1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the NumericLiteralParser, CharLiteralParser, and 10 // StringLiteralParser interfaces. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "clang/Lex/LiteralSupport.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/LangOptions.h" 17 #include "clang/Basic/SourceLocation.h" 18 #include "clang/Basic/TargetInfo.h" 19 #include "clang/Lex/LexDiagnostic.h" 20 #include "clang/Lex/Lexer.h" 21 #include "clang/Lex/Preprocessor.h" 22 #include "clang/Lex/Token.h" 23 #include "llvm/ADT/APInt.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/StringExtras.h" 26 #include "llvm/ADT/StringSwitch.h" 27 #include "llvm/Support/ConvertUTF.h" 28 #include "llvm/Support/Error.h" 29 #include "llvm/Support/ErrorHandling.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstddef> 33 #include <cstdint> 34 #include <cstring> 35 #include <string> 36 37 using namespace clang; 38 39 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) { 40 switch (kind) { 41 default: llvm_unreachable("Unknown token type!"); 42 case tok::char_constant: 43 case tok::string_literal: 44 case tok::utf8_char_constant: 45 case tok::utf8_string_literal: 46 return Target.getCharWidth(); 47 case tok::wide_char_constant: 48 case tok::wide_string_literal: 49 return Target.getWCharWidth(); 50 case tok::utf16_char_constant: 51 case tok::utf16_string_literal: 52 return Target.getChar16Width(); 53 case tok::utf32_char_constant: 54 case tok::utf32_string_literal: 55 return Target.getChar32Width(); 56 } 57 } 58 59 static CharSourceRange MakeCharSourceRange(const LangOptions &Features, 60 FullSourceLoc TokLoc, 61 const char *TokBegin, 62 const char *TokRangeBegin, 63 const char *TokRangeEnd) { 64 SourceLocation Begin = 65 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 66 TokLoc.getManager(), Features); 67 SourceLocation End = 68 Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin, 69 TokLoc.getManager(), Features); 70 return CharSourceRange::getCharRange(Begin, End); 71 } 72 73 /// Produce a diagnostic highlighting some portion of a literal. 74 /// 75 /// Emits the diagnostic \p DiagID, highlighting the range of characters from 76 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be 77 /// a substring of a spelling buffer for the token beginning at \p TokBegin. 78 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags, 79 const LangOptions &Features, FullSourceLoc TokLoc, 80 const char *TokBegin, const char *TokRangeBegin, 81 const char *TokRangeEnd, unsigned DiagID) { 82 SourceLocation Begin = 83 Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin, 84 TokLoc.getManager(), Features); 85 return Diags->Report(Begin, DiagID) << 86 MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd); 87 } 88 89 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in 90 /// either a character or a string literal. 91 static unsigned ProcessCharEscape(const char *ThisTokBegin, 92 const char *&ThisTokBuf, 93 const char *ThisTokEnd, bool &HadError, 94 FullSourceLoc Loc, unsigned CharWidth, 95 DiagnosticsEngine *Diags, 96 const LangOptions &Features) { 97 const char *EscapeBegin = ThisTokBuf; 98 bool Delimited = false; 99 bool EndDelimiterFound = false; 100 101 // Skip the '\' char. 102 ++ThisTokBuf; 103 104 // We know that this character can't be off the end of the buffer, because 105 // that would have been \", which would not have been the end of string. 106 unsigned ResultChar = *ThisTokBuf++; 107 switch (ResultChar) { 108 // These map to themselves. 109 case '\\': case '\'': case '"': case '?': break; 110 111 // These have fixed mappings. 112 case 'a': 113 // TODO: K&R: the meaning of '\\a' is different in traditional C 114 ResultChar = 7; 115 break; 116 case 'b': 117 ResultChar = 8; 118 break; 119 case 'e': 120 if (Diags) 121 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 122 diag::ext_nonstandard_escape) << "e"; 123 ResultChar = 27; 124 break; 125 case 'E': 126 if (Diags) 127 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 128 diag::ext_nonstandard_escape) << "E"; 129 ResultChar = 27; 130 break; 131 case 'f': 132 ResultChar = 12; 133 break; 134 case 'n': 135 ResultChar = 10; 136 break; 137 case 'r': 138 ResultChar = 13; 139 break; 140 case 't': 141 ResultChar = 9; 142 break; 143 case 'v': 144 ResultChar = 11; 145 break; 146 case 'x': { // Hex escape. 147 ResultChar = 0; 148 if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 149 Delimited = true; 150 ThisTokBuf++; 151 if (*ThisTokBuf == '}') { 152 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 153 diag::err_delimited_escape_empty); 154 return ResultChar; 155 } 156 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 157 if (Diags) 158 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 159 diag::err_hex_escape_no_digits) << "x"; 160 return ResultChar; 161 } 162 163 // Hex escapes are a maximal series of hex digits. 164 bool Overflow = false; 165 for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) { 166 if (Delimited && *ThisTokBuf == '}') { 167 ThisTokBuf++; 168 EndDelimiterFound = true; 169 break; 170 } 171 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 172 if (CharVal == -1) { 173 // Non delimited hex escape sequences stop at the first non-hex digit. 174 if (!Delimited) 175 break; 176 HadError = true; 177 if (Diags) 178 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 179 diag::err_delimited_escape_invalid) 180 << StringRef(ThisTokBuf, 1); 181 continue; 182 } 183 // About to shift out a digit? 184 if (ResultChar & 0xF0000000) 185 Overflow = true; 186 ResultChar <<= 4; 187 ResultChar |= CharVal; 188 } 189 // See if any bits will be truncated when evaluated as a character. 190 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 191 Overflow = true; 192 ResultChar &= ~0U >> (32-CharWidth); 193 } 194 195 // Check for overflow. 196 if (!HadError && Overflow) { // Too many digits to fit in 197 HadError = true; 198 if (Diags) 199 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 200 diag::err_escape_too_large) 201 << 0; 202 } 203 break; 204 } 205 case '0': case '1': case '2': case '3': 206 case '4': case '5': case '6': case '7': { 207 // Octal escapes. 208 --ThisTokBuf; 209 ResultChar = 0; 210 211 // Octal escapes are a series of octal digits with maximum length 3. 212 // "\0123" is a two digit sequence equal to "\012" "3". 213 unsigned NumDigits = 0; 214 do { 215 ResultChar <<= 3; 216 ResultChar |= *ThisTokBuf++ - '0'; 217 ++NumDigits; 218 } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 && 219 ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7'); 220 221 // Check for overflow. Reject '\777', but not L'\777'. 222 if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) { 223 if (Diags) 224 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 225 diag::err_escape_too_large) << 1; 226 ResultChar &= ~0U >> (32-CharWidth); 227 } 228 break; 229 } 230 case 'o': { 231 bool Overflow = false; 232 if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') { 233 HadError = true; 234 if (Diags) 235 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 236 diag::err_delimited_escape_missing_brace); 237 238 break; 239 } 240 ResultChar = 0; 241 Delimited = true; 242 ++ThisTokBuf; 243 if (*ThisTokBuf == '}') { 244 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 245 diag::err_delimited_escape_empty); 246 return ResultChar; 247 } 248 249 while (ThisTokBuf != ThisTokEnd) { 250 if (*ThisTokBuf == '}') { 251 EndDelimiterFound = true; 252 ThisTokBuf++; 253 break; 254 } 255 if (*ThisTokBuf < '0' || *ThisTokBuf > '7') { 256 HadError = true; 257 if (Diags) 258 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 259 diag::err_delimited_escape_invalid) 260 << StringRef(ThisTokBuf, 1); 261 ThisTokBuf++; 262 continue; 263 } 264 if (ResultChar & 0x020000000) 265 Overflow = true; 266 267 ResultChar <<= 3; 268 ResultChar |= *ThisTokBuf++ - '0'; 269 } 270 // Check for overflow. Reject '\777', but not L'\777'. 271 if (!HadError && 272 (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) { 273 HadError = true; 274 if (Diags) 275 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 276 diag::err_escape_too_large) 277 << 1; 278 ResultChar &= ~0U >> (32 - CharWidth); 279 } 280 break; 281 } 282 // Otherwise, these are not valid escapes. 283 case '(': case '{': case '[': case '%': 284 // GCC accepts these as extensions. We warn about them as such though. 285 if (Diags) 286 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 287 diag::ext_nonstandard_escape) 288 << std::string(1, ResultChar); 289 break; 290 default: 291 if (!Diags) 292 break; 293 294 if (isPrintable(ResultChar)) 295 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 296 diag::ext_unknown_escape) 297 << std::string(1, ResultChar); 298 else 299 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 300 diag::ext_unknown_escape) 301 << "x" + llvm::utohexstr(ResultChar); 302 break; 303 } 304 305 if (Delimited && Diags) { 306 if (!EndDelimiterFound) 307 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 308 diag::err_expected) 309 << tok::r_brace; 310 else if (!HadError) { 311 Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf, 312 diag::ext_delimited_escape_sequence); 313 } 314 } 315 316 return ResultChar; 317 } 318 319 static void appendCodePoint(unsigned Codepoint, 320 llvm::SmallVectorImpl<char> &Str) { 321 char ResultBuf[4]; 322 char *ResultPtr = ResultBuf; 323 bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr); 324 (void)Res; 325 assert(Res && "Unexpected conversion failure"); 326 Str.append(ResultBuf, ResultPtr); 327 } 328 329 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) { 330 for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) { 331 if (*I != '\\') { 332 Buf.push_back(*I); 333 continue; 334 } 335 336 ++I; 337 char Kind = *I; 338 ++I; 339 340 assert(Kind == 'u' || Kind == 'U'); 341 uint32_t CodePoint = 0; 342 343 if (Kind == 'u' && *I == '{') { 344 for (++I; *I != '}'; ++I) { 345 unsigned Value = llvm::hexDigitValue(*I); 346 assert(Value != -1U); 347 CodePoint <<= 4; 348 CodePoint += Value; 349 } 350 appendCodePoint(CodePoint, Buf); 351 continue; 352 } 353 354 unsigned NumHexDigits; 355 if (Kind == 'u') 356 NumHexDigits = 4; 357 else 358 NumHexDigits = 8; 359 360 assert(I + NumHexDigits <= E); 361 362 for (; NumHexDigits != 0; ++I, --NumHexDigits) { 363 unsigned Value = llvm::hexDigitValue(*I); 364 assert(Value != -1U); 365 366 CodePoint <<= 4; 367 CodePoint += Value; 368 } 369 370 appendCodePoint(CodePoint, Buf); 371 --I; 372 } 373 } 374 375 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and 376 /// return the UTF32. 377 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 378 const char *ThisTokEnd, 379 uint32_t &UcnVal, unsigned short &UcnLen, 380 FullSourceLoc Loc, DiagnosticsEngine *Diags, 381 const LangOptions &Features, 382 bool in_char_string_literal = false) { 383 const char *UcnBegin = ThisTokBuf; 384 385 // Skip the '\u' char's. 386 ThisTokBuf += 2; 387 388 bool Delimited = false; 389 bool EndDelimiterFound = false; 390 bool HasError = false; 391 392 if (UcnBegin[1] == 'u' && in_char_string_literal && 393 ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') { 394 Delimited = true; 395 ThisTokBuf++; 396 } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) { 397 if (Diags) 398 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 399 diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1); 400 return false; 401 } 402 UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8); 403 404 bool Overflow = false; 405 unsigned short Count = 0; 406 for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen); 407 ++ThisTokBuf) { 408 if (Delimited && *ThisTokBuf == '}') { 409 ++ThisTokBuf; 410 EndDelimiterFound = true; 411 break; 412 } 413 int CharVal = llvm::hexDigitValue(*ThisTokBuf); 414 if (CharVal == -1) { 415 HasError = true; 416 if (!Delimited) 417 break; 418 if (Diags) { 419 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 420 diag::err_delimited_escape_invalid) 421 << StringRef(ThisTokBuf, 1); 422 } 423 Count++; 424 continue; 425 } 426 if (UcnVal & 0xF0000000) { 427 Overflow = true; 428 continue; 429 } 430 UcnVal <<= 4; 431 UcnVal |= CharVal; 432 Count++; 433 } 434 435 if (Overflow) { 436 if (Diags) 437 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 438 diag::err_escape_too_large) 439 << 0; 440 return false; 441 } 442 443 if (Delimited && !EndDelimiterFound) { 444 if (Diags) { 445 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 446 diag::err_expected) 447 << tok::r_brace; 448 } 449 return false; 450 } 451 452 // If we didn't consume the proper number of digits, there is a problem. 453 if (Count == 0 || (!Delimited && Count != UcnLen)) { 454 if (Diags) 455 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 456 Delimited ? diag::err_delimited_escape_empty 457 : diag::err_ucn_escape_incomplete); 458 return false; 459 } 460 461 if (HasError) 462 return false; 463 464 // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2] 465 if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints 466 UcnVal > 0x10FFFF) { // maximum legal UTF32 value 467 if (Diags) 468 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 469 diag::err_ucn_escape_invalid); 470 return false; 471 } 472 473 // C++11 allows UCNs that refer to control characters and basic source 474 // characters inside character and string literals 475 if (UcnVal < 0xa0 && 476 (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) { // $, @, ` 477 bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal); 478 if (Diags) { 479 char BasicSCSChar = UcnVal; 480 if (UcnVal >= 0x20 && UcnVal < 0x7f) 481 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 482 IsError ? diag::err_ucn_escape_basic_scs : 483 diag::warn_cxx98_compat_literal_ucn_escape_basic_scs) 484 << StringRef(&BasicSCSChar, 1); 485 else 486 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 487 IsError ? diag::err_ucn_control_character : 488 diag::warn_cxx98_compat_literal_ucn_control_character); 489 } 490 if (IsError) 491 return false; 492 } 493 494 if (!Features.CPlusPlus && !Features.C99 && Diags) 495 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 496 diag::warn_ucn_not_valid_in_c89_literal); 497 498 if (Delimited && Diags) 499 Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf, 500 diag::ext_delimited_escape_sequence); 501 502 return true; 503 } 504 505 /// MeasureUCNEscape - Determine the number of bytes within the resulting string 506 /// which this UCN will occupy. 507 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 508 const char *ThisTokEnd, unsigned CharByteWidth, 509 const LangOptions &Features, bool &HadError) { 510 // UTF-32: 4 bytes per escape. 511 if (CharByteWidth == 4) 512 return 4; 513 514 uint32_t UcnVal = 0; 515 unsigned short UcnLen = 0; 516 FullSourceLoc Loc; 517 518 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, 519 UcnLen, Loc, nullptr, Features, true)) { 520 HadError = true; 521 return 0; 522 } 523 524 // UTF-16: 2 bytes for BMP, 4 bytes otherwise. 525 if (CharByteWidth == 2) 526 return UcnVal <= 0xFFFF ? 2 : 4; 527 528 // UTF-8. 529 if (UcnVal < 0x80) 530 return 1; 531 if (UcnVal < 0x800) 532 return 2; 533 if (UcnVal < 0x10000) 534 return 3; 535 return 4; 536 } 537 538 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and 539 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of 540 /// StringLiteralParser. When we decide to implement UCN's for identifiers, 541 /// we will likely rework our support for UCN's. 542 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf, 543 const char *ThisTokEnd, 544 char *&ResultBuf, bool &HadError, 545 FullSourceLoc Loc, unsigned CharByteWidth, 546 DiagnosticsEngine *Diags, 547 const LangOptions &Features) { 548 typedef uint32_t UTF32; 549 UTF32 UcnVal = 0; 550 unsigned short UcnLen = 0; 551 if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen, 552 Loc, Diags, Features, true)) { 553 HadError = true; 554 return; 555 } 556 557 assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) && 558 "only character widths of 1, 2, or 4 bytes supported"); 559 560 (void)UcnLen; 561 assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported"); 562 563 if (CharByteWidth == 4) { 564 // FIXME: Make the type of the result buffer correct instead of 565 // using reinterpret_cast. 566 llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf); 567 *ResultPtr = UcnVal; 568 ResultBuf += 4; 569 return; 570 } 571 572 if (CharByteWidth == 2) { 573 // FIXME: Make the type of the result buffer correct instead of 574 // using reinterpret_cast. 575 llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf); 576 577 if (UcnVal <= (UTF32)0xFFFF) { 578 *ResultPtr = UcnVal; 579 ResultBuf += 2; 580 return; 581 } 582 583 // Convert to UTF16. 584 UcnVal -= 0x10000; 585 *ResultPtr = 0xD800 + (UcnVal >> 10); 586 *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF); 587 ResultBuf += 4; 588 return; 589 } 590 591 assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters"); 592 593 // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8. 594 // The conversion below was inspired by: 595 // http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c 596 // First, we determine how many bytes the result will require. 597 typedef uint8_t UTF8; 598 599 unsigned short bytesToWrite = 0; 600 if (UcnVal < (UTF32)0x80) 601 bytesToWrite = 1; 602 else if (UcnVal < (UTF32)0x800) 603 bytesToWrite = 2; 604 else if (UcnVal < (UTF32)0x10000) 605 bytesToWrite = 3; 606 else 607 bytesToWrite = 4; 608 609 const unsigned byteMask = 0xBF; 610 const unsigned byteMark = 0x80; 611 612 // Once the bits are split out into bytes of UTF8, this is a mask OR-ed 613 // into the first byte, depending on how many bytes follow. 614 static const UTF8 firstByteMark[5] = { 615 0x00, 0x00, 0xC0, 0xE0, 0xF0 616 }; 617 // Finally, we write the bytes into ResultBuf. 618 ResultBuf += bytesToWrite; 619 switch (bytesToWrite) { // note: everything falls through. 620 case 4: 621 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 622 LLVM_FALLTHROUGH; 623 case 3: 624 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 625 LLVM_FALLTHROUGH; 626 case 2: 627 *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6; 628 LLVM_FALLTHROUGH; 629 case 1: 630 *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]); 631 } 632 // Update the buffer. 633 ResultBuf += bytesToWrite; 634 } 635 636 /// integer-constant: [C99 6.4.4.1] 637 /// decimal-constant integer-suffix 638 /// octal-constant integer-suffix 639 /// hexadecimal-constant integer-suffix 640 /// binary-literal integer-suffix [GNU, C++1y] 641 /// user-defined-integer-literal: [C++11 lex.ext] 642 /// decimal-literal ud-suffix 643 /// octal-literal ud-suffix 644 /// hexadecimal-literal ud-suffix 645 /// binary-literal ud-suffix [GNU, C++1y] 646 /// decimal-constant: 647 /// nonzero-digit 648 /// decimal-constant digit 649 /// octal-constant: 650 /// 0 651 /// octal-constant octal-digit 652 /// hexadecimal-constant: 653 /// hexadecimal-prefix hexadecimal-digit 654 /// hexadecimal-constant hexadecimal-digit 655 /// hexadecimal-prefix: one of 656 /// 0x 0X 657 /// binary-literal: 658 /// 0b binary-digit 659 /// 0B binary-digit 660 /// binary-literal binary-digit 661 /// integer-suffix: 662 /// unsigned-suffix [long-suffix] 663 /// unsigned-suffix [long-long-suffix] 664 /// long-suffix [unsigned-suffix] 665 /// long-long-suffix [unsigned-sufix] 666 /// nonzero-digit: 667 /// 1 2 3 4 5 6 7 8 9 668 /// octal-digit: 669 /// 0 1 2 3 4 5 6 7 670 /// hexadecimal-digit: 671 /// 0 1 2 3 4 5 6 7 8 9 672 /// a b c d e f 673 /// A B C D E F 674 /// binary-digit: 675 /// 0 676 /// 1 677 /// unsigned-suffix: one of 678 /// u U 679 /// long-suffix: one of 680 /// l L 681 /// long-long-suffix: one of 682 /// ll LL 683 /// 684 /// floating-constant: [C99 6.4.4.2] 685 /// TODO: add rules... 686 /// 687 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling, 688 SourceLocation TokLoc, 689 const SourceManager &SM, 690 const LangOptions &LangOpts, 691 const TargetInfo &Target, 692 DiagnosticsEngine &Diags) 693 : SM(SM), LangOpts(LangOpts), Diags(Diags), 694 ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) { 695 696 s = DigitsBegin = ThisTokBegin; 697 saw_exponent = false; 698 saw_period = false; 699 saw_ud_suffix = false; 700 saw_fixed_point_suffix = false; 701 isLong = false; 702 isUnsigned = false; 703 isLongLong = false; 704 isSizeT = false; 705 isHalf = false; 706 isFloat = false; 707 isImaginary = false; 708 isFloat16 = false; 709 isFloat128 = false; 710 MicrosoftInteger = 0; 711 isFract = false; 712 isAccum = false; 713 hadError = false; 714 715 // This routine assumes that the range begin/end matches the regex for integer 716 // and FP constants (specifically, the 'pp-number' regex), and assumes that 717 // the byte at "*end" is both valid and not part of the regex. Because of 718 // this, it doesn't have to check for 'overscan' in various places. 719 if (isPreprocessingNumberBody(*ThisTokEnd)) { 720 Diags.Report(TokLoc, diag::err_lexing_numeric); 721 hadError = true; 722 return; 723 } 724 725 if (*s == '0') { // parse radix 726 ParseNumberStartingWithZero(TokLoc); 727 if (hadError) 728 return; 729 } else { // the first digit is non-zero 730 radix = 10; 731 s = SkipDigits(s); 732 if (s == ThisTokEnd) { 733 // Done. 734 } else { 735 ParseDecimalOrOctalCommon(TokLoc); 736 if (hadError) 737 return; 738 } 739 } 740 741 SuffixBegin = s; 742 checkSeparator(TokLoc, s, CSK_AfterDigits); 743 744 // Initial scan to lookahead for fixed point suffix. 745 if (LangOpts.FixedPoint) { 746 for (const char *c = s; c != ThisTokEnd; ++c) { 747 if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') { 748 saw_fixed_point_suffix = true; 749 break; 750 } 751 } 752 } 753 754 // Parse the suffix. At this point we can classify whether we have an FP or 755 // integer constant. 756 bool isFixedPointConstant = isFixedPointLiteral(); 757 bool isFPConstant = isFloatingLiteral(); 758 bool HasSize = false; 759 760 // Loop over all of the characters of the suffix. If we see something bad, 761 // we break out of the loop. 762 for (; s != ThisTokEnd; ++s) { 763 switch (*s) { 764 case 'R': 765 case 'r': 766 if (!LangOpts.FixedPoint) 767 break; 768 if (isFract || isAccum) break; 769 if (!(saw_period || saw_exponent)) break; 770 isFract = true; 771 continue; 772 case 'K': 773 case 'k': 774 if (!LangOpts.FixedPoint) 775 break; 776 if (isFract || isAccum) break; 777 if (!(saw_period || saw_exponent)) break; 778 isAccum = true; 779 continue; 780 case 'h': // FP Suffix for "half". 781 case 'H': 782 // OpenCL Extension v1.2 s9.5 - h or H suffix for half type. 783 if (!(LangOpts.Half || LangOpts.FixedPoint)) 784 break; 785 if (isIntegerLiteral()) break; // Error for integer constant. 786 if (HasSize) 787 break; 788 HasSize = true; 789 isHalf = true; 790 continue; // Success. 791 case 'f': // FP Suffix for "float" 792 case 'F': 793 if (!isFPConstant) break; // Error for integer constant. 794 if (HasSize) 795 break; 796 HasSize = true; 797 798 // CUDA host and device may have different _Float16 support, therefore 799 // allows f16 literals to avoid false alarm. 800 // ToDo: more precise check for CUDA. 801 if ((Target.hasFloat16Type() || LangOpts.CUDA) && s + 2 < ThisTokEnd && 802 s[1] == '1' && s[2] == '6') { 803 s += 2; // success, eat up 2 characters. 804 isFloat16 = true; 805 continue; 806 } 807 808 isFloat = true; 809 continue; // Success. 810 case 'q': // FP Suffix for "__float128" 811 case 'Q': 812 if (!isFPConstant) break; // Error for integer constant. 813 if (HasSize) 814 break; 815 HasSize = true; 816 isFloat128 = true; 817 continue; // Success. 818 case 'u': 819 case 'U': 820 if (isFPConstant) break; // Error for floating constant. 821 if (isUnsigned) break; // Cannot be repeated. 822 isUnsigned = true; 823 continue; // Success. 824 case 'l': 825 case 'L': 826 if (HasSize) 827 break; 828 HasSize = true; 829 830 // Check for long long. The L's need to be adjacent and the same case. 831 if (s[1] == s[0]) { 832 assert(s + 1 < ThisTokEnd && "didn't maximally munch?"); 833 if (isFPConstant) break; // long long invalid for floats. 834 isLongLong = true; 835 ++s; // Eat both of them. 836 } else { 837 isLong = true; 838 } 839 continue; // Success. 840 case 'z': 841 case 'Z': 842 if (isFPConstant) 843 break; // Invalid for floats. 844 if (HasSize) 845 break; 846 HasSize = true; 847 isSizeT = true; 848 continue; 849 case 'i': 850 case 'I': 851 if (LangOpts.MicrosoftExt && !isFPConstant) { 852 // Allow i8, i16, i32, and i64. First, look ahead and check if 853 // suffixes are Microsoft integers and not the imaginary unit. 854 uint8_t Bits = 0; 855 size_t ToSkip = 0; 856 switch (s[1]) { 857 case '8': // i8 suffix 858 Bits = 8; 859 ToSkip = 2; 860 break; 861 case '1': 862 if (s[2] == '6') { // i16 suffix 863 Bits = 16; 864 ToSkip = 3; 865 } 866 break; 867 case '3': 868 if (s[2] == '2') { // i32 suffix 869 Bits = 32; 870 ToSkip = 3; 871 } 872 break; 873 case '6': 874 if (s[2] == '4') { // i64 suffix 875 Bits = 64; 876 ToSkip = 3; 877 } 878 break; 879 default: 880 break; 881 } 882 if (Bits) { 883 if (HasSize) 884 break; 885 HasSize = true; 886 MicrosoftInteger = Bits; 887 s += ToSkip; 888 assert(s <= ThisTokEnd && "didn't maximally munch?"); 889 break; 890 } 891 } 892 LLVM_FALLTHROUGH; 893 case 'j': 894 case 'J': 895 if (isImaginary) break; // Cannot be repeated. 896 isImaginary = true; 897 continue; // Success. 898 } 899 // If we reached here, there was an error or a ud-suffix. 900 break; 901 } 902 903 // "i", "if", and "il" are user-defined suffixes in C++1y. 904 if (s != ThisTokEnd || isImaginary) { 905 // FIXME: Don't bother expanding UCNs if !tok.hasUCN(). 906 expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)); 907 if (isValidUDSuffix(LangOpts, UDSuffixBuf)) { 908 if (!isImaginary) { 909 // Any suffix pieces we might have parsed are actually part of the 910 // ud-suffix. 911 isLong = false; 912 isUnsigned = false; 913 isLongLong = false; 914 isSizeT = false; 915 isFloat = false; 916 isFloat16 = false; 917 isHalf = false; 918 isImaginary = false; 919 MicrosoftInteger = 0; 920 saw_fixed_point_suffix = false; 921 isFract = false; 922 isAccum = false; 923 } 924 925 saw_ud_suffix = true; 926 return; 927 } 928 929 if (s != ThisTokEnd) { 930 // Report an error if there are any. 931 Diags.Report(Lexer::AdvanceToTokenCharacter( 932 TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts), 933 diag::err_invalid_suffix_constant) 934 << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin) 935 << (isFixedPointConstant ? 2 : isFPConstant); 936 hadError = true; 937 } 938 } 939 940 if (!hadError && saw_fixed_point_suffix) { 941 assert(isFract || isAccum); 942 } 943 } 944 945 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal 946 /// numbers. It issues an error for illegal digits, and handles floating point 947 /// parsing. If it detects a floating point number, the radix is set to 10. 948 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){ 949 assert((radix == 8 || radix == 10) && "Unexpected radix"); 950 951 // If we have a hex digit other than 'e' (which denotes a FP exponent) then 952 // the code is using an incorrect base. 953 if (isHexDigit(*s) && *s != 'e' && *s != 'E' && 954 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 955 Diags.Report( 956 Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts), 957 diag::err_invalid_digit) 958 << StringRef(s, 1) << (radix == 8 ? 1 : 0); 959 hadError = true; 960 return; 961 } 962 963 if (*s == '.') { 964 checkSeparator(TokLoc, s, CSK_AfterDigits); 965 s++; 966 radix = 10; 967 saw_period = true; 968 checkSeparator(TokLoc, s, CSK_BeforeDigits); 969 s = SkipDigits(s); // Skip suffix. 970 } 971 if (*s == 'e' || *s == 'E') { // exponent 972 checkSeparator(TokLoc, s, CSK_AfterDigits); 973 const char *Exponent = s; 974 s++; 975 radix = 10; 976 saw_exponent = true; 977 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 978 const char *first_non_digit = SkipDigits(s); 979 if (containsDigits(s, first_non_digit)) { 980 checkSeparator(TokLoc, s, CSK_BeforeDigits); 981 s = first_non_digit; 982 } else { 983 if (!hadError) { 984 Diags.Report(Lexer::AdvanceToTokenCharacter( 985 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 986 diag::err_exponent_has_no_digits); 987 hadError = true; 988 } 989 return; 990 } 991 } 992 } 993 994 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 995 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 996 /// treat it as an invalid suffix. 997 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 998 StringRef Suffix) { 999 if (!LangOpts.CPlusPlus11 || Suffix.empty()) 1000 return false; 1001 1002 // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid. 1003 if (Suffix[0] == '_') 1004 return true; 1005 1006 // In C++11, there are no library suffixes. 1007 if (!LangOpts.CPlusPlus14) 1008 return false; 1009 1010 // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library. 1011 // Per tweaked N3660, "il", "i", and "if" are also used in the library. 1012 // In C++2a "d" and "y" are used in the library. 1013 return llvm::StringSwitch<bool>(Suffix) 1014 .Cases("h", "min", "s", true) 1015 .Cases("ms", "us", "ns", true) 1016 .Cases("il", "i", "if", true) 1017 .Cases("d", "y", LangOpts.CPlusPlus20) 1018 .Default(false); 1019 } 1020 1021 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc, 1022 const char *Pos, 1023 CheckSeparatorKind IsAfterDigits) { 1024 if (IsAfterDigits == CSK_AfterDigits) { 1025 if (Pos == ThisTokBegin) 1026 return; 1027 --Pos; 1028 } else if (Pos == ThisTokEnd) 1029 return; 1030 1031 if (isDigitSeparator(*Pos)) { 1032 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM, 1033 LangOpts), 1034 diag::err_digit_separator_not_between_digits) 1035 << IsAfterDigits; 1036 hadError = true; 1037 } 1038 } 1039 1040 /// ParseNumberStartingWithZero - This method is called when the first character 1041 /// of the number is found to be a zero. This means it is either an octal 1042 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or 1043 /// a floating point number (01239.123e4). Eat the prefix, determining the 1044 /// radix etc. 1045 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) { 1046 assert(s[0] == '0' && "Invalid method call"); 1047 s++; 1048 1049 int c1 = s[0]; 1050 1051 // Handle a hex number like 0x1234. 1052 if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) { 1053 s++; 1054 assert(s < ThisTokEnd && "didn't maximally munch?"); 1055 radix = 16; 1056 DigitsBegin = s; 1057 s = SkipHexDigits(s); 1058 bool HasSignificandDigits = containsDigits(DigitsBegin, s); 1059 if (s == ThisTokEnd) { 1060 // Done. 1061 } else if (*s == '.') { 1062 s++; 1063 saw_period = true; 1064 const char *floatDigitsBegin = s; 1065 s = SkipHexDigits(s); 1066 if (containsDigits(floatDigitsBegin, s)) 1067 HasSignificandDigits = true; 1068 if (HasSignificandDigits) 1069 checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits); 1070 } 1071 1072 if (!HasSignificandDigits) { 1073 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1074 LangOpts), 1075 diag::err_hex_constant_requires) 1076 << LangOpts.CPlusPlus << 1; 1077 hadError = true; 1078 return; 1079 } 1080 1081 // A binary exponent can appear with or with a '.'. If dotted, the 1082 // binary exponent is required. 1083 if (*s == 'p' || *s == 'P') { 1084 checkSeparator(TokLoc, s, CSK_AfterDigits); 1085 const char *Exponent = s; 1086 s++; 1087 saw_exponent = true; 1088 if (s != ThisTokEnd && (*s == '+' || *s == '-')) s++; // sign 1089 const char *first_non_digit = SkipDigits(s); 1090 if (!containsDigits(s, first_non_digit)) { 1091 if (!hadError) { 1092 Diags.Report(Lexer::AdvanceToTokenCharacter( 1093 TokLoc, Exponent - ThisTokBegin, SM, LangOpts), 1094 diag::err_exponent_has_no_digits); 1095 hadError = true; 1096 } 1097 return; 1098 } 1099 checkSeparator(TokLoc, s, CSK_BeforeDigits); 1100 s = first_non_digit; 1101 1102 if (!LangOpts.HexFloats) 1103 Diags.Report(TokLoc, LangOpts.CPlusPlus 1104 ? diag::ext_hex_literal_invalid 1105 : diag::ext_hex_constant_invalid); 1106 else if (LangOpts.CPlusPlus17) 1107 Diags.Report(TokLoc, diag::warn_cxx17_hex_literal); 1108 } else if (saw_period) { 1109 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1110 LangOpts), 1111 diag::err_hex_constant_requires) 1112 << LangOpts.CPlusPlus << 0; 1113 hadError = true; 1114 } 1115 return; 1116 } 1117 1118 // Handle simple binary numbers 0b01010 1119 if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) { 1120 // 0b101010 is a C++1y / GCC extension. 1121 Diags.Report(TokLoc, LangOpts.CPlusPlus14 1122 ? diag::warn_cxx11_compat_binary_literal 1123 : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14 1124 : diag::ext_binary_literal); 1125 ++s; 1126 assert(s < ThisTokEnd && "didn't maximally munch?"); 1127 radix = 2; 1128 DigitsBegin = s; 1129 s = SkipBinaryDigits(s); 1130 if (s == ThisTokEnd) { 1131 // Done. 1132 } else if (isHexDigit(*s) && 1133 !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) { 1134 Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, 1135 LangOpts), 1136 diag::err_invalid_digit) 1137 << StringRef(s, 1) << 2; 1138 hadError = true; 1139 } 1140 // Other suffixes will be diagnosed by the caller. 1141 return; 1142 } 1143 1144 // For now, the radix is set to 8. If we discover that we have a 1145 // floating point constant, the radix will change to 10. Octal floating 1146 // point constants are not permitted (only decimal and hexadecimal). 1147 radix = 8; 1148 DigitsBegin = s; 1149 s = SkipOctalDigits(s); 1150 if (s == ThisTokEnd) 1151 return; // Done, simple octal number like 01234 1152 1153 // If we have some other non-octal digit that *is* a decimal digit, see if 1154 // this is part of a floating point number like 094.123 or 09e1. 1155 if (isDigit(*s)) { 1156 const char *EndDecimal = SkipDigits(s); 1157 if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') { 1158 s = EndDecimal; 1159 radix = 10; 1160 } 1161 } 1162 1163 ParseDecimalOrOctalCommon(TokLoc); 1164 } 1165 1166 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) { 1167 switch (Radix) { 1168 case 2: 1169 return NumDigits <= 64; 1170 case 8: 1171 return NumDigits <= 64 / 3; // Digits are groups of 3 bits. 1172 case 10: 1173 return NumDigits <= 19; // floor(log10(2^64)) 1174 case 16: 1175 return NumDigits <= 64 / 4; // Digits are groups of 4 bits. 1176 default: 1177 llvm_unreachable("impossible Radix"); 1178 } 1179 } 1180 1181 /// GetIntegerValue - Convert this numeric literal value to an APInt that 1182 /// matches Val's input width. If there is an overflow, set Val to the low bits 1183 /// of the result and return true. Otherwise, return false. 1184 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) { 1185 // Fast path: Compute a conservative bound on the maximum number of 1186 // bits per digit in this radix. If we can't possibly overflow a 1187 // uint64 based on that bound then do the simple conversion to 1188 // integer. This avoids the expensive overflow checking below, and 1189 // handles the common cases that matter (small decimal integers and 1190 // hex/octal values which don't overflow). 1191 const unsigned NumDigits = SuffixBegin - DigitsBegin; 1192 if (alwaysFitsInto64Bits(radix, NumDigits)) { 1193 uint64_t N = 0; 1194 for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr) 1195 if (!isDigitSeparator(*Ptr)) 1196 N = N * radix + llvm::hexDigitValue(*Ptr); 1197 1198 // This will truncate the value to Val's input width. Simply check 1199 // for overflow by comparing. 1200 Val = N; 1201 return Val.getZExtValue() != N; 1202 } 1203 1204 Val = 0; 1205 const char *Ptr = DigitsBegin; 1206 1207 llvm::APInt RadixVal(Val.getBitWidth(), radix); 1208 llvm::APInt CharVal(Val.getBitWidth(), 0); 1209 llvm::APInt OldVal = Val; 1210 1211 bool OverflowOccurred = false; 1212 while (Ptr < SuffixBegin) { 1213 if (isDigitSeparator(*Ptr)) { 1214 ++Ptr; 1215 continue; 1216 } 1217 1218 unsigned C = llvm::hexDigitValue(*Ptr++); 1219 1220 // If this letter is out of bound for this radix, reject it. 1221 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1222 1223 CharVal = C; 1224 1225 // Add the digit to the value in the appropriate radix. If adding in digits 1226 // made the value smaller, then this overflowed. 1227 OldVal = Val; 1228 1229 // Multiply by radix, did overflow occur on the multiply? 1230 Val *= RadixVal; 1231 OverflowOccurred |= Val.udiv(RadixVal) != OldVal; 1232 1233 // Add value, did overflow occur on the value? 1234 // (a + b) ult b <=> overflow 1235 Val += CharVal; 1236 OverflowOccurred |= Val.ult(CharVal); 1237 } 1238 return OverflowOccurred; 1239 } 1240 1241 llvm::APFloat::opStatus 1242 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) { 1243 using llvm::APFloat; 1244 1245 unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin); 1246 1247 llvm::SmallString<16> Buffer; 1248 StringRef Str(ThisTokBegin, n); 1249 if (Str.contains('\'')) { 1250 Buffer.reserve(n); 1251 std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer), 1252 &isDigitSeparator); 1253 Str = Buffer; 1254 } 1255 1256 auto StatusOrErr = 1257 Result.convertFromString(Str, APFloat::rmNearestTiesToEven); 1258 assert(StatusOrErr && "Invalid floating point representation"); 1259 return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr 1260 : APFloat::opInvalidOp; 1261 } 1262 1263 static inline bool IsExponentPart(char c) { 1264 return c == 'p' || c == 'P' || c == 'e' || c == 'E'; 1265 } 1266 1267 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) { 1268 assert(radix == 16 || radix == 10); 1269 1270 // Find how many digits are needed to store the whole literal. 1271 unsigned NumDigits = SuffixBegin - DigitsBegin; 1272 if (saw_period) --NumDigits; 1273 1274 // Initial scan of the exponent if it exists 1275 bool ExpOverflowOccurred = false; 1276 bool NegativeExponent = false; 1277 const char *ExponentBegin; 1278 uint64_t Exponent = 0; 1279 int64_t BaseShift = 0; 1280 if (saw_exponent) { 1281 const char *Ptr = DigitsBegin; 1282 1283 while (!IsExponentPart(*Ptr)) ++Ptr; 1284 ExponentBegin = Ptr; 1285 ++Ptr; 1286 NegativeExponent = *Ptr == '-'; 1287 if (NegativeExponent) ++Ptr; 1288 1289 unsigned NumExpDigits = SuffixBegin - Ptr; 1290 if (alwaysFitsInto64Bits(radix, NumExpDigits)) { 1291 llvm::StringRef ExpStr(Ptr, NumExpDigits); 1292 llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10); 1293 Exponent = ExpInt.getZExtValue(); 1294 } else { 1295 ExpOverflowOccurred = true; 1296 } 1297 1298 if (NegativeExponent) BaseShift -= Exponent; 1299 else BaseShift += Exponent; 1300 } 1301 1302 // Number of bits needed for decimal literal is 1303 // ceil(NumDigits * log2(10)) Integral part 1304 // + Scale Fractional part 1305 // + ceil(Exponent * log2(10)) Exponent 1306 // -------------------------------------------------- 1307 // ceil((NumDigits + Exponent) * log2(10)) + Scale 1308 // 1309 // But for simplicity in handling integers, we can round up log2(10) to 4, 1310 // making: 1311 // 4 * (NumDigits + Exponent) + Scale 1312 // 1313 // Number of digits needed for hexadecimal literal is 1314 // 4 * NumDigits Integral part 1315 // + Scale Fractional part 1316 // + Exponent Exponent 1317 // -------------------------------------------------- 1318 // (4 * NumDigits) + Scale + Exponent 1319 uint64_t NumBitsNeeded; 1320 if (radix == 10) 1321 NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale; 1322 else 1323 NumBitsNeeded = 4 * NumDigits + Exponent + Scale; 1324 1325 if (NumBitsNeeded > std::numeric_limits<unsigned>::max()) 1326 ExpOverflowOccurred = true; 1327 llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false); 1328 1329 bool FoundDecimal = false; 1330 1331 int64_t FractBaseShift = 0; 1332 const char *End = saw_exponent ? ExponentBegin : SuffixBegin; 1333 for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) { 1334 if (*Ptr == '.') { 1335 FoundDecimal = true; 1336 continue; 1337 } 1338 1339 // Normal reading of an integer 1340 unsigned C = llvm::hexDigitValue(*Ptr); 1341 assert(C < radix && "NumericLiteralParser ctor should have rejected this"); 1342 1343 Val *= radix; 1344 Val += C; 1345 1346 if (FoundDecimal) 1347 // Keep track of how much we will need to adjust this value by from the 1348 // number of digits past the radix point. 1349 --FractBaseShift; 1350 } 1351 1352 // For a radix of 16, we will be multiplying by 2 instead of 16. 1353 if (radix == 16) FractBaseShift *= 4; 1354 BaseShift += FractBaseShift; 1355 1356 Val <<= Scale; 1357 1358 uint64_t Base = (radix == 16) ? 2 : 10; 1359 if (BaseShift > 0) { 1360 for (int64_t i = 0; i < BaseShift; ++i) { 1361 Val *= Base; 1362 } 1363 } else if (BaseShift < 0) { 1364 for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i) 1365 Val = Val.udiv(Base); 1366 } 1367 1368 bool IntOverflowOccurred = false; 1369 auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth()); 1370 if (Val.getBitWidth() > StoreVal.getBitWidth()) { 1371 IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth())); 1372 StoreVal = Val.trunc(StoreVal.getBitWidth()); 1373 } else if (Val.getBitWidth() < StoreVal.getBitWidth()) { 1374 IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal); 1375 StoreVal = Val.zext(StoreVal.getBitWidth()); 1376 } else { 1377 StoreVal = Val; 1378 } 1379 1380 return IntOverflowOccurred || ExpOverflowOccurred; 1381 } 1382 1383 /// \verbatim 1384 /// user-defined-character-literal: [C++11 lex.ext] 1385 /// character-literal ud-suffix 1386 /// ud-suffix: 1387 /// identifier 1388 /// character-literal: [C++11 lex.ccon] 1389 /// ' c-char-sequence ' 1390 /// u' c-char-sequence ' 1391 /// U' c-char-sequence ' 1392 /// L' c-char-sequence ' 1393 /// u8' c-char-sequence ' [C++1z lex.ccon] 1394 /// c-char-sequence: 1395 /// c-char 1396 /// c-char-sequence c-char 1397 /// c-char: 1398 /// any member of the source character set except the single-quote ', 1399 /// backslash \, or new-line character 1400 /// escape-sequence 1401 /// universal-character-name 1402 /// escape-sequence: 1403 /// simple-escape-sequence 1404 /// octal-escape-sequence 1405 /// hexadecimal-escape-sequence 1406 /// simple-escape-sequence: 1407 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1408 /// octal-escape-sequence: 1409 /// \ octal-digit 1410 /// \ octal-digit octal-digit 1411 /// \ octal-digit octal-digit octal-digit 1412 /// hexadecimal-escape-sequence: 1413 /// \x hexadecimal-digit 1414 /// hexadecimal-escape-sequence hexadecimal-digit 1415 /// universal-character-name: [C++11 lex.charset] 1416 /// \u hex-quad 1417 /// \U hex-quad hex-quad 1418 /// hex-quad: 1419 /// hex-digit hex-digit hex-digit hex-digit 1420 /// \endverbatim 1421 /// 1422 CharLiteralParser::CharLiteralParser(const char *begin, const char *end, 1423 SourceLocation Loc, Preprocessor &PP, 1424 tok::TokenKind kind) { 1425 // At this point we know that the character matches the regex "(L|u|U)?'.*'". 1426 HadError = false; 1427 1428 Kind = kind; 1429 1430 const char *TokBegin = begin; 1431 1432 // Skip over wide character determinant. 1433 if (Kind != tok::char_constant) 1434 ++begin; 1435 if (Kind == tok::utf8_char_constant) 1436 ++begin; 1437 1438 // Skip over the entry quote. 1439 if (begin[0] != '\'') { 1440 PP.Diag(Loc, diag::err_lexing_char); 1441 HadError = true; 1442 return; 1443 } 1444 1445 ++begin; 1446 1447 // Remove an optional ud-suffix. 1448 if (end[-1] != '\'') { 1449 const char *UDSuffixEnd = end; 1450 do { 1451 --end; 1452 } while (end[-1] != '\''); 1453 // FIXME: Don't bother with this if !tok.hasUCN(). 1454 expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end)); 1455 UDSuffixOffset = end - TokBegin; 1456 } 1457 1458 // Trim the ending quote. 1459 assert(end != begin && "Invalid token lexed"); 1460 --end; 1461 1462 // FIXME: The "Value" is an uint64_t so we can handle char literals of 1463 // up to 64-bits. 1464 // FIXME: This extensively assumes that 'char' is 8-bits. 1465 assert(PP.getTargetInfo().getCharWidth() == 8 && 1466 "Assumes char is 8 bits"); 1467 assert(PP.getTargetInfo().getIntWidth() <= 64 && 1468 (PP.getTargetInfo().getIntWidth() & 7) == 0 && 1469 "Assumes sizeof(int) on target is <= 64 and a multiple of char"); 1470 assert(PP.getTargetInfo().getWCharWidth() <= 64 && 1471 "Assumes sizeof(wchar) on target is <= 64"); 1472 1473 SmallVector<uint32_t, 4> codepoint_buffer; 1474 codepoint_buffer.resize(end - begin); 1475 uint32_t *buffer_begin = &codepoint_buffer.front(); 1476 uint32_t *buffer_end = buffer_begin + codepoint_buffer.size(); 1477 1478 // Unicode escapes representing characters that cannot be correctly 1479 // represented in a single code unit are disallowed in character literals 1480 // by this implementation. 1481 uint32_t largest_character_for_kind; 1482 if (tok::wide_char_constant == Kind) { 1483 largest_character_for_kind = 1484 0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth()); 1485 } else if (tok::utf8_char_constant == Kind) { 1486 largest_character_for_kind = 0x7F; 1487 } else if (tok::utf16_char_constant == Kind) { 1488 largest_character_for_kind = 0xFFFF; 1489 } else if (tok::utf32_char_constant == Kind) { 1490 largest_character_for_kind = 0x10FFFF; 1491 } else { 1492 largest_character_for_kind = 0x7Fu; 1493 } 1494 1495 while (begin != end) { 1496 // Is this a span of non-escape characters? 1497 if (begin[0] != '\\') { 1498 char const *start = begin; 1499 do { 1500 ++begin; 1501 } while (begin != end && *begin != '\\'); 1502 1503 char const *tmp_in_start = start; 1504 uint32_t *tmp_out_start = buffer_begin; 1505 llvm::ConversionResult res = 1506 llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start), 1507 reinterpret_cast<llvm::UTF8 const *>(begin), 1508 &buffer_begin, buffer_end, llvm::strictConversion); 1509 if (res != llvm::conversionOK) { 1510 // If we see bad encoding for unprefixed character literals, warn and 1511 // simply copy the byte values, for compatibility with gcc and 1512 // older versions of clang. 1513 bool NoErrorOnBadEncoding = isAscii(); 1514 unsigned Msg = diag::err_bad_character_encoding; 1515 if (NoErrorOnBadEncoding) 1516 Msg = diag::warn_bad_character_encoding; 1517 PP.Diag(Loc, Msg); 1518 if (NoErrorOnBadEncoding) { 1519 start = tmp_in_start; 1520 buffer_begin = tmp_out_start; 1521 for (; start != begin; ++start, ++buffer_begin) 1522 *buffer_begin = static_cast<uint8_t>(*start); 1523 } else { 1524 HadError = true; 1525 } 1526 } else { 1527 for (; tmp_out_start < buffer_begin; ++tmp_out_start) { 1528 if (*tmp_out_start > largest_character_for_kind) { 1529 HadError = true; 1530 PP.Diag(Loc, diag::err_character_too_large); 1531 } 1532 } 1533 } 1534 1535 continue; 1536 } 1537 // Is this a Universal Character Name escape? 1538 if (begin[1] == 'u' || begin[1] == 'U') { 1539 unsigned short UcnLen = 0; 1540 if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen, 1541 FullSourceLoc(Loc, PP.getSourceManager()), 1542 &PP.getDiagnostics(), PP.getLangOpts(), true)) { 1543 HadError = true; 1544 } else if (*buffer_begin > largest_character_for_kind) { 1545 HadError = true; 1546 PP.Diag(Loc, diag::err_character_too_large); 1547 } 1548 1549 ++buffer_begin; 1550 continue; 1551 } 1552 unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo()); 1553 uint64_t result = 1554 ProcessCharEscape(TokBegin, begin, end, HadError, 1555 FullSourceLoc(Loc,PP.getSourceManager()), 1556 CharWidth, &PP.getDiagnostics(), PP.getLangOpts()); 1557 *buffer_begin++ = result; 1558 } 1559 1560 unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front(); 1561 1562 if (NumCharsSoFar > 1) { 1563 if (isAscii() && NumCharsSoFar == 4) 1564 PP.Diag(Loc, diag::warn_four_char_character_literal); 1565 else if (isAscii()) 1566 PP.Diag(Loc, diag::warn_multichar_character_literal); 1567 else { 1568 PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1); 1569 HadError = true; 1570 } 1571 IsMultiChar = true; 1572 } else { 1573 IsMultiChar = false; 1574 } 1575 1576 llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0); 1577 1578 // Narrow character literals act as though their value is concatenated 1579 // in this implementation, but warn on overflow. 1580 bool multi_char_too_long = false; 1581 if (isAscii() && isMultiChar()) { 1582 LitVal = 0; 1583 for (size_t i = 0; i < NumCharsSoFar; ++i) { 1584 // check for enough leading zeros to shift into 1585 multi_char_too_long |= (LitVal.countLeadingZeros() < 8); 1586 LitVal <<= 8; 1587 LitVal = LitVal + (codepoint_buffer[i] & 0xFF); 1588 } 1589 } else if (NumCharsSoFar > 0) { 1590 // otherwise just take the last character 1591 LitVal = buffer_begin[-1]; 1592 } 1593 1594 if (!HadError && multi_char_too_long) { 1595 PP.Diag(Loc, diag::warn_char_constant_too_large); 1596 } 1597 1598 // Transfer the value from APInt to uint64_t 1599 Value = LitVal.getZExtValue(); 1600 1601 // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1") 1602 // if 'char' is signed for this target (C99 6.4.4.4p10). Note that multiple 1603 // character constants are not sign extended in the this implementation: 1604 // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC. 1605 if (isAscii() && NumCharsSoFar == 1 && (Value & 128) && 1606 PP.getLangOpts().CharIsSigned) 1607 Value = (signed char)Value; 1608 } 1609 1610 /// \verbatim 1611 /// string-literal: [C++0x lex.string] 1612 /// encoding-prefix " [s-char-sequence] " 1613 /// encoding-prefix R raw-string 1614 /// encoding-prefix: 1615 /// u8 1616 /// u 1617 /// U 1618 /// L 1619 /// s-char-sequence: 1620 /// s-char 1621 /// s-char-sequence s-char 1622 /// s-char: 1623 /// any member of the source character set except the double-quote ", 1624 /// backslash \, or new-line character 1625 /// escape-sequence 1626 /// universal-character-name 1627 /// raw-string: 1628 /// " d-char-sequence ( r-char-sequence ) d-char-sequence " 1629 /// r-char-sequence: 1630 /// r-char 1631 /// r-char-sequence r-char 1632 /// r-char: 1633 /// any member of the source character set, except a right parenthesis ) 1634 /// followed by the initial d-char-sequence (which may be empty) 1635 /// followed by a double quote ". 1636 /// d-char-sequence: 1637 /// d-char 1638 /// d-char-sequence d-char 1639 /// d-char: 1640 /// any member of the basic source character set except: 1641 /// space, the left parenthesis (, the right parenthesis ), 1642 /// the backslash \, and the control characters representing horizontal 1643 /// tab, vertical tab, form feed, and newline. 1644 /// escape-sequence: [C++0x lex.ccon] 1645 /// simple-escape-sequence 1646 /// octal-escape-sequence 1647 /// hexadecimal-escape-sequence 1648 /// simple-escape-sequence: 1649 /// one of \' \" \? \\ \a \b \f \n \r \t \v 1650 /// octal-escape-sequence: 1651 /// \ octal-digit 1652 /// \ octal-digit octal-digit 1653 /// \ octal-digit octal-digit octal-digit 1654 /// hexadecimal-escape-sequence: 1655 /// \x hexadecimal-digit 1656 /// hexadecimal-escape-sequence hexadecimal-digit 1657 /// universal-character-name: 1658 /// \u hex-quad 1659 /// \U hex-quad hex-quad 1660 /// hex-quad: 1661 /// hex-digit hex-digit hex-digit hex-digit 1662 /// \endverbatim 1663 /// 1664 StringLiteralParser:: 1665 StringLiteralParser(ArrayRef<Token> StringToks, 1666 Preprocessor &PP) 1667 : SM(PP.getSourceManager()), Features(PP.getLangOpts()), 1668 Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()), 1669 MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown), 1670 ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) { 1671 init(StringToks); 1672 } 1673 1674 void StringLiteralParser::init(ArrayRef<Token> StringToks){ 1675 // The literal token may have come from an invalid source location (e.g. due 1676 // to a PCH error), in which case the token length will be 0. 1677 if (StringToks.empty() || StringToks[0].getLength() < 2) 1678 return DiagnoseLexingError(SourceLocation()); 1679 1680 // Scan all of the string portions, remember the max individual token length, 1681 // computing a bound on the concatenated string length, and see whether any 1682 // piece is a wide-string. If any of the string portions is a wide-string 1683 // literal, the result is a wide-string literal [C99 6.4.5p4]. 1684 assert(!StringToks.empty() && "expected at least one token"); 1685 MaxTokenLength = StringToks[0].getLength(); 1686 assert(StringToks[0].getLength() >= 2 && "literal token is invalid!"); 1687 SizeBound = StringToks[0].getLength()-2; // -2 for "". 1688 Kind = StringToks[0].getKind(); 1689 1690 hadError = false; 1691 1692 // Implement Translation Phase #6: concatenation of string literals 1693 /// (C99 5.1.1.2p1). The common case is only one string fragment. 1694 for (unsigned i = 1; i != StringToks.size(); ++i) { 1695 if (StringToks[i].getLength() < 2) 1696 return DiagnoseLexingError(StringToks[i].getLocation()); 1697 1698 // The string could be shorter than this if it needs cleaning, but this is a 1699 // reasonable bound, which is all we need. 1700 assert(StringToks[i].getLength() >= 2 && "literal token is invalid!"); 1701 SizeBound += StringToks[i].getLength()-2; // -2 for "". 1702 1703 // Remember maximum string piece length. 1704 if (StringToks[i].getLength() > MaxTokenLength) 1705 MaxTokenLength = StringToks[i].getLength(); 1706 1707 // Remember if we see any wide or utf-8/16/32 strings. 1708 // Also check for illegal concatenations. 1709 if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) { 1710 if (isAscii()) { 1711 Kind = StringToks[i].getKind(); 1712 } else { 1713 if (Diags) 1714 Diags->Report(StringToks[i].getLocation(), 1715 diag::err_unsupported_string_concat); 1716 hadError = true; 1717 } 1718 } 1719 } 1720 1721 // Include space for the null terminator. 1722 ++SizeBound; 1723 1724 // TODO: K&R warning: "traditional C rejects string constant concatenation" 1725 1726 // Get the width in bytes of char/wchar_t/char16_t/char32_t 1727 CharByteWidth = getCharWidth(Kind, Target); 1728 assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple"); 1729 CharByteWidth /= 8; 1730 1731 // The output buffer size needs to be large enough to hold wide characters. 1732 // This is a worst-case assumption which basically corresponds to L"" "long". 1733 SizeBound *= CharByteWidth; 1734 1735 // Size the temporary buffer to hold the result string data. 1736 ResultBuf.resize(SizeBound); 1737 1738 // Likewise, but for each string piece. 1739 SmallString<512> TokenBuf; 1740 TokenBuf.resize(MaxTokenLength); 1741 1742 // Loop over all the strings, getting their spelling, and expanding them to 1743 // wide strings as appropriate. 1744 ResultPtr = &ResultBuf[0]; // Next byte to fill in. 1745 1746 Pascal = false; 1747 1748 SourceLocation UDSuffixTokLoc; 1749 1750 for (unsigned i = 0, e = StringToks.size(); i != e; ++i) { 1751 const char *ThisTokBuf = &TokenBuf[0]; 1752 // Get the spelling of the token, which eliminates trigraphs, etc. We know 1753 // that ThisTokBuf points to a buffer that is big enough for the whole token 1754 // and 'spelled' tokens can only shrink. 1755 bool StringInvalid = false; 1756 unsigned ThisTokLen = 1757 Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features, 1758 &StringInvalid); 1759 if (StringInvalid) 1760 return DiagnoseLexingError(StringToks[i].getLocation()); 1761 1762 const char *ThisTokBegin = ThisTokBuf; 1763 const char *ThisTokEnd = ThisTokBuf+ThisTokLen; 1764 1765 // Remove an optional ud-suffix. 1766 if (ThisTokEnd[-1] != '"') { 1767 const char *UDSuffixEnd = ThisTokEnd; 1768 do { 1769 --ThisTokEnd; 1770 } while (ThisTokEnd[-1] != '"'); 1771 1772 StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd); 1773 1774 if (UDSuffixBuf.empty()) { 1775 if (StringToks[i].hasUCN()) 1776 expandUCNs(UDSuffixBuf, UDSuffix); 1777 else 1778 UDSuffixBuf.assign(UDSuffix); 1779 UDSuffixToken = i; 1780 UDSuffixOffset = ThisTokEnd - ThisTokBuf; 1781 UDSuffixTokLoc = StringToks[i].getLocation(); 1782 } else { 1783 SmallString<32> ExpandedUDSuffix; 1784 if (StringToks[i].hasUCN()) { 1785 expandUCNs(ExpandedUDSuffix, UDSuffix); 1786 UDSuffix = ExpandedUDSuffix; 1787 } 1788 1789 // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the 1790 // result of a concatenation involving at least one user-defined-string- 1791 // literal, all the participating user-defined-string-literals shall 1792 // have the same ud-suffix. 1793 if (UDSuffixBuf != UDSuffix) { 1794 if (Diags) { 1795 SourceLocation TokLoc = StringToks[i].getLocation(); 1796 Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix) 1797 << UDSuffixBuf << UDSuffix 1798 << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc) 1799 << SourceRange(TokLoc, TokLoc); 1800 } 1801 hadError = true; 1802 } 1803 } 1804 } 1805 1806 // Strip the end quote. 1807 --ThisTokEnd; 1808 1809 // TODO: Input character set mapping support. 1810 1811 // Skip marker for wide or unicode strings. 1812 if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') { 1813 ++ThisTokBuf; 1814 // Skip 8 of u8 marker for utf8 strings. 1815 if (ThisTokBuf[0] == '8') 1816 ++ThisTokBuf; 1817 } 1818 1819 // Check for raw string 1820 if (ThisTokBuf[0] == 'R') { 1821 if (ThisTokBuf[1] != '"') { 1822 // The file may have come from PCH and then changed after loading the 1823 // PCH; Fail gracefully. 1824 return DiagnoseLexingError(StringToks[i].getLocation()); 1825 } 1826 ThisTokBuf += 2; // skip R" 1827 1828 // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16 1829 // characters. 1830 constexpr unsigned MaxRawStrDelimLen = 16; 1831 1832 const char *Prefix = ThisTokBuf; 1833 while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen && 1834 ThisTokBuf[0] != '(') 1835 ++ThisTokBuf; 1836 if (ThisTokBuf[0] != '(') 1837 return DiagnoseLexingError(StringToks[i].getLocation()); 1838 ++ThisTokBuf; // skip '(' 1839 1840 // Remove same number of characters from the end 1841 ThisTokEnd -= ThisTokBuf - Prefix; 1842 if (ThisTokEnd < ThisTokBuf) 1843 return DiagnoseLexingError(StringToks[i].getLocation()); 1844 1845 // C++14 [lex.string]p4: A source-file new-line in a raw string literal 1846 // results in a new-line in the resulting execution string-literal. 1847 StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf); 1848 while (!RemainingTokenSpan.empty()) { 1849 // Split the string literal on \r\n boundaries. 1850 size_t CRLFPos = RemainingTokenSpan.find("\r\n"); 1851 StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos); 1852 StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos); 1853 1854 // Copy everything before the \r\n sequence into the string literal. 1855 if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF)) 1856 hadError = true; 1857 1858 // Point into the \n inside the \r\n sequence and operate on the 1859 // remaining portion of the literal. 1860 RemainingTokenSpan = AfterCRLF.substr(1); 1861 } 1862 } else { 1863 if (ThisTokBuf[0] != '"') { 1864 // The file may have come from PCH and then changed after loading the 1865 // PCH; Fail gracefully. 1866 return DiagnoseLexingError(StringToks[i].getLocation()); 1867 } 1868 ++ThisTokBuf; // skip " 1869 1870 // Check if this is a pascal string 1871 if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd && 1872 ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') { 1873 1874 // If the \p sequence is found in the first token, we have a pascal string 1875 // Otherwise, if we already have a pascal string, ignore the first \p 1876 if (i == 0) { 1877 ++ThisTokBuf; 1878 Pascal = true; 1879 } else if (Pascal) 1880 ThisTokBuf += 2; 1881 } 1882 1883 while (ThisTokBuf != ThisTokEnd) { 1884 // Is this a span of non-escape characters? 1885 if (ThisTokBuf[0] != '\\') { 1886 const char *InStart = ThisTokBuf; 1887 do { 1888 ++ThisTokBuf; 1889 } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\'); 1890 1891 // Copy the character span over. 1892 if (CopyStringFragment(StringToks[i], ThisTokBegin, 1893 StringRef(InStart, ThisTokBuf - InStart))) 1894 hadError = true; 1895 continue; 1896 } 1897 // Is this a Universal Character Name escape? 1898 if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') { 1899 EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, 1900 ResultPtr, hadError, 1901 FullSourceLoc(StringToks[i].getLocation(), SM), 1902 CharByteWidth, Diags, Features); 1903 continue; 1904 } 1905 // Otherwise, this is a non-UCN escape character. Process it. 1906 unsigned ResultChar = 1907 ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError, 1908 FullSourceLoc(StringToks[i].getLocation(), SM), 1909 CharByteWidth*8, Diags, Features); 1910 1911 if (CharByteWidth == 4) { 1912 // FIXME: Make the type of the result buffer correct instead of 1913 // using reinterpret_cast. 1914 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr); 1915 *ResultWidePtr = ResultChar; 1916 ResultPtr += 4; 1917 } else if (CharByteWidth == 2) { 1918 // FIXME: Make the type of the result buffer correct instead of 1919 // using reinterpret_cast. 1920 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr); 1921 *ResultWidePtr = ResultChar & 0xFFFF; 1922 ResultPtr += 2; 1923 } else { 1924 assert(CharByteWidth == 1 && "Unexpected char width"); 1925 *ResultPtr++ = ResultChar & 0xFF; 1926 } 1927 } 1928 } 1929 } 1930 1931 if (Pascal) { 1932 if (CharByteWidth == 4) { 1933 // FIXME: Make the type of the result buffer correct instead of 1934 // using reinterpret_cast. 1935 llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data()); 1936 ResultWidePtr[0] = GetNumStringChars() - 1; 1937 } else if (CharByteWidth == 2) { 1938 // FIXME: Make the type of the result buffer correct instead of 1939 // using reinterpret_cast. 1940 llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data()); 1941 ResultWidePtr[0] = GetNumStringChars() - 1; 1942 } else { 1943 assert(CharByteWidth == 1 && "Unexpected char width"); 1944 ResultBuf[0] = GetNumStringChars() - 1; 1945 } 1946 1947 // Verify that pascal strings aren't too large. 1948 if (GetStringLength() > 256) { 1949 if (Diags) 1950 Diags->Report(StringToks.front().getLocation(), 1951 diag::err_pascal_string_too_long) 1952 << SourceRange(StringToks.front().getLocation(), 1953 StringToks.back().getLocation()); 1954 hadError = true; 1955 return; 1956 } 1957 } else if (Diags) { 1958 // Complain if this string literal has too many characters. 1959 unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509; 1960 1961 if (GetNumStringChars() > MaxChars) 1962 Diags->Report(StringToks.front().getLocation(), 1963 diag::ext_string_too_long) 1964 << GetNumStringChars() << MaxChars 1965 << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0) 1966 << SourceRange(StringToks.front().getLocation(), 1967 StringToks.back().getLocation()); 1968 } 1969 } 1970 1971 static const char *resyncUTF8(const char *Err, const char *End) { 1972 if (Err == End) 1973 return End; 1974 End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err); 1975 while (++Err != End && (*Err & 0xC0) == 0x80) 1976 ; 1977 return Err; 1978 } 1979 1980 /// This function copies from Fragment, which is a sequence of bytes 1981 /// within Tok's contents (which begin at TokBegin) into ResultPtr. 1982 /// Performs widening for multi-byte characters. 1983 bool StringLiteralParser::CopyStringFragment(const Token &Tok, 1984 const char *TokBegin, 1985 StringRef Fragment) { 1986 const llvm::UTF8 *ErrorPtrTmp; 1987 if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp)) 1988 return false; 1989 1990 // If we see bad encoding for unprefixed string literals, warn and 1991 // simply copy the byte values, for compatibility with gcc and older 1992 // versions of clang. 1993 bool NoErrorOnBadEncoding = isAscii(); 1994 if (NoErrorOnBadEncoding) { 1995 memcpy(ResultPtr, Fragment.data(), Fragment.size()); 1996 ResultPtr += Fragment.size(); 1997 } 1998 1999 if (Diags) { 2000 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2001 2002 FullSourceLoc SourceLoc(Tok.getLocation(), SM); 2003 const DiagnosticBuilder &Builder = 2004 Diag(Diags, Features, SourceLoc, TokBegin, 2005 ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()), 2006 NoErrorOnBadEncoding ? diag::warn_bad_string_encoding 2007 : diag::err_bad_string_encoding); 2008 2009 const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2010 StringRef NextFragment(NextStart, Fragment.end()-NextStart); 2011 2012 // Decode into a dummy buffer. 2013 SmallString<512> Dummy; 2014 Dummy.reserve(Fragment.size() * CharByteWidth); 2015 char *Ptr = Dummy.data(); 2016 2017 while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) { 2018 const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp); 2019 NextStart = resyncUTF8(ErrorPtr, Fragment.end()); 2020 Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin, 2021 ErrorPtr, NextStart); 2022 NextFragment = StringRef(NextStart, Fragment.end()-NextStart); 2023 } 2024 } 2025 return !NoErrorOnBadEncoding; 2026 } 2027 2028 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) { 2029 hadError = true; 2030 if (Diags) 2031 Diags->Report(Loc, diag::err_lexing_string); 2032 } 2033 2034 /// getOffsetOfStringByte - This function returns the offset of the 2035 /// specified byte of the string data represented by Token. This handles 2036 /// advancing over escape sequences in the string. 2037 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok, 2038 unsigned ByteNo) const { 2039 // Get the spelling of the token. 2040 SmallString<32> SpellingBuffer; 2041 SpellingBuffer.resize(Tok.getLength()); 2042 2043 bool StringInvalid = false; 2044 const char *SpellingPtr = &SpellingBuffer[0]; 2045 unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features, 2046 &StringInvalid); 2047 if (StringInvalid) 2048 return 0; 2049 2050 const char *SpellingStart = SpellingPtr; 2051 const char *SpellingEnd = SpellingPtr+TokLen; 2052 2053 // Handle UTF-8 strings just like narrow strings. 2054 if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8') 2055 SpellingPtr += 2; 2056 2057 assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' && 2058 SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet"); 2059 2060 // For raw string literals, this is easy. 2061 if (SpellingPtr[0] == 'R') { 2062 assert(SpellingPtr[1] == '"' && "Should be a raw string literal!"); 2063 // Skip 'R"'. 2064 SpellingPtr += 2; 2065 while (*SpellingPtr != '(') { 2066 ++SpellingPtr; 2067 assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal"); 2068 } 2069 // Skip '('. 2070 ++SpellingPtr; 2071 return SpellingPtr - SpellingStart + ByteNo; 2072 } 2073 2074 // Skip over the leading quote 2075 assert(SpellingPtr[0] == '"' && "Should be a string literal!"); 2076 ++SpellingPtr; 2077 2078 // Skip over bytes until we find the offset we're looking for. 2079 while (ByteNo) { 2080 assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!"); 2081 2082 // Step over non-escapes simply. 2083 if (*SpellingPtr != '\\') { 2084 ++SpellingPtr; 2085 --ByteNo; 2086 continue; 2087 } 2088 2089 // Otherwise, this is an escape character. Advance over it. 2090 bool HadError = false; 2091 if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') { 2092 const char *EscapePtr = SpellingPtr; 2093 unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd, 2094 1, Features, HadError); 2095 if (Len > ByteNo) { 2096 // ByteNo is somewhere within the escape sequence. 2097 SpellingPtr = EscapePtr; 2098 break; 2099 } 2100 ByteNo -= Len; 2101 } else { 2102 ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError, 2103 FullSourceLoc(Tok.getLocation(), SM), 2104 CharByteWidth*8, Diags, Features); 2105 --ByteNo; 2106 } 2107 assert(!HadError && "This method isn't valid on erroneous strings"); 2108 } 2109 2110 return SpellingPtr-SpellingStart; 2111 } 2112 2113 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved 2114 /// suffixes as ud-suffixes, because the diagnostic experience is better if we 2115 /// treat it as an invalid suffix. 2116 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts, 2117 StringRef Suffix) { 2118 return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) || 2119 Suffix == "sv"; 2120 } 2121