xref: /freebsd/contrib/llvm-project/clang/lib/Lex/MacroArgs.cpp (revision be092bcde96bdcfde9013d60e442cca023bfbd1b)
1  //===--- MacroArgs.cpp - Formal argument info for Macros ------------------===//
2  //
3  // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  // See https://llvm.org/LICENSE.txt for license information.
5  // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  //
7  //===----------------------------------------------------------------------===//
8  //
9  // This file implements the MacroArgs interface.
10  //
11  //===----------------------------------------------------------------------===//
12  
13  #include "clang/Lex/MacroArgs.h"
14  #include "clang/Lex/LexDiagnostic.h"
15  #include "clang/Lex/MacroInfo.h"
16  #include "clang/Lex/Preprocessor.h"
17  #include "llvm/ADT/SmallString.h"
18  #include "llvm/Support/SaveAndRestore.h"
19  #include <algorithm>
20  
21  using namespace clang;
22  
23  /// MacroArgs ctor function - This destroys the vector passed in.
24  MacroArgs *MacroArgs::create(const MacroInfo *MI,
25                               ArrayRef<Token> UnexpArgTokens,
26                               bool VarargsElided, Preprocessor &PP) {
27    assert(MI->isFunctionLike() &&
28           "Can't have args for an object-like macro!");
29    MacroArgs **ResultEnt = nullptr;
30    unsigned ClosestMatch = ~0U;
31  
32    // See if we have an entry with a big enough argument list to reuse on the
33    // free list.  If so, reuse it.
34    for (MacroArgs **Entry = &PP.MacroArgCache; *Entry;
35         Entry = &(*Entry)->ArgCache) {
36      if ((*Entry)->NumUnexpArgTokens >= UnexpArgTokens.size() &&
37          (*Entry)->NumUnexpArgTokens < ClosestMatch) {
38        ResultEnt = Entry;
39  
40        // If we have an exact match, use it.
41        if ((*Entry)->NumUnexpArgTokens == UnexpArgTokens.size())
42          break;
43        // Otherwise, use the best fit.
44        ClosestMatch = (*Entry)->NumUnexpArgTokens;
45      }
46    }
47    MacroArgs *Result;
48    if (!ResultEnt) {
49      // Allocate memory for a MacroArgs object with the lexer tokens at the end,
50      // and construct the MacroArgs object.
51      Result = new (
52          llvm::safe_malloc(totalSizeToAlloc<Token>(UnexpArgTokens.size())))
53          MacroArgs(UnexpArgTokens.size(), VarargsElided, MI->getNumParams());
54    } else {
55      Result = *ResultEnt;
56      // Unlink this node from the preprocessors singly linked list.
57      *ResultEnt = Result->ArgCache;
58      Result->NumUnexpArgTokens = UnexpArgTokens.size();
59      Result->VarargsElided = VarargsElided;
60      Result->NumMacroArgs = MI->getNumParams();
61    }
62  
63    // Copy the actual unexpanded tokens to immediately after the result ptr.
64    if (!UnexpArgTokens.empty()) {
65      static_assert(std::is_trivial_v<Token>,
66                    "assume trivial copyability if copying into the "
67                    "uninitialized array (as opposed to reusing a cached "
68                    "MacroArgs)");
69      std::copy(UnexpArgTokens.begin(), UnexpArgTokens.end(),
70                Result->getTrailingObjects<Token>());
71    }
72  
73    return Result;
74  }
75  
76  /// destroy - Destroy and deallocate the memory for this object.
77  ///
78  void MacroArgs::destroy(Preprocessor &PP) {
79    // Don't clear PreExpArgTokens, just clear the entries.  Clearing the entries
80    // would deallocate the element vectors.
81    for (unsigned i = 0, e = PreExpArgTokens.size(); i != e; ++i)
82      PreExpArgTokens[i].clear();
83  
84    // Add this to the preprocessor's free list.
85    ArgCache = PP.MacroArgCache;
86    PP.MacroArgCache = this;
87  }
88  
89  /// deallocate - This should only be called by the Preprocessor when managing
90  /// its freelist.
91  MacroArgs *MacroArgs::deallocate() {
92    MacroArgs *Next = ArgCache;
93  
94    // Run the dtor to deallocate the vectors.
95    this->~MacroArgs();
96    // Release the memory for the object.
97    static_assert(std::is_trivially_destructible_v<Token>,
98                  "assume trivially destructible and forego destructors");
99    free(this);
100  
101    return Next;
102  }
103  
104  
105  /// getArgLength - Given a pointer to an expanded or unexpanded argument,
106  /// return the number of tokens, not counting the EOF, that make up the
107  /// argument.
108  unsigned MacroArgs::getArgLength(const Token *ArgPtr) {
109    unsigned NumArgTokens = 0;
110    for (; ArgPtr->isNot(tok::eof); ++ArgPtr)
111      ++NumArgTokens;
112    return NumArgTokens;
113  }
114  
115  
116  /// getUnexpArgument - Return the unexpanded tokens for the specified formal.
117  ///
118  const Token *MacroArgs::getUnexpArgument(unsigned Arg) const {
119  
120    assert(Arg < getNumMacroArguments() && "Invalid arg #");
121    // The unexpanded argument tokens start immediately after the MacroArgs object
122    // in memory.
123    const Token *Start = getTrailingObjects<Token>();
124    const Token *Result = Start;
125  
126    // Scan to find Arg.
127    for (; Arg; ++Result) {
128      assert(Result < Start+NumUnexpArgTokens && "Invalid arg #");
129      if (Result->is(tok::eof))
130        --Arg;
131    }
132    assert(Result < Start+NumUnexpArgTokens && "Invalid arg #");
133    return Result;
134  }
135  
136  bool MacroArgs::invokedWithVariadicArgument(const MacroInfo *const MI,
137                                              Preprocessor &PP) {
138    if (!MI->isVariadic())
139      return false;
140    const int VariadicArgIndex = getNumMacroArguments() - 1;
141    return getPreExpArgument(VariadicArgIndex, PP).front().isNot(tok::eof);
142  }
143  
144  /// ArgNeedsPreexpansion - If we can prove that the argument won't be affected
145  /// by pre-expansion, return false.  Otherwise, conservatively return true.
146  bool MacroArgs::ArgNeedsPreexpansion(const Token *ArgTok,
147                                       Preprocessor &PP) const {
148    // If there are no identifiers in the argument list, or if the identifiers are
149    // known to not be macros, pre-expansion won't modify it.
150    for (; ArgTok->isNot(tok::eof); ++ArgTok)
151      if (IdentifierInfo *II = ArgTok->getIdentifierInfo())
152        if (II->hasMacroDefinition())
153          // Return true even though the macro could be a function-like macro
154          // without a following '(' token, or could be disabled, or not visible.
155          return true;
156    return false;
157  }
158  
159  /// getPreExpArgument - Return the pre-expanded form of the specified
160  /// argument.
161  const std::vector<Token> &MacroArgs::getPreExpArgument(unsigned Arg,
162                                                         Preprocessor &PP) {
163    assert(Arg < getNumMacroArguments() && "Invalid argument number!");
164  
165    // If we have already computed this, return it.
166    if (PreExpArgTokens.size() < getNumMacroArguments())
167      PreExpArgTokens.resize(getNumMacroArguments());
168  
169    std::vector<Token> &Result = PreExpArgTokens[Arg];
170    if (!Result.empty()) return Result;
171  
172    SaveAndRestore PreExpandingMacroArgs(PP.InMacroArgPreExpansion, true);
173  
174    const Token *AT = getUnexpArgument(Arg);
175    unsigned NumToks = getArgLength(AT)+1;  // Include the EOF.
176  
177    // Otherwise, we have to pre-expand this argument, populating Result.  To do
178    // this, we set up a fake TokenLexer to lex from the unexpanded argument
179    // list.  With this installed, we lex expanded tokens until we hit the EOF
180    // token at the end of the unexp list.
181    PP.EnterTokenStream(AT, NumToks, false /*disable expand*/,
182                        false /*owns tokens*/, false /*is reinject*/);
183  
184    // Lex all of the macro-expanded tokens into Result.
185    do {
186      Result.push_back(Token());
187      Token &Tok = Result.back();
188      PP.Lex(Tok);
189    } while (Result.back().isNot(tok::eof));
190  
191    // Pop the token stream off the top of the stack.  We know that the internal
192    // pointer inside of it is to the "end" of the token stream, but the stack
193    // will not otherwise be popped until the next token is lexed.  The problem is
194    // that the token may be lexed sometime after the vector of tokens itself is
195    // destroyed, which would be badness.
196    if (PP.InCachingLexMode())
197      PP.ExitCachingLexMode();
198    PP.RemoveTopOfLexerStack();
199    return Result;
200  }
201  
202  
203  /// StringifyArgument - Implement C99 6.10.3.2p2, converting a sequence of
204  /// tokens into the literal string token that should be produced by the C #
205  /// preprocessor operator.  If Charify is true, then it should be turned into
206  /// a character literal for the Microsoft charize (#@) extension.
207  ///
208  Token MacroArgs::StringifyArgument(const Token *ArgToks,
209                                     Preprocessor &PP, bool Charify,
210                                     SourceLocation ExpansionLocStart,
211                                     SourceLocation ExpansionLocEnd) {
212    Token Tok;
213    Tok.startToken();
214    Tok.setKind(Charify ? tok::char_constant : tok::string_literal);
215  
216    const Token *ArgTokStart = ArgToks;
217  
218    // Stringify all the tokens.
219    SmallString<128> Result;
220    Result += "\"";
221  
222    bool isFirst = true;
223    for (; ArgToks->isNot(tok::eof); ++ArgToks) {
224      const Token &Tok = *ArgToks;
225      if (!isFirst && (Tok.hasLeadingSpace() || Tok.isAtStartOfLine()))
226        Result += ' ';
227      isFirst = false;
228  
229      // If this is a string or character constant, escape the token as specified
230      // by 6.10.3.2p2.
231      if (tok::isStringLiteral(Tok.getKind()) || // "foo", u8R"x(foo)x"_bar, etc.
232          Tok.is(tok::char_constant) ||          // 'x'
233          Tok.is(tok::wide_char_constant) ||     // L'x'.
234          Tok.is(tok::utf8_char_constant) ||     // u8'x'.
235          Tok.is(tok::utf16_char_constant) ||    // u'x'.
236          Tok.is(tok::utf32_char_constant)) {    // U'x'.
237        bool Invalid = false;
238        std::string TokStr = PP.getSpelling(Tok, &Invalid);
239        if (!Invalid) {
240          std::string Str = Lexer::Stringify(TokStr);
241          Result.append(Str.begin(), Str.end());
242        }
243      } else if (Tok.is(tok::code_completion)) {
244        PP.CodeCompleteNaturalLanguage();
245      } else {
246        // Otherwise, just append the token.  Do some gymnastics to get the token
247        // in place and avoid copies where possible.
248        unsigned CurStrLen = Result.size();
249        Result.resize(CurStrLen+Tok.getLength());
250        const char *BufPtr = Result.data() + CurStrLen;
251        bool Invalid = false;
252        unsigned ActualTokLen = PP.getSpelling(Tok, BufPtr, &Invalid);
253  
254        if (!Invalid) {
255          // If getSpelling returned a pointer to an already uniqued version of
256          // the string instead of filling in BufPtr, memcpy it onto our string.
257          if (ActualTokLen && BufPtr != &Result[CurStrLen])
258            memcpy(&Result[CurStrLen], BufPtr, ActualTokLen);
259  
260          // If the token was dirty, the spelling may be shorter than the token.
261          if (ActualTokLen != Tok.getLength())
262            Result.resize(CurStrLen+ActualTokLen);
263        }
264      }
265    }
266  
267    // If the last character of the string is a \, and if it isn't escaped, this
268    // is an invalid string literal, diagnose it as specified in C99.
269    if (Result.back() == '\\') {
270      // Count the number of consecutive \ characters.  If even, then they are
271      // just escaped backslashes, otherwise it's an error.
272      unsigned FirstNonSlash = Result.size()-2;
273      // Guaranteed to find the starting " if nothing else.
274      while (Result[FirstNonSlash] == '\\')
275        --FirstNonSlash;
276      if ((Result.size()-1-FirstNonSlash) & 1) {
277        // Diagnose errors for things like: #define F(X) #X   /   F(\)
278        PP.Diag(ArgToks[-1], diag::pp_invalid_string_literal);
279        Result.pop_back();  // remove one of the \'s.
280      }
281    }
282    Result += '"';
283  
284    // If this is the charify operation and the result is not a legal character
285    // constant, diagnose it.
286    if (Charify) {
287      // First step, turn double quotes into single quotes:
288      Result[0] = '\'';
289      Result[Result.size()-1] = '\'';
290  
291      // Check for bogus character.
292      bool isBad = false;
293      if (Result.size() == 3)
294        isBad = Result[1] == '\'';   // ''' is not legal. '\' already fixed above.
295      else
296        isBad = (Result.size() != 4 || Result[1] != '\\');  // Not '\x'
297  
298      if (isBad) {
299        PP.Diag(ArgTokStart[0], diag::err_invalid_character_to_charify);
300        Result = "' '";  // Use something arbitrary, but legal.
301      }
302    }
303  
304    PP.CreateString(Result, Tok,
305                    ExpansionLocStart, ExpansionLocEnd);
306    return Tok;
307  }
308