1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the NumericLiteralParser, CharLiteralParser, and 10 // StringLiteralParser interfaces. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Lex/LiteralSupport.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/LangOptions.h" 17 #include "clang/Basic/SourceLocation.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Lex/LexDiagnostic.h" 20 #include "clang/Lex/Lexer.h" 21 #include "clang/Lex/Preprocessor.h" 22 #include "clang/Lex/Token.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/ConvertUTF.h" 28 #include "llvm/Support/Error.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/Unicode.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cstddef> 34 #include <cstdint> 35 #include <cstring> 36 #include <string> 37 38 using namespace clang; 39 40 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) { 41 switch (kind) { 42 default: llvm_unreachable("Unknown token type!"); 43 case tok::char_constant: 44 case tok::string_literal: 45 case tok::utf8_char_constant: 46 case tok::utf8_string_literal: 47 return Target.getCharWidth(); 48 case tok::wide_char_constant: 49 case tok::wide_string_literal: 50 return Target.getWCharWidth(); 51 case tok::utf16_char_constant: 52 case tok::utf16_string_literal: 53 return Target.getChar16Width(); 54 case tok::utf32_char_constant: 55 case tok::utf32_string_literal: 56 return Target.getChar32Width(); 57 } 58 } 59 60 static CharSourceRange MakeCharSourceRange(const LangOptions &Features, 61 FullSourceLoc TokLoc, 62 const char *TokBegin, 63 const char *TokRangeBegin, 64 const char *TokRangeEnd) { 65 SourceLocation Begin = 66 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 67 TokLoc.getManager(), Features); 68 SourceLocation End = 69 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin, 70 TokLoc.getManager(), Features); 71 return CharSourceRange::getCharRange(Begin, End); 72 } 73 74 /// Produce a diagnostic highlighting some portion of a literal. 75 /// 76 /// Emits the diagnostic \p DiagID, highlighting the range of characters from 77 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be 78 /// a substring of a spelling buffer for the token beginning at \p TokBegin. 79 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, 80 const LangOptions &Features, FullSourceLoc TokLoc, 81 const char *TokBegin, const char *TokRangeBegin, 82 const char *TokRangeEnd, unsigned DiagID) { 83 SourceLocation Begin = 84 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 85 TokLoc.getManager(), Features); 86 return Diags->Report(Begin, DiagID) << 87 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd); 88 } 89 90 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in 91 /// either a character or a string literal. 92 static unsigned ProcessCharEscape(const char *ThisTokBegin, 93 const char *&ThisTokBuf, 94 const char *ThisTokEnd, bool &HadError, 95 FullSourceLoc Loc, unsigned CharWidth, 96 DiagnosticsEngine *Diags, 97 const LangOptions &Features) { 98 const char *EscapeBegin = ThisTokBuf; 99 bool Delimited = false; 100 bool EndDelimiterFound = false; 101 102 // Skip the '\' char. 103 ++ThisTokBuf; 104 105 // We know that this character can't be off the end of the buffer, because 106 // that would have been \", which would not have been the end of string. 107 unsigned ResultChar = *ThisTokBuf++; 108 switch (ResultChar) { 109 // These map to themselves. 110 case '\\': case '\'': case '"': case '?': break; 111 112 // These have fixed mappings. 113 case 'a': 114 // TODO: K&R: the meaning of '\\a' is different in traditional C 115 ResultChar = 7; 116 break; 117 case 'b': 118 ResultChar = 8; 119 break; 120 case 'e': 121 if (Diags) 122 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 123 diag::ext_nonstandard_escape) << "e"; 124 ResultChar = 27; 125 break; 126 case 'E': 127 if (Diags) 128 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 129 diag::ext_nonstandard_escape) << "E"; 130 ResultChar = 27; 131 break; 132 case 'f': 133 ResultChar = 12; 134 break; 135 case 'n': 136 ResultChar = 10; 137 break; 138 case 'r': 139 ResultChar = 13; 140 break; 141 case 't': 142 ResultChar = 9; 143 break; 144 case 'v': 145 ResultChar = 11; 146 break; 147 case 'x': { // Hex escape. 148 ResultChar = 0; 149 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 150 Delimited = true; 151 ThisTokBuf++; 152 if (*ThisTokBuf == '}') { 153 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 154 diag::err_delimited_escape_empty); 155 return ResultChar; 156 } 157 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 158 if (Diags) 159 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 160 diag::err_hex_escape_no_digits) << "x"; 161 return ResultChar; 162 } 163 164 // Hex escapes are a maximal series of hex digits. 165 bool Overflow = false; 166 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) { 167 if (Delimited && *ThisTokBuf == '}') { 168 ThisTokBuf++; 169 EndDelimiterFound = true; 170 break; 171 } 172 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 173 if (CharVal == -1) { 174 // Non delimited hex escape sequences stop at the first non-hex digit. 175 if (!Delimited) 176 break; 177 HadError = true; 178 if (Diags) 179 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 180 diag::err_delimited_escape_invalid) 181 << StringRef(ThisTokBuf, 1); 182 continue; 183 } 184 // About to shift out a digit? 185 if (ResultChar & 0xF0000000) 186 Overflow = true; 187 ResultChar <<= 4; 188 ResultChar |= CharVal; 189 } 190 // See if any bits will be truncated when evaluated as a character. 191 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 192 Overflow = true; 193 ResultChar &= ~0U >> (32-CharWidth); 194 } 195 196 // Check for overflow. 197 if (!HadError && Overflow) { // Too many digits to fit in 198 HadError = true; 199 if (Diags) 200 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 201 diag::err_escape_too_large) 202 << 0; 203 } 204 break; 205 } 206 case '0': case '1': case '2': case '3': 207 case '4': case '5': case '6': case '7': { 208 // Octal escapes. 209 --ThisTokBuf; 210 ResultChar = 0; 211 212 // Octal escapes are a series of octal digits with maximum length 3. 213 // "\0123" is a two digit sequence equal to "\012" "3". 214 unsigned NumDigits = 0; 215 do { 216 ResultChar <<= 3; 217 ResultChar |= *ThisTokBuf++ - '0'; 218 ++NumDigits; 219 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 && 220 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7'); 221 222 // Check for overflow. Reject '\777', but not L'\777'. 223 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 224 if (Diags) 225 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 226 diag::err_escape_too_large) << 1; 227 ResultChar &= ~0U >> (32-CharWidth); 228 } 229 break; 230 } 231 case 'o': { 232 bool Overflow = false; 233 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { 234 HadError = true; 235 if (Diags) 236 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 237 diag::err_delimited_escape_missing_brace) 238 << "o"; 239 240 break; 241 } 242 ResultChar = 0; 243 Delimited = true; 244 ++ThisTokBuf; 245 if (*ThisTokBuf == '}') { 246 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 247 diag::err_delimited_escape_empty); 248 return ResultChar; 249 } 250 251 while (ThisTokBuf != ThisTokEnd) { 252 if (*ThisTokBuf == '}') { 253 EndDelimiterFound = true; 254 ThisTokBuf++; 255 break; 256 } 257 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') { 258 HadError = true; 259 if (Diags) 260 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 261 diag::err_delimited_escape_invalid) 262 << StringRef(ThisTokBuf, 1); 263 ThisTokBuf++; 264 continue; 265 } 266 if (ResultChar & 0x020000000) 267 Overflow = true; 268 269 ResultChar <<= 3; 270 ResultChar |= *ThisTokBuf++ - '0'; 271 } 272 // Check for overflow. Reject '\777', but not L'\777'. 273 if (!HadError && 274 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) { 275 HadError = true; 276 if (Diags) 277 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 278 diag::err_escape_too_large) 279 << 1; 280 ResultChar &= ~0U >> (32 - CharWidth); 281 } 282 break; 283 } 284 // Otherwise, these are not valid escapes. 285 case '(': case '{': case '[': case '%': 286 // GCC accepts these as extensions. We warn about them as such though. 287 if (Diags) 288 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 289 diag::ext_nonstandard_escape) 290 << std::string(1, ResultChar); 291 break; 292 default: 293 if (!Diags) 294 break; 295 296 if (isPrintable(ResultChar)) 297 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 298 diag::ext_unknown_escape) 299 << std::string(1, ResultChar); 300 else 301 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 302 diag::ext_unknown_escape) 303 << "x" + llvm::utohexstr(ResultChar); 304 break; 305 } 306 307 if (Delimited && Diags) { 308 if (!EndDelimiterFound) 309 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 310 diag::err_expected) 311 << tok::r_brace; 312 else if (!HadError) { 313 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 314 Features.CPlusPlus2b ? diag::warn_cxx2b_delimited_escape_sequence 315 : diag::ext_delimited_escape_sequence) 316 << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0); 317 } 318 } 319 320 return ResultChar; 321 } 322 323 static void appendCodePoint(unsigned Codepoint, 324 llvm::SmallVectorImpl<char> &Str) { 325 char ResultBuf[4]; 326 char *ResultPtr = ResultBuf; 327 if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr)) 328 Str.append(ResultBuf, ResultPtr); 329 } 330 331 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) { 332 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) { 333 if (*I != '\\') { 334 Buf.push_back(*I); 335 continue; 336 } 337 338 ++I; 339 char Kind = *I; 340 ++I; 341 342 assert(Kind == 'u' || Kind == 'U' || Kind == 'N'); 343 uint32_t CodePoint = 0; 344 345 if (Kind == 'u' && *I == '{') { 346 for (++I; *I != '}'; ++I) { 347 unsigned Value = llvm::hexDigitValue(*I); 348 assert(Value != -1U); 349 CodePoint <<= 4; 350 CodePoint += Value; 351 } 352 appendCodePoint(CodePoint, Buf); 353 continue; 354 } 355 356 if (Kind == 'N') { 357 assert(*I == '{'); 358 ++I; 359 auto Delim = std::find(I, Input.end(), '}'); 360 assert(Delim != Input.end()); 361 llvm::Optional<llvm::sys::unicode::LooseMatchingResult> Res = 362 llvm::sys::unicode::nameToCodepointLooseMatching( 363 StringRef(I, std::distance(I, Delim))); 364 assert(Res); 365 CodePoint = Res->CodePoint; 366 assert(CodePoint != 0xFFFFFFFF); 367 appendCodePoint(CodePoint, Buf); 368 I = Delim; 369 continue; 370 } 371 372 unsigned NumHexDigits; 373 if (Kind == 'u') 374 NumHexDigits = 4; 375 else 376 NumHexDigits = 8; 377 378 assert(I + NumHexDigits <= E); 379 380 for (; NumHexDigits != 0; ++I, --NumHexDigits) { 381 unsigned Value = llvm::hexDigitValue(*I); 382 assert(Value != -1U); 383 384 CodePoint <<= 4; 385 CodePoint += Value; 386 } 387 388 appendCodePoint(CodePoint, Buf); 389 --I; 390 } 391 } 392 393 static bool ProcessNumericUCNEscape(const char *ThisTokBegin, 394 const char *&ThisTokBuf, 395 const char *ThisTokEnd, uint32_t &UcnVal, 396 unsigned short &UcnLen, bool &Delimited, 397 FullSourceLoc Loc, DiagnosticsEngine *Diags, 398 const LangOptions &Features, 399 bool in_char_string_literal = false) { 400 const char *UcnBegin = ThisTokBuf; 401 bool HasError = false; 402 bool EndDelimiterFound = false; 403 404 // Skip the '\u' char's. 405 ThisTokBuf += 2; 406 Delimited = false; 407 if (UcnBegin[1] == 'u' && in_char_string_literal && 408 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 409 Delimited = true; 410 ThisTokBuf++; 411 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 412 if (Diags) 413 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 414 diag::err_hex_escape_no_digits) 415 << StringRef(&ThisTokBuf[-1], 1); 416 return false; 417 } 418 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8); 419 420 bool Overflow = false; 421 unsigned short Count = 0; 422 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen); 423 ++ThisTokBuf) { 424 if (Delimited && *ThisTokBuf == '}') { 425 ++ThisTokBuf; 426 EndDelimiterFound = true; 427 break; 428 } 429 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 430 if (CharVal == -1) { 431 HasError = true; 432 if (!Delimited) 433 break; 434 if (Diags) { 435 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 436 diag::err_delimited_escape_invalid) 437 << StringRef(ThisTokBuf, 1); 438 } 439 Count++; 440 continue; 441 } 442 if (UcnVal & 0xF0000000) { 443 Overflow = true; 444 continue; 445 } 446 UcnVal <<= 4; 447 UcnVal |= CharVal; 448 Count++; 449 } 450 451 if (Overflow) { 452 if (Diags) 453 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 454 diag::err_escape_too_large) 455 << 0; 456 return false; 457 } 458 459 if (Delimited && !EndDelimiterFound) { 460 if (Diags) { 461 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 462 diag::err_expected) 463 << tok::r_brace; 464 } 465 return false; 466 } 467 468 // If we didn't consume the proper number of digits, there is a problem. 469 if (Count == 0 || (!Delimited && Count != UcnLen)) { 470 if (Diags) 471 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 472 Delimited ? diag::err_delimited_escape_empty 473 : diag::err_ucn_escape_incomplete); 474 return false; 475 } 476 return !HasError; 477 } 478 479 static void DiagnoseInvalidUnicodeCharacterName( 480 DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc, 481 const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, 482 llvm::StringRef Name) { 483 484 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 485 diag::err_invalid_ucn_name) 486 << Name; 487 488 namespace u = llvm::sys::unicode; 489 490 llvm::Optional<u::LooseMatchingResult> Res = 491 u::nameToCodepointLooseMatching(Name); 492 if (Res) { 493 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 494 diag::note_invalid_ucn_name_loose_matching) 495 << FixItHint::CreateReplacement( 496 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin, 497 TokRangeEnd), 498 Res->Name); 499 return; 500 } 501 502 unsigned Distance = 0; 503 SmallVector<u::MatchForCodepointName> Matches = 504 u::nearestMatchesForCodepointName(Name, 5); 505 assert(!Matches.empty() && "No unicode characters found"); 506 507 for (const auto &Match : Matches) { 508 if (Distance == 0) 509 Distance = Match.Distance; 510 if (std::max(Distance, Match.Distance) - 511 std::min(Distance, Match.Distance) > 512 3) 513 break; 514 Distance = Match.Distance; 515 516 std::string Str; 517 llvm::UTF32 V = Match.Value; 518 LLVM_ATTRIBUTE_UNUSED bool Converted = 519 llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str); 520 assert(Converted && "Found a match wich is not a unicode character"); 521 522 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 523 diag::note_invalid_ucn_name_candidate) 524 << Match.Name << llvm::utohexstr(Match.Value) 525 << Str // FIXME: Fix the rendering of non printable characters 526 << FixItHint::CreateReplacement( 527 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin, 528 TokRangeEnd), 529 Match.Name); 530 } 531 } 532 533 static bool ProcessNamedUCNEscape(const char *ThisTokBegin, 534 const char *&ThisTokBuf, 535 const char *ThisTokEnd, uint32_t &UcnVal, 536 unsigned short &UcnLen, FullSourceLoc Loc, 537 DiagnosticsEngine *Diags, 538 const LangOptions &Features) { 539 const char *UcnBegin = ThisTokBuf; 540 assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N'); 541 ThisTokBuf += 2; 542 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { 543 if (Diags) { 544 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 545 diag::err_delimited_escape_missing_brace) 546 << StringRef(&ThisTokBuf[-1], 1); 547 } 548 ThisTokBuf++; 549 return false; 550 } 551 ThisTokBuf++; 552 const char *ClosingBrace = 553 std::find_if_not(ThisTokBuf, ThisTokEnd, [](char C) { 554 return llvm::isAlnum(C) || llvm::isSpace(C) || C == '_' || C == '-'; 555 }); 556 bool Incomplete = ClosingBrace == ThisTokEnd || *ClosingBrace != '}'; 557 bool Empty = ClosingBrace == ThisTokBuf; 558 if (Incomplete || Empty) { 559 if (Diags) { 560 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 561 Incomplete ? diag::err_ucn_escape_incomplete 562 : diag::err_delimited_escape_empty) 563 << StringRef(&UcnBegin[1], 1); 564 } 565 ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1; 566 return false; 567 } 568 StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf); 569 ThisTokBuf = ClosingBrace + 1; 570 llvm::Optional<char32_t> Res = 571 llvm::sys::unicode::nameToCodepointStrict(Name); 572 if (!Res) { 573 if (Diags) 574 DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin, 575 &UcnBegin[3], ClosingBrace, Name); 576 return false; 577 } 578 UcnVal = *Res; 579 UcnLen = UcnVal > 0xFFFF ? 8 : 4; 580 return true; 581 } 582 583 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and 584 /// return the UTF32. 585 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 586 const char *ThisTokEnd, uint32_t &UcnVal, 587 unsigned short &UcnLen, FullSourceLoc Loc, 588 DiagnosticsEngine *Diags, 589 const LangOptions &Features, 590 bool in_char_string_literal = false) { 591 592 bool HasError; 593 const char *UcnBegin = ThisTokBuf; 594 bool IsDelimitedEscapeSequence = false; 595 bool IsNamedEscapeSequence = false; 596 if (ThisTokBuf[1] == 'N') { 597 IsNamedEscapeSequence = true; 598 HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, 599 UcnVal, UcnLen, Loc, Diags, Features); 600 } else { 601 HasError = 602 !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, 603 UcnLen, IsDelimitedEscapeSequence, Loc, Diags, 604 Features, in_char_string_literal); 605 } 606 if (HasError) 607 return false; 608 609 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2] 610 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints 611 UcnVal > 0x10FFFF) { // maximum legal UTF32 value 612 if (Diags) 613 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 614 diag::err_ucn_escape_invalid); 615 return false; 616 } 617 618 // C++11 allows UCNs that refer to control characters and basic source 619 // characters inside character and string literals 620 if (UcnVal < 0xa0 && 621 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, ` 622 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal); 623 if (Diags) { 624 char BasicSCSChar = UcnVal; 625 if (UcnVal >= 0x20 && UcnVal < 0x7f) 626 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 627 IsError ? diag::err_ucn_escape_basic_scs : 628 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs) 629 << StringRef(&BasicSCSChar, 1); 630 else 631 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 632 IsError ? diag::err_ucn_control_character : 633 diag::warn_cxx98_compat_literal_ucn_control_character); 634 } 635 if (IsError) 636 return false; 637 } 638 639 if (!Features.CPlusPlus && !Features.C99 && Diags) 640 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 641 diag::warn_ucn_not_valid_in_c89_literal); 642 643 if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags) 644 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 645 Features.CPlusPlus2b ? diag::warn_cxx2b_delimited_escape_sequence 646 : diag::ext_delimited_escape_sequence) 647 << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0); 648 649 return true; 650 } 651 652 /// MeasureUCNEscape - Determine the number of bytes within the resulting string 653 /// which this UCN will occupy. 654 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 655 const char *ThisTokEnd, unsigned CharByteWidth, 656 const LangOptions &Features, bool &HadError) { 657 // UTF-32: 4 bytes per escape. 658 if (CharByteWidth == 4) 659 return 4; 660 661 uint32_t UcnVal = 0; 662 unsigned short UcnLen = 0; 663 FullSourceLoc Loc; 664 665 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, 666 UcnLen, Loc, nullptr, Features, true)) { 667 HadError = true; 668 return 0; 669 } 670 671 // UTF-16: 2 bytes for BMP, 4 bytes otherwise. 672 if (CharByteWidth == 2) 673 return UcnVal <= 0xFFFF ? 2 : 4; 674 675 // UTF-8. 676 if (UcnVal < 0x80) 677 return 1; 678 if (UcnVal < 0x800) 679 return 2; 680 if (UcnVal < 0x10000) 681 return 3; 682 return 4; 683 } 684 685 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and 686 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of 687 /// StringLiteralParser. When we decide to implement UCN's for identifiers, 688 /// we will likely rework our support for UCN's. 689 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 690 const char *ThisTokEnd, 691 char *&ResultBuf, bool &HadError, 692 FullSourceLoc Loc, unsigned CharByteWidth, 693 DiagnosticsEngine *Diags, 694 const LangOptions &Features) { 695 typedef uint32_t UTF32; 696 UTF32 UcnVal = 0; 697 unsigned short UcnLen = 0; 698 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, 699 Loc, Diags, Features, true)) { 700 HadError = true; 701 return; 702 } 703 704 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 705 "only character widths of 1, 2, or 4 bytes supported"); 706 707 (void)UcnLen; 708 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported"); 709 710 if (CharByteWidth == 4) { 711 // FIXME: Make the type of the result buffer correct instead of 712 // using reinterpret_cast. 713 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf); 714 *ResultPtr = UcnVal; 715 ResultBuf += 4; 716 return; 717 } 718 719 if (CharByteWidth == 2) { 720 // FIXME: Make the type of the result buffer correct instead of 721 // using reinterpret_cast. 722 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf); 723 724 if (UcnVal <= (UTF32)0xFFFF) { 725 *ResultPtr = UcnVal; 726 ResultBuf += 2; 727 return; 728 } 729 730 // Convert to UTF16. 731 UcnVal -= 0x10000; 732 *ResultPtr = 0xD800 + (UcnVal >> 10); 733 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF); 734 ResultBuf += 4; 735 return; 736 } 737 738 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters"); 739 740 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8. 741 // The conversion below was inspired by: 742 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c 743 // First, we determine how many bytes the result will require. 744 typedef uint8_t UTF8; 745 746 unsigned short bytesToWrite = 0; 747 if (UcnVal < (UTF32)0x80) 748 bytesToWrite = 1; 749 else if (UcnVal < (UTF32)0x800) 750 bytesToWrite = 2; 751 else if (UcnVal < (UTF32)0x10000) 752 bytesToWrite = 3; 753 else 754 bytesToWrite = 4; 755 756 const unsigned byteMask = 0xBF; 757 const unsigned byteMark = 0x80; 758 759 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed 760 // into the first byte, depending on how many bytes follow. 761 static const UTF8 firstByteMark[5] = { 762 0x00, 0x00, 0xC0, 0xE0, 0xF0 763 }; 764 // Finally, we write the bytes into ResultBuf. 765 ResultBuf += bytesToWrite; 766 switch (bytesToWrite) { // note: everything falls through. 767 case 4: 768 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 769 LLVM_FALLTHROUGH; 770 case 3: 771 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 772 LLVM_FALLTHROUGH; 773 case 2: 774 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 775 LLVM_FALLTHROUGH; 776 case 1: 777 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]); 778 } 779 // Update the buffer. 780 ResultBuf += bytesToWrite; 781 } 782 783 /// integer-constant: [C99 6.4.4.1] 784 /// decimal-constant integer-suffix 785 /// octal-constant integer-suffix 786 /// hexadecimal-constant integer-suffix 787 /// binary-literal integer-suffix [GNU, C++1y] 788 /// user-defined-integer-literal: [C++11 lex.ext] 789 /// decimal-literal ud-suffix 790 /// octal-literal ud-suffix 791 /// hexadecimal-literal ud-suffix 792 /// binary-literal ud-suffix [GNU, C++1y] 793 /// decimal-constant: 794 /// nonzero-digit 795 /// decimal-constant digit 796 /// octal-constant: 797 /// 0 798 /// octal-constant octal-digit 799 /// hexadecimal-constant: 800 /// hexadecimal-prefix hexadecimal-digit 801 /// hexadecimal-constant hexadecimal-digit 802 /// hexadecimal-prefix: one of 803 /// 0x 0X 804 /// binary-literal: 805 /// 0b binary-digit 806 /// 0B binary-digit 807 /// binary-literal binary-digit 808 /// integer-suffix: 809 /// unsigned-suffix [long-suffix] 810 /// unsigned-suffix [long-long-suffix] 811 /// long-suffix [unsigned-suffix] 812 /// long-long-suffix [unsigned-sufix] 813 /// nonzero-digit: 814 /// 1 2 3 4 5 6 7 8 9 815 /// octal-digit: 816 /// 0 1 2 3 4 5 6 7 817 /// hexadecimal-digit: 818 /// 0 1 2 3 4 5 6 7 8 9 819 /// a b c d e f 820 /// A B C D E F 821 /// binary-digit: 822 /// 0 823 /// 1 824 /// unsigned-suffix: one of 825 /// u U 826 /// long-suffix: one of 827 /// l L 828 /// long-long-suffix: one of 829 /// ll LL 830 /// 831 /// floating-constant: [C99 6.4.4.2] 832 /// TODO: add rules... 833 /// 834 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling, 835 SourceLocation TokLoc, 836 const SourceManager &SM, 837 const LangOptions &LangOpts, 838 const TargetInfo &Target, 839 DiagnosticsEngine &Diags) 840 : SM(SM), LangOpts(LangOpts), Diags(Diags), 841 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) { 842 843 s = DigitsBegin = ThisTokBegin; 844 saw_exponent = false; 845 saw_period = false; 846 saw_ud_suffix = false; 847 saw_fixed_point_suffix = false; 848 isLong = false; 849 isUnsigned = false; 850 isLongLong = false; 851 isSizeT = false; 852 isHalf = false; 853 isFloat = false; 854 isImaginary = false; 855 isFloat16 = false; 856 isFloat128 = false; 857 MicrosoftInteger = 0; 858 isFract = false; 859 isAccum = false; 860 hadError = false; 861 isBitInt = false; 862 863 // This routine assumes that the range begin/end matches the regex for integer 864 // and FP constants (specifically, the 'pp-number' regex), and assumes that 865 // the byte at "*end" is both valid and not part of the regex. Because of 866 // this, it doesn't have to check for 'overscan' in various places. 867 if (isPreprocessingNumberBody(*ThisTokEnd)) { 868 Diags.Report(TokLoc, diag::err_lexing_numeric); 869 hadError = true; 870 return; 871 } 872 873 if (*s == '0') { // parse radix 874 ParseNumberStartingWithZero(TokLoc); 875 if (hadError) 876 return; 877 } else { // the first digit is non-zero 878 radix = 10; 879 s = SkipDigits(s); 880 if (s == ThisTokEnd) { 881 // Done. 882 } else { 883 ParseDecimalOrOctalCommon(TokLoc); 884 if (hadError) 885 return; 886 } 887 } 888 889 SuffixBegin = s; 890 checkSeparator(TokLoc, s, CSK_AfterDigits); 891 892 // Initial scan to lookahead for fixed point suffix. 893 if (LangOpts.FixedPoint) { 894 for (const char *c = s; c != ThisTokEnd; ++c) { 895 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') { 896 saw_fixed_point_suffix = true; 897 break; 898 } 899 } 900 } 901 902 // Parse the suffix. At this point we can classify whether we have an FP or 903 // integer constant. 904 bool isFixedPointConstant = isFixedPointLiteral(); 905 bool isFPConstant = isFloatingLiteral(); 906 bool HasSize = false; 907 908 // Loop over all of the characters of the suffix. If we see something bad, 909 // we break out of the loop. 910 for (; s != ThisTokEnd; ++s) { 911 switch (*s) { 912 case 'R': 913 case 'r': 914 if (!LangOpts.FixedPoint) 915 break; 916 if (isFract || isAccum) break; 917 if (!(saw_period || saw_exponent)) break; 918 isFract = true; 919 continue; 920 case 'K': 921 case 'k': 922 if (!LangOpts.FixedPoint) 923 break; 924 if (isFract || isAccum) break; 925 if (!(saw_period || saw_exponent)) break; 926 isAccum = true; 927 continue; 928 case 'h': // FP Suffix for "half". 929 case 'H': 930 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type. 931 if (!(LangOpts.Half || LangOpts.FixedPoint)) 932 break; 933 if (isIntegerLiteral()) break; // Error for integer constant. 934 if (HasSize) 935 break; 936 HasSize = true; 937 isHalf = true; 938 continue; // Success. 939 case 'f': // FP Suffix for "float" 940 case 'F': 941 if (!isFPConstant) break; // Error for integer constant. 942 if (HasSize) 943 break; 944 HasSize = true; 945 946 // CUDA host and device may have different _Float16 support, therefore 947 // allows f16 literals to avoid false alarm. 948 // ToDo: more precise check for CUDA. 949 if ((Target.hasFloat16Type() || LangOpts.CUDA) && s + 2 < ThisTokEnd && 950 s[1] == '1' && s[2] == '6') { 951 s += 2; // success, eat up 2 characters. 952 isFloat16 = true; 953 continue; 954 } 955 956 isFloat = true; 957 continue; // Success. 958 case 'q': // FP Suffix for "__float128" 959 case 'Q': 960 if (!isFPConstant) break; // Error for integer constant. 961 if (HasSize) 962 break; 963 HasSize = true; 964 isFloat128 = true; 965 continue; // Success. 966 case 'u': 967 case 'U': 968 if (isFPConstant) break; // Error for floating constant. 969 if (isUnsigned) break; // Cannot be repeated. 970 isUnsigned = true; 971 continue; // Success. 972 case 'l': 973 case 'L': 974 if (HasSize) 975 break; 976 HasSize = true; 977 978 // Check for long long. The L's need to be adjacent and the same case. 979 if (s[1] == s[0]) { 980 assert(s + 1 < ThisTokEnd && "didn't maximally munch?"); 981 if (isFPConstant) break; // long long invalid for floats. 982 isLongLong = true; 983 ++s; // Eat both of them. 984 } else { 985 isLong = true; 986 } 987 continue; // Success. 988 case 'z': 989 case 'Z': 990 if (isFPConstant) 991 break; // Invalid for floats. 992 if (HasSize) 993 break; 994 HasSize = true; 995 isSizeT = true; 996 continue; 997 case 'i': 998 case 'I': 999 if (LangOpts.MicrosoftExt && !isFPConstant) { 1000 // Allow i8, i16, i32, and i64. First, look ahead and check if 1001 // suffixes are Microsoft integers and not the imaginary unit. 1002 uint8_t Bits = 0; 1003 size_t ToSkip = 0; 1004 switch (s[1]) { 1005 case '8': // i8 suffix 1006 Bits = 8; 1007 ToSkip = 2; 1008 break; 1009 case '1': 1010 if (s[2] == '6') { // i16 suffix 1011 Bits = 16; 1012 ToSkip = 3; 1013 } 1014 break; 1015 case '3': 1016 if (s[2] == '2') { // i32 suffix 1017 Bits = 32; 1018 ToSkip = 3; 1019 } 1020 break; 1021 case '6': 1022 if (s[2] == '4') { // i64 suffix 1023 Bits = 64; 1024 ToSkip = 3; 1025 } 1026 break; 1027 default: 1028 break; 1029 } 1030 if (Bits) { 1031 if (HasSize) 1032 break; 1033 HasSize = true; 1034 MicrosoftInteger = Bits; 1035 s += ToSkip; 1036 assert(s <= ThisTokEnd && "didn't maximally munch?"); 1037 break; 1038 } 1039 } 1040 LLVM_FALLTHROUGH; 1041 case 'j': 1042 case 'J': 1043 if (isImaginary) break; // Cannot be repeated. 1044 isImaginary = true; 1045 continue; // Success. 1046 case 'w': 1047 case 'W': 1048 if (isFPConstant) 1049 break; // Invalid for floats. 1050 if (HasSize) 1051 break; // Invalid if we already have a size for the literal. 1052 1053 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We 1054 // explicitly do not support the suffix in C++ as an extension because a 1055 // library-based UDL that resolves to a library type may be more 1056 // appropriate there. 1057 if (!LangOpts.CPlusPlus && ((s[0] == 'w' && s[1] == 'b') || 1058 (s[0] == 'W' && s[1] == 'B'))) { 1059 isBitInt = true; 1060 HasSize = true; 1061 ++s; // Skip both characters (2nd char skipped on continue). 1062 continue; // Success. 1063 } 1064 } 1065 // If we reached here, there was an error or a ud-suffix. 1066 break; 1067 } 1068 1069 // "i", "if", and "il" are user-defined suffixes in C++1y. 1070 if (s != ThisTokEnd || isImaginary) { 1071 // FIXME: Don't bother expanding UCNs if !tok.hasUCN(). 1072 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)); 1073 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) { 1074 if (!isImaginary) { 1075 // Any suffix pieces we might have parsed are actually part of the 1076 // ud-suffix. 1077 isLong = false; 1078 isUnsigned = false; 1079 isLongLong = false; 1080 isSizeT = false; 1081 isFloat = false; 1082 isFloat16 = false; 1083 isHalf = false; 1084 isImaginary = false; 1085 isBitInt = false; 1086 MicrosoftInteger = 0; 1087 saw_fixed_point_suffix = false; 1088 isFract = false; 1089 isAccum = false; 1090 } 1091 1092 saw_ud_suffix = true; 1093 return; 1094 } 1095 1096 if (s != ThisTokEnd) { 1097 // Report an error if there are any. 1098 Diags.Report(Lexer::AdvanceToTokenCharacter( 1099 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts), 1100 diag::err_invalid_suffix_constant) 1101 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) 1102 << (isFixedPointConstant ? 2 : isFPConstant); 1103 hadError = true; 1104 } 1105 } 1106 1107 if (!hadError && saw_fixed_point_suffix) { 1108 assert(isFract || isAccum); 1109 } 1110 } 1111 1112 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal 1113 /// numbers. It issues an error for illegal digits, and handles floating point 1114 /// parsing. If it detects a floating point number, the radix is set to 10. 1115 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){ 1116 assert((radix == 8 || radix == 10) && "Unexpected radix"); 1117 1118 // If we have a hex digit other than 'e' (which denotes a FP exponent) then 1119 // the code is using an incorrect base. 1120 if (isHexDigit(*s) && *s != 'e' && *s != 'E' && 1121 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 1122 Diags.Report( 1123 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts), 1124 diag::err_invalid_digit) 1125 << StringRef(s, 1) << (radix == 8 ? 1 : 0); 1126 hadError = true; 1127 return; 1128 } 1129 1130 if (*s == '.') { 1131 checkSeparator(TokLoc, s, CSK_AfterDigits); 1132 s++; 1133 radix = 10; 1134 saw_period = true; 1135 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1136 s = SkipDigits(s); // Skip suffix. 1137 } 1138 if (*s == 'e' || *s == 'E') { // exponent 1139 checkSeparator(TokLoc, s, CSK_AfterDigits); 1140 const char *Exponent = s; 1141 s++; 1142 radix = 10; 1143 saw_exponent = true; 1144 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 1145 const char *first_non_digit = SkipDigits(s); 1146 if (containsDigits(s, first_non_digit)) { 1147 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1148 s = first_non_digit; 1149 } else { 1150 if (!hadError) { 1151 Diags.Report(Lexer::AdvanceToTokenCharacter( 1152 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1153 diag::err_exponent_has_no_digits); 1154 hadError = true; 1155 } 1156 return; 1157 } 1158 } 1159 } 1160 1161 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 1162 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 1163 /// treat it as an invalid suffix. 1164 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 1165 StringRef Suffix) { 1166 if (!LangOpts.CPlusPlus11 || Suffix.empty()) 1167 return false; 1168 1169 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid. 1170 if (Suffix[0] == '_') 1171 return true; 1172 1173 // In C++11, there are no library suffixes. 1174 if (!LangOpts.CPlusPlus14) 1175 return false; 1176 1177 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library. 1178 // Per tweaked N3660, "il", "i", and "if" are also used in the library. 1179 // In C++2a "d" and "y" are used in the library. 1180 return llvm::StringSwitch<bool>(Suffix) 1181 .Cases("h", "min", "s", true) 1182 .Cases("ms", "us", "ns", true) 1183 .Cases("il", "i", "if", true) 1184 .Cases("d", "y", LangOpts.CPlusPlus20) 1185 .Default(false); 1186 } 1187 1188 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc, 1189 const char *Pos, 1190 CheckSeparatorKind IsAfterDigits) { 1191 if (IsAfterDigits == CSK_AfterDigits) { 1192 if (Pos == ThisTokBegin) 1193 return; 1194 --Pos; 1195 } else if (Pos == ThisTokEnd) 1196 return; 1197 1198 if (isDigitSeparator(*Pos)) { 1199 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM, 1200 LangOpts), 1201 diag::err_digit_separator_not_between_digits) 1202 << IsAfterDigits; 1203 hadError = true; 1204 } 1205 } 1206 1207 /// ParseNumberStartingWithZero - This method is called when the first character 1208 /// of the number is found to be a zero. This means it is either an octal 1209 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or 1210 /// a floating point number (01239.123e4). Eat the prefix, determining the 1211 /// radix etc. 1212 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) { 1213 assert(s[0] == '0' && "Invalid method call"); 1214 s++; 1215 1216 int c1 = s[0]; 1217 1218 // Handle a hex number like 0x1234. 1219 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) { 1220 s++; 1221 assert(s < ThisTokEnd && "didn't maximally munch?"); 1222 radix = 16; 1223 DigitsBegin = s; 1224 s = SkipHexDigits(s); 1225 bool HasSignificandDigits = containsDigits(DigitsBegin, s); 1226 if (s == ThisTokEnd) { 1227 // Done. 1228 } else if (*s == '.') { 1229 s++; 1230 saw_period = true; 1231 const char *floatDigitsBegin = s; 1232 s = SkipHexDigits(s); 1233 if (containsDigits(floatDigitsBegin, s)) 1234 HasSignificandDigits = true; 1235 if (HasSignificandDigits) 1236 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits); 1237 } 1238 1239 if (!HasSignificandDigits) { 1240 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1241 LangOpts), 1242 diag::err_hex_constant_requires) 1243 << LangOpts.CPlusPlus << 1; 1244 hadError = true; 1245 return; 1246 } 1247 1248 // A binary exponent can appear with or with a '.'. If dotted, the 1249 // binary exponent is required. 1250 if (*s == 'p' || *s == 'P') { 1251 checkSeparator(TokLoc, s, CSK_AfterDigits); 1252 const char *Exponent = s; 1253 s++; 1254 saw_exponent = true; 1255 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 1256 const char *first_non_digit = SkipDigits(s); 1257 if (!containsDigits(s, first_non_digit)) { 1258 if (!hadError) { 1259 Diags.Report(Lexer::AdvanceToTokenCharacter( 1260 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1261 diag::err_exponent_has_no_digits); 1262 hadError = true; 1263 } 1264 return; 1265 } 1266 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1267 s = first_non_digit; 1268 1269 if (!LangOpts.HexFloats) 1270 Diags.Report(TokLoc, LangOpts.CPlusPlus 1271 ? diag::ext_hex_literal_invalid 1272 : diag::ext_hex_constant_invalid); 1273 else if (LangOpts.CPlusPlus17) 1274 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal); 1275 } else if (saw_period) { 1276 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1277 LangOpts), 1278 diag::err_hex_constant_requires) 1279 << LangOpts.CPlusPlus << 0; 1280 hadError = true; 1281 } 1282 return; 1283 } 1284 1285 // Handle simple binary numbers 0b01010 1286 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) { 1287 // 0b101010 is a C++1y / GCC extension. 1288 Diags.Report(TokLoc, LangOpts.CPlusPlus14 1289 ? diag::warn_cxx11_compat_binary_literal 1290 : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14 1291 : diag::ext_binary_literal); 1292 ++s; 1293 assert(s < ThisTokEnd && "didn't maximally munch?"); 1294 radix = 2; 1295 DigitsBegin = s; 1296 s = SkipBinaryDigits(s); 1297 if (s == ThisTokEnd) { 1298 // Done. 1299 } else if (isHexDigit(*s) && 1300 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 1301 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1302 LangOpts), 1303 diag::err_invalid_digit) 1304 << StringRef(s, 1) << 2; 1305 hadError = true; 1306 } 1307 // Other suffixes will be diagnosed by the caller. 1308 return; 1309 } 1310 1311 // For now, the radix is set to 8. If we discover that we have a 1312 // floating point constant, the radix will change to 10. Octal floating 1313 // point constants are not permitted (only decimal and hexadecimal). 1314 radix = 8; 1315 const char *PossibleNewDigitStart = s; 1316 s = SkipOctalDigits(s); 1317 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0 1318 // as the start of the digits. So if skipping octal digits does not skip 1319 // anything, we leave the digit start where it was. 1320 if (s != PossibleNewDigitStart) 1321 DigitsBegin = PossibleNewDigitStart; 1322 1323 if (s == ThisTokEnd) 1324 return; // Done, simple octal number like 01234 1325 1326 // If we have some other non-octal digit that *is* a decimal digit, see if 1327 // this is part of a floating point number like 094.123 or 09e1. 1328 if (isDigit(*s)) { 1329 const char *EndDecimal = SkipDigits(s); 1330 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') { 1331 s = EndDecimal; 1332 radix = 10; 1333 } 1334 } 1335 1336 ParseDecimalOrOctalCommon(TokLoc); 1337 } 1338 1339 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) { 1340 switch (Radix) { 1341 case 2: 1342 return NumDigits <= 64; 1343 case 8: 1344 return NumDigits <= 64 / 3; // Digits are groups of 3 bits. 1345 case 10: 1346 return NumDigits <= 19; // floor(log10(2^64)) 1347 case 16: 1348 return NumDigits <= 64 / 4; // Digits are groups of 4 bits. 1349 default: 1350 llvm_unreachable("impossible Radix"); 1351 } 1352 } 1353 1354 /// GetIntegerValue - Convert this numeric literal value to an APInt that 1355 /// matches Val's input width. If there is an overflow, set Val to the low bits 1356 /// of the result and return true. Otherwise, return false. 1357 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) { 1358 // Fast path: Compute a conservative bound on the maximum number of 1359 // bits per digit in this radix. If we can't possibly overflow a 1360 // uint64 based on that bound then do the simple conversion to 1361 // integer. This avoids the expensive overflow checking below, and 1362 // handles the common cases that matter (small decimal integers and 1363 // hex/octal values which don't overflow). 1364 const unsigned NumDigits = SuffixBegin - DigitsBegin; 1365 if (alwaysFitsInto64Bits(radix, NumDigits)) { 1366 uint64_t N = 0; 1367 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr) 1368 if (!isDigitSeparator(*Ptr)) 1369 N = N * radix + llvm::hexDigitValue(*Ptr); 1370 1371 // This will truncate the value to Val's input width. Simply check 1372 // for overflow by comparing. 1373 Val = N; 1374 return Val.getZExtValue() != N; 1375 } 1376 1377 Val = 0; 1378 const char *Ptr = DigitsBegin; 1379 1380 llvm::APInt RadixVal(Val.getBitWidth(), radix); 1381 llvm::APInt CharVal(Val.getBitWidth(), 0); 1382 llvm::APInt OldVal = Val; 1383 1384 bool OverflowOccurred = false; 1385 while (Ptr < SuffixBegin) { 1386 if (isDigitSeparator(*Ptr)) { 1387 ++Ptr; 1388 continue; 1389 } 1390 1391 unsigned C = llvm::hexDigitValue(*Ptr++); 1392 1393 // If this letter is out of bound for this radix, reject it. 1394 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1395 1396 CharVal = C; 1397 1398 // Add the digit to the value in the appropriate radix. If adding in digits 1399 // made the value smaller, then this overflowed. 1400 OldVal = Val; 1401 1402 // Multiply by radix, did overflow occur on the multiply? 1403 Val *= RadixVal; 1404 OverflowOccurred |= Val.udiv(RadixVal) != OldVal; 1405 1406 // Add value, did overflow occur on the value? 1407 // (a + b) ult b <=> overflow 1408 Val += CharVal; 1409 OverflowOccurred |= Val.ult(CharVal); 1410 } 1411 return OverflowOccurred; 1412 } 1413 1414 llvm::APFloat::opStatus 1415 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) { 1416 using llvm::APFloat; 1417 1418 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin); 1419 1420 llvm::SmallString<16> Buffer; 1421 StringRef Str(ThisTokBegin, n); 1422 if (Str.contains('\'')) { 1423 Buffer.reserve(n); 1424 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer), 1425 &isDigitSeparator); 1426 Str = Buffer; 1427 } 1428 1429 auto StatusOrErr = 1430 Result.convertFromString(Str, APFloat::rmNearestTiesToEven); 1431 assert(StatusOrErr && "Invalid floating point representation"); 1432 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr 1433 : APFloat::opInvalidOp; 1434 } 1435 1436 static inline bool IsExponentPart(char c) { 1437 return c == 'p' || c == 'P' || c == 'e' || c == 'E'; 1438 } 1439 1440 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) { 1441 assert(radix == 16 || radix == 10); 1442 1443 // Find how many digits are needed to store the whole literal. 1444 unsigned NumDigits = SuffixBegin - DigitsBegin; 1445 if (saw_period) --NumDigits; 1446 1447 // Initial scan of the exponent if it exists 1448 bool ExpOverflowOccurred = false; 1449 bool NegativeExponent = false; 1450 const char *ExponentBegin; 1451 uint64_t Exponent = 0; 1452 int64_t BaseShift = 0; 1453 if (saw_exponent) { 1454 const char *Ptr = DigitsBegin; 1455 1456 while (!IsExponentPart(*Ptr)) ++Ptr; 1457 ExponentBegin = Ptr; 1458 ++Ptr; 1459 NegativeExponent = *Ptr == '-'; 1460 if (NegativeExponent) ++Ptr; 1461 1462 unsigned NumExpDigits = SuffixBegin - Ptr; 1463 if (alwaysFitsInto64Bits(radix, NumExpDigits)) { 1464 llvm::StringRef ExpStr(Ptr, NumExpDigits); 1465 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10); 1466 Exponent = ExpInt.getZExtValue(); 1467 } else { 1468 ExpOverflowOccurred = true; 1469 } 1470 1471 if (NegativeExponent) BaseShift -= Exponent; 1472 else BaseShift += Exponent; 1473 } 1474 1475 // Number of bits needed for decimal literal is 1476 // ceil(NumDigits * log2(10)) Integral part 1477 // + Scale Fractional part 1478 // + ceil(Exponent * log2(10)) Exponent 1479 // -------------------------------------------------- 1480 // ceil((NumDigits + Exponent) * log2(10)) + Scale 1481 // 1482 // But for simplicity in handling integers, we can round up log2(10) to 4, 1483 // making: 1484 // 4 * (NumDigits + Exponent) + Scale 1485 // 1486 // Number of digits needed for hexadecimal literal is 1487 // 4 * NumDigits Integral part 1488 // + Scale Fractional part 1489 // + Exponent Exponent 1490 // -------------------------------------------------- 1491 // (4 * NumDigits) + Scale + Exponent 1492 uint64_t NumBitsNeeded; 1493 if (radix == 10) 1494 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale; 1495 else 1496 NumBitsNeeded = 4 * NumDigits + Exponent + Scale; 1497 1498 if (NumBitsNeeded > std::numeric_limits<unsigned>::max()) 1499 ExpOverflowOccurred = true; 1500 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false); 1501 1502 bool FoundDecimal = false; 1503 1504 int64_t FractBaseShift = 0; 1505 const char *End = saw_exponent ? ExponentBegin : SuffixBegin; 1506 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) { 1507 if (*Ptr == '.') { 1508 FoundDecimal = true; 1509 continue; 1510 } 1511 1512 // Normal reading of an integer 1513 unsigned C = llvm::hexDigitValue(*Ptr); 1514 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1515 1516 Val *= radix; 1517 Val += C; 1518 1519 if (FoundDecimal) 1520 // Keep track of how much we will need to adjust this value by from the 1521 // number of digits past the radix point. 1522 --FractBaseShift; 1523 } 1524 1525 // For a radix of 16, we will be multiplying by 2 instead of 16. 1526 if (radix == 16) FractBaseShift *= 4; 1527 BaseShift += FractBaseShift; 1528 1529 Val <<= Scale; 1530 1531 uint64_t Base = (radix == 16) ? 2 : 10; 1532 if (BaseShift > 0) { 1533 for (int64_t i = 0; i < BaseShift; ++i) { 1534 Val *= Base; 1535 } 1536 } else if (BaseShift < 0) { 1537 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i) 1538 Val = Val.udiv(Base); 1539 } 1540 1541 bool IntOverflowOccurred = false; 1542 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth()); 1543 if (Val.getBitWidth() > StoreVal.getBitWidth()) { 1544 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth())); 1545 StoreVal = Val.trunc(StoreVal.getBitWidth()); 1546 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) { 1547 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal); 1548 StoreVal = Val.zext(StoreVal.getBitWidth()); 1549 } else { 1550 StoreVal = Val; 1551 } 1552 1553 return IntOverflowOccurred || ExpOverflowOccurred; 1554 } 1555 1556 /// \verbatim 1557 /// user-defined-character-literal: [C++11 lex.ext] 1558 /// character-literal ud-suffix 1559 /// ud-suffix: 1560 /// identifier 1561 /// character-literal: [C++11 lex.ccon] 1562 /// ' c-char-sequence ' 1563 /// u' c-char-sequence ' 1564 /// U' c-char-sequence ' 1565 /// L' c-char-sequence ' 1566 /// u8' c-char-sequence ' [C++1z lex.ccon] 1567 /// c-char-sequence: 1568 /// c-char 1569 /// c-char-sequence c-char 1570 /// c-char: 1571 /// any member of the source character set except the single-quote ', 1572 /// backslash \, or new-line character 1573 /// escape-sequence 1574 /// universal-character-name 1575 /// escape-sequence: 1576 /// simple-escape-sequence 1577 /// octal-escape-sequence 1578 /// hexadecimal-escape-sequence 1579 /// simple-escape-sequence: 1580 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1581 /// octal-escape-sequence: 1582 /// \ octal-digit 1583 /// \ octal-digit octal-digit 1584 /// \ octal-digit octal-digit octal-digit 1585 /// hexadecimal-escape-sequence: 1586 /// \x hexadecimal-digit 1587 /// hexadecimal-escape-sequence hexadecimal-digit 1588 /// universal-character-name: [C++11 lex.charset] 1589 /// \u hex-quad 1590 /// \U hex-quad hex-quad 1591 /// hex-quad: 1592 /// hex-digit hex-digit hex-digit hex-digit 1593 /// \endverbatim 1594 /// 1595 CharLiteralParser::CharLiteralParser(const char *begin, const char *end, 1596 SourceLocation Loc, Preprocessor &PP, 1597 tok::TokenKind kind) { 1598 // At this point we know that the character matches the regex "(L|u|U)?'.*'". 1599 HadError = false; 1600 1601 Kind = kind; 1602 1603 const char *TokBegin = begin; 1604 1605 // Skip over wide character determinant. 1606 if (Kind != tok::char_constant) 1607 ++begin; 1608 if (Kind == tok::utf8_char_constant) 1609 ++begin; 1610 1611 // Skip over the entry quote. 1612 if (begin[0] != '\'') { 1613 PP.Diag(Loc, diag::err_lexing_char); 1614 HadError = true; 1615 return; 1616 } 1617 1618 ++begin; 1619 1620 // Remove an optional ud-suffix. 1621 if (end[-1] != '\'') { 1622 const char *UDSuffixEnd = end; 1623 do { 1624 --end; 1625 } while (end[-1] != '\''); 1626 // FIXME: Don't bother with this if !tok.hasUCN(). 1627 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end)); 1628 UDSuffixOffset = end - TokBegin; 1629 } 1630 1631 // Trim the ending quote. 1632 assert(end != begin && "Invalid token lexed"); 1633 --end; 1634 1635 // FIXME: The "Value" is an uint64_t so we can handle char literals of 1636 // up to 64-bits. 1637 // FIXME: This extensively assumes that 'char' is 8-bits. 1638 assert(PP.getTargetInfo().getCharWidth() == 8 && 1639 "Assumes char is 8 bits"); 1640 assert(PP.getTargetInfo().getIntWidth() <= 64 && 1641 (PP.getTargetInfo().getIntWidth() & 7) == 0 && 1642 "Assumes sizeof(int) on target is <= 64 and a multiple of char"); 1643 assert(PP.getTargetInfo().getWCharWidth() <= 64 && 1644 "Assumes sizeof(wchar) on target is <= 64"); 1645 1646 SmallVector<uint32_t, 4> codepoint_buffer; 1647 codepoint_buffer.resize(end - begin); 1648 uint32_t *buffer_begin = &codepoint_buffer.front(); 1649 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size(); 1650 1651 // Unicode escapes representing characters that cannot be correctly 1652 // represented in a single code unit are disallowed in character literals 1653 // by this implementation. 1654 uint32_t largest_character_for_kind; 1655 if (tok::wide_char_constant == Kind) { 1656 largest_character_for_kind = 1657 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth()); 1658 } else if (tok::utf8_char_constant == Kind) { 1659 largest_character_for_kind = 0x7F; 1660 } else if (tok::utf16_char_constant == Kind) { 1661 largest_character_for_kind = 0xFFFF; 1662 } else if (tok::utf32_char_constant == Kind) { 1663 largest_character_for_kind = 0x10FFFF; 1664 } else { 1665 largest_character_for_kind = 0x7Fu; 1666 } 1667 1668 while (begin != end) { 1669 // Is this a span of non-escape characters? 1670 if (begin[0] != '\\') { 1671 char const *start = begin; 1672 do { 1673 ++begin; 1674 } while (begin != end && *begin != '\\'); 1675 1676 char const *tmp_in_start = start; 1677 uint32_t *tmp_out_start = buffer_begin; 1678 llvm::ConversionResult res = 1679 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start), 1680 reinterpret_cast<llvm::UTF8 const *>(begin), 1681 &buffer_begin, buffer_end, llvm::strictConversion); 1682 if (res != llvm::conversionOK) { 1683 // If we see bad encoding for unprefixed character literals, warn and 1684 // simply copy the byte values, for compatibility with gcc and 1685 // older versions of clang. 1686 bool NoErrorOnBadEncoding = isOrdinary(); 1687 unsigned Msg = diag::err_bad_character_encoding; 1688 if (NoErrorOnBadEncoding) 1689 Msg = diag::warn_bad_character_encoding; 1690 PP.Diag(Loc, Msg); 1691 if (NoErrorOnBadEncoding) { 1692 start = tmp_in_start; 1693 buffer_begin = tmp_out_start; 1694 for (; start != begin; ++start, ++buffer_begin) 1695 *buffer_begin = static_cast<uint8_t>(*start); 1696 } else { 1697 HadError = true; 1698 } 1699 } else { 1700 for (; tmp_out_start < buffer_begin; ++tmp_out_start) { 1701 if (*tmp_out_start > largest_character_for_kind) { 1702 HadError = true; 1703 PP.Diag(Loc, diag::err_character_too_large); 1704 } 1705 } 1706 } 1707 1708 continue; 1709 } 1710 // Is this a Universal Character Name escape? 1711 if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') { 1712 unsigned short UcnLen = 0; 1713 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen, 1714 FullSourceLoc(Loc, PP.getSourceManager()), 1715 &PP.getDiagnostics(), PP.getLangOpts(), true)) { 1716 HadError = true; 1717 } else if (*buffer_begin > largest_character_for_kind) { 1718 HadError = true; 1719 PP.Diag(Loc, diag::err_character_too_large); 1720 } 1721 1722 ++buffer_begin; 1723 continue; 1724 } 1725 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo()); 1726 uint64_t result = 1727 ProcessCharEscape(TokBegin, begin, end, HadError, 1728 FullSourceLoc(Loc,PP.getSourceManager()), 1729 CharWidth, &PP.getDiagnostics(), PP.getLangOpts()); 1730 *buffer_begin++ = result; 1731 } 1732 1733 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front(); 1734 1735 if (NumCharsSoFar > 1) { 1736 if (isOrdinary() && NumCharsSoFar == 4) 1737 PP.Diag(Loc, diag::warn_four_char_character_literal); 1738 else if (isOrdinary()) 1739 PP.Diag(Loc, diag::warn_multichar_character_literal); 1740 else { 1741 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1); 1742 HadError = true; 1743 } 1744 IsMultiChar = true; 1745 } else { 1746 IsMultiChar = false; 1747 } 1748 1749 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0); 1750 1751 // Narrow character literals act as though their value is concatenated 1752 // in this implementation, but warn on overflow. 1753 bool multi_char_too_long = false; 1754 if (isOrdinary() && isMultiChar()) { 1755 LitVal = 0; 1756 for (size_t i = 0; i < NumCharsSoFar; ++i) { 1757 // check for enough leading zeros to shift into 1758 multi_char_too_long |= (LitVal.countLeadingZeros() < 8); 1759 LitVal <<= 8; 1760 LitVal = LitVal + (codepoint_buffer[i] & 0xFF); 1761 } 1762 } else if (NumCharsSoFar > 0) { 1763 // otherwise just take the last character 1764 LitVal = buffer_begin[-1]; 1765 } 1766 1767 if (!HadError && multi_char_too_long) { 1768 PP.Diag(Loc, diag::warn_char_constant_too_large); 1769 } 1770 1771 // Transfer the value from APInt to uint64_t 1772 Value = LitVal.getZExtValue(); 1773 1774 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1") 1775 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple 1776 // character constants are not sign extended in the this implementation: 1777 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC. 1778 if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) && 1779 PP.getLangOpts().CharIsSigned) 1780 Value = (signed char)Value; 1781 } 1782 1783 /// \verbatim 1784 /// string-literal: [C++0x lex.string] 1785 /// encoding-prefix " [s-char-sequence] " 1786 /// encoding-prefix R raw-string 1787 /// encoding-prefix: 1788 /// u8 1789 /// u 1790 /// U 1791 /// L 1792 /// s-char-sequence: 1793 /// s-char 1794 /// s-char-sequence s-char 1795 /// s-char: 1796 /// any member of the source character set except the double-quote ", 1797 /// backslash \, or new-line character 1798 /// escape-sequence 1799 /// universal-character-name 1800 /// raw-string: 1801 /// " d-char-sequence ( r-char-sequence ) d-char-sequence " 1802 /// r-char-sequence: 1803 /// r-char 1804 /// r-char-sequence r-char 1805 /// r-char: 1806 /// any member of the source character set, except a right parenthesis ) 1807 /// followed by the initial d-char-sequence (which may be empty) 1808 /// followed by a double quote ". 1809 /// d-char-sequence: 1810 /// d-char 1811 /// d-char-sequence d-char 1812 /// d-char: 1813 /// any member of the basic source character set except: 1814 /// space, the left parenthesis (, the right parenthesis ), 1815 /// the backslash \, and the control characters representing horizontal 1816 /// tab, vertical tab, form feed, and newline. 1817 /// escape-sequence: [C++0x lex.ccon] 1818 /// simple-escape-sequence 1819 /// octal-escape-sequence 1820 /// hexadecimal-escape-sequence 1821 /// simple-escape-sequence: 1822 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1823 /// octal-escape-sequence: 1824 /// \ octal-digit 1825 /// \ octal-digit octal-digit 1826 /// \ octal-digit octal-digit octal-digit 1827 /// hexadecimal-escape-sequence: 1828 /// \x hexadecimal-digit 1829 /// hexadecimal-escape-sequence hexadecimal-digit 1830 /// universal-character-name: 1831 /// \u hex-quad 1832 /// \U hex-quad hex-quad 1833 /// hex-quad: 1834 /// hex-digit hex-digit hex-digit hex-digit 1835 /// \endverbatim 1836 /// 1837 StringLiteralParser:: 1838 StringLiteralParser(ArrayRef<Token> StringToks, 1839 Preprocessor &PP) 1840 : SM(PP.getSourceManager()), Features(PP.getLangOpts()), 1841 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()), 1842 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown), 1843 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) { 1844 init(StringToks); 1845 } 1846 1847 void StringLiteralParser::init(ArrayRef<Token> StringToks){ 1848 // The literal token may have come from an invalid source location (e.g. due 1849 // to a PCH error), in which case the token length will be 0. 1850 if (StringToks.empty() || StringToks[0].getLength() < 2) 1851 return DiagnoseLexingError(SourceLocation()); 1852 1853 // Scan all of the string portions, remember the max individual token length, 1854 // computing a bound on the concatenated string length, and see whether any 1855 // piece is a wide-string. If any of the string portions is a wide-string 1856 // literal, the result is a wide-string literal [C99 6.4.5p4]. 1857 assert(!StringToks.empty() && "expected at least one token"); 1858 MaxTokenLength = StringToks[0].getLength(); 1859 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!"); 1860 SizeBound = StringToks[0].getLength()-2; // -2 for "". 1861 Kind = StringToks[0].getKind(); 1862 1863 hadError = false; 1864 1865 // Implement Translation Phase #6: concatenation of string literals 1866 /// (C99 5.1.1.2p1). The common case is only one string fragment. 1867 for (unsigned i = 1; i != StringToks.size(); ++i) { 1868 if (StringToks[i].getLength() < 2) 1869 return DiagnoseLexingError(StringToks[i].getLocation()); 1870 1871 // The string could be shorter than this if it needs cleaning, but this is a 1872 // reasonable bound, which is all we need. 1873 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!"); 1874 SizeBound += StringToks[i].getLength()-2; // -2 for "". 1875 1876 // Remember maximum string piece length. 1877 if (StringToks[i].getLength() > MaxTokenLength) 1878 MaxTokenLength = StringToks[i].getLength(); 1879 1880 // Remember if we see any wide or utf-8/16/32 strings. 1881 // Also check for illegal concatenations. 1882 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) { 1883 if (isOrdinary()) { 1884 Kind = StringToks[i].getKind(); 1885 } else { 1886 if (Diags) 1887 Diags->Report(StringToks[i].getLocation(), 1888 diag::err_unsupported_string_concat); 1889 hadError = true; 1890 } 1891 } 1892 } 1893 1894 // Include space for the null terminator. 1895 ++SizeBound; 1896 1897 // TODO: K&R warning: "traditional C rejects string constant concatenation" 1898 1899 // Get the width in bytes of char/wchar_t/char16_t/char32_t 1900 CharByteWidth = getCharWidth(Kind, Target); 1901 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1902 CharByteWidth /= 8; 1903 1904 // The output buffer size needs to be large enough to hold wide characters. 1905 // This is a worst-case assumption which basically corresponds to L"" "long". 1906 SizeBound *= CharByteWidth; 1907 1908 // Size the temporary buffer to hold the result string data. 1909 ResultBuf.resize(SizeBound); 1910 1911 // Likewise, but for each string piece. 1912 SmallString<512> TokenBuf; 1913 TokenBuf.resize(MaxTokenLength); 1914 1915 // Loop over all the strings, getting their spelling, and expanding them to 1916 // wide strings as appropriate. 1917 ResultPtr = &ResultBuf[0]; // Next byte to fill in. 1918 1919 Pascal = false; 1920 1921 SourceLocation UDSuffixTokLoc; 1922 1923 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) { 1924 const char *ThisTokBuf = &TokenBuf[0]; 1925 // Get the spelling of the token, which eliminates trigraphs, etc. We know 1926 // that ThisTokBuf points to a buffer that is big enough for the whole token 1927 // and 'spelled' tokens can only shrink. 1928 bool StringInvalid = false; 1929 unsigned ThisTokLen = 1930 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features, 1931 &StringInvalid); 1932 if (StringInvalid) 1933 return DiagnoseLexingError(StringToks[i].getLocation()); 1934 1935 const char *ThisTokBegin = ThisTokBuf; 1936 const char *ThisTokEnd = ThisTokBuf+ThisTokLen; 1937 1938 // Remove an optional ud-suffix. 1939 if (ThisTokEnd[-1] != '"') { 1940 const char *UDSuffixEnd = ThisTokEnd; 1941 do { 1942 --ThisTokEnd; 1943 } while (ThisTokEnd[-1] != '"'); 1944 1945 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd); 1946 1947 if (UDSuffixBuf.empty()) { 1948 if (StringToks[i].hasUCN()) 1949 expandUCNs(UDSuffixBuf, UDSuffix); 1950 else 1951 UDSuffixBuf.assign(UDSuffix); 1952 UDSuffixToken = i; 1953 UDSuffixOffset = ThisTokEnd - ThisTokBuf; 1954 UDSuffixTokLoc = StringToks[i].getLocation(); 1955 } else { 1956 SmallString<32> ExpandedUDSuffix; 1957 if (StringToks[i].hasUCN()) { 1958 expandUCNs(ExpandedUDSuffix, UDSuffix); 1959 UDSuffix = ExpandedUDSuffix; 1960 } 1961 1962 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the 1963 // result of a concatenation involving at least one user-defined-string- 1964 // literal, all the participating user-defined-string-literals shall 1965 // have the same ud-suffix. 1966 if (UDSuffixBuf != UDSuffix) { 1967 if (Diags) { 1968 SourceLocation TokLoc = StringToks[i].getLocation(); 1969 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix) 1970 << UDSuffixBuf << UDSuffix 1971 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc) 1972 << SourceRange(TokLoc, TokLoc); 1973 } 1974 hadError = true; 1975 } 1976 } 1977 } 1978 1979 // Strip the end quote. 1980 --ThisTokEnd; 1981 1982 // TODO: Input character set mapping support. 1983 1984 // Skip marker for wide or unicode strings. 1985 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') { 1986 ++ThisTokBuf; 1987 // Skip 8 of u8 marker for utf8 strings. 1988 if (ThisTokBuf[0] == '8') 1989 ++ThisTokBuf; 1990 } 1991 1992 // Check for raw string 1993 if (ThisTokBuf[0] == 'R') { 1994 if (ThisTokBuf[1] != '"') { 1995 // The file may have come from PCH and then changed after loading the 1996 // PCH; Fail gracefully. 1997 return DiagnoseLexingError(StringToks[i].getLocation()); 1998 } 1999 ThisTokBuf += 2; // skip R" 2000 2001 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16 2002 // characters. 2003 constexpr unsigned MaxRawStrDelimLen = 16; 2004 2005 const char *Prefix = ThisTokBuf; 2006 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen && 2007 ThisTokBuf[0] != '(') 2008 ++ThisTokBuf; 2009 if (ThisTokBuf[0] != '(') 2010 return DiagnoseLexingError(StringToks[i].getLocation()); 2011 ++ThisTokBuf; // skip '(' 2012 2013 // Remove same number of characters from the end 2014 ThisTokEnd -= ThisTokBuf - Prefix; 2015 if (ThisTokEnd < ThisTokBuf) 2016 return DiagnoseLexingError(StringToks[i].getLocation()); 2017 2018 // C++14 [lex.string]p4: A source-file new-line in a raw string literal 2019 // results in a new-line in the resulting execution string-literal. 2020 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf); 2021 while (!RemainingTokenSpan.empty()) { 2022 // Split the string literal on \r\n boundaries. 2023 size_t CRLFPos = RemainingTokenSpan.find("\r\n"); 2024 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos); 2025 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos); 2026 2027 // Copy everything before the \r\n sequence into the string literal. 2028 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF)) 2029 hadError = true; 2030 2031 // Point into the \n inside the \r\n sequence and operate on the 2032 // remaining portion of the literal. 2033 RemainingTokenSpan = AfterCRLF.substr(1); 2034 } 2035 } else { 2036 if (ThisTokBuf[0] != '"') { 2037 // The file may have come from PCH and then changed after loading the 2038 // PCH; Fail gracefully. 2039 return DiagnoseLexingError(StringToks[i].getLocation()); 2040 } 2041 ++ThisTokBuf; // skip " 2042 2043 // Check if this is a pascal string 2044 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd && 2045 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') { 2046 2047 // If the \p sequence is found in the first token, we have a pascal string 2048 // Otherwise, if we already have a pascal string, ignore the first \p 2049 if (i == 0) { 2050 ++ThisTokBuf; 2051 Pascal = true; 2052 } else if (Pascal) 2053 ThisTokBuf += 2; 2054 } 2055 2056 while (ThisTokBuf != ThisTokEnd) { 2057 // Is this a span of non-escape characters? 2058 if (ThisTokBuf[0] != '\\') { 2059 const char *InStart = ThisTokBuf; 2060 do { 2061 ++ThisTokBuf; 2062 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\'); 2063 2064 // Copy the character span over. 2065 if (CopyStringFragment(StringToks[i], ThisTokBegin, 2066 StringRef(InStart, ThisTokBuf - InStart))) 2067 hadError = true; 2068 continue; 2069 } 2070 // Is this a Universal Character Name escape? 2071 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' || 2072 ThisTokBuf[1] == 'N') { 2073 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, 2074 ResultPtr, hadError, 2075 FullSourceLoc(StringToks[i].getLocation(), SM), 2076 CharByteWidth, Diags, Features); 2077 continue; 2078 } 2079 // Otherwise, this is a non-UCN escape character. Process it. 2080 unsigned ResultChar = 2081 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError, 2082 FullSourceLoc(StringToks[i].getLocation(), SM), 2083 CharByteWidth*8, Diags, Features); 2084 2085 if (CharByteWidth == 4) { 2086 // FIXME: Make the type of the result buffer correct instead of 2087 // using reinterpret_cast. 2088 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr); 2089 *ResultWidePtr = ResultChar; 2090 ResultPtr += 4; 2091 } else if (CharByteWidth == 2) { 2092 // FIXME: Make the type of the result buffer correct instead of 2093 // using reinterpret_cast. 2094 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr); 2095 *ResultWidePtr = ResultChar & 0xFFFF; 2096 ResultPtr += 2; 2097 } else { 2098 assert(CharByteWidth == 1 && "Unexpected char width"); 2099 *ResultPtr++ = ResultChar & 0xFF; 2100 } 2101 } 2102 } 2103 } 2104 2105 if (Pascal) { 2106 if (CharByteWidth == 4) { 2107 // FIXME: Make the type of the result buffer correct instead of 2108 // using reinterpret_cast. 2109 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data()); 2110 ResultWidePtr[0] = GetNumStringChars() - 1; 2111 } else if (CharByteWidth == 2) { 2112 // FIXME: Make the type of the result buffer correct instead of 2113 // using reinterpret_cast. 2114 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data()); 2115 ResultWidePtr[0] = GetNumStringChars() - 1; 2116 } else { 2117 assert(CharByteWidth == 1 && "Unexpected char width"); 2118 ResultBuf[0] = GetNumStringChars() - 1; 2119 } 2120 2121 // Verify that pascal strings aren't too large. 2122 if (GetStringLength() > 256) { 2123 if (Diags) 2124 Diags->Report(StringToks.front().getLocation(), 2125 diag::err_pascal_string_too_long) 2126 << SourceRange(StringToks.front().getLocation(), 2127 StringToks.back().getLocation()); 2128 hadError = true; 2129 return; 2130 } 2131 } else if (Diags) { 2132 // Complain if this string literal has too many characters. 2133 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509; 2134 2135 if (GetNumStringChars() > MaxChars) 2136 Diags->Report(StringToks.front().getLocation(), 2137 diag::ext_string_too_long) 2138 << GetNumStringChars() << MaxChars 2139 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0) 2140 << SourceRange(StringToks.front().getLocation(), 2141 StringToks.back().getLocation()); 2142 } 2143 } 2144 2145 static const char *resyncUTF8(const char *Err, const char *End) { 2146 if (Err == End) 2147 return End; 2148 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err); 2149 while (++Err != End && (*Err & 0xC0) == 0x80) 2150 ; 2151 return Err; 2152 } 2153 2154 /// This function copies from Fragment, which is a sequence of bytes 2155 /// within Tok's contents (which begin at TokBegin) into ResultPtr. 2156 /// Performs widening for multi-byte characters. 2157 bool StringLiteralParser::CopyStringFragment(const Token &Tok, 2158 const char *TokBegin, 2159 StringRef Fragment) { 2160 const llvm::UTF8 *ErrorPtrTmp; 2161 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp)) 2162 return false; 2163 2164 // If we see bad encoding for unprefixed string literals, warn and 2165 // simply copy the byte values, for compatibility with gcc and older 2166 // versions of clang. 2167 bool NoErrorOnBadEncoding = isOrdinary(); 2168 if (NoErrorOnBadEncoding) { 2169 memcpy(ResultPtr, Fragment.data(), Fragment.size()); 2170 ResultPtr += Fragment.size(); 2171 } 2172 2173 if (Diags) { 2174 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2175 2176 FullSourceLoc SourceLoc(Tok.getLocation(), SM); 2177 const DiagnosticBuilder &Builder = 2178 Diag(Diags, Features, SourceLoc, TokBegin, 2179 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()), 2180 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding 2181 : diag::err_bad_string_encoding); 2182 2183 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2184 StringRef NextFragment(NextStart, Fragment.end()-NextStart); 2185 2186 // Decode into a dummy buffer. 2187 SmallString<512> Dummy; 2188 Dummy.reserve(Fragment.size() * CharByteWidth); 2189 char *Ptr = Dummy.data(); 2190 2191 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) { 2192 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2193 NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2194 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin, 2195 ErrorPtr, NextStart); 2196 NextFragment = StringRef(NextStart, Fragment.end()-NextStart); 2197 } 2198 } 2199 return !NoErrorOnBadEncoding; 2200 } 2201 2202 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) { 2203 hadError = true; 2204 if (Diags) 2205 Diags->Report(Loc, diag::err_lexing_string); 2206 } 2207 2208 /// getOffsetOfStringByte - This function returns the offset of the 2209 /// specified byte of the string data represented by Token. This handles 2210 /// advancing over escape sequences in the string. 2211 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok, 2212 unsigned ByteNo) const { 2213 // Get the spelling of the token. 2214 SmallString<32> SpellingBuffer; 2215 SpellingBuffer.resize(Tok.getLength()); 2216 2217 bool StringInvalid = false; 2218 const char *SpellingPtr = &SpellingBuffer[0]; 2219 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features, 2220 &StringInvalid); 2221 if (StringInvalid) 2222 return 0; 2223 2224 const char *SpellingStart = SpellingPtr; 2225 const char *SpellingEnd = SpellingPtr+TokLen; 2226 2227 // Handle UTF-8 strings just like narrow strings. 2228 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8') 2229 SpellingPtr += 2; 2230 2231 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && 2232 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"); 2233 2234 // For raw string literals, this is easy. 2235 if (SpellingPtr[0] == 'R') { 2236 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!"); 2237 // Skip 'R"'. 2238 SpellingPtr += 2; 2239 while (*SpellingPtr != '(') { 2240 ++SpellingPtr; 2241 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal"); 2242 } 2243 // Skip '('. 2244 ++SpellingPtr; 2245 return SpellingPtr - SpellingStart + ByteNo; 2246 } 2247 2248 // Skip over the leading quote 2249 assert(SpellingPtr[0] == '"' && "Should be a string literal!"); 2250 ++SpellingPtr; 2251 2252 // Skip over bytes until we find the offset we're looking for. 2253 while (ByteNo) { 2254 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!"); 2255 2256 // Step over non-escapes simply. 2257 if (*SpellingPtr != '\\') { 2258 ++SpellingPtr; 2259 --ByteNo; 2260 continue; 2261 } 2262 2263 // Otherwise, this is an escape character. Advance over it. 2264 bool HadError = false; 2265 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' || 2266 SpellingPtr[1] == 'N') { 2267 const char *EscapePtr = SpellingPtr; 2268 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd, 2269 1, Features, HadError); 2270 if (Len > ByteNo) { 2271 // ByteNo is somewhere within the escape sequence. 2272 SpellingPtr = EscapePtr; 2273 break; 2274 } 2275 ByteNo -= Len; 2276 } else { 2277 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError, 2278 FullSourceLoc(Tok.getLocation(), SM), 2279 CharByteWidth*8, Diags, Features); 2280 --ByteNo; 2281 } 2282 assert(!HadError && "This method isn't valid on erroneous strings"); 2283 } 2284 2285 return SpellingPtr-SpellingStart; 2286 } 2287 2288 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 2289 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 2290 /// treat it as an invalid suffix. 2291 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 2292 StringRef Suffix) { 2293 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) || 2294 Suffix == "sv"; 2295 } 2296