident__identifier) { 1851 SourceLocation Loc = Tok.getLocation(); 1852 1853 // We're expecting '__identifier' '(' identifier ')'. Try to recover 1854 // if the parens are missing. 1855 LexNonComment(Tok); 1856 if (Tok.isNot(tok::l_paren)) { 1857 // No '(', use end of last token. 1858 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) 1859 << II << tok::l_paren; 1860 // If the next token isn't valid as our argument, we can't recover. 1861 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 1862 Tok.setKind(tok::identifier); 1863 return; 1864 } 1865 1866 SourceLocation LParenLoc = Tok.getLocation(); 1867 LexNonComment(Tok); 1868 1869 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 1870 Tok.setKind(tok::identifier); 1871 else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) { 1872 StringLiteralParser Literal(Tok, *this, 1873 StringLiteralEvalMethod::Unevaluated); 1874 if (Literal.hadError) 1875 return; 1876 1877 Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString())); 1878 Tok.setKind(tok::identifier); 1879 } else { 1880 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) 1881 << Tok.getKind(); 1882 // Don't walk past anything that's not a real token. 1883 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation()) 1884 return; 1885 } 1886 1887 // Discard the ')', preserving 'Tok' as our result. 1888 Token RParen; 1889 LexNonComment(RParen); 1890 if (RParen.isNot(tok::r_paren)) { 1891 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) 1892 << Tok.getKind() << tok::r_paren; 1893 Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1894 } 1895 return; 1896 } else if (II == Ident__is_target_arch) { 1897 EvaluateFeatureLikeBuiltinMacro( 1898 OS, Tok, II, *this, false, 1899 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1900 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1901 Tok, *this, diag::err_feature_check_malformed); 1902 return II && isTargetArch(getTargetInfo(), II); 1903 }); 1904 } else if (II == Ident__is_target_vendor) { 1905 EvaluateFeatureLikeBuiltinMacro( 1906 OS, Tok, II, *this, false, 1907 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1908 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1909 Tok, *this, diag::err_feature_check_malformed); 1910 return II && isTargetVendor(getTargetInfo(), II); 1911 }); 1912 } else if (II == Ident__is_target_os) { 1913 EvaluateFeatureLikeBuiltinMacro( 1914 OS, Tok, II, *this, false, 1915 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1916 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1917 Tok, *this, diag::err_feature_check_malformed); 1918 return II && isTargetOS(getTargetInfo(), II); 1919 }); 1920 } else if (II == Ident__is_target_environment) { 1921 EvaluateFeatureLikeBuiltinMacro( 1922 OS, Tok, II, *this, false, 1923 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1924 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1925 Tok, *this, diag::err_feature_check_malformed); 1926 return II && isTargetEnvironment(getTargetInfo(), II); 1927 }); 1928 } else if (II == Ident__is_target_variant_os) { 1929 EvaluateFeatureLikeBuiltinMacro( 1930 OS, Tok, II, *this, false, 1931 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1932 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1933 Tok, *this, diag::err_feature_check_malformed); 1934 return II && isTargetVariantOS(getTargetInfo(), II); 1935 }); 1936 } else if (II == Ident__is_target_variant_environment) { 1937 EvaluateFeatureLikeBuiltinMacro( 1938 OS, Tok, II, *this, false, 1939 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1940 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1941 Tok, *this, diag::err_feature_check_malformed); 1942 return II && isTargetVariantEnvironment(getTargetInfo(), II); 1943 }); 1944 } else { 1945 llvm_unreachable("Unknown identifier!"); 1946 } 1947 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); 1948 Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine); 1949 Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace); 1950 } 1951 1952 void Preprocessor::markMacroAsUsed(MacroInfo *MI) { 1953 // If the 'used' status changed, and the macro requires 'unused' warning, 1954 // remove its SourceLocation from the warn-for-unused-macro locations. 1955 if (MI->isWarnIfUnused() && !MI->isUsed()) 1956 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); 1957 MI->setIsUsed(true); 1958 } 1959 1960 void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path, 1961 const LangOptions &LangOpts, 1962 const TargetInfo &TI) { 1963 LangOpts.remapPathPrefix(Path); 1964 if (LangOpts.UseTargetPathSeparator) { 1965 if (TI.getTriple().isOSWindows()) 1966 llvm::sys::path::remove_dots(Path, false, 1967 llvm::sys::path::Style::windows_backslash); 1968 else 1969 llvm::sys::path::remove_dots(Path, false, llvm::sys::path::Style::posix); 1970 } 1971 } 1972 1973 void Preprocessor::processPathToFileName(SmallVectorImpl<char> &FileName, 1974 const PresumedLoc &PLoc, 1975 const LangOptions &LangOpts, 1976 const TargetInfo &TI) { 1977 // Try to get the last path component, failing that return the original 1978 // presumed location. 1979 StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename()); 1980 if (PLFileName.empty()) 1981 PLFileName = PLoc.getFilename(); 1982 FileName.append(PLFileName.begin(), PLFileName.end()); 1983 processPathForFileMacro(FileName, LangOpts, TI); 1984 } 1985