1 //===--- PPMacroExpansion.cpp - Top level Macro Expansion -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the top level handling of macro expansion for the 10 // preprocessor. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Basic/AttributeCommonInfo.h" 15 #include "clang/Basic/Attributes.h" 16 #include "clang/Basic/Builtins.h" 17 #include "clang/Basic/FileManager.h" 18 #include "clang/Basic/IdentifierTable.h" 19 #include "clang/Basic/LLVM.h" 20 #include "clang/Basic/LangOptions.h" 21 #include "clang/Basic/ObjCRuntime.h" 22 #include "clang/Basic/SourceLocation.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/Lex/CodeCompletionHandler.h" 25 #include "clang/Lex/DirectoryLookup.h" 26 #include "clang/Lex/ExternalPreprocessorSource.h" 27 #include "clang/Lex/HeaderSearch.h" 28 #include "clang/Lex/LexDiagnostic.h" 29 #include "clang/Lex/LiteralSupport.h" 30 #include "clang/Lex/MacroArgs.h" 31 #include "clang/Lex/MacroInfo.h" 32 #include "clang/Lex/Preprocessor.h" 33 #include "clang/Lex/PreprocessorLexer.h" 34 #include "clang/Lex/PreprocessorOptions.h" 35 #include "clang/Lex/Token.h" 36 #include "llvm/ADT/ArrayRef.h" 37 #include "llvm/ADT/DenseMap.h" 38 #include "llvm/ADT/DenseSet.h" 39 #include "llvm/ADT/FoldingSet.h" 40 #include "llvm/ADT/None.h" 41 #include "llvm/ADT/Optional.h" 42 #include "llvm/ADT/STLExtras.h" 43 #include "llvm/ADT/SmallString.h" 44 #include "llvm/ADT/SmallVector.h" 45 #include "llvm/ADT/StringRef.h" 46 #include "llvm/ADT/StringSwitch.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/ErrorHandling.h" 49 #include "llvm/Support/Format.h" 50 #include "llvm/Support/Path.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstddef> 55 #include <cstring> 56 #include <ctime> 57 #include <string> 58 #include <tuple> 59 #include <utility> 60 61 using namespace clang; 62 63 MacroDirective * 64 Preprocessor::getLocalMacroDirectiveHistory(const IdentifierInfo *II) const { 65 if (!II->hadMacroDefinition()) 66 return nullptr; 67 auto Pos = CurSubmoduleState->Macros.find(II); 68 return Pos == CurSubmoduleState->Macros.end() ? nullptr 69 : Pos->second.getLatest(); 70 } 71 72 void Preprocessor::appendMacroDirective(IdentifierInfo *II, MacroDirective *MD){ 73 assert(MD && "MacroDirective should be non-zero!"); 74 assert(!MD->getPrevious() && "Already attached to a MacroDirective history."); 75 76 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 77 auto *OldMD = StoredMD.getLatest(); 78 MD->setPrevious(OldMD); 79 StoredMD.setLatest(MD); 80 StoredMD.overrideActiveModuleMacros(*this, II); 81 82 if (needModuleMacros()) { 83 // Track that we created a new macro directive, so we know we should 84 // consider building a ModuleMacro for it when we get to the end of 85 // the module. 86 PendingModuleMacroNames.push_back(II); 87 } 88 89 // Set up the identifier as having associated macro history. 90 II->setHasMacroDefinition(true); 91 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) 92 II->setHasMacroDefinition(false); 93 if (II->isFromAST()) 94 II->setChangedSinceDeserialization(); 95 } 96 97 void Preprocessor::setLoadedMacroDirective(IdentifierInfo *II, 98 MacroDirective *ED, 99 MacroDirective *MD) { 100 // Normally, when a macro is defined, it goes through appendMacroDirective() 101 // above, which chains a macro to previous defines, undefs, etc. 102 // However, in a pch, the whole macro history up to the end of the pch is 103 // stored, so ASTReader goes through this function instead. 104 // However, built-in macros are already registered in the Preprocessor 105 // ctor, and ASTWriter stops writing the macro chain at built-in macros, 106 // so in that case the chain from the pch needs to be spliced to the existing 107 // built-in. 108 109 assert(II && MD); 110 MacroState &StoredMD = CurSubmoduleState->Macros[II]; 111 112 if (auto *OldMD = StoredMD.getLatest()) { 113 // shouldIgnoreMacro() in ASTWriter also stops at macros from the 114 // predefines buffer in module builds. However, in module builds, modules 115 // are loaded completely before predefines are processed, so StoredMD 116 // will be nullptr for them when they're loaded. StoredMD should only be 117 // non-nullptr for builtins read from a pch file. 118 assert(OldMD->getMacroInfo()->isBuiltinMacro() && 119 "only built-ins should have an entry here"); 120 assert(!OldMD->getPrevious() && "builtin should only have a single entry"); 121 ED->setPrevious(OldMD); 122 StoredMD.setLatest(MD); 123 } else { 124 StoredMD = MD; 125 } 126 127 // Setup the identifier as having associated macro history. 128 II->setHasMacroDefinition(true); 129 if (!MD->isDefined() && LeafModuleMacros.find(II) == LeafModuleMacros.end()) 130 II->setHasMacroDefinition(false); 131 } 132 133 ModuleMacro *Preprocessor::addModuleMacro(Module *Mod, IdentifierInfo *II, 134 MacroInfo *Macro, 135 ArrayRef<ModuleMacro *> Overrides, 136 bool &New) { 137 llvm::FoldingSetNodeID ID; 138 ModuleMacro::Profile(ID, Mod, II); 139 140 void *InsertPos; 141 if (auto *MM = ModuleMacros.FindNodeOrInsertPos(ID, InsertPos)) { 142 New = false; 143 return MM; 144 } 145 146 auto *MM = ModuleMacro::create(*this, Mod, II, Macro, Overrides); 147 ModuleMacros.InsertNode(MM, InsertPos); 148 149 // Each overridden macro is now overridden by one more macro. 150 bool HidAny = false; 151 for (auto *O : Overrides) { 152 HidAny |= (O->NumOverriddenBy == 0); 153 ++O->NumOverriddenBy; 154 } 155 156 // If we were the first overrider for any macro, it's no longer a leaf. 157 auto &LeafMacros = LeafModuleMacros[II]; 158 if (HidAny) { 159 llvm::erase_if(LeafMacros, 160 [](ModuleMacro *MM) { return MM->NumOverriddenBy != 0; }); 161 } 162 163 // The new macro is always a leaf macro. 164 LeafMacros.push_back(MM); 165 // The identifier now has defined macros (that may or may not be visible). 166 II->setHasMacroDefinition(true); 167 168 New = true; 169 return MM; 170 } 171 172 ModuleMacro *Preprocessor::getModuleMacro(Module *Mod, 173 const IdentifierInfo *II) { 174 llvm::FoldingSetNodeID ID; 175 ModuleMacro::Profile(ID, Mod, II); 176 177 void *InsertPos; 178 return ModuleMacros.FindNodeOrInsertPos(ID, InsertPos); 179 } 180 181 void Preprocessor::updateModuleMacroInfo(const IdentifierInfo *II, 182 ModuleMacroInfo &Info) { 183 assert(Info.ActiveModuleMacrosGeneration != 184 CurSubmoduleState->VisibleModules.getGeneration() && 185 "don't need to update this macro name info"); 186 Info.ActiveModuleMacrosGeneration = 187 CurSubmoduleState->VisibleModules.getGeneration(); 188 189 auto Leaf = LeafModuleMacros.find(II); 190 if (Leaf == LeafModuleMacros.end()) { 191 // No imported macros at all: nothing to do. 192 return; 193 } 194 195 Info.ActiveModuleMacros.clear(); 196 197 // Every macro that's locally overridden is overridden by a visible macro. 198 llvm::DenseMap<ModuleMacro *, int> NumHiddenOverrides; 199 for (auto *O : Info.OverriddenMacros) 200 NumHiddenOverrides[O] = -1; 201 202 // Collect all macros that are not overridden by a visible macro. 203 llvm::SmallVector<ModuleMacro *, 16> Worklist; 204 for (auto *LeafMM : Leaf->second) { 205 assert(LeafMM->getNumOverridingMacros() == 0 && "leaf macro overridden"); 206 if (NumHiddenOverrides.lookup(LeafMM) == 0) 207 Worklist.push_back(LeafMM); 208 } 209 while (!Worklist.empty()) { 210 auto *MM = Worklist.pop_back_val(); 211 if (CurSubmoduleState->VisibleModules.isVisible(MM->getOwningModule())) { 212 // We only care about collecting definitions; undefinitions only act 213 // to override other definitions. 214 if (MM->getMacroInfo()) 215 Info.ActiveModuleMacros.push_back(MM); 216 } else { 217 for (auto *O : MM->overrides()) 218 if ((unsigned)++NumHiddenOverrides[O] == O->getNumOverridingMacros()) 219 Worklist.push_back(O); 220 } 221 } 222 // Our reverse postorder walk found the macros in reverse order. 223 std::reverse(Info.ActiveModuleMacros.begin(), Info.ActiveModuleMacros.end()); 224 225 // Determine whether the macro name is ambiguous. 226 MacroInfo *MI = nullptr; 227 bool IsSystemMacro = true; 228 bool IsAmbiguous = false; 229 if (auto *MD = Info.MD) { 230 while (MD && isa<VisibilityMacroDirective>(MD)) 231 MD = MD->getPrevious(); 232 if (auto *DMD = dyn_cast_or_null<DefMacroDirective>(MD)) { 233 MI = DMD->getInfo(); 234 IsSystemMacro &= SourceMgr.isInSystemHeader(DMD->getLocation()); 235 } 236 } 237 for (auto *Active : Info.ActiveModuleMacros) { 238 auto *NewMI = Active->getMacroInfo(); 239 240 // Before marking the macro as ambiguous, check if this is a case where 241 // both macros are in system headers. If so, we trust that the system 242 // did not get it wrong. This also handles cases where Clang's own 243 // headers have a different spelling of certain system macros: 244 // #define LONG_MAX __LONG_MAX__ (clang's limits.h) 245 // #define LONG_MAX 0x7fffffffffffffffL (system's limits.h) 246 // 247 // FIXME: Remove the defined-in-system-headers check. clang's limits.h 248 // overrides the system limits.h's macros, so there's no conflict here. 249 if (MI && NewMI != MI && 250 !MI->isIdenticalTo(*NewMI, *this, /*Syntactically=*/true)) 251 IsAmbiguous = true; 252 IsSystemMacro &= Active->getOwningModule()->IsSystem || 253 SourceMgr.isInSystemHeader(NewMI->getDefinitionLoc()); 254 MI = NewMI; 255 } 256 Info.IsAmbiguous = IsAmbiguous && !IsSystemMacro; 257 } 258 259 void Preprocessor::dumpMacroInfo(const IdentifierInfo *II) { 260 ArrayRef<ModuleMacro*> Leaf; 261 auto LeafIt = LeafModuleMacros.find(II); 262 if (LeafIt != LeafModuleMacros.end()) 263 Leaf = LeafIt->second; 264 const MacroState *State = nullptr; 265 auto Pos = CurSubmoduleState->Macros.find(II); 266 if (Pos != CurSubmoduleState->Macros.end()) 267 State = &Pos->second; 268 269 llvm::errs() << "MacroState " << State << " " << II->getNameStart(); 270 if (State && State->isAmbiguous(*this, II)) 271 llvm::errs() << " ambiguous"; 272 if (State && !State->getOverriddenMacros().empty()) { 273 llvm::errs() << " overrides"; 274 for (auto *O : State->getOverriddenMacros()) 275 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 276 } 277 llvm::errs() << "\n"; 278 279 // Dump local macro directives. 280 for (auto *MD = State ? State->getLatest() : nullptr; MD; 281 MD = MD->getPrevious()) { 282 llvm::errs() << " "; 283 MD->dump(); 284 } 285 286 // Dump module macros. 287 llvm::DenseSet<ModuleMacro*> Active; 288 for (auto *MM : State ? State->getActiveModuleMacros(*this, II) : None) 289 Active.insert(MM); 290 llvm::DenseSet<ModuleMacro*> Visited; 291 llvm::SmallVector<ModuleMacro *, 16> Worklist(Leaf.begin(), Leaf.end()); 292 while (!Worklist.empty()) { 293 auto *MM = Worklist.pop_back_val(); 294 llvm::errs() << " ModuleMacro " << MM << " " 295 << MM->getOwningModule()->getFullModuleName(); 296 if (!MM->getMacroInfo()) 297 llvm::errs() << " undef"; 298 299 if (Active.count(MM)) 300 llvm::errs() << " active"; 301 else if (!CurSubmoduleState->VisibleModules.isVisible( 302 MM->getOwningModule())) 303 llvm::errs() << " hidden"; 304 else if (MM->getMacroInfo()) 305 llvm::errs() << " overridden"; 306 307 if (!MM->overrides().empty()) { 308 llvm::errs() << " overrides"; 309 for (auto *O : MM->overrides()) { 310 llvm::errs() << " " << O->getOwningModule()->getFullModuleName(); 311 if (Visited.insert(O).second) 312 Worklist.push_back(O); 313 } 314 } 315 llvm::errs() << "\n"; 316 if (auto *MI = MM->getMacroInfo()) { 317 llvm::errs() << " "; 318 MI->dump(); 319 llvm::errs() << "\n"; 320 } 321 } 322 } 323 324 /// RegisterBuiltinMacro - Register the specified identifier in the identifier 325 /// table and mark it as a builtin macro to be expanded. 326 static IdentifierInfo *RegisterBuiltinMacro(Preprocessor &PP, const char *Name){ 327 // Get the identifier. 328 IdentifierInfo *Id = PP.getIdentifierInfo(Name); 329 330 // Mark it as being a macro that is builtin. 331 MacroInfo *MI = PP.AllocateMacroInfo(SourceLocation()); 332 MI->setIsBuiltinMacro(); 333 PP.appendDefMacroDirective(Id, MI); 334 return Id; 335 } 336 337 /// RegisterBuiltinMacros - Register builtin macros, such as __LINE__ with the 338 /// identifier table. 339 void Preprocessor::RegisterBuiltinMacros() { 340 Ident__LINE__ = RegisterBuiltinMacro(*this, "__LINE__"); 341 Ident__FILE__ = RegisterBuiltinMacro(*this, "__FILE__"); 342 Ident__DATE__ = RegisterBuiltinMacro(*this, "__DATE__"); 343 Ident__TIME__ = RegisterBuiltinMacro(*this, "__TIME__"); 344 Ident__COUNTER__ = RegisterBuiltinMacro(*this, "__COUNTER__"); 345 Ident_Pragma = RegisterBuiltinMacro(*this, "_Pragma"); 346 Ident__FLT_EVAL_METHOD__ = RegisterBuiltinMacro(*this, "__FLT_EVAL_METHOD__"); 347 348 // C++ Standing Document Extensions. 349 if (getLangOpts().CPlusPlus) 350 Ident__has_cpp_attribute = 351 RegisterBuiltinMacro(*this, "__has_cpp_attribute"); 352 else 353 Ident__has_cpp_attribute = nullptr; 354 355 // GCC Extensions. 356 Ident__BASE_FILE__ = RegisterBuiltinMacro(*this, "__BASE_FILE__"); 357 Ident__INCLUDE_LEVEL__ = RegisterBuiltinMacro(*this, "__INCLUDE_LEVEL__"); 358 Ident__TIMESTAMP__ = RegisterBuiltinMacro(*this, "__TIMESTAMP__"); 359 360 // Microsoft Extensions. 361 if (getLangOpts().MicrosoftExt) { 362 Ident__identifier = RegisterBuiltinMacro(*this, "__identifier"); 363 Ident__pragma = RegisterBuiltinMacro(*this, "__pragma"); 364 } else { 365 Ident__identifier = nullptr; 366 Ident__pragma = nullptr; 367 } 368 369 // Clang Extensions. 370 Ident__FILE_NAME__ = RegisterBuiltinMacro(*this, "__FILE_NAME__"); 371 Ident__has_feature = RegisterBuiltinMacro(*this, "__has_feature"); 372 Ident__has_extension = RegisterBuiltinMacro(*this, "__has_extension"); 373 Ident__has_builtin = RegisterBuiltinMacro(*this, "__has_builtin"); 374 Ident__has_attribute = RegisterBuiltinMacro(*this, "__has_attribute"); 375 if (!getLangOpts().CPlusPlus) 376 Ident__has_c_attribute = RegisterBuiltinMacro(*this, "__has_c_attribute"); 377 else 378 Ident__has_c_attribute = nullptr; 379 380 Ident__has_declspec = RegisterBuiltinMacro(*this, "__has_declspec_attribute"); 381 Ident__has_include = RegisterBuiltinMacro(*this, "__has_include"); 382 Ident__has_include_next = RegisterBuiltinMacro(*this, "__has_include_next"); 383 Ident__has_warning = RegisterBuiltinMacro(*this, "__has_warning"); 384 Ident__is_identifier = RegisterBuiltinMacro(*this, "__is_identifier"); 385 Ident__is_target_arch = RegisterBuiltinMacro(*this, "__is_target_arch"); 386 Ident__is_target_vendor = RegisterBuiltinMacro(*this, "__is_target_vendor"); 387 Ident__is_target_os = RegisterBuiltinMacro(*this, "__is_target_os"); 388 Ident__is_target_environment = 389 RegisterBuiltinMacro(*this, "__is_target_environment"); 390 Ident__is_target_variant_os = 391 RegisterBuiltinMacro(*this, "__is_target_variant_os"); 392 Ident__is_target_variant_environment = 393 RegisterBuiltinMacro(*this, "__is_target_variant_environment"); 394 395 // Modules. 396 Ident__building_module = RegisterBuiltinMacro(*this, "__building_module"); 397 if (!getLangOpts().CurrentModule.empty()) 398 Ident__MODULE__ = RegisterBuiltinMacro(*this, "__MODULE__"); 399 else 400 Ident__MODULE__ = nullptr; 401 } 402 403 /// isTrivialSingleTokenExpansion - Return true if MI, which has a single token 404 /// in its expansion, currently expands to that token literally. 405 static bool isTrivialSingleTokenExpansion(const MacroInfo *MI, 406 const IdentifierInfo *MacroIdent, 407 Preprocessor &PP) { 408 IdentifierInfo *II = MI->getReplacementToken(0).getIdentifierInfo(); 409 410 // If the token isn't an identifier, it's always literally expanded. 411 if (!II) return true; 412 413 // If the information about this identifier is out of date, update it from 414 // the external source. 415 if (II->isOutOfDate()) 416 PP.getExternalSource()->updateOutOfDateIdentifier(*II); 417 418 // If the identifier is a macro, and if that macro is enabled, it may be 419 // expanded so it's not a trivial expansion. 420 if (auto *ExpansionMI = PP.getMacroInfo(II)) 421 if (ExpansionMI->isEnabled() && 422 // Fast expanding "#define X X" is ok, because X would be disabled. 423 II != MacroIdent) 424 return false; 425 426 // If this is an object-like macro invocation, it is safe to trivially expand 427 // it. 428 if (MI->isObjectLike()) return true; 429 430 // If this is a function-like macro invocation, it's safe to trivially expand 431 // as long as the identifier is not a macro argument. 432 return !llvm::is_contained(MI->params(), II); 433 } 434 435 /// isNextPPTokenLParen - Determine whether the next preprocessor token to be 436 /// lexed is a '('. If so, consume the token and return true, if not, this 437 /// method should have no observable side-effect on the lexed tokens. 438 bool Preprocessor::isNextPPTokenLParen() { 439 // Do some quick tests for rejection cases. 440 unsigned Val; 441 if (CurLexer) 442 Val = CurLexer->isNextPPTokenLParen(); 443 else 444 Val = CurTokenLexer->isNextTokenLParen(); 445 446 if (Val == 2) { 447 // We have run off the end. If it's a source file we don't 448 // examine enclosing ones (C99 5.1.1.2p4). Otherwise walk up the 449 // macro stack. 450 if (CurPPLexer) 451 return false; 452 for (const IncludeStackInfo &Entry : llvm::reverse(IncludeMacroStack)) { 453 if (Entry.TheLexer) 454 Val = Entry.TheLexer->isNextPPTokenLParen(); 455 else 456 Val = Entry.TheTokenLexer->isNextTokenLParen(); 457 458 if (Val != 2) 459 break; 460 461 // Ran off the end of a source file? 462 if (Entry.ThePPLexer) 463 return false; 464 } 465 } 466 467 // Okay, if we know that the token is a '(', lex it and return. Otherwise we 468 // have found something that isn't a '(' or we found the end of the 469 // translation unit. In either case, return false. 470 return Val == 1; 471 } 472 473 /// HandleMacroExpandedIdentifier - If an identifier token is read that is to be 474 /// expanded as a macro, handle it and return the next token as 'Identifier'. 475 bool Preprocessor::HandleMacroExpandedIdentifier(Token &Identifier, 476 const MacroDefinition &M) { 477 emitMacroExpansionWarnings(Identifier); 478 479 MacroInfo *MI = M.getMacroInfo(); 480 481 // If this is a macro expansion in the "#if !defined(x)" line for the file, 482 // then the macro could expand to different things in other contexts, we need 483 // to disable the optimization in this case. 484 if (CurPPLexer) CurPPLexer->MIOpt.ExpandedMacro(); 485 486 // If this is a builtin macro, like __LINE__ or _Pragma, handle it specially. 487 if (MI->isBuiltinMacro()) { 488 if (Callbacks) 489 Callbacks->MacroExpands(Identifier, M, Identifier.getLocation(), 490 /*Args=*/nullptr); 491 ExpandBuiltinMacro(Identifier); 492 return true; 493 } 494 495 /// Args - If this is a function-like macro expansion, this contains, 496 /// for each macro argument, the list of tokens that were provided to the 497 /// invocation. 498 MacroArgs *Args = nullptr; 499 500 // Remember where the end of the expansion occurred. For an object-like 501 // macro, this is the identifier. For a function-like macro, this is the ')'. 502 SourceLocation ExpansionEnd = Identifier.getLocation(); 503 504 // If this is a function-like macro, read the arguments. 505 if (MI->isFunctionLike()) { 506 // Remember that we are now parsing the arguments to a macro invocation. 507 // Preprocessor directives used inside macro arguments are not portable, and 508 // this enables the warning. 509 InMacroArgs = true; 510 ArgMacro = &Identifier; 511 512 Args = ReadMacroCallArgumentList(Identifier, MI, ExpansionEnd); 513 514 // Finished parsing args. 515 InMacroArgs = false; 516 ArgMacro = nullptr; 517 518 // If there was an error parsing the arguments, bail out. 519 if (!Args) return true; 520 521 ++NumFnMacroExpanded; 522 } else { 523 ++NumMacroExpanded; 524 } 525 526 // Notice that this macro has been used. 527 markMacroAsUsed(MI); 528 529 // Remember where the token is expanded. 530 SourceLocation ExpandLoc = Identifier.getLocation(); 531 SourceRange ExpansionRange(ExpandLoc, ExpansionEnd); 532 533 if (Callbacks) { 534 if (InMacroArgs) { 535 // We can have macro expansion inside a conditional directive while 536 // reading the function macro arguments. To ensure, in that case, that 537 // MacroExpands callbacks still happen in source order, queue this 538 // callback to have it happen after the function macro callback. 539 DelayedMacroExpandsCallbacks.push_back( 540 MacroExpandsInfo(Identifier, M, ExpansionRange)); 541 } else { 542 Callbacks->MacroExpands(Identifier, M, ExpansionRange, Args); 543 if (!DelayedMacroExpandsCallbacks.empty()) { 544 for (const MacroExpandsInfo &Info : DelayedMacroExpandsCallbacks) { 545 // FIXME: We lose macro args info with delayed callback. 546 Callbacks->MacroExpands(Info.Tok, Info.MD, Info.Range, 547 /*Args=*/nullptr); 548 } 549 DelayedMacroExpandsCallbacks.clear(); 550 } 551 } 552 } 553 554 // If the macro definition is ambiguous, complain. 555 if (M.isAmbiguous()) { 556 Diag(Identifier, diag::warn_pp_ambiguous_macro) 557 << Identifier.getIdentifierInfo(); 558 Diag(MI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_chosen) 559 << Identifier.getIdentifierInfo(); 560 M.forAllDefinitions([&](const MacroInfo *OtherMI) { 561 if (OtherMI != MI) 562 Diag(OtherMI->getDefinitionLoc(), diag::note_pp_ambiguous_macro_other) 563 << Identifier.getIdentifierInfo(); 564 }); 565 } 566 567 // If we started lexing a macro, enter the macro expansion body. 568 569 // If this macro expands to no tokens, don't bother to push it onto the 570 // expansion stack, only to take it right back off. 571 if (MI->getNumTokens() == 0) { 572 // No need for arg info. 573 if (Args) Args->destroy(*this); 574 575 // Propagate whitespace info as if we had pushed, then popped, 576 // a macro context. 577 Identifier.setFlag(Token::LeadingEmptyMacro); 578 PropagateLineStartLeadingSpaceInfo(Identifier); 579 ++NumFastMacroExpanded; 580 return false; 581 } else if (MI->getNumTokens() == 1 && 582 isTrivialSingleTokenExpansion(MI, Identifier.getIdentifierInfo(), 583 *this)) { 584 // Otherwise, if this macro expands into a single trivially-expanded 585 // token: expand it now. This handles common cases like 586 // "#define VAL 42". 587 588 // No need for arg info. 589 if (Args) Args->destroy(*this); 590 591 // Propagate the isAtStartOfLine/hasLeadingSpace markers of the macro 592 // identifier to the expanded token. 593 bool isAtStartOfLine = Identifier.isAtStartOfLine(); 594 bool hasLeadingSpace = Identifier.hasLeadingSpace(); 595 596 // Replace the result token. 597 Identifier = MI->getReplacementToken(0); 598 599 // Restore the StartOfLine/LeadingSpace markers. 600 Identifier.setFlagValue(Token::StartOfLine , isAtStartOfLine); 601 Identifier.setFlagValue(Token::LeadingSpace, hasLeadingSpace); 602 603 // Update the tokens location to include both its expansion and physical 604 // locations. 605 SourceLocation Loc = 606 SourceMgr.createExpansionLoc(Identifier.getLocation(), ExpandLoc, 607 ExpansionEnd,Identifier.getLength()); 608 Identifier.setLocation(Loc); 609 610 // If this is a disabled macro or #define X X, we must mark the result as 611 // unexpandable. 612 if (IdentifierInfo *NewII = Identifier.getIdentifierInfo()) { 613 if (MacroInfo *NewMI = getMacroInfo(NewII)) 614 if (!NewMI->isEnabled() || NewMI == MI) { 615 Identifier.setFlag(Token::DisableExpand); 616 // Don't warn for "#define X X" like "#define bool bool" from 617 // stdbool.h. 618 if (NewMI != MI || MI->isFunctionLike()) 619 Diag(Identifier, diag::pp_disabled_macro_expansion); 620 } 621 } 622 623 // Since this is not an identifier token, it can't be macro expanded, so 624 // we're done. 625 ++NumFastMacroExpanded; 626 return true; 627 } 628 629 // Start expanding the macro. 630 EnterMacro(Identifier, ExpansionEnd, MI, Args); 631 return false; 632 } 633 634 enum Bracket { 635 Brace, 636 Paren 637 }; 638 639 /// CheckMatchedBrackets - Returns true if the braces and parentheses in the 640 /// token vector are properly nested. 641 static bool CheckMatchedBrackets(const SmallVectorImpl<Token> &Tokens) { 642 SmallVector<Bracket, 8> Brackets; 643 for (SmallVectorImpl<Token>::const_iterator I = Tokens.begin(), 644 E = Tokens.end(); 645 I != E; ++I) { 646 if (I->is(tok::l_paren)) { 647 Brackets.push_back(Paren); 648 } else if (I->is(tok::r_paren)) { 649 if (Brackets.empty() || Brackets.back() == Brace) 650 return false; 651 Brackets.pop_back(); 652 } else if (I->is(tok::l_brace)) { 653 Brackets.push_back(Brace); 654 } else if (I->is(tok::r_brace)) { 655 if (Brackets.empty() || Brackets.back() == Paren) 656 return false; 657 Brackets.pop_back(); 658 } 659 } 660 return Brackets.empty(); 661 } 662 663 /// GenerateNewArgTokens - Returns true if OldTokens can be converted to a new 664 /// vector of tokens in NewTokens. The new number of arguments will be placed 665 /// in NumArgs and the ranges which need to surrounded in parentheses will be 666 /// in ParenHints. 667 /// Returns false if the token stream cannot be changed. If this is because 668 /// of an initializer list starting a macro argument, the range of those 669 /// initializer lists will be place in InitLists. 670 static bool GenerateNewArgTokens(Preprocessor &PP, 671 SmallVectorImpl<Token> &OldTokens, 672 SmallVectorImpl<Token> &NewTokens, 673 unsigned &NumArgs, 674 SmallVectorImpl<SourceRange> &ParenHints, 675 SmallVectorImpl<SourceRange> &InitLists) { 676 if (!CheckMatchedBrackets(OldTokens)) 677 return false; 678 679 // Once it is known that the brackets are matched, only a simple count of the 680 // braces is needed. 681 unsigned Braces = 0; 682 683 // First token of a new macro argument. 684 SmallVectorImpl<Token>::iterator ArgStartIterator = OldTokens.begin(); 685 686 // First closing brace in a new macro argument. Used to generate 687 // SourceRanges for InitLists. 688 SmallVectorImpl<Token>::iterator ClosingBrace = OldTokens.end(); 689 NumArgs = 0; 690 Token TempToken; 691 // Set to true when a macro separator token is found inside a braced list. 692 // If true, the fixed argument spans multiple old arguments and ParenHints 693 // will be updated. 694 bool FoundSeparatorToken = false; 695 for (SmallVectorImpl<Token>::iterator I = OldTokens.begin(), 696 E = OldTokens.end(); 697 I != E; ++I) { 698 if (I->is(tok::l_brace)) { 699 ++Braces; 700 } else if (I->is(tok::r_brace)) { 701 --Braces; 702 if (Braces == 0 && ClosingBrace == E && FoundSeparatorToken) 703 ClosingBrace = I; 704 } else if (I->is(tok::eof)) { 705 // EOF token is used to separate macro arguments 706 if (Braces != 0) { 707 // Assume comma separator is actually braced list separator and change 708 // it back to a comma. 709 FoundSeparatorToken = true; 710 I->setKind(tok::comma); 711 I->setLength(1); 712 } else { // Braces == 0 713 // Separator token still separates arguments. 714 ++NumArgs; 715 716 // If the argument starts with a brace, it can't be fixed with 717 // parentheses. A different diagnostic will be given. 718 if (FoundSeparatorToken && ArgStartIterator->is(tok::l_brace)) { 719 InitLists.push_back( 720 SourceRange(ArgStartIterator->getLocation(), 721 PP.getLocForEndOfToken(ClosingBrace->getLocation()))); 722 ClosingBrace = E; 723 } 724 725 // Add left paren 726 if (FoundSeparatorToken) { 727 TempToken.startToken(); 728 TempToken.setKind(tok::l_paren); 729 TempToken.setLocation(ArgStartIterator->getLocation()); 730 TempToken.setLength(0); 731 NewTokens.push_back(TempToken); 732 } 733 734 // Copy over argument tokens 735 NewTokens.insert(NewTokens.end(), ArgStartIterator, I); 736 737 // Add right paren and store the paren locations in ParenHints 738 if (FoundSeparatorToken) { 739 SourceLocation Loc = PP.getLocForEndOfToken((I - 1)->getLocation()); 740 TempToken.startToken(); 741 TempToken.setKind(tok::r_paren); 742 TempToken.setLocation(Loc); 743 TempToken.setLength(0); 744 NewTokens.push_back(TempToken); 745 ParenHints.push_back(SourceRange(ArgStartIterator->getLocation(), 746 Loc)); 747 } 748 749 // Copy separator token 750 NewTokens.push_back(*I); 751 752 // Reset values 753 ArgStartIterator = I + 1; 754 FoundSeparatorToken = false; 755 } 756 } 757 } 758 759 return !ParenHints.empty() && InitLists.empty(); 760 } 761 762 /// ReadFunctionLikeMacroArgs - After reading "MACRO" and knowing that the next 763 /// token is the '(' of the macro, this method is invoked to read all of the 764 /// actual arguments specified for the macro invocation. This returns null on 765 /// error. 766 MacroArgs *Preprocessor::ReadMacroCallArgumentList(Token &MacroName, 767 MacroInfo *MI, 768 SourceLocation &MacroEnd) { 769 // The number of fixed arguments to parse. 770 unsigned NumFixedArgsLeft = MI->getNumParams(); 771 bool isVariadic = MI->isVariadic(); 772 773 // Outer loop, while there are more arguments, keep reading them. 774 Token Tok; 775 776 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 777 // an argument value in a macro could expand to ',' or '(' or ')'. 778 LexUnexpandedToken(Tok); 779 assert(Tok.is(tok::l_paren) && "Error computing l-paren-ness?"); 780 781 // ArgTokens - Build up a list of tokens that make up each argument. Each 782 // argument is separated by an EOF token. Use a SmallVector so we can avoid 783 // heap allocations in the common case. 784 SmallVector<Token, 64> ArgTokens; 785 bool ContainsCodeCompletionTok = false; 786 bool FoundElidedComma = false; 787 788 SourceLocation TooManyArgsLoc; 789 790 unsigned NumActuals = 0; 791 while (Tok.isNot(tok::r_paren)) { 792 if (ContainsCodeCompletionTok && Tok.isOneOf(tok::eof, tok::eod)) 793 break; 794 795 assert(Tok.isOneOf(tok::l_paren, tok::comma) && 796 "only expect argument separators here"); 797 798 size_t ArgTokenStart = ArgTokens.size(); 799 SourceLocation ArgStartLoc = Tok.getLocation(); 800 801 // C99 6.10.3p11: Keep track of the number of l_parens we have seen. Note 802 // that we already consumed the first one. 803 unsigned NumParens = 0; 804 805 while (true) { 806 // Read arguments as unexpanded tokens. This avoids issues, e.g., where 807 // an argument value in a macro could expand to ',' or '(' or ')'. 808 LexUnexpandedToken(Tok); 809 810 if (Tok.isOneOf(tok::eof, tok::eod)) { // "#if f(<eof>" & "#if f(\n" 811 if (!ContainsCodeCompletionTok) { 812 Diag(MacroName, diag::err_unterm_macro_invoc); 813 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 814 << MacroName.getIdentifierInfo(); 815 // Do not lose the EOF/EOD. Return it to the client. 816 MacroName = Tok; 817 return nullptr; 818 } 819 // Do not lose the EOF/EOD. 820 auto Toks = std::make_unique<Token[]>(1); 821 Toks[0] = Tok; 822 EnterTokenStream(std::move(Toks), 1, true, /*IsReinject*/ false); 823 break; 824 } else if (Tok.is(tok::r_paren)) { 825 // If we found the ) token, the macro arg list is done. 826 if (NumParens-- == 0) { 827 MacroEnd = Tok.getLocation(); 828 if (!ArgTokens.empty() && 829 ArgTokens.back().commaAfterElided()) { 830 FoundElidedComma = true; 831 } 832 break; 833 } 834 } else if (Tok.is(tok::l_paren)) { 835 ++NumParens; 836 } else if (Tok.is(tok::comma)) { 837 // In Microsoft-compatibility mode, single commas from nested macro 838 // expansions should not be considered as argument separators. We test 839 // for this with the IgnoredComma token flag. 840 if (Tok.getFlags() & Token::IgnoredComma) { 841 // However, in MSVC's preprocessor, subsequent expansions do treat 842 // these commas as argument separators. This leads to a common 843 // workaround used in macros that need to work in both MSVC and 844 // compliant preprocessors. Therefore, the IgnoredComma flag can only 845 // apply once to any given token. 846 Tok.clearFlag(Token::IgnoredComma); 847 } else if (NumParens == 0) { 848 // Comma ends this argument if there are more fixed arguments 849 // expected. However, if this is a variadic macro, and this is part of 850 // the variadic part, then the comma is just an argument token. 851 if (!isVariadic) 852 break; 853 if (NumFixedArgsLeft > 1) 854 break; 855 } 856 } else if (Tok.is(tok::comment) && !KeepMacroComments) { 857 // If this is a comment token in the argument list and we're just in 858 // -C mode (not -CC mode), discard the comment. 859 continue; 860 } else if (!Tok.isAnnotation() && Tok.getIdentifierInfo() != nullptr) { 861 // Reading macro arguments can cause macros that we are currently 862 // expanding from to be popped off the expansion stack. Doing so causes 863 // them to be reenabled for expansion. Here we record whether any 864 // identifiers we lex as macro arguments correspond to disabled macros. 865 // If so, we mark the token as noexpand. This is a subtle aspect of 866 // C99 6.10.3.4p2. 867 if (MacroInfo *MI = getMacroInfo(Tok.getIdentifierInfo())) 868 if (!MI->isEnabled()) 869 Tok.setFlag(Token::DisableExpand); 870 } else if (Tok.is(tok::code_completion)) { 871 ContainsCodeCompletionTok = true; 872 if (CodeComplete) 873 CodeComplete->CodeCompleteMacroArgument(MacroName.getIdentifierInfo(), 874 MI, NumActuals); 875 // Don't mark that we reached the code-completion point because the 876 // parser is going to handle the token and there will be another 877 // code-completion callback. 878 } 879 880 ArgTokens.push_back(Tok); 881 } 882 883 // If this was an empty argument list foo(), don't add this as an empty 884 // argument. 885 if (ArgTokens.empty() && Tok.getKind() == tok::r_paren) 886 break; 887 888 // If this is not a variadic macro, and too many args were specified, emit 889 // an error. 890 if (!isVariadic && NumFixedArgsLeft == 0 && TooManyArgsLoc.isInvalid()) { 891 if (ArgTokens.size() != ArgTokenStart) 892 TooManyArgsLoc = ArgTokens[ArgTokenStart].getLocation(); 893 else 894 TooManyArgsLoc = ArgStartLoc; 895 } 896 897 // Empty arguments are standard in C99 and C++0x, and are supported as an 898 // extension in other modes. 899 if (ArgTokens.size() == ArgTokenStart && !getLangOpts().C99) 900 Diag(Tok, getLangOpts().CPlusPlus11 901 ? diag::warn_cxx98_compat_empty_fnmacro_arg 902 : diag::ext_empty_fnmacro_arg); 903 904 // Add a marker EOF token to the end of the token list for this argument. 905 Token EOFTok; 906 EOFTok.startToken(); 907 EOFTok.setKind(tok::eof); 908 EOFTok.setLocation(Tok.getLocation()); 909 EOFTok.setLength(0); 910 ArgTokens.push_back(EOFTok); 911 ++NumActuals; 912 if (!ContainsCodeCompletionTok && NumFixedArgsLeft != 0) 913 --NumFixedArgsLeft; 914 } 915 916 // Okay, we either found the r_paren. Check to see if we parsed too few 917 // arguments. 918 unsigned MinArgsExpected = MI->getNumParams(); 919 920 // If this is not a variadic macro, and too many args were specified, emit 921 // an error. 922 if (!isVariadic && NumActuals > MinArgsExpected && 923 !ContainsCodeCompletionTok) { 924 // Emit the diagnostic at the macro name in case there is a missing ). 925 // Emitting it at the , could be far away from the macro name. 926 Diag(TooManyArgsLoc, diag::err_too_many_args_in_macro_invoc); 927 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 928 << MacroName.getIdentifierInfo(); 929 930 // Commas from braced initializer lists will be treated as argument 931 // separators inside macros. Attempt to correct for this with parentheses. 932 // TODO: See if this can be generalized to angle brackets for templates 933 // inside macro arguments. 934 935 SmallVector<Token, 4> FixedArgTokens; 936 unsigned FixedNumArgs = 0; 937 SmallVector<SourceRange, 4> ParenHints, InitLists; 938 if (!GenerateNewArgTokens(*this, ArgTokens, FixedArgTokens, FixedNumArgs, 939 ParenHints, InitLists)) { 940 if (!InitLists.empty()) { 941 DiagnosticBuilder DB = 942 Diag(MacroName, 943 diag::note_init_list_at_beginning_of_macro_argument); 944 for (SourceRange Range : InitLists) 945 DB << Range; 946 } 947 return nullptr; 948 } 949 if (FixedNumArgs != MinArgsExpected) 950 return nullptr; 951 952 DiagnosticBuilder DB = Diag(MacroName, diag::note_suggest_parens_for_macro); 953 for (SourceRange ParenLocation : ParenHints) { 954 DB << FixItHint::CreateInsertion(ParenLocation.getBegin(), "("); 955 DB << FixItHint::CreateInsertion(ParenLocation.getEnd(), ")"); 956 } 957 ArgTokens.swap(FixedArgTokens); 958 NumActuals = FixedNumArgs; 959 } 960 961 // See MacroArgs instance var for description of this. 962 bool isVarargsElided = false; 963 964 if (ContainsCodeCompletionTok) { 965 // Recover from not-fully-formed macro invocation during code-completion. 966 Token EOFTok; 967 EOFTok.startToken(); 968 EOFTok.setKind(tok::eof); 969 EOFTok.setLocation(Tok.getLocation()); 970 EOFTok.setLength(0); 971 for (; NumActuals < MinArgsExpected; ++NumActuals) 972 ArgTokens.push_back(EOFTok); 973 } 974 975 if (NumActuals < MinArgsExpected) { 976 // There are several cases where too few arguments is ok, handle them now. 977 if (NumActuals == 0 && MinArgsExpected == 1) { 978 // #define A(X) or #define A(...) ---> A() 979 980 // If there is exactly one argument, and that argument is missing, 981 // then we have an empty "()" argument empty list. This is fine, even if 982 // the macro expects one argument (the argument is just empty). 983 isVarargsElided = MI->isVariadic(); 984 } else if ((FoundElidedComma || MI->isVariadic()) && 985 (NumActuals+1 == MinArgsExpected || // A(x, ...) -> A(X) 986 (NumActuals == 0 && MinArgsExpected == 2))) {// A(x,...) -> A() 987 // Varargs where the named vararg parameter is missing: OK as extension. 988 // #define A(x, ...) 989 // A("blah") 990 // 991 // If the macro contains the comma pasting extension, the diagnostic 992 // is suppressed; we know we'll get another diagnostic later. 993 if (!MI->hasCommaPasting()) { 994 // C++20 allows this construct, but standards before C++20 and all C 995 // standards do not allow the construct (we allow it as an extension). 996 Diag(Tok, getLangOpts().CPlusPlus20 997 ? diag::warn_cxx17_compat_missing_varargs_arg 998 : diag::ext_missing_varargs_arg); 999 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1000 << MacroName.getIdentifierInfo(); 1001 } 1002 1003 // Remember this occurred, allowing us to elide the comma when used for 1004 // cases like: 1005 // #define A(x, foo...) blah(a, ## foo) 1006 // #define B(x, ...) blah(a, ## __VA_ARGS__) 1007 // #define C(...) blah(a, ## __VA_ARGS__) 1008 // A(x) B(x) C() 1009 isVarargsElided = true; 1010 } else if (!ContainsCodeCompletionTok) { 1011 // Otherwise, emit the error. 1012 Diag(Tok, diag::err_too_few_args_in_macro_invoc); 1013 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1014 << MacroName.getIdentifierInfo(); 1015 return nullptr; 1016 } 1017 1018 // Add a marker EOF token to the end of the token list for this argument. 1019 SourceLocation EndLoc = Tok.getLocation(); 1020 Tok.startToken(); 1021 Tok.setKind(tok::eof); 1022 Tok.setLocation(EndLoc); 1023 Tok.setLength(0); 1024 ArgTokens.push_back(Tok); 1025 1026 // If we expect two arguments, add both as empty. 1027 if (NumActuals == 0 && MinArgsExpected == 2) 1028 ArgTokens.push_back(Tok); 1029 1030 } else if (NumActuals > MinArgsExpected && !MI->isVariadic() && 1031 !ContainsCodeCompletionTok) { 1032 // Emit the diagnostic at the macro name in case there is a missing ). 1033 // Emitting it at the , could be far away from the macro name. 1034 Diag(MacroName, diag::err_too_many_args_in_macro_invoc); 1035 Diag(MI->getDefinitionLoc(), diag::note_macro_here) 1036 << MacroName.getIdentifierInfo(); 1037 return nullptr; 1038 } 1039 1040 return MacroArgs::create(MI, ArgTokens, isVarargsElided, *this); 1041 } 1042 1043 /// Keeps macro expanded tokens for TokenLexers. 1044 // 1045 /// Works like a stack; a TokenLexer adds the macro expanded tokens that is 1046 /// going to lex in the cache and when it finishes the tokens are removed 1047 /// from the end of the cache. 1048 Token *Preprocessor::cacheMacroExpandedTokens(TokenLexer *tokLexer, 1049 ArrayRef<Token> tokens) { 1050 assert(tokLexer); 1051 if (tokens.empty()) 1052 return nullptr; 1053 1054 size_t newIndex = MacroExpandedTokens.size(); 1055 bool cacheNeedsToGrow = tokens.size() > 1056 MacroExpandedTokens.capacity()-MacroExpandedTokens.size(); 1057 MacroExpandedTokens.append(tokens.begin(), tokens.end()); 1058 1059 if (cacheNeedsToGrow) { 1060 // Go through all the TokenLexers whose 'Tokens' pointer points in the 1061 // buffer and update the pointers to the (potential) new buffer array. 1062 for (const auto &Lexer : MacroExpandingLexersStack) { 1063 TokenLexer *prevLexer; 1064 size_t tokIndex; 1065 std::tie(prevLexer, tokIndex) = Lexer; 1066 prevLexer->Tokens = MacroExpandedTokens.data() + tokIndex; 1067 } 1068 } 1069 1070 MacroExpandingLexersStack.push_back(std::make_pair(tokLexer, newIndex)); 1071 return MacroExpandedTokens.data() + newIndex; 1072 } 1073 1074 void Preprocessor::removeCachedMacroExpandedTokensOfLastLexer() { 1075 assert(!MacroExpandingLexersStack.empty()); 1076 size_t tokIndex = MacroExpandingLexersStack.back().second; 1077 assert(tokIndex < MacroExpandedTokens.size()); 1078 // Pop the cached macro expanded tokens from the end. 1079 MacroExpandedTokens.resize(tokIndex); 1080 MacroExpandingLexersStack.pop_back(); 1081 } 1082 1083 /// ComputeDATE_TIME - Compute the current time, enter it into the specified 1084 /// scratch buffer, then return DATELoc/TIMELoc locations with the position of 1085 /// the identifier tokens inserted. 1086 static void ComputeDATE_TIME(SourceLocation &DATELoc, SourceLocation &TIMELoc, 1087 Preprocessor &PP) { 1088 time_t TT = time(nullptr); 1089 struct tm *TM = localtime(&TT); 1090 1091 static const char * const Months[] = { 1092 "Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec" 1093 }; 1094 1095 { 1096 SmallString<32> TmpBuffer; 1097 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1098 TmpStream << llvm::format("\"%s %2d %4d\"", Months[TM->tm_mon], 1099 TM->tm_mday, TM->tm_year + 1900); 1100 Token TmpTok; 1101 TmpTok.startToken(); 1102 PP.CreateString(TmpStream.str(), TmpTok); 1103 DATELoc = TmpTok.getLocation(); 1104 } 1105 1106 { 1107 SmallString<32> TmpBuffer; 1108 llvm::raw_svector_ostream TmpStream(TmpBuffer); 1109 TmpStream << llvm::format("\"%02d:%02d:%02d\"", 1110 TM->tm_hour, TM->tm_min, TM->tm_sec); 1111 Token TmpTok; 1112 TmpTok.startToken(); 1113 PP.CreateString(TmpStream.str(), TmpTok); 1114 TIMELoc = TmpTok.getLocation(); 1115 } 1116 } 1117 1118 /// HasFeature - Return true if we recognize and implement the feature 1119 /// specified by the identifier as a standard language feature. 1120 static bool HasFeature(const Preprocessor &PP, StringRef Feature) { 1121 const LangOptions &LangOpts = PP.getLangOpts(); 1122 1123 // Normalize the feature name, __foo__ becomes foo. 1124 if (Feature.startswith("__") && Feature.endswith("__") && Feature.size() >= 4) 1125 Feature = Feature.substr(2, Feature.size() - 4); 1126 1127 #define FEATURE(Name, Predicate) .Case(#Name, Predicate) 1128 return llvm::StringSwitch<bool>(Feature) 1129 #include "clang/Basic/Features.def" 1130 .Default(false); 1131 #undef FEATURE 1132 } 1133 1134 /// HasExtension - Return true if we recognize and implement the feature 1135 /// specified by the identifier, either as an extension or a standard language 1136 /// feature. 1137 static bool HasExtension(const Preprocessor &PP, StringRef Extension) { 1138 if (HasFeature(PP, Extension)) 1139 return true; 1140 1141 // If the use of an extension results in an error diagnostic, extensions are 1142 // effectively unavailable, so just return false here. 1143 if (PP.getDiagnostics().getExtensionHandlingBehavior() >= 1144 diag::Severity::Error) 1145 return false; 1146 1147 const LangOptions &LangOpts = PP.getLangOpts(); 1148 1149 // Normalize the extension name, __foo__ becomes foo. 1150 if (Extension.startswith("__") && Extension.endswith("__") && 1151 Extension.size() >= 4) 1152 Extension = Extension.substr(2, Extension.size() - 4); 1153 1154 // Because we inherit the feature list from HasFeature, this string switch 1155 // must be less restrictive than HasFeature's. 1156 #define EXTENSION(Name, Predicate) .Case(#Name, Predicate) 1157 return llvm::StringSwitch<bool>(Extension) 1158 #include "clang/Basic/Features.def" 1159 .Default(false); 1160 #undef EXTENSION 1161 } 1162 1163 /// EvaluateHasIncludeCommon - Process a '__has_include("path")' 1164 /// or '__has_include_next("path")' expression. 1165 /// Returns true if successful. 1166 static bool EvaluateHasIncludeCommon(Token &Tok, IdentifierInfo *II, 1167 Preprocessor &PP, 1168 ConstSearchDirIterator LookupFrom, 1169 const FileEntry *LookupFromFile) { 1170 // Save the location of the current token. If a '(' is later found, use 1171 // that location. If not, use the end of this location instead. 1172 SourceLocation LParenLoc = Tok.getLocation(); 1173 1174 // These expressions are only allowed within a preprocessor directive. 1175 if (!PP.isParsingIfOrElifDirective()) { 1176 PP.Diag(LParenLoc, diag::err_pp_directive_required) << II; 1177 // Return a valid identifier token. 1178 assert(Tok.is(tok::identifier)); 1179 Tok.setIdentifierInfo(II); 1180 return false; 1181 } 1182 1183 // Get '('. If we don't have a '(', try to form a header-name token. 1184 do { 1185 if (PP.LexHeaderName(Tok)) 1186 return false; 1187 } while (Tok.getKind() == tok::comment); 1188 1189 // Ensure we have a '('. 1190 if (Tok.isNot(tok::l_paren)) { 1191 // No '(', use end of last token. 1192 LParenLoc = PP.getLocForEndOfToken(LParenLoc); 1193 PP.Diag(LParenLoc, diag::err_pp_expected_after) << II << tok::l_paren; 1194 // If the next token looks like a filename or the start of one, 1195 // assume it is and process it as such. 1196 if (Tok.isNot(tok::header_name)) 1197 return false; 1198 } else { 1199 // Save '(' location for possible missing ')' message. 1200 LParenLoc = Tok.getLocation(); 1201 if (PP.LexHeaderName(Tok)) 1202 return false; 1203 } 1204 1205 if (Tok.isNot(tok::header_name)) { 1206 PP.Diag(Tok.getLocation(), diag::err_pp_expects_filename); 1207 return false; 1208 } 1209 1210 // Reserve a buffer to get the spelling. 1211 SmallString<128> FilenameBuffer; 1212 bool Invalid = false; 1213 StringRef Filename = PP.getSpelling(Tok, FilenameBuffer, &Invalid); 1214 if (Invalid) 1215 return false; 1216 1217 SourceLocation FilenameLoc = Tok.getLocation(); 1218 1219 // Get ')'. 1220 PP.LexNonComment(Tok); 1221 1222 // Ensure we have a trailing ). 1223 if (Tok.isNot(tok::r_paren)) { 1224 PP.Diag(PP.getLocForEndOfToken(FilenameLoc), diag::err_pp_expected_after) 1225 << II << tok::r_paren; 1226 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1227 return false; 1228 } 1229 1230 bool isAngled = PP.GetIncludeFilenameSpelling(Tok.getLocation(), Filename); 1231 // If GetIncludeFilenameSpelling set the start ptr to null, there was an 1232 // error. 1233 if (Filename.empty()) 1234 return false; 1235 1236 // Search include directories. 1237 Optional<FileEntryRef> File = 1238 PP.LookupFile(FilenameLoc, Filename, isAngled, LookupFrom, LookupFromFile, 1239 nullptr, nullptr, nullptr, nullptr, nullptr, nullptr); 1240 1241 if (PPCallbacks *Callbacks = PP.getPPCallbacks()) { 1242 SrcMgr::CharacteristicKind FileType = SrcMgr::C_User; 1243 if (File) 1244 FileType = 1245 PP.getHeaderSearchInfo().getFileDirFlavor(&File->getFileEntry()); 1246 Callbacks->HasInclude(FilenameLoc, Filename, isAngled, File, FileType); 1247 } 1248 1249 // Get the result value. A result of true means the file exists. 1250 return File.has_value(); 1251 } 1252 1253 bool Preprocessor::EvaluateHasInclude(Token &Tok, IdentifierInfo *II) { 1254 return EvaluateHasIncludeCommon(Tok, II, *this, nullptr, nullptr); 1255 } 1256 1257 bool Preprocessor::EvaluateHasIncludeNext(Token &Tok, IdentifierInfo *II) { 1258 ConstSearchDirIterator Lookup = nullptr; 1259 const FileEntry *LookupFromFile; 1260 std::tie(Lookup, LookupFromFile) = getIncludeNextStart(Tok); 1261 1262 return EvaluateHasIncludeCommon(Tok, II, *this, Lookup, LookupFromFile); 1263 } 1264 1265 /// Process single-argument builtin feature-like macros that return 1266 /// integer values. 1267 static void EvaluateFeatureLikeBuiltinMacro(llvm::raw_svector_ostream& OS, 1268 Token &Tok, IdentifierInfo *II, 1269 Preprocessor &PP, bool ExpandArgs, 1270 llvm::function_ref< 1271 int(Token &Tok, 1272 bool &HasLexedNextTok)> Op) { 1273 // Parse the initial '('. 1274 PP.LexUnexpandedToken(Tok); 1275 if (Tok.isNot(tok::l_paren)) { 1276 PP.Diag(Tok.getLocation(), diag::err_pp_expected_after) << II 1277 << tok::l_paren; 1278 1279 // Provide a dummy '0' value on output stream to elide further errors. 1280 if (!Tok.isOneOf(tok::eof, tok::eod)) { 1281 OS << 0; 1282 Tok.setKind(tok::numeric_constant); 1283 } 1284 return; 1285 } 1286 1287 unsigned ParenDepth = 1; 1288 SourceLocation LParenLoc = Tok.getLocation(); 1289 llvm::Optional<int> Result; 1290 1291 Token ResultTok; 1292 bool SuppressDiagnostic = false; 1293 while (true) { 1294 // Parse next token. 1295 if (ExpandArgs) 1296 PP.Lex(Tok); 1297 else 1298 PP.LexUnexpandedToken(Tok); 1299 1300 already_lexed: 1301 switch (Tok.getKind()) { 1302 case tok::eof: 1303 case tok::eod: 1304 // Don't provide even a dummy value if the eod or eof marker is 1305 // reached. Simply provide a diagnostic. 1306 PP.Diag(Tok.getLocation(), diag::err_unterm_macro_invoc); 1307 return; 1308 1309 case tok::comma: 1310 if (!SuppressDiagnostic) { 1311 PP.Diag(Tok.getLocation(), diag::err_too_many_args_in_macro_invoc); 1312 SuppressDiagnostic = true; 1313 } 1314 continue; 1315 1316 case tok::l_paren: 1317 ++ParenDepth; 1318 if (Result) 1319 break; 1320 if (!SuppressDiagnostic) { 1321 PP.Diag(Tok.getLocation(), diag::err_pp_nested_paren) << II; 1322 SuppressDiagnostic = true; 1323 } 1324 continue; 1325 1326 case tok::r_paren: 1327 if (--ParenDepth > 0) 1328 continue; 1329 1330 // The last ')' has been reached; return the value if one found or 1331 // a diagnostic and a dummy value. 1332 if (Result) { 1333 OS << Result.value(); 1334 // For strict conformance to __has_cpp_attribute rules, use 'L' 1335 // suffix for dated literals. 1336 if (Result.value() > 1) 1337 OS << 'L'; 1338 } else { 1339 OS << 0; 1340 if (!SuppressDiagnostic) 1341 PP.Diag(Tok.getLocation(), diag::err_too_few_args_in_macro_invoc); 1342 } 1343 Tok.setKind(tok::numeric_constant); 1344 return; 1345 1346 default: { 1347 // Parse the macro argument, if one not found so far. 1348 if (Result) 1349 break; 1350 1351 bool HasLexedNextToken = false; 1352 Result = Op(Tok, HasLexedNextToken); 1353 ResultTok = Tok; 1354 if (HasLexedNextToken) 1355 goto already_lexed; 1356 continue; 1357 } 1358 } 1359 1360 // Diagnose missing ')'. 1361 if (!SuppressDiagnostic) { 1362 if (auto Diag = PP.Diag(Tok.getLocation(), diag::err_pp_expected_after)) { 1363 if (IdentifierInfo *LastII = ResultTok.getIdentifierInfo()) 1364 Diag << LastII; 1365 else 1366 Diag << ResultTok.getKind(); 1367 Diag << tok::r_paren << ResultTok.getLocation(); 1368 } 1369 PP.Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1370 SuppressDiagnostic = true; 1371 } 1372 } 1373 } 1374 1375 /// Helper function to return the IdentifierInfo structure of a Token 1376 /// or generate a diagnostic if none available. 1377 static IdentifierInfo *ExpectFeatureIdentifierInfo(Token &Tok, 1378 Preprocessor &PP, 1379 signed DiagID) { 1380 IdentifierInfo *II; 1381 if (!Tok.isAnnotation() && (II = Tok.getIdentifierInfo())) 1382 return II; 1383 1384 PP.Diag(Tok.getLocation(), DiagID); 1385 return nullptr; 1386 } 1387 1388 /// Implements the __is_target_arch builtin macro. 1389 static bool isTargetArch(const TargetInfo &TI, const IdentifierInfo *II) { 1390 std::string ArchName = II->getName().lower() + "--"; 1391 llvm::Triple Arch(ArchName); 1392 const llvm::Triple &TT = TI.getTriple(); 1393 if (TT.isThumb()) { 1394 // arm matches thumb or thumbv7. armv7 matches thumbv7. 1395 if ((Arch.getSubArch() == llvm::Triple::NoSubArch || 1396 Arch.getSubArch() == TT.getSubArch()) && 1397 ((TT.getArch() == llvm::Triple::thumb && 1398 Arch.getArch() == llvm::Triple::arm) || 1399 (TT.getArch() == llvm::Triple::thumbeb && 1400 Arch.getArch() == llvm::Triple::armeb))) 1401 return true; 1402 } 1403 // Check the parsed arch when it has no sub arch to allow Clang to 1404 // match thumb to thumbv7 but to prohibit matching thumbv6 to thumbv7. 1405 return (Arch.getSubArch() == llvm::Triple::NoSubArch || 1406 Arch.getSubArch() == TT.getSubArch()) && 1407 Arch.getArch() == TT.getArch(); 1408 } 1409 1410 /// Implements the __is_target_vendor builtin macro. 1411 static bool isTargetVendor(const TargetInfo &TI, const IdentifierInfo *II) { 1412 StringRef VendorName = TI.getTriple().getVendorName(); 1413 if (VendorName.empty()) 1414 VendorName = "unknown"; 1415 return VendorName.equals_insensitive(II->getName()); 1416 } 1417 1418 /// Implements the __is_target_os builtin macro. 1419 static bool isTargetOS(const TargetInfo &TI, const IdentifierInfo *II) { 1420 std::string OSName = 1421 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1422 llvm::Triple OS(OSName); 1423 if (OS.getOS() == llvm::Triple::Darwin) { 1424 // Darwin matches macos, ios, etc. 1425 return TI.getTriple().isOSDarwin(); 1426 } 1427 return TI.getTriple().getOS() == OS.getOS(); 1428 } 1429 1430 /// Implements the __is_target_environment builtin macro. 1431 static bool isTargetEnvironment(const TargetInfo &TI, 1432 const IdentifierInfo *II) { 1433 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1434 llvm::Triple Env(EnvName); 1435 return TI.getTriple().getEnvironment() == Env.getEnvironment(); 1436 } 1437 1438 /// Implements the __is_target_variant_os builtin macro. 1439 static bool isTargetVariantOS(const TargetInfo &TI, const IdentifierInfo *II) { 1440 if (TI.getTriple().isOSDarwin()) { 1441 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); 1442 if (!VariantTriple) 1443 return false; 1444 1445 std::string OSName = 1446 (llvm::Twine("unknown-unknown-") + II->getName().lower()).str(); 1447 llvm::Triple OS(OSName); 1448 if (OS.getOS() == llvm::Triple::Darwin) { 1449 // Darwin matches macos, ios, etc. 1450 return VariantTriple->isOSDarwin(); 1451 } 1452 return VariantTriple->getOS() == OS.getOS(); 1453 } 1454 return false; 1455 } 1456 1457 /// Implements the __is_target_variant_environment builtin macro. 1458 static bool isTargetVariantEnvironment(const TargetInfo &TI, 1459 const IdentifierInfo *II) { 1460 if (TI.getTriple().isOSDarwin()) { 1461 const llvm::Triple *VariantTriple = TI.getDarwinTargetVariantTriple(); 1462 if (!VariantTriple) 1463 return false; 1464 std::string EnvName = (llvm::Twine("---") + II->getName().lower()).str(); 1465 llvm::Triple Env(EnvName); 1466 return VariantTriple->getEnvironment() == Env.getEnvironment(); 1467 } 1468 return false; 1469 } 1470 1471 /// ExpandBuiltinMacro - If an identifier token is read that is to be expanded 1472 /// as a builtin macro, handle it and return the next token as 'Tok'. 1473 void Preprocessor::ExpandBuiltinMacro(Token &Tok) { 1474 // Figure out which token this is. 1475 IdentifierInfo *II = Tok.getIdentifierInfo(); 1476 assert(II && "Can't be a macro without id info!"); 1477 1478 // If this is an _Pragma or Microsoft __pragma directive, expand it, 1479 // invoke the pragma handler, then lex the token after it. 1480 if (II == Ident_Pragma) 1481 return Handle_Pragma(Tok); 1482 else if (II == Ident__pragma) // in non-MS mode this is null 1483 return HandleMicrosoft__pragma(Tok); 1484 1485 ++NumBuiltinMacroExpanded; 1486 1487 SmallString<128> TmpBuffer; 1488 llvm::raw_svector_ostream OS(TmpBuffer); 1489 1490 // Set up the return result. 1491 Tok.setIdentifierInfo(nullptr); 1492 Tok.clearFlag(Token::NeedsCleaning); 1493 bool IsAtStartOfLine = Tok.isAtStartOfLine(); 1494 bool HasLeadingSpace = Tok.hasLeadingSpace(); 1495 1496 if (II == Ident__LINE__) { 1497 // C99 6.10.8: "__LINE__: The presumed line number (within the current 1498 // source file) of the current source line (an integer constant)". This can 1499 // be affected by #line. 1500 SourceLocation Loc = Tok.getLocation(); 1501 1502 // Advance to the location of the first _, this might not be the first byte 1503 // of the token if it starts with an escaped newline. 1504 Loc = AdvanceToTokenCharacter(Loc, 0); 1505 1506 // One wrinkle here is that GCC expands __LINE__ to location of the *end* of 1507 // a macro expansion. This doesn't matter for object-like macros, but 1508 // can matter for a function-like macro that expands to contain __LINE__. 1509 // Skip down through expansion points until we find a file loc for the 1510 // end of the expansion history. 1511 Loc = SourceMgr.getExpansionRange(Loc).getEnd(); 1512 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Loc); 1513 1514 // __LINE__ expands to a simple numeric value. 1515 OS << (PLoc.isValid()? PLoc.getLine() : 1); 1516 Tok.setKind(tok::numeric_constant); 1517 } else if (II == Ident__FILE__ || II == Ident__BASE_FILE__ || 1518 II == Ident__FILE_NAME__) { 1519 // C99 6.10.8: "__FILE__: The presumed name of the current source file (a 1520 // character string literal)". This can be affected by #line. 1521 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1522 1523 // __BASE_FILE__ is a GNU extension that returns the top of the presumed 1524 // #include stack instead of the current file. 1525 if (II == Ident__BASE_FILE__ && PLoc.isValid()) { 1526 SourceLocation NextLoc = PLoc.getIncludeLoc(); 1527 while (NextLoc.isValid()) { 1528 PLoc = SourceMgr.getPresumedLoc(NextLoc); 1529 if (PLoc.isInvalid()) 1530 break; 1531 1532 NextLoc = PLoc.getIncludeLoc(); 1533 } 1534 } 1535 1536 // Escape this filename. Turn '\' -> '\\' '"' -> '\"' 1537 SmallString<256> FN; 1538 if (PLoc.isValid()) { 1539 // __FILE_NAME__ is a Clang-specific extension that expands to the 1540 // the last part of __FILE__. 1541 if (II == Ident__FILE_NAME__) { 1542 // Try to get the last path component, failing that return the original 1543 // presumed location. 1544 StringRef PLFileName = llvm::sys::path::filename(PLoc.getFilename()); 1545 if (PLFileName != "") 1546 FN += PLFileName; 1547 else 1548 FN += PLoc.getFilename(); 1549 } else { 1550 FN += PLoc.getFilename(); 1551 } 1552 processPathForFileMacro(FN, getLangOpts(), getTargetInfo()); 1553 Lexer::Stringify(FN); 1554 OS << '"' << FN << '"'; 1555 } 1556 Tok.setKind(tok::string_literal); 1557 } else if (II == Ident__DATE__) { 1558 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1559 if (!DATELoc.isValid()) 1560 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1561 Tok.setKind(tok::string_literal); 1562 Tok.setLength(strlen("\"Mmm dd yyyy\"")); 1563 Tok.setLocation(SourceMgr.createExpansionLoc(DATELoc, Tok.getLocation(), 1564 Tok.getLocation(), 1565 Tok.getLength())); 1566 return; 1567 } else if (II == Ident__TIME__) { 1568 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1569 if (!TIMELoc.isValid()) 1570 ComputeDATE_TIME(DATELoc, TIMELoc, *this); 1571 Tok.setKind(tok::string_literal); 1572 Tok.setLength(strlen("\"hh:mm:ss\"")); 1573 Tok.setLocation(SourceMgr.createExpansionLoc(TIMELoc, Tok.getLocation(), 1574 Tok.getLocation(), 1575 Tok.getLength())); 1576 return; 1577 } else if (II == Ident__INCLUDE_LEVEL__) { 1578 // Compute the presumed include depth of this token. This can be affected 1579 // by GNU line markers. 1580 unsigned Depth = 0; 1581 1582 PresumedLoc PLoc = SourceMgr.getPresumedLoc(Tok.getLocation()); 1583 if (PLoc.isValid()) { 1584 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1585 for (; PLoc.isValid(); ++Depth) 1586 PLoc = SourceMgr.getPresumedLoc(PLoc.getIncludeLoc()); 1587 } 1588 1589 // __INCLUDE_LEVEL__ expands to a simple numeric value. 1590 OS << Depth; 1591 Tok.setKind(tok::numeric_constant); 1592 } else if (II == Ident__TIMESTAMP__) { 1593 Diag(Tok.getLocation(), diag::warn_pp_date_time); 1594 // MSVC, ICC, GCC, VisualAge C++ extension. The generated string should be 1595 // of the form "Ddd Mmm dd hh::mm::ss yyyy", which is returned by asctime. 1596 1597 // Get the file that we are lexing out of. If we're currently lexing from 1598 // a macro, dig into the include stack. 1599 const FileEntry *CurFile = nullptr; 1600 PreprocessorLexer *TheLexer = getCurrentFileLexer(); 1601 1602 if (TheLexer) 1603 CurFile = SourceMgr.getFileEntryForID(TheLexer->getFileID()); 1604 1605 const char *Result; 1606 if (CurFile) { 1607 time_t TT = CurFile->getModificationTime(); 1608 struct tm *TM = localtime(&TT); 1609 Result = asctime(TM); 1610 } else { 1611 Result = "??? ??? ?? ??:??:?? ????\n"; 1612 } 1613 // Surround the string with " and strip the trailing newline. 1614 OS << '"' << StringRef(Result).drop_back() << '"'; 1615 Tok.setKind(tok::string_literal); 1616 } else if (II == Ident__FLT_EVAL_METHOD__) { 1617 // __FLT_EVAL_METHOD__ is set to the default value. 1618 if (getTUFPEvalMethod() == 1619 LangOptions::FPEvalMethodKind::FEM_Indeterminable) { 1620 // This is possible if `AllowFPReassoc` or `AllowReciprocal` is enabled. 1621 // These modes can be triggered via the command line option `-ffast-math` 1622 // or via a `pragam float_control`. 1623 // __FLT_EVAL_METHOD__ expands to -1. 1624 // The `minus` operator is the next token we read from the stream. 1625 auto Toks = std::make_unique<Token[]>(1); 1626 OS << "-"; 1627 Tok.setKind(tok::minus); 1628 // Push the token `1` to the stream. 1629 Token NumberToken; 1630 NumberToken.startToken(); 1631 NumberToken.setKind(tok::numeric_constant); 1632 NumberToken.setLiteralData("1"); 1633 NumberToken.setLength(1); 1634 Toks[0] = NumberToken; 1635 EnterTokenStream(std::move(Toks), 1, /*DisableMacroExpansion*/ false, 1636 /*IsReinject*/ false); 1637 } else { 1638 OS << getTUFPEvalMethod(); 1639 // __FLT_EVAL_METHOD__ expands to a simple numeric value. 1640 Tok.setKind(tok::numeric_constant); 1641 if (getLastFPEvalPragmaLocation().isValid()) { 1642 // The program is ill-formed. The value of __FLT_EVAL_METHOD__ is 1643 // altered by the pragma. 1644 Diag(Tok, diag::err_illegal_use_of_flt_eval_macro); 1645 Diag(getLastFPEvalPragmaLocation(), diag::note_pragma_entered_here); 1646 } 1647 } 1648 } else if (II == Ident__COUNTER__) { 1649 // __COUNTER__ expands to a simple numeric value. 1650 OS << CounterValue++; 1651 Tok.setKind(tok::numeric_constant); 1652 } else if (II == Ident__has_feature) { 1653 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1654 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1655 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1656 diag::err_feature_check_malformed); 1657 return II && HasFeature(*this, II->getName()); 1658 }); 1659 } else if (II == Ident__has_extension) { 1660 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1661 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1662 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1663 diag::err_feature_check_malformed); 1664 return II && HasExtension(*this, II->getName()); 1665 }); 1666 } else if (II == Ident__has_builtin) { 1667 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1668 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1669 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1670 diag::err_feature_check_malformed); 1671 if (!II) 1672 return false; 1673 else if (II->getBuiltinID() != 0) { 1674 switch (II->getBuiltinID()) { 1675 case Builtin::BI__builtin_operator_new: 1676 case Builtin::BI__builtin_operator_delete: 1677 // denotes date of behavior change to support calling arbitrary 1678 // usual allocation and deallocation functions. Required by libc++ 1679 return 201802; 1680 default: 1681 return Builtin::evaluateRequiredTargetFeatures( 1682 getBuiltinInfo().getRequiredFeatures(II->getBuiltinID()), 1683 getTargetInfo().getTargetOpts().FeatureMap); 1684 } 1685 return true; 1686 } else if (II->getTokenID() != tok::identifier || 1687 II->hasRevertedTokenIDToIdentifier()) { 1688 // Treat all keywords that introduce a custom syntax of the form 1689 // 1690 // '__some_keyword' '(' [...] ')' 1691 // 1692 // as being "builtin functions", even if the syntax isn't a valid 1693 // function call (for example, because the builtin takes a type 1694 // argument). 1695 if (II->getName().startswith("__builtin_") || 1696 II->getName().startswith("__is_") || 1697 II->getName().startswith("__has_")) 1698 return true; 1699 return llvm::StringSwitch<bool>(II->getName()) 1700 .Case("__array_rank", true) 1701 .Case("__array_extent", true) 1702 .Case("__reference_binds_to_temporary", true) 1703 .Case("__underlying_type", true) 1704 .Default(false); 1705 } else { 1706 return llvm::StringSwitch<bool>(II->getName()) 1707 // Report builtin templates as being builtins. 1708 .Case("__make_integer_seq", getLangOpts().CPlusPlus) 1709 .Case("__type_pack_element", getLangOpts().CPlusPlus) 1710 // Likewise for some builtin preprocessor macros. 1711 // FIXME: This is inconsistent; we usually suggest detecting 1712 // builtin macros via #ifdef. Don't add more cases here. 1713 .Case("__is_target_arch", true) 1714 .Case("__is_target_vendor", true) 1715 .Case("__is_target_os", true) 1716 .Case("__is_target_environment", true) 1717 .Case("__is_target_variant_os", true) 1718 .Case("__is_target_variant_environment", true) 1719 .Default(false); 1720 } 1721 }); 1722 } else if (II == Ident__is_identifier) { 1723 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1724 [](Token &Tok, bool &HasLexedNextToken) -> int { 1725 return Tok.is(tok::identifier); 1726 }); 1727 } else if (II == Ident__has_attribute) { 1728 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1729 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1730 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1731 diag::err_feature_check_malformed); 1732 return II ? hasAttribute(AttributeCommonInfo::Syntax::AS_GNU, nullptr, 1733 II, getTargetInfo(), getLangOpts()) 1734 : 0; 1735 }); 1736 } else if (II == Ident__has_declspec) { 1737 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1738 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1739 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1740 diag::err_feature_check_malformed); 1741 if (II) { 1742 const LangOptions &LangOpts = getLangOpts(); 1743 return LangOpts.DeclSpecKeyword && 1744 hasAttribute(AttributeCommonInfo::Syntax::AS_Declspec, nullptr, 1745 II, getTargetInfo(), LangOpts); 1746 } 1747 1748 return false; 1749 }); 1750 } else if (II == Ident__has_cpp_attribute || 1751 II == Ident__has_c_attribute) { 1752 bool IsCXX = II == Ident__has_cpp_attribute; 1753 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, true, 1754 [&](Token &Tok, bool &HasLexedNextToken) -> int { 1755 IdentifierInfo *ScopeII = nullptr; 1756 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1757 Tok, *this, diag::err_feature_check_malformed); 1758 if (!II) 1759 return false; 1760 1761 // It is possible to receive a scope token. Read the "::", if it is 1762 // available, and the subsequent identifier. 1763 LexUnexpandedToken(Tok); 1764 if (Tok.isNot(tok::coloncolon)) 1765 HasLexedNextToken = true; 1766 else { 1767 ScopeII = II; 1768 // Lex an expanded token for the attribute name. 1769 Lex(Tok); 1770 II = ExpectFeatureIdentifierInfo(Tok, *this, 1771 diag::err_feature_check_malformed); 1772 } 1773 1774 AttributeCommonInfo::Syntax Syntax = 1775 IsCXX ? AttributeCommonInfo::Syntax::AS_CXX11 1776 : AttributeCommonInfo::Syntax::AS_C2x; 1777 return II ? hasAttribute(Syntax, ScopeII, II, getTargetInfo(), 1778 getLangOpts()) 1779 : 0; 1780 }); 1781 } else if (II == Ident__has_include || 1782 II == Ident__has_include_next) { 1783 // The argument to these two builtins should be a parenthesized 1784 // file name string literal using angle brackets (<>) or 1785 // double-quotes (""). 1786 bool Value; 1787 if (II == Ident__has_include) 1788 Value = EvaluateHasInclude(Tok, II); 1789 else 1790 Value = EvaluateHasIncludeNext(Tok, II); 1791 1792 if (Tok.isNot(tok::r_paren)) 1793 return; 1794 OS << (int)Value; 1795 Tok.setKind(tok::numeric_constant); 1796 } else if (II == Ident__has_warning) { 1797 // The argument should be a parenthesized string literal. 1798 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1799 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1800 std::string WarningName; 1801 SourceLocation StrStartLoc = Tok.getLocation(); 1802 1803 HasLexedNextToken = Tok.is(tok::string_literal); 1804 if (!FinishLexStringLiteral(Tok, WarningName, "'__has_warning'", 1805 /*AllowMacroExpansion=*/false)) 1806 return false; 1807 1808 // FIXME: Should we accept "-R..." flags here, or should that be 1809 // handled by a separate __has_remark? 1810 if (WarningName.size() < 3 || WarningName[0] != '-' || 1811 WarningName[1] != 'W') { 1812 Diag(StrStartLoc, diag::warn_has_warning_invalid_option); 1813 return false; 1814 } 1815 1816 // Finally, check if the warning flags maps to a diagnostic group. 1817 // We construct a SmallVector here to talk to getDiagnosticIDs(). 1818 // Although we don't use the result, this isn't a hot path, and not 1819 // worth special casing. 1820 SmallVector<diag::kind, 10> Diags; 1821 return !getDiagnostics().getDiagnosticIDs()-> 1822 getDiagnosticsInGroup(diag::Flavor::WarningOrError, 1823 WarningName.substr(2), Diags); 1824 }); 1825 } else if (II == Ident__building_module) { 1826 // The argument to this builtin should be an identifier. The 1827 // builtin evaluates to 1 when that identifier names the module we are 1828 // currently building. 1829 EvaluateFeatureLikeBuiltinMacro(OS, Tok, II, *this, false, 1830 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1831 IdentifierInfo *II = ExpectFeatureIdentifierInfo(Tok, *this, 1832 diag::err_expected_id_building_module); 1833 return getLangOpts().isCompilingModule() && II && 1834 (II->getName() == getLangOpts().CurrentModule); 1835 }); 1836 } else if (II == Ident__MODULE__) { 1837 // The current module as an identifier. 1838 OS << getLangOpts().CurrentModule; 1839 IdentifierInfo *ModuleII = getIdentifierInfo(getLangOpts().CurrentModule); 1840 Tok.setIdentifierInfo(ModuleII); 1841 Tok.setKind(ModuleII->getTokenID()); 1842 } else if (II == Ident__identifier) { 1843 SourceLocation Loc = Tok.getLocation(); 1844 1845 // We're expecting '__identifier' '(' identifier ')'. Try to recover 1846 // if the parens are missing. 1847 LexNonComment(Tok); 1848 if (Tok.isNot(tok::l_paren)) { 1849 // No '(', use end of last token. 1850 Diag(getLocForEndOfToken(Loc), diag::err_pp_expected_after) 1851 << II << tok::l_paren; 1852 // If the next token isn't valid as our argument, we can't recover. 1853 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 1854 Tok.setKind(tok::identifier); 1855 return; 1856 } 1857 1858 SourceLocation LParenLoc = Tok.getLocation(); 1859 LexNonComment(Tok); 1860 1861 if (!Tok.isAnnotation() && Tok.getIdentifierInfo()) 1862 Tok.setKind(tok::identifier); 1863 else if (Tok.is(tok::string_literal) && !Tok.hasUDSuffix()) { 1864 StringLiteralParser Literal(Tok, *this); 1865 if (Literal.hadError) 1866 return; 1867 1868 Tok.setIdentifierInfo(getIdentifierInfo(Literal.GetString())); 1869 Tok.setKind(tok::identifier); 1870 } else { 1871 Diag(Tok.getLocation(), diag::err_pp_identifier_arg_not_identifier) 1872 << Tok.getKind(); 1873 // Don't walk past anything that's not a real token. 1874 if (Tok.isOneOf(tok::eof, tok::eod) || Tok.isAnnotation()) 1875 return; 1876 } 1877 1878 // Discard the ')', preserving 'Tok' as our result. 1879 Token RParen; 1880 LexNonComment(RParen); 1881 if (RParen.isNot(tok::r_paren)) { 1882 Diag(getLocForEndOfToken(Tok.getLocation()), diag::err_pp_expected_after) 1883 << Tok.getKind() << tok::r_paren; 1884 Diag(LParenLoc, diag::note_matching) << tok::l_paren; 1885 } 1886 return; 1887 } else if (II == Ident__is_target_arch) { 1888 EvaluateFeatureLikeBuiltinMacro( 1889 OS, Tok, II, *this, false, 1890 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1891 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1892 Tok, *this, diag::err_feature_check_malformed); 1893 return II && isTargetArch(getTargetInfo(), II); 1894 }); 1895 } else if (II == Ident__is_target_vendor) { 1896 EvaluateFeatureLikeBuiltinMacro( 1897 OS, Tok, II, *this, false, 1898 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1899 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1900 Tok, *this, diag::err_feature_check_malformed); 1901 return II && isTargetVendor(getTargetInfo(), II); 1902 }); 1903 } else if (II == Ident__is_target_os) { 1904 EvaluateFeatureLikeBuiltinMacro( 1905 OS, Tok, II, *this, false, 1906 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1907 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1908 Tok, *this, diag::err_feature_check_malformed); 1909 return II && isTargetOS(getTargetInfo(), II); 1910 }); 1911 } else if (II == Ident__is_target_environment) { 1912 EvaluateFeatureLikeBuiltinMacro( 1913 OS, Tok, II, *this, false, 1914 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1915 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1916 Tok, *this, diag::err_feature_check_malformed); 1917 return II && isTargetEnvironment(getTargetInfo(), II); 1918 }); 1919 } else if (II == Ident__is_target_variant_os) { 1920 EvaluateFeatureLikeBuiltinMacro( 1921 OS, Tok, II, *this, false, 1922 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1923 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1924 Tok, *this, diag::err_feature_check_malformed); 1925 return II && isTargetVariantOS(getTargetInfo(), II); 1926 }); 1927 } else if (II == Ident__is_target_variant_environment) { 1928 EvaluateFeatureLikeBuiltinMacro( 1929 OS, Tok, II, *this, false, 1930 [this](Token &Tok, bool &HasLexedNextToken) -> int { 1931 IdentifierInfo *II = ExpectFeatureIdentifierInfo( 1932 Tok, *this, diag::err_feature_check_malformed); 1933 return II && isTargetVariantEnvironment(getTargetInfo(), II); 1934 }); 1935 } else { 1936 llvm_unreachable("Unknown identifier!"); 1937 } 1938 CreateString(OS.str(), Tok, Tok.getLocation(), Tok.getLocation()); 1939 Tok.setFlagValue(Token::StartOfLine, IsAtStartOfLine); 1940 Tok.setFlagValue(Token::LeadingSpace, HasLeadingSpace); 1941 } 1942 1943 void Preprocessor::markMacroAsUsed(MacroInfo *MI) { 1944 // If the 'used' status changed, and the macro requires 'unused' warning, 1945 // remove its SourceLocation from the warn-for-unused-macro locations. 1946 if (MI->isWarnIfUnused() && !MI->isUsed()) 1947 WarnUnusedMacroLocs.erase(MI->getDefinitionLoc()); 1948 MI->setIsUsed(true); 1949 } 1950 1951 void Preprocessor::processPathForFileMacro(SmallVectorImpl<char> &Path, 1952 const LangOptions &LangOpts, 1953 const TargetInfo &TI) { 1954 LangOpts.remapPathPrefix(Path); 1955 if (LangOpts.UseTargetPathSeparator) { 1956 if (TI.getTriple().isOSWindows()) 1957 llvm::sys::path::remove_dots(Path, false, 1958 llvm::sys::path::Style::windows_backslash); 1959 else 1960 llvm::sys::path::remove_dots(Path, false, llvm::sys::path::Style::posix); 1961 } 1962 } 1963