1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the NumericLiteralParser, CharLiteralParser, and 10 // StringLiteralParser interfaces. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Lex/LiteralSupport.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/LangOptions.h" 17 #include "clang/Basic/SourceLocation.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Lex/LexDiagnostic.h" 20 #include "clang/Lex/Lexer.h" 21 #include "clang/Lex/Preprocessor.h" 22 #include "clang/Lex/Token.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/ConvertUTF.h" 28 #include "llvm/Support/Error.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/Unicode.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cstddef> 34 #include <cstdint> 35 #include <cstring> 36 #include <string> 37 38 using namespace clang; 39 40 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) { 41 switch (kind) { 42 default: llvm_unreachable("Unknown token type!"); 43 case tok::char_constant: 44 case tok::string_literal: 45 case tok::utf8_char_constant: 46 case tok::utf8_string_literal: 47 return Target.getCharWidth(); 48 case tok::wide_char_constant: 49 case tok::wide_string_literal: 50 return Target.getWCharWidth(); 51 case tok::utf16_char_constant: 52 case tok::utf16_string_literal: 53 return Target.getChar16Width(); 54 case tok::utf32_char_constant: 55 case tok::utf32_string_literal: 56 return Target.getChar32Width(); 57 } 58 } 59 60 static unsigned getEncodingPrefixLen(tok::TokenKind kind) { 61 switch (kind) { 62 default: 63 llvm_unreachable("Unknown token type!"); 64 case tok::char_constant: 65 case tok::string_literal: 66 return 0; 67 case tok::utf8_char_constant: 68 case tok::utf8_string_literal: 69 return 2; 70 case tok::wide_char_constant: 71 case tok::wide_string_literal: 72 case tok::utf16_char_constant: 73 case tok::utf16_string_literal: 74 case tok::utf32_char_constant: 75 case tok::utf32_string_literal: 76 return 1; 77 } 78 } 79 80 static CharSourceRange MakeCharSourceRange(const LangOptions &Features, 81 FullSourceLoc TokLoc, 82 const char *TokBegin, 83 const char *TokRangeBegin, 84 const char *TokRangeEnd) { 85 SourceLocation Begin = 86 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 87 TokLoc.getManager(), Features); 88 SourceLocation End = 89 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin, 90 TokLoc.getManager(), Features); 91 return CharSourceRange::getCharRange(Begin, End); 92 } 93 94 /// Produce a diagnostic highlighting some portion of a literal. 95 /// 96 /// Emits the diagnostic \p DiagID, highlighting the range of characters from 97 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be 98 /// a substring of a spelling buffer for the token beginning at \p TokBegin. 99 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, 100 const LangOptions &Features, FullSourceLoc TokLoc, 101 const char *TokBegin, const char *TokRangeBegin, 102 const char *TokRangeEnd, unsigned DiagID) { 103 SourceLocation Begin = 104 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 105 TokLoc.getManager(), Features); 106 return Diags->Report(Begin, DiagID) << 107 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd); 108 } 109 110 static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape) { 111 switch (Escape) { 112 case '\'': 113 case '"': 114 case '?': 115 case '\\': 116 case 'a': 117 case 'b': 118 case 'f': 119 case 'n': 120 case 'r': 121 case 't': 122 case 'v': 123 return true; 124 } 125 return false; 126 } 127 128 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in 129 /// either a character or a string literal. 130 static unsigned ProcessCharEscape(const char *ThisTokBegin, 131 const char *&ThisTokBuf, 132 const char *ThisTokEnd, bool &HadError, 133 FullSourceLoc Loc, unsigned CharWidth, 134 DiagnosticsEngine *Diags, 135 const LangOptions &Features, 136 StringLiteralEvalMethod EvalMethod) { 137 const char *EscapeBegin = ThisTokBuf; 138 bool Delimited = false; 139 bool EndDelimiterFound = false; 140 141 // Skip the '\' char. 142 ++ThisTokBuf; 143 144 // We know that this character can't be off the end of the buffer, because 145 // that would have been \", which would not have been the end of string. 146 unsigned ResultChar = *ThisTokBuf++; 147 char Escape = ResultChar; 148 switch (ResultChar) { 149 // These map to themselves. 150 case '\\': case '\'': case '"': case '?': break; 151 152 // These have fixed mappings. 153 case 'a': 154 // TODO: K&R: the meaning of '\\a' is different in traditional C 155 ResultChar = 7; 156 break; 157 case 'b': 158 ResultChar = 8; 159 break; 160 case 'e': 161 if (Diags) 162 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 163 diag::ext_nonstandard_escape) << "e"; 164 ResultChar = 27; 165 break; 166 case 'E': 167 if (Diags) 168 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 169 diag::ext_nonstandard_escape) << "E"; 170 ResultChar = 27; 171 break; 172 case 'f': 173 ResultChar = 12; 174 break; 175 case 'n': 176 ResultChar = 10; 177 break; 178 case 'r': 179 ResultChar = 13; 180 break; 181 case 't': 182 ResultChar = 9; 183 break; 184 case 'v': 185 ResultChar = 11; 186 break; 187 case 'x': { // Hex escape. 188 ResultChar = 0; 189 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 190 Delimited = true; 191 ThisTokBuf++; 192 if (*ThisTokBuf == '}') { 193 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 194 diag::err_delimited_escape_empty); 195 return ResultChar; 196 } 197 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 198 if (Diags) 199 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 200 diag::err_hex_escape_no_digits) << "x"; 201 return ResultChar; 202 } 203 204 // Hex escapes are a maximal series of hex digits. 205 bool Overflow = false; 206 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) { 207 if (Delimited && *ThisTokBuf == '}') { 208 ThisTokBuf++; 209 EndDelimiterFound = true; 210 break; 211 } 212 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 213 if (CharVal == -1) { 214 // Non delimited hex escape sequences stop at the first non-hex digit. 215 if (!Delimited) 216 break; 217 HadError = true; 218 if (Diags) 219 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 220 diag::err_delimited_escape_invalid) 221 << StringRef(ThisTokBuf, 1); 222 continue; 223 } 224 // About to shift out a digit? 225 if (ResultChar & 0xF0000000) 226 Overflow = true; 227 ResultChar <<= 4; 228 ResultChar |= CharVal; 229 } 230 // See if any bits will be truncated when evaluated as a character. 231 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 232 Overflow = true; 233 ResultChar &= ~0U >> (32-CharWidth); 234 } 235 236 // Check for overflow. 237 if (!HadError && Overflow) { // Too many digits to fit in 238 HadError = true; 239 if (Diags) 240 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 241 diag::err_escape_too_large) 242 << 0; 243 } 244 break; 245 } 246 case '0': case '1': case '2': case '3': 247 case '4': case '5': case '6': case '7': { 248 // Octal escapes. 249 --ThisTokBuf; 250 ResultChar = 0; 251 252 // Octal escapes are a series of octal digits with maximum length 3. 253 // "\0123" is a two digit sequence equal to "\012" "3". 254 unsigned NumDigits = 0; 255 do { 256 ResultChar <<= 3; 257 ResultChar |= *ThisTokBuf++ - '0'; 258 ++NumDigits; 259 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 && 260 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7'); 261 262 // Check for overflow. Reject '\777', but not L'\777'. 263 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 264 if (Diags) 265 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 266 diag::err_escape_too_large) << 1; 267 ResultChar &= ~0U >> (32-CharWidth); 268 } 269 break; 270 } 271 case 'o': { 272 bool Overflow = false; 273 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { 274 HadError = true; 275 if (Diags) 276 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 277 diag::err_delimited_escape_missing_brace) 278 << "o"; 279 280 break; 281 } 282 ResultChar = 0; 283 Delimited = true; 284 ++ThisTokBuf; 285 if (*ThisTokBuf == '}') { 286 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 287 diag::err_delimited_escape_empty); 288 return ResultChar; 289 } 290 291 while (ThisTokBuf != ThisTokEnd) { 292 if (*ThisTokBuf == '}') { 293 EndDelimiterFound = true; 294 ThisTokBuf++; 295 break; 296 } 297 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') { 298 HadError = true; 299 if (Diags) 300 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 301 diag::err_delimited_escape_invalid) 302 << StringRef(ThisTokBuf, 1); 303 ThisTokBuf++; 304 continue; 305 } 306 // Check if one of the top three bits is set before shifting them out. 307 if (ResultChar & 0xE0000000) 308 Overflow = true; 309 310 ResultChar <<= 3; 311 ResultChar |= *ThisTokBuf++ - '0'; 312 } 313 // Check for overflow. Reject '\777', but not L'\777'. 314 if (!HadError && 315 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) { 316 HadError = true; 317 if (Diags) 318 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 319 diag::err_escape_too_large) 320 << 1; 321 ResultChar &= ~0U >> (32 - CharWidth); 322 } 323 break; 324 } 325 // Otherwise, these are not valid escapes. 326 case '(': case '{': case '[': case '%': 327 // GCC accepts these as extensions. We warn about them as such though. 328 if (Diags) 329 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 330 diag::ext_nonstandard_escape) 331 << std::string(1, ResultChar); 332 break; 333 default: 334 if (!Diags) 335 break; 336 337 if (isPrintable(ResultChar)) 338 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 339 diag::ext_unknown_escape) 340 << std::string(1, ResultChar); 341 else 342 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 343 diag::ext_unknown_escape) 344 << "x" + llvm::utohexstr(ResultChar); 345 break; 346 } 347 348 if (Delimited && Diags) { 349 if (!EndDelimiterFound) 350 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 351 diag::err_expected) 352 << tok::r_brace; 353 else if (!HadError) { 354 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 355 Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence 356 : diag::ext_delimited_escape_sequence) 357 << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0); 358 } 359 } 360 361 if (EvalMethod == StringLiteralEvalMethod::Unevaluated && 362 !IsEscapeValidInUnevaluatedStringLiteral(Escape)) { 363 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 364 diag::err_unevaluated_string_invalid_escape_sequence) 365 << StringRef(EscapeBegin, ThisTokBuf - EscapeBegin); 366 HadError = true; 367 } 368 369 return ResultChar; 370 } 371 372 static void appendCodePoint(unsigned Codepoint, 373 llvm::SmallVectorImpl<char> &Str) { 374 char ResultBuf[4]; 375 char *ResultPtr = ResultBuf; 376 if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr)) 377 Str.append(ResultBuf, ResultPtr); 378 } 379 380 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) { 381 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) { 382 if (*I != '\\') { 383 Buf.push_back(*I); 384 continue; 385 } 386 387 ++I; 388 char Kind = *I; 389 ++I; 390 391 assert(Kind == 'u' || Kind == 'U' || Kind == 'N'); 392 uint32_t CodePoint = 0; 393 394 if (Kind == 'u' && *I == '{') { 395 for (++I; *I != '}'; ++I) { 396 unsigned Value = llvm::hexDigitValue(*I); 397 assert(Value != -1U); 398 CodePoint <<= 4; 399 CodePoint += Value; 400 } 401 appendCodePoint(CodePoint, Buf); 402 continue; 403 } 404 405 if (Kind == 'N') { 406 assert(*I == '{'); 407 ++I; 408 auto Delim = std::find(I, Input.end(), '}'); 409 assert(Delim != Input.end()); 410 std::optional<llvm::sys::unicode::LooseMatchingResult> Res = 411 llvm::sys::unicode::nameToCodepointLooseMatching( 412 StringRef(I, std::distance(I, Delim))); 413 assert(Res); 414 CodePoint = Res->CodePoint; 415 assert(CodePoint != 0xFFFFFFFF); 416 appendCodePoint(CodePoint, Buf); 417 I = Delim; 418 continue; 419 } 420 421 unsigned NumHexDigits; 422 if (Kind == 'u') 423 NumHexDigits = 4; 424 else 425 NumHexDigits = 8; 426 427 assert(I + NumHexDigits <= E); 428 429 for (; NumHexDigits != 0; ++I, --NumHexDigits) { 430 unsigned Value = llvm::hexDigitValue(*I); 431 assert(Value != -1U); 432 433 CodePoint <<= 4; 434 CodePoint += Value; 435 } 436 437 appendCodePoint(CodePoint, Buf); 438 --I; 439 } 440 } 441 442 static bool ProcessNumericUCNEscape(const char *ThisTokBegin, 443 const char *&ThisTokBuf, 444 const char *ThisTokEnd, uint32_t &UcnVal, 445 unsigned short &UcnLen, bool &Delimited, 446 FullSourceLoc Loc, DiagnosticsEngine *Diags, 447 const LangOptions &Features, 448 bool in_char_string_literal = false) { 449 const char *UcnBegin = ThisTokBuf; 450 bool HasError = false; 451 bool EndDelimiterFound = false; 452 453 // Skip the '\u' char's. 454 ThisTokBuf += 2; 455 Delimited = false; 456 if (UcnBegin[1] == 'u' && in_char_string_literal && 457 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 458 Delimited = true; 459 ThisTokBuf++; 460 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 461 if (Diags) 462 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 463 diag::err_hex_escape_no_digits) 464 << StringRef(&ThisTokBuf[-1], 1); 465 return false; 466 } 467 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8); 468 469 bool Overflow = false; 470 unsigned short Count = 0; 471 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen); 472 ++ThisTokBuf) { 473 if (Delimited && *ThisTokBuf == '}') { 474 ++ThisTokBuf; 475 EndDelimiterFound = true; 476 break; 477 } 478 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 479 if (CharVal == -1) { 480 HasError = true; 481 if (!Delimited) 482 break; 483 if (Diags) { 484 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 485 diag::err_delimited_escape_invalid) 486 << StringRef(ThisTokBuf, 1); 487 } 488 Count++; 489 continue; 490 } 491 if (UcnVal & 0xF0000000) { 492 Overflow = true; 493 continue; 494 } 495 UcnVal <<= 4; 496 UcnVal |= CharVal; 497 Count++; 498 } 499 500 if (Overflow) { 501 if (Diags) 502 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 503 diag::err_escape_too_large) 504 << 0; 505 return false; 506 } 507 508 if (Delimited && !EndDelimiterFound) { 509 if (Diags) { 510 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 511 diag::err_expected) 512 << tok::r_brace; 513 } 514 return false; 515 } 516 517 // If we didn't consume the proper number of digits, there is a problem. 518 if (Count == 0 || (!Delimited && Count != UcnLen)) { 519 if (Diags) 520 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 521 Delimited ? diag::err_delimited_escape_empty 522 : diag::err_ucn_escape_incomplete); 523 return false; 524 } 525 return !HasError; 526 } 527 528 static void DiagnoseInvalidUnicodeCharacterName( 529 DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc, 530 const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, 531 llvm::StringRef Name) { 532 533 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 534 diag::err_invalid_ucn_name) 535 << Name; 536 537 namespace u = llvm::sys::unicode; 538 539 std::optional<u::LooseMatchingResult> Res = 540 u::nameToCodepointLooseMatching(Name); 541 if (Res) { 542 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 543 diag::note_invalid_ucn_name_loose_matching) 544 << FixItHint::CreateReplacement( 545 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin, 546 TokRangeEnd), 547 Res->Name); 548 return; 549 } 550 551 unsigned Distance = 0; 552 SmallVector<u::MatchForCodepointName> Matches = 553 u::nearestMatchesForCodepointName(Name, 5); 554 assert(!Matches.empty() && "No unicode characters found"); 555 556 for (const auto &Match : Matches) { 557 if (Distance == 0) 558 Distance = Match.Distance; 559 if (std::max(Distance, Match.Distance) - 560 std::min(Distance, Match.Distance) > 561 3) 562 break; 563 Distance = Match.Distance; 564 565 std::string Str; 566 llvm::UTF32 V = Match.Value; 567 bool Converted = 568 llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str); 569 (void)Converted; 570 assert(Converted && "Found a match wich is not a unicode character"); 571 572 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 573 diag::note_invalid_ucn_name_candidate) 574 << Match.Name << llvm::utohexstr(Match.Value) 575 << Str // FIXME: Fix the rendering of non printable characters 576 << FixItHint::CreateReplacement( 577 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin, 578 TokRangeEnd), 579 Match.Name); 580 } 581 } 582 583 static bool ProcessNamedUCNEscape(const char *ThisTokBegin, 584 const char *&ThisTokBuf, 585 const char *ThisTokEnd, uint32_t &UcnVal, 586 unsigned short &UcnLen, FullSourceLoc Loc, 587 DiagnosticsEngine *Diags, 588 const LangOptions &Features) { 589 const char *UcnBegin = ThisTokBuf; 590 assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N'); 591 ThisTokBuf += 2; 592 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { 593 if (Diags) { 594 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 595 diag::err_delimited_escape_missing_brace) 596 << StringRef(&ThisTokBuf[-1], 1); 597 } 598 return false; 599 } 600 ThisTokBuf++; 601 const char *ClosingBrace = std::find_if(ThisTokBuf, ThisTokEnd, [](char C) { 602 return C == '}' || isVerticalWhitespace(C); 603 }); 604 bool Incomplete = ClosingBrace == ThisTokEnd; 605 bool Empty = ClosingBrace == ThisTokBuf; 606 if (Incomplete || Empty) { 607 if (Diags) { 608 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 609 Incomplete ? diag::err_ucn_escape_incomplete 610 : diag::err_delimited_escape_empty) 611 << StringRef(&UcnBegin[1], 1); 612 } 613 ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1; 614 return false; 615 } 616 StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf); 617 ThisTokBuf = ClosingBrace + 1; 618 std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name); 619 if (!Res) { 620 if (Diags) 621 DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin, 622 &UcnBegin[3], ClosingBrace, Name); 623 return false; 624 } 625 UcnVal = *Res; 626 UcnLen = UcnVal > 0xFFFF ? 8 : 4; 627 return true; 628 } 629 630 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and 631 /// return the UTF32. 632 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 633 const char *ThisTokEnd, uint32_t &UcnVal, 634 unsigned short &UcnLen, FullSourceLoc Loc, 635 DiagnosticsEngine *Diags, 636 const LangOptions &Features, 637 bool in_char_string_literal = false) { 638 639 bool HasError; 640 const char *UcnBegin = ThisTokBuf; 641 bool IsDelimitedEscapeSequence = false; 642 bool IsNamedEscapeSequence = false; 643 if (ThisTokBuf[1] == 'N') { 644 IsNamedEscapeSequence = true; 645 HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, 646 UcnVal, UcnLen, Loc, Diags, Features); 647 } else { 648 HasError = 649 !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, 650 UcnLen, IsDelimitedEscapeSequence, Loc, Diags, 651 Features, in_char_string_literal); 652 } 653 if (HasError) 654 return false; 655 656 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2] 657 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints 658 UcnVal > 0x10FFFF) { // maximum legal UTF32 value 659 if (Diags) 660 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 661 diag::err_ucn_escape_invalid); 662 return false; 663 } 664 665 // C2x and C++11 allow UCNs that refer to control characters 666 // and basic source characters inside character and string literals 667 if (UcnVal < 0xa0 && 668 // $, @, ` are allowed in all language modes 669 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { 670 bool IsError = 671 (!(Features.CPlusPlus11 || Features.C2x) || !in_char_string_literal); 672 if (Diags) { 673 char BasicSCSChar = UcnVal; 674 if (UcnVal >= 0x20 && UcnVal < 0x7f) 675 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 676 IsError ? diag::err_ucn_escape_basic_scs 677 : Features.CPlusPlus 678 ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs 679 : diag::warn_c2x_compat_literal_ucn_escape_basic_scs) 680 << StringRef(&BasicSCSChar, 1); 681 else 682 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 683 IsError ? diag::err_ucn_control_character 684 : Features.CPlusPlus 685 ? diag::warn_cxx98_compat_literal_ucn_control_character 686 : diag::warn_c2x_compat_literal_ucn_control_character); 687 } 688 if (IsError) 689 return false; 690 } 691 692 if (!Features.CPlusPlus && !Features.C99 && Diags) 693 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 694 diag::warn_ucn_not_valid_in_c89_literal); 695 696 if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags) 697 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 698 Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence 699 : diag::ext_delimited_escape_sequence) 700 << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0); 701 702 return true; 703 } 704 705 /// MeasureUCNEscape - Determine the number of bytes within the resulting string 706 /// which this UCN will occupy. 707 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 708 const char *ThisTokEnd, unsigned CharByteWidth, 709 const LangOptions &Features, bool &HadError) { 710 // UTF-32: 4 bytes per escape. 711 if (CharByteWidth == 4) 712 return 4; 713 714 uint32_t UcnVal = 0; 715 unsigned short UcnLen = 0; 716 FullSourceLoc Loc; 717 718 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, 719 UcnLen, Loc, nullptr, Features, true)) { 720 HadError = true; 721 return 0; 722 } 723 724 // UTF-16: 2 bytes for BMP, 4 bytes otherwise. 725 if (CharByteWidth == 2) 726 return UcnVal <= 0xFFFF ? 2 : 4; 727 728 // UTF-8. 729 if (UcnVal < 0x80) 730 return 1; 731 if (UcnVal < 0x800) 732 return 2; 733 if (UcnVal < 0x10000) 734 return 3; 735 return 4; 736 } 737 738 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and 739 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of 740 /// StringLiteralParser. When we decide to implement UCN's for identifiers, 741 /// we will likely rework our support for UCN's. 742 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 743 const char *ThisTokEnd, 744 char *&ResultBuf, bool &HadError, 745 FullSourceLoc Loc, unsigned CharByteWidth, 746 DiagnosticsEngine *Diags, 747 const LangOptions &Features) { 748 typedef uint32_t UTF32; 749 UTF32 UcnVal = 0; 750 unsigned short UcnLen = 0; 751 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, 752 Loc, Diags, Features, true)) { 753 HadError = true; 754 return; 755 } 756 757 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 758 "only character widths of 1, 2, or 4 bytes supported"); 759 760 (void)UcnLen; 761 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported"); 762 763 if (CharByteWidth == 4) { 764 // FIXME: Make the type of the result buffer correct instead of 765 // using reinterpret_cast. 766 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf); 767 *ResultPtr = UcnVal; 768 ResultBuf += 4; 769 return; 770 } 771 772 if (CharByteWidth == 2) { 773 // FIXME: Make the type of the result buffer correct instead of 774 // using reinterpret_cast. 775 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf); 776 777 if (UcnVal <= (UTF32)0xFFFF) { 778 *ResultPtr = UcnVal; 779 ResultBuf += 2; 780 return; 781 } 782 783 // Convert to UTF16. 784 UcnVal -= 0x10000; 785 *ResultPtr = 0xD800 + (UcnVal >> 10); 786 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF); 787 ResultBuf += 4; 788 return; 789 } 790 791 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters"); 792 793 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8. 794 // The conversion below was inspired by: 795 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c 796 // First, we determine how many bytes the result will require. 797 typedef uint8_t UTF8; 798 799 unsigned short bytesToWrite = 0; 800 if (UcnVal < (UTF32)0x80) 801 bytesToWrite = 1; 802 else if (UcnVal < (UTF32)0x800) 803 bytesToWrite = 2; 804 else if (UcnVal < (UTF32)0x10000) 805 bytesToWrite = 3; 806 else 807 bytesToWrite = 4; 808 809 const unsigned byteMask = 0xBF; 810 const unsigned byteMark = 0x80; 811 812 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed 813 // into the first byte, depending on how many bytes follow. 814 static const UTF8 firstByteMark[5] = { 815 0x00, 0x00, 0xC0, 0xE0, 0xF0 816 }; 817 // Finally, we write the bytes into ResultBuf. 818 ResultBuf += bytesToWrite; 819 switch (bytesToWrite) { // note: everything falls through. 820 case 4: 821 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 822 [[fallthrough]]; 823 case 3: 824 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 825 [[fallthrough]]; 826 case 2: 827 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 828 [[fallthrough]]; 829 case 1: 830 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]); 831 } 832 // Update the buffer. 833 ResultBuf += bytesToWrite; 834 } 835 836 /// integer-constant: [C99 6.4.4.1] 837 /// decimal-constant integer-suffix 838 /// octal-constant integer-suffix 839 /// hexadecimal-constant integer-suffix 840 /// binary-literal integer-suffix [GNU, C++1y] 841 /// user-defined-integer-literal: [C++11 lex.ext] 842 /// decimal-literal ud-suffix 843 /// octal-literal ud-suffix 844 /// hexadecimal-literal ud-suffix 845 /// binary-literal ud-suffix [GNU, C++1y] 846 /// decimal-constant: 847 /// nonzero-digit 848 /// decimal-constant digit 849 /// octal-constant: 850 /// 0 851 /// octal-constant octal-digit 852 /// hexadecimal-constant: 853 /// hexadecimal-prefix hexadecimal-digit 854 /// hexadecimal-constant hexadecimal-digit 855 /// hexadecimal-prefix: one of 856 /// 0x 0X 857 /// binary-literal: 858 /// 0b binary-digit 859 /// 0B binary-digit 860 /// binary-literal binary-digit 861 /// integer-suffix: 862 /// unsigned-suffix [long-suffix] 863 /// unsigned-suffix [long-long-suffix] 864 /// long-suffix [unsigned-suffix] 865 /// long-long-suffix [unsigned-sufix] 866 /// nonzero-digit: 867 /// 1 2 3 4 5 6 7 8 9 868 /// octal-digit: 869 /// 0 1 2 3 4 5 6 7 870 /// hexadecimal-digit: 871 /// 0 1 2 3 4 5 6 7 8 9 872 /// a b c d e f 873 /// A B C D E F 874 /// binary-digit: 875 /// 0 876 /// 1 877 /// unsigned-suffix: one of 878 /// u U 879 /// long-suffix: one of 880 /// l L 881 /// long-long-suffix: one of 882 /// ll LL 883 /// 884 /// floating-constant: [C99 6.4.4.2] 885 /// TODO: add rules... 886 /// 887 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling, 888 SourceLocation TokLoc, 889 const SourceManager &SM, 890 const LangOptions &LangOpts, 891 const TargetInfo &Target, 892 DiagnosticsEngine &Diags) 893 : SM(SM), LangOpts(LangOpts), Diags(Diags), 894 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) { 895 896 s = DigitsBegin = ThisTokBegin; 897 saw_exponent = false; 898 saw_period = false; 899 saw_ud_suffix = false; 900 saw_fixed_point_suffix = false; 901 isLong = false; 902 isUnsigned = false; 903 isLongLong = false; 904 isSizeT = false; 905 isHalf = false; 906 isFloat = false; 907 isImaginary = false; 908 isFloat16 = false; 909 isFloat128 = false; 910 MicrosoftInteger = 0; 911 isFract = false; 912 isAccum = false; 913 hadError = false; 914 isBitInt = false; 915 916 // This routine assumes that the range begin/end matches the regex for integer 917 // and FP constants (specifically, the 'pp-number' regex), and assumes that 918 // the byte at "*end" is both valid and not part of the regex. Because of 919 // this, it doesn't have to check for 'overscan' in various places. 920 if (isPreprocessingNumberBody(*ThisTokEnd)) { 921 Diags.Report(TokLoc, diag::err_lexing_numeric); 922 hadError = true; 923 return; 924 } 925 926 if (*s == '0') { // parse radix 927 ParseNumberStartingWithZero(TokLoc); 928 if (hadError) 929 return; 930 } else { // the first digit is non-zero 931 radix = 10; 932 s = SkipDigits(s); 933 if (s == ThisTokEnd) { 934 // Done. 935 } else { 936 ParseDecimalOrOctalCommon(TokLoc); 937 if (hadError) 938 return; 939 } 940 } 941 942 SuffixBegin = s; 943 checkSeparator(TokLoc, s, CSK_AfterDigits); 944 945 // Initial scan to lookahead for fixed point suffix. 946 if (LangOpts.FixedPoint) { 947 for (const char *c = s; c != ThisTokEnd; ++c) { 948 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') { 949 saw_fixed_point_suffix = true; 950 break; 951 } 952 } 953 } 954 955 // Parse the suffix. At this point we can classify whether we have an FP or 956 // integer constant. 957 bool isFixedPointConstant = isFixedPointLiteral(); 958 bool isFPConstant = isFloatingLiteral(); 959 bool HasSize = false; 960 961 // Loop over all of the characters of the suffix. If we see something bad, 962 // we break out of the loop. 963 for (; s != ThisTokEnd; ++s) { 964 switch (*s) { 965 case 'R': 966 case 'r': 967 if (!LangOpts.FixedPoint) 968 break; 969 if (isFract || isAccum) break; 970 if (!(saw_period || saw_exponent)) break; 971 isFract = true; 972 continue; 973 case 'K': 974 case 'k': 975 if (!LangOpts.FixedPoint) 976 break; 977 if (isFract || isAccum) break; 978 if (!(saw_period || saw_exponent)) break; 979 isAccum = true; 980 continue; 981 case 'h': // FP Suffix for "half". 982 case 'H': 983 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type. 984 if (!(LangOpts.Half || LangOpts.FixedPoint)) 985 break; 986 if (isIntegerLiteral()) break; // Error for integer constant. 987 if (HasSize) 988 break; 989 HasSize = true; 990 isHalf = true; 991 continue; // Success. 992 case 'f': // FP Suffix for "float" 993 case 'F': 994 if (!isFPConstant) break; // Error for integer constant. 995 if (HasSize) 996 break; 997 HasSize = true; 998 999 // CUDA host and device may have different _Float16 support, therefore 1000 // allows f16 literals to avoid false alarm. 1001 // When we compile for OpenMP target offloading on NVPTX, f16 suffix 1002 // should also be supported. 1003 // ToDo: more precise check for CUDA. 1004 // TODO: AMDGPU might also support it in the future. 1005 if ((Target.hasFloat16Type() || LangOpts.CUDA || 1006 (LangOpts.OpenMPIsTargetDevice && Target.getTriple().isNVPTX())) && 1007 s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') { 1008 s += 2; // success, eat up 2 characters. 1009 isFloat16 = true; 1010 continue; 1011 } 1012 1013 isFloat = true; 1014 continue; // Success. 1015 case 'q': // FP Suffix for "__float128" 1016 case 'Q': 1017 if (!isFPConstant) break; // Error for integer constant. 1018 if (HasSize) 1019 break; 1020 HasSize = true; 1021 isFloat128 = true; 1022 continue; // Success. 1023 case 'u': 1024 case 'U': 1025 if (isFPConstant) break; // Error for floating constant. 1026 if (isUnsigned) break; // Cannot be repeated. 1027 isUnsigned = true; 1028 continue; // Success. 1029 case 'l': 1030 case 'L': 1031 if (HasSize) 1032 break; 1033 HasSize = true; 1034 1035 // Check for long long. The L's need to be adjacent and the same case. 1036 if (s[1] == s[0]) { 1037 assert(s + 1 < ThisTokEnd && "didn't maximally munch?"); 1038 if (isFPConstant) break; // long long invalid for floats. 1039 isLongLong = true; 1040 ++s; // Eat both of them. 1041 } else { 1042 isLong = true; 1043 } 1044 continue; // Success. 1045 case 'z': 1046 case 'Z': 1047 if (isFPConstant) 1048 break; // Invalid for floats. 1049 if (HasSize) 1050 break; 1051 HasSize = true; 1052 isSizeT = true; 1053 continue; 1054 case 'i': 1055 case 'I': 1056 if (LangOpts.MicrosoftExt && !isFPConstant) { 1057 // Allow i8, i16, i32, and i64. First, look ahead and check if 1058 // suffixes are Microsoft integers and not the imaginary unit. 1059 uint8_t Bits = 0; 1060 size_t ToSkip = 0; 1061 switch (s[1]) { 1062 case '8': // i8 suffix 1063 Bits = 8; 1064 ToSkip = 2; 1065 break; 1066 case '1': 1067 if (s[2] == '6') { // i16 suffix 1068 Bits = 16; 1069 ToSkip = 3; 1070 } 1071 break; 1072 case '3': 1073 if (s[2] == '2') { // i32 suffix 1074 Bits = 32; 1075 ToSkip = 3; 1076 } 1077 break; 1078 case '6': 1079 if (s[2] == '4') { // i64 suffix 1080 Bits = 64; 1081 ToSkip = 3; 1082 } 1083 break; 1084 default: 1085 break; 1086 } 1087 if (Bits) { 1088 if (HasSize) 1089 break; 1090 HasSize = true; 1091 MicrosoftInteger = Bits; 1092 s += ToSkip; 1093 assert(s <= ThisTokEnd && "didn't maximally munch?"); 1094 break; 1095 } 1096 } 1097 [[fallthrough]]; 1098 case 'j': 1099 case 'J': 1100 if (isImaginary) break; // Cannot be repeated. 1101 isImaginary = true; 1102 continue; // Success. 1103 case 'w': 1104 case 'W': 1105 if (isFPConstant) 1106 break; // Invalid for floats. 1107 if (HasSize) 1108 break; // Invalid if we already have a size for the literal. 1109 1110 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We 1111 // explicitly do not support the suffix in C++ as an extension because a 1112 // library-based UDL that resolves to a library type may be more 1113 // appropriate there. 1114 if (!LangOpts.CPlusPlus && ((s[0] == 'w' && s[1] == 'b') || 1115 (s[0] == 'W' && s[1] == 'B'))) { 1116 isBitInt = true; 1117 HasSize = true; 1118 ++s; // Skip both characters (2nd char skipped on continue). 1119 continue; // Success. 1120 } 1121 } 1122 // If we reached here, there was an error or a ud-suffix. 1123 break; 1124 } 1125 1126 // "i", "if", and "il" are user-defined suffixes in C++1y. 1127 if (s != ThisTokEnd || isImaginary) { 1128 // FIXME: Don't bother expanding UCNs if !tok.hasUCN(). 1129 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)); 1130 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) { 1131 if (!isImaginary) { 1132 // Any suffix pieces we might have parsed are actually part of the 1133 // ud-suffix. 1134 isLong = false; 1135 isUnsigned = false; 1136 isLongLong = false; 1137 isSizeT = false; 1138 isFloat = false; 1139 isFloat16 = false; 1140 isHalf = false; 1141 isImaginary = false; 1142 isBitInt = false; 1143 MicrosoftInteger = 0; 1144 saw_fixed_point_suffix = false; 1145 isFract = false; 1146 isAccum = false; 1147 } 1148 1149 saw_ud_suffix = true; 1150 return; 1151 } 1152 1153 if (s != ThisTokEnd) { 1154 // Report an error if there are any. 1155 Diags.Report(Lexer::AdvanceToTokenCharacter( 1156 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts), 1157 diag::err_invalid_suffix_constant) 1158 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) 1159 << (isFixedPointConstant ? 2 : isFPConstant); 1160 hadError = true; 1161 } 1162 } 1163 1164 if (!hadError && saw_fixed_point_suffix) { 1165 assert(isFract || isAccum); 1166 } 1167 } 1168 1169 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal 1170 /// numbers. It issues an error for illegal digits, and handles floating point 1171 /// parsing. If it detects a floating point number, the radix is set to 10. 1172 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){ 1173 assert((radix == 8 || radix == 10) && "Unexpected radix"); 1174 1175 // If we have a hex digit other than 'e' (which denotes a FP exponent) then 1176 // the code is using an incorrect base. 1177 if (isHexDigit(*s) && *s != 'e' && *s != 'E' && 1178 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 1179 Diags.Report( 1180 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts), 1181 diag::err_invalid_digit) 1182 << StringRef(s, 1) << (radix == 8 ? 1 : 0); 1183 hadError = true; 1184 return; 1185 } 1186 1187 if (*s == '.') { 1188 checkSeparator(TokLoc, s, CSK_AfterDigits); 1189 s++; 1190 radix = 10; 1191 saw_period = true; 1192 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1193 s = SkipDigits(s); // Skip suffix. 1194 } 1195 if (*s == 'e' || *s == 'E') { // exponent 1196 checkSeparator(TokLoc, s, CSK_AfterDigits); 1197 const char *Exponent = s; 1198 s++; 1199 radix = 10; 1200 saw_exponent = true; 1201 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 1202 const char *first_non_digit = SkipDigits(s); 1203 if (containsDigits(s, first_non_digit)) { 1204 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1205 s = first_non_digit; 1206 } else { 1207 if (!hadError) { 1208 Diags.Report(Lexer::AdvanceToTokenCharacter( 1209 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1210 diag::err_exponent_has_no_digits); 1211 hadError = true; 1212 } 1213 return; 1214 } 1215 } 1216 } 1217 1218 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 1219 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 1220 /// treat it as an invalid suffix. 1221 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 1222 StringRef Suffix) { 1223 if (!LangOpts.CPlusPlus11 || Suffix.empty()) 1224 return false; 1225 1226 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid. 1227 if (Suffix[0] == '_') 1228 return true; 1229 1230 // In C++11, there are no library suffixes. 1231 if (!LangOpts.CPlusPlus14) 1232 return false; 1233 1234 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library. 1235 // Per tweaked N3660, "il", "i", and "if" are also used in the library. 1236 // In C++2a "d" and "y" are used in the library. 1237 return llvm::StringSwitch<bool>(Suffix) 1238 .Cases("h", "min", "s", true) 1239 .Cases("ms", "us", "ns", true) 1240 .Cases("il", "i", "if", true) 1241 .Cases("d", "y", LangOpts.CPlusPlus20) 1242 .Default(false); 1243 } 1244 1245 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc, 1246 const char *Pos, 1247 CheckSeparatorKind IsAfterDigits) { 1248 if (IsAfterDigits == CSK_AfterDigits) { 1249 if (Pos == ThisTokBegin) 1250 return; 1251 --Pos; 1252 } else if (Pos == ThisTokEnd) 1253 return; 1254 1255 if (isDigitSeparator(*Pos)) { 1256 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM, 1257 LangOpts), 1258 diag::err_digit_separator_not_between_digits) 1259 << IsAfterDigits; 1260 hadError = true; 1261 } 1262 } 1263 1264 /// ParseNumberStartingWithZero - This method is called when the first character 1265 /// of the number is found to be a zero. This means it is either an octal 1266 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or 1267 /// a floating point number (01239.123e4). Eat the prefix, determining the 1268 /// radix etc. 1269 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) { 1270 assert(s[0] == '0' && "Invalid method call"); 1271 s++; 1272 1273 int c1 = s[0]; 1274 1275 // Handle a hex number like 0x1234. 1276 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) { 1277 s++; 1278 assert(s < ThisTokEnd && "didn't maximally munch?"); 1279 radix = 16; 1280 DigitsBegin = s; 1281 s = SkipHexDigits(s); 1282 bool HasSignificandDigits = containsDigits(DigitsBegin, s); 1283 if (s == ThisTokEnd) { 1284 // Done. 1285 } else if (*s == '.') { 1286 s++; 1287 saw_period = true; 1288 const char *floatDigitsBegin = s; 1289 s = SkipHexDigits(s); 1290 if (containsDigits(floatDigitsBegin, s)) 1291 HasSignificandDigits = true; 1292 if (HasSignificandDigits) 1293 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits); 1294 } 1295 1296 if (!HasSignificandDigits) { 1297 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1298 LangOpts), 1299 diag::err_hex_constant_requires) 1300 << LangOpts.CPlusPlus << 1; 1301 hadError = true; 1302 return; 1303 } 1304 1305 // A binary exponent can appear with or with a '.'. If dotted, the 1306 // binary exponent is required. 1307 if (*s == 'p' || *s == 'P') { 1308 checkSeparator(TokLoc, s, CSK_AfterDigits); 1309 const char *Exponent = s; 1310 s++; 1311 saw_exponent = true; 1312 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 1313 const char *first_non_digit = SkipDigits(s); 1314 if (!containsDigits(s, first_non_digit)) { 1315 if (!hadError) { 1316 Diags.Report(Lexer::AdvanceToTokenCharacter( 1317 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1318 diag::err_exponent_has_no_digits); 1319 hadError = true; 1320 } 1321 return; 1322 } 1323 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1324 s = first_non_digit; 1325 1326 if (!LangOpts.HexFloats) 1327 Diags.Report(TokLoc, LangOpts.CPlusPlus 1328 ? diag::ext_hex_literal_invalid 1329 : diag::ext_hex_constant_invalid); 1330 else if (LangOpts.CPlusPlus17) 1331 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal); 1332 } else if (saw_period) { 1333 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1334 LangOpts), 1335 diag::err_hex_constant_requires) 1336 << LangOpts.CPlusPlus << 0; 1337 hadError = true; 1338 } 1339 return; 1340 } 1341 1342 // Handle simple binary numbers 0b01010 1343 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) { 1344 // 0b101010 is a C++1y / GCC extension. 1345 Diags.Report(TokLoc, LangOpts.CPlusPlus14 1346 ? diag::warn_cxx11_compat_binary_literal 1347 : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14 1348 : diag::ext_binary_literal); 1349 ++s; 1350 assert(s < ThisTokEnd && "didn't maximally munch?"); 1351 radix = 2; 1352 DigitsBegin = s; 1353 s = SkipBinaryDigits(s); 1354 if (s == ThisTokEnd) { 1355 // Done. 1356 } else if (isHexDigit(*s) && 1357 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 1358 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1359 LangOpts), 1360 diag::err_invalid_digit) 1361 << StringRef(s, 1) << 2; 1362 hadError = true; 1363 } 1364 // Other suffixes will be diagnosed by the caller. 1365 return; 1366 } 1367 1368 // For now, the radix is set to 8. If we discover that we have a 1369 // floating point constant, the radix will change to 10. Octal floating 1370 // point constants are not permitted (only decimal and hexadecimal). 1371 radix = 8; 1372 const char *PossibleNewDigitStart = s; 1373 s = SkipOctalDigits(s); 1374 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0 1375 // as the start of the digits. So if skipping octal digits does not skip 1376 // anything, we leave the digit start where it was. 1377 if (s != PossibleNewDigitStart) 1378 DigitsBegin = PossibleNewDigitStart; 1379 1380 if (s == ThisTokEnd) 1381 return; // Done, simple octal number like 01234 1382 1383 // If we have some other non-octal digit that *is* a decimal digit, see if 1384 // this is part of a floating point number like 094.123 or 09e1. 1385 if (isDigit(*s)) { 1386 const char *EndDecimal = SkipDigits(s); 1387 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') { 1388 s = EndDecimal; 1389 radix = 10; 1390 } 1391 } 1392 1393 ParseDecimalOrOctalCommon(TokLoc); 1394 } 1395 1396 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) { 1397 switch (Radix) { 1398 case 2: 1399 return NumDigits <= 64; 1400 case 8: 1401 return NumDigits <= 64 / 3; // Digits are groups of 3 bits. 1402 case 10: 1403 return NumDigits <= 19; // floor(log10(2^64)) 1404 case 16: 1405 return NumDigits <= 64 / 4; // Digits are groups of 4 bits. 1406 default: 1407 llvm_unreachable("impossible Radix"); 1408 } 1409 } 1410 1411 /// GetIntegerValue - Convert this numeric literal value to an APInt that 1412 /// matches Val's input width. If there is an overflow, set Val to the low bits 1413 /// of the result and return true. Otherwise, return false. 1414 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) { 1415 // Fast path: Compute a conservative bound on the maximum number of 1416 // bits per digit in this radix. If we can't possibly overflow a 1417 // uint64 based on that bound then do the simple conversion to 1418 // integer. This avoids the expensive overflow checking below, and 1419 // handles the common cases that matter (small decimal integers and 1420 // hex/octal values which don't overflow). 1421 const unsigned NumDigits = SuffixBegin - DigitsBegin; 1422 if (alwaysFitsInto64Bits(radix, NumDigits)) { 1423 uint64_t N = 0; 1424 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr) 1425 if (!isDigitSeparator(*Ptr)) 1426 N = N * radix + llvm::hexDigitValue(*Ptr); 1427 1428 // This will truncate the value to Val's input width. Simply check 1429 // for overflow by comparing. 1430 Val = N; 1431 return Val.getZExtValue() != N; 1432 } 1433 1434 Val = 0; 1435 const char *Ptr = DigitsBegin; 1436 1437 llvm::APInt RadixVal(Val.getBitWidth(), radix); 1438 llvm::APInt CharVal(Val.getBitWidth(), 0); 1439 llvm::APInt OldVal = Val; 1440 1441 bool OverflowOccurred = false; 1442 while (Ptr < SuffixBegin) { 1443 if (isDigitSeparator(*Ptr)) { 1444 ++Ptr; 1445 continue; 1446 } 1447 1448 unsigned C = llvm::hexDigitValue(*Ptr++); 1449 1450 // If this letter is out of bound for this radix, reject it. 1451 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1452 1453 CharVal = C; 1454 1455 // Add the digit to the value in the appropriate radix. If adding in digits 1456 // made the value smaller, then this overflowed. 1457 OldVal = Val; 1458 1459 // Multiply by radix, did overflow occur on the multiply? 1460 Val *= RadixVal; 1461 OverflowOccurred |= Val.udiv(RadixVal) != OldVal; 1462 1463 // Add value, did overflow occur on the value? 1464 // (a + b) ult b <=> overflow 1465 Val += CharVal; 1466 OverflowOccurred |= Val.ult(CharVal); 1467 } 1468 return OverflowOccurred; 1469 } 1470 1471 llvm::APFloat::opStatus 1472 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) { 1473 using llvm::APFloat; 1474 1475 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin); 1476 1477 llvm::SmallString<16> Buffer; 1478 StringRef Str(ThisTokBegin, n); 1479 if (Str.contains('\'')) { 1480 Buffer.reserve(n); 1481 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer), 1482 &isDigitSeparator); 1483 Str = Buffer; 1484 } 1485 1486 auto StatusOrErr = 1487 Result.convertFromString(Str, APFloat::rmNearestTiesToEven); 1488 assert(StatusOrErr && "Invalid floating point representation"); 1489 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr 1490 : APFloat::opInvalidOp; 1491 } 1492 1493 static inline bool IsExponentPart(char c) { 1494 return c == 'p' || c == 'P' || c == 'e' || c == 'E'; 1495 } 1496 1497 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) { 1498 assert(radix == 16 || radix == 10); 1499 1500 // Find how many digits are needed to store the whole literal. 1501 unsigned NumDigits = SuffixBegin - DigitsBegin; 1502 if (saw_period) --NumDigits; 1503 1504 // Initial scan of the exponent if it exists 1505 bool ExpOverflowOccurred = false; 1506 bool NegativeExponent = false; 1507 const char *ExponentBegin; 1508 uint64_t Exponent = 0; 1509 int64_t BaseShift = 0; 1510 if (saw_exponent) { 1511 const char *Ptr = DigitsBegin; 1512 1513 while (!IsExponentPart(*Ptr)) ++Ptr; 1514 ExponentBegin = Ptr; 1515 ++Ptr; 1516 NegativeExponent = *Ptr == '-'; 1517 if (NegativeExponent) ++Ptr; 1518 1519 unsigned NumExpDigits = SuffixBegin - Ptr; 1520 if (alwaysFitsInto64Bits(radix, NumExpDigits)) { 1521 llvm::StringRef ExpStr(Ptr, NumExpDigits); 1522 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10); 1523 Exponent = ExpInt.getZExtValue(); 1524 } else { 1525 ExpOverflowOccurred = true; 1526 } 1527 1528 if (NegativeExponent) BaseShift -= Exponent; 1529 else BaseShift += Exponent; 1530 } 1531 1532 // Number of bits needed for decimal literal is 1533 // ceil(NumDigits * log2(10)) Integral part 1534 // + Scale Fractional part 1535 // + ceil(Exponent * log2(10)) Exponent 1536 // -------------------------------------------------- 1537 // ceil((NumDigits + Exponent) * log2(10)) + Scale 1538 // 1539 // But for simplicity in handling integers, we can round up log2(10) to 4, 1540 // making: 1541 // 4 * (NumDigits + Exponent) + Scale 1542 // 1543 // Number of digits needed for hexadecimal literal is 1544 // 4 * NumDigits Integral part 1545 // + Scale Fractional part 1546 // + Exponent Exponent 1547 // -------------------------------------------------- 1548 // (4 * NumDigits) + Scale + Exponent 1549 uint64_t NumBitsNeeded; 1550 if (radix == 10) 1551 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale; 1552 else 1553 NumBitsNeeded = 4 * NumDigits + Exponent + Scale; 1554 1555 if (NumBitsNeeded > std::numeric_limits<unsigned>::max()) 1556 ExpOverflowOccurred = true; 1557 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false); 1558 1559 bool FoundDecimal = false; 1560 1561 int64_t FractBaseShift = 0; 1562 const char *End = saw_exponent ? ExponentBegin : SuffixBegin; 1563 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) { 1564 if (*Ptr == '.') { 1565 FoundDecimal = true; 1566 continue; 1567 } 1568 1569 // Normal reading of an integer 1570 unsigned C = llvm::hexDigitValue(*Ptr); 1571 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1572 1573 Val *= radix; 1574 Val += C; 1575 1576 if (FoundDecimal) 1577 // Keep track of how much we will need to adjust this value by from the 1578 // number of digits past the radix point. 1579 --FractBaseShift; 1580 } 1581 1582 // For a radix of 16, we will be multiplying by 2 instead of 16. 1583 if (radix == 16) FractBaseShift *= 4; 1584 BaseShift += FractBaseShift; 1585 1586 Val <<= Scale; 1587 1588 uint64_t Base = (radix == 16) ? 2 : 10; 1589 if (BaseShift > 0) { 1590 for (int64_t i = 0; i < BaseShift; ++i) { 1591 Val *= Base; 1592 } 1593 } else if (BaseShift < 0) { 1594 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i) 1595 Val = Val.udiv(Base); 1596 } 1597 1598 bool IntOverflowOccurred = false; 1599 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth()); 1600 if (Val.getBitWidth() > StoreVal.getBitWidth()) { 1601 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth())); 1602 StoreVal = Val.trunc(StoreVal.getBitWidth()); 1603 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) { 1604 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal); 1605 StoreVal = Val.zext(StoreVal.getBitWidth()); 1606 } else { 1607 StoreVal = Val; 1608 } 1609 1610 return IntOverflowOccurred || ExpOverflowOccurred; 1611 } 1612 1613 /// \verbatim 1614 /// user-defined-character-literal: [C++11 lex.ext] 1615 /// character-literal ud-suffix 1616 /// ud-suffix: 1617 /// identifier 1618 /// character-literal: [C++11 lex.ccon] 1619 /// ' c-char-sequence ' 1620 /// u' c-char-sequence ' 1621 /// U' c-char-sequence ' 1622 /// L' c-char-sequence ' 1623 /// u8' c-char-sequence ' [C++1z lex.ccon] 1624 /// c-char-sequence: 1625 /// c-char 1626 /// c-char-sequence c-char 1627 /// c-char: 1628 /// any member of the source character set except the single-quote ', 1629 /// backslash \, or new-line character 1630 /// escape-sequence 1631 /// universal-character-name 1632 /// escape-sequence: 1633 /// simple-escape-sequence 1634 /// octal-escape-sequence 1635 /// hexadecimal-escape-sequence 1636 /// simple-escape-sequence: 1637 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1638 /// octal-escape-sequence: 1639 /// \ octal-digit 1640 /// \ octal-digit octal-digit 1641 /// \ octal-digit octal-digit octal-digit 1642 /// hexadecimal-escape-sequence: 1643 /// \x hexadecimal-digit 1644 /// hexadecimal-escape-sequence hexadecimal-digit 1645 /// universal-character-name: [C++11 lex.charset] 1646 /// \u hex-quad 1647 /// \U hex-quad hex-quad 1648 /// hex-quad: 1649 /// hex-digit hex-digit hex-digit hex-digit 1650 /// \endverbatim 1651 /// 1652 CharLiteralParser::CharLiteralParser(const char *begin, const char *end, 1653 SourceLocation Loc, Preprocessor &PP, 1654 tok::TokenKind kind) { 1655 // At this point we know that the character matches the regex "(L|u|U)?'.*'". 1656 HadError = false; 1657 1658 Kind = kind; 1659 1660 const char *TokBegin = begin; 1661 1662 // Skip over wide character determinant. 1663 if (Kind != tok::char_constant) 1664 ++begin; 1665 if (Kind == tok::utf8_char_constant) 1666 ++begin; 1667 1668 // Skip over the entry quote. 1669 if (begin[0] != '\'') { 1670 PP.Diag(Loc, diag::err_lexing_char); 1671 HadError = true; 1672 return; 1673 } 1674 1675 ++begin; 1676 1677 // Remove an optional ud-suffix. 1678 if (end[-1] != '\'') { 1679 const char *UDSuffixEnd = end; 1680 do { 1681 --end; 1682 } while (end[-1] != '\''); 1683 // FIXME: Don't bother with this if !tok.hasUCN(). 1684 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end)); 1685 UDSuffixOffset = end - TokBegin; 1686 } 1687 1688 // Trim the ending quote. 1689 assert(end != begin && "Invalid token lexed"); 1690 --end; 1691 1692 // FIXME: The "Value" is an uint64_t so we can handle char literals of 1693 // up to 64-bits. 1694 // FIXME: This extensively assumes that 'char' is 8-bits. 1695 assert(PP.getTargetInfo().getCharWidth() == 8 && 1696 "Assumes char is 8 bits"); 1697 assert(PP.getTargetInfo().getIntWidth() <= 64 && 1698 (PP.getTargetInfo().getIntWidth() & 7) == 0 && 1699 "Assumes sizeof(int) on target is <= 64 and a multiple of char"); 1700 assert(PP.getTargetInfo().getWCharWidth() <= 64 && 1701 "Assumes sizeof(wchar) on target is <= 64"); 1702 1703 SmallVector<uint32_t, 4> codepoint_buffer; 1704 codepoint_buffer.resize(end - begin); 1705 uint32_t *buffer_begin = &codepoint_buffer.front(); 1706 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size(); 1707 1708 // Unicode escapes representing characters that cannot be correctly 1709 // represented in a single code unit are disallowed in character literals 1710 // by this implementation. 1711 uint32_t largest_character_for_kind; 1712 if (tok::wide_char_constant == Kind) { 1713 largest_character_for_kind = 1714 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth()); 1715 } else if (tok::utf8_char_constant == Kind) { 1716 largest_character_for_kind = 0x7F; 1717 } else if (tok::utf16_char_constant == Kind) { 1718 largest_character_for_kind = 0xFFFF; 1719 } else if (tok::utf32_char_constant == Kind) { 1720 largest_character_for_kind = 0x10FFFF; 1721 } else { 1722 largest_character_for_kind = 0x7Fu; 1723 } 1724 1725 while (begin != end) { 1726 // Is this a span of non-escape characters? 1727 if (begin[0] != '\\') { 1728 char const *start = begin; 1729 do { 1730 ++begin; 1731 } while (begin != end && *begin != '\\'); 1732 1733 char const *tmp_in_start = start; 1734 uint32_t *tmp_out_start = buffer_begin; 1735 llvm::ConversionResult res = 1736 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start), 1737 reinterpret_cast<llvm::UTF8 const *>(begin), 1738 &buffer_begin, buffer_end, llvm::strictConversion); 1739 if (res != llvm::conversionOK) { 1740 // If we see bad encoding for unprefixed character literals, warn and 1741 // simply copy the byte values, for compatibility with gcc and 1742 // older versions of clang. 1743 bool NoErrorOnBadEncoding = isOrdinary(); 1744 unsigned Msg = diag::err_bad_character_encoding; 1745 if (NoErrorOnBadEncoding) 1746 Msg = diag::warn_bad_character_encoding; 1747 PP.Diag(Loc, Msg); 1748 if (NoErrorOnBadEncoding) { 1749 start = tmp_in_start; 1750 buffer_begin = tmp_out_start; 1751 for (; start != begin; ++start, ++buffer_begin) 1752 *buffer_begin = static_cast<uint8_t>(*start); 1753 } else { 1754 HadError = true; 1755 } 1756 } else { 1757 for (; tmp_out_start < buffer_begin; ++tmp_out_start) { 1758 if (*tmp_out_start > largest_character_for_kind) { 1759 HadError = true; 1760 PP.Diag(Loc, diag::err_character_too_large); 1761 } 1762 } 1763 } 1764 1765 continue; 1766 } 1767 // Is this a Universal Character Name escape? 1768 if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') { 1769 unsigned short UcnLen = 0; 1770 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen, 1771 FullSourceLoc(Loc, PP.getSourceManager()), 1772 &PP.getDiagnostics(), PP.getLangOpts(), true)) { 1773 HadError = true; 1774 } else if (*buffer_begin > largest_character_for_kind) { 1775 HadError = true; 1776 PP.Diag(Loc, diag::err_character_too_large); 1777 } 1778 1779 ++buffer_begin; 1780 continue; 1781 } 1782 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo()); 1783 uint64_t result = 1784 ProcessCharEscape(TokBegin, begin, end, HadError, 1785 FullSourceLoc(Loc, PP.getSourceManager()), CharWidth, 1786 &PP.getDiagnostics(), PP.getLangOpts(), 1787 StringLiteralEvalMethod::Evaluated); 1788 *buffer_begin++ = result; 1789 } 1790 1791 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front(); 1792 1793 if (NumCharsSoFar > 1) { 1794 if (isOrdinary() && NumCharsSoFar == 4) 1795 PP.Diag(Loc, diag::warn_four_char_character_literal); 1796 else if (isOrdinary()) 1797 PP.Diag(Loc, diag::warn_multichar_character_literal); 1798 else { 1799 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1); 1800 HadError = true; 1801 } 1802 IsMultiChar = true; 1803 } else { 1804 IsMultiChar = false; 1805 } 1806 1807 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0); 1808 1809 // Narrow character literals act as though their value is concatenated 1810 // in this implementation, but warn on overflow. 1811 bool multi_char_too_long = false; 1812 if (isOrdinary() && isMultiChar()) { 1813 LitVal = 0; 1814 for (size_t i = 0; i < NumCharsSoFar; ++i) { 1815 // check for enough leading zeros to shift into 1816 multi_char_too_long |= (LitVal.countl_zero() < 8); 1817 LitVal <<= 8; 1818 LitVal = LitVal + (codepoint_buffer[i] & 0xFF); 1819 } 1820 } else if (NumCharsSoFar > 0) { 1821 // otherwise just take the last character 1822 LitVal = buffer_begin[-1]; 1823 } 1824 1825 if (!HadError && multi_char_too_long) { 1826 PP.Diag(Loc, diag::warn_char_constant_too_large); 1827 } 1828 1829 // Transfer the value from APInt to uint64_t 1830 Value = LitVal.getZExtValue(); 1831 1832 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1") 1833 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple 1834 // character constants are not sign extended in the this implementation: 1835 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC. 1836 if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) && 1837 PP.getLangOpts().CharIsSigned) 1838 Value = (signed char)Value; 1839 } 1840 1841 /// \verbatim 1842 /// string-literal: [C++0x lex.string] 1843 /// encoding-prefix " [s-char-sequence] " 1844 /// encoding-prefix R raw-string 1845 /// encoding-prefix: 1846 /// u8 1847 /// u 1848 /// U 1849 /// L 1850 /// s-char-sequence: 1851 /// s-char 1852 /// s-char-sequence s-char 1853 /// s-char: 1854 /// any member of the source character set except the double-quote ", 1855 /// backslash \, or new-line character 1856 /// escape-sequence 1857 /// universal-character-name 1858 /// raw-string: 1859 /// " d-char-sequence ( r-char-sequence ) d-char-sequence " 1860 /// r-char-sequence: 1861 /// r-char 1862 /// r-char-sequence r-char 1863 /// r-char: 1864 /// any member of the source character set, except a right parenthesis ) 1865 /// followed by the initial d-char-sequence (which may be empty) 1866 /// followed by a double quote ". 1867 /// d-char-sequence: 1868 /// d-char 1869 /// d-char-sequence d-char 1870 /// d-char: 1871 /// any member of the basic source character set except: 1872 /// space, the left parenthesis (, the right parenthesis ), 1873 /// the backslash \, and the control characters representing horizontal 1874 /// tab, vertical tab, form feed, and newline. 1875 /// escape-sequence: [C++0x lex.ccon] 1876 /// simple-escape-sequence 1877 /// octal-escape-sequence 1878 /// hexadecimal-escape-sequence 1879 /// simple-escape-sequence: 1880 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1881 /// octal-escape-sequence: 1882 /// \ octal-digit 1883 /// \ octal-digit octal-digit 1884 /// \ octal-digit octal-digit octal-digit 1885 /// hexadecimal-escape-sequence: 1886 /// \x hexadecimal-digit 1887 /// hexadecimal-escape-sequence hexadecimal-digit 1888 /// universal-character-name: 1889 /// \u hex-quad 1890 /// \U hex-quad hex-quad 1891 /// hex-quad: 1892 /// hex-digit hex-digit hex-digit hex-digit 1893 /// \endverbatim 1894 /// 1895 StringLiteralParser::StringLiteralParser(ArrayRef<Token> StringToks, 1896 Preprocessor &PP, 1897 StringLiteralEvalMethod EvalMethod) 1898 : SM(PP.getSourceManager()), Features(PP.getLangOpts()), 1899 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()), 1900 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown), 1901 ResultPtr(ResultBuf.data()), EvalMethod(EvalMethod), hadError(false), 1902 Pascal(false) { 1903 init(StringToks); 1904 } 1905 1906 void StringLiteralParser::init(ArrayRef<Token> StringToks){ 1907 // The literal token may have come from an invalid source location (e.g. due 1908 // to a PCH error), in which case the token length will be 0. 1909 if (StringToks.empty() || StringToks[0].getLength() < 2) 1910 return DiagnoseLexingError(SourceLocation()); 1911 1912 // Scan all of the string portions, remember the max individual token length, 1913 // computing a bound on the concatenated string length, and see whether any 1914 // piece is a wide-string. If any of the string portions is a wide-string 1915 // literal, the result is a wide-string literal [C99 6.4.5p4]. 1916 assert(!StringToks.empty() && "expected at least one token"); 1917 MaxTokenLength = StringToks[0].getLength(); 1918 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!"); 1919 SizeBound = StringToks[0].getLength() - 2; // -2 for "". 1920 hadError = false; 1921 1922 // Determines the kind of string from the prefix 1923 Kind = tok::string_literal; 1924 1925 /// (C99 5.1.1.2p1). The common case is only one string fragment. 1926 for (const Token &Tok : StringToks) { 1927 if (Tok.getLength() < 2) 1928 return DiagnoseLexingError(Tok.getLocation()); 1929 1930 // The string could be shorter than this if it needs cleaning, but this is a 1931 // reasonable bound, which is all we need. 1932 assert(Tok.getLength() >= 2 && "literal token is invalid!"); 1933 SizeBound += Tok.getLength() - 2; // -2 for "". 1934 1935 // Remember maximum string piece length. 1936 if (Tok.getLength() > MaxTokenLength) 1937 MaxTokenLength = Tok.getLength(); 1938 1939 // Remember if we see any wide or utf-8/16/32 strings. 1940 // Also check for illegal concatenations. 1941 if (isUnevaluated() && Tok.getKind() != tok::string_literal) { 1942 if (Diags) { 1943 SourceLocation PrefixEndLoc = Lexer::AdvanceToTokenCharacter( 1944 Tok.getLocation(), getEncodingPrefixLen(Tok.getKind()), SM, 1945 Features); 1946 CharSourceRange Range = 1947 CharSourceRange::getCharRange({Tok.getLocation(), PrefixEndLoc}); 1948 StringRef Prefix(SM.getCharacterData(Tok.getLocation()), 1949 getEncodingPrefixLen(Tok.getKind())); 1950 Diags->Report(Tok.getLocation(), 1951 Features.CPlusPlus26 1952 ? diag::err_unevaluated_string_prefix 1953 : diag::warn_unevaluated_string_prefix) 1954 << Prefix << Features.CPlusPlus << FixItHint::CreateRemoval(Range); 1955 } 1956 if (Features.CPlusPlus26) 1957 hadError = true; 1958 } else if (Tok.isNot(Kind) && Tok.isNot(tok::string_literal)) { 1959 if (isOrdinary()) { 1960 Kind = Tok.getKind(); 1961 } else { 1962 if (Diags) 1963 Diags->Report(Tok.getLocation(), diag::err_unsupported_string_concat); 1964 hadError = true; 1965 } 1966 } 1967 } 1968 1969 // Include space for the null terminator. 1970 ++SizeBound; 1971 1972 // TODO: K&R warning: "traditional C rejects string constant concatenation" 1973 1974 // Get the width in bytes of char/wchar_t/char16_t/char32_t 1975 CharByteWidth = getCharWidth(Kind, Target); 1976 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1977 CharByteWidth /= 8; 1978 1979 // The output buffer size needs to be large enough to hold wide characters. 1980 // This is a worst-case assumption which basically corresponds to L"" "long". 1981 SizeBound *= CharByteWidth; 1982 1983 // Size the temporary buffer to hold the result string data. 1984 ResultBuf.resize(SizeBound); 1985 1986 // Likewise, but for each string piece. 1987 SmallString<512> TokenBuf; 1988 TokenBuf.resize(MaxTokenLength); 1989 1990 // Loop over all the strings, getting their spelling, and expanding them to 1991 // wide strings as appropriate. 1992 ResultPtr = &ResultBuf[0]; // Next byte to fill in. 1993 1994 Pascal = false; 1995 1996 SourceLocation UDSuffixTokLoc; 1997 1998 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) { 1999 const char *ThisTokBuf = &TokenBuf[0]; 2000 // Get the spelling of the token, which eliminates trigraphs, etc. We know 2001 // that ThisTokBuf points to a buffer that is big enough for the whole token 2002 // and 'spelled' tokens can only shrink. 2003 bool StringInvalid = false; 2004 unsigned ThisTokLen = 2005 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features, 2006 &StringInvalid); 2007 if (StringInvalid) 2008 return DiagnoseLexingError(StringToks[i].getLocation()); 2009 2010 const char *ThisTokBegin = ThisTokBuf; 2011 const char *ThisTokEnd = ThisTokBuf+ThisTokLen; 2012 2013 // Remove an optional ud-suffix. 2014 if (ThisTokEnd[-1] != '"') { 2015 const char *UDSuffixEnd = ThisTokEnd; 2016 do { 2017 --ThisTokEnd; 2018 } while (ThisTokEnd[-1] != '"'); 2019 2020 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd); 2021 2022 if (UDSuffixBuf.empty()) { 2023 if (StringToks[i].hasUCN()) 2024 expandUCNs(UDSuffixBuf, UDSuffix); 2025 else 2026 UDSuffixBuf.assign(UDSuffix); 2027 UDSuffixToken = i; 2028 UDSuffixOffset = ThisTokEnd - ThisTokBuf; 2029 UDSuffixTokLoc = StringToks[i].getLocation(); 2030 } else { 2031 SmallString<32> ExpandedUDSuffix; 2032 if (StringToks[i].hasUCN()) { 2033 expandUCNs(ExpandedUDSuffix, UDSuffix); 2034 UDSuffix = ExpandedUDSuffix; 2035 } 2036 2037 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the 2038 // result of a concatenation involving at least one user-defined-string- 2039 // literal, all the participating user-defined-string-literals shall 2040 // have the same ud-suffix. 2041 bool UnevaluatedStringHasUDL = isUnevaluated() && !UDSuffix.empty(); 2042 if (UDSuffixBuf != UDSuffix || UnevaluatedStringHasUDL) { 2043 if (Diags) { 2044 SourceLocation TokLoc = StringToks[i].getLocation(); 2045 if (UnevaluatedStringHasUDL) { 2046 Diags->Report(TokLoc, diag::err_unevaluated_string_udl) 2047 << SourceRange(TokLoc, TokLoc); 2048 } else { 2049 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix) 2050 << UDSuffixBuf << UDSuffix 2051 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc); 2052 } 2053 } 2054 hadError = true; 2055 } 2056 } 2057 } 2058 2059 // Strip the end quote. 2060 --ThisTokEnd; 2061 2062 // TODO: Input character set mapping support. 2063 2064 // Skip marker for wide or unicode strings. 2065 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') { 2066 ++ThisTokBuf; 2067 // Skip 8 of u8 marker for utf8 strings. 2068 if (ThisTokBuf[0] == '8') 2069 ++ThisTokBuf; 2070 } 2071 2072 // Check for raw string 2073 if (ThisTokBuf[0] == 'R') { 2074 if (ThisTokBuf[1] != '"') { 2075 // The file may have come from PCH and then changed after loading the 2076 // PCH; Fail gracefully. 2077 return DiagnoseLexingError(StringToks[i].getLocation()); 2078 } 2079 ThisTokBuf += 2; // skip R" 2080 2081 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16 2082 // characters. 2083 constexpr unsigned MaxRawStrDelimLen = 16; 2084 2085 const char *Prefix = ThisTokBuf; 2086 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen && 2087 ThisTokBuf[0] != '(') 2088 ++ThisTokBuf; 2089 if (ThisTokBuf[0] != '(') 2090 return DiagnoseLexingError(StringToks[i].getLocation()); 2091 ++ThisTokBuf; // skip '(' 2092 2093 // Remove same number of characters from the end 2094 ThisTokEnd -= ThisTokBuf - Prefix; 2095 if (ThisTokEnd < ThisTokBuf) 2096 return DiagnoseLexingError(StringToks[i].getLocation()); 2097 2098 // C++14 [lex.string]p4: A source-file new-line in a raw string literal 2099 // results in a new-line in the resulting execution string-literal. 2100 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf); 2101 while (!RemainingTokenSpan.empty()) { 2102 // Split the string literal on \r\n boundaries. 2103 size_t CRLFPos = RemainingTokenSpan.find("\r\n"); 2104 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos); 2105 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos); 2106 2107 // Copy everything before the \r\n sequence into the string literal. 2108 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF)) 2109 hadError = true; 2110 2111 // Point into the \n inside the \r\n sequence and operate on the 2112 // remaining portion of the literal. 2113 RemainingTokenSpan = AfterCRLF.substr(1); 2114 } 2115 } else { 2116 if (ThisTokBuf[0] != '"') { 2117 // The file may have come from PCH and then changed after loading the 2118 // PCH; Fail gracefully. 2119 return DiagnoseLexingError(StringToks[i].getLocation()); 2120 } 2121 ++ThisTokBuf; // skip " 2122 2123 // Check if this is a pascal string 2124 if (!isUnevaluated() && Features.PascalStrings && 2125 ThisTokBuf + 1 != ThisTokEnd && ThisTokBuf[0] == '\\' && 2126 ThisTokBuf[1] == 'p') { 2127 2128 // If the \p sequence is found in the first token, we have a pascal string 2129 // Otherwise, if we already have a pascal string, ignore the first \p 2130 if (i == 0) { 2131 ++ThisTokBuf; 2132 Pascal = true; 2133 } else if (Pascal) 2134 ThisTokBuf += 2; 2135 } 2136 2137 while (ThisTokBuf != ThisTokEnd) { 2138 // Is this a span of non-escape characters? 2139 if (ThisTokBuf[0] != '\\') { 2140 const char *InStart = ThisTokBuf; 2141 do { 2142 ++ThisTokBuf; 2143 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\'); 2144 2145 // Copy the character span over. 2146 if (CopyStringFragment(StringToks[i], ThisTokBegin, 2147 StringRef(InStart, ThisTokBuf - InStart))) 2148 hadError = true; 2149 continue; 2150 } 2151 // Is this a Universal Character Name escape? 2152 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' || 2153 ThisTokBuf[1] == 'N') { 2154 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, 2155 ResultPtr, hadError, 2156 FullSourceLoc(StringToks[i].getLocation(), SM), 2157 CharByteWidth, Diags, Features); 2158 continue; 2159 } 2160 // Otherwise, this is a non-UCN escape character. Process it. 2161 unsigned ResultChar = 2162 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError, 2163 FullSourceLoc(StringToks[i].getLocation(), SM), 2164 CharByteWidth * 8, Diags, Features, EvalMethod); 2165 2166 if (CharByteWidth == 4) { 2167 // FIXME: Make the type of the result buffer correct instead of 2168 // using reinterpret_cast. 2169 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr); 2170 *ResultWidePtr = ResultChar; 2171 ResultPtr += 4; 2172 } else if (CharByteWidth == 2) { 2173 // FIXME: Make the type of the result buffer correct instead of 2174 // using reinterpret_cast. 2175 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr); 2176 *ResultWidePtr = ResultChar & 0xFFFF; 2177 ResultPtr += 2; 2178 } else { 2179 assert(CharByteWidth == 1 && "Unexpected char width"); 2180 *ResultPtr++ = ResultChar & 0xFF; 2181 } 2182 } 2183 } 2184 } 2185 2186 assert((!Pascal || !isUnevaluated()) && 2187 "Pascal string in unevaluated context"); 2188 if (Pascal) { 2189 if (CharByteWidth == 4) { 2190 // FIXME: Make the type of the result buffer correct instead of 2191 // using reinterpret_cast. 2192 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data()); 2193 ResultWidePtr[0] = GetNumStringChars() - 1; 2194 } else if (CharByteWidth == 2) { 2195 // FIXME: Make the type of the result buffer correct instead of 2196 // using reinterpret_cast. 2197 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data()); 2198 ResultWidePtr[0] = GetNumStringChars() - 1; 2199 } else { 2200 assert(CharByteWidth == 1 && "Unexpected char width"); 2201 ResultBuf[0] = GetNumStringChars() - 1; 2202 } 2203 2204 // Verify that pascal strings aren't too large. 2205 if (GetStringLength() > 256) { 2206 if (Diags) 2207 Diags->Report(StringToks.front().getLocation(), 2208 diag::err_pascal_string_too_long) 2209 << SourceRange(StringToks.front().getLocation(), 2210 StringToks.back().getLocation()); 2211 hadError = true; 2212 return; 2213 } 2214 } else if (Diags) { 2215 // Complain if this string literal has too many characters. 2216 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509; 2217 2218 if (GetNumStringChars() > MaxChars) 2219 Diags->Report(StringToks.front().getLocation(), 2220 diag::ext_string_too_long) 2221 << GetNumStringChars() << MaxChars 2222 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0) 2223 << SourceRange(StringToks.front().getLocation(), 2224 StringToks.back().getLocation()); 2225 } 2226 } 2227 2228 static const char *resyncUTF8(const char *Err, const char *End) { 2229 if (Err == End) 2230 return End; 2231 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err); 2232 while (++Err != End && (*Err & 0xC0) == 0x80) 2233 ; 2234 return Err; 2235 } 2236 2237 /// This function copies from Fragment, which is a sequence of bytes 2238 /// within Tok's contents (which begin at TokBegin) into ResultPtr. 2239 /// Performs widening for multi-byte characters. 2240 bool StringLiteralParser::CopyStringFragment(const Token &Tok, 2241 const char *TokBegin, 2242 StringRef Fragment) { 2243 const llvm::UTF8 *ErrorPtrTmp; 2244 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp)) 2245 return false; 2246 2247 // If we see bad encoding for unprefixed string literals, warn and 2248 // simply copy the byte values, for compatibility with gcc and older 2249 // versions of clang. 2250 bool NoErrorOnBadEncoding = isOrdinary(); 2251 if (NoErrorOnBadEncoding) { 2252 memcpy(ResultPtr, Fragment.data(), Fragment.size()); 2253 ResultPtr += Fragment.size(); 2254 } 2255 2256 if (Diags) { 2257 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2258 2259 FullSourceLoc SourceLoc(Tok.getLocation(), SM); 2260 const DiagnosticBuilder &Builder = 2261 Diag(Diags, Features, SourceLoc, TokBegin, 2262 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()), 2263 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding 2264 : diag::err_bad_string_encoding); 2265 2266 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2267 StringRef NextFragment(NextStart, Fragment.end()-NextStart); 2268 2269 // Decode into a dummy buffer. 2270 SmallString<512> Dummy; 2271 Dummy.reserve(Fragment.size() * CharByteWidth); 2272 char *Ptr = Dummy.data(); 2273 2274 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) { 2275 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2276 NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2277 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin, 2278 ErrorPtr, NextStart); 2279 NextFragment = StringRef(NextStart, Fragment.end()-NextStart); 2280 } 2281 } 2282 return !NoErrorOnBadEncoding; 2283 } 2284 2285 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) { 2286 hadError = true; 2287 if (Diags) 2288 Diags->Report(Loc, diag::err_lexing_string); 2289 } 2290 2291 /// getOffsetOfStringByte - This function returns the offset of the 2292 /// specified byte of the string data represented by Token. This handles 2293 /// advancing over escape sequences in the string. 2294 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok, 2295 unsigned ByteNo) const { 2296 // Get the spelling of the token. 2297 SmallString<32> SpellingBuffer; 2298 SpellingBuffer.resize(Tok.getLength()); 2299 2300 bool StringInvalid = false; 2301 const char *SpellingPtr = &SpellingBuffer[0]; 2302 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features, 2303 &StringInvalid); 2304 if (StringInvalid) 2305 return 0; 2306 2307 const char *SpellingStart = SpellingPtr; 2308 const char *SpellingEnd = SpellingPtr+TokLen; 2309 2310 // Handle UTF-8 strings just like narrow strings. 2311 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8') 2312 SpellingPtr += 2; 2313 2314 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && 2315 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"); 2316 2317 // For raw string literals, this is easy. 2318 if (SpellingPtr[0] == 'R') { 2319 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!"); 2320 // Skip 'R"'. 2321 SpellingPtr += 2; 2322 while (*SpellingPtr != '(') { 2323 ++SpellingPtr; 2324 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal"); 2325 } 2326 // Skip '('. 2327 ++SpellingPtr; 2328 return SpellingPtr - SpellingStart + ByteNo; 2329 } 2330 2331 // Skip over the leading quote 2332 assert(SpellingPtr[0] == '"' && "Should be a string literal!"); 2333 ++SpellingPtr; 2334 2335 // Skip over bytes until we find the offset we're looking for. 2336 while (ByteNo) { 2337 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!"); 2338 2339 // Step over non-escapes simply. 2340 if (*SpellingPtr != '\\') { 2341 ++SpellingPtr; 2342 --ByteNo; 2343 continue; 2344 } 2345 2346 // Otherwise, this is an escape character. Advance over it. 2347 bool HadError = false; 2348 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' || 2349 SpellingPtr[1] == 'N') { 2350 const char *EscapePtr = SpellingPtr; 2351 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd, 2352 1, Features, HadError); 2353 if (Len > ByteNo) { 2354 // ByteNo is somewhere within the escape sequence. 2355 SpellingPtr = EscapePtr; 2356 break; 2357 } 2358 ByteNo -= Len; 2359 } else { 2360 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError, 2361 FullSourceLoc(Tok.getLocation(), SM), CharByteWidth * 8, 2362 Diags, Features, StringLiteralEvalMethod::Evaluated); 2363 --ByteNo; 2364 } 2365 assert(!HadError && "This method isn't valid on erroneous strings"); 2366 } 2367 2368 return SpellingPtr-SpellingStart; 2369 } 2370 2371 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 2372 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 2373 /// treat it as an invalid suffix. 2374 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 2375 StringRef Suffix) { 2376 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) || 2377 Suffix == "sv"; 2378 } 2379