1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the NumericLiteralParser, CharLiteralParser, and 10 // StringLiteralParser interfaces. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Lex/LiteralSupport.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/LangOptions.h" 17 #include "clang/Basic/SourceLocation.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Lex/LexDiagnostic.h" 20 #include "clang/Lex/Lexer.h" 21 #include "clang/Lex/Preprocessor.h" 22 #include "clang/Lex/Token.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/ConvertUTF.h" 28 #include "llvm/Support/Error.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include "llvm/Support/Unicode.h" 31 #include <algorithm> 32 #include <cassert> 33 #include <cstddef> 34 #include <cstdint> 35 #include <cstring> 36 #include <string> 37 38 using namespace clang; 39 40 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) { 41 switch (kind) { 42 default: llvm_unreachable("Unknown token type!"); 43 case tok::char_constant: 44 case tok::string_literal: 45 case tok::utf8_char_constant: 46 case tok::utf8_string_literal: 47 return Target.getCharWidth(); 48 case tok::wide_char_constant: 49 case tok::wide_string_literal: 50 return Target.getWCharWidth(); 51 case tok::utf16_char_constant: 52 case tok::utf16_string_literal: 53 return Target.getChar16Width(); 54 case tok::utf32_char_constant: 55 case tok::utf32_string_literal: 56 return Target.getChar32Width(); 57 } 58 } 59 60 static unsigned getEncodingPrefixLen(tok::TokenKind kind) { 61 switch (kind) { 62 default: 63 llvm_unreachable("Unknown token type!"); 64 case tok::char_constant: 65 case tok::string_literal: 66 return 0; 67 case tok::utf8_char_constant: 68 case tok::utf8_string_literal: 69 return 2; 70 case tok::wide_char_constant: 71 case tok::wide_string_literal: 72 case tok::utf16_char_constant: 73 case tok::utf16_string_literal: 74 case tok::utf32_char_constant: 75 case tok::utf32_string_literal: 76 return 1; 77 } 78 } 79 80 static CharSourceRange MakeCharSourceRange(const LangOptions &Features, 81 FullSourceLoc TokLoc, 82 const char *TokBegin, 83 const char *TokRangeBegin, 84 const char *TokRangeEnd) { 85 SourceLocation Begin = 86 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 87 TokLoc.getManager(), Features); 88 SourceLocation End = 89 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin, 90 TokLoc.getManager(), Features); 91 return CharSourceRange::getCharRange(Begin, End); 92 } 93 94 /// Produce a diagnostic highlighting some portion of a literal. 95 /// 96 /// Emits the diagnostic \p DiagID, highlighting the range of characters from 97 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be 98 /// a substring of a spelling buffer for the token beginning at \p TokBegin. 99 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, 100 const LangOptions &Features, FullSourceLoc TokLoc, 101 const char *TokBegin, const char *TokRangeBegin, 102 const char *TokRangeEnd, unsigned DiagID) { 103 SourceLocation Begin = 104 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 105 TokLoc.getManager(), Features); 106 return Diags->Report(Begin, DiagID) << 107 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd); 108 } 109 110 static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape) { 111 switch (Escape) { 112 case '\'': 113 case '"': 114 case '?': 115 case '\\': 116 case 'a': 117 case 'b': 118 case 'f': 119 case 'n': 120 case 'r': 121 case 't': 122 case 'v': 123 return true; 124 } 125 return false; 126 } 127 128 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in 129 /// either a character or a string literal. 130 static unsigned ProcessCharEscape(const char *ThisTokBegin, 131 const char *&ThisTokBuf, 132 const char *ThisTokEnd, bool &HadError, 133 FullSourceLoc Loc, unsigned CharWidth, 134 DiagnosticsEngine *Diags, 135 const LangOptions &Features, 136 StringLiteralEvalMethod EvalMethod) { 137 const char *EscapeBegin = ThisTokBuf; 138 bool Delimited = false; 139 bool EndDelimiterFound = false; 140 141 // Skip the '\' char. 142 ++ThisTokBuf; 143 144 // We know that this character can't be off the end of the buffer, because 145 // that would have been \", which would not have been the end of string. 146 unsigned ResultChar = *ThisTokBuf++; 147 char Escape = ResultChar; 148 switch (ResultChar) { 149 // These map to themselves. 150 case '\\': case '\'': case '"': case '?': break; 151 152 // These have fixed mappings. 153 case 'a': 154 // TODO: K&R: the meaning of '\\a' is different in traditional C 155 ResultChar = 7; 156 break; 157 case 'b': 158 ResultChar = 8; 159 break; 160 case 'e': 161 if (Diags) 162 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 163 diag::ext_nonstandard_escape) << "e"; 164 ResultChar = 27; 165 break; 166 case 'E': 167 if (Diags) 168 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 169 diag::ext_nonstandard_escape) << "E"; 170 ResultChar = 27; 171 break; 172 case 'f': 173 ResultChar = 12; 174 break; 175 case 'n': 176 ResultChar = 10; 177 break; 178 case 'r': 179 ResultChar = 13; 180 break; 181 case 't': 182 ResultChar = 9; 183 break; 184 case 'v': 185 ResultChar = 11; 186 break; 187 case 'x': { // Hex escape. 188 ResultChar = 0; 189 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 190 Delimited = true; 191 ThisTokBuf++; 192 if (*ThisTokBuf == '}') { 193 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 194 diag::err_delimited_escape_empty); 195 return ResultChar; 196 } 197 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 198 if (Diags) 199 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 200 diag::err_hex_escape_no_digits) << "x"; 201 return ResultChar; 202 } 203 204 // Hex escapes are a maximal series of hex digits. 205 bool Overflow = false; 206 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) { 207 if (Delimited && *ThisTokBuf == '}') { 208 ThisTokBuf++; 209 EndDelimiterFound = true; 210 break; 211 } 212 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 213 if (CharVal == -1) { 214 // Non delimited hex escape sequences stop at the first non-hex digit. 215 if (!Delimited) 216 break; 217 HadError = true; 218 if (Diags) 219 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 220 diag::err_delimited_escape_invalid) 221 << StringRef(ThisTokBuf, 1); 222 continue; 223 } 224 // About to shift out a digit? 225 if (ResultChar & 0xF0000000) 226 Overflow = true; 227 ResultChar <<= 4; 228 ResultChar |= CharVal; 229 } 230 // See if any bits will be truncated when evaluated as a character. 231 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 232 Overflow = true; 233 ResultChar &= ~0U >> (32-CharWidth); 234 } 235 236 // Check for overflow. 237 if (!HadError && Overflow) { // Too many digits to fit in 238 HadError = true; 239 if (Diags) 240 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 241 diag::err_escape_too_large) 242 << 0; 243 } 244 break; 245 } 246 case '0': case '1': case '2': case '3': 247 case '4': case '5': case '6': case '7': { 248 // Octal escapes. 249 --ThisTokBuf; 250 ResultChar = 0; 251 252 // Octal escapes are a series of octal digits with maximum length 3. 253 // "\0123" is a two digit sequence equal to "\012" "3". 254 unsigned NumDigits = 0; 255 do { 256 ResultChar <<= 3; 257 ResultChar |= *ThisTokBuf++ - '0'; 258 ++NumDigits; 259 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 && 260 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7'); 261 262 // Check for overflow. Reject '\777', but not L'\777'. 263 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 264 if (Diags) 265 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 266 diag::err_escape_too_large) << 1; 267 ResultChar &= ~0U >> (32-CharWidth); 268 } 269 break; 270 } 271 case 'o': { 272 bool Overflow = false; 273 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { 274 HadError = true; 275 if (Diags) 276 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 277 diag::err_delimited_escape_missing_brace) 278 << "o"; 279 280 break; 281 } 282 ResultChar = 0; 283 Delimited = true; 284 ++ThisTokBuf; 285 if (*ThisTokBuf == '}') { 286 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 287 diag::err_delimited_escape_empty); 288 return ResultChar; 289 } 290 291 while (ThisTokBuf != ThisTokEnd) { 292 if (*ThisTokBuf == '}') { 293 EndDelimiterFound = true; 294 ThisTokBuf++; 295 break; 296 } 297 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') { 298 HadError = true; 299 if (Diags) 300 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 301 diag::err_delimited_escape_invalid) 302 << StringRef(ThisTokBuf, 1); 303 ThisTokBuf++; 304 continue; 305 } 306 // Check if one of the top three bits is set before shifting them out. 307 if (ResultChar & 0xE0000000) 308 Overflow = true; 309 310 ResultChar <<= 3; 311 ResultChar |= *ThisTokBuf++ - '0'; 312 } 313 // Check for overflow. Reject '\777', but not L'\777'. 314 if (!HadError && 315 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) { 316 HadError = true; 317 if (Diags) 318 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 319 diag::err_escape_too_large) 320 << 1; 321 ResultChar &= ~0U >> (32 - CharWidth); 322 } 323 break; 324 } 325 // Otherwise, these are not valid escapes. 326 case '(': case '{': case '[': case '%': 327 // GCC accepts these as extensions. We warn about them as such though. 328 if (Diags) 329 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 330 diag::ext_nonstandard_escape) 331 << std::string(1, ResultChar); 332 break; 333 default: 334 if (!Diags) 335 break; 336 337 if (isPrintable(ResultChar)) 338 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 339 diag::ext_unknown_escape) 340 << std::string(1, ResultChar); 341 else 342 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 343 diag::ext_unknown_escape) 344 << "x" + llvm::utohexstr(ResultChar); 345 break; 346 } 347 348 if (Delimited && Diags) { 349 if (!EndDelimiterFound) 350 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 351 diag::err_expected) 352 << tok::r_brace; 353 else if (!HadError) { 354 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 355 Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence 356 : diag::ext_delimited_escape_sequence) 357 << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0); 358 } 359 } 360 361 if (EvalMethod == StringLiteralEvalMethod::Unevaluated && 362 !IsEscapeValidInUnevaluatedStringLiteral(Escape)) { 363 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 364 diag::err_unevaluated_string_invalid_escape_sequence) 365 << StringRef(EscapeBegin, ThisTokBuf - EscapeBegin); 366 HadError = true; 367 } 368 369 return ResultChar; 370 } 371 372 static void appendCodePoint(unsigned Codepoint, 373 llvm::SmallVectorImpl<char> &Str) { 374 char ResultBuf[4]; 375 char *ResultPtr = ResultBuf; 376 if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr)) 377 Str.append(ResultBuf, ResultPtr); 378 } 379 380 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) { 381 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) { 382 if (*I != '\\') { 383 Buf.push_back(*I); 384 continue; 385 } 386 387 ++I; 388 char Kind = *I; 389 ++I; 390 391 assert(Kind == 'u' || Kind == 'U' || Kind == 'N'); 392 uint32_t CodePoint = 0; 393 394 if (Kind == 'u' && *I == '{') { 395 for (++I; *I != '}'; ++I) { 396 unsigned Value = llvm::hexDigitValue(*I); 397 assert(Value != -1U); 398 CodePoint <<= 4; 399 CodePoint += Value; 400 } 401 appendCodePoint(CodePoint, Buf); 402 continue; 403 } 404 405 if (Kind == 'N') { 406 assert(*I == '{'); 407 ++I; 408 auto Delim = std::find(I, Input.end(), '}'); 409 assert(Delim != Input.end()); 410 StringRef Name(I, std::distance(I, Delim)); 411 std::optional<llvm::sys::unicode::LooseMatchingResult> Res = 412 llvm::sys::unicode::nameToCodepointLooseMatching(Name); 413 assert(Res && "could not find a codepoint that was previously found"); 414 CodePoint = Res->CodePoint; 415 assert(CodePoint != 0xFFFFFFFF); 416 appendCodePoint(CodePoint, Buf); 417 I = Delim; 418 continue; 419 } 420 421 unsigned NumHexDigits; 422 if (Kind == 'u') 423 NumHexDigits = 4; 424 else 425 NumHexDigits = 8; 426 427 assert(I + NumHexDigits <= E); 428 429 for (; NumHexDigits != 0; ++I, --NumHexDigits) { 430 unsigned Value = llvm::hexDigitValue(*I); 431 assert(Value != -1U); 432 433 CodePoint <<= 4; 434 CodePoint += Value; 435 } 436 437 appendCodePoint(CodePoint, Buf); 438 --I; 439 } 440 } 441 442 bool clang::isFunctionLocalStringLiteralMacro(tok::TokenKind K, 443 const LangOptions &LO) { 444 return LO.MicrosoftExt && 445 (K == tok::kw___FUNCTION__ || K == tok::kw_L__FUNCTION__ || 446 K == tok::kw___FUNCSIG__ || K == tok::kw_L__FUNCSIG__ || 447 K == tok::kw___FUNCDNAME__); 448 } 449 450 bool clang::tokenIsLikeStringLiteral(const Token &Tok, const LangOptions &LO) { 451 return tok::isStringLiteral(Tok.getKind()) || 452 isFunctionLocalStringLiteralMacro(Tok.getKind(), LO); 453 } 454 455 static bool ProcessNumericUCNEscape(const char *ThisTokBegin, 456 const char *&ThisTokBuf, 457 const char *ThisTokEnd, uint32_t &UcnVal, 458 unsigned short &UcnLen, bool &Delimited, 459 FullSourceLoc Loc, DiagnosticsEngine *Diags, 460 const LangOptions &Features, 461 bool in_char_string_literal = false) { 462 const char *UcnBegin = ThisTokBuf; 463 bool HasError = false; 464 bool EndDelimiterFound = false; 465 466 // Skip the '\u' char's. 467 ThisTokBuf += 2; 468 Delimited = false; 469 if (UcnBegin[1] == 'u' && in_char_string_literal && 470 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 471 Delimited = true; 472 ThisTokBuf++; 473 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 474 if (Diags) 475 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 476 diag::err_hex_escape_no_digits) 477 << StringRef(&ThisTokBuf[-1], 1); 478 return false; 479 } 480 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8); 481 482 bool Overflow = false; 483 unsigned short Count = 0; 484 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen); 485 ++ThisTokBuf) { 486 if (Delimited && *ThisTokBuf == '}') { 487 ++ThisTokBuf; 488 EndDelimiterFound = true; 489 break; 490 } 491 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 492 if (CharVal == -1) { 493 HasError = true; 494 if (!Delimited) 495 break; 496 if (Diags) { 497 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 498 diag::err_delimited_escape_invalid) 499 << StringRef(ThisTokBuf, 1); 500 } 501 Count++; 502 continue; 503 } 504 if (UcnVal & 0xF0000000) { 505 Overflow = true; 506 continue; 507 } 508 UcnVal <<= 4; 509 UcnVal |= CharVal; 510 Count++; 511 } 512 513 if (Overflow) { 514 if (Diags) 515 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 516 diag::err_escape_too_large) 517 << 0; 518 return false; 519 } 520 521 if (Delimited && !EndDelimiterFound) { 522 if (Diags) { 523 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 524 diag::err_expected) 525 << tok::r_brace; 526 } 527 return false; 528 } 529 530 // If we didn't consume the proper number of digits, there is a problem. 531 if (Count == 0 || (!Delimited && Count != UcnLen)) { 532 if (Diags) 533 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 534 Delimited ? diag::err_delimited_escape_empty 535 : diag::err_ucn_escape_incomplete); 536 return false; 537 } 538 return !HasError; 539 } 540 541 static void DiagnoseInvalidUnicodeCharacterName( 542 DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc, 543 const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd, 544 llvm::StringRef Name) { 545 546 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 547 diag::err_invalid_ucn_name) 548 << Name; 549 550 namespace u = llvm::sys::unicode; 551 552 std::optional<u::LooseMatchingResult> Res = 553 u::nameToCodepointLooseMatching(Name); 554 if (Res) { 555 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 556 diag::note_invalid_ucn_name_loose_matching) 557 << FixItHint::CreateReplacement( 558 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin, 559 TokRangeEnd), 560 Res->Name); 561 return; 562 } 563 564 unsigned Distance = 0; 565 SmallVector<u::MatchForCodepointName> Matches = 566 u::nearestMatchesForCodepointName(Name, 5); 567 assert(!Matches.empty() && "No unicode characters found"); 568 569 for (const auto &Match : Matches) { 570 if (Distance == 0) 571 Distance = Match.Distance; 572 if (std::max(Distance, Match.Distance) - 573 std::min(Distance, Match.Distance) > 574 3) 575 break; 576 Distance = Match.Distance; 577 578 std::string Str; 579 llvm::UTF32 V = Match.Value; 580 bool Converted = 581 llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str); 582 (void)Converted; 583 assert(Converted && "Found a match wich is not a unicode character"); 584 585 Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd, 586 diag::note_invalid_ucn_name_candidate) 587 << Match.Name << llvm::utohexstr(Match.Value) 588 << Str // FIXME: Fix the rendering of non printable characters 589 << FixItHint::CreateReplacement( 590 MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin, 591 TokRangeEnd), 592 Match.Name); 593 } 594 } 595 596 static bool ProcessNamedUCNEscape(const char *ThisTokBegin, 597 const char *&ThisTokBuf, 598 const char *ThisTokEnd, uint32_t &UcnVal, 599 unsigned short &UcnLen, FullSourceLoc Loc, 600 DiagnosticsEngine *Diags, 601 const LangOptions &Features) { 602 const char *UcnBegin = ThisTokBuf; 603 assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N'); 604 ThisTokBuf += 2; 605 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { 606 if (Diags) { 607 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 608 diag::err_delimited_escape_missing_brace) 609 << StringRef(&ThisTokBuf[-1], 1); 610 } 611 return false; 612 } 613 ThisTokBuf++; 614 const char *ClosingBrace = std::find_if(ThisTokBuf, ThisTokEnd, [](char C) { 615 return C == '}' || isVerticalWhitespace(C); 616 }); 617 bool Incomplete = ClosingBrace == ThisTokEnd; 618 bool Empty = ClosingBrace == ThisTokBuf; 619 if (Incomplete || Empty) { 620 if (Diags) { 621 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 622 Incomplete ? diag::err_ucn_escape_incomplete 623 : diag::err_delimited_escape_empty) 624 << StringRef(&UcnBegin[1], 1); 625 } 626 ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1; 627 return false; 628 } 629 StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf); 630 ThisTokBuf = ClosingBrace + 1; 631 std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name); 632 if (!Res) { 633 if (Diags) 634 DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin, 635 &UcnBegin[3], ClosingBrace, Name); 636 return false; 637 } 638 UcnVal = *Res; 639 UcnLen = UcnVal > 0xFFFF ? 8 : 4; 640 return true; 641 } 642 643 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and 644 /// return the UTF32. 645 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 646 const char *ThisTokEnd, uint32_t &UcnVal, 647 unsigned short &UcnLen, FullSourceLoc Loc, 648 DiagnosticsEngine *Diags, 649 const LangOptions &Features, 650 bool in_char_string_literal = false) { 651 652 bool HasError; 653 const char *UcnBegin = ThisTokBuf; 654 bool IsDelimitedEscapeSequence = false; 655 bool IsNamedEscapeSequence = false; 656 if (ThisTokBuf[1] == 'N') { 657 IsNamedEscapeSequence = true; 658 HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, 659 UcnVal, UcnLen, Loc, Diags, Features); 660 } else { 661 HasError = 662 !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, 663 UcnLen, IsDelimitedEscapeSequence, Loc, Diags, 664 Features, in_char_string_literal); 665 } 666 if (HasError) 667 return false; 668 669 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2] 670 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints 671 UcnVal > 0x10FFFF) { // maximum legal UTF32 value 672 if (Diags) 673 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 674 diag::err_ucn_escape_invalid); 675 return false; 676 } 677 678 // C23 and C++11 allow UCNs that refer to control characters 679 // and basic source characters inside character and string literals 680 if (UcnVal < 0xa0 && 681 // $, @, ` are allowed in all language modes 682 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { 683 bool IsError = 684 (!(Features.CPlusPlus11 || Features.C23) || !in_char_string_literal); 685 if (Diags) { 686 char BasicSCSChar = UcnVal; 687 if (UcnVal >= 0x20 && UcnVal < 0x7f) 688 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 689 IsError ? diag::err_ucn_escape_basic_scs 690 : Features.CPlusPlus 691 ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs 692 : diag::warn_c23_compat_literal_ucn_escape_basic_scs) 693 << StringRef(&BasicSCSChar, 1); 694 else 695 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 696 IsError ? diag::err_ucn_control_character 697 : Features.CPlusPlus 698 ? diag::warn_cxx98_compat_literal_ucn_control_character 699 : diag::warn_c23_compat_literal_ucn_control_character); 700 } 701 if (IsError) 702 return false; 703 } 704 705 if (!Features.CPlusPlus && !Features.C99 && Diags) 706 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 707 diag::warn_ucn_not_valid_in_c89_literal); 708 709 if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags) 710 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 711 Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence 712 : diag::ext_delimited_escape_sequence) 713 << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0); 714 715 return true; 716 } 717 718 /// MeasureUCNEscape - Determine the number of bytes within the resulting string 719 /// which this UCN will occupy. 720 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 721 const char *ThisTokEnd, unsigned CharByteWidth, 722 const LangOptions &Features, bool &HadError) { 723 // UTF-32: 4 bytes per escape. 724 if (CharByteWidth == 4) 725 return 4; 726 727 uint32_t UcnVal = 0; 728 unsigned short UcnLen = 0; 729 FullSourceLoc Loc; 730 731 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, 732 UcnLen, Loc, nullptr, Features, true)) { 733 HadError = true; 734 return 0; 735 } 736 737 // UTF-16: 2 bytes for BMP, 4 bytes otherwise. 738 if (CharByteWidth == 2) 739 return UcnVal <= 0xFFFF ? 2 : 4; 740 741 // UTF-8. 742 if (UcnVal < 0x80) 743 return 1; 744 if (UcnVal < 0x800) 745 return 2; 746 if (UcnVal < 0x10000) 747 return 3; 748 return 4; 749 } 750 751 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and 752 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of 753 /// StringLiteralParser. When we decide to implement UCN's for identifiers, 754 /// we will likely rework our support for UCN's. 755 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 756 const char *ThisTokEnd, 757 char *&ResultBuf, bool &HadError, 758 FullSourceLoc Loc, unsigned CharByteWidth, 759 DiagnosticsEngine *Diags, 760 const LangOptions &Features) { 761 typedef uint32_t UTF32; 762 UTF32 UcnVal = 0; 763 unsigned short UcnLen = 0; 764 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, 765 Loc, Diags, Features, true)) { 766 HadError = true; 767 return; 768 } 769 770 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 771 "only character widths of 1, 2, or 4 bytes supported"); 772 773 (void)UcnLen; 774 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported"); 775 776 if (CharByteWidth == 4) { 777 // FIXME: Make the type of the result buffer correct instead of 778 // using reinterpret_cast. 779 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf); 780 *ResultPtr = UcnVal; 781 ResultBuf += 4; 782 return; 783 } 784 785 if (CharByteWidth == 2) { 786 // FIXME: Make the type of the result buffer correct instead of 787 // using reinterpret_cast. 788 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf); 789 790 if (UcnVal <= (UTF32)0xFFFF) { 791 *ResultPtr = UcnVal; 792 ResultBuf += 2; 793 return; 794 } 795 796 // Convert to UTF16. 797 UcnVal -= 0x10000; 798 *ResultPtr = 0xD800 + (UcnVal >> 10); 799 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF); 800 ResultBuf += 4; 801 return; 802 } 803 804 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters"); 805 806 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8. 807 // The conversion below was inspired by: 808 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c 809 // First, we determine how many bytes the result will require. 810 typedef uint8_t UTF8; 811 812 unsigned short bytesToWrite = 0; 813 if (UcnVal < (UTF32)0x80) 814 bytesToWrite = 1; 815 else if (UcnVal < (UTF32)0x800) 816 bytesToWrite = 2; 817 else if (UcnVal < (UTF32)0x10000) 818 bytesToWrite = 3; 819 else 820 bytesToWrite = 4; 821 822 const unsigned byteMask = 0xBF; 823 const unsigned byteMark = 0x80; 824 825 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed 826 // into the first byte, depending on how many bytes follow. 827 static const UTF8 firstByteMark[5] = { 828 0x00, 0x00, 0xC0, 0xE0, 0xF0 829 }; 830 // Finally, we write the bytes into ResultBuf. 831 ResultBuf += bytesToWrite; 832 switch (bytesToWrite) { // note: everything falls through. 833 case 4: 834 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 835 [[fallthrough]]; 836 case 3: 837 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 838 [[fallthrough]]; 839 case 2: 840 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 841 [[fallthrough]]; 842 case 1: 843 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]); 844 } 845 // Update the buffer. 846 ResultBuf += bytesToWrite; 847 } 848 849 /// integer-constant: [C99 6.4.4.1] 850 /// decimal-constant integer-suffix 851 /// octal-constant integer-suffix 852 /// hexadecimal-constant integer-suffix 853 /// binary-literal integer-suffix [GNU, C++1y] 854 /// user-defined-integer-literal: [C++11 lex.ext] 855 /// decimal-literal ud-suffix 856 /// octal-literal ud-suffix 857 /// hexadecimal-literal ud-suffix 858 /// binary-literal ud-suffix [GNU, C++1y] 859 /// decimal-constant: 860 /// nonzero-digit 861 /// decimal-constant digit 862 /// octal-constant: 863 /// 0 864 /// octal-constant octal-digit 865 /// hexadecimal-constant: 866 /// hexadecimal-prefix hexadecimal-digit 867 /// hexadecimal-constant hexadecimal-digit 868 /// hexadecimal-prefix: one of 869 /// 0x 0X 870 /// binary-literal: 871 /// 0b binary-digit 872 /// 0B binary-digit 873 /// binary-literal binary-digit 874 /// integer-suffix: 875 /// unsigned-suffix [long-suffix] 876 /// unsigned-suffix [long-long-suffix] 877 /// long-suffix [unsigned-suffix] 878 /// long-long-suffix [unsigned-sufix] 879 /// nonzero-digit: 880 /// 1 2 3 4 5 6 7 8 9 881 /// octal-digit: 882 /// 0 1 2 3 4 5 6 7 883 /// hexadecimal-digit: 884 /// 0 1 2 3 4 5 6 7 8 9 885 /// a b c d e f 886 /// A B C D E F 887 /// binary-digit: 888 /// 0 889 /// 1 890 /// unsigned-suffix: one of 891 /// u U 892 /// long-suffix: one of 893 /// l L 894 /// long-long-suffix: one of 895 /// ll LL 896 /// 897 /// floating-constant: [C99 6.4.4.2] 898 /// TODO: add rules... 899 /// 900 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling, 901 SourceLocation TokLoc, 902 const SourceManager &SM, 903 const LangOptions &LangOpts, 904 const TargetInfo &Target, 905 DiagnosticsEngine &Diags) 906 : SM(SM), LangOpts(LangOpts), Diags(Diags), 907 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) { 908 909 s = DigitsBegin = ThisTokBegin; 910 saw_exponent = false; 911 saw_period = false; 912 saw_ud_suffix = false; 913 saw_fixed_point_suffix = false; 914 isLong = false; 915 isUnsigned = false; 916 isLongLong = false; 917 isSizeT = false; 918 isHalf = false; 919 isFloat = false; 920 isImaginary = false; 921 isFloat16 = false; 922 isFloat128 = false; 923 MicrosoftInteger = 0; 924 isFract = false; 925 isAccum = false; 926 hadError = false; 927 isBitInt = false; 928 929 // This routine assumes that the range begin/end matches the regex for integer 930 // and FP constants (specifically, the 'pp-number' regex), and assumes that 931 // the byte at "*end" is both valid and not part of the regex. Because of 932 // this, it doesn't have to check for 'overscan' in various places. 933 // Note: For HLSL, the end token is allowed to be '.' which would be in the 934 // 'pp-number' regex. This is required to support vector swizzles on numeric 935 // constants (i.e. 1.xx or 1.5f.rrr). 936 if (isPreprocessingNumberBody(*ThisTokEnd) && 937 !(LangOpts.HLSL && *ThisTokEnd == '.')) { 938 Diags.Report(TokLoc, diag::err_lexing_numeric); 939 hadError = true; 940 return; 941 } 942 943 if (*s == '0') { // parse radix 944 ParseNumberStartingWithZero(TokLoc); 945 if (hadError) 946 return; 947 } else { // the first digit is non-zero 948 radix = 10; 949 s = SkipDigits(s); 950 if (s == ThisTokEnd) { 951 // Done. 952 } else { 953 ParseDecimalOrOctalCommon(TokLoc); 954 if (hadError) 955 return; 956 } 957 } 958 959 SuffixBegin = s; 960 checkSeparator(TokLoc, s, CSK_AfterDigits); 961 962 // Initial scan to lookahead for fixed point suffix. 963 if (LangOpts.FixedPoint) { 964 for (const char *c = s; c != ThisTokEnd; ++c) { 965 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') { 966 saw_fixed_point_suffix = true; 967 break; 968 } 969 } 970 } 971 972 // Parse the suffix. At this point we can classify whether we have an FP or 973 // integer constant. 974 bool isFixedPointConstant = isFixedPointLiteral(); 975 bool isFPConstant = isFloatingLiteral(); 976 bool HasSize = false; 977 978 // Loop over all of the characters of the suffix. If we see something bad, 979 // we break out of the loop. 980 for (; s != ThisTokEnd; ++s) { 981 switch (*s) { 982 case 'R': 983 case 'r': 984 if (!LangOpts.FixedPoint) 985 break; 986 if (isFract || isAccum) break; 987 if (!(saw_period || saw_exponent)) break; 988 isFract = true; 989 continue; 990 case 'K': 991 case 'k': 992 if (!LangOpts.FixedPoint) 993 break; 994 if (isFract || isAccum) break; 995 if (!(saw_period || saw_exponent)) break; 996 isAccum = true; 997 continue; 998 case 'h': // FP Suffix for "half". 999 case 'H': 1000 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type. 1001 if (!(LangOpts.Half || LangOpts.FixedPoint)) 1002 break; 1003 if (isIntegerLiteral()) break; // Error for integer constant. 1004 if (HasSize) 1005 break; 1006 HasSize = true; 1007 isHalf = true; 1008 continue; // Success. 1009 case 'f': // FP Suffix for "float" 1010 case 'F': 1011 if (!isFPConstant) break; // Error for integer constant. 1012 if (HasSize) 1013 break; 1014 HasSize = true; 1015 1016 // CUDA host and device may have different _Float16 support, therefore 1017 // allows f16 literals to avoid false alarm. 1018 // When we compile for OpenMP target offloading on NVPTX, f16 suffix 1019 // should also be supported. 1020 // ToDo: more precise check for CUDA. 1021 // TODO: AMDGPU might also support it in the future. 1022 if ((Target.hasFloat16Type() || LangOpts.CUDA || 1023 (LangOpts.OpenMPIsTargetDevice && Target.getTriple().isNVPTX())) && 1024 s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') { 1025 s += 2; // success, eat up 2 characters. 1026 isFloat16 = true; 1027 continue; 1028 } 1029 1030 isFloat = true; 1031 continue; // Success. 1032 case 'q': // FP Suffix for "__float128" 1033 case 'Q': 1034 if (!isFPConstant) break; // Error for integer constant. 1035 if (HasSize) 1036 break; 1037 HasSize = true; 1038 isFloat128 = true; 1039 continue; // Success. 1040 case 'u': 1041 case 'U': 1042 if (isFPConstant) break; // Error for floating constant. 1043 if (isUnsigned) break; // Cannot be repeated. 1044 isUnsigned = true; 1045 continue; // Success. 1046 case 'l': 1047 case 'L': 1048 if (HasSize) 1049 break; 1050 HasSize = true; 1051 1052 // Check for long long. The L's need to be adjacent and the same case. 1053 if (s[1] == s[0]) { 1054 assert(s + 1 < ThisTokEnd && "didn't maximally munch?"); 1055 if (isFPConstant) break; // long long invalid for floats. 1056 isLongLong = true; 1057 ++s; // Eat both of them. 1058 } else { 1059 isLong = true; 1060 } 1061 continue; // Success. 1062 case 'z': 1063 case 'Z': 1064 if (isFPConstant) 1065 break; // Invalid for floats. 1066 if (HasSize) 1067 break; 1068 HasSize = true; 1069 isSizeT = true; 1070 continue; 1071 case 'i': 1072 case 'I': 1073 if (LangOpts.MicrosoftExt && !isFPConstant) { 1074 // Allow i8, i16, i32, and i64. First, look ahead and check if 1075 // suffixes are Microsoft integers and not the imaginary unit. 1076 uint8_t Bits = 0; 1077 size_t ToSkip = 0; 1078 switch (s[1]) { 1079 case '8': // i8 suffix 1080 Bits = 8; 1081 ToSkip = 2; 1082 break; 1083 case '1': 1084 if (s[2] == '6') { // i16 suffix 1085 Bits = 16; 1086 ToSkip = 3; 1087 } 1088 break; 1089 case '3': 1090 if (s[2] == '2') { // i32 suffix 1091 Bits = 32; 1092 ToSkip = 3; 1093 } 1094 break; 1095 case '6': 1096 if (s[2] == '4') { // i64 suffix 1097 Bits = 64; 1098 ToSkip = 3; 1099 } 1100 break; 1101 default: 1102 break; 1103 } 1104 if (Bits) { 1105 if (HasSize) 1106 break; 1107 HasSize = true; 1108 MicrosoftInteger = Bits; 1109 s += ToSkip; 1110 assert(s <= ThisTokEnd && "didn't maximally munch?"); 1111 break; 1112 } 1113 } 1114 [[fallthrough]]; 1115 case 'j': 1116 case 'J': 1117 if (isImaginary) break; // Cannot be repeated. 1118 isImaginary = true; 1119 continue; // Success. 1120 case 'w': 1121 case 'W': 1122 if (isFPConstant) 1123 break; // Invalid for floats. 1124 if (HasSize) 1125 break; // Invalid if we already have a size for the literal. 1126 1127 // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We 1128 // explicitly do not support the suffix in C++ as an extension because a 1129 // library-based UDL that resolves to a library type may be more 1130 // appropriate there. 1131 if (!LangOpts.CPlusPlus && ((s[0] == 'w' && s[1] == 'b') || 1132 (s[0] == 'W' && s[1] == 'B'))) { 1133 isBitInt = true; 1134 HasSize = true; 1135 ++s; // Skip both characters (2nd char skipped on continue). 1136 continue; // Success. 1137 } 1138 } 1139 // If we reached here, there was an error or a ud-suffix. 1140 break; 1141 } 1142 1143 // "i", "if", and "il" are user-defined suffixes in C++1y. 1144 if (s != ThisTokEnd || isImaginary) { 1145 // FIXME: Don't bother expanding UCNs if !tok.hasUCN(). 1146 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)); 1147 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) { 1148 if (!isImaginary) { 1149 // Any suffix pieces we might have parsed are actually part of the 1150 // ud-suffix. 1151 isLong = false; 1152 isUnsigned = false; 1153 isLongLong = false; 1154 isSizeT = false; 1155 isFloat = false; 1156 isFloat16 = false; 1157 isHalf = false; 1158 isImaginary = false; 1159 isBitInt = false; 1160 MicrosoftInteger = 0; 1161 saw_fixed_point_suffix = false; 1162 isFract = false; 1163 isAccum = false; 1164 } 1165 1166 saw_ud_suffix = true; 1167 return; 1168 } 1169 1170 if (s != ThisTokEnd) { 1171 // Report an error if there are any. 1172 Diags.Report(Lexer::AdvanceToTokenCharacter( 1173 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts), 1174 diag::err_invalid_suffix_constant) 1175 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) 1176 << (isFixedPointConstant ? 2 : isFPConstant); 1177 hadError = true; 1178 } 1179 } 1180 1181 if (!hadError && saw_fixed_point_suffix) { 1182 assert(isFract || isAccum); 1183 } 1184 } 1185 1186 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal 1187 /// numbers. It issues an error for illegal digits, and handles floating point 1188 /// parsing. If it detects a floating point number, the radix is set to 10. 1189 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){ 1190 assert((radix == 8 || radix == 10) && "Unexpected radix"); 1191 1192 // If we have a hex digit other than 'e' (which denotes a FP exponent) then 1193 // the code is using an incorrect base. 1194 if (isHexDigit(*s) && *s != 'e' && *s != 'E' && 1195 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 1196 Diags.Report( 1197 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts), 1198 diag::err_invalid_digit) 1199 << StringRef(s, 1) << (radix == 8 ? 1 : 0); 1200 hadError = true; 1201 return; 1202 } 1203 1204 if (*s == '.') { 1205 checkSeparator(TokLoc, s, CSK_AfterDigits); 1206 s++; 1207 radix = 10; 1208 saw_period = true; 1209 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1210 s = SkipDigits(s); // Skip suffix. 1211 } 1212 if (*s == 'e' || *s == 'E') { // exponent 1213 checkSeparator(TokLoc, s, CSK_AfterDigits); 1214 const char *Exponent = s; 1215 s++; 1216 radix = 10; 1217 saw_exponent = true; 1218 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 1219 const char *first_non_digit = SkipDigits(s); 1220 if (containsDigits(s, first_non_digit)) { 1221 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1222 s = first_non_digit; 1223 } else { 1224 if (!hadError) { 1225 Diags.Report(Lexer::AdvanceToTokenCharacter( 1226 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1227 diag::err_exponent_has_no_digits); 1228 hadError = true; 1229 } 1230 return; 1231 } 1232 } 1233 } 1234 1235 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 1236 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 1237 /// treat it as an invalid suffix. 1238 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 1239 StringRef Suffix) { 1240 if (!LangOpts.CPlusPlus11 || Suffix.empty()) 1241 return false; 1242 1243 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid. 1244 if (Suffix[0] == '_') 1245 return true; 1246 1247 // In C++11, there are no library suffixes. 1248 if (!LangOpts.CPlusPlus14) 1249 return false; 1250 1251 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library. 1252 // Per tweaked N3660, "il", "i", and "if" are also used in the library. 1253 // In C++2a "d" and "y" are used in the library. 1254 return llvm::StringSwitch<bool>(Suffix) 1255 .Cases("h", "min", "s", true) 1256 .Cases("ms", "us", "ns", true) 1257 .Cases("il", "i", "if", true) 1258 .Cases("d", "y", LangOpts.CPlusPlus20) 1259 .Default(false); 1260 } 1261 1262 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc, 1263 const char *Pos, 1264 CheckSeparatorKind IsAfterDigits) { 1265 if (IsAfterDigits == CSK_AfterDigits) { 1266 if (Pos == ThisTokBegin) 1267 return; 1268 --Pos; 1269 } else if (Pos == ThisTokEnd) 1270 return; 1271 1272 if (isDigitSeparator(*Pos)) { 1273 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM, 1274 LangOpts), 1275 diag::err_digit_separator_not_between_digits) 1276 << IsAfterDigits; 1277 hadError = true; 1278 } 1279 } 1280 1281 /// ParseNumberStartingWithZero - This method is called when the first character 1282 /// of the number is found to be a zero. This means it is either an octal 1283 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or 1284 /// a floating point number (01239.123e4). Eat the prefix, determining the 1285 /// radix etc. 1286 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) { 1287 assert(s[0] == '0' && "Invalid method call"); 1288 s++; 1289 1290 int c1 = s[0]; 1291 1292 // Handle a hex number like 0x1234. 1293 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) { 1294 s++; 1295 assert(s < ThisTokEnd && "didn't maximally munch?"); 1296 radix = 16; 1297 DigitsBegin = s; 1298 s = SkipHexDigits(s); 1299 bool HasSignificandDigits = containsDigits(DigitsBegin, s); 1300 if (s == ThisTokEnd) { 1301 // Done. 1302 } else if (*s == '.') { 1303 s++; 1304 saw_period = true; 1305 const char *floatDigitsBegin = s; 1306 s = SkipHexDigits(s); 1307 if (containsDigits(floatDigitsBegin, s)) 1308 HasSignificandDigits = true; 1309 if (HasSignificandDigits) 1310 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits); 1311 } 1312 1313 if (!HasSignificandDigits) { 1314 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1315 LangOpts), 1316 diag::err_hex_constant_requires) 1317 << LangOpts.CPlusPlus << 1; 1318 hadError = true; 1319 return; 1320 } 1321 1322 // A binary exponent can appear with or with a '.'. If dotted, the 1323 // binary exponent is required. 1324 if (*s == 'p' || *s == 'P') { 1325 checkSeparator(TokLoc, s, CSK_AfterDigits); 1326 const char *Exponent = s; 1327 s++; 1328 saw_exponent = true; 1329 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 1330 const char *first_non_digit = SkipDigits(s); 1331 if (!containsDigits(s, first_non_digit)) { 1332 if (!hadError) { 1333 Diags.Report(Lexer::AdvanceToTokenCharacter( 1334 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1335 diag::err_exponent_has_no_digits); 1336 hadError = true; 1337 } 1338 return; 1339 } 1340 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1341 s = first_non_digit; 1342 1343 if (!LangOpts.HexFloats) 1344 Diags.Report(TokLoc, LangOpts.CPlusPlus 1345 ? diag::ext_hex_literal_invalid 1346 : diag::ext_hex_constant_invalid); 1347 else if (LangOpts.CPlusPlus17) 1348 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal); 1349 } else if (saw_period) { 1350 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1351 LangOpts), 1352 diag::err_hex_constant_requires) 1353 << LangOpts.CPlusPlus << 0; 1354 hadError = true; 1355 } 1356 return; 1357 } 1358 1359 // Handle simple binary numbers 0b01010 1360 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) { 1361 // 0b101010 is a C++1y / GCC extension. 1362 Diags.Report(TokLoc, LangOpts.CPlusPlus14 1363 ? diag::warn_cxx11_compat_binary_literal 1364 : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14 1365 : diag::ext_binary_literal); 1366 ++s; 1367 assert(s < ThisTokEnd && "didn't maximally munch?"); 1368 radix = 2; 1369 DigitsBegin = s; 1370 s = SkipBinaryDigits(s); 1371 if (s == ThisTokEnd) { 1372 // Done. 1373 } else if (isHexDigit(*s) && 1374 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 1375 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1376 LangOpts), 1377 diag::err_invalid_digit) 1378 << StringRef(s, 1) << 2; 1379 hadError = true; 1380 } 1381 // Other suffixes will be diagnosed by the caller. 1382 return; 1383 } 1384 1385 // For now, the radix is set to 8. If we discover that we have a 1386 // floating point constant, the radix will change to 10. Octal floating 1387 // point constants are not permitted (only decimal and hexadecimal). 1388 radix = 8; 1389 const char *PossibleNewDigitStart = s; 1390 s = SkipOctalDigits(s); 1391 // When the value is 0 followed by a suffix (like 0wb), we want to leave 0 1392 // as the start of the digits. So if skipping octal digits does not skip 1393 // anything, we leave the digit start where it was. 1394 if (s != PossibleNewDigitStart) 1395 DigitsBegin = PossibleNewDigitStart; 1396 1397 if (s == ThisTokEnd) 1398 return; // Done, simple octal number like 01234 1399 1400 // If we have some other non-octal digit that *is* a decimal digit, see if 1401 // this is part of a floating point number like 094.123 or 09e1. 1402 if (isDigit(*s)) { 1403 const char *EndDecimal = SkipDigits(s); 1404 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') { 1405 s = EndDecimal; 1406 radix = 10; 1407 } 1408 } 1409 1410 ParseDecimalOrOctalCommon(TokLoc); 1411 } 1412 1413 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) { 1414 switch (Radix) { 1415 case 2: 1416 return NumDigits <= 64; 1417 case 8: 1418 return NumDigits <= 64 / 3; // Digits are groups of 3 bits. 1419 case 10: 1420 return NumDigits <= 19; // floor(log10(2^64)) 1421 case 16: 1422 return NumDigits <= 64 / 4; // Digits are groups of 4 bits. 1423 default: 1424 llvm_unreachable("impossible Radix"); 1425 } 1426 } 1427 1428 /// GetIntegerValue - Convert this numeric literal value to an APInt that 1429 /// matches Val's input width. If there is an overflow, set Val to the low bits 1430 /// of the result and return true. Otherwise, return false. 1431 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) { 1432 // Fast path: Compute a conservative bound on the maximum number of 1433 // bits per digit in this radix. If we can't possibly overflow a 1434 // uint64 based on that bound then do the simple conversion to 1435 // integer. This avoids the expensive overflow checking below, and 1436 // handles the common cases that matter (small decimal integers and 1437 // hex/octal values which don't overflow). 1438 const unsigned NumDigits = SuffixBegin - DigitsBegin; 1439 if (alwaysFitsInto64Bits(radix, NumDigits)) { 1440 uint64_t N = 0; 1441 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr) 1442 if (!isDigitSeparator(*Ptr)) 1443 N = N * radix + llvm::hexDigitValue(*Ptr); 1444 1445 // This will truncate the value to Val's input width. Simply check 1446 // for overflow by comparing. 1447 Val = N; 1448 return Val.getZExtValue() != N; 1449 } 1450 1451 Val = 0; 1452 const char *Ptr = DigitsBegin; 1453 1454 llvm::APInt RadixVal(Val.getBitWidth(), radix); 1455 llvm::APInt CharVal(Val.getBitWidth(), 0); 1456 llvm::APInt OldVal = Val; 1457 1458 bool OverflowOccurred = false; 1459 while (Ptr < SuffixBegin) { 1460 if (isDigitSeparator(*Ptr)) { 1461 ++Ptr; 1462 continue; 1463 } 1464 1465 unsigned C = llvm::hexDigitValue(*Ptr++); 1466 1467 // If this letter is out of bound for this radix, reject it. 1468 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1469 1470 CharVal = C; 1471 1472 // Add the digit to the value in the appropriate radix. If adding in digits 1473 // made the value smaller, then this overflowed. 1474 OldVal = Val; 1475 1476 // Multiply by radix, did overflow occur on the multiply? 1477 Val *= RadixVal; 1478 OverflowOccurred |= Val.udiv(RadixVal) != OldVal; 1479 1480 // Add value, did overflow occur on the value? 1481 // (a + b) ult b <=> overflow 1482 Val += CharVal; 1483 OverflowOccurred |= Val.ult(CharVal); 1484 } 1485 return OverflowOccurred; 1486 } 1487 1488 llvm::APFloat::opStatus 1489 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) { 1490 using llvm::APFloat; 1491 1492 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin); 1493 1494 llvm::SmallString<16> Buffer; 1495 StringRef Str(ThisTokBegin, n); 1496 if (Str.contains('\'')) { 1497 Buffer.reserve(n); 1498 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer), 1499 &isDigitSeparator); 1500 Str = Buffer; 1501 } 1502 1503 auto StatusOrErr = 1504 Result.convertFromString(Str, APFloat::rmNearestTiesToEven); 1505 assert(StatusOrErr && "Invalid floating point representation"); 1506 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr 1507 : APFloat::opInvalidOp; 1508 } 1509 1510 static inline bool IsExponentPart(char c) { 1511 return c == 'p' || c == 'P' || c == 'e' || c == 'E'; 1512 } 1513 1514 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) { 1515 assert(radix == 16 || radix == 10); 1516 1517 // Find how many digits are needed to store the whole literal. 1518 unsigned NumDigits = SuffixBegin - DigitsBegin; 1519 if (saw_period) --NumDigits; 1520 1521 // Initial scan of the exponent if it exists 1522 bool ExpOverflowOccurred = false; 1523 bool NegativeExponent = false; 1524 const char *ExponentBegin; 1525 uint64_t Exponent = 0; 1526 int64_t BaseShift = 0; 1527 if (saw_exponent) { 1528 const char *Ptr = DigitsBegin; 1529 1530 while (!IsExponentPart(*Ptr)) ++Ptr; 1531 ExponentBegin = Ptr; 1532 ++Ptr; 1533 NegativeExponent = *Ptr == '-'; 1534 if (NegativeExponent) ++Ptr; 1535 1536 unsigned NumExpDigits = SuffixBegin - Ptr; 1537 if (alwaysFitsInto64Bits(radix, NumExpDigits)) { 1538 llvm::StringRef ExpStr(Ptr, NumExpDigits); 1539 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10); 1540 Exponent = ExpInt.getZExtValue(); 1541 } else { 1542 ExpOverflowOccurred = true; 1543 } 1544 1545 if (NegativeExponent) BaseShift -= Exponent; 1546 else BaseShift += Exponent; 1547 } 1548 1549 // Number of bits needed for decimal literal is 1550 // ceil(NumDigits * log2(10)) Integral part 1551 // + Scale Fractional part 1552 // + ceil(Exponent * log2(10)) Exponent 1553 // -------------------------------------------------- 1554 // ceil((NumDigits + Exponent) * log2(10)) + Scale 1555 // 1556 // But for simplicity in handling integers, we can round up log2(10) to 4, 1557 // making: 1558 // 4 * (NumDigits + Exponent) + Scale 1559 // 1560 // Number of digits needed for hexadecimal literal is 1561 // 4 * NumDigits Integral part 1562 // + Scale Fractional part 1563 // + Exponent Exponent 1564 // -------------------------------------------------- 1565 // (4 * NumDigits) + Scale + Exponent 1566 uint64_t NumBitsNeeded; 1567 if (radix == 10) 1568 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale; 1569 else 1570 NumBitsNeeded = 4 * NumDigits + Exponent + Scale; 1571 1572 if (NumBitsNeeded > std::numeric_limits<unsigned>::max()) 1573 ExpOverflowOccurred = true; 1574 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false); 1575 1576 bool FoundDecimal = false; 1577 1578 int64_t FractBaseShift = 0; 1579 const char *End = saw_exponent ? ExponentBegin : SuffixBegin; 1580 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) { 1581 if (*Ptr == '.') { 1582 FoundDecimal = true; 1583 continue; 1584 } 1585 1586 // Normal reading of an integer 1587 unsigned C = llvm::hexDigitValue(*Ptr); 1588 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1589 1590 Val *= radix; 1591 Val += C; 1592 1593 if (FoundDecimal) 1594 // Keep track of how much we will need to adjust this value by from the 1595 // number of digits past the radix point. 1596 --FractBaseShift; 1597 } 1598 1599 // For a radix of 16, we will be multiplying by 2 instead of 16. 1600 if (radix == 16) FractBaseShift *= 4; 1601 BaseShift += FractBaseShift; 1602 1603 Val <<= Scale; 1604 1605 uint64_t Base = (radix == 16) ? 2 : 10; 1606 if (BaseShift > 0) { 1607 for (int64_t i = 0; i < BaseShift; ++i) { 1608 Val *= Base; 1609 } 1610 } else if (BaseShift < 0) { 1611 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i) 1612 Val = Val.udiv(Base); 1613 } 1614 1615 bool IntOverflowOccurred = false; 1616 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth()); 1617 if (Val.getBitWidth() > StoreVal.getBitWidth()) { 1618 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth())); 1619 StoreVal = Val.trunc(StoreVal.getBitWidth()); 1620 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) { 1621 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal); 1622 StoreVal = Val.zext(StoreVal.getBitWidth()); 1623 } else { 1624 StoreVal = Val; 1625 } 1626 1627 return IntOverflowOccurred || ExpOverflowOccurred; 1628 } 1629 1630 /// \verbatim 1631 /// user-defined-character-literal: [C++11 lex.ext] 1632 /// character-literal ud-suffix 1633 /// ud-suffix: 1634 /// identifier 1635 /// character-literal: [C++11 lex.ccon] 1636 /// ' c-char-sequence ' 1637 /// u' c-char-sequence ' 1638 /// U' c-char-sequence ' 1639 /// L' c-char-sequence ' 1640 /// u8' c-char-sequence ' [C++1z lex.ccon] 1641 /// c-char-sequence: 1642 /// c-char 1643 /// c-char-sequence c-char 1644 /// c-char: 1645 /// any member of the source character set except the single-quote ', 1646 /// backslash \, or new-line character 1647 /// escape-sequence 1648 /// universal-character-name 1649 /// escape-sequence: 1650 /// simple-escape-sequence 1651 /// octal-escape-sequence 1652 /// hexadecimal-escape-sequence 1653 /// simple-escape-sequence: 1654 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1655 /// octal-escape-sequence: 1656 /// \ octal-digit 1657 /// \ octal-digit octal-digit 1658 /// \ octal-digit octal-digit octal-digit 1659 /// hexadecimal-escape-sequence: 1660 /// \x hexadecimal-digit 1661 /// hexadecimal-escape-sequence hexadecimal-digit 1662 /// universal-character-name: [C++11 lex.charset] 1663 /// \u hex-quad 1664 /// \U hex-quad hex-quad 1665 /// hex-quad: 1666 /// hex-digit hex-digit hex-digit hex-digit 1667 /// \endverbatim 1668 /// 1669 CharLiteralParser::CharLiteralParser(const char *begin, const char *end, 1670 SourceLocation Loc, Preprocessor &PP, 1671 tok::TokenKind kind) { 1672 // At this point we know that the character matches the regex "(L|u|U)?'.*'". 1673 HadError = false; 1674 1675 Kind = kind; 1676 1677 const char *TokBegin = begin; 1678 1679 // Skip over wide character determinant. 1680 if (Kind != tok::char_constant) 1681 ++begin; 1682 if (Kind == tok::utf8_char_constant) 1683 ++begin; 1684 1685 // Skip over the entry quote. 1686 if (begin[0] != '\'') { 1687 PP.Diag(Loc, diag::err_lexing_char); 1688 HadError = true; 1689 return; 1690 } 1691 1692 ++begin; 1693 1694 // Remove an optional ud-suffix. 1695 if (end[-1] != '\'') { 1696 const char *UDSuffixEnd = end; 1697 do { 1698 --end; 1699 } while (end[-1] != '\''); 1700 // FIXME: Don't bother with this if !tok.hasUCN(). 1701 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end)); 1702 UDSuffixOffset = end - TokBegin; 1703 } 1704 1705 // Trim the ending quote. 1706 assert(end != begin && "Invalid token lexed"); 1707 --end; 1708 1709 // FIXME: The "Value" is an uint64_t so we can handle char literals of 1710 // up to 64-bits. 1711 // FIXME: This extensively assumes that 'char' is 8-bits. 1712 assert(PP.getTargetInfo().getCharWidth() == 8 && 1713 "Assumes char is 8 bits"); 1714 assert(PP.getTargetInfo().getIntWidth() <= 64 && 1715 (PP.getTargetInfo().getIntWidth() & 7) == 0 && 1716 "Assumes sizeof(int) on target is <= 64 and a multiple of char"); 1717 assert(PP.getTargetInfo().getWCharWidth() <= 64 && 1718 "Assumes sizeof(wchar) on target is <= 64"); 1719 1720 SmallVector<uint32_t, 4> codepoint_buffer; 1721 codepoint_buffer.resize(end - begin); 1722 uint32_t *buffer_begin = &codepoint_buffer.front(); 1723 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size(); 1724 1725 // Unicode escapes representing characters that cannot be correctly 1726 // represented in a single code unit are disallowed in character literals 1727 // by this implementation. 1728 uint32_t largest_character_for_kind; 1729 if (tok::wide_char_constant == Kind) { 1730 largest_character_for_kind = 1731 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth()); 1732 } else if (tok::utf8_char_constant == Kind) { 1733 largest_character_for_kind = 0x7F; 1734 } else if (tok::utf16_char_constant == Kind) { 1735 largest_character_for_kind = 0xFFFF; 1736 } else if (tok::utf32_char_constant == Kind) { 1737 largest_character_for_kind = 0x10FFFF; 1738 } else { 1739 largest_character_for_kind = 0x7Fu; 1740 } 1741 1742 while (begin != end) { 1743 // Is this a span of non-escape characters? 1744 if (begin[0] != '\\') { 1745 char const *start = begin; 1746 do { 1747 ++begin; 1748 } while (begin != end && *begin != '\\'); 1749 1750 char const *tmp_in_start = start; 1751 uint32_t *tmp_out_start = buffer_begin; 1752 llvm::ConversionResult res = 1753 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start), 1754 reinterpret_cast<llvm::UTF8 const *>(begin), 1755 &buffer_begin, buffer_end, llvm::strictConversion); 1756 if (res != llvm::conversionOK) { 1757 // If we see bad encoding for unprefixed character literals, warn and 1758 // simply copy the byte values, for compatibility with gcc and 1759 // older versions of clang. 1760 bool NoErrorOnBadEncoding = isOrdinary(); 1761 unsigned Msg = diag::err_bad_character_encoding; 1762 if (NoErrorOnBadEncoding) 1763 Msg = diag::warn_bad_character_encoding; 1764 PP.Diag(Loc, Msg); 1765 if (NoErrorOnBadEncoding) { 1766 start = tmp_in_start; 1767 buffer_begin = tmp_out_start; 1768 for (; start != begin; ++start, ++buffer_begin) 1769 *buffer_begin = static_cast<uint8_t>(*start); 1770 } else { 1771 HadError = true; 1772 } 1773 } else { 1774 for (; tmp_out_start < buffer_begin; ++tmp_out_start) { 1775 if (*tmp_out_start > largest_character_for_kind) { 1776 HadError = true; 1777 PP.Diag(Loc, diag::err_character_too_large); 1778 } 1779 } 1780 } 1781 1782 continue; 1783 } 1784 // Is this a Universal Character Name escape? 1785 if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') { 1786 unsigned short UcnLen = 0; 1787 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen, 1788 FullSourceLoc(Loc, PP.getSourceManager()), 1789 &PP.getDiagnostics(), PP.getLangOpts(), true)) { 1790 HadError = true; 1791 } else if (*buffer_begin > largest_character_for_kind) { 1792 HadError = true; 1793 PP.Diag(Loc, diag::err_character_too_large); 1794 } 1795 1796 ++buffer_begin; 1797 continue; 1798 } 1799 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo()); 1800 uint64_t result = 1801 ProcessCharEscape(TokBegin, begin, end, HadError, 1802 FullSourceLoc(Loc, PP.getSourceManager()), CharWidth, 1803 &PP.getDiagnostics(), PP.getLangOpts(), 1804 StringLiteralEvalMethod::Evaluated); 1805 *buffer_begin++ = result; 1806 } 1807 1808 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front(); 1809 1810 if (NumCharsSoFar > 1) { 1811 if (isOrdinary() && NumCharsSoFar == 4) 1812 PP.Diag(Loc, diag::warn_four_char_character_literal); 1813 else if (isOrdinary()) 1814 PP.Diag(Loc, diag::warn_multichar_character_literal); 1815 else { 1816 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1); 1817 HadError = true; 1818 } 1819 IsMultiChar = true; 1820 } else { 1821 IsMultiChar = false; 1822 } 1823 1824 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0); 1825 1826 // Narrow character literals act as though their value is concatenated 1827 // in this implementation, but warn on overflow. 1828 bool multi_char_too_long = false; 1829 if (isOrdinary() && isMultiChar()) { 1830 LitVal = 0; 1831 for (size_t i = 0; i < NumCharsSoFar; ++i) { 1832 // check for enough leading zeros to shift into 1833 multi_char_too_long |= (LitVal.countl_zero() < 8); 1834 LitVal <<= 8; 1835 LitVal = LitVal + (codepoint_buffer[i] & 0xFF); 1836 } 1837 } else if (NumCharsSoFar > 0) { 1838 // otherwise just take the last character 1839 LitVal = buffer_begin[-1]; 1840 } 1841 1842 if (!HadError && multi_char_too_long) { 1843 PP.Diag(Loc, diag::warn_char_constant_too_large); 1844 } 1845 1846 // Transfer the value from APInt to uint64_t 1847 Value = LitVal.getZExtValue(); 1848 1849 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1") 1850 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple 1851 // character constants are not sign extended in the this implementation: 1852 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC. 1853 if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) && 1854 PP.getLangOpts().CharIsSigned) 1855 Value = (signed char)Value; 1856 } 1857 1858 /// \verbatim 1859 /// string-literal: [C++0x lex.string] 1860 /// encoding-prefix " [s-char-sequence] " 1861 /// encoding-prefix R raw-string 1862 /// encoding-prefix: 1863 /// u8 1864 /// u 1865 /// U 1866 /// L 1867 /// s-char-sequence: 1868 /// s-char 1869 /// s-char-sequence s-char 1870 /// s-char: 1871 /// any member of the source character set except the double-quote ", 1872 /// backslash \, or new-line character 1873 /// escape-sequence 1874 /// universal-character-name 1875 /// raw-string: 1876 /// " d-char-sequence ( r-char-sequence ) d-char-sequence " 1877 /// r-char-sequence: 1878 /// r-char 1879 /// r-char-sequence r-char 1880 /// r-char: 1881 /// any member of the source character set, except a right parenthesis ) 1882 /// followed by the initial d-char-sequence (which may be empty) 1883 /// followed by a double quote ". 1884 /// d-char-sequence: 1885 /// d-char 1886 /// d-char-sequence d-char 1887 /// d-char: 1888 /// any member of the basic source character set except: 1889 /// space, the left parenthesis (, the right parenthesis ), 1890 /// the backslash \, and the control characters representing horizontal 1891 /// tab, vertical tab, form feed, and newline. 1892 /// escape-sequence: [C++0x lex.ccon] 1893 /// simple-escape-sequence 1894 /// octal-escape-sequence 1895 /// hexadecimal-escape-sequence 1896 /// simple-escape-sequence: 1897 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1898 /// octal-escape-sequence: 1899 /// \ octal-digit 1900 /// \ octal-digit octal-digit 1901 /// \ octal-digit octal-digit octal-digit 1902 /// hexadecimal-escape-sequence: 1903 /// \x hexadecimal-digit 1904 /// hexadecimal-escape-sequence hexadecimal-digit 1905 /// universal-character-name: 1906 /// \u hex-quad 1907 /// \U hex-quad hex-quad 1908 /// hex-quad: 1909 /// hex-digit hex-digit hex-digit hex-digit 1910 /// \endverbatim 1911 /// 1912 StringLiteralParser::StringLiteralParser(ArrayRef<Token> StringToks, 1913 Preprocessor &PP, 1914 StringLiteralEvalMethod EvalMethod) 1915 : SM(PP.getSourceManager()), Features(PP.getLangOpts()), 1916 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()), 1917 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown), 1918 ResultPtr(ResultBuf.data()), EvalMethod(EvalMethod), hadError(false), 1919 Pascal(false) { 1920 init(StringToks); 1921 } 1922 1923 void StringLiteralParser::init(ArrayRef<Token> StringToks){ 1924 // The literal token may have come from an invalid source location (e.g. due 1925 // to a PCH error), in which case the token length will be 0. 1926 if (StringToks.empty() || StringToks[0].getLength() < 2) 1927 return DiagnoseLexingError(SourceLocation()); 1928 1929 // Scan all of the string portions, remember the max individual token length, 1930 // computing a bound on the concatenated string length, and see whether any 1931 // piece is a wide-string. If any of the string portions is a wide-string 1932 // literal, the result is a wide-string literal [C99 6.4.5p4]. 1933 assert(!StringToks.empty() && "expected at least one token"); 1934 MaxTokenLength = StringToks[0].getLength(); 1935 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!"); 1936 SizeBound = StringToks[0].getLength() - 2; // -2 for "". 1937 hadError = false; 1938 1939 // Determines the kind of string from the prefix 1940 Kind = tok::string_literal; 1941 1942 /// (C99 5.1.1.2p1). The common case is only one string fragment. 1943 for (const Token &Tok : StringToks) { 1944 if (Tok.getLength() < 2) 1945 return DiagnoseLexingError(Tok.getLocation()); 1946 1947 // The string could be shorter than this if it needs cleaning, but this is a 1948 // reasonable bound, which is all we need. 1949 assert(Tok.getLength() >= 2 && "literal token is invalid!"); 1950 SizeBound += Tok.getLength() - 2; // -2 for "". 1951 1952 // Remember maximum string piece length. 1953 if (Tok.getLength() > MaxTokenLength) 1954 MaxTokenLength = Tok.getLength(); 1955 1956 // Remember if we see any wide or utf-8/16/32 strings. 1957 // Also check for illegal concatenations. 1958 if (isUnevaluated() && Tok.getKind() != tok::string_literal) { 1959 if (Diags) { 1960 SourceLocation PrefixEndLoc = Lexer::AdvanceToTokenCharacter( 1961 Tok.getLocation(), getEncodingPrefixLen(Tok.getKind()), SM, 1962 Features); 1963 CharSourceRange Range = 1964 CharSourceRange::getCharRange({Tok.getLocation(), PrefixEndLoc}); 1965 StringRef Prefix(SM.getCharacterData(Tok.getLocation()), 1966 getEncodingPrefixLen(Tok.getKind())); 1967 Diags->Report(Tok.getLocation(), 1968 Features.CPlusPlus26 1969 ? diag::err_unevaluated_string_prefix 1970 : diag::warn_unevaluated_string_prefix) 1971 << Prefix << Features.CPlusPlus << FixItHint::CreateRemoval(Range); 1972 } 1973 if (Features.CPlusPlus26) 1974 hadError = true; 1975 } else if (Tok.isNot(Kind) && Tok.isNot(tok::string_literal)) { 1976 if (isOrdinary()) { 1977 Kind = Tok.getKind(); 1978 } else { 1979 if (Diags) 1980 Diags->Report(Tok.getLocation(), diag::err_unsupported_string_concat); 1981 hadError = true; 1982 } 1983 } 1984 } 1985 1986 // Include space for the null terminator. 1987 ++SizeBound; 1988 1989 // TODO: K&R warning: "traditional C rejects string constant concatenation" 1990 1991 // Get the width in bytes of char/wchar_t/char16_t/char32_t 1992 CharByteWidth = getCharWidth(Kind, Target); 1993 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1994 CharByteWidth /= 8; 1995 1996 // The output buffer size needs to be large enough to hold wide characters. 1997 // This is a worst-case assumption which basically corresponds to L"" "long". 1998 SizeBound *= CharByteWidth; 1999 2000 // Size the temporary buffer to hold the result string data. 2001 ResultBuf.resize(SizeBound); 2002 2003 // Likewise, but for each string piece. 2004 SmallString<512> TokenBuf; 2005 TokenBuf.resize(MaxTokenLength); 2006 2007 // Loop over all the strings, getting their spelling, and expanding them to 2008 // wide strings as appropriate. 2009 ResultPtr = &ResultBuf[0]; // Next byte to fill in. 2010 2011 Pascal = false; 2012 2013 SourceLocation UDSuffixTokLoc; 2014 2015 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) { 2016 const char *ThisTokBuf = &TokenBuf[0]; 2017 // Get the spelling of the token, which eliminates trigraphs, etc. We know 2018 // that ThisTokBuf points to a buffer that is big enough for the whole token 2019 // and 'spelled' tokens can only shrink. 2020 bool StringInvalid = false; 2021 unsigned ThisTokLen = 2022 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features, 2023 &StringInvalid); 2024 if (StringInvalid) 2025 return DiagnoseLexingError(StringToks[i].getLocation()); 2026 2027 const char *ThisTokBegin = ThisTokBuf; 2028 const char *ThisTokEnd = ThisTokBuf+ThisTokLen; 2029 2030 // Remove an optional ud-suffix. 2031 if (ThisTokEnd[-1] != '"') { 2032 const char *UDSuffixEnd = ThisTokEnd; 2033 do { 2034 --ThisTokEnd; 2035 } while (ThisTokEnd[-1] != '"'); 2036 2037 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd); 2038 2039 if (UDSuffixBuf.empty()) { 2040 if (StringToks[i].hasUCN()) 2041 expandUCNs(UDSuffixBuf, UDSuffix); 2042 else 2043 UDSuffixBuf.assign(UDSuffix); 2044 UDSuffixToken = i; 2045 UDSuffixOffset = ThisTokEnd - ThisTokBuf; 2046 UDSuffixTokLoc = StringToks[i].getLocation(); 2047 } else { 2048 SmallString<32> ExpandedUDSuffix; 2049 if (StringToks[i].hasUCN()) { 2050 expandUCNs(ExpandedUDSuffix, UDSuffix); 2051 UDSuffix = ExpandedUDSuffix; 2052 } 2053 2054 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the 2055 // result of a concatenation involving at least one user-defined-string- 2056 // literal, all the participating user-defined-string-literals shall 2057 // have the same ud-suffix. 2058 bool UnevaluatedStringHasUDL = isUnevaluated() && !UDSuffix.empty(); 2059 if (UDSuffixBuf != UDSuffix || UnevaluatedStringHasUDL) { 2060 if (Diags) { 2061 SourceLocation TokLoc = StringToks[i].getLocation(); 2062 if (UnevaluatedStringHasUDL) { 2063 Diags->Report(TokLoc, diag::err_unevaluated_string_udl) 2064 << SourceRange(TokLoc, TokLoc); 2065 } else { 2066 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix) 2067 << UDSuffixBuf << UDSuffix 2068 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc); 2069 } 2070 } 2071 hadError = true; 2072 } 2073 } 2074 } 2075 2076 // Strip the end quote. 2077 --ThisTokEnd; 2078 2079 // TODO: Input character set mapping support. 2080 2081 // Skip marker for wide or unicode strings. 2082 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') { 2083 ++ThisTokBuf; 2084 // Skip 8 of u8 marker for utf8 strings. 2085 if (ThisTokBuf[0] == '8') 2086 ++ThisTokBuf; 2087 } 2088 2089 // Check for raw string 2090 if (ThisTokBuf[0] == 'R') { 2091 if (ThisTokBuf[1] != '"') { 2092 // The file may have come from PCH and then changed after loading the 2093 // PCH; Fail gracefully. 2094 return DiagnoseLexingError(StringToks[i].getLocation()); 2095 } 2096 ThisTokBuf += 2; // skip R" 2097 2098 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16 2099 // characters. 2100 constexpr unsigned MaxRawStrDelimLen = 16; 2101 2102 const char *Prefix = ThisTokBuf; 2103 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen && 2104 ThisTokBuf[0] != '(') 2105 ++ThisTokBuf; 2106 if (ThisTokBuf[0] != '(') 2107 return DiagnoseLexingError(StringToks[i].getLocation()); 2108 ++ThisTokBuf; // skip '(' 2109 2110 // Remove same number of characters from the end 2111 ThisTokEnd -= ThisTokBuf - Prefix; 2112 if (ThisTokEnd < ThisTokBuf) 2113 return DiagnoseLexingError(StringToks[i].getLocation()); 2114 2115 // C++14 [lex.string]p4: A source-file new-line in a raw string literal 2116 // results in a new-line in the resulting execution string-literal. 2117 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf); 2118 while (!RemainingTokenSpan.empty()) { 2119 // Split the string literal on \r\n boundaries. 2120 size_t CRLFPos = RemainingTokenSpan.find("\r\n"); 2121 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos); 2122 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos); 2123 2124 // Copy everything before the \r\n sequence into the string literal. 2125 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF)) 2126 hadError = true; 2127 2128 // Point into the \n inside the \r\n sequence and operate on the 2129 // remaining portion of the literal. 2130 RemainingTokenSpan = AfterCRLF.substr(1); 2131 } 2132 } else { 2133 if (ThisTokBuf[0] != '"') { 2134 // The file may have come from PCH and then changed after loading the 2135 // PCH; Fail gracefully. 2136 return DiagnoseLexingError(StringToks[i].getLocation()); 2137 } 2138 ++ThisTokBuf; // skip " 2139 2140 // Check if this is a pascal string 2141 if (!isUnevaluated() && Features.PascalStrings && 2142 ThisTokBuf + 1 != ThisTokEnd && ThisTokBuf[0] == '\\' && 2143 ThisTokBuf[1] == 'p') { 2144 2145 // If the \p sequence is found in the first token, we have a pascal string 2146 // Otherwise, if we already have a pascal string, ignore the first \p 2147 if (i == 0) { 2148 ++ThisTokBuf; 2149 Pascal = true; 2150 } else if (Pascal) 2151 ThisTokBuf += 2; 2152 } 2153 2154 while (ThisTokBuf != ThisTokEnd) { 2155 // Is this a span of non-escape characters? 2156 if (ThisTokBuf[0] != '\\') { 2157 const char *InStart = ThisTokBuf; 2158 do { 2159 ++ThisTokBuf; 2160 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\'); 2161 2162 // Copy the character span over. 2163 if (CopyStringFragment(StringToks[i], ThisTokBegin, 2164 StringRef(InStart, ThisTokBuf - InStart))) 2165 hadError = true; 2166 continue; 2167 } 2168 // Is this a Universal Character Name escape? 2169 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' || 2170 ThisTokBuf[1] == 'N') { 2171 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, 2172 ResultPtr, hadError, 2173 FullSourceLoc(StringToks[i].getLocation(), SM), 2174 CharByteWidth, Diags, Features); 2175 continue; 2176 } 2177 // Otherwise, this is a non-UCN escape character. Process it. 2178 unsigned ResultChar = 2179 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError, 2180 FullSourceLoc(StringToks[i].getLocation(), SM), 2181 CharByteWidth * 8, Diags, Features, EvalMethod); 2182 2183 if (CharByteWidth == 4) { 2184 // FIXME: Make the type of the result buffer correct instead of 2185 // using reinterpret_cast. 2186 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr); 2187 *ResultWidePtr = ResultChar; 2188 ResultPtr += 4; 2189 } else if (CharByteWidth == 2) { 2190 // FIXME: Make the type of the result buffer correct instead of 2191 // using reinterpret_cast. 2192 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr); 2193 *ResultWidePtr = ResultChar & 0xFFFF; 2194 ResultPtr += 2; 2195 } else { 2196 assert(CharByteWidth == 1 && "Unexpected char width"); 2197 *ResultPtr++ = ResultChar & 0xFF; 2198 } 2199 } 2200 } 2201 } 2202 2203 assert((!Pascal || !isUnevaluated()) && 2204 "Pascal string in unevaluated context"); 2205 if (Pascal) { 2206 if (CharByteWidth == 4) { 2207 // FIXME: Make the type of the result buffer correct instead of 2208 // using reinterpret_cast. 2209 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data()); 2210 ResultWidePtr[0] = GetNumStringChars() - 1; 2211 } else if (CharByteWidth == 2) { 2212 // FIXME: Make the type of the result buffer correct instead of 2213 // using reinterpret_cast. 2214 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data()); 2215 ResultWidePtr[0] = GetNumStringChars() - 1; 2216 } else { 2217 assert(CharByteWidth == 1 && "Unexpected char width"); 2218 ResultBuf[0] = GetNumStringChars() - 1; 2219 } 2220 2221 // Verify that pascal strings aren't too large. 2222 if (GetStringLength() > 256) { 2223 if (Diags) 2224 Diags->Report(StringToks.front().getLocation(), 2225 diag::err_pascal_string_too_long) 2226 << SourceRange(StringToks.front().getLocation(), 2227 StringToks.back().getLocation()); 2228 hadError = true; 2229 return; 2230 } 2231 } else if (Diags) { 2232 // Complain if this string literal has too many characters. 2233 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509; 2234 2235 if (GetNumStringChars() > MaxChars) 2236 Diags->Report(StringToks.front().getLocation(), 2237 diag::ext_string_too_long) 2238 << GetNumStringChars() << MaxChars 2239 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0) 2240 << SourceRange(StringToks.front().getLocation(), 2241 StringToks.back().getLocation()); 2242 } 2243 } 2244 2245 static const char *resyncUTF8(const char *Err, const char *End) { 2246 if (Err == End) 2247 return End; 2248 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err); 2249 while (++Err != End && (*Err & 0xC0) == 0x80) 2250 ; 2251 return Err; 2252 } 2253 2254 /// This function copies from Fragment, which is a sequence of bytes 2255 /// within Tok's contents (which begin at TokBegin) into ResultPtr. 2256 /// Performs widening for multi-byte characters. 2257 bool StringLiteralParser::CopyStringFragment(const Token &Tok, 2258 const char *TokBegin, 2259 StringRef Fragment) { 2260 const llvm::UTF8 *ErrorPtrTmp; 2261 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp)) 2262 return false; 2263 2264 // If we see bad encoding for unprefixed string literals, warn and 2265 // simply copy the byte values, for compatibility with gcc and older 2266 // versions of clang. 2267 bool NoErrorOnBadEncoding = isOrdinary(); 2268 if (NoErrorOnBadEncoding) { 2269 memcpy(ResultPtr, Fragment.data(), Fragment.size()); 2270 ResultPtr += Fragment.size(); 2271 } 2272 2273 if (Diags) { 2274 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2275 2276 FullSourceLoc SourceLoc(Tok.getLocation(), SM); 2277 const DiagnosticBuilder &Builder = 2278 Diag(Diags, Features, SourceLoc, TokBegin, 2279 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()), 2280 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding 2281 : diag::err_bad_string_encoding); 2282 2283 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2284 StringRef NextFragment(NextStart, Fragment.end()-NextStart); 2285 2286 // Decode into a dummy buffer. 2287 SmallString<512> Dummy; 2288 Dummy.reserve(Fragment.size() * CharByteWidth); 2289 char *Ptr = Dummy.data(); 2290 2291 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) { 2292 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2293 NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2294 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin, 2295 ErrorPtr, NextStart); 2296 NextFragment = StringRef(NextStart, Fragment.end()-NextStart); 2297 } 2298 } 2299 return !NoErrorOnBadEncoding; 2300 } 2301 2302 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) { 2303 hadError = true; 2304 if (Diags) 2305 Diags->Report(Loc, diag::err_lexing_string); 2306 } 2307 2308 /// getOffsetOfStringByte - This function returns the offset of the 2309 /// specified byte of the string data represented by Token. This handles 2310 /// advancing over escape sequences in the string. 2311 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok, 2312 unsigned ByteNo) const { 2313 // Get the spelling of the token. 2314 SmallString<32> SpellingBuffer; 2315 SpellingBuffer.resize(Tok.getLength()); 2316 2317 bool StringInvalid = false; 2318 const char *SpellingPtr = &SpellingBuffer[0]; 2319 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features, 2320 &StringInvalid); 2321 if (StringInvalid) 2322 return 0; 2323 2324 const char *SpellingStart = SpellingPtr; 2325 const char *SpellingEnd = SpellingPtr+TokLen; 2326 2327 // Handle UTF-8 strings just like narrow strings. 2328 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8') 2329 SpellingPtr += 2; 2330 2331 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && 2332 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"); 2333 2334 // For raw string literals, this is easy. 2335 if (SpellingPtr[0] == 'R') { 2336 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!"); 2337 // Skip 'R"'. 2338 SpellingPtr += 2; 2339 while (*SpellingPtr != '(') { 2340 ++SpellingPtr; 2341 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal"); 2342 } 2343 // Skip '('. 2344 ++SpellingPtr; 2345 return SpellingPtr - SpellingStart + ByteNo; 2346 } 2347 2348 // Skip over the leading quote 2349 assert(SpellingPtr[0] == '"' && "Should be a string literal!"); 2350 ++SpellingPtr; 2351 2352 // Skip over bytes until we find the offset we're looking for. 2353 while (ByteNo) { 2354 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!"); 2355 2356 // Step over non-escapes simply. 2357 if (*SpellingPtr != '\\') { 2358 ++SpellingPtr; 2359 --ByteNo; 2360 continue; 2361 } 2362 2363 // Otherwise, this is an escape character. Advance over it. 2364 bool HadError = false; 2365 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' || 2366 SpellingPtr[1] == 'N') { 2367 const char *EscapePtr = SpellingPtr; 2368 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd, 2369 1, Features, HadError); 2370 if (Len > ByteNo) { 2371 // ByteNo is somewhere within the escape sequence. 2372 SpellingPtr = EscapePtr; 2373 break; 2374 } 2375 ByteNo -= Len; 2376 } else { 2377 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError, 2378 FullSourceLoc(Tok.getLocation(), SM), CharByteWidth * 8, 2379 Diags, Features, StringLiteralEvalMethod::Evaluated); 2380 --ByteNo; 2381 } 2382 assert(!HadError && "This method isn't valid on erroneous strings"); 2383 } 2384 2385 return SpellingPtr-SpellingStart; 2386 } 2387 2388 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 2389 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 2390 /// treat it as an invalid suffix. 2391 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 2392 StringRef Suffix) { 2393 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) || 2394 Suffix == "sv"; 2395 } 2396