xref: /freebsd/contrib/llvm-project/clang/lib/Lex/LiteralSupport.cpp (revision 1165fc9a526630487a1feb63daef65c5aee1a583)
1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the NumericLiteralParser, CharLiteralParser, and
10 // StringLiteralParser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Lex/LiteralSupport.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/LangOptions.h"
17 #include "clang/Basic/SourceLocation.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/Lexer.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/Token.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/ConvertUTF.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstddef>
33 #include <cstdint>
34 #include <cstring>
35 #include <string>
36 
37 using namespace clang;
38 
39 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
40   switch (kind) {
41   default: llvm_unreachable("Unknown token type!");
42   case tok::char_constant:
43   case tok::string_literal:
44   case tok::utf8_char_constant:
45   case tok::utf8_string_literal:
46     return Target.getCharWidth();
47   case tok::wide_char_constant:
48   case tok::wide_string_literal:
49     return Target.getWCharWidth();
50   case tok::utf16_char_constant:
51   case tok::utf16_string_literal:
52     return Target.getChar16Width();
53   case tok::utf32_char_constant:
54   case tok::utf32_string_literal:
55     return Target.getChar32Width();
56   }
57 }
58 
59 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
60                                            FullSourceLoc TokLoc,
61                                            const char *TokBegin,
62                                            const char *TokRangeBegin,
63                                            const char *TokRangeEnd) {
64   SourceLocation Begin =
65     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
66                                    TokLoc.getManager(), Features);
67   SourceLocation End =
68     Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
69                                    TokLoc.getManager(), Features);
70   return CharSourceRange::getCharRange(Begin, End);
71 }
72 
73 /// Produce a diagnostic highlighting some portion of a literal.
74 ///
75 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
76 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
77 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
78 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
79                               const LangOptions &Features, FullSourceLoc TokLoc,
80                               const char *TokBegin, const char *TokRangeBegin,
81                               const char *TokRangeEnd, unsigned DiagID) {
82   SourceLocation Begin =
83     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
84                                    TokLoc.getManager(), Features);
85   return Diags->Report(Begin, DiagID) <<
86     MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
87 }
88 
89 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
90 /// either a character or a string literal.
91 static unsigned ProcessCharEscape(const char *ThisTokBegin,
92                                   const char *&ThisTokBuf,
93                                   const char *ThisTokEnd, bool &HadError,
94                                   FullSourceLoc Loc, unsigned CharWidth,
95                                   DiagnosticsEngine *Diags,
96                                   const LangOptions &Features) {
97   const char *EscapeBegin = ThisTokBuf;
98   bool Delimited = false;
99   bool EndDelimiterFound = false;
100 
101   // Skip the '\' char.
102   ++ThisTokBuf;
103 
104   // We know that this character can't be off the end of the buffer, because
105   // that would have been \", which would not have been the end of string.
106   unsigned ResultChar = *ThisTokBuf++;
107   switch (ResultChar) {
108   // These map to themselves.
109   case '\\': case '\'': case '"': case '?': break;
110 
111     // These have fixed mappings.
112   case 'a':
113     // TODO: K&R: the meaning of '\\a' is different in traditional C
114     ResultChar = 7;
115     break;
116   case 'b':
117     ResultChar = 8;
118     break;
119   case 'e':
120     if (Diags)
121       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
122            diag::ext_nonstandard_escape) << "e";
123     ResultChar = 27;
124     break;
125   case 'E':
126     if (Diags)
127       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
128            diag::ext_nonstandard_escape) << "E";
129     ResultChar = 27;
130     break;
131   case 'f':
132     ResultChar = 12;
133     break;
134   case 'n':
135     ResultChar = 10;
136     break;
137   case 'r':
138     ResultChar = 13;
139     break;
140   case 't':
141     ResultChar = 9;
142     break;
143   case 'v':
144     ResultChar = 11;
145     break;
146   case 'x': { // Hex escape.
147     ResultChar = 0;
148     if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
149       Delimited = true;
150       ThisTokBuf++;
151       if (*ThisTokBuf == '}') {
152         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
153              diag::err_delimited_escape_empty);
154         return ResultChar;
155       }
156     } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
157       if (Diags)
158         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
159              diag::err_hex_escape_no_digits) << "x";
160       return ResultChar;
161     }
162 
163     // Hex escapes are a maximal series of hex digits.
164     bool Overflow = false;
165     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
166       if (Delimited && *ThisTokBuf == '}') {
167         ThisTokBuf++;
168         EndDelimiterFound = true;
169         break;
170       }
171       int CharVal = llvm::hexDigitValue(*ThisTokBuf);
172       if (CharVal == -1) {
173         // Non delimited hex escape sequences stop at the first non-hex digit.
174         if (!Delimited)
175           break;
176         HadError = true;
177         if (Diags)
178           Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
179                diag::err_delimited_escape_invalid)
180               << StringRef(ThisTokBuf, 1);
181         continue;
182       }
183       // About to shift out a digit?
184       if (ResultChar & 0xF0000000)
185         Overflow = true;
186       ResultChar <<= 4;
187       ResultChar |= CharVal;
188     }
189     // See if any bits will be truncated when evaluated as a character.
190     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
191       Overflow = true;
192       ResultChar &= ~0U >> (32-CharWidth);
193     }
194 
195     // Check for overflow.
196     if (!HadError && Overflow) { // Too many digits to fit in
197       HadError = true;
198       if (Diags)
199         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
200              diag::err_escape_too_large)
201             << 0;
202     }
203     break;
204   }
205   case '0': case '1': case '2': case '3':
206   case '4': case '5': case '6': case '7': {
207     // Octal escapes.
208     --ThisTokBuf;
209     ResultChar = 0;
210 
211     // Octal escapes are a series of octal digits with maximum length 3.
212     // "\0123" is a two digit sequence equal to "\012" "3".
213     unsigned NumDigits = 0;
214     do {
215       ResultChar <<= 3;
216       ResultChar |= *ThisTokBuf++ - '0';
217       ++NumDigits;
218     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
219              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
220 
221     // Check for overflow.  Reject '\777', but not L'\777'.
222     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
223       if (Diags)
224         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
225              diag::err_escape_too_large) << 1;
226       ResultChar &= ~0U >> (32-CharWidth);
227     }
228     break;
229   }
230   case 'o': {
231     bool Overflow = false;
232     if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
233       HadError = true;
234       if (Diags)
235         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
236              diag::err_delimited_escape_missing_brace);
237 
238       break;
239     }
240     ResultChar = 0;
241     Delimited = true;
242     ++ThisTokBuf;
243     if (*ThisTokBuf == '}') {
244       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
245            diag::err_delimited_escape_empty);
246       return ResultChar;
247     }
248 
249     while (ThisTokBuf != ThisTokEnd) {
250       if (*ThisTokBuf == '}') {
251         EndDelimiterFound = true;
252         ThisTokBuf++;
253         break;
254       }
255       if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
256         HadError = true;
257         if (Diags)
258           Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
259                diag::err_delimited_escape_invalid)
260               << StringRef(ThisTokBuf, 1);
261         ThisTokBuf++;
262         continue;
263       }
264       if (ResultChar & 0x020000000)
265         Overflow = true;
266 
267       ResultChar <<= 3;
268       ResultChar |= *ThisTokBuf++ - '0';
269     }
270     // Check for overflow.  Reject '\777', but not L'\777'.
271     if (!HadError &&
272         (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
273       HadError = true;
274       if (Diags)
275         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
276              diag::err_escape_too_large)
277             << 1;
278       ResultChar &= ~0U >> (32 - CharWidth);
279     }
280     break;
281   }
282     // Otherwise, these are not valid escapes.
283   case '(': case '{': case '[': case '%':
284     // GCC accepts these as extensions.  We warn about them as such though.
285     if (Diags)
286       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
287            diag::ext_nonstandard_escape)
288         << std::string(1, ResultChar);
289     break;
290   default:
291     if (!Diags)
292       break;
293 
294     if (isPrintable(ResultChar))
295       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
296            diag::ext_unknown_escape)
297         << std::string(1, ResultChar);
298     else
299       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
300            diag::ext_unknown_escape)
301         << "x" + llvm::utohexstr(ResultChar);
302     break;
303   }
304 
305   if (Delimited && Diags) {
306     if (!EndDelimiterFound)
307       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
308            diag::err_expected)
309           << tok::r_brace;
310     else if (!HadError) {
311       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
312            diag::ext_delimited_escape_sequence);
313     }
314   }
315 
316   return ResultChar;
317 }
318 
319 static void appendCodePoint(unsigned Codepoint,
320                             llvm::SmallVectorImpl<char> &Str) {
321   char ResultBuf[4];
322   char *ResultPtr = ResultBuf;
323   bool Res = llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr);
324   (void)Res;
325   assert(Res && "Unexpected conversion failure");
326   Str.append(ResultBuf, ResultPtr);
327 }
328 
329 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
330   for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
331     if (*I != '\\') {
332       Buf.push_back(*I);
333       continue;
334     }
335 
336     ++I;
337     char Kind = *I;
338     ++I;
339 
340     assert(Kind == 'u' || Kind == 'U');
341     uint32_t CodePoint = 0;
342 
343     if (Kind == 'u' && *I == '{') {
344       for (++I; *I != '}'; ++I) {
345         unsigned Value = llvm::hexDigitValue(*I);
346         assert(Value != -1U);
347         CodePoint <<= 4;
348         CodePoint += Value;
349       }
350       appendCodePoint(CodePoint, Buf);
351       continue;
352     }
353 
354     unsigned NumHexDigits;
355     if (Kind == 'u')
356       NumHexDigits = 4;
357     else
358       NumHexDigits = 8;
359 
360     assert(I + NumHexDigits <= E);
361 
362     for (; NumHexDigits != 0; ++I, --NumHexDigits) {
363       unsigned Value = llvm::hexDigitValue(*I);
364       assert(Value != -1U);
365 
366       CodePoint <<= 4;
367       CodePoint += Value;
368     }
369 
370     appendCodePoint(CodePoint, Buf);
371     --I;
372   }
373 }
374 
375 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
376 /// return the UTF32.
377 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
378                              const char *ThisTokEnd,
379                              uint32_t &UcnVal, unsigned short &UcnLen,
380                              FullSourceLoc Loc, DiagnosticsEngine *Diags,
381                              const LangOptions &Features,
382                              bool in_char_string_literal = false) {
383   const char *UcnBegin = ThisTokBuf;
384 
385   // Skip the '\u' char's.
386   ThisTokBuf += 2;
387 
388   bool Delimited = false;
389   bool EndDelimiterFound = false;
390   bool HasError = false;
391 
392   if (UcnBegin[1] == 'u' && in_char_string_literal &&
393       ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
394     Delimited = true;
395     ThisTokBuf++;
396   } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
397     if (Diags)
398       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
399            diag::err_hex_escape_no_digits) << StringRef(&ThisTokBuf[-1], 1);
400     return false;
401   }
402   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
403 
404   bool Overflow = false;
405   unsigned short Count = 0;
406   for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
407        ++ThisTokBuf) {
408     if (Delimited && *ThisTokBuf == '}') {
409       ++ThisTokBuf;
410       EndDelimiterFound = true;
411       break;
412     }
413     int CharVal = llvm::hexDigitValue(*ThisTokBuf);
414     if (CharVal == -1) {
415       HasError = true;
416       if (!Delimited)
417         break;
418       if (Diags) {
419         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
420              diag::err_delimited_escape_invalid)
421             << StringRef(ThisTokBuf, 1);
422       }
423       Count++;
424       continue;
425     }
426     if (UcnVal & 0xF0000000) {
427       Overflow = true;
428       continue;
429     }
430     UcnVal <<= 4;
431     UcnVal |= CharVal;
432     Count++;
433   }
434 
435   if (Overflow) {
436     if (Diags)
437       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
438            diag::err_escape_too_large)
439           << 0;
440     return false;
441   }
442 
443   if (Delimited && !EndDelimiterFound) {
444     if (Diags) {
445       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
446            diag::err_expected)
447           << tok::r_brace;
448     }
449     return false;
450   }
451 
452   // If we didn't consume the proper number of digits, there is a problem.
453   if (Count == 0 || (!Delimited && Count != UcnLen)) {
454     if (Diags)
455       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
456            Delimited ? diag::err_delimited_escape_empty
457                      : diag::err_ucn_escape_incomplete);
458     return false;
459   }
460 
461   if (HasError)
462     return false;
463 
464   // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
465   if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
466       UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
467     if (Diags)
468       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
469            diag::err_ucn_escape_invalid);
470     return false;
471   }
472 
473   // C++11 allows UCNs that refer to control characters and basic source
474   // characters inside character and string literals
475   if (UcnVal < 0xa0 &&
476       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {  // $, @, `
477     bool IsError = (!Features.CPlusPlus11 || !in_char_string_literal);
478     if (Diags) {
479       char BasicSCSChar = UcnVal;
480       if (UcnVal >= 0x20 && UcnVal < 0x7f)
481         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
482              IsError ? diag::err_ucn_escape_basic_scs :
483                        diag::warn_cxx98_compat_literal_ucn_escape_basic_scs)
484             << StringRef(&BasicSCSChar, 1);
485       else
486         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
487              IsError ? diag::err_ucn_control_character :
488                        diag::warn_cxx98_compat_literal_ucn_control_character);
489     }
490     if (IsError)
491       return false;
492   }
493 
494   if (!Features.CPlusPlus && !Features.C99 && Diags)
495     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
496          diag::warn_ucn_not_valid_in_c89_literal);
497 
498   if (Delimited && Diags)
499     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
500          diag::ext_delimited_escape_sequence);
501 
502   return true;
503 }
504 
505 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
506 /// which this UCN will occupy.
507 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
508                             const char *ThisTokEnd, unsigned CharByteWidth,
509                             const LangOptions &Features, bool &HadError) {
510   // UTF-32: 4 bytes per escape.
511   if (CharByteWidth == 4)
512     return 4;
513 
514   uint32_t UcnVal = 0;
515   unsigned short UcnLen = 0;
516   FullSourceLoc Loc;
517 
518   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
519                         UcnLen, Loc, nullptr, Features, true)) {
520     HadError = true;
521     return 0;
522   }
523 
524   // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
525   if (CharByteWidth == 2)
526     return UcnVal <= 0xFFFF ? 2 : 4;
527 
528   // UTF-8.
529   if (UcnVal < 0x80)
530     return 1;
531   if (UcnVal < 0x800)
532     return 2;
533   if (UcnVal < 0x10000)
534     return 3;
535   return 4;
536 }
537 
538 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
539 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
540 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
541 /// we will likely rework our support for UCN's.
542 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
543                             const char *ThisTokEnd,
544                             char *&ResultBuf, bool &HadError,
545                             FullSourceLoc Loc, unsigned CharByteWidth,
546                             DiagnosticsEngine *Diags,
547                             const LangOptions &Features) {
548   typedef uint32_t UTF32;
549   UTF32 UcnVal = 0;
550   unsigned short UcnLen = 0;
551   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
552                         Loc, Diags, Features, true)) {
553     HadError = true;
554     return;
555   }
556 
557   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
558          "only character widths of 1, 2, or 4 bytes supported");
559 
560   (void)UcnLen;
561   assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
562 
563   if (CharByteWidth == 4) {
564     // FIXME: Make the type of the result buffer correct instead of
565     // using reinterpret_cast.
566     llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
567     *ResultPtr = UcnVal;
568     ResultBuf += 4;
569     return;
570   }
571 
572   if (CharByteWidth == 2) {
573     // FIXME: Make the type of the result buffer correct instead of
574     // using reinterpret_cast.
575     llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
576 
577     if (UcnVal <= (UTF32)0xFFFF) {
578       *ResultPtr = UcnVal;
579       ResultBuf += 2;
580       return;
581     }
582 
583     // Convert to UTF16.
584     UcnVal -= 0x10000;
585     *ResultPtr     = 0xD800 + (UcnVal >> 10);
586     *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
587     ResultBuf += 4;
588     return;
589   }
590 
591   assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
592 
593   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
594   // The conversion below was inspired by:
595   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
596   // First, we determine how many bytes the result will require.
597   typedef uint8_t UTF8;
598 
599   unsigned short bytesToWrite = 0;
600   if (UcnVal < (UTF32)0x80)
601     bytesToWrite = 1;
602   else if (UcnVal < (UTF32)0x800)
603     bytesToWrite = 2;
604   else if (UcnVal < (UTF32)0x10000)
605     bytesToWrite = 3;
606   else
607     bytesToWrite = 4;
608 
609   const unsigned byteMask = 0xBF;
610   const unsigned byteMark = 0x80;
611 
612   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
613   // into the first byte, depending on how many bytes follow.
614   static const UTF8 firstByteMark[5] = {
615     0x00, 0x00, 0xC0, 0xE0, 0xF0
616   };
617   // Finally, we write the bytes into ResultBuf.
618   ResultBuf += bytesToWrite;
619   switch (bytesToWrite) { // note: everything falls through.
620   case 4:
621     *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
622     LLVM_FALLTHROUGH;
623   case 3:
624     *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
625     LLVM_FALLTHROUGH;
626   case 2:
627     *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
628     LLVM_FALLTHROUGH;
629   case 1:
630     *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
631   }
632   // Update the buffer.
633   ResultBuf += bytesToWrite;
634 }
635 
636 ///       integer-constant: [C99 6.4.4.1]
637 ///         decimal-constant integer-suffix
638 ///         octal-constant integer-suffix
639 ///         hexadecimal-constant integer-suffix
640 ///         binary-literal integer-suffix [GNU, C++1y]
641 ///       user-defined-integer-literal: [C++11 lex.ext]
642 ///         decimal-literal ud-suffix
643 ///         octal-literal ud-suffix
644 ///         hexadecimal-literal ud-suffix
645 ///         binary-literal ud-suffix [GNU, C++1y]
646 ///       decimal-constant:
647 ///         nonzero-digit
648 ///         decimal-constant digit
649 ///       octal-constant:
650 ///         0
651 ///         octal-constant octal-digit
652 ///       hexadecimal-constant:
653 ///         hexadecimal-prefix hexadecimal-digit
654 ///         hexadecimal-constant hexadecimal-digit
655 ///       hexadecimal-prefix: one of
656 ///         0x 0X
657 ///       binary-literal:
658 ///         0b binary-digit
659 ///         0B binary-digit
660 ///         binary-literal binary-digit
661 ///       integer-suffix:
662 ///         unsigned-suffix [long-suffix]
663 ///         unsigned-suffix [long-long-suffix]
664 ///         long-suffix [unsigned-suffix]
665 ///         long-long-suffix [unsigned-sufix]
666 ///       nonzero-digit:
667 ///         1 2 3 4 5 6 7 8 9
668 ///       octal-digit:
669 ///         0 1 2 3 4 5 6 7
670 ///       hexadecimal-digit:
671 ///         0 1 2 3 4 5 6 7 8 9
672 ///         a b c d e f
673 ///         A B C D E F
674 ///       binary-digit:
675 ///         0
676 ///         1
677 ///       unsigned-suffix: one of
678 ///         u U
679 ///       long-suffix: one of
680 ///         l L
681 ///       long-long-suffix: one of
682 ///         ll LL
683 ///
684 ///       floating-constant: [C99 6.4.4.2]
685 ///         TODO: add rules...
686 ///
687 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
688                                            SourceLocation TokLoc,
689                                            const SourceManager &SM,
690                                            const LangOptions &LangOpts,
691                                            const TargetInfo &Target,
692                                            DiagnosticsEngine &Diags)
693     : SM(SM), LangOpts(LangOpts), Diags(Diags),
694       ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
695 
696   s = DigitsBegin = ThisTokBegin;
697   saw_exponent = false;
698   saw_period = false;
699   saw_ud_suffix = false;
700   saw_fixed_point_suffix = false;
701   isLong = false;
702   isUnsigned = false;
703   isLongLong = false;
704   isSizeT = false;
705   isHalf = false;
706   isFloat = false;
707   isImaginary = false;
708   isFloat16 = false;
709   isFloat128 = false;
710   MicrosoftInteger = 0;
711   isFract = false;
712   isAccum = false;
713   hadError = false;
714 
715   // This routine assumes that the range begin/end matches the regex for integer
716   // and FP constants (specifically, the 'pp-number' regex), and assumes that
717   // the byte at "*end" is both valid and not part of the regex.  Because of
718   // this, it doesn't have to check for 'overscan' in various places.
719   if (isPreprocessingNumberBody(*ThisTokEnd)) {
720     Diags.Report(TokLoc, diag::err_lexing_numeric);
721     hadError = true;
722     return;
723   }
724 
725   if (*s == '0') { // parse radix
726     ParseNumberStartingWithZero(TokLoc);
727     if (hadError)
728       return;
729   } else { // the first digit is non-zero
730     radix = 10;
731     s = SkipDigits(s);
732     if (s == ThisTokEnd) {
733       // Done.
734     } else {
735       ParseDecimalOrOctalCommon(TokLoc);
736       if (hadError)
737         return;
738     }
739   }
740 
741   SuffixBegin = s;
742   checkSeparator(TokLoc, s, CSK_AfterDigits);
743 
744   // Initial scan to lookahead for fixed point suffix.
745   if (LangOpts.FixedPoint) {
746     for (const char *c = s; c != ThisTokEnd; ++c) {
747       if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
748         saw_fixed_point_suffix = true;
749         break;
750       }
751     }
752   }
753 
754   // Parse the suffix.  At this point we can classify whether we have an FP or
755   // integer constant.
756   bool isFixedPointConstant = isFixedPointLiteral();
757   bool isFPConstant = isFloatingLiteral();
758   bool HasSize = false;
759 
760   // Loop over all of the characters of the suffix.  If we see something bad,
761   // we break out of the loop.
762   for (; s != ThisTokEnd; ++s) {
763     switch (*s) {
764     case 'R':
765     case 'r':
766       if (!LangOpts.FixedPoint)
767         break;
768       if (isFract || isAccum) break;
769       if (!(saw_period || saw_exponent)) break;
770       isFract = true;
771       continue;
772     case 'K':
773     case 'k':
774       if (!LangOpts.FixedPoint)
775         break;
776       if (isFract || isAccum) break;
777       if (!(saw_period || saw_exponent)) break;
778       isAccum = true;
779       continue;
780     case 'h':      // FP Suffix for "half".
781     case 'H':
782       // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
783       if (!(LangOpts.Half || LangOpts.FixedPoint))
784         break;
785       if (isIntegerLiteral()) break;  // Error for integer constant.
786       if (HasSize)
787         break;
788       HasSize = true;
789       isHalf = true;
790       continue;  // Success.
791     case 'f':      // FP Suffix for "float"
792     case 'F':
793       if (!isFPConstant) break;  // Error for integer constant.
794       if (HasSize)
795         break;
796       HasSize = true;
797 
798       // CUDA host and device may have different _Float16 support, therefore
799       // allows f16 literals to avoid false alarm.
800       // ToDo: more precise check for CUDA.
801       if ((Target.hasFloat16Type() || LangOpts.CUDA) && s + 2 < ThisTokEnd &&
802           s[1] == '1' && s[2] == '6') {
803         s += 2; // success, eat up 2 characters.
804         isFloat16 = true;
805         continue;
806       }
807 
808       isFloat = true;
809       continue;  // Success.
810     case 'q':    // FP Suffix for "__float128"
811     case 'Q':
812       if (!isFPConstant) break;  // Error for integer constant.
813       if (HasSize)
814         break;
815       HasSize = true;
816       isFloat128 = true;
817       continue;  // Success.
818     case 'u':
819     case 'U':
820       if (isFPConstant) break;  // Error for floating constant.
821       if (isUnsigned) break;    // Cannot be repeated.
822       isUnsigned = true;
823       continue;  // Success.
824     case 'l':
825     case 'L':
826       if (HasSize)
827         break;
828       HasSize = true;
829 
830       // Check for long long.  The L's need to be adjacent and the same case.
831       if (s[1] == s[0]) {
832         assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
833         if (isFPConstant) break;        // long long invalid for floats.
834         isLongLong = true;
835         ++s;  // Eat both of them.
836       } else {
837         isLong = true;
838       }
839       continue; // Success.
840     case 'z':
841     case 'Z':
842       if (isFPConstant)
843         break; // Invalid for floats.
844       if (HasSize)
845         break;
846       HasSize = true;
847       isSizeT = true;
848       continue;
849     case 'i':
850     case 'I':
851       if (LangOpts.MicrosoftExt && !isFPConstant) {
852         // Allow i8, i16, i32, and i64. First, look ahead and check if
853         // suffixes are Microsoft integers and not the imaginary unit.
854         uint8_t Bits = 0;
855         size_t ToSkip = 0;
856         switch (s[1]) {
857         case '8': // i8 suffix
858           Bits = 8;
859           ToSkip = 2;
860           break;
861         case '1':
862           if (s[2] == '6') { // i16 suffix
863             Bits = 16;
864             ToSkip = 3;
865           }
866           break;
867         case '3':
868           if (s[2] == '2') { // i32 suffix
869             Bits = 32;
870             ToSkip = 3;
871           }
872           break;
873         case '6':
874           if (s[2] == '4') { // i64 suffix
875             Bits = 64;
876             ToSkip = 3;
877           }
878           break;
879         default:
880           break;
881         }
882         if (Bits) {
883           if (HasSize)
884             break;
885           HasSize = true;
886           MicrosoftInteger = Bits;
887           s += ToSkip;
888           assert(s <= ThisTokEnd && "didn't maximally munch?");
889           break;
890         }
891       }
892       LLVM_FALLTHROUGH;
893     case 'j':
894     case 'J':
895       if (isImaginary) break;   // Cannot be repeated.
896       isImaginary = true;
897       continue;  // Success.
898     }
899     // If we reached here, there was an error or a ud-suffix.
900     break;
901   }
902 
903   // "i", "if", and "il" are user-defined suffixes in C++1y.
904   if (s != ThisTokEnd || isImaginary) {
905     // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
906     expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
907     if (isValidUDSuffix(LangOpts, UDSuffixBuf)) {
908       if (!isImaginary) {
909         // Any suffix pieces we might have parsed are actually part of the
910         // ud-suffix.
911         isLong = false;
912         isUnsigned = false;
913         isLongLong = false;
914         isSizeT = false;
915         isFloat = false;
916         isFloat16 = false;
917         isHalf = false;
918         isImaginary = false;
919         MicrosoftInteger = 0;
920         saw_fixed_point_suffix = false;
921         isFract = false;
922         isAccum = false;
923       }
924 
925       saw_ud_suffix = true;
926       return;
927     }
928 
929     if (s != ThisTokEnd) {
930       // Report an error if there are any.
931       Diags.Report(Lexer::AdvanceToTokenCharacter(
932                        TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts),
933                    diag::err_invalid_suffix_constant)
934           << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
935           << (isFixedPointConstant ? 2 : isFPConstant);
936       hadError = true;
937     }
938   }
939 
940   if (!hadError && saw_fixed_point_suffix) {
941     assert(isFract || isAccum);
942   }
943 }
944 
945 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal
946 /// numbers. It issues an error for illegal digits, and handles floating point
947 /// parsing. If it detects a floating point number, the radix is set to 10.
948 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
949   assert((radix == 8 || radix == 10) && "Unexpected radix");
950 
951   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
952   // the code is using an incorrect base.
953   if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
954       !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
955     Diags.Report(
956         Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts),
957         diag::err_invalid_digit)
958         << StringRef(s, 1) << (radix == 8 ? 1 : 0);
959     hadError = true;
960     return;
961   }
962 
963   if (*s == '.') {
964     checkSeparator(TokLoc, s, CSK_AfterDigits);
965     s++;
966     radix = 10;
967     saw_period = true;
968     checkSeparator(TokLoc, s, CSK_BeforeDigits);
969     s = SkipDigits(s); // Skip suffix.
970   }
971   if (*s == 'e' || *s == 'E') { // exponent
972     checkSeparator(TokLoc, s, CSK_AfterDigits);
973     const char *Exponent = s;
974     s++;
975     radix = 10;
976     saw_exponent = true;
977     if (s != ThisTokEnd && (*s == '+' || *s == '-'))  s++; // sign
978     const char *first_non_digit = SkipDigits(s);
979     if (containsDigits(s, first_non_digit)) {
980       checkSeparator(TokLoc, s, CSK_BeforeDigits);
981       s = first_non_digit;
982     } else {
983       if (!hadError) {
984         Diags.Report(Lexer::AdvanceToTokenCharacter(
985                          TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
986                      diag::err_exponent_has_no_digits);
987         hadError = true;
988       }
989       return;
990     }
991   }
992 }
993 
994 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
995 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
996 /// treat it as an invalid suffix.
997 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
998                                            StringRef Suffix) {
999   if (!LangOpts.CPlusPlus11 || Suffix.empty())
1000     return false;
1001 
1002   // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1003   if (Suffix[0] == '_')
1004     return true;
1005 
1006   // In C++11, there are no library suffixes.
1007   if (!LangOpts.CPlusPlus14)
1008     return false;
1009 
1010   // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1011   // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1012   // In C++2a "d" and "y" are used in the library.
1013   return llvm::StringSwitch<bool>(Suffix)
1014       .Cases("h", "min", "s", true)
1015       .Cases("ms", "us", "ns", true)
1016       .Cases("il", "i", "if", true)
1017       .Cases("d", "y", LangOpts.CPlusPlus20)
1018       .Default(false);
1019 }
1020 
1021 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1022                                           const char *Pos,
1023                                           CheckSeparatorKind IsAfterDigits) {
1024   if (IsAfterDigits == CSK_AfterDigits) {
1025     if (Pos == ThisTokBegin)
1026       return;
1027     --Pos;
1028   } else if (Pos == ThisTokEnd)
1029     return;
1030 
1031   if (isDigitSeparator(*Pos)) {
1032     Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM,
1033                                                 LangOpts),
1034                  diag::err_digit_separator_not_between_digits)
1035         << IsAfterDigits;
1036     hadError = true;
1037   }
1038 }
1039 
1040 /// ParseNumberStartingWithZero - This method is called when the first character
1041 /// of the number is found to be a zero.  This means it is either an octal
1042 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1043 /// a floating point number (01239.123e4).  Eat the prefix, determining the
1044 /// radix etc.
1045 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1046   assert(s[0] == '0' && "Invalid method call");
1047   s++;
1048 
1049   int c1 = s[0];
1050 
1051   // Handle a hex number like 0x1234.
1052   if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
1053     s++;
1054     assert(s < ThisTokEnd && "didn't maximally munch?");
1055     radix = 16;
1056     DigitsBegin = s;
1057     s = SkipHexDigits(s);
1058     bool HasSignificandDigits = containsDigits(DigitsBegin, s);
1059     if (s == ThisTokEnd) {
1060       // Done.
1061     } else if (*s == '.') {
1062       s++;
1063       saw_period = true;
1064       const char *floatDigitsBegin = s;
1065       s = SkipHexDigits(s);
1066       if (containsDigits(floatDigitsBegin, s))
1067         HasSignificandDigits = true;
1068       if (HasSignificandDigits)
1069         checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
1070     }
1071 
1072     if (!HasSignificandDigits) {
1073       Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1074                                                   LangOpts),
1075                    diag::err_hex_constant_requires)
1076           << LangOpts.CPlusPlus << 1;
1077       hadError = true;
1078       return;
1079     }
1080 
1081     // A binary exponent can appear with or with a '.'. If dotted, the
1082     // binary exponent is required.
1083     if (*s == 'p' || *s == 'P') {
1084       checkSeparator(TokLoc, s, CSK_AfterDigits);
1085       const char *Exponent = s;
1086       s++;
1087       saw_exponent = true;
1088       if (s != ThisTokEnd && (*s == '+' || *s == '-'))  s++; // sign
1089       const char *first_non_digit = SkipDigits(s);
1090       if (!containsDigits(s, first_non_digit)) {
1091         if (!hadError) {
1092           Diags.Report(Lexer::AdvanceToTokenCharacter(
1093                            TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1094                        diag::err_exponent_has_no_digits);
1095           hadError = true;
1096         }
1097         return;
1098       }
1099       checkSeparator(TokLoc, s, CSK_BeforeDigits);
1100       s = first_non_digit;
1101 
1102       if (!LangOpts.HexFloats)
1103         Diags.Report(TokLoc, LangOpts.CPlusPlus
1104                                  ? diag::ext_hex_literal_invalid
1105                                  : diag::ext_hex_constant_invalid);
1106       else if (LangOpts.CPlusPlus17)
1107         Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1108     } else if (saw_period) {
1109       Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1110                                                   LangOpts),
1111                    diag::err_hex_constant_requires)
1112           << LangOpts.CPlusPlus << 0;
1113       hadError = true;
1114     }
1115     return;
1116   }
1117 
1118   // Handle simple binary numbers 0b01010
1119   if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1120     // 0b101010 is a C++1y / GCC extension.
1121     Diags.Report(TokLoc, LangOpts.CPlusPlus14
1122                              ? diag::warn_cxx11_compat_binary_literal
1123                          : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14
1124                                               : diag::ext_binary_literal);
1125     ++s;
1126     assert(s < ThisTokEnd && "didn't maximally munch?");
1127     radix = 2;
1128     DigitsBegin = s;
1129     s = SkipBinaryDigits(s);
1130     if (s == ThisTokEnd) {
1131       // Done.
1132     } else if (isHexDigit(*s) &&
1133                !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1134       Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1135                                                   LangOpts),
1136                    diag::err_invalid_digit)
1137           << StringRef(s, 1) << 2;
1138       hadError = true;
1139     }
1140     // Other suffixes will be diagnosed by the caller.
1141     return;
1142   }
1143 
1144   // For now, the radix is set to 8. If we discover that we have a
1145   // floating point constant, the radix will change to 10. Octal floating
1146   // point constants are not permitted (only decimal and hexadecimal).
1147   radix = 8;
1148   DigitsBegin = s;
1149   s = SkipOctalDigits(s);
1150   if (s == ThisTokEnd)
1151     return; // Done, simple octal number like 01234
1152 
1153   // If we have some other non-octal digit that *is* a decimal digit, see if
1154   // this is part of a floating point number like 094.123 or 09e1.
1155   if (isDigit(*s)) {
1156     const char *EndDecimal = SkipDigits(s);
1157     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1158       s = EndDecimal;
1159       radix = 10;
1160     }
1161   }
1162 
1163   ParseDecimalOrOctalCommon(TokLoc);
1164 }
1165 
1166 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1167   switch (Radix) {
1168   case 2:
1169     return NumDigits <= 64;
1170   case 8:
1171     return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1172   case 10:
1173     return NumDigits <= 19; // floor(log10(2^64))
1174   case 16:
1175     return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1176   default:
1177     llvm_unreachable("impossible Radix");
1178   }
1179 }
1180 
1181 /// GetIntegerValue - Convert this numeric literal value to an APInt that
1182 /// matches Val's input width.  If there is an overflow, set Val to the low bits
1183 /// of the result and return true.  Otherwise, return false.
1184 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
1185   // Fast path: Compute a conservative bound on the maximum number of
1186   // bits per digit in this radix. If we can't possibly overflow a
1187   // uint64 based on that bound then do the simple conversion to
1188   // integer. This avoids the expensive overflow checking below, and
1189   // handles the common cases that matter (small decimal integers and
1190   // hex/octal values which don't overflow).
1191   const unsigned NumDigits = SuffixBegin - DigitsBegin;
1192   if (alwaysFitsInto64Bits(radix, NumDigits)) {
1193     uint64_t N = 0;
1194     for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1195       if (!isDigitSeparator(*Ptr))
1196         N = N * radix + llvm::hexDigitValue(*Ptr);
1197 
1198     // This will truncate the value to Val's input width. Simply check
1199     // for overflow by comparing.
1200     Val = N;
1201     return Val.getZExtValue() != N;
1202   }
1203 
1204   Val = 0;
1205   const char *Ptr = DigitsBegin;
1206 
1207   llvm::APInt RadixVal(Val.getBitWidth(), radix);
1208   llvm::APInt CharVal(Val.getBitWidth(), 0);
1209   llvm::APInt OldVal = Val;
1210 
1211   bool OverflowOccurred = false;
1212   while (Ptr < SuffixBegin) {
1213     if (isDigitSeparator(*Ptr)) {
1214       ++Ptr;
1215       continue;
1216     }
1217 
1218     unsigned C = llvm::hexDigitValue(*Ptr++);
1219 
1220     // If this letter is out of bound for this radix, reject it.
1221     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1222 
1223     CharVal = C;
1224 
1225     // Add the digit to the value in the appropriate radix.  If adding in digits
1226     // made the value smaller, then this overflowed.
1227     OldVal = Val;
1228 
1229     // Multiply by radix, did overflow occur on the multiply?
1230     Val *= RadixVal;
1231     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
1232 
1233     // Add value, did overflow occur on the value?
1234     //   (a + b) ult b  <=> overflow
1235     Val += CharVal;
1236     OverflowOccurred |= Val.ult(CharVal);
1237   }
1238   return OverflowOccurred;
1239 }
1240 
1241 llvm::APFloat::opStatus
1242 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
1243   using llvm::APFloat;
1244 
1245   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
1246 
1247   llvm::SmallString<16> Buffer;
1248   StringRef Str(ThisTokBegin, n);
1249   if (Str.contains('\'')) {
1250     Buffer.reserve(n);
1251     std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
1252                         &isDigitSeparator);
1253     Str = Buffer;
1254   }
1255 
1256   auto StatusOrErr =
1257       Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
1258   assert(StatusOrErr && "Invalid floating point representation");
1259   return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
1260                                                : APFloat::opInvalidOp;
1261 }
1262 
1263 static inline bool IsExponentPart(char c) {
1264   return c == 'p' || c == 'P' || c == 'e' || c == 'E';
1265 }
1266 
1267 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1268   assert(radix == 16 || radix == 10);
1269 
1270   // Find how many digits are needed to store the whole literal.
1271   unsigned NumDigits = SuffixBegin - DigitsBegin;
1272   if (saw_period) --NumDigits;
1273 
1274   // Initial scan of the exponent if it exists
1275   bool ExpOverflowOccurred = false;
1276   bool NegativeExponent = false;
1277   const char *ExponentBegin;
1278   uint64_t Exponent = 0;
1279   int64_t BaseShift = 0;
1280   if (saw_exponent) {
1281     const char *Ptr = DigitsBegin;
1282 
1283     while (!IsExponentPart(*Ptr)) ++Ptr;
1284     ExponentBegin = Ptr;
1285     ++Ptr;
1286     NegativeExponent = *Ptr == '-';
1287     if (NegativeExponent) ++Ptr;
1288 
1289     unsigned NumExpDigits = SuffixBegin - Ptr;
1290     if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
1291       llvm::StringRef ExpStr(Ptr, NumExpDigits);
1292       llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1293       Exponent = ExpInt.getZExtValue();
1294     } else {
1295       ExpOverflowOccurred = true;
1296     }
1297 
1298     if (NegativeExponent) BaseShift -= Exponent;
1299     else BaseShift += Exponent;
1300   }
1301 
1302   // Number of bits needed for decimal literal is
1303   //   ceil(NumDigits * log2(10))       Integral part
1304   // + Scale                            Fractional part
1305   // + ceil(Exponent * log2(10))        Exponent
1306   // --------------------------------------------------
1307   //   ceil((NumDigits + Exponent) * log2(10)) + Scale
1308   //
1309   // But for simplicity in handling integers, we can round up log2(10) to 4,
1310   // making:
1311   // 4 * (NumDigits + Exponent) + Scale
1312   //
1313   // Number of digits needed for hexadecimal literal is
1314   //   4 * NumDigits                    Integral part
1315   // + Scale                            Fractional part
1316   // + Exponent                         Exponent
1317   // --------------------------------------------------
1318   //   (4 * NumDigits) + Scale + Exponent
1319   uint64_t NumBitsNeeded;
1320   if (radix == 10)
1321     NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1322   else
1323     NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1324 
1325   if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1326     ExpOverflowOccurred = true;
1327   llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1328 
1329   bool FoundDecimal = false;
1330 
1331   int64_t FractBaseShift = 0;
1332   const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1333   for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1334     if (*Ptr == '.') {
1335       FoundDecimal = true;
1336       continue;
1337     }
1338 
1339     // Normal reading of an integer
1340     unsigned C = llvm::hexDigitValue(*Ptr);
1341     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1342 
1343     Val *= radix;
1344     Val += C;
1345 
1346     if (FoundDecimal)
1347       // Keep track of how much we will need to adjust this value by from the
1348       // number of digits past the radix point.
1349       --FractBaseShift;
1350   }
1351 
1352   // For a radix of 16, we will be multiplying by 2 instead of 16.
1353   if (radix == 16) FractBaseShift *= 4;
1354   BaseShift += FractBaseShift;
1355 
1356   Val <<= Scale;
1357 
1358   uint64_t Base = (radix == 16) ? 2 : 10;
1359   if (BaseShift > 0) {
1360     for (int64_t i = 0; i < BaseShift; ++i) {
1361       Val *= Base;
1362     }
1363   } else if (BaseShift < 0) {
1364     for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1365       Val = Val.udiv(Base);
1366   }
1367 
1368   bool IntOverflowOccurred = false;
1369   auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
1370   if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1371     IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
1372     StoreVal = Val.trunc(StoreVal.getBitWidth());
1373   } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1374     IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
1375     StoreVal = Val.zext(StoreVal.getBitWidth());
1376   } else {
1377     StoreVal = Val;
1378   }
1379 
1380   return IntOverflowOccurred || ExpOverflowOccurred;
1381 }
1382 
1383 /// \verbatim
1384 ///       user-defined-character-literal: [C++11 lex.ext]
1385 ///         character-literal ud-suffix
1386 ///       ud-suffix:
1387 ///         identifier
1388 ///       character-literal: [C++11 lex.ccon]
1389 ///         ' c-char-sequence '
1390 ///         u' c-char-sequence '
1391 ///         U' c-char-sequence '
1392 ///         L' c-char-sequence '
1393 ///         u8' c-char-sequence ' [C++1z lex.ccon]
1394 ///       c-char-sequence:
1395 ///         c-char
1396 ///         c-char-sequence c-char
1397 ///       c-char:
1398 ///         any member of the source character set except the single-quote ',
1399 ///           backslash \, or new-line character
1400 ///         escape-sequence
1401 ///         universal-character-name
1402 ///       escape-sequence:
1403 ///         simple-escape-sequence
1404 ///         octal-escape-sequence
1405 ///         hexadecimal-escape-sequence
1406 ///       simple-escape-sequence:
1407 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
1408 ///       octal-escape-sequence:
1409 ///         \ octal-digit
1410 ///         \ octal-digit octal-digit
1411 ///         \ octal-digit octal-digit octal-digit
1412 ///       hexadecimal-escape-sequence:
1413 ///         \x hexadecimal-digit
1414 ///         hexadecimal-escape-sequence hexadecimal-digit
1415 ///       universal-character-name: [C++11 lex.charset]
1416 ///         \u hex-quad
1417 ///         \U hex-quad hex-quad
1418 ///       hex-quad:
1419 ///         hex-digit hex-digit hex-digit hex-digit
1420 /// \endverbatim
1421 ///
1422 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1423                                      SourceLocation Loc, Preprocessor &PP,
1424                                      tok::TokenKind kind) {
1425   // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1426   HadError = false;
1427 
1428   Kind = kind;
1429 
1430   const char *TokBegin = begin;
1431 
1432   // Skip over wide character determinant.
1433   if (Kind != tok::char_constant)
1434     ++begin;
1435   if (Kind == tok::utf8_char_constant)
1436     ++begin;
1437 
1438   // Skip over the entry quote.
1439   if (begin[0] != '\'') {
1440     PP.Diag(Loc, diag::err_lexing_char);
1441     HadError = true;
1442     return;
1443   }
1444 
1445   ++begin;
1446 
1447   // Remove an optional ud-suffix.
1448   if (end[-1] != '\'') {
1449     const char *UDSuffixEnd = end;
1450     do {
1451       --end;
1452     } while (end[-1] != '\'');
1453     // FIXME: Don't bother with this if !tok.hasUCN().
1454     expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1455     UDSuffixOffset = end - TokBegin;
1456   }
1457 
1458   // Trim the ending quote.
1459   assert(end != begin && "Invalid token lexed");
1460   --end;
1461 
1462   // FIXME: The "Value" is an uint64_t so we can handle char literals of
1463   // up to 64-bits.
1464   // FIXME: This extensively assumes that 'char' is 8-bits.
1465   assert(PP.getTargetInfo().getCharWidth() == 8 &&
1466          "Assumes char is 8 bits");
1467   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1468          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1469          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1470   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1471          "Assumes sizeof(wchar) on target is <= 64");
1472 
1473   SmallVector<uint32_t, 4> codepoint_buffer;
1474   codepoint_buffer.resize(end - begin);
1475   uint32_t *buffer_begin = &codepoint_buffer.front();
1476   uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1477 
1478   // Unicode escapes representing characters that cannot be correctly
1479   // represented in a single code unit are disallowed in character literals
1480   // by this implementation.
1481   uint32_t largest_character_for_kind;
1482   if (tok::wide_char_constant == Kind) {
1483     largest_character_for_kind =
1484         0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1485   } else if (tok::utf8_char_constant == Kind) {
1486     largest_character_for_kind = 0x7F;
1487   } else if (tok::utf16_char_constant == Kind) {
1488     largest_character_for_kind = 0xFFFF;
1489   } else if (tok::utf32_char_constant == Kind) {
1490     largest_character_for_kind = 0x10FFFF;
1491   } else {
1492     largest_character_for_kind = 0x7Fu;
1493   }
1494 
1495   while (begin != end) {
1496     // Is this a span of non-escape characters?
1497     if (begin[0] != '\\') {
1498       char const *start = begin;
1499       do {
1500         ++begin;
1501       } while (begin != end && *begin != '\\');
1502 
1503       char const *tmp_in_start = start;
1504       uint32_t *tmp_out_start = buffer_begin;
1505       llvm::ConversionResult res =
1506           llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
1507                              reinterpret_cast<llvm::UTF8 const *>(begin),
1508                              &buffer_begin, buffer_end, llvm::strictConversion);
1509       if (res != llvm::conversionOK) {
1510         // If we see bad encoding for unprefixed character literals, warn and
1511         // simply copy the byte values, for compatibility with gcc and
1512         // older versions of clang.
1513         bool NoErrorOnBadEncoding = isAscii();
1514         unsigned Msg = diag::err_bad_character_encoding;
1515         if (NoErrorOnBadEncoding)
1516           Msg = diag::warn_bad_character_encoding;
1517         PP.Diag(Loc, Msg);
1518         if (NoErrorOnBadEncoding) {
1519           start = tmp_in_start;
1520           buffer_begin = tmp_out_start;
1521           for (; start != begin; ++start, ++buffer_begin)
1522             *buffer_begin = static_cast<uint8_t>(*start);
1523         } else {
1524           HadError = true;
1525         }
1526       } else {
1527         for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1528           if (*tmp_out_start > largest_character_for_kind) {
1529             HadError = true;
1530             PP.Diag(Loc, diag::err_character_too_large);
1531           }
1532         }
1533       }
1534 
1535       continue;
1536     }
1537     // Is this a Universal Character Name escape?
1538     if (begin[1] == 'u' || begin[1] == 'U') {
1539       unsigned short UcnLen = 0;
1540       if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1541                             FullSourceLoc(Loc, PP.getSourceManager()),
1542                             &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1543         HadError = true;
1544       } else if (*buffer_begin > largest_character_for_kind) {
1545         HadError = true;
1546         PP.Diag(Loc, diag::err_character_too_large);
1547       }
1548 
1549       ++buffer_begin;
1550       continue;
1551     }
1552     unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1553     uint64_t result =
1554       ProcessCharEscape(TokBegin, begin, end, HadError,
1555                         FullSourceLoc(Loc,PP.getSourceManager()),
1556                         CharWidth, &PP.getDiagnostics(), PP.getLangOpts());
1557     *buffer_begin++ = result;
1558   }
1559 
1560   unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1561 
1562   if (NumCharsSoFar > 1) {
1563     if (isAscii() && NumCharsSoFar == 4)
1564       PP.Diag(Loc, diag::warn_four_char_character_literal);
1565     else if (isAscii())
1566       PP.Diag(Loc, diag::warn_multichar_character_literal);
1567     else {
1568       PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1569       HadError = true;
1570     }
1571     IsMultiChar = true;
1572   } else {
1573     IsMultiChar = false;
1574   }
1575 
1576   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1577 
1578   // Narrow character literals act as though their value is concatenated
1579   // in this implementation, but warn on overflow.
1580   bool multi_char_too_long = false;
1581   if (isAscii() && isMultiChar()) {
1582     LitVal = 0;
1583     for (size_t i = 0; i < NumCharsSoFar; ++i) {
1584       // check for enough leading zeros to shift into
1585       multi_char_too_long |= (LitVal.countLeadingZeros() < 8);
1586       LitVal <<= 8;
1587       LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1588     }
1589   } else if (NumCharsSoFar > 0) {
1590     // otherwise just take the last character
1591     LitVal = buffer_begin[-1];
1592   }
1593 
1594   if (!HadError && multi_char_too_long) {
1595     PP.Diag(Loc, diag::warn_char_constant_too_large);
1596   }
1597 
1598   // Transfer the value from APInt to uint64_t
1599   Value = LitVal.getZExtValue();
1600 
1601   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1602   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
1603   // character constants are not sign extended in the this implementation:
1604   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1605   if (isAscii() && NumCharsSoFar == 1 && (Value & 128) &&
1606       PP.getLangOpts().CharIsSigned)
1607     Value = (signed char)Value;
1608 }
1609 
1610 /// \verbatim
1611 ///       string-literal: [C++0x lex.string]
1612 ///         encoding-prefix " [s-char-sequence] "
1613 ///         encoding-prefix R raw-string
1614 ///       encoding-prefix:
1615 ///         u8
1616 ///         u
1617 ///         U
1618 ///         L
1619 ///       s-char-sequence:
1620 ///         s-char
1621 ///         s-char-sequence s-char
1622 ///       s-char:
1623 ///         any member of the source character set except the double-quote ",
1624 ///           backslash \, or new-line character
1625 ///         escape-sequence
1626 ///         universal-character-name
1627 ///       raw-string:
1628 ///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
1629 ///       r-char-sequence:
1630 ///         r-char
1631 ///         r-char-sequence r-char
1632 ///       r-char:
1633 ///         any member of the source character set, except a right parenthesis )
1634 ///           followed by the initial d-char-sequence (which may be empty)
1635 ///           followed by a double quote ".
1636 ///       d-char-sequence:
1637 ///         d-char
1638 ///         d-char-sequence d-char
1639 ///       d-char:
1640 ///         any member of the basic source character set except:
1641 ///           space, the left parenthesis (, the right parenthesis ),
1642 ///           the backslash \, and the control characters representing horizontal
1643 ///           tab, vertical tab, form feed, and newline.
1644 ///       escape-sequence: [C++0x lex.ccon]
1645 ///         simple-escape-sequence
1646 ///         octal-escape-sequence
1647 ///         hexadecimal-escape-sequence
1648 ///       simple-escape-sequence:
1649 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
1650 ///       octal-escape-sequence:
1651 ///         \ octal-digit
1652 ///         \ octal-digit octal-digit
1653 ///         \ octal-digit octal-digit octal-digit
1654 ///       hexadecimal-escape-sequence:
1655 ///         \x hexadecimal-digit
1656 ///         hexadecimal-escape-sequence hexadecimal-digit
1657 ///       universal-character-name:
1658 ///         \u hex-quad
1659 ///         \U hex-quad hex-quad
1660 ///       hex-quad:
1661 ///         hex-digit hex-digit hex-digit hex-digit
1662 /// \endverbatim
1663 ///
1664 StringLiteralParser::
1665 StringLiteralParser(ArrayRef<Token> StringToks,
1666                     Preprocessor &PP)
1667   : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1668     Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1669     MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1670     ResultPtr(ResultBuf.data()), hadError(false), Pascal(false) {
1671   init(StringToks);
1672 }
1673 
1674 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1675   // The literal token may have come from an invalid source location (e.g. due
1676   // to a PCH error), in which case the token length will be 0.
1677   if (StringToks.empty() || StringToks[0].getLength() < 2)
1678     return DiagnoseLexingError(SourceLocation());
1679 
1680   // Scan all of the string portions, remember the max individual token length,
1681   // computing a bound on the concatenated string length, and see whether any
1682   // piece is a wide-string.  If any of the string portions is a wide-string
1683   // literal, the result is a wide-string literal [C99 6.4.5p4].
1684   assert(!StringToks.empty() && "expected at least one token");
1685   MaxTokenLength = StringToks[0].getLength();
1686   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1687   SizeBound = StringToks[0].getLength()-2;  // -2 for "".
1688   Kind = StringToks[0].getKind();
1689 
1690   hadError = false;
1691 
1692   // Implement Translation Phase #6: concatenation of string literals
1693   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
1694   for (unsigned i = 1; i != StringToks.size(); ++i) {
1695     if (StringToks[i].getLength() < 2)
1696       return DiagnoseLexingError(StringToks[i].getLocation());
1697 
1698     // The string could be shorter than this if it needs cleaning, but this is a
1699     // reasonable bound, which is all we need.
1700     assert(StringToks[i].getLength() >= 2 && "literal token is invalid!");
1701     SizeBound += StringToks[i].getLength()-2;  // -2 for "".
1702 
1703     // Remember maximum string piece length.
1704     if (StringToks[i].getLength() > MaxTokenLength)
1705       MaxTokenLength = StringToks[i].getLength();
1706 
1707     // Remember if we see any wide or utf-8/16/32 strings.
1708     // Also check for illegal concatenations.
1709     if (StringToks[i].isNot(Kind) && StringToks[i].isNot(tok::string_literal)) {
1710       if (isAscii()) {
1711         Kind = StringToks[i].getKind();
1712       } else {
1713         if (Diags)
1714           Diags->Report(StringToks[i].getLocation(),
1715                         diag::err_unsupported_string_concat);
1716         hadError = true;
1717       }
1718     }
1719   }
1720 
1721   // Include space for the null terminator.
1722   ++SizeBound;
1723 
1724   // TODO: K&R warning: "traditional C rejects string constant concatenation"
1725 
1726   // Get the width in bytes of char/wchar_t/char16_t/char32_t
1727   CharByteWidth = getCharWidth(Kind, Target);
1728   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1729   CharByteWidth /= 8;
1730 
1731   // The output buffer size needs to be large enough to hold wide characters.
1732   // This is a worst-case assumption which basically corresponds to L"" "long".
1733   SizeBound *= CharByteWidth;
1734 
1735   // Size the temporary buffer to hold the result string data.
1736   ResultBuf.resize(SizeBound);
1737 
1738   // Likewise, but for each string piece.
1739   SmallString<512> TokenBuf;
1740   TokenBuf.resize(MaxTokenLength);
1741 
1742   // Loop over all the strings, getting their spelling, and expanding them to
1743   // wide strings as appropriate.
1744   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
1745 
1746   Pascal = false;
1747 
1748   SourceLocation UDSuffixTokLoc;
1749 
1750   for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1751     const char *ThisTokBuf = &TokenBuf[0];
1752     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
1753     // that ThisTokBuf points to a buffer that is big enough for the whole token
1754     // and 'spelled' tokens can only shrink.
1755     bool StringInvalid = false;
1756     unsigned ThisTokLen =
1757       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1758                          &StringInvalid);
1759     if (StringInvalid)
1760       return DiagnoseLexingError(StringToks[i].getLocation());
1761 
1762     const char *ThisTokBegin = ThisTokBuf;
1763     const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1764 
1765     // Remove an optional ud-suffix.
1766     if (ThisTokEnd[-1] != '"') {
1767       const char *UDSuffixEnd = ThisTokEnd;
1768       do {
1769         --ThisTokEnd;
1770       } while (ThisTokEnd[-1] != '"');
1771 
1772       StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1773 
1774       if (UDSuffixBuf.empty()) {
1775         if (StringToks[i].hasUCN())
1776           expandUCNs(UDSuffixBuf, UDSuffix);
1777         else
1778           UDSuffixBuf.assign(UDSuffix);
1779         UDSuffixToken = i;
1780         UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1781         UDSuffixTokLoc = StringToks[i].getLocation();
1782       } else {
1783         SmallString<32> ExpandedUDSuffix;
1784         if (StringToks[i].hasUCN()) {
1785           expandUCNs(ExpandedUDSuffix, UDSuffix);
1786           UDSuffix = ExpandedUDSuffix;
1787         }
1788 
1789         // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
1790         // result of a concatenation involving at least one user-defined-string-
1791         // literal, all the participating user-defined-string-literals shall
1792         // have the same ud-suffix.
1793         if (UDSuffixBuf != UDSuffix) {
1794           if (Diags) {
1795             SourceLocation TokLoc = StringToks[i].getLocation();
1796             Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
1797               << UDSuffixBuf << UDSuffix
1798               << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc)
1799               << SourceRange(TokLoc, TokLoc);
1800           }
1801           hadError = true;
1802         }
1803       }
1804     }
1805 
1806     // Strip the end quote.
1807     --ThisTokEnd;
1808 
1809     // TODO: Input character set mapping support.
1810 
1811     // Skip marker for wide or unicode strings.
1812     if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
1813       ++ThisTokBuf;
1814       // Skip 8 of u8 marker for utf8 strings.
1815       if (ThisTokBuf[0] == '8')
1816         ++ThisTokBuf;
1817     }
1818 
1819     // Check for raw string
1820     if (ThisTokBuf[0] == 'R') {
1821       if (ThisTokBuf[1] != '"') {
1822         // The file may have come from PCH and then changed after loading the
1823         // PCH; Fail gracefully.
1824         return DiagnoseLexingError(StringToks[i].getLocation());
1825       }
1826       ThisTokBuf += 2; // skip R"
1827 
1828       // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
1829       // characters.
1830       constexpr unsigned MaxRawStrDelimLen = 16;
1831 
1832       const char *Prefix = ThisTokBuf;
1833       while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
1834              ThisTokBuf[0] != '(')
1835         ++ThisTokBuf;
1836       if (ThisTokBuf[0] != '(')
1837         return DiagnoseLexingError(StringToks[i].getLocation());
1838       ++ThisTokBuf; // skip '('
1839 
1840       // Remove same number of characters from the end
1841       ThisTokEnd -= ThisTokBuf - Prefix;
1842       if (ThisTokEnd < ThisTokBuf)
1843         return DiagnoseLexingError(StringToks[i].getLocation());
1844 
1845       // C++14 [lex.string]p4: A source-file new-line in a raw string literal
1846       // results in a new-line in the resulting execution string-literal.
1847       StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
1848       while (!RemainingTokenSpan.empty()) {
1849         // Split the string literal on \r\n boundaries.
1850         size_t CRLFPos = RemainingTokenSpan.find("\r\n");
1851         StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
1852         StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
1853 
1854         // Copy everything before the \r\n sequence into the string literal.
1855         if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
1856           hadError = true;
1857 
1858         // Point into the \n inside the \r\n sequence and operate on the
1859         // remaining portion of the literal.
1860         RemainingTokenSpan = AfterCRLF.substr(1);
1861       }
1862     } else {
1863       if (ThisTokBuf[0] != '"') {
1864         // The file may have come from PCH and then changed after loading the
1865         // PCH; Fail gracefully.
1866         return DiagnoseLexingError(StringToks[i].getLocation());
1867       }
1868       ++ThisTokBuf; // skip "
1869 
1870       // Check if this is a pascal string
1871       if (Features.PascalStrings && ThisTokBuf + 1 != ThisTokEnd &&
1872           ThisTokBuf[0] == '\\' && ThisTokBuf[1] == 'p') {
1873 
1874         // If the \p sequence is found in the first token, we have a pascal string
1875         // Otherwise, if we already have a pascal string, ignore the first \p
1876         if (i == 0) {
1877           ++ThisTokBuf;
1878           Pascal = true;
1879         } else if (Pascal)
1880           ThisTokBuf += 2;
1881       }
1882 
1883       while (ThisTokBuf != ThisTokEnd) {
1884         // Is this a span of non-escape characters?
1885         if (ThisTokBuf[0] != '\\') {
1886           const char *InStart = ThisTokBuf;
1887           do {
1888             ++ThisTokBuf;
1889           } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
1890 
1891           // Copy the character span over.
1892           if (CopyStringFragment(StringToks[i], ThisTokBegin,
1893                                  StringRef(InStart, ThisTokBuf - InStart)))
1894             hadError = true;
1895           continue;
1896         }
1897         // Is this a Universal Character Name escape?
1898         if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U') {
1899           EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
1900                           ResultPtr, hadError,
1901                           FullSourceLoc(StringToks[i].getLocation(), SM),
1902                           CharByteWidth, Diags, Features);
1903           continue;
1904         }
1905         // Otherwise, this is a non-UCN escape character.  Process it.
1906         unsigned ResultChar =
1907           ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
1908                             FullSourceLoc(StringToks[i].getLocation(), SM),
1909                             CharByteWidth*8, Diags, Features);
1910 
1911         if (CharByteWidth == 4) {
1912           // FIXME: Make the type of the result buffer correct instead of
1913           // using reinterpret_cast.
1914           llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
1915           *ResultWidePtr = ResultChar;
1916           ResultPtr += 4;
1917         } else if (CharByteWidth == 2) {
1918           // FIXME: Make the type of the result buffer correct instead of
1919           // using reinterpret_cast.
1920           llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
1921           *ResultWidePtr = ResultChar & 0xFFFF;
1922           ResultPtr += 2;
1923         } else {
1924           assert(CharByteWidth == 1 && "Unexpected char width");
1925           *ResultPtr++ = ResultChar & 0xFF;
1926         }
1927       }
1928     }
1929   }
1930 
1931   if (Pascal) {
1932     if (CharByteWidth == 4) {
1933       // FIXME: Make the type of the result buffer correct instead of
1934       // using reinterpret_cast.
1935       llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
1936       ResultWidePtr[0] = GetNumStringChars() - 1;
1937     } else if (CharByteWidth == 2) {
1938       // FIXME: Make the type of the result buffer correct instead of
1939       // using reinterpret_cast.
1940       llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
1941       ResultWidePtr[0] = GetNumStringChars() - 1;
1942     } else {
1943       assert(CharByteWidth == 1 && "Unexpected char width");
1944       ResultBuf[0] = GetNumStringChars() - 1;
1945     }
1946 
1947     // Verify that pascal strings aren't too large.
1948     if (GetStringLength() > 256) {
1949       if (Diags)
1950         Diags->Report(StringToks.front().getLocation(),
1951                       diag::err_pascal_string_too_long)
1952           << SourceRange(StringToks.front().getLocation(),
1953                          StringToks.back().getLocation());
1954       hadError = true;
1955       return;
1956     }
1957   } else if (Diags) {
1958     // Complain if this string literal has too many characters.
1959     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
1960 
1961     if (GetNumStringChars() > MaxChars)
1962       Diags->Report(StringToks.front().getLocation(),
1963                     diag::ext_string_too_long)
1964         << GetNumStringChars() << MaxChars
1965         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
1966         << SourceRange(StringToks.front().getLocation(),
1967                        StringToks.back().getLocation());
1968   }
1969 }
1970 
1971 static const char *resyncUTF8(const char *Err, const char *End) {
1972   if (Err == End)
1973     return End;
1974   End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
1975   while (++Err != End && (*Err & 0xC0) == 0x80)
1976     ;
1977   return Err;
1978 }
1979 
1980 /// This function copies from Fragment, which is a sequence of bytes
1981 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
1982 /// Performs widening for multi-byte characters.
1983 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
1984                                              const char *TokBegin,
1985                                              StringRef Fragment) {
1986   const llvm::UTF8 *ErrorPtrTmp;
1987   if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
1988     return false;
1989 
1990   // If we see bad encoding for unprefixed string literals, warn and
1991   // simply copy the byte values, for compatibility with gcc and older
1992   // versions of clang.
1993   bool NoErrorOnBadEncoding = isAscii();
1994   if (NoErrorOnBadEncoding) {
1995     memcpy(ResultPtr, Fragment.data(), Fragment.size());
1996     ResultPtr += Fragment.size();
1997   }
1998 
1999   if (Diags) {
2000     const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2001 
2002     FullSourceLoc SourceLoc(Tok.getLocation(), SM);
2003     const DiagnosticBuilder &Builder =
2004       Diag(Diags, Features, SourceLoc, TokBegin,
2005            ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
2006            NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
2007                                 : diag::err_bad_string_encoding);
2008 
2009     const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2010     StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2011 
2012     // Decode into a dummy buffer.
2013     SmallString<512> Dummy;
2014     Dummy.reserve(Fragment.size() * CharByteWidth);
2015     char *Ptr = Dummy.data();
2016 
2017     while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
2018       const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2019       NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2020       Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
2021                                      ErrorPtr, NextStart);
2022       NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2023     }
2024   }
2025   return !NoErrorOnBadEncoding;
2026 }
2027 
2028 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2029   hadError = true;
2030   if (Diags)
2031     Diags->Report(Loc, diag::err_lexing_string);
2032 }
2033 
2034 /// getOffsetOfStringByte - This function returns the offset of the
2035 /// specified byte of the string data represented by Token.  This handles
2036 /// advancing over escape sequences in the string.
2037 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
2038                                                     unsigned ByteNo) const {
2039   // Get the spelling of the token.
2040   SmallString<32> SpellingBuffer;
2041   SpellingBuffer.resize(Tok.getLength());
2042 
2043   bool StringInvalid = false;
2044   const char *SpellingPtr = &SpellingBuffer[0];
2045   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
2046                                        &StringInvalid);
2047   if (StringInvalid)
2048     return 0;
2049 
2050   const char *SpellingStart = SpellingPtr;
2051   const char *SpellingEnd = SpellingPtr+TokLen;
2052 
2053   // Handle UTF-8 strings just like narrow strings.
2054   if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2055     SpellingPtr += 2;
2056 
2057   assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
2058          SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
2059 
2060   // For raw string literals, this is easy.
2061   if (SpellingPtr[0] == 'R') {
2062     assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
2063     // Skip 'R"'.
2064     SpellingPtr += 2;
2065     while (*SpellingPtr != '(') {
2066       ++SpellingPtr;
2067       assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
2068     }
2069     // Skip '('.
2070     ++SpellingPtr;
2071     return SpellingPtr - SpellingStart + ByteNo;
2072   }
2073 
2074   // Skip over the leading quote
2075   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
2076   ++SpellingPtr;
2077 
2078   // Skip over bytes until we find the offset we're looking for.
2079   while (ByteNo) {
2080     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
2081 
2082     // Step over non-escapes simply.
2083     if (*SpellingPtr != '\\') {
2084       ++SpellingPtr;
2085       --ByteNo;
2086       continue;
2087     }
2088 
2089     // Otherwise, this is an escape character.  Advance over it.
2090     bool HadError = false;
2091     if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U') {
2092       const char *EscapePtr = SpellingPtr;
2093       unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
2094                                       1, Features, HadError);
2095       if (Len > ByteNo) {
2096         // ByteNo is somewhere within the escape sequence.
2097         SpellingPtr = EscapePtr;
2098         break;
2099       }
2100       ByteNo -= Len;
2101     } else {
2102       ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
2103                         FullSourceLoc(Tok.getLocation(), SM),
2104                         CharByteWidth*8, Diags, Features);
2105       --ByteNo;
2106     }
2107     assert(!HadError && "This method isn't valid on erroneous strings");
2108   }
2109 
2110   return SpellingPtr-SpellingStart;
2111 }
2112 
2113 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2114 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
2115 /// treat it as an invalid suffix.
2116 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
2117                                           StringRef Suffix) {
2118   return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2119          Suffix == "sv";
2120 }
2121