1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the NumericLiteralParser, CharLiteralParser, and 10 // StringLiteralParser interfaces. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Lex/LiteralSupport.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/LangOptions.h" 17 #include "clang/Basic/SourceLocation.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Lex/LexDiagnostic.h" 20 #include "clang/Lex/Lexer.h" 21 #include "clang/Lex/Preprocessor.h" 22 #include "clang/Lex/Token.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/ConvertUTF.h" 28 #include "llvm/Support/Error.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/Unicode.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cstddef> 34 #include <cstdint> 35 #include <cstring> 36 #include <string> 37 38 using namespace clang; 39 40 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) { 41 switch (kind) { 42 default: llvm_unreachable("Unknown token type!"); 43 case tok::char_constant: 44 case tok::string_literal: 45 case tok::utf8_char_constant: 46 case tok::utf8_string_literal: 47 return Target.getCharWidth(); 48 case tok::wide_char_constant: 49 case tok::wide_string_literal: 50 return Target.getWCharWidth(); 51 case tok::utf16_char_constant: 52 case tok::utf16_string_literal: 53 return Target.getChar16Width(); 54 case tok::utf32_char_constant: 55 case tok::utf32_string_literal: 56 return Target.getChar32Width(); 57 } 58 } 59 60 static unsigned getEncodingPrefixLen(tok::TokenKind kind) { 61 switch (kind) { 62 default: 63 llvm_unreachable("Unknown token type!"); 64 case tok::char_constant: 65 case tok::string_literal: 66 return 0; 67 case tok::utf8_char_constant: 68 case tok::utf8_string_literal: 69 return 2; 70 case tok::wide_char_constant: 71 case tok::wide_string_literal: 72 case tok::utf16_char_constant: 73 case tok::utf16_string_literal: 74 case tok::utf32_char_constant: 75 case tok::utf32_string_literal: 76 return 1; 77 } 78 } 79 80 static CharSourceRange MakeCharSourceRange(const LangOptions &Features, 81 FullSourceLoc TokLoc, 82 const char *TokBegin, 83 const char *TokRangeBegin, 84 const char *TokRangeEnd) { 85 SourceLocation Begin = 86 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 87 TokLoc.getManager(), Features); 88 SourceLocation End = 89 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin, 90 TokLoc.getManager(), Features); 91 return CharSourceRange::getCharRange(Begin, End); 92 } 93 94 /// Produce a diagnostic highlighting some portion of a literal. 95 /// 96 /// Emits the diagnostic \p DiagID, highlighting the range of characters from 97 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be 98 /// a substring of a spelling buffer for the token beginning at \p TokBegin. 99 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, 100 const LangOptions &Features, FullSourceLoc TokLoc, 101 const char *TokBegin, const char *TokRangeBegin, 102 const char *TokRangeEnd, unsigned DiagID) { 103 SourceLocation Begin = 104 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 105 TokLoc.getManager(), Features); 106 return Diags->Report(Begin, DiagID) << 107 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd); 108 } 109 110 static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape) { 111 switch (Escape) { 112 case '\'': 113 case '"': 114 case '?': 115 case '\\': 116 case 'a': 117 case 'b': 118 case 'f': 119 case 'n': 120 case 'r': 121 case 't': 122 case 'v': 123 return true; 124 } 125 return false; 126 } 127 128 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in 129 /// either a character or a string literal. 130 static unsigned ProcessCharEscape(const char *ThisTokBegin, 131 const char *&ThisTokBuf, 132 const char *ThisTokEnd, bool &HadError, 133 FullSourceLoc Loc, unsigned CharWidth, 134 DiagnosticsEngine *Diags, 135 const LangOptions &Features, 136 StringLiteralEvalMethod EvalMethod) { 137 const char *EscapeBegin = ThisTokBuf; 138 bool Delimited = false; 139 bool EndDelimiterFound = false; 140 141 // Skip the '\' char. 142 ++ThisTokBuf; 143 144 // We know that this character can't be off the end of the buffer, because 145 // that would have been \", which would not have been the end of string. 146 unsigned ResultChar = *ThisTokBuf++; 147 char Escape = ResultChar; 148 switch (ResultChar) { 149 // These map to themselves. 150 case '\\': case '\'': case '"': case '?': break; 151 152 // These have fixed mappings. 153 case 'a': 154 // TODO: K&R: the meaning of '\\a' is different in traditional C 155 ResultChar = 7; 156 break; 157 case 'b': 158 ResultChar = 8; 159 break; 160 case 'e': 161 if (Diags) 162 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 163 diag::ext_nonstandard_escape) << "e"; 164 ResultChar = 27; 165 break; 166 case 'E': 167 if (Diags) 168 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 169 diag::ext_nonstandard_escape) << "E"; 170 ResultChar = 27; 171 break; 172 case 'f': 173 ResultChar = 12; 174 break; 175 case 'n': 176 ResultChar = 10; 177 break; 178 case 'r': 179 ResultChar = 13; 180 break; 181 case 't': 182 ResultChar = 9; 183 break; 184 case 'v': 185 ResultChar = 11; 186 break; 187 case 'x': { // Hex escape. 188 ResultChar = 0; 189 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 190 Delimited = true; 191 ThisTokBuf++; 192 if (*ThisTokBuf == '}') { 193 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 194 diag::err_delimited_escape_empty); 195 return ResultChar; 196 } 197 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 198 if (Diags) 199 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 200 diag::err_hex_escape_no_digits) << "x"; 201 return ResultChar; 202 } 203 204 // Hex escapes are a maximal series of hex digits. 205 bool Overflow = false; 206 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) { 207 if (Delimited && *ThisTokBuf == '}') { 208 ThisTokBuf++; 209 EndDelimiterFound = true; 210 break; 211 } 212 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 213 if (CharVal == -1) { 214 // Non delimited hex escape sequences stop at the first non-hex digit. 215 if (!Delimited) 216 break; 217 HadError = true; 218 if (Diags) 219 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 220 diag::err_delimited_escape_invalid) 221 << StringRef(ThisTokBuf, 1); 222 continue; 223 } 224 // About to shift out a digit? 225 if (ResultChar & 0xF0000000) 226 Overflow = true; 227 ResultChar <<= 4; 228 ResultChar |= CharVal; 229 } 230 // See if any bits will be truncated when evaluated as a character. 231 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 232 Overflow = true; 233 ResultChar &= ~0U >> (32-CharWidth); 234 } 235 236 // Check for overflow. 237 if (!HadError && Overflow) { // Too many digits to fit in 238 HadError = true; 239 if (Diags) 240 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 241 diag::err_escape_too_large) 242 << 0; 243 } 244 break; 245 } 246 case '0': case '1': case '2': case '3': 247 case '4': case '5': case '6': case '7': { 248 // Octal escapes. 249 --ThisTokBuf; 250 ResultChar = 0; 251 252 // Octal escapes are a series of octal digits with maximum length 3. 253 // "\0123" is a two digit sequence equal to "\012" "3". 254 unsigned NumDigits = 0; 255 do { 256 ResultChar <<= 3; 257 ResultChar |= *ThisTokBuf++ - '0'; 258 ++NumDigits; 259 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 && 260 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7'); 261 262 // Check for overflow. Reject '\777', but not L'\777'. 263 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 264 if (Diags) 265 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 266 diag::err_escape_too_large) << 1; 267 ResultChar &= ~0U >> (32-CharWidth); 268 } 269 break; 270 } 271 case 'o': { 272 bool Overflow = false; 273 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { 274 HadError = true; 275 if (Diags) 276 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 277 diag::err_delimited_escape_missing_brace) 278 << "o"; 279 280 break; 281 } 282 ResultChar = 0; 283 Delimited = true; 284 ++ThisTokBuf; 285 if (*ThisTokBuf == '}') { 286 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 287 diag::err_delimited_escape_empty); 288 return ResultChar; 289 } 290 291 while (ThisTokBuf != ThisTokEnd) { 292 if (*ThisTokBuf == '}') { 293 EndDelimiterFound = true; 294 ThisTokBuf++; 295 break; 296 } 297 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') { 298 HadError = true; 299 if (Diags) 300 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 301 diag::err_delimited_escape_invalid) 302 << StringRef(ThisTokBuf, 1); 303 ThisTokBuf++; 304 continue; 305 } 306 // Check if one of the top three bits is set before shifting them out. 307 if (ResultChar & 0xE0000000) 308 Overflow = true; 309 310 ResultChar <<= 3; 311 ResultChar |= *ThisTokBuf++ - '0'; 312 } 313 // Check for overflow. Reject '\777', but not L'\777'. 314 if (!HadError && 315 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) { 316 HadError = true; 317 if (Diags) 318 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 319 diag::err_escape_too_large) 320 << 1; 321 ResultChar &= ~0U >> (32 - CharWidth); 322 } 323 break; 324 } 325 // Otherwise, these are not valid escapes. 326 case '(': case '{': case '[': case '%': 327 // GCC accepts these as extensions. We warn about them as such though. 328 if (Diags) 329 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 330 diag::ext_nonstandard_escape) 331 << std::string(1, ResultChar); 332 break; 333 default: 334 if (!Diags) 335 break; 336 337 if (isPrintable(ResultChar)) 338 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 339 diag::ext_unknown_escape) 340 << std::string(1, ResultChar); 341 else 342 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 343 diag::ext_unknown_escape) 344 << "x" + llvm::utohexstr(ResultChar); 345 break; 346 } 347 348 if (Delimited && Diags) { 349 if (!EndDelimiterFound) 350 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 351 diag::err_expected) 352 << tok::r_brace; 353 else if (!HadError) { 354 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 355 Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence 356 : diag::ext_delimited_escape_sequence) 357 << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0); 358 } 359 } 360 361 if (EvalMethod == StringLiteralEvalMethod::Unevaluated && 362 !IsEscapeValidInUnevaluatedStringLiteral(Escape)) { 363 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 364 diag::err_unevaluated_string_invalid_escape_sequence) 365 << StringRef(EscapeBegin, ThisTokBuf - EscapeBegin); 366 HadError = true; 367 } 368 369 return ResultChar; 370 } 371 372 static void appendCodePoint(unsigned Codepoint, 373 llvm::SmallVectorImpl<char> &Str) { 374 char ResultBuf[4]; 375 char *ResultPtr = ResultBuf; 376 if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr)) 377 Str.append(ResultBuf, ResultPtr); 378 } 379 380 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) { 381 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) { 382 if (*I != '\\') { 383 Buf.push_back(*I); 384 continue; 385 } 386 387 ++I; 388 char Kind = *I; 389 ++I; 390 391 assert(Kind == 'u' || Kind == 'U' || Kind == 'N'); 392 uint32_t CodePoint = 0; 393 394 if (Kind == 'u' && *I == '{') { 395 for (++I; *I != '}'; ++I) { 396 unsigned Value = llvm::hexDigitValue(*I); 397 assert(Value != -1U); 398 CodePoint <<= 4; 399 CodePoint += Value; 400 } 401 appendCodePoint(CodePoint, Buf); 402 continue; 403 } 404 405 if (Kind == 'N') { 406 assert(*I == '{'); 407 ++I; 408 auto Delim = std::find(I, Input.end(), '}'); 409 assert(Delim != Input.end()); 410 StringRef Name(I, std::distance(I, Delim)); 411 std::optional<llvm::sys::unicode::LooseMatchingResult> Res = 412 llvm::sys::unicode::nameToCodepointLooseMatching(Name); 413 assert(Res && "could not find a codepoint that was previously found"); 414 CodePoint = Res->CodePoint; 415 assert(CodePoint != 0xFFFFFFFF); 416 appendCodePoint(CodePoint, Buf); 417 I = Delim; 418 continue; 419 } 420 421 unsigned NumHexDigits; 422 if (Kind == 'u') 423 NumHexDigits = 4; 424 else 425 NumHexDigits = 8; 426 427 assert(I + NumHexDigits <= E); 428 429 for (; NumHexDigits != 0; ++I, --NumHexDigits) { 430 unsigned Value = llvm::hexDigitValue(*I); 431 assert(Value != -1U); 432 433 CodePoint <<= 4; 434 CodePoint += Value; 435 } 436 437 appendCodePoint(CodePoint, Buf); 438 --I; 439 } 440 } 441 442 bool clang::isFunctionLocalStringLiteralMacro(tok::TokenKind K, 443 const LangOptions &LO) { 444 return LO.MicrosoftExt && 445 (K == tok::kw___FUNCTION__ || K == tok::kw_L__FUNCTION__ || 446 K == tok::kw___FUNCSIG__ || K == tok::kw_L__FUNCSIG__ || 447 K == tok::kw___FUNCDNAME__); 448 } 449 450 bool clang::tokenIsLikeStringLiteral(const Token &Tok, const LangOptions &LO) { 451 return tok::isStringLiteral(Tok.getKind()) || 452 isFunctionLocalStringLiteralMacro(Tok.getKind(), LO); 453 } 454 455 static bool ProcessNumericUCNEscape(const char *ThisTokBegin, 456 const char *&ThisTokBuf, 457 const char *ThisTokEnd, uint32_t &UcnVal, 458 unsigned short &UcnLen, bool &Delimited, 459 FullSourceLoc Loc, DiagnosticsEngine *Diags, 460 const LangOptions &Features, 461 bool in_char_string_literal = false) { 462 const char *UcnBegin = ThisTokBuf; 463 bool HasError = false; 464 bool EndDelimiterFound = false; 465 466 // Skip the '\u' char's. 467 ThisTokBuf += 2; 468 Delimited = false; 469 if (UcnBegin[1] == 'u' && in_char_string_literal && 470 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 471 Delimited = true; 472 ThisTokBuf++; 473 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 474 if (Diags) 475 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 476 diag::err_hex_escape_no_digits) 477 << StringRef(&ThisTokBuf[-1], 1); 478 return false; 479 } 480 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8); 481 482 bool Overflow = false; 483 unsigned short Count = 0; 484 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen); 485 ++ThisTokBuf) { 486 if (Delimited && *ThisTokBuf == '}') { 487 ++ThisTokBuf; 488 EndDelimiterFound = true; 489 break; 490 } 491 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 492 if (CharVal == -1) { 493 HasError = true; 494 if (!Delimited) 495 break; 496 if (Diags) { 497 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 498 diag::err_delimited_escape_invalid) 499 << StringRef(ThisTokBuf, 1); 500 } 501 Count++; 502 continue; 503 } 504 if (UcnVal & 0xF0000000) { 505 Overflow = true; 506 continue; 507 } 508 UcnVal <<= 4; 509 UcnVal |= CharVal; 510 Count++; 511 } 512 513 if (Overflow) { 514 if (Diags) 515 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 516 diag::err_escape_too_large) 517 << 0; 518 return false; 519 } 520 521 if (Delimited && !EndDelimiterFound) { 522 if (Diags) { 523 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 524 diag::err_expected) 525 << tok::r_brace; 526 } 527 return false; 528 } 529 530 // If we didn't consume the proper number of digits, there is a problem. 531 if (Count == 0 || (!Delimited && Count != UcnLen)) { 532 if (Diags) 533 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 534 Delimited ? diag::err_delimited_escape_empty 535 : diag::err_ucn_escape_incomplete); 536 return false; 537 } 538 return !HasError; 539 } 540 541 static void DiagnoseInvalidUnicodeCharacterName( 542 DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc, 543 const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, 544 llvm::StringRef Name) { 545 546 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 547 diag::err_invalid_ucn_name) 548 << Name; 549 550 namespace u = llvm::sys::unicode; 551 552 std::optional<u::LooseMatchingResult> Res = 553 u::nameToCodepointLooseMatching(Name); 554 if (Res) { 555 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 556 diag::note_invalid_ucn_name_loose_matching) 557 << FixItHint::CreateReplacement( 558 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin, 559 TokRangeEnd), 560 Res->Name); 561 return; 562 } 563 564 unsigned Distance = 0; 565 SmallVector<u::MatchForCodepointName> Matches = 566 u::nearestMatchesForCodepointName(Name, 5); 567 assert(!Matches.empty() && "No unicode characters found"); 568 569 for (const auto &Match : Matches) { 570 if (Distance == 0) 571 Distance = Match.Distance; 572 if (std::max(Distance, Match.Distance) - 573 std::min(Distance, Match.Distance) > 574 3) 575 break; 576 Distance = Match.Distance; 577 578 std::string Str; 579 llvm::UTF32 V = Match.Value; 580 bool Converted = 581 llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str); 582 (void)Converted; 583 assert(Converted && "Found a match wich is not a unicode character"); 584 585 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 586 diag::note_invalid_ucn_name_candidate) 587 << Match.Name << llvm::utohexstr(Match.Value) 588 << Str // FIXME: Fix the rendering of non printable characters 589 << FixItHint::CreateReplacement( 590 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin, 591 TokRangeEnd), 592 Match.Name); 593 } 594 } 595 596 static bool ProcessNamedUCNEscape(const char *ThisTokBegin, 597 const char *&ThisTokBuf, 598 const char *ThisTokEnd, uint32_t &UcnVal, 599 unsigned short &UcnLen, FullSourceLoc Loc, 600 DiagnosticsEngine *Diags, 601 const LangOptions &Features) { 602 const char *UcnBegin = ThisTokBuf; 603 assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N'); 604 ThisTokBuf += 2; 605 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { 606 if (Diags) { 607 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 608 diag::err_delimited_escape_missing_brace) 609 << StringRef(&ThisTokBuf[-1], 1); 610 } 611 return false; 612 } 613 ThisTokBuf++; 614 const char *ClosingBrace = std::find_if(ThisTokBuf, ThisTokEnd, [](char C) { 615 return C == '}' || isVerticalWhitespace(C); 616 }); 617 bool Incomplete = ClosingBrace == ThisTokEnd; 618 bool Empty = ClosingBrace == ThisTokBuf; 619 if (Incomplete || Empty) { 620 if (Diags) { 621 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 622 Incomplete ? diag::err_ucn_escape_incomplete 623 : diag::err_delimited_escape_empty) 624 << StringRef(&UcnBegin[1], 1); 625 } 626 ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1; 627 return false; 628 } 629 StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf); 630 ThisTokBuf = ClosingBrace + 1; 631 std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name); 632 if (!Res) { 633 if (Diags) 634 DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin, 635 &UcnBegin[3], ClosingBrace, Name); 636 return false; 637 } 638 UcnVal = *Res; 639 UcnLen = UcnVal > 0xFFFF ? 8 : 4; 640 return true; 641 } 642 643 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and 644 /// return the UTF32. 645 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 646 const char *ThisTokEnd, uint32_t &UcnVal, 647 unsigned short &UcnLen, FullSourceLoc Loc, 648 DiagnosticsEngine *Diags, 649 const LangOptions &Features, 650 bool in_char_string_literal = false) { 651 652 bool HasError; 653 const char *UcnBegin = ThisTokBuf; 654 bool IsDelimitedEscapeSequence = false; 655 bool IsNamedEscapeSequence = false; 656 if (ThisTokBuf[1] == 'N') { 657 IsNamedEscapeSequence = true; 658 HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, 659 UcnVal, UcnLen, Loc, Diags, Features); 660 } else { 661 HasError = 662 !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, 663 UcnLen, IsDelimitedEscapeSequence, Loc, Diags, 664 Features, in_char_string_literal); 665 } 666 if (HasError) 667 return false; 668 669 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2] 670 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints 671 UcnVal > 0x10FFFF) { // maximum legal UTF32 value 672 if (Diags) 673 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 674 diag::err_ucn_escape_invalid); 675 return false; 676 } 677 678 // C23 and C++11 allow UCNs that refer to control characters 679 // and basic source characters inside character and string literals 680 if (UcnVal < 0xa0 && 681 // $, @, ` are allowed in all language modes 682 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { 683 bool IsError = 684 (!(Features.CPlusPlus11 || Features.C23) || !in_char_string_literal); 685 if (Diags) { 686 char BasicSCSChar = UcnVal; 687 if (UcnVal >= 0x20 && UcnVal < 0x7f) 688 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 689 IsError ? diag::err_ucn_escape_basic_scs 690 : Features.CPlusPlus 691 ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs 692 : diag::warn_c23_compat_literal_ucn_escape_basic_scs) 693 << StringRef(&BasicSCSChar, 1); 694 else 695 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 696 IsError ? diag::err_ucn_control_character 697 : Features.CPlusPlus 698 ? diag::warn_cxx98_compat_literal_ucn_control_character 699 : diag::warn_c23_compat_literal_ucn_control_character); 700 } 701 if (IsError) 702 return false; 703 } 704 705 if (!Features.CPlusPlus && !Features.C99 && Diags) 706 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 707 diag::warn_ucn_not_valid_in_c89_literal); 708 709 if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags) 710 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 711 Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence 712 : diag::ext_delimited_escape_sequence) 713 << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0); 714 715 return true; 716 } 717 718 /// MeasureUCNEscape - Determine the number of bytes within the resulting string 719 /// which this UCN will occupy. 720 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 721 const char *ThisTokEnd, unsigned CharByteWidth, 722 const LangOptions &Features, bool &HadError) { 723 // UTF-32: 4 bytes per escape. 724 if (CharByteWidth == 4) 725 return 4; 726 727 uint32_t UcnVal = 0; 728 unsigned short UcnLen = 0; 729 FullSourceLoc Loc; 730 731 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, 732 UcnLen, Loc, nullptr, Features, true)) { 733 HadError = true; 734 return 0; 735 } 736 737 // UTF-16: 2 bytes for BMP, 4 bytes otherwise. 738 if (CharByteWidth == 2) 739 return UcnVal <= 0xFFFF ? 2 : 4; 740 741 // UTF-8. 742 if (UcnVal < 0x80) 743 return 1; 744 if (UcnVal < 0x800) 745 return 2; 746 if (UcnVal < 0x10000) 747 return 3; 748 return 4; 749 } 750 751 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and 752 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of 753 /// StringLiteralParser. When we decide to implement UCN's for identifiers, 754 /// we will likely rework our support for UCN's. 755 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 756 const char *ThisTokEnd, 757 char *&ResultBuf, bool &HadError, 758 FullSourceLoc Loc, unsigned CharByteWidth, 759 DiagnosticsEngine *Diags, 760 const LangOptions &Features) { 761 typedef uint32_t UTF32; 762 UTF32 UcnVal = 0; 763 unsigned short UcnLen = 0; 764 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, 765 Loc, Diags, Features, true)) { 766 HadError = true; 767 return; 768 } 769 770 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 771 "only character widths of 1, 2, or 4 bytes supported"); 772 773 (void)UcnLen; 774 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported"); 775 776 if (CharByteWidth == 4) { 777 // FIXME: Make the type of the result buffer correct instead of 778 // using reinterpret_cast. 779 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf); 780 *ResultPtr = UcnVal; 781 ResultBuf += 4; 782 return; 783 } 784 785 if (CharByteWidth == 2) { 786 // FIXME: Make the type of the result buffer correct instead of 787 // using reinterpret_cast. 788 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf); 789 790 if (UcnVal <= (UTF32)0xFFFF) { 791 *ResultPtr = UcnVal; 792 ResultBuf += 2; 793 return; 794 } 795 796 // Convert to UTF16. 797 UcnVal -= 0x10000; 798 *ResultPtr = 0xD800 + (UcnVal >> 10); 799 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF); 800 ResultBuf += 4; 801 return; 802 } 803 804 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters"); 805 806 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8. 807 // The conversion below was inspired by: 808 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c 809 // First, we determine how many bytes the result will require. 810 typedef uint8_t UTF8; 811 812 unsigned short bytesToWrite = 0; 813 if (UcnVal < (UTF32)0x80) 814 bytesToWrite = 1; 815 else if (UcnVal < (UTF32)0x800) 816 bytesToWrite = 2; 817 else if (UcnVal < (UTF32)0x10000) 818 bytesToWrite = 3; 819 else 820 bytesToWrite = 4; 821 822 const unsigned byteMask = 0xBF; 823 const unsigned byteMark = 0x80; 824 825 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed 826 // into the first byte, depending on how many bytes follow. 827 static const UTF8 firstByteMark[5] = { 828 0x00, 0x00, 0xC0, 0xE0, 0xF0 829 }; 830 // Finally, we write the bytes into ResultBuf. 831 ResultBuf += bytesToWrite; 832 switch (bytesToWrite) { // note: everything falls through. 833 case 4: 834 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 835 [[fallthrough]]; 836 case 3: 837 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 838 [[fallthrough]]; 839 case 2: 840 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 841 [[fallthrough]]; 842 case 1: 843 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]); 844 } 845 // Update the buffer. 846 ResultBuf += bytesToWrite; 847 } 848 849 /// integer-constant: [C99 6.4.4.1] 850 /// decimal-constant integer-suffix 851 /// octal-constant integer-suffix 852 /// hexadecimal-constant integer-suffix 853 /// binary-literal integer-suffix [GNU, C++1y] 854 /// user-defined-integer-literal: [C++11 lex.ext] 855 /// decimal-literal ud-suffix 856 /// octal-literal ud-suffix 857 /// hexadecimal-literal ud-suffix 858 /// binary-literal ud-suffix [GNU, C++1y] 859 /// decimal-constant: 860 /// nonzero-digit 861 /// decimal-constant digit 862 /// octal-constant: 863 /// 0 864 /// octal-constant octal-digit 865 /// hexadecimal-constant: 866 /// hexadecimal-prefix hexadecimal-digit 867 /// hexadecimal-constant hexadecimal-digit 868 /// hexadecimal-prefix: one of 869 /// 0x 0X 870 /// binary-literal: 871 /// 0b binary-digit 872 /// 0B binary-digit 873 /// binary-literal binary-digit 874 /// integer-suffix: 875 /// unsigned-suffix [long-suffix] 876 /// unsigned-suffix [long-long-suffix] 877 /// long-suffix [unsigned-suffix] 878 /// long-long-suffix [unsigned-sufix] 879 /// nonzero-digit: 880 /// 1 2 3 4 5 6 7 8 9 881 /// octal-digit: 882 /// 0 1 2 3 4 5 6 7 883 /// hexadecimal-digit: 884 /// 0 1 2 3 4 5 6 7 8 9 885 /// a b c d e f 886 /// A B C D E F 887 /// binary-digit: 888 /// 0 889 /// 1 890 /// unsigned-suffix: one of 891 /// u U 892 /// long-suffix: one of 893 /// l L 894 /// long-long-suffix: one of 895 /// ll LL 896 /// 897 /// floating-constant: [C99 6.4.4.2] 898 /// TODO: add rules... 899 /// 900 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling, 901 SourceLocation TokLoc, 902 const SourceManager &SM, 903 const LangOptions &LangOpts, 904 const TargetInfo &Target, 905 DiagnosticsEngine &Diags) 906 : SM(SM), LangOpts(LangOpts), Diags(Diags), 907 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) { 908 909 s = DigitsBegin = ThisTokBegin; 910 saw_exponent = false; 911 saw_period = false; 912 saw_ud_suffix = false; 913 saw_fixed_point_suffix = false; 914 isLong = false; 915 isUnsigned = false; 916 isLongLong = false; 917 isSizeT = false; 918 isHalf = false; 919 isFloat = false; 920 isImaginary = false; 921 isFloat16 = false; 922 isFloat128 = false; 923 MicrosoftInteger = 0; 924 isFract = false; 925 isAccum = false; 926 hadError = false; 927 isBitInt = false; 928 929 // This routine assumes that the range begin/end matches the regex for integer 930 // and FP constants (specifically, the 'pp-number' regex), and assumes that 931 // the byte at "*end" is both valid and not part of the regex. Because of 932 // this, it doesn't have to check for 'overscan' in various places. 933 // Note: For HLSL, the end token is allowed to be '.' which would be in the 934 // 'pp-number' regex. This is required to support vector swizzles on numeric 935 // constants (i.e. 1.xx or 1.5f.rrr). 936 if (isPreprocessingNumberBody(*ThisTokEnd) && 937 !(LangOpts.HLSL && *ThisTokEnd == '.')) { 938 Diags.Report(TokLoc, diag::err_lexing_numeric); 939 hadError = true; 940 return; 941 } 942 943 if (*s == '0') { // parse radix 944 ParseNumberStartingWithZero(TokLoc); 945 if (hadError) 946 return; 947 } else { // the first digit is non-zero 948 radix = 10; 949 s = SkipDigits(s); 950 if (s == ThisTokEnd) { 951 // Done. 952 } else { 953 ParseDecimalOrOctalCommon(TokLoc); 954 if (hadError) 955 return; 956 } 957 } 958 959 SuffixBegin = s; 960 checkSeparator(TokLoc, s, CSK_AfterDigits); 961 962 // Initial scan to lookahead for fixed point suffix. 963 if (LangOpts.FixedPoint) { 964 for (const char *c = s; c != ThisTokEnd; ++c) { 965 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') { 966 saw_fixed_point_suffix = true; 967 break; 968 } 969 } 970 } 971 972 // Parse the suffix. At this point we can classify whether we have an FP or 973 // integer constant. 974 bool isFixedPointConstant = isFixedPointLiteral(); 975 bool isFPConstant = isFloatingLiteral(); 976 bool HasSize = false; 977 bool DoubleUnderscore = false; 978 979 // Loop over all of the characters of the suffix. If we see something bad, 980 // we break out of the loop. 981 for (; s != ThisTokEnd; ++s) { 982 switch (*s) { 983 case 'R': 984 case 'r': 985 if (!LangOpts.FixedPoint) 986 break; 987 if (isFract || isAccum) break; 988 if (!(saw_period || saw_exponent)) break; 989 isFract = true; 990 continue; 991 case 'K': 992 case 'k': 993 if (!LangOpts.FixedPoint) 994 break; 995 if (isFract || isAccum) break; 996 if (!(saw_period || saw_exponent)) break; 997 isAccum = true; 998 continue; 999 case 'h': // FP Suffix for "half". 1000 case 'H': 1001 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type. 1002 if (!(LangOpts.Half || LangOpts.FixedPoint)) 1003 break; 1004 if (isIntegerLiteral()) break; // Error for integer constant. 1005 if (HasSize) 1006 break; 1007 HasSize = true; 1008 isHalf = true; 1009 continue; // Success. 1010 case 'f': // FP Suffix for "float" 1011 case 'F': 1012 if (!isFPConstant) break; // Error for integer constant. 1013 if (HasSize) 1014 break; 1015 HasSize = true; 1016 1017 // CUDA host and device may have different _Float16 support, therefore 1018 // allows f16 literals to avoid false alarm. 1019 // When we compile for OpenMP target offloading on NVPTX, f16 suffix 1020 // should also be supported. 1021 // ToDo: more precise check for CUDA. 1022 // TODO: AMDGPU might also support it in the future. 1023 if ((Target.hasFloat16Type() || LangOpts.CUDA || 1024 (LangOpts.OpenMPIsTargetDevice && Target.getTriple().isNVPTX())) && 1025 s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') { 1026 s += 2; // success, eat up 2 characters. 1027 isFloat16 = true; 1028 continue; 1029 } 1030 1031 isFloat = true; 1032 continue; // Success. 1033 case 'q': // FP Suffix for "__float128" 1034 case 'Q': 1035 if (!isFPConstant) break; // Error for integer constant. 1036 if (HasSize) 1037 break; 1038 HasSize = true; 1039 isFloat128 = true; 1040 continue; // Success. 1041 case 'u': 1042 case 'U': 1043 if (isFPConstant) break; // Error for floating constant. 1044 if (isUnsigned) break; // Cannot be repeated. 1045 isUnsigned = true; 1046 continue; // Success. 1047 case 'l': 1048 case 'L': 1049 if (HasSize) 1050 break; 1051 HasSize = true; 1052 1053 // Check for long long. The L's need to be adjacent and the same case. 1054 if (s[1] == s[0]) { 1055 assert(s + 1 < ThisTokEnd && "didn't maximally munch?"); 1056 if (isFPConstant) break; // long long invalid for floats. 1057 isLongLong = true; 1058 ++s; // Eat both of them. 1059 } else { 1060 isLong = true; 1061 } 1062 continue; // Success. 1063 case 'z': 1064 case 'Z': 1065 if (isFPConstant) 1066 break; // Invalid for floats. 1067 if (HasSize) 1068 break; 1069 HasSize = true; 1070 isSizeT = true; 1071 continue; 1072 case 'i': 1073 case 'I': 1074 if (LangOpts.MicrosoftExt && !isFPConstant) { 1075 // Allow i8, i16, i32, and i64. First, look ahead and check if 1076 // suffixes are Microsoft integers and not the imaginary unit. 1077 uint8_t Bits = 0; 1078 size_t ToSkip = 0; 1079 switch (s[1]) { 1080 case '8': // i8 suffix 1081 Bits = 8; 1082 ToSkip = 2; 1083 break; 1084 case '1': 1085 if (s[2] == '6') { // i16 suffix 1086 Bits = 16; 1087 ToSkip = 3; 1088 } 1089 break; 1090 case '3': 1091 if (s[2] == '2') { // i32 suffix 1092 Bits = 32; 1093 ToSkip = 3; 1094 } 1095 break; 1096 case '6': 1097 if (s[2] == '4') { // i64 suffix 1098 Bits = 64; 1099 ToSkip = 3; 1100 } 1101 break; 1102 default: 1103 break; 1104 } 1105 if (Bits) { 1106 if (HasSize) 1107 break; 1108 HasSize = true; 1109 MicrosoftInteger = Bits; 1110 s += ToSkip; 1111 assert(s <= ThisTokEnd && "didn't maximally munch?"); 1112 break; 1113 } 1114 } 1115 [[fallthrough]]; 1116 case 'j': 1117 case 'J': 1118 if (isImaginary) break; // Cannot be repeated. 1119 isImaginary = true; 1120 continue; // Success. 1121 case '_': 1122 if (isFPConstant) 1123 break; // Invalid for floats 1124 if (HasSize) 1125 break; 1126 // There is currently no way to reach this with DoubleUnderscore set. 1127 // If new double underscope literals are added handle it here as above. 1128 assert(!DoubleUnderscore && "unhandled double underscore case"); 1129 if (LangOpts.CPlusPlus && s + 2 < ThisTokEnd && 1130 s[1] == '_') { // s + 2 < ThisTokEnd to ensure some character exists 1131 // after __ 1132 DoubleUnderscore = true; 1133 s += 2; // Skip both '_' 1134 if (s + 1 < ThisTokEnd && 1135 (*s == 'u' || *s == 'U')) { // Ensure some character after 'u'/'U' 1136 isUnsigned = true; 1137 ++s; 1138 } 1139 if (s + 1 < ThisTokEnd && 1140 ((*s == 'w' && *(++s) == 'b') || (*s == 'W' && *(++s) == 'B'))) { 1141 isBitInt = true; 1142 HasSize = true; 1143 continue; 1144 } 1145 } 1146 break; 1147 case 'w': 1148 case 'W': 1149 if (isFPConstant) 1150 break; // Invalid for floats. 1151 if (HasSize) 1152 break; // Invalid if we already have a size for the literal. 1153 1154 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We 1155 // explicitly do not support the suffix in C++ as an extension because a 1156 // library-based UDL that resolves to a library type may be more 1157 // appropriate there. The same rules apply for __wb/__WB. 1158 if ((!LangOpts.CPlusPlus || DoubleUnderscore) && s + 1 < ThisTokEnd && 1159 ((s[0] == 'w' && s[1] == 'b') || (s[0] == 'W' && s[1] == 'B'))) { 1160 isBitInt = true; 1161 HasSize = true; 1162 ++s; // Skip both characters (2nd char skipped on continue). 1163 continue; // Success. 1164 } 1165 } 1166 // If we reached here, there was an error or a ud-suffix. 1167 break; 1168 } 1169 1170 // "i", "if", and "il" are user-defined suffixes in C++1y. 1171 if (s != ThisTokEnd || isImaginary) { 1172 // FIXME: Don't bother expanding UCNs if !tok.hasUCN(). 1173 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)); 1174 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) { 1175 if (!isImaginary) { 1176 // Any suffix pieces we might have parsed are actually part of the 1177 // ud-suffix. 1178 isLong = false; 1179 isUnsigned = false; 1180 isLongLong = false; 1181 isSizeT = false; 1182 isFloat = false; 1183 isFloat16 = false; 1184 isHalf = false; 1185 isImaginary = false; 1186 isBitInt = false; 1187 MicrosoftInteger = 0; 1188 saw_fixed_point_suffix = false; 1189 isFract = false; 1190 isAccum = false; 1191 } 1192 1193 saw_ud_suffix = true; 1194 return; 1195 } 1196 1197 if (s != ThisTokEnd) { 1198 // Report an error if there are any. 1199 Diags.Report(Lexer::AdvanceToTokenCharacter( 1200 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts), 1201 diag::err_invalid_suffix_constant) 1202 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) 1203 << (isFixedPointConstant ? 2 : isFPConstant); 1204 hadError = true; 1205 } 1206 } 1207 1208 if (!hadError && saw_fixed_point_suffix) { 1209 assert(isFract || isAccum); 1210 } 1211 } 1212 1213 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal 1214 /// numbers. It issues an error for illegal digits, and handles floating point 1215 /// parsing. If it detects a floating point number, the radix is set to 10. 1216 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){ 1217 assert((radix == 8 || radix == 10) && "Unexpected radix"); 1218 1219 // If we have a hex digit other than 'e' (which denotes a FP exponent) then 1220 // the code is using an incorrect base. 1221 if (isHexDigit(*s) && *s != 'e' && *s != 'E' && 1222 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 1223 Diags.Report( 1224 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts), 1225 diag::err_invalid_digit) 1226 << StringRef(s, 1) << (radix == 8 ? 1 : 0); 1227 hadError = true; 1228 return; 1229 } 1230 1231 if (*s == '.') { 1232 checkSeparator(TokLoc, s, CSK_AfterDigits); 1233 s++; 1234 radix = 10; 1235 saw_period = true; 1236 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1237 s = SkipDigits(s); // Skip suffix. 1238 } 1239 if (*s == 'e' || *s == 'E') { // exponent 1240 checkSeparator(TokLoc, s, CSK_AfterDigits); 1241 const char *Exponent = s; 1242 s++; 1243 radix = 10; 1244 saw_exponent = true; 1245 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 1246 const char *first_non_digit = SkipDigits(s); 1247 if (containsDigits(s, first_non_digit)) { 1248 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1249 s = first_non_digit; 1250 } else { 1251 if (!hadError) { 1252 Diags.Report(Lexer::AdvanceToTokenCharacter( 1253 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1254 diag::err_exponent_has_no_digits); 1255 hadError = true; 1256 } 1257 return; 1258 } 1259 } 1260 } 1261 1262 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 1263 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 1264 /// treat it as an invalid suffix. 1265 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 1266 StringRef Suffix) { 1267 if (!LangOpts.CPlusPlus11 || Suffix.empty()) 1268 return false; 1269 1270 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid. 1271 // Suffixes starting with '__' (double underscore) are for use by 1272 // the implementation. 1273 if (Suffix.starts_with("_") && !Suffix.starts_with("__")) 1274 return true; 1275 1276 // In C++11, there are no library suffixes. 1277 if (!LangOpts.CPlusPlus14) 1278 return false; 1279 1280 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library. 1281 // Per tweaked N3660, "il", "i", and "if" are also used in the library. 1282 // In C++2a "d" and "y" are used in the library. 1283 return llvm::StringSwitch<bool>(Suffix) 1284 .Cases("h", "min", "s", true) 1285 .Cases("ms", "us", "ns", true) 1286 .Cases("il", "i", "if", true) 1287 .Cases("d", "y", LangOpts.CPlusPlus20) 1288 .Default(false); 1289 } 1290 1291 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc, 1292 const char *Pos, 1293 CheckSeparatorKind IsAfterDigits) { 1294 if (IsAfterDigits == CSK_AfterDigits) { 1295 if (Pos == ThisTokBegin) 1296 return; 1297 --Pos; 1298 } else if (Pos == ThisTokEnd) 1299 return; 1300 1301 if (isDigitSeparator(*Pos)) { 1302 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM, 1303 LangOpts), 1304 diag::err_digit_separator_not_between_digits) 1305 << IsAfterDigits; 1306 hadError = true; 1307 } 1308 } 1309 1310 /// ParseNumberStartingWithZero - This method is called when the first character 1311 /// of the number is found to be a zero. This means it is either an octal 1312 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or 1313 /// a floating point number (01239.123e4). Eat the prefix, determining the 1314 /// radix etc. 1315 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) { 1316 assert(s[0] == '0' && "Invalid method call"); 1317 s++; 1318 1319 int c1 = s[0]; 1320 1321 // Handle a hex number like 0x1234. 1322 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) { 1323 s++; 1324 assert(s < ThisTokEnd && "didn't maximally munch?"); 1325 radix = 16; 1326 DigitsBegin = s; 1327 s = SkipHexDigits(s); 1328 bool HasSignificandDigits = containsDigits(DigitsBegin, s); 1329 if (s == ThisTokEnd) { 1330 // Done. 1331 } else if (*s == '.') { 1332 s++; 1333 saw_period = true; 1334 const char *floatDigitsBegin = s; 1335 s = SkipHexDigits(s); 1336 if (containsDigits(floatDigitsBegin, s)) 1337 HasSignificandDigits = true; 1338 if (HasSignificandDigits) 1339 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits); 1340 } 1341 1342 if (!HasSignificandDigits) { 1343 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1344 LangOpts), 1345 diag::err_hex_constant_requires) 1346 << LangOpts.CPlusPlus << 1; 1347 hadError = true; 1348 return; 1349 } 1350 1351 // A binary exponent can appear with or with a '.'. If dotted, the 1352 // binary exponent is required. 1353 if (*s == 'p' || *s == 'P') { 1354 checkSeparator(TokLoc, s, CSK_AfterDigits); 1355 const char *Exponent = s; 1356 s++; 1357 saw_exponent = true; 1358 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 1359 const char *first_non_digit = SkipDigits(s); 1360 if (!containsDigits(s, first_non_digit)) { 1361 if (!hadError) { 1362 Diags.Report(Lexer::AdvanceToTokenCharacter( 1363 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1364 diag::err_exponent_has_no_digits); 1365 hadError = true; 1366 } 1367 return; 1368 } 1369 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1370 s = first_non_digit; 1371 1372 if (!LangOpts.HexFloats) 1373 Diags.Report(TokLoc, LangOpts.CPlusPlus 1374 ? diag::ext_hex_literal_invalid 1375 : diag::ext_hex_constant_invalid); 1376 else if (LangOpts.CPlusPlus17) 1377 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal); 1378 } else if (saw_period) { 1379 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1380 LangOpts), 1381 diag::err_hex_constant_requires) 1382 << LangOpts.CPlusPlus << 0; 1383 hadError = true; 1384 } 1385 return; 1386 } 1387 1388 // Handle simple binary numbers 0b01010 1389 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) { 1390 // 0b101010 is a C++14 and C23 extension. 1391 unsigned DiagId; 1392 if (LangOpts.CPlusPlus14) 1393 DiagId = diag::warn_cxx11_compat_binary_literal; 1394 else if (LangOpts.C23) 1395 DiagId = diag::warn_c23_compat_binary_literal; 1396 else if (LangOpts.CPlusPlus) 1397 DiagId = diag::ext_binary_literal_cxx14; 1398 else 1399 DiagId = diag::ext_binary_literal; 1400 Diags.Report(TokLoc, DiagId); 1401 ++s; 1402 assert(s < ThisTokEnd && "didn't maximally munch?"); 1403 radix = 2; 1404 DigitsBegin = s; 1405 s = SkipBinaryDigits(s); 1406 if (s == ThisTokEnd) { 1407 // Done. 1408 } else if (isHexDigit(*s) && 1409 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 1410 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1411 LangOpts), 1412 diag::err_invalid_digit) 1413 << StringRef(s, 1) << 2; 1414 hadError = true; 1415 } 1416 // Other suffixes will be diagnosed by the caller. 1417 return; 1418 } 1419 1420 // For now, the radix is set to 8. If we discover that we have a 1421 // floating point constant, the radix will change to 10. Octal floating 1422 // point constants are not permitted (only decimal and hexadecimal). 1423 radix = 8; 1424 const char *PossibleNewDigitStart = s; 1425 s = SkipOctalDigits(s); 1426 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0 1427 // as the start of the digits. So if skipping octal digits does not skip 1428 // anything, we leave the digit start where it was. 1429 if (s != PossibleNewDigitStart) 1430 DigitsBegin = PossibleNewDigitStart; 1431 1432 if (s == ThisTokEnd) 1433 return; // Done, simple octal number like 01234 1434 1435 // If we have some other non-octal digit that *is* a decimal digit, see if 1436 // this is part of a floating point number like 094.123 or 09e1. 1437 if (isDigit(*s)) { 1438 const char *EndDecimal = SkipDigits(s); 1439 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') { 1440 s = EndDecimal; 1441 radix = 10; 1442 } 1443 } 1444 1445 ParseDecimalOrOctalCommon(TokLoc); 1446 } 1447 1448 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) { 1449 switch (Radix) { 1450 case 2: 1451 return NumDigits <= 64; 1452 case 8: 1453 return NumDigits <= 64 / 3; // Digits are groups of 3 bits. 1454 case 10: 1455 return NumDigits <= 19; // floor(log10(2^64)) 1456 case 16: 1457 return NumDigits <= 64 / 4; // Digits are groups of 4 bits. 1458 default: 1459 llvm_unreachable("impossible Radix"); 1460 } 1461 } 1462 1463 /// GetIntegerValue - Convert this numeric literal value to an APInt that 1464 /// matches Val's input width. If there is an overflow, set Val to the low bits 1465 /// of the result and return true. Otherwise, return false. 1466 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) { 1467 // Fast path: Compute a conservative bound on the maximum number of 1468 // bits per digit in this radix. If we can't possibly overflow a 1469 // uint64 based on that bound then do the simple conversion to 1470 // integer. This avoids the expensive overflow checking below, and 1471 // handles the common cases that matter (small decimal integers and 1472 // hex/octal values which don't overflow). 1473 const unsigned NumDigits = SuffixBegin - DigitsBegin; 1474 if (alwaysFitsInto64Bits(radix, NumDigits)) { 1475 uint64_t N = 0; 1476 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr) 1477 if (!isDigitSeparator(*Ptr)) 1478 N = N * radix + llvm::hexDigitValue(*Ptr); 1479 1480 // This will truncate the value to Val's input width. Simply check 1481 // for overflow by comparing. 1482 Val = N; 1483 return Val.getZExtValue() != N; 1484 } 1485 1486 Val = 0; 1487 const char *Ptr = DigitsBegin; 1488 1489 llvm::APInt RadixVal(Val.getBitWidth(), radix); 1490 llvm::APInt CharVal(Val.getBitWidth(), 0); 1491 llvm::APInt OldVal = Val; 1492 1493 bool OverflowOccurred = false; 1494 while (Ptr < SuffixBegin) { 1495 if (isDigitSeparator(*Ptr)) { 1496 ++Ptr; 1497 continue; 1498 } 1499 1500 unsigned C = llvm::hexDigitValue(*Ptr++); 1501 1502 // If this letter is out of bound for this radix, reject it. 1503 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1504 1505 CharVal = C; 1506 1507 // Add the digit to the value in the appropriate radix. If adding in digits 1508 // made the value smaller, then this overflowed. 1509 OldVal = Val; 1510 1511 // Multiply by radix, did overflow occur on the multiply? 1512 Val *= RadixVal; 1513 OverflowOccurred |= Val.udiv(RadixVal) != OldVal; 1514 1515 // Add value, did overflow occur on the value? 1516 // (a + b) ult b <=> overflow 1517 Val += CharVal; 1518 OverflowOccurred |= Val.ult(CharVal); 1519 } 1520 return OverflowOccurred; 1521 } 1522 1523 llvm::APFloat::opStatus 1524 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result, 1525 llvm::RoundingMode RM) { 1526 using llvm::APFloat; 1527 1528 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin); 1529 1530 llvm::SmallString<16> Buffer; 1531 StringRef Str(ThisTokBegin, n); 1532 if (Str.contains('\'')) { 1533 Buffer.reserve(n); 1534 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer), 1535 &isDigitSeparator); 1536 Str = Buffer; 1537 } 1538 1539 auto StatusOrErr = Result.convertFromString(Str, RM); 1540 assert(StatusOrErr && "Invalid floating point representation"); 1541 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr 1542 : APFloat::opInvalidOp; 1543 } 1544 1545 static inline bool IsExponentPart(char c, bool isHex) { 1546 if (isHex) 1547 return c == 'p' || c == 'P'; 1548 return c == 'e' || c == 'E'; 1549 } 1550 1551 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) { 1552 assert(radix == 16 || radix == 10); 1553 1554 // Find how many digits are needed to store the whole literal. 1555 unsigned NumDigits = SuffixBegin - DigitsBegin; 1556 if (saw_period) --NumDigits; 1557 1558 // Initial scan of the exponent if it exists 1559 bool ExpOverflowOccurred = false; 1560 bool NegativeExponent = false; 1561 const char *ExponentBegin; 1562 uint64_t Exponent = 0; 1563 int64_t BaseShift = 0; 1564 if (saw_exponent) { 1565 const char *Ptr = DigitsBegin; 1566 1567 while (!IsExponentPart(*Ptr, radix == 16)) 1568 ++Ptr; 1569 ExponentBegin = Ptr; 1570 ++Ptr; 1571 NegativeExponent = *Ptr == '-'; 1572 if (NegativeExponent) ++Ptr; 1573 1574 unsigned NumExpDigits = SuffixBegin - Ptr; 1575 if (alwaysFitsInto64Bits(radix, NumExpDigits)) { 1576 llvm::StringRef ExpStr(Ptr, NumExpDigits); 1577 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10); 1578 Exponent = ExpInt.getZExtValue(); 1579 } else { 1580 ExpOverflowOccurred = true; 1581 } 1582 1583 if (NegativeExponent) BaseShift -= Exponent; 1584 else BaseShift += Exponent; 1585 } 1586 1587 // Number of bits needed for decimal literal is 1588 // ceil(NumDigits * log2(10)) Integral part 1589 // + Scale Fractional part 1590 // + ceil(Exponent * log2(10)) Exponent 1591 // -------------------------------------------------- 1592 // ceil((NumDigits + Exponent) * log2(10)) + Scale 1593 // 1594 // But for simplicity in handling integers, we can round up log2(10) to 4, 1595 // making: 1596 // 4 * (NumDigits + Exponent) + Scale 1597 // 1598 // Number of digits needed for hexadecimal literal is 1599 // 4 * NumDigits Integral part 1600 // + Scale Fractional part 1601 // + Exponent Exponent 1602 // -------------------------------------------------- 1603 // (4 * NumDigits) + Scale + Exponent 1604 uint64_t NumBitsNeeded; 1605 if (radix == 10) 1606 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale; 1607 else 1608 NumBitsNeeded = 4 * NumDigits + Exponent + Scale; 1609 1610 if (NumBitsNeeded > std::numeric_limits<unsigned>::max()) 1611 ExpOverflowOccurred = true; 1612 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false); 1613 1614 bool FoundDecimal = false; 1615 1616 int64_t FractBaseShift = 0; 1617 const char *End = saw_exponent ? ExponentBegin : SuffixBegin; 1618 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) { 1619 if (*Ptr == '.') { 1620 FoundDecimal = true; 1621 continue; 1622 } 1623 1624 // Normal reading of an integer 1625 unsigned C = llvm::hexDigitValue(*Ptr); 1626 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1627 1628 Val *= radix; 1629 Val += C; 1630 1631 if (FoundDecimal) 1632 // Keep track of how much we will need to adjust this value by from the 1633 // number of digits past the radix point. 1634 --FractBaseShift; 1635 } 1636 1637 // For a radix of 16, we will be multiplying by 2 instead of 16. 1638 if (radix == 16) FractBaseShift *= 4; 1639 BaseShift += FractBaseShift; 1640 1641 Val <<= Scale; 1642 1643 uint64_t Base = (radix == 16) ? 2 : 10; 1644 if (BaseShift > 0) { 1645 for (int64_t i = 0; i < BaseShift; ++i) { 1646 Val *= Base; 1647 } 1648 } else if (BaseShift < 0) { 1649 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i) 1650 Val = Val.udiv(Base); 1651 } 1652 1653 bool IntOverflowOccurred = false; 1654 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth()); 1655 if (Val.getBitWidth() > StoreVal.getBitWidth()) { 1656 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth())); 1657 StoreVal = Val.trunc(StoreVal.getBitWidth()); 1658 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) { 1659 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal); 1660 StoreVal = Val.zext(StoreVal.getBitWidth()); 1661 } else { 1662 StoreVal = Val; 1663 } 1664 1665 return IntOverflowOccurred || ExpOverflowOccurred; 1666 } 1667 1668 /// \verbatim 1669 /// user-defined-character-literal: [C++11 lex.ext] 1670 /// character-literal ud-suffix 1671 /// ud-suffix: 1672 /// identifier 1673 /// character-literal: [C++11 lex.ccon] 1674 /// ' c-char-sequence ' 1675 /// u' c-char-sequence ' 1676 /// U' c-char-sequence ' 1677 /// L' c-char-sequence ' 1678 /// u8' c-char-sequence ' [C++1z lex.ccon] 1679 /// c-char-sequence: 1680 /// c-char 1681 /// c-char-sequence c-char 1682 /// c-char: 1683 /// any member of the source character set except the single-quote ', 1684 /// backslash \, or new-line character 1685 /// escape-sequence 1686 /// universal-character-name 1687 /// escape-sequence: 1688 /// simple-escape-sequence 1689 /// octal-escape-sequence 1690 /// hexadecimal-escape-sequence 1691 /// simple-escape-sequence: 1692 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1693 /// octal-escape-sequence: 1694 /// \ octal-digit 1695 /// \ octal-digit octal-digit 1696 /// \ octal-digit octal-digit octal-digit 1697 /// hexadecimal-escape-sequence: 1698 /// \x hexadecimal-digit 1699 /// hexadecimal-escape-sequence hexadecimal-digit 1700 /// universal-character-name: [C++11 lex.charset] 1701 /// \u hex-quad 1702 /// \U hex-quad hex-quad 1703 /// hex-quad: 1704 /// hex-digit hex-digit hex-digit hex-digit 1705 /// \endverbatim 1706 /// 1707 CharLiteralParser::CharLiteralParser(const char *begin, const char *end, 1708 SourceLocation Loc, Preprocessor &PP, 1709 tok::TokenKind kind) { 1710 // At this point we know that the character matches the regex "(L|u|U)?'.*'". 1711 HadError = false; 1712 1713 Kind = kind; 1714 1715 const char *TokBegin = begin; 1716 1717 // Skip over wide character determinant. 1718 if (Kind != tok::char_constant) 1719 ++begin; 1720 if (Kind == tok::utf8_char_constant) 1721 ++begin; 1722 1723 // Skip over the entry quote. 1724 if (begin[0] != '\'') { 1725 PP.Diag(Loc, diag::err_lexing_char); 1726 HadError = true; 1727 return; 1728 } 1729 1730 ++begin; 1731 1732 // Remove an optional ud-suffix. 1733 if (end[-1] != '\'') { 1734 const char *UDSuffixEnd = end; 1735 do { 1736 --end; 1737 } while (end[-1] != '\''); 1738 // FIXME: Don't bother with this if !tok.hasUCN(). 1739 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end)); 1740 UDSuffixOffset = end - TokBegin; 1741 } 1742 1743 // Trim the ending quote. 1744 assert(end != begin && "Invalid token lexed"); 1745 --end; 1746 1747 // FIXME: The "Value" is an uint64_t so we can handle char literals of 1748 // up to 64-bits. 1749 // FIXME: This extensively assumes that 'char' is 8-bits. 1750 assert(PP.getTargetInfo().getCharWidth() == 8 && 1751 "Assumes char is 8 bits"); 1752 assert(PP.getTargetInfo().getIntWidth() <= 64 && 1753 (PP.getTargetInfo().getIntWidth() & 7) == 0 && 1754 "Assumes sizeof(int) on target is <= 64 and a multiple of char"); 1755 assert(PP.getTargetInfo().getWCharWidth() <= 64 && 1756 "Assumes sizeof(wchar) on target is <= 64"); 1757 1758 SmallVector<uint32_t, 4> codepoint_buffer; 1759 codepoint_buffer.resize(end - begin); 1760 uint32_t *buffer_begin = &codepoint_buffer.front(); 1761 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size(); 1762 1763 // Unicode escapes representing characters that cannot be correctly 1764 // represented in a single code unit are disallowed in character literals 1765 // by this implementation. 1766 uint32_t largest_character_for_kind; 1767 if (tok::wide_char_constant == Kind) { 1768 largest_character_for_kind = 1769 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth()); 1770 } else if (tok::utf8_char_constant == Kind) { 1771 largest_character_for_kind = 0x7F; 1772 } else if (tok::utf16_char_constant == Kind) { 1773 largest_character_for_kind = 0xFFFF; 1774 } else if (tok::utf32_char_constant == Kind) { 1775 largest_character_for_kind = 0x10FFFF; 1776 } else { 1777 largest_character_for_kind = 0x7Fu; 1778 } 1779 1780 while (begin != end) { 1781 // Is this a span of non-escape characters? 1782 if (begin[0] != '\\') { 1783 char const *start = begin; 1784 do { 1785 ++begin; 1786 } while (begin != end && *begin != '\\'); 1787 1788 char const *tmp_in_start = start; 1789 uint32_t *tmp_out_start = buffer_begin; 1790 llvm::ConversionResult res = 1791 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start), 1792 reinterpret_cast<llvm::UTF8 const *>(begin), 1793 &buffer_begin, buffer_end, llvm::strictConversion); 1794 if (res != llvm::conversionOK) { 1795 // If we see bad encoding for unprefixed character literals, warn and 1796 // simply copy the byte values, for compatibility with gcc and 1797 // older versions of clang. 1798 bool NoErrorOnBadEncoding = isOrdinary(); 1799 unsigned Msg = diag::err_bad_character_encoding; 1800 if (NoErrorOnBadEncoding) 1801 Msg = diag::warn_bad_character_encoding; 1802 PP.Diag(Loc, Msg); 1803 if (NoErrorOnBadEncoding) { 1804 start = tmp_in_start; 1805 buffer_begin = tmp_out_start; 1806 for (; start != begin; ++start, ++buffer_begin) 1807 *buffer_begin = static_cast<uint8_t>(*start); 1808 } else { 1809 HadError = true; 1810 } 1811 } else { 1812 for (; tmp_out_start < buffer_begin; ++tmp_out_start) { 1813 if (*tmp_out_start > largest_character_for_kind) { 1814 HadError = true; 1815 PP.Diag(Loc, diag::err_character_too_large); 1816 } 1817 } 1818 } 1819 1820 continue; 1821 } 1822 // Is this a Universal Character Name escape? 1823 if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') { 1824 unsigned short UcnLen = 0; 1825 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen, 1826 FullSourceLoc(Loc, PP.getSourceManager()), 1827 &PP.getDiagnostics(), PP.getLangOpts(), true)) { 1828 HadError = true; 1829 } else if (*buffer_begin > largest_character_for_kind) { 1830 HadError = true; 1831 PP.Diag(Loc, diag::err_character_too_large); 1832 } 1833 1834 ++buffer_begin; 1835 continue; 1836 } 1837 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo()); 1838 uint64_t result = 1839 ProcessCharEscape(TokBegin, begin, end, HadError, 1840 FullSourceLoc(Loc, PP.getSourceManager()), CharWidth, 1841 &PP.getDiagnostics(), PP.getLangOpts(), 1842 StringLiteralEvalMethod::Evaluated); 1843 *buffer_begin++ = result; 1844 } 1845 1846 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front(); 1847 1848 if (NumCharsSoFar > 1) { 1849 if (isOrdinary() && NumCharsSoFar == 4) 1850 PP.Diag(Loc, diag::warn_four_char_character_literal); 1851 else if (isOrdinary()) 1852 PP.Diag(Loc, diag::warn_multichar_character_literal); 1853 else { 1854 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1); 1855 HadError = true; 1856 } 1857 IsMultiChar = true; 1858 } else { 1859 IsMultiChar = false; 1860 } 1861 1862 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0); 1863 1864 // Narrow character literals act as though their value is concatenated 1865 // in this implementation, but warn on overflow. 1866 bool multi_char_too_long = false; 1867 if (isOrdinary() && isMultiChar()) { 1868 LitVal = 0; 1869 for (size_t i = 0; i < NumCharsSoFar; ++i) { 1870 // check for enough leading zeros to shift into 1871 multi_char_too_long |= (LitVal.countl_zero() < 8); 1872 LitVal <<= 8; 1873 LitVal = LitVal + (codepoint_buffer[i] & 0xFF); 1874 } 1875 } else if (NumCharsSoFar > 0) { 1876 // otherwise just take the last character 1877 LitVal = buffer_begin[-1]; 1878 } 1879 1880 if (!HadError && multi_char_too_long) { 1881 PP.Diag(Loc, diag::warn_char_constant_too_large); 1882 } 1883 1884 // Transfer the value from APInt to uint64_t 1885 Value = LitVal.getZExtValue(); 1886 1887 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1") 1888 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple 1889 // character constants are not sign extended in the this implementation: 1890 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC. 1891 if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) && 1892 PP.getLangOpts().CharIsSigned) 1893 Value = (signed char)Value; 1894 } 1895 1896 /// \verbatim 1897 /// string-literal: [C++0x lex.string] 1898 /// encoding-prefix " [s-char-sequence] " 1899 /// encoding-prefix R raw-string 1900 /// encoding-prefix: 1901 /// u8 1902 /// u 1903 /// U 1904 /// L 1905 /// s-char-sequence: 1906 /// s-char 1907 /// s-char-sequence s-char 1908 /// s-char: 1909 /// any member of the source character set except the double-quote ", 1910 /// backslash \, or new-line character 1911 /// escape-sequence 1912 /// universal-character-name 1913 /// raw-string: 1914 /// " d-char-sequence ( r-char-sequence ) d-char-sequence " 1915 /// r-char-sequence: 1916 /// r-char 1917 /// r-char-sequence r-char 1918 /// r-char: 1919 /// any member of the source character set, except a right parenthesis ) 1920 /// followed by the initial d-char-sequence (which may be empty) 1921 /// followed by a double quote ". 1922 /// d-char-sequence: 1923 /// d-char 1924 /// d-char-sequence d-char 1925 /// d-char: 1926 /// any member of the basic source character set except: 1927 /// space, the left parenthesis (, the right parenthesis ), 1928 /// the backslash \, and the control characters representing horizontal 1929 /// tab, vertical tab, form feed, and newline. 1930 /// escape-sequence: [C++0x lex.ccon] 1931 /// simple-escape-sequence 1932 /// octal-escape-sequence 1933 /// hexadecimal-escape-sequence 1934 /// simple-escape-sequence: 1935 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1936 /// octal-escape-sequence: 1937 /// \ octal-digit 1938 /// \ octal-digit octal-digit 1939 /// \ octal-digit octal-digit octal-digit 1940 /// hexadecimal-escape-sequence: 1941 /// \x hexadecimal-digit 1942 /// hexadecimal-escape-sequence hexadecimal-digit 1943 /// universal-character-name: 1944 /// \u hex-quad 1945 /// \U hex-quad hex-quad 1946 /// hex-quad: 1947 /// hex-digit hex-digit hex-digit hex-digit 1948 /// \endverbatim 1949 /// 1950 StringLiteralParser::StringLiteralParser(ArrayRef<Token> StringToks, 1951 Preprocessor &PP, 1952 StringLiteralEvalMethod EvalMethod) 1953 : SM(PP.getSourceManager()), Features(PP.getLangOpts()), 1954 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()), 1955 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown), 1956 ResultPtr(ResultBuf.data()), EvalMethod(EvalMethod), hadError(false), 1957 Pascal(false) { 1958 init(StringToks); 1959 } 1960 1961 void StringLiteralParser::init(ArrayRef<Token> StringToks){ 1962 // The literal token may have come from an invalid source location (e.g. due 1963 // to a PCH error), in which case the token length will be 0. 1964 if (StringToks.empty() || StringToks[0].getLength() < 2) 1965 return DiagnoseLexingError(SourceLocation()); 1966 1967 // Scan all of the string portions, remember the max individual token length, 1968 // computing a bound on the concatenated string length, and see whether any 1969 // piece is a wide-string. If any of the string portions is a wide-string 1970 // literal, the result is a wide-string literal [C99 6.4.5p4]. 1971 assert(!StringToks.empty() && "expected at least one token"); 1972 MaxTokenLength = StringToks[0].getLength(); 1973 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!"); 1974 SizeBound = StringToks[0].getLength() - 2; // -2 for "". 1975 hadError = false; 1976 1977 // Determines the kind of string from the prefix 1978 Kind = tok::string_literal; 1979 1980 /// (C99 5.1.1.2p1). The common case is only one string fragment. 1981 for (const Token &Tok : StringToks) { 1982 if (Tok.getLength() < 2) 1983 return DiagnoseLexingError(Tok.getLocation()); 1984 1985 // The string could be shorter than this if it needs cleaning, but this is a 1986 // reasonable bound, which is all we need. 1987 assert(Tok.getLength() >= 2 && "literal token is invalid!"); 1988 SizeBound += Tok.getLength() - 2; // -2 for "". 1989 1990 // Remember maximum string piece length. 1991 if (Tok.getLength() > MaxTokenLength) 1992 MaxTokenLength = Tok.getLength(); 1993 1994 // Remember if we see any wide or utf-8/16/32 strings. 1995 // Also check for illegal concatenations. 1996 if (isUnevaluated() && Tok.getKind() != tok::string_literal) { 1997 if (Diags) { 1998 SourceLocation PrefixEndLoc = Lexer::AdvanceToTokenCharacter( 1999 Tok.getLocation(), getEncodingPrefixLen(Tok.getKind()), SM, 2000 Features); 2001 CharSourceRange Range = 2002 CharSourceRange::getCharRange({Tok.getLocation(), PrefixEndLoc}); 2003 StringRef Prefix(SM.getCharacterData(Tok.getLocation()), 2004 getEncodingPrefixLen(Tok.getKind())); 2005 Diags->Report(Tok.getLocation(), 2006 Features.CPlusPlus26 2007 ? diag::err_unevaluated_string_prefix 2008 : diag::warn_unevaluated_string_prefix) 2009 << Prefix << Features.CPlusPlus << FixItHint::CreateRemoval(Range); 2010 } 2011 if (Features.CPlusPlus26) 2012 hadError = true; 2013 } else if (Tok.isNot(Kind) && Tok.isNot(tok::string_literal)) { 2014 if (isOrdinary()) { 2015 Kind = Tok.getKind(); 2016 } else { 2017 if (Diags) 2018 Diags->Report(Tok.getLocation(), diag::err_unsupported_string_concat); 2019 hadError = true; 2020 } 2021 } 2022 } 2023 2024 // Include space for the null terminator. 2025 ++SizeBound; 2026 2027 // TODO: K&R warning: "traditional C rejects string constant concatenation" 2028 2029 // Get the width in bytes of char/wchar_t/char16_t/char32_t 2030 CharByteWidth = getCharWidth(Kind, Target); 2031 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 2032 CharByteWidth /= 8; 2033 2034 // The output buffer size needs to be large enough to hold wide characters. 2035 // This is a worst-case assumption which basically corresponds to L"" "long". 2036 SizeBound *= CharByteWidth; 2037 2038 // Size the temporary buffer to hold the result string data. 2039 ResultBuf.resize(SizeBound); 2040 2041 // Likewise, but for each string piece. 2042 SmallString<512> TokenBuf; 2043 TokenBuf.resize(MaxTokenLength); 2044 2045 // Loop over all the strings, getting their spelling, and expanding them to 2046 // wide strings as appropriate. 2047 ResultPtr = &ResultBuf[0]; // Next byte to fill in. 2048 2049 Pascal = false; 2050 2051 SourceLocation UDSuffixTokLoc; 2052 2053 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) { 2054 const char *ThisTokBuf = &TokenBuf[0]; 2055 // Get the spelling of the token, which eliminates trigraphs, etc. We know 2056 // that ThisTokBuf points to a buffer that is big enough for the whole token 2057 // and 'spelled' tokens can only shrink. 2058 bool StringInvalid = false; 2059 unsigned ThisTokLen = 2060 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features, 2061 &StringInvalid); 2062 if (StringInvalid) 2063 return DiagnoseLexingError(StringToks[i].getLocation()); 2064 2065 const char *ThisTokBegin = ThisTokBuf; 2066 const char *ThisTokEnd = ThisTokBuf+ThisTokLen; 2067 2068 // Remove an optional ud-suffix. 2069 if (ThisTokEnd[-1] != '"') { 2070 const char *UDSuffixEnd = ThisTokEnd; 2071 do { 2072 --ThisTokEnd; 2073 } while (ThisTokEnd[-1] != '"'); 2074 2075 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd); 2076 2077 if (UDSuffixBuf.empty()) { 2078 if (StringToks[i].hasUCN()) 2079 expandUCNs(UDSuffixBuf, UDSuffix); 2080 else 2081 UDSuffixBuf.assign(UDSuffix); 2082 UDSuffixToken = i; 2083 UDSuffixOffset = ThisTokEnd - ThisTokBuf; 2084 UDSuffixTokLoc = StringToks[i].getLocation(); 2085 } else { 2086 SmallString<32> ExpandedUDSuffix; 2087 if (StringToks[i].hasUCN()) { 2088 expandUCNs(ExpandedUDSuffix, UDSuffix); 2089 UDSuffix = ExpandedUDSuffix; 2090 } 2091 2092 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the 2093 // result of a concatenation involving at least one user-defined-string- 2094 // literal, all the participating user-defined-string-literals shall 2095 // have the same ud-suffix. 2096 bool UnevaluatedStringHasUDL = isUnevaluated() && !UDSuffix.empty(); 2097 if (UDSuffixBuf != UDSuffix || UnevaluatedStringHasUDL) { 2098 if (Diags) { 2099 SourceLocation TokLoc = StringToks[i].getLocation(); 2100 if (UnevaluatedStringHasUDL) { 2101 Diags->Report(TokLoc, diag::err_unevaluated_string_udl) 2102 << SourceRange(TokLoc, TokLoc); 2103 } else { 2104 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix) 2105 << UDSuffixBuf << UDSuffix 2106 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc); 2107 } 2108 } 2109 hadError = true; 2110 } 2111 } 2112 } 2113 2114 // Strip the end quote. 2115 --ThisTokEnd; 2116 2117 // TODO: Input character set mapping support. 2118 2119 // Skip marker for wide or unicode strings. 2120 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') { 2121 ++ThisTokBuf; 2122 // Skip 8 of u8 marker for utf8 strings. 2123 if (ThisTokBuf[0] == '8') 2124 ++ThisTokBuf; 2125 } 2126 2127 // Check for raw string 2128 if (ThisTokBuf[0] == 'R') { 2129 if (ThisTokBuf[1] != '"') { 2130 // The file may have come from PCH and then changed after loading the 2131 // PCH; Fail gracefully. 2132 return DiagnoseLexingError(StringToks[i].getLocation()); 2133 } 2134 ThisTokBuf += 2; // skip R" 2135 2136 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16 2137 // characters. 2138 constexpr unsigned MaxRawStrDelimLen = 16; 2139 2140 const char *Prefix = ThisTokBuf; 2141 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen && 2142 ThisTokBuf[0] != '(') 2143 ++ThisTokBuf; 2144 if (ThisTokBuf[0] != '(') 2145 return DiagnoseLexingError(StringToks[i].getLocation()); 2146 ++ThisTokBuf; // skip '(' 2147 2148 // Remove same number of characters from the end 2149 ThisTokEnd -= ThisTokBuf - Prefix; 2150 if (ThisTokEnd < ThisTokBuf) 2151 return DiagnoseLexingError(StringToks[i].getLocation()); 2152 2153 // C++14 [lex.string]p4: A source-file new-line in a raw string literal 2154 // results in a new-line in the resulting execution string-literal. 2155 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf); 2156 while (!RemainingTokenSpan.empty()) { 2157 // Split the string literal on \r\n boundaries. 2158 size_t CRLFPos = RemainingTokenSpan.find("\r\n"); 2159 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos); 2160 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos); 2161 2162 // Copy everything before the \r\n sequence into the string literal. 2163 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF)) 2164 hadError = true; 2165 2166 // Point into the \n inside the \r\n sequence and operate on the 2167 // remaining portion of the literal. 2168 RemainingTokenSpan = AfterCRLF.substr(1); 2169 } 2170 } else { 2171 if (ThisTokBuf[0] != '"') { 2172 // The file may have come from PCH and then changed after loading the 2173 // PCH; Fail gracefully. 2174 return DiagnoseLexingError(StringToks[i].getLocation()); 2175 } 2176 ++ThisTokBuf; // skip " 2177 2178 // Check if this is a pascal string 2179 if (!isUnevaluated() && Features.PascalStrings && 2180 ThisTokBuf + 1 != ThisTokEnd && ThisTokBuf[0] == '\\' && 2181 ThisTokBuf[1] == 'p') { 2182 2183 // If the \p sequence is found in the first token, we have a pascal string 2184 // Otherwise, if we already have a pascal string, ignore the first \p 2185 if (i == 0) { 2186 ++ThisTokBuf; 2187 Pascal = true; 2188 } else if (Pascal) 2189 ThisTokBuf += 2; 2190 } 2191 2192 while (ThisTokBuf != ThisTokEnd) { 2193 // Is this a span of non-escape characters? 2194 if (ThisTokBuf[0] != '\\') { 2195 const char *InStart = ThisTokBuf; 2196 do { 2197 ++ThisTokBuf; 2198 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\'); 2199 2200 // Copy the character span over. 2201 if (CopyStringFragment(StringToks[i], ThisTokBegin, 2202 StringRef(InStart, ThisTokBuf - InStart))) 2203 hadError = true; 2204 continue; 2205 } 2206 // Is this a Universal Character Name escape? 2207 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' || 2208 ThisTokBuf[1] == 'N') { 2209 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, 2210 ResultPtr, hadError, 2211 FullSourceLoc(StringToks[i].getLocation(), SM), 2212 CharByteWidth, Diags, Features); 2213 continue; 2214 } 2215 // Otherwise, this is a non-UCN escape character. Process it. 2216 unsigned ResultChar = 2217 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError, 2218 FullSourceLoc(StringToks[i].getLocation(), SM), 2219 CharByteWidth * 8, Diags, Features, EvalMethod); 2220 2221 if (CharByteWidth == 4) { 2222 // FIXME: Make the type of the result buffer correct instead of 2223 // using reinterpret_cast. 2224 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr); 2225 *ResultWidePtr = ResultChar; 2226 ResultPtr += 4; 2227 } else if (CharByteWidth == 2) { 2228 // FIXME: Make the type of the result buffer correct instead of 2229 // using reinterpret_cast. 2230 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr); 2231 *ResultWidePtr = ResultChar & 0xFFFF; 2232 ResultPtr += 2; 2233 } else { 2234 assert(CharByteWidth == 1 && "Unexpected char width"); 2235 *ResultPtr++ = ResultChar & 0xFF; 2236 } 2237 } 2238 } 2239 } 2240 2241 assert((!Pascal || !isUnevaluated()) && 2242 "Pascal string in unevaluated context"); 2243 if (Pascal) { 2244 if (CharByteWidth == 4) { 2245 // FIXME: Make the type of the result buffer correct instead of 2246 // using reinterpret_cast. 2247 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data()); 2248 ResultWidePtr[0] = GetNumStringChars() - 1; 2249 } else if (CharByteWidth == 2) { 2250 // FIXME: Make the type of the result buffer correct instead of 2251 // using reinterpret_cast. 2252 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data()); 2253 ResultWidePtr[0] = GetNumStringChars() - 1; 2254 } else { 2255 assert(CharByteWidth == 1 && "Unexpected char width"); 2256 ResultBuf[0] = GetNumStringChars() - 1; 2257 } 2258 2259 // Verify that pascal strings aren't too large. 2260 if (GetStringLength() > 256) { 2261 if (Diags) 2262 Diags->Report(StringToks.front().getLocation(), 2263 diag::err_pascal_string_too_long) 2264 << SourceRange(StringToks.front().getLocation(), 2265 StringToks.back().getLocation()); 2266 hadError = true; 2267 return; 2268 } 2269 } else if (Diags) { 2270 // Complain if this string literal has too many characters. 2271 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509; 2272 2273 if (GetNumStringChars() > MaxChars) 2274 Diags->Report(StringToks.front().getLocation(), 2275 diag::ext_string_too_long) 2276 << GetNumStringChars() << MaxChars 2277 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0) 2278 << SourceRange(StringToks.front().getLocation(), 2279 StringToks.back().getLocation()); 2280 } 2281 } 2282 2283 static const char *resyncUTF8(const char *Err, const char *End) { 2284 if (Err == End) 2285 return End; 2286 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err); 2287 while (++Err != End && (*Err & 0xC0) == 0x80) 2288 ; 2289 return Err; 2290 } 2291 2292 /// This function copies from Fragment, which is a sequence of bytes 2293 /// within Tok's contents (which begin at TokBegin) into ResultPtr. 2294 /// Performs widening for multi-byte characters. 2295 bool StringLiteralParser::CopyStringFragment(const Token &Tok, 2296 const char *TokBegin, 2297 StringRef Fragment) { 2298 const llvm::UTF8 *ErrorPtrTmp; 2299 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp)) 2300 return false; 2301 2302 // If we see bad encoding for unprefixed string literals, warn and 2303 // simply copy the byte values, for compatibility with gcc and older 2304 // versions of clang. 2305 bool NoErrorOnBadEncoding = isOrdinary(); 2306 if (NoErrorOnBadEncoding) { 2307 memcpy(ResultPtr, Fragment.data(), Fragment.size()); 2308 ResultPtr += Fragment.size(); 2309 } 2310 2311 if (Diags) { 2312 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2313 2314 FullSourceLoc SourceLoc(Tok.getLocation(), SM); 2315 const DiagnosticBuilder &Builder = 2316 Diag(Diags, Features, SourceLoc, TokBegin, 2317 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()), 2318 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding 2319 : diag::err_bad_string_encoding); 2320 2321 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2322 StringRef NextFragment(NextStart, Fragment.end()-NextStart); 2323 2324 // Decode into a dummy buffer. 2325 SmallString<512> Dummy; 2326 Dummy.reserve(Fragment.size() * CharByteWidth); 2327 char *Ptr = Dummy.data(); 2328 2329 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) { 2330 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2331 NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2332 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin, 2333 ErrorPtr, NextStart); 2334 NextFragment = StringRef(NextStart, Fragment.end()-NextStart); 2335 } 2336 } 2337 return !NoErrorOnBadEncoding; 2338 } 2339 2340 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) { 2341 hadError = true; 2342 if (Diags) 2343 Diags->Report(Loc, diag::err_lexing_string); 2344 } 2345 2346 /// getOffsetOfStringByte - This function returns the offset of the 2347 /// specified byte of the string data represented by Token. This handles 2348 /// advancing over escape sequences in the string. 2349 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok, 2350 unsigned ByteNo) const { 2351 // Get the spelling of the token. 2352 SmallString<32> SpellingBuffer; 2353 SpellingBuffer.resize(Tok.getLength()); 2354 2355 bool StringInvalid = false; 2356 const char *SpellingPtr = &SpellingBuffer[0]; 2357 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features, 2358 &StringInvalid); 2359 if (StringInvalid) 2360 return 0; 2361 2362 const char *SpellingStart = SpellingPtr; 2363 const char *SpellingEnd = SpellingPtr+TokLen; 2364 2365 // Handle UTF-8 strings just like narrow strings. 2366 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8') 2367 SpellingPtr += 2; 2368 2369 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && 2370 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"); 2371 2372 // For raw string literals, this is easy. 2373 if (SpellingPtr[0] == 'R') { 2374 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!"); 2375 // Skip 'R"'. 2376 SpellingPtr += 2; 2377 while (*SpellingPtr != '(') { 2378 ++SpellingPtr; 2379 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal"); 2380 } 2381 // Skip '('. 2382 ++SpellingPtr; 2383 return SpellingPtr - SpellingStart + ByteNo; 2384 } 2385 2386 // Skip over the leading quote 2387 assert(SpellingPtr[0] == '"' && "Should be a string literal!"); 2388 ++SpellingPtr; 2389 2390 // Skip over bytes until we find the offset we're looking for. 2391 while (ByteNo) { 2392 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!"); 2393 2394 // Step over non-escapes simply. 2395 if (*SpellingPtr != '\\') { 2396 ++SpellingPtr; 2397 --ByteNo; 2398 continue; 2399 } 2400 2401 // Otherwise, this is an escape character. Advance over it. 2402 bool HadError = false; 2403 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' || 2404 SpellingPtr[1] == 'N') { 2405 const char *EscapePtr = SpellingPtr; 2406 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd, 2407 1, Features, HadError); 2408 if (Len > ByteNo) { 2409 // ByteNo is somewhere within the escape sequence. 2410 SpellingPtr = EscapePtr; 2411 break; 2412 } 2413 ByteNo -= Len; 2414 } else { 2415 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError, 2416 FullSourceLoc(Tok.getLocation(), SM), CharByteWidth * 8, 2417 Diags, Features, StringLiteralEvalMethod::Evaluated); 2418 --ByteNo; 2419 } 2420 assert(!HadError && "This method isn't valid on erroneous strings"); 2421 } 2422 2423 return SpellingPtr-SpellingStart; 2424 } 2425 2426 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 2427 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 2428 /// treat it as an invalid suffix. 2429 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 2430 StringRef Suffix) { 2431 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) || 2432 Suffix == "sv"; 2433 } 2434