xref: /freebsd/contrib/llvm-project/clang/lib/Lex/LiteralSupport.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===--- LiteralSupport.cpp - Code to parse and process literals ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the NumericLiteralParser, CharLiteralParser, and
10 // StringLiteralParser interfaces.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Lex/LiteralSupport.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/LangOptions.h"
17 #include "clang/Basic/SourceLocation.h"
18 #include "clang/Basic/TargetInfo.h"
19 #include "clang/Lex/LexDiagnostic.h"
20 #include "clang/Lex/Lexer.h"
21 #include "clang/Lex/Preprocessor.h"
22 #include "clang/Lex/Token.h"
23 #include "llvm/ADT/APInt.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringExtras.h"
26 #include "llvm/ADT/StringSwitch.h"
27 #include "llvm/Support/ConvertUTF.h"
28 #include "llvm/Support/Error.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/Unicode.h"
31 #include <algorithm>
32 #include <cassert>
33 #include <cstddef>
34 #include <cstdint>
35 #include <cstring>
36 #include <string>
37 
38 using namespace clang;
39 
40 static unsigned getCharWidth(tok::TokenKind kind, const TargetInfo &Target) {
41   switch (kind) {
42   default: llvm_unreachable("Unknown token type!");
43   case tok::char_constant:
44   case tok::string_literal:
45   case tok::utf8_char_constant:
46   case tok::utf8_string_literal:
47     return Target.getCharWidth();
48   case tok::wide_char_constant:
49   case tok::wide_string_literal:
50     return Target.getWCharWidth();
51   case tok::utf16_char_constant:
52   case tok::utf16_string_literal:
53     return Target.getChar16Width();
54   case tok::utf32_char_constant:
55   case tok::utf32_string_literal:
56     return Target.getChar32Width();
57   }
58 }
59 
60 static CharSourceRange MakeCharSourceRange(const LangOptions &Features,
61                                            FullSourceLoc TokLoc,
62                                            const char *TokBegin,
63                                            const char *TokRangeBegin,
64                                            const char *TokRangeEnd) {
65   SourceLocation Begin =
66     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
67                                    TokLoc.getManager(), Features);
68   SourceLocation End =
69     Lexer::AdvanceToTokenCharacter(Begin, TokRangeEnd - TokRangeBegin,
70                                    TokLoc.getManager(), Features);
71   return CharSourceRange::getCharRange(Begin, End);
72 }
73 
74 /// Produce a diagnostic highlighting some portion of a literal.
75 ///
76 /// Emits the diagnostic \p DiagID, highlighting the range of characters from
77 /// \p TokRangeBegin (inclusive) to \p TokRangeEnd (exclusive), which must be
78 /// a substring of a spelling buffer for the token beginning at \p TokBegin.
79 static DiagnosticBuilder Diag(DiagnosticsEngine *Diags,
80                               const LangOptions &Features, FullSourceLoc TokLoc,
81                               const char *TokBegin, const char *TokRangeBegin,
82                               const char *TokRangeEnd, unsigned DiagID) {
83   SourceLocation Begin =
84     Lexer::AdvanceToTokenCharacter(TokLoc, TokRangeBegin - TokBegin,
85                                    TokLoc.getManager(), Features);
86   return Diags->Report(Begin, DiagID) <<
87     MakeCharSourceRange(Features, TokLoc, TokBegin, TokRangeBegin, TokRangeEnd);
88 }
89 
90 static bool IsEscapeValidInUnevaluatedStringLiteral(char Escape) {
91   switch (Escape) {
92   case '\'':
93   case '"':
94   case '?':
95   case '\\':
96   case 'a':
97   case 'b':
98   case 'f':
99   case 'n':
100   case 'r':
101   case 't':
102   case 'v':
103     return true;
104   }
105   return false;
106 }
107 
108 /// ProcessCharEscape - Parse a standard C escape sequence, which can occur in
109 /// either a character or a string literal.
110 static unsigned ProcessCharEscape(const char *ThisTokBegin,
111                                   const char *&ThisTokBuf,
112                                   const char *ThisTokEnd, bool &HadError,
113                                   FullSourceLoc Loc, unsigned CharWidth,
114                                   DiagnosticsEngine *Diags,
115                                   const LangOptions &Features,
116                                   StringLiteralEvalMethod EvalMethod) {
117   const char *EscapeBegin = ThisTokBuf;
118   bool Delimited = false;
119   bool EndDelimiterFound = false;
120 
121   // Skip the '\' char.
122   ++ThisTokBuf;
123 
124   // We know that this character can't be off the end of the buffer, because
125   // that would have been \", which would not have been the end of string.
126   unsigned ResultChar = *ThisTokBuf++;
127   char Escape = ResultChar;
128   switch (ResultChar) {
129   // These map to themselves.
130   case '\\': case '\'': case '"': case '?': break;
131 
132     // These have fixed mappings.
133   case 'a':
134     // TODO: K&R: the meaning of '\\a' is different in traditional C
135     ResultChar = 7;
136     break;
137   case 'b':
138     ResultChar = 8;
139     break;
140   case 'e':
141     if (Diags)
142       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
143            diag::ext_nonstandard_escape) << "e";
144     ResultChar = 27;
145     break;
146   case 'E':
147     if (Diags)
148       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
149            diag::ext_nonstandard_escape) << "E";
150     ResultChar = 27;
151     break;
152   case 'f':
153     ResultChar = 12;
154     break;
155   case 'n':
156     ResultChar = 10;
157     break;
158   case 'r':
159     ResultChar = 13;
160     break;
161   case 't':
162     ResultChar = 9;
163     break;
164   case 'v':
165     ResultChar = 11;
166     break;
167   case 'x': { // Hex escape.
168     ResultChar = 0;
169     if (ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
170       Delimited = true;
171       ThisTokBuf++;
172       if (*ThisTokBuf == '}') {
173         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
174              diag::err_delimited_escape_empty);
175         return ResultChar;
176       }
177     } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
178       if (Diags)
179         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
180              diag::err_hex_escape_no_digits) << "x";
181       return ResultChar;
182     }
183 
184     // Hex escapes are a maximal series of hex digits.
185     bool Overflow = false;
186     for (; ThisTokBuf != ThisTokEnd; ++ThisTokBuf) {
187       if (Delimited && *ThisTokBuf == '}') {
188         ThisTokBuf++;
189         EndDelimiterFound = true;
190         break;
191       }
192       int CharVal = llvm::hexDigitValue(*ThisTokBuf);
193       if (CharVal == -1) {
194         // Non delimited hex escape sequences stop at the first non-hex digit.
195         if (!Delimited)
196           break;
197         HadError = true;
198         if (Diags)
199           Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
200                diag::err_delimited_escape_invalid)
201               << StringRef(ThisTokBuf, 1);
202         continue;
203       }
204       // About to shift out a digit?
205       if (ResultChar & 0xF0000000)
206         Overflow = true;
207       ResultChar <<= 4;
208       ResultChar |= CharVal;
209     }
210     // See if any bits will be truncated when evaluated as a character.
211     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
212       Overflow = true;
213       ResultChar &= ~0U >> (32-CharWidth);
214     }
215 
216     // Check for overflow.
217     if (!HadError && Overflow) { // Too many digits to fit in
218       HadError = true;
219       if (Diags)
220         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
221              diag::err_escape_too_large)
222             << 0;
223     }
224     break;
225   }
226   case '0': case '1': case '2': case '3':
227   case '4': case '5': case '6': case '7': {
228     // Octal escapes.
229     --ThisTokBuf;
230     ResultChar = 0;
231 
232     // Octal escapes are a series of octal digits with maximum length 3.
233     // "\0123" is a two digit sequence equal to "\012" "3".
234     unsigned NumDigits = 0;
235     do {
236       ResultChar <<= 3;
237       ResultChar |= *ThisTokBuf++ - '0';
238       ++NumDigits;
239     } while (ThisTokBuf != ThisTokEnd && NumDigits < 3 &&
240              ThisTokBuf[0] >= '0' && ThisTokBuf[0] <= '7');
241 
242     // Check for overflow.  Reject '\777', but not L'\777'.
243     if (CharWidth != 32 && (ResultChar >> CharWidth) != 0) {
244       if (Diags)
245         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
246              diag::err_escape_too_large) << 1;
247       ResultChar &= ~0U >> (32-CharWidth);
248     }
249     break;
250   }
251   case 'o': {
252     bool Overflow = false;
253     if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
254       HadError = true;
255       if (Diags)
256         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
257              diag::err_delimited_escape_missing_brace)
258             << "o";
259 
260       break;
261     }
262     ResultChar = 0;
263     Delimited = true;
264     ++ThisTokBuf;
265     if (*ThisTokBuf == '}') {
266       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
267            diag::err_delimited_escape_empty);
268       return ResultChar;
269     }
270 
271     while (ThisTokBuf != ThisTokEnd) {
272       if (*ThisTokBuf == '}') {
273         EndDelimiterFound = true;
274         ThisTokBuf++;
275         break;
276       }
277       if (*ThisTokBuf < '0' || *ThisTokBuf > '7') {
278         HadError = true;
279         if (Diags)
280           Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
281                diag::err_delimited_escape_invalid)
282               << StringRef(ThisTokBuf, 1);
283         ThisTokBuf++;
284         continue;
285       }
286       // Check if one of the top three bits is set before shifting them out.
287       if (ResultChar & 0xE0000000)
288         Overflow = true;
289 
290       ResultChar <<= 3;
291       ResultChar |= *ThisTokBuf++ - '0';
292     }
293     // Check for overflow.  Reject '\777', but not L'\777'.
294     if (!HadError &&
295         (Overflow || (CharWidth != 32 && (ResultChar >> CharWidth) != 0))) {
296       HadError = true;
297       if (Diags)
298         Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
299              diag::err_escape_too_large)
300             << 1;
301       ResultChar &= ~0U >> (32 - CharWidth);
302     }
303     break;
304   }
305     // Otherwise, these are not valid escapes.
306   case '(': case '{': case '[': case '%':
307     // GCC accepts these as extensions.  We warn about them as such though.
308     if (Diags)
309       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
310            diag::ext_nonstandard_escape)
311         << std::string(1, ResultChar);
312     break;
313   default:
314     if (!Diags)
315       break;
316 
317     if (isPrintable(ResultChar))
318       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
319            diag::ext_unknown_escape)
320         << std::string(1, ResultChar);
321     else
322       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
323            diag::ext_unknown_escape)
324         << "x" + llvm::utohexstr(ResultChar);
325     break;
326   }
327 
328   if (Delimited && Diags) {
329     if (!EndDelimiterFound)
330       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
331            diag::err_expected)
332           << tok::r_brace;
333     else if (!HadError) {
334       Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
335            Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence
336                                 : diag::ext_delimited_escape_sequence)
337           << /*delimited*/ 0 << (Features.CPlusPlus ? 1 : 0);
338     }
339   }
340 
341   if (EvalMethod == StringLiteralEvalMethod::Unevaluated &&
342       !IsEscapeValidInUnevaluatedStringLiteral(Escape)) {
343     Diag(Diags, Features, Loc, ThisTokBegin, EscapeBegin, ThisTokBuf,
344          diag::err_unevaluated_string_invalid_escape_sequence)
345         << StringRef(EscapeBegin, ThisTokBuf - EscapeBegin);
346   }
347   return ResultChar;
348 }
349 
350 static void appendCodePoint(unsigned Codepoint,
351                             llvm::SmallVectorImpl<char> &Str) {
352   char ResultBuf[4];
353   char *ResultPtr = ResultBuf;
354   if (llvm::ConvertCodePointToUTF8(Codepoint, ResultPtr))
355     Str.append(ResultBuf, ResultPtr);
356 }
357 
358 void clang::expandUCNs(SmallVectorImpl<char> &Buf, StringRef Input) {
359   for (StringRef::iterator I = Input.begin(), E = Input.end(); I != E; ++I) {
360     if (*I != '\\') {
361       Buf.push_back(*I);
362       continue;
363     }
364 
365     ++I;
366     char Kind = *I;
367     ++I;
368 
369     assert(Kind == 'u' || Kind == 'U' || Kind == 'N');
370     uint32_t CodePoint = 0;
371 
372     if (Kind == 'u' && *I == '{') {
373       for (++I; *I != '}'; ++I) {
374         unsigned Value = llvm::hexDigitValue(*I);
375         assert(Value != -1U);
376         CodePoint <<= 4;
377         CodePoint += Value;
378       }
379       appendCodePoint(CodePoint, Buf);
380       continue;
381     }
382 
383     if (Kind == 'N') {
384       assert(*I == '{');
385       ++I;
386       auto Delim = std::find(I, Input.end(), '}');
387       assert(Delim != Input.end());
388       std::optional<llvm::sys::unicode::LooseMatchingResult> Res =
389           llvm::sys::unicode::nameToCodepointLooseMatching(
390               StringRef(I, std::distance(I, Delim)));
391       assert(Res);
392       CodePoint = Res->CodePoint;
393       assert(CodePoint != 0xFFFFFFFF);
394       appendCodePoint(CodePoint, Buf);
395       I = Delim;
396       continue;
397     }
398 
399     unsigned NumHexDigits;
400     if (Kind == 'u')
401       NumHexDigits = 4;
402     else
403       NumHexDigits = 8;
404 
405     assert(I + NumHexDigits <= E);
406 
407     for (; NumHexDigits != 0; ++I, --NumHexDigits) {
408       unsigned Value = llvm::hexDigitValue(*I);
409       assert(Value != -1U);
410 
411       CodePoint <<= 4;
412       CodePoint += Value;
413     }
414 
415     appendCodePoint(CodePoint, Buf);
416     --I;
417   }
418 }
419 
420 static bool ProcessNumericUCNEscape(const char *ThisTokBegin,
421                                     const char *&ThisTokBuf,
422                                     const char *ThisTokEnd, uint32_t &UcnVal,
423                                     unsigned short &UcnLen, bool &Delimited,
424                                     FullSourceLoc Loc, DiagnosticsEngine *Diags,
425                                     const LangOptions &Features,
426                                     bool in_char_string_literal = false) {
427   const char *UcnBegin = ThisTokBuf;
428   bool HasError = false;
429   bool EndDelimiterFound = false;
430 
431   // Skip the '\u' char's.
432   ThisTokBuf += 2;
433   Delimited = false;
434   if (UcnBegin[1] == 'u' && in_char_string_literal &&
435       ThisTokBuf != ThisTokEnd && *ThisTokBuf == '{') {
436     Delimited = true;
437     ThisTokBuf++;
438   } else if (ThisTokBuf == ThisTokEnd || !isHexDigit(*ThisTokBuf)) {
439     if (Diags)
440       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
441            diag::err_hex_escape_no_digits)
442           << StringRef(&ThisTokBuf[-1], 1);
443     return false;
444   }
445   UcnLen = (ThisTokBuf[-1] == 'u' ? 4 : 8);
446 
447   bool Overflow = false;
448   unsigned short Count = 0;
449   for (; ThisTokBuf != ThisTokEnd && (Delimited || Count != UcnLen);
450        ++ThisTokBuf) {
451     if (Delimited && *ThisTokBuf == '}') {
452       ++ThisTokBuf;
453       EndDelimiterFound = true;
454       break;
455     }
456     int CharVal = llvm::hexDigitValue(*ThisTokBuf);
457     if (CharVal == -1) {
458       HasError = true;
459       if (!Delimited)
460         break;
461       if (Diags) {
462         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
463              diag::err_delimited_escape_invalid)
464             << StringRef(ThisTokBuf, 1);
465       }
466       Count++;
467       continue;
468     }
469     if (UcnVal & 0xF0000000) {
470       Overflow = true;
471       continue;
472     }
473     UcnVal <<= 4;
474     UcnVal |= CharVal;
475     Count++;
476   }
477 
478   if (Overflow) {
479     if (Diags)
480       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
481            diag::err_escape_too_large)
482           << 0;
483     return false;
484   }
485 
486   if (Delimited && !EndDelimiterFound) {
487     if (Diags) {
488       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
489            diag::err_expected)
490           << tok::r_brace;
491     }
492     return false;
493   }
494 
495   // If we didn't consume the proper number of digits, there is a problem.
496   if (Count == 0 || (!Delimited && Count != UcnLen)) {
497     if (Diags)
498       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
499            Delimited ? diag::err_delimited_escape_empty
500                      : diag::err_ucn_escape_incomplete);
501     return false;
502   }
503   return !HasError;
504 }
505 
506 static void DiagnoseInvalidUnicodeCharacterName(
507     DiagnosticsEngine *Diags, const LangOptions &Features, FullSourceLoc Loc,
508     const char *TokBegin, const char *TokRangeBegin, const char *TokRangeEnd,
509     llvm::StringRef Name) {
510 
511   Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
512        diag::err_invalid_ucn_name)
513       << Name;
514 
515   namespace u = llvm::sys::unicode;
516 
517   std::optional<u::LooseMatchingResult> Res =
518       u::nameToCodepointLooseMatching(Name);
519   if (Res) {
520     Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
521          diag::note_invalid_ucn_name_loose_matching)
522         << FixItHint::CreateReplacement(
523                MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
524                                    TokRangeEnd),
525                Res->Name);
526     return;
527   }
528 
529   unsigned Distance = 0;
530   SmallVector<u::MatchForCodepointName> Matches =
531       u::nearestMatchesForCodepointName(Name, 5);
532   assert(!Matches.empty() && "No unicode characters found");
533 
534   for (const auto &Match : Matches) {
535     if (Distance == 0)
536       Distance = Match.Distance;
537     if (std::max(Distance, Match.Distance) -
538             std::min(Distance, Match.Distance) >
539         3)
540       break;
541     Distance = Match.Distance;
542 
543     std::string Str;
544     llvm::UTF32 V = Match.Value;
545     bool Converted =
546         llvm::convertUTF32ToUTF8String(llvm::ArrayRef<llvm::UTF32>(&V, 1), Str);
547     (void)Converted;
548     assert(Converted && "Found a match wich is not a unicode character");
549 
550     Diag(Diags, Features, Loc, TokBegin, TokRangeBegin, TokRangeEnd,
551          diag::note_invalid_ucn_name_candidate)
552         << Match.Name << llvm::utohexstr(Match.Value)
553         << Str // FIXME: Fix the rendering of non printable characters
554         << FixItHint::CreateReplacement(
555                MakeCharSourceRange(Features, Loc, TokBegin, TokRangeBegin,
556                                    TokRangeEnd),
557                Match.Name);
558   }
559 }
560 
561 static bool ProcessNamedUCNEscape(const char *ThisTokBegin,
562                                   const char *&ThisTokBuf,
563                                   const char *ThisTokEnd, uint32_t &UcnVal,
564                                   unsigned short &UcnLen, FullSourceLoc Loc,
565                                   DiagnosticsEngine *Diags,
566                                   const LangOptions &Features) {
567   const char *UcnBegin = ThisTokBuf;
568   assert(UcnBegin[0] == '\\' && UcnBegin[1] == 'N');
569   ThisTokBuf += 2;
570   if (ThisTokBuf == ThisTokEnd || *ThisTokBuf != '{') {
571     if (Diags) {
572       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
573            diag::err_delimited_escape_missing_brace)
574           << StringRef(&ThisTokBuf[-1], 1);
575     }
576     return false;
577   }
578   ThisTokBuf++;
579   const char *ClosingBrace = std::find_if(ThisTokBuf, ThisTokEnd, [](char C) {
580     return C == '}' || isVerticalWhitespace(C);
581   });
582   bool Incomplete = ClosingBrace == ThisTokEnd;
583   bool Empty = ClosingBrace == ThisTokBuf;
584   if (Incomplete || Empty) {
585     if (Diags) {
586       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
587            Incomplete ? diag::err_ucn_escape_incomplete
588                       : diag::err_delimited_escape_empty)
589           << StringRef(&UcnBegin[1], 1);
590     }
591     ThisTokBuf = ClosingBrace == ThisTokEnd ? ClosingBrace : ClosingBrace + 1;
592     return false;
593   }
594   StringRef Name(ThisTokBuf, ClosingBrace - ThisTokBuf);
595   ThisTokBuf = ClosingBrace + 1;
596   std::optional<char32_t> Res = llvm::sys::unicode::nameToCodepointStrict(Name);
597   if (!Res) {
598     if (Diags)
599       DiagnoseInvalidUnicodeCharacterName(Diags, Features, Loc, ThisTokBegin,
600                                           &UcnBegin[3], ClosingBrace, Name);
601     return false;
602   }
603   UcnVal = *Res;
604   UcnLen = UcnVal > 0xFFFF ? 8 : 4;
605   return true;
606 }
607 
608 /// ProcessUCNEscape - Read the Universal Character Name, check constraints and
609 /// return the UTF32.
610 static bool ProcessUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
611                              const char *ThisTokEnd, uint32_t &UcnVal,
612                              unsigned short &UcnLen, FullSourceLoc Loc,
613                              DiagnosticsEngine *Diags,
614                              const LangOptions &Features,
615                              bool in_char_string_literal = false) {
616 
617   bool HasError;
618   const char *UcnBegin = ThisTokBuf;
619   bool IsDelimitedEscapeSequence = false;
620   bool IsNamedEscapeSequence = false;
621   if (ThisTokBuf[1] == 'N') {
622     IsNamedEscapeSequence = true;
623     HasError = !ProcessNamedUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
624                                       UcnVal, UcnLen, Loc, Diags, Features);
625   } else {
626     HasError =
627         !ProcessNumericUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
628                                  UcnLen, IsDelimitedEscapeSequence, Loc, Diags,
629                                  Features, in_char_string_literal);
630   }
631   if (HasError)
632     return false;
633 
634   // Check UCN constraints (C99 6.4.3p2) [C++11 lex.charset p2]
635   if ((0xD800 <= UcnVal && UcnVal <= 0xDFFF) || // surrogate codepoints
636       UcnVal > 0x10FFFF) {                      // maximum legal UTF32 value
637     if (Diags)
638       Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
639            diag::err_ucn_escape_invalid);
640     return false;
641   }
642 
643   // C2x and C++11 allow UCNs that refer to control characters
644   // and basic source characters inside character and string literals
645   if (UcnVal < 0xa0 &&
646       // $, @, ` are allowed in all language modes
647       (UcnVal != 0x24 && UcnVal != 0x40 && UcnVal != 0x60)) {
648     bool IsError =
649         (!(Features.CPlusPlus11 || Features.C2x) || !in_char_string_literal);
650     if (Diags) {
651       char BasicSCSChar = UcnVal;
652       if (UcnVal >= 0x20 && UcnVal < 0x7f)
653         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
654              IsError ? diag::err_ucn_escape_basic_scs
655              : Features.CPlusPlus
656                  ? diag::warn_cxx98_compat_literal_ucn_escape_basic_scs
657                  : diag::warn_c2x_compat_literal_ucn_escape_basic_scs)
658             << StringRef(&BasicSCSChar, 1);
659       else
660         Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
661              IsError ? diag::err_ucn_control_character
662              : Features.CPlusPlus
663                  ? diag::warn_cxx98_compat_literal_ucn_control_character
664                  : diag::warn_c2x_compat_literal_ucn_control_character);
665     }
666     if (IsError)
667       return false;
668   }
669 
670   if (!Features.CPlusPlus && !Features.C99 && Diags)
671     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
672          diag::warn_ucn_not_valid_in_c89_literal);
673 
674   if ((IsDelimitedEscapeSequence || IsNamedEscapeSequence) && Diags)
675     Diag(Diags, Features, Loc, ThisTokBegin, UcnBegin, ThisTokBuf,
676          Features.CPlusPlus23 ? diag::warn_cxx23_delimited_escape_sequence
677                               : diag::ext_delimited_escape_sequence)
678         << (IsNamedEscapeSequence ? 1 : 0) << (Features.CPlusPlus ? 1 : 0);
679 
680   return true;
681 }
682 
683 /// MeasureUCNEscape - Determine the number of bytes within the resulting string
684 /// which this UCN will occupy.
685 static int MeasureUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
686                             const char *ThisTokEnd, unsigned CharByteWidth,
687                             const LangOptions &Features, bool &HadError) {
688   // UTF-32: 4 bytes per escape.
689   if (CharByteWidth == 4)
690     return 4;
691 
692   uint32_t UcnVal = 0;
693   unsigned short UcnLen = 0;
694   FullSourceLoc Loc;
695 
696   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal,
697                         UcnLen, Loc, nullptr, Features, true)) {
698     HadError = true;
699     return 0;
700   }
701 
702   // UTF-16: 2 bytes for BMP, 4 bytes otherwise.
703   if (CharByteWidth == 2)
704     return UcnVal <= 0xFFFF ? 2 : 4;
705 
706   // UTF-8.
707   if (UcnVal < 0x80)
708     return 1;
709   if (UcnVal < 0x800)
710     return 2;
711   if (UcnVal < 0x10000)
712     return 3;
713   return 4;
714 }
715 
716 /// EncodeUCNEscape - Read the Universal Character Name, check constraints and
717 /// convert the UTF32 to UTF8 or UTF16. This is a subroutine of
718 /// StringLiteralParser. When we decide to implement UCN's for identifiers,
719 /// we will likely rework our support for UCN's.
720 static void EncodeUCNEscape(const char *ThisTokBegin, const char *&ThisTokBuf,
721                             const char *ThisTokEnd,
722                             char *&ResultBuf, bool &HadError,
723                             FullSourceLoc Loc, unsigned CharByteWidth,
724                             DiagnosticsEngine *Diags,
725                             const LangOptions &Features) {
726   typedef uint32_t UTF32;
727   UTF32 UcnVal = 0;
728   unsigned short UcnLen = 0;
729   if (!ProcessUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, UcnVal, UcnLen,
730                         Loc, Diags, Features, true)) {
731     HadError = true;
732     return;
733   }
734 
735   assert((CharByteWidth == 1 || CharByteWidth == 2 || CharByteWidth == 4) &&
736          "only character widths of 1, 2, or 4 bytes supported");
737 
738   (void)UcnLen;
739   assert((UcnLen== 4 || UcnLen== 8) && "only ucn length of 4 or 8 supported");
740 
741   if (CharByteWidth == 4) {
742     // FIXME: Make the type of the result buffer correct instead of
743     // using reinterpret_cast.
744     llvm::UTF32 *ResultPtr = reinterpret_cast<llvm::UTF32*>(ResultBuf);
745     *ResultPtr = UcnVal;
746     ResultBuf += 4;
747     return;
748   }
749 
750   if (CharByteWidth == 2) {
751     // FIXME: Make the type of the result buffer correct instead of
752     // using reinterpret_cast.
753     llvm::UTF16 *ResultPtr = reinterpret_cast<llvm::UTF16*>(ResultBuf);
754 
755     if (UcnVal <= (UTF32)0xFFFF) {
756       *ResultPtr = UcnVal;
757       ResultBuf += 2;
758       return;
759     }
760 
761     // Convert to UTF16.
762     UcnVal -= 0x10000;
763     *ResultPtr     = 0xD800 + (UcnVal >> 10);
764     *(ResultPtr+1) = 0xDC00 + (UcnVal & 0x3FF);
765     ResultBuf += 4;
766     return;
767   }
768 
769   assert(CharByteWidth == 1 && "UTF-8 encoding is only for 1 byte characters");
770 
771   // Now that we've parsed/checked the UCN, we convert from UTF32->UTF8.
772   // The conversion below was inspired by:
773   //   http://www.unicode.org/Public/PROGRAMS/CVTUTF/ConvertUTF.c
774   // First, we determine how many bytes the result will require.
775   typedef uint8_t UTF8;
776 
777   unsigned short bytesToWrite = 0;
778   if (UcnVal < (UTF32)0x80)
779     bytesToWrite = 1;
780   else if (UcnVal < (UTF32)0x800)
781     bytesToWrite = 2;
782   else if (UcnVal < (UTF32)0x10000)
783     bytesToWrite = 3;
784   else
785     bytesToWrite = 4;
786 
787   const unsigned byteMask = 0xBF;
788   const unsigned byteMark = 0x80;
789 
790   // Once the bits are split out into bytes of UTF8, this is a mask OR-ed
791   // into the first byte, depending on how many bytes follow.
792   static const UTF8 firstByteMark[5] = {
793     0x00, 0x00, 0xC0, 0xE0, 0xF0
794   };
795   // Finally, we write the bytes into ResultBuf.
796   ResultBuf += bytesToWrite;
797   switch (bytesToWrite) { // note: everything falls through.
798   case 4:
799     *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
800     [[fallthrough]];
801   case 3:
802     *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
803     [[fallthrough]];
804   case 2:
805     *--ResultBuf = (UTF8)((UcnVal | byteMark) & byteMask); UcnVal >>= 6;
806     [[fallthrough]];
807   case 1:
808     *--ResultBuf = (UTF8) (UcnVal | firstByteMark[bytesToWrite]);
809   }
810   // Update the buffer.
811   ResultBuf += bytesToWrite;
812 }
813 
814 ///       integer-constant: [C99 6.4.4.1]
815 ///         decimal-constant integer-suffix
816 ///         octal-constant integer-suffix
817 ///         hexadecimal-constant integer-suffix
818 ///         binary-literal integer-suffix [GNU, C++1y]
819 ///       user-defined-integer-literal: [C++11 lex.ext]
820 ///         decimal-literal ud-suffix
821 ///         octal-literal ud-suffix
822 ///         hexadecimal-literal ud-suffix
823 ///         binary-literal ud-suffix [GNU, C++1y]
824 ///       decimal-constant:
825 ///         nonzero-digit
826 ///         decimal-constant digit
827 ///       octal-constant:
828 ///         0
829 ///         octal-constant octal-digit
830 ///       hexadecimal-constant:
831 ///         hexadecimal-prefix hexadecimal-digit
832 ///         hexadecimal-constant hexadecimal-digit
833 ///       hexadecimal-prefix: one of
834 ///         0x 0X
835 ///       binary-literal:
836 ///         0b binary-digit
837 ///         0B binary-digit
838 ///         binary-literal binary-digit
839 ///       integer-suffix:
840 ///         unsigned-suffix [long-suffix]
841 ///         unsigned-suffix [long-long-suffix]
842 ///         long-suffix [unsigned-suffix]
843 ///         long-long-suffix [unsigned-sufix]
844 ///       nonzero-digit:
845 ///         1 2 3 4 5 6 7 8 9
846 ///       octal-digit:
847 ///         0 1 2 3 4 5 6 7
848 ///       hexadecimal-digit:
849 ///         0 1 2 3 4 5 6 7 8 9
850 ///         a b c d e f
851 ///         A B C D E F
852 ///       binary-digit:
853 ///         0
854 ///         1
855 ///       unsigned-suffix: one of
856 ///         u U
857 ///       long-suffix: one of
858 ///         l L
859 ///       long-long-suffix: one of
860 ///         ll LL
861 ///
862 ///       floating-constant: [C99 6.4.4.2]
863 ///         TODO: add rules...
864 ///
865 NumericLiteralParser::NumericLiteralParser(StringRef TokSpelling,
866                                            SourceLocation TokLoc,
867                                            const SourceManager &SM,
868                                            const LangOptions &LangOpts,
869                                            const TargetInfo &Target,
870                                            DiagnosticsEngine &Diags)
871     : SM(SM), LangOpts(LangOpts), Diags(Diags),
872       ThisTokBegin(TokSpelling.begin()), ThisTokEnd(TokSpelling.end()) {
873 
874   s = DigitsBegin = ThisTokBegin;
875   saw_exponent = false;
876   saw_period = false;
877   saw_ud_suffix = false;
878   saw_fixed_point_suffix = false;
879   isLong = false;
880   isUnsigned = false;
881   isLongLong = false;
882   isSizeT = false;
883   isHalf = false;
884   isFloat = false;
885   isImaginary = false;
886   isFloat16 = false;
887   isFloat128 = false;
888   MicrosoftInteger = 0;
889   isFract = false;
890   isAccum = false;
891   hadError = false;
892   isBitInt = false;
893 
894   // This routine assumes that the range begin/end matches the regex for integer
895   // and FP constants (specifically, the 'pp-number' regex), and assumes that
896   // the byte at "*end" is both valid and not part of the regex.  Because of
897   // this, it doesn't have to check for 'overscan' in various places.
898   if (isPreprocessingNumberBody(*ThisTokEnd)) {
899     Diags.Report(TokLoc, diag::err_lexing_numeric);
900     hadError = true;
901     return;
902   }
903 
904   if (*s == '0') { // parse radix
905     ParseNumberStartingWithZero(TokLoc);
906     if (hadError)
907       return;
908   } else { // the first digit is non-zero
909     radix = 10;
910     s = SkipDigits(s);
911     if (s == ThisTokEnd) {
912       // Done.
913     } else {
914       ParseDecimalOrOctalCommon(TokLoc);
915       if (hadError)
916         return;
917     }
918   }
919 
920   SuffixBegin = s;
921   checkSeparator(TokLoc, s, CSK_AfterDigits);
922 
923   // Initial scan to lookahead for fixed point suffix.
924   if (LangOpts.FixedPoint) {
925     for (const char *c = s; c != ThisTokEnd; ++c) {
926       if (*c == 'r' || *c == 'k' || *c == 'R' || *c == 'K') {
927         saw_fixed_point_suffix = true;
928         break;
929       }
930     }
931   }
932 
933   // Parse the suffix.  At this point we can classify whether we have an FP or
934   // integer constant.
935   bool isFixedPointConstant = isFixedPointLiteral();
936   bool isFPConstant = isFloatingLiteral();
937   bool HasSize = false;
938 
939   // Loop over all of the characters of the suffix.  If we see something bad,
940   // we break out of the loop.
941   for (; s != ThisTokEnd; ++s) {
942     switch (*s) {
943     case 'R':
944     case 'r':
945       if (!LangOpts.FixedPoint)
946         break;
947       if (isFract || isAccum) break;
948       if (!(saw_period || saw_exponent)) break;
949       isFract = true;
950       continue;
951     case 'K':
952     case 'k':
953       if (!LangOpts.FixedPoint)
954         break;
955       if (isFract || isAccum) break;
956       if (!(saw_period || saw_exponent)) break;
957       isAccum = true;
958       continue;
959     case 'h':      // FP Suffix for "half".
960     case 'H':
961       // OpenCL Extension v1.2 s9.5 - h or H suffix for half type.
962       if (!(LangOpts.Half || LangOpts.FixedPoint))
963         break;
964       if (isIntegerLiteral()) break;  // Error for integer constant.
965       if (HasSize)
966         break;
967       HasSize = true;
968       isHalf = true;
969       continue;  // Success.
970     case 'f':      // FP Suffix for "float"
971     case 'F':
972       if (!isFPConstant) break;  // Error for integer constant.
973       if (HasSize)
974         break;
975       HasSize = true;
976 
977       // CUDA host and device may have different _Float16 support, therefore
978       // allows f16 literals to avoid false alarm.
979       // When we compile for OpenMP target offloading on NVPTX, f16 suffix
980       // should also be supported.
981       // ToDo: more precise check for CUDA.
982       // TODO: AMDGPU might also support it in the future.
983       if ((Target.hasFloat16Type() || LangOpts.CUDA ||
984            (LangOpts.OpenMPIsTargetDevice && Target.getTriple().isNVPTX())) &&
985           s + 2 < ThisTokEnd && s[1] == '1' && s[2] == '6') {
986         s += 2; // success, eat up 2 characters.
987         isFloat16 = true;
988         continue;
989       }
990 
991       isFloat = true;
992       continue;  // Success.
993     case 'q':    // FP Suffix for "__float128"
994     case 'Q':
995       if (!isFPConstant) break;  // Error for integer constant.
996       if (HasSize)
997         break;
998       HasSize = true;
999       isFloat128 = true;
1000       continue;  // Success.
1001     case 'u':
1002     case 'U':
1003       if (isFPConstant) break;  // Error for floating constant.
1004       if (isUnsigned) break;    // Cannot be repeated.
1005       isUnsigned = true;
1006       continue;  // Success.
1007     case 'l':
1008     case 'L':
1009       if (HasSize)
1010         break;
1011       HasSize = true;
1012 
1013       // Check for long long.  The L's need to be adjacent and the same case.
1014       if (s[1] == s[0]) {
1015         assert(s + 1 < ThisTokEnd && "didn't maximally munch?");
1016         if (isFPConstant) break;        // long long invalid for floats.
1017         isLongLong = true;
1018         ++s;  // Eat both of them.
1019       } else {
1020         isLong = true;
1021       }
1022       continue; // Success.
1023     case 'z':
1024     case 'Z':
1025       if (isFPConstant)
1026         break; // Invalid for floats.
1027       if (HasSize)
1028         break;
1029       HasSize = true;
1030       isSizeT = true;
1031       continue;
1032     case 'i':
1033     case 'I':
1034       if (LangOpts.MicrosoftExt && !isFPConstant) {
1035         // Allow i8, i16, i32, and i64. First, look ahead and check if
1036         // suffixes are Microsoft integers and not the imaginary unit.
1037         uint8_t Bits = 0;
1038         size_t ToSkip = 0;
1039         switch (s[1]) {
1040         case '8': // i8 suffix
1041           Bits = 8;
1042           ToSkip = 2;
1043           break;
1044         case '1':
1045           if (s[2] == '6') { // i16 suffix
1046             Bits = 16;
1047             ToSkip = 3;
1048           }
1049           break;
1050         case '3':
1051           if (s[2] == '2') { // i32 suffix
1052             Bits = 32;
1053             ToSkip = 3;
1054           }
1055           break;
1056         case '6':
1057           if (s[2] == '4') { // i64 suffix
1058             Bits = 64;
1059             ToSkip = 3;
1060           }
1061           break;
1062         default:
1063           break;
1064         }
1065         if (Bits) {
1066           if (HasSize)
1067             break;
1068           HasSize = true;
1069           MicrosoftInteger = Bits;
1070           s += ToSkip;
1071           assert(s <= ThisTokEnd && "didn't maximally munch?");
1072           break;
1073         }
1074       }
1075       [[fallthrough]];
1076     case 'j':
1077     case 'J':
1078       if (isImaginary) break;   // Cannot be repeated.
1079       isImaginary = true;
1080       continue;  // Success.
1081     case 'w':
1082     case 'W':
1083       if (isFPConstant)
1084         break; // Invalid for floats.
1085       if (HasSize)
1086         break; // Invalid if we already have a size for the literal.
1087 
1088       // wb and WB are allowed, but a mixture of cases like Wb or wB is not. We
1089       // explicitly do not support the suffix in C++ as an extension because a
1090       // library-based UDL that resolves to a library type may be more
1091       // appropriate there.
1092       if (!LangOpts.CPlusPlus && ((s[0] == 'w' && s[1] == 'b') ||
1093           (s[0] == 'W' && s[1] == 'B'))) {
1094         isBitInt = true;
1095         HasSize = true;
1096         ++s; // Skip both characters (2nd char skipped on continue).
1097         continue; // Success.
1098       }
1099     }
1100     // If we reached here, there was an error or a ud-suffix.
1101     break;
1102   }
1103 
1104   // "i", "if", and "il" are user-defined suffixes in C++1y.
1105   if (s != ThisTokEnd || isImaginary) {
1106     // FIXME: Don't bother expanding UCNs if !tok.hasUCN().
1107     expandUCNs(UDSuffixBuf, StringRef(SuffixBegin, ThisTokEnd - SuffixBegin));
1108     if (isValidUDSuffix(LangOpts, UDSuffixBuf)) {
1109       if (!isImaginary) {
1110         // Any suffix pieces we might have parsed are actually part of the
1111         // ud-suffix.
1112         isLong = false;
1113         isUnsigned = false;
1114         isLongLong = false;
1115         isSizeT = false;
1116         isFloat = false;
1117         isFloat16 = false;
1118         isHalf = false;
1119         isImaginary = false;
1120         isBitInt = false;
1121         MicrosoftInteger = 0;
1122         saw_fixed_point_suffix = false;
1123         isFract = false;
1124         isAccum = false;
1125       }
1126 
1127       saw_ud_suffix = true;
1128       return;
1129     }
1130 
1131     if (s != ThisTokEnd) {
1132       // Report an error if there are any.
1133       Diags.Report(Lexer::AdvanceToTokenCharacter(
1134                        TokLoc, SuffixBegin - ThisTokBegin, SM, LangOpts),
1135                    diag::err_invalid_suffix_constant)
1136           << StringRef(SuffixBegin, ThisTokEnd - SuffixBegin)
1137           << (isFixedPointConstant ? 2 : isFPConstant);
1138       hadError = true;
1139     }
1140   }
1141 
1142   if (!hadError && saw_fixed_point_suffix) {
1143     assert(isFract || isAccum);
1144   }
1145 }
1146 
1147 /// ParseDecimalOrOctalCommon - This method is called for decimal or octal
1148 /// numbers. It issues an error for illegal digits, and handles floating point
1149 /// parsing. If it detects a floating point number, the radix is set to 10.
1150 void NumericLiteralParser::ParseDecimalOrOctalCommon(SourceLocation TokLoc){
1151   assert((radix == 8 || radix == 10) && "Unexpected radix");
1152 
1153   // If we have a hex digit other than 'e' (which denotes a FP exponent) then
1154   // the code is using an incorrect base.
1155   if (isHexDigit(*s) && *s != 'e' && *s != 'E' &&
1156       !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1157     Diags.Report(
1158         Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM, LangOpts),
1159         diag::err_invalid_digit)
1160         << StringRef(s, 1) << (radix == 8 ? 1 : 0);
1161     hadError = true;
1162     return;
1163   }
1164 
1165   if (*s == '.') {
1166     checkSeparator(TokLoc, s, CSK_AfterDigits);
1167     s++;
1168     radix = 10;
1169     saw_period = true;
1170     checkSeparator(TokLoc, s, CSK_BeforeDigits);
1171     s = SkipDigits(s); // Skip suffix.
1172   }
1173   if (*s == 'e' || *s == 'E') { // exponent
1174     checkSeparator(TokLoc, s, CSK_AfterDigits);
1175     const char *Exponent = s;
1176     s++;
1177     radix = 10;
1178     saw_exponent = true;
1179     if (s != ThisTokEnd && (*s == '+' || *s == '-'))  s++; // sign
1180     const char *first_non_digit = SkipDigits(s);
1181     if (containsDigits(s, first_non_digit)) {
1182       checkSeparator(TokLoc, s, CSK_BeforeDigits);
1183       s = first_non_digit;
1184     } else {
1185       if (!hadError) {
1186         Diags.Report(Lexer::AdvanceToTokenCharacter(
1187                          TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1188                      diag::err_exponent_has_no_digits);
1189         hadError = true;
1190       }
1191       return;
1192     }
1193   }
1194 }
1195 
1196 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
1197 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
1198 /// treat it as an invalid suffix.
1199 bool NumericLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
1200                                            StringRef Suffix) {
1201   if (!LangOpts.CPlusPlus11 || Suffix.empty())
1202     return false;
1203 
1204   // By C++11 [lex.ext]p10, ud-suffixes starting with an '_' are always valid.
1205   if (Suffix[0] == '_')
1206     return true;
1207 
1208   // In C++11, there are no library suffixes.
1209   if (!LangOpts.CPlusPlus14)
1210     return false;
1211 
1212   // In C++14, "s", "h", "min", "ms", "us", and "ns" are used in the library.
1213   // Per tweaked N3660, "il", "i", and "if" are also used in the library.
1214   // In C++2a "d" and "y" are used in the library.
1215   return llvm::StringSwitch<bool>(Suffix)
1216       .Cases("h", "min", "s", true)
1217       .Cases("ms", "us", "ns", true)
1218       .Cases("il", "i", "if", true)
1219       .Cases("d", "y", LangOpts.CPlusPlus20)
1220       .Default(false);
1221 }
1222 
1223 void NumericLiteralParser::checkSeparator(SourceLocation TokLoc,
1224                                           const char *Pos,
1225                                           CheckSeparatorKind IsAfterDigits) {
1226   if (IsAfterDigits == CSK_AfterDigits) {
1227     if (Pos == ThisTokBegin)
1228       return;
1229     --Pos;
1230   } else if (Pos == ThisTokEnd)
1231     return;
1232 
1233   if (isDigitSeparator(*Pos)) {
1234     Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, Pos - ThisTokBegin, SM,
1235                                                 LangOpts),
1236                  diag::err_digit_separator_not_between_digits)
1237         << IsAfterDigits;
1238     hadError = true;
1239   }
1240 }
1241 
1242 /// ParseNumberStartingWithZero - This method is called when the first character
1243 /// of the number is found to be a zero.  This means it is either an octal
1244 /// number (like '04') or a hex number ('0x123a') a binary number ('0b1010') or
1245 /// a floating point number (01239.123e4).  Eat the prefix, determining the
1246 /// radix etc.
1247 void NumericLiteralParser::ParseNumberStartingWithZero(SourceLocation TokLoc) {
1248   assert(s[0] == '0' && "Invalid method call");
1249   s++;
1250 
1251   int c1 = s[0];
1252 
1253   // Handle a hex number like 0x1234.
1254   if ((c1 == 'x' || c1 == 'X') && (isHexDigit(s[1]) || s[1] == '.')) {
1255     s++;
1256     assert(s < ThisTokEnd && "didn't maximally munch?");
1257     radix = 16;
1258     DigitsBegin = s;
1259     s = SkipHexDigits(s);
1260     bool HasSignificandDigits = containsDigits(DigitsBegin, s);
1261     if (s == ThisTokEnd) {
1262       // Done.
1263     } else if (*s == '.') {
1264       s++;
1265       saw_period = true;
1266       const char *floatDigitsBegin = s;
1267       s = SkipHexDigits(s);
1268       if (containsDigits(floatDigitsBegin, s))
1269         HasSignificandDigits = true;
1270       if (HasSignificandDigits)
1271         checkSeparator(TokLoc, floatDigitsBegin, CSK_BeforeDigits);
1272     }
1273 
1274     if (!HasSignificandDigits) {
1275       Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1276                                                   LangOpts),
1277                    diag::err_hex_constant_requires)
1278           << LangOpts.CPlusPlus << 1;
1279       hadError = true;
1280       return;
1281     }
1282 
1283     // A binary exponent can appear with or with a '.'. If dotted, the
1284     // binary exponent is required.
1285     if (*s == 'p' || *s == 'P') {
1286       checkSeparator(TokLoc, s, CSK_AfterDigits);
1287       const char *Exponent = s;
1288       s++;
1289       saw_exponent = true;
1290       if (s != ThisTokEnd && (*s == '+' || *s == '-'))  s++; // sign
1291       const char *first_non_digit = SkipDigits(s);
1292       if (!containsDigits(s, first_non_digit)) {
1293         if (!hadError) {
1294           Diags.Report(Lexer::AdvanceToTokenCharacter(
1295                            TokLoc, Exponent - ThisTokBegin, SM, LangOpts),
1296                        diag::err_exponent_has_no_digits);
1297           hadError = true;
1298         }
1299         return;
1300       }
1301       checkSeparator(TokLoc, s, CSK_BeforeDigits);
1302       s = first_non_digit;
1303 
1304       if (!LangOpts.HexFloats)
1305         Diags.Report(TokLoc, LangOpts.CPlusPlus
1306                                  ? diag::ext_hex_literal_invalid
1307                                  : diag::ext_hex_constant_invalid);
1308       else if (LangOpts.CPlusPlus17)
1309         Diags.Report(TokLoc, diag::warn_cxx17_hex_literal);
1310     } else if (saw_period) {
1311       Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1312                                                   LangOpts),
1313                    diag::err_hex_constant_requires)
1314           << LangOpts.CPlusPlus << 0;
1315       hadError = true;
1316     }
1317     return;
1318   }
1319 
1320   // Handle simple binary numbers 0b01010
1321   if ((c1 == 'b' || c1 == 'B') && (s[1] == '0' || s[1] == '1')) {
1322     // 0b101010 is a C++1y / GCC extension.
1323     Diags.Report(TokLoc, LangOpts.CPlusPlus14
1324                              ? diag::warn_cxx11_compat_binary_literal
1325                          : LangOpts.CPlusPlus ? diag::ext_binary_literal_cxx14
1326                                               : diag::ext_binary_literal);
1327     ++s;
1328     assert(s < ThisTokEnd && "didn't maximally munch?");
1329     radix = 2;
1330     DigitsBegin = s;
1331     s = SkipBinaryDigits(s);
1332     if (s == ThisTokEnd) {
1333       // Done.
1334     } else if (isHexDigit(*s) &&
1335                !isValidUDSuffix(LangOpts, StringRef(s, ThisTokEnd - s))) {
1336       Diags.Report(Lexer::AdvanceToTokenCharacter(TokLoc, s - ThisTokBegin, SM,
1337                                                   LangOpts),
1338                    diag::err_invalid_digit)
1339           << StringRef(s, 1) << 2;
1340       hadError = true;
1341     }
1342     // Other suffixes will be diagnosed by the caller.
1343     return;
1344   }
1345 
1346   // For now, the radix is set to 8. If we discover that we have a
1347   // floating point constant, the radix will change to 10. Octal floating
1348   // point constants are not permitted (only decimal and hexadecimal).
1349   radix = 8;
1350   const char *PossibleNewDigitStart = s;
1351   s = SkipOctalDigits(s);
1352   // When the value is 0 followed by a suffix (like 0wb), we want to leave 0
1353   // as the start of the digits. So if skipping octal digits does not skip
1354   // anything, we leave the digit start where it was.
1355   if (s != PossibleNewDigitStart)
1356     DigitsBegin = PossibleNewDigitStart;
1357 
1358   if (s == ThisTokEnd)
1359     return; // Done, simple octal number like 01234
1360 
1361   // If we have some other non-octal digit that *is* a decimal digit, see if
1362   // this is part of a floating point number like 094.123 or 09e1.
1363   if (isDigit(*s)) {
1364     const char *EndDecimal = SkipDigits(s);
1365     if (EndDecimal[0] == '.' || EndDecimal[0] == 'e' || EndDecimal[0] == 'E') {
1366       s = EndDecimal;
1367       radix = 10;
1368     }
1369   }
1370 
1371   ParseDecimalOrOctalCommon(TokLoc);
1372 }
1373 
1374 static bool alwaysFitsInto64Bits(unsigned Radix, unsigned NumDigits) {
1375   switch (Radix) {
1376   case 2:
1377     return NumDigits <= 64;
1378   case 8:
1379     return NumDigits <= 64 / 3; // Digits are groups of 3 bits.
1380   case 10:
1381     return NumDigits <= 19; // floor(log10(2^64))
1382   case 16:
1383     return NumDigits <= 64 / 4; // Digits are groups of 4 bits.
1384   default:
1385     llvm_unreachable("impossible Radix");
1386   }
1387 }
1388 
1389 /// GetIntegerValue - Convert this numeric literal value to an APInt that
1390 /// matches Val's input width.  If there is an overflow, set Val to the low bits
1391 /// of the result and return true.  Otherwise, return false.
1392 bool NumericLiteralParser::GetIntegerValue(llvm::APInt &Val) {
1393   // Fast path: Compute a conservative bound on the maximum number of
1394   // bits per digit in this radix. If we can't possibly overflow a
1395   // uint64 based on that bound then do the simple conversion to
1396   // integer. This avoids the expensive overflow checking below, and
1397   // handles the common cases that matter (small decimal integers and
1398   // hex/octal values which don't overflow).
1399   const unsigned NumDigits = SuffixBegin - DigitsBegin;
1400   if (alwaysFitsInto64Bits(radix, NumDigits)) {
1401     uint64_t N = 0;
1402     for (const char *Ptr = DigitsBegin; Ptr != SuffixBegin; ++Ptr)
1403       if (!isDigitSeparator(*Ptr))
1404         N = N * radix + llvm::hexDigitValue(*Ptr);
1405 
1406     // This will truncate the value to Val's input width. Simply check
1407     // for overflow by comparing.
1408     Val = N;
1409     return Val.getZExtValue() != N;
1410   }
1411 
1412   Val = 0;
1413   const char *Ptr = DigitsBegin;
1414 
1415   llvm::APInt RadixVal(Val.getBitWidth(), radix);
1416   llvm::APInt CharVal(Val.getBitWidth(), 0);
1417   llvm::APInt OldVal = Val;
1418 
1419   bool OverflowOccurred = false;
1420   while (Ptr < SuffixBegin) {
1421     if (isDigitSeparator(*Ptr)) {
1422       ++Ptr;
1423       continue;
1424     }
1425 
1426     unsigned C = llvm::hexDigitValue(*Ptr++);
1427 
1428     // If this letter is out of bound for this radix, reject it.
1429     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1430 
1431     CharVal = C;
1432 
1433     // Add the digit to the value in the appropriate radix.  If adding in digits
1434     // made the value smaller, then this overflowed.
1435     OldVal = Val;
1436 
1437     // Multiply by radix, did overflow occur on the multiply?
1438     Val *= RadixVal;
1439     OverflowOccurred |= Val.udiv(RadixVal) != OldVal;
1440 
1441     // Add value, did overflow occur on the value?
1442     //   (a + b) ult b  <=> overflow
1443     Val += CharVal;
1444     OverflowOccurred |= Val.ult(CharVal);
1445   }
1446   return OverflowOccurred;
1447 }
1448 
1449 llvm::APFloat::opStatus
1450 NumericLiteralParser::GetFloatValue(llvm::APFloat &Result) {
1451   using llvm::APFloat;
1452 
1453   unsigned n = std::min(SuffixBegin - ThisTokBegin, ThisTokEnd - ThisTokBegin);
1454 
1455   llvm::SmallString<16> Buffer;
1456   StringRef Str(ThisTokBegin, n);
1457   if (Str.contains('\'')) {
1458     Buffer.reserve(n);
1459     std::remove_copy_if(Str.begin(), Str.end(), std::back_inserter(Buffer),
1460                         &isDigitSeparator);
1461     Str = Buffer;
1462   }
1463 
1464   auto StatusOrErr =
1465       Result.convertFromString(Str, APFloat::rmNearestTiesToEven);
1466   assert(StatusOrErr && "Invalid floating point representation");
1467   return !errorToBool(StatusOrErr.takeError()) ? *StatusOrErr
1468                                                : APFloat::opInvalidOp;
1469 }
1470 
1471 static inline bool IsExponentPart(char c) {
1472   return c == 'p' || c == 'P' || c == 'e' || c == 'E';
1473 }
1474 
1475 bool NumericLiteralParser::GetFixedPointValue(llvm::APInt &StoreVal, unsigned Scale) {
1476   assert(radix == 16 || radix == 10);
1477 
1478   // Find how many digits are needed to store the whole literal.
1479   unsigned NumDigits = SuffixBegin - DigitsBegin;
1480   if (saw_period) --NumDigits;
1481 
1482   // Initial scan of the exponent if it exists
1483   bool ExpOverflowOccurred = false;
1484   bool NegativeExponent = false;
1485   const char *ExponentBegin;
1486   uint64_t Exponent = 0;
1487   int64_t BaseShift = 0;
1488   if (saw_exponent) {
1489     const char *Ptr = DigitsBegin;
1490 
1491     while (!IsExponentPart(*Ptr)) ++Ptr;
1492     ExponentBegin = Ptr;
1493     ++Ptr;
1494     NegativeExponent = *Ptr == '-';
1495     if (NegativeExponent) ++Ptr;
1496 
1497     unsigned NumExpDigits = SuffixBegin - Ptr;
1498     if (alwaysFitsInto64Bits(radix, NumExpDigits)) {
1499       llvm::StringRef ExpStr(Ptr, NumExpDigits);
1500       llvm::APInt ExpInt(/*numBits=*/64, ExpStr, /*radix=*/10);
1501       Exponent = ExpInt.getZExtValue();
1502     } else {
1503       ExpOverflowOccurred = true;
1504     }
1505 
1506     if (NegativeExponent) BaseShift -= Exponent;
1507     else BaseShift += Exponent;
1508   }
1509 
1510   // Number of bits needed for decimal literal is
1511   //   ceil(NumDigits * log2(10))       Integral part
1512   // + Scale                            Fractional part
1513   // + ceil(Exponent * log2(10))        Exponent
1514   // --------------------------------------------------
1515   //   ceil((NumDigits + Exponent) * log2(10)) + Scale
1516   //
1517   // But for simplicity in handling integers, we can round up log2(10) to 4,
1518   // making:
1519   // 4 * (NumDigits + Exponent) + Scale
1520   //
1521   // Number of digits needed for hexadecimal literal is
1522   //   4 * NumDigits                    Integral part
1523   // + Scale                            Fractional part
1524   // + Exponent                         Exponent
1525   // --------------------------------------------------
1526   //   (4 * NumDigits) + Scale + Exponent
1527   uint64_t NumBitsNeeded;
1528   if (radix == 10)
1529     NumBitsNeeded = 4 * (NumDigits + Exponent) + Scale;
1530   else
1531     NumBitsNeeded = 4 * NumDigits + Exponent + Scale;
1532 
1533   if (NumBitsNeeded > std::numeric_limits<unsigned>::max())
1534     ExpOverflowOccurred = true;
1535   llvm::APInt Val(static_cast<unsigned>(NumBitsNeeded), 0, /*isSigned=*/false);
1536 
1537   bool FoundDecimal = false;
1538 
1539   int64_t FractBaseShift = 0;
1540   const char *End = saw_exponent ? ExponentBegin : SuffixBegin;
1541   for (const char *Ptr = DigitsBegin; Ptr < End; ++Ptr) {
1542     if (*Ptr == '.') {
1543       FoundDecimal = true;
1544       continue;
1545     }
1546 
1547     // Normal reading of an integer
1548     unsigned C = llvm::hexDigitValue(*Ptr);
1549     assert(C < radix && "NumericLiteralParser ctor should have rejected this");
1550 
1551     Val *= radix;
1552     Val += C;
1553 
1554     if (FoundDecimal)
1555       // Keep track of how much we will need to adjust this value by from the
1556       // number of digits past the radix point.
1557       --FractBaseShift;
1558   }
1559 
1560   // For a radix of 16, we will be multiplying by 2 instead of 16.
1561   if (radix == 16) FractBaseShift *= 4;
1562   BaseShift += FractBaseShift;
1563 
1564   Val <<= Scale;
1565 
1566   uint64_t Base = (radix == 16) ? 2 : 10;
1567   if (BaseShift > 0) {
1568     for (int64_t i = 0; i < BaseShift; ++i) {
1569       Val *= Base;
1570     }
1571   } else if (BaseShift < 0) {
1572     for (int64_t i = BaseShift; i < 0 && !Val.isZero(); ++i)
1573       Val = Val.udiv(Base);
1574   }
1575 
1576   bool IntOverflowOccurred = false;
1577   auto MaxVal = llvm::APInt::getMaxValue(StoreVal.getBitWidth());
1578   if (Val.getBitWidth() > StoreVal.getBitWidth()) {
1579     IntOverflowOccurred |= Val.ugt(MaxVal.zext(Val.getBitWidth()));
1580     StoreVal = Val.trunc(StoreVal.getBitWidth());
1581   } else if (Val.getBitWidth() < StoreVal.getBitWidth()) {
1582     IntOverflowOccurred |= Val.zext(MaxVal.getBitWidth()).ugt(MaxVal);
1583     StoreVal = Val.zext(StoreVal.getBitWidth());
1584   } else {
1585     StoreVal = Val;
1586   }
1587 
1588   return IntOverflowOccurred || ExpOverflowOccurred;
1589 }
1590 
1591 /// \verbatim
1592 ///       user-defined-character-literal: [C++11 lex.ext]
1593 ///         character-literal ud-suffix
1594 ///       ud-suffix:
1595 ///         identifier
1596 ///       character-literal: [C++11 lex.ccon]
1597 ///         ' c-char-sequence '
1598 ///         u' c-char-sequence '
1599 ///         U' c-char-sequence '
1600 ///         L' c-char-sequence '
1601 ///         u8' c-char-sequence ' [C++1z lex.ccon]
1602 ///       c-char-sequence:
1603 ///         c-char
1604 ///         c-char-sequence c-char
1605 ///       c-char:
1606 ///         any member of the source character set except the single-quote ',
1607 ///           backslash \, or new-line character
1608 ///         escape-sequence
1609 ///         universal-character-name
1610 ///       escape-sequence:
1611 ///         simple-escape-sequence
1612 ///         octal-escape-sequence
1613 ///         hexadecimal-escape-sequence
1614 ///       simple-escape-sequence:
1615 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
1616 ///       octal-escape-sequence:
1617 ///         \ octal-digit
1618 ///         \ octal-digit octal-digit
1619 ///         \ octal-digit octal-digit octal-digit
1620 ///       hexadecimal-escape-sequence:
1621 ///         \x hexadecimal-digit
1622 ///         hexadecimal-escape-sequence hexadecimal-digit
1623 ///       universal-character-name: [C++11 lex.charset]
1624 ///         \u hex-quad
1625 ///         \U hex-quad hex-quad
1626 ///       hex-quad:
1627 ///         hex-digit hex-digit hex-digit hex-digit
1628 /// \endverbatim
1629 ///
1630 CharLiteralParser::CharLiteralParser(const char *begin, const char *end,
1631                                      SourceLocation Loc, Preprocessor &PP,
1632                                      tok::TokenKind kind) {
1633   // At this point we know that the character matches the regex "(L|u|U)?'.*'".
1634   HadError = false;
1635 
1636   Kind = kind;
1637 
1638   const char *TokBegin = begin;
1639 
1640   // Skip over wide character determinant.
1641   if (Kind != tok::char_constant)
1642     ++begin;
1643   if (Kind == tok::utf8_char_constant)
1644     ++begin;
1645 
1646   // Skip over the entry quote.
1647   if (begin[0] != '\'') {
1648     PP.Diag(Loc, diag::err_lexing_char);
1649     HadError = true;
1650     return;
1651   }
1652 
1653   ++begin;
1654 
1655   // Remove an optional ud-suffix.
1656   if (end[-1] != '\'') {
1657     const char *UDSuffixEnd = end;
1658     do {
1659       --end;
1660     } while (end[-1] != '\'');
1661     // FIXME: Don't bother with this if !tok.hasUCN().
1662     expandUCNs(UDSuffixBuf, StringRef(end, UDSuffixEnd - end));
1663     UDSuffixOffset = end - TokBegin;
1664   }
1665 
1666   // Trim the ending quote.
1667   assert(end != begin && "Invalid token lexed");
1668   --end;
1669 
1670   // FIXME: The "Value" is an uint64_t so we can handle char literals of
1671   // up to 64-bits.
1672   // FIXME: This extensively assumes that 'char' is 8-bits.
1673   assert(PP.getTargetInfo().getCharWidth() == 8 &&
1674          "Assumes char is 8 bits");
1675   assert(PP.getTargetInfo().getIntWidth() <= 64 &&
1676          (PP.getTargetInfo().getIntWidth() & 7) == 0 &&
1677          "Assumes sizeof(int) on target is <= 64 and a multiple of char");
1678   assert(PP.getTargetInfo().getWCharWidth() <= 64 &&
1679          "Assumes sizeof(wchar) on target is <= 64");
1680 
1681   SmallVector<uint32_t, 4> codepoint_buffer;
1682   codepoint_buffer.resize(end - begin);
1683   uint32_t *buffer_begin = &codepoint_buffer.front();
1684   uint32_t *buffer_end = buffer_begin + codepoint_buffer.size();
1685 
1686   // Unicode escapes representing characters that cannot be correctly
1687   // represented in a single code unit are disallowed in character literals
1688   // by this implementation.
1689   uint32_t largest_character_for_kind;
1690   if (tok::wide_char_constant == Kind) {
1691     largest_character_for_kind =
1692         0xFFFFFFFFu >> (32-PP.getTargetInfo().getWCharWidth());
1693   } else if (tok::utf8_char_constant == Kind) {
1694     largest_character_for_kind = 0x7F;
1695   } else if (tok::utf16_char_constant == Kind) {
1696     largest_character_for_kind = 0xFFFF;
1697   } else if (tok::utf32_char_constant == Kind) {
1698     largest_character_for_kind = 0x10FFFF;
1699   } else {
1700     largest_character_for_kind = 0x7Fu;
1701   }
1702 
1703   while (begin != end) {
1704     // Is this a span of non-escape characters?
1705     if (begin[0] != '\\') {
1706       char const *start = begin;
1707       do {
1708         ++begin;
1709       } while (begin != end && *begin != '\\');
1710 
1711       char const *tmp_in_start = start;
1712       uint32_t *tmp_out_start = buffer_begin;
1713       llvm::ConversionResult res =
1714           llvm::ConvertUTF8toUTF32(reinterpret_cast<llvm::UTF8 const **>(&start),
1715                              reinterpret_cast<llvm::UTF8 const *>(begin),
1716                              &buffer_begin, buffer_end, llvm::strictConversion);
1717       if (res != llvm::conversionOK) {
1718         // If we see bad encoding for unprefixed character literals, warn and
1719         // simply copy the byte values, for compatibility with gcc and
1720         // older versions of clang.
1721         bool NoErrorOnBadEncoding = isOrdinary();
1722         unsigned Msg = diag::err_bad_character_encoding;
1723         if (NoErrorOnBadEncoding)
1724           Msg = diag::warn_bad_character_encoding;
1725         PP.Diag(Loc, Msg);
1726         if (NoErrorOnBadEncoding) {
1727           start = tmp_in_start;
1728           buffer_begin = tmp_out_start;
1729           for (; start != begin; ++start, ++buffer_begin)
1730             *buffer_begin = static_cast<uint8_t>(*start);
1731         } else {
1732           HadError = true;
1733         }
1734       } else {
1735         for (; tmp_out_start < buffer_begin; ++tmp_out_start) {
1736           if (*tmp_out_start > largest_character_for_kind) {
1737             HadError = true;
1738             PP.Diag(Loc, diag::err_character_too_large);
1739           }
1740         }
1741       }
1742 
1743       continue;
1744     }
1745     // Is this a Universal Character Name escape?
1746     if (begin[1] == 'u' || begin[1] == 'U' || begin[1] == 'N') {
1747       unsigned short UcnLen = 0;
1748       if (!ProcessUCNEscape(TokBegin, begin, end, *buffer_begin, UcnLen,
1749                             FullSourceLoc(Loc, PP.getSourceManager()),
1750                             &PP.getDiagnostics(), PP.getLangOpts(), true)) {
1751         HadError = true;
1752       } else if (*buffer_begin > largest_character_for_kind) {
1753         HadError = true;
1754         PP.Diag(Loc, diag::err_character_too_large);
1755       }
1756 
1757       ++buffer_begin;
1758       continue;
1759     }
1760     unsigned CharWidth = getCharWidth(Kind, PP.getTargetInfo());
1761     uint64_t result =
1762         ProcessCharEscape(TokBegin, begin, end, HadError,
1763                           FullSourceLoc(Loc, PP.getSourceManager()), CharWidth,
1764                           &PP.getDiagnostics(), PP.getLangOpts(),
1765                           StringLiteralEvalMethod::Evaluated);
1766     *buffer_begin++ = result;
1767   }
1768 
1769   unsigned NumCharsSoFar = buffer_begin - &codepoint_buffer.front();
1770 
1771   if (NumCharsSoFar > 1) {
1772     if (isOrdinary() && NumCharsSoFar == 4)
1773       PP.Diag(Loc, diag::warn_four_char_character_literal);
1774     else if (isOrdinary())
1775       PP.Diag(Loc, diag::warn_multichar_character_literal);
1776     else {
1777       PP.Diag(Loc, diag::err_multichar_character_literal) << (isWide() ? 0 : 1);
1778       HadError = true;
1779     }
1780     IsMultiChar = true;
1781   } else {
1782     IsMultiChar = false;
1783   }
1784 
1785   llvm::APInt LitVal(PP.getTargetInfo().getIntWidth(), 0);
1786 
1787   // Narrow character literals act as though their value is concatenated
1788   // in this implementation, but warn on overflow.
1789   bool multi_char_too_long = false;
1790   if (isOrdinary() && isMultiChar()) {
1791     LitVal = 0;
1792     for (size_t i = 0; i < NumCharsSoFar; ++i) {
1793       // check for enough leading zeros to shift into
1794       multi_char_too_long |= (LitVal.countl_zero() < 8);
1795       LitVal <<= 8;
1796       LitVal = LitVal + (codepoint_buffer[i] & 0xFF);
1797     }
1798   } else if (NumCharsSoFar > 0) {
1799     // otherwise just take the last character
1800     LitVal = buffer_begin[-1];
1801   }
1802 
1803   if (!HadError && multi_char_too_long) {
1804     PP.Diag(Loc, diag::warn_char_constant_too_large);
1805   }
1806 
1807   // Transfer the value from APInt to uint64_t
1808   Value = LitVal.getZExtValue();
1809 
1810   // If this is a single narrow character, sign extend it (e.g. '\xFF' is "-1")
1811   // if 'char' is signed for this target (C99 6.4.4.4p10).  Note that multiple
1812   // character constants are not sign extended in the this implementation:
1813   // '\xFF\xFF' = 65536 and '\x0\xFF' = 255, which matches GCC.
1814   if (isOrdinary() && NumCharsSoFar == 1 && (Value & 128) &&
1815       PP.getLangOpts().CharIsSigned)
1816     Value = (signed char)Value;
1817 }
1818 
1819 /// \verbatim
1820 ///       string-literal: [C++0x lex.string]
1821 ///         encoding-prefix " [s-char-sequence] "
1822 ///         encoding-prefix R raw-string
1823 ///       encoding-prefix:
1824 ///         u8
1825 ///         u
1826 ///         U
1827 ///         L
1828 ///       s-char-sequence:
1829 ///         s-char
1830 ///         s-char-sequence s-char
1831 ///       s-char:
1832 ///         any member of the source character set except the double-quote ",
1833 ///           backslash \, or new-line character
1834 ///         escape-sequence
1835 ///         universal-character-name
1836 ///       raw-string:
1837 ///         " d-char-sequence ( r-char-sequence ) d-char-sequence "
1838 ///       r-char-sequence:
1839 ///         r-char
1840 ///         r-char-sequence r-char
1841 ///       r-char:
1842 ///         any member of the source character set, except a right parenthesis )
1843 ///           followed by the initial d-char-sequence (which may be empty)
1844 ///           followed by a double quote ".
1845 ///       d-char-sequence:
1846 ///         d-char
1847 ///         d-char-sequence d-char
1848 ///       d-char:
1849 ///         any member of the basic source character set except:
1850 ///           space, the left parenthesis (, the right parenthesis ),
1851 ///           the backslash \, and the control characters representing horizontal
1852 ///           tab, vertical tab, form feed, and newline.
1853 ///       escape-sequence: [C++0x lex.ccon]
1854 ///         simple-escape-sequence
1855 ///         octal-escape-sequence
1856 ///         hexadecimal-escape-sequence
1857 ///       simple-escape-sequence:
1858 ///         one of \' \" \? \\ \a \b \f \n \r \t \v
1859 ///       octal-escape-sequence:
1860 ///         \ octal-digit
1861 ///         \ octal-digit octal-digit
1862 ///         \ octal-digit octal-digit octal-digit
1863 ///       hexadecimal-escape-sequence:
1864 ///         \x hexadecimal-digit
1865 ///         hexadecimal-escape-sequence hexadecimal-digit
1866 ///       universal-character-name:
1867 ///         \u hex-quad
1868 ///         \U hex-quad hex-quad
1869 ///       hex-quad:
1870 ///         hex-digit hex-digit hex-digit hex-digit
1871 /// \endverbatim
1872 ///
1873 StringLiteralParser::StringLiteralParser(ArrayRef<Token> StringToks,
1874                                          Preprocessor &PP,
1875                                          StringLiteralEvalMethod EvalMethod)
1876     : SM(PP.getSourceManager()), Features(PP.getLangOpts()),
1877       Target(PP.getTargetInfo()), Diags(&PP.getDiagnostics()),
1878       MaxTokenLength(0), SizeBound(0), CharByteWidth(0), Kind(tok::unknown),
1879       ResultPtr(ResultBuf.data()), EvalMethod(EvalMethod), hadError(false),
1880       Pascal(false) {
1881   init(StringToks);
1882 }
1883 
1884 void StringLiteralParser::init(ArrayRef<Token> StringToks){
1885   // The literal token may have come from an invalid source location (e.g. due
1886   // to a PCH error), in which case the token length will be 0.
1887   if (StringToks.empty() || StringToks[0].getLength() < 2)
1888     return DiagnoseLexingError(SourceLocation());
1889 
1890   // Scan all of the string portions, remember the max individual token length,
1891   // computing a bound on the concatenated string length, and see whether any
1892   // piece is a wide-string.  If any of the string portions is a wide-string
1893   // literal, the result is a wide-string literal [C99 6.4.5p4].
1894   assert(!StringToks.empty() && "expected at least one token");
1895   MaxTokenLength = StringToks[0].getLength();
1896   assert(StringToks[0].getLength() >= 2 && "literal token is invalid!");
1897   SizeBound = StringToks[0].getLength() - 2; // -2 for "".
1898   hadError = false;
1899 
1900   // Determines the kind of string from the prefix
1901   Kind = tok::string_literal;
1902 
1903   /// (C99 5.1.1.2p1).  The common case is only one string fragment.
1904   for (const Token &Tok : StringToks) {
1905     if (Tok.getLength() < 2)
1906       return DiagnoseLexingError(Tok.getLocation());
1907 
1908     // The string could be shorter than this if it needs cleaning, but this is a
1909     // reasonable bound, which is all we need.
1910     assert(Tok.getLength() >= 2 && "literal token is invalid!");
1911     SizeBound += Tok.getLength() - 2; // -2 for "".
1912 
1913     // Remember maximum string piece length.
1914     if (Tok.getLength() > MaxTokenLength)
1915       MaxTokenLength = Tok.getLength();
1916 
1917     // Remember if we see any wide or utf-8/16/32 strings.
1918     // Also check for illegal concatenations.
1919     if (isUnevaluated() && Tok.getKind() != tok::string_literal) {
1920       if (Diags)
1921         Diags->Report(Tok.getLocation(), diag::err_unevaluated_string_prefix);
1922       hadError = true;
1923     } else if (Tok.isNot(Kind) && Tok.isNot(tok::string_literal)) {
1924       if (isOrdinary()) {
1925         Kind = Tok.getKind();
1926       } else {
1927         if (Diags)
1928           Diags->Report(Tok.getLocation(), diag::err_unsupported_string_concat);
1929         hadError = true;
1930       }
1931     }
1932   }
1933 
1934   // Include space for the null terminator.
1935   ++SizeBound;
1936 
1937   // TODO: K&R warning: "traditional C rejects string constant concatenation"
1938 
1939   // Get the width in bytes of char/wchar_t/char16_t/char32_t
1940   CharByteWidth = getCharWidth(Kind, Target);
1941   assert((CharByteWidth & 7) == 0 && "Assumes character size is byte multiple");
1942   CharByteWidth /= 8;
1943 
1944   // The output buffer size needs to be large enough to hold wide characters.
1945   // This is a worst-case assumption which basically corresponds to L"" "long".
1946   SizeBound *= CharByteWidth;
1947 
1948   // Size the temporary buffer to hold the result string data.
1949   ResultBuf.resize(SizeBound);
1950 
1951   // Likewise, but for each string piece.
1952   SmallString<512> TokenBuf;
1953   TokenBuf.resize(MaxTokenLength);
1954 
1955   // Loop over all the strings, getting their spelling, and expanding them to
1956   // wide strings as appropriate.
1957   ResultPtr = &ResultBuf[0];   // Next byte to fill in.
1958 
1959   Pascal = false;
1960 
1961   SourceLocation UDSuffixTokLoc;
1962 
1963   for (unsigned i = 0, e = StringToks.size(); i != e; ++i) {
1964     const char *ThisTokBuf = &TokenBuf[0];
1965     // Get the spelling of the token, which eliminates trigraphs, etc.  We know
1966     // that ThisTokBuf points to a buffer that is big enough for the whole token
1967     // and 'spelled' tokens can only shrink.
1968     bool StringInvalid = false;
1969     unsigned ThisTokLen =
1970       Lexer::getSpelling(StringToks[i], ThisTokBuf, SM, Features,
1971                          &StringInvalid);
1972     if (StringInvalid)
1973       return DiagnoseLexingError(StringToks[i].getLocation());
1974 
1975     const char *ThisTokBegin = ThisTokBuf;
1976     const char *ThisTokEnd = ThisTokBuf+ThisTokLen;
1977 
1978     // Remove an optional ud-suffix.
1979     if (ThisTokEnd[-1] != '"') {
1980       const char *UDSuffixEnd = ThisTokEnd;
1981       do {
1982         --ThisTokEnd;
1983       } while (ThisTokEnd[-1] != '"');
1984 
1985       StringRef UDSuffix(ThisTokEnd, UDSuffixEnd - ThisTokEnd);
1986 
1987       if (UDSuffixBuf.empty()) {
1988         if (StringToks[i].hasUCN())
1989           expandUCNs(UDSuffixBuf, UDSuffix);
1990         else
1991           UDSuffixBuf.assign(UDSuffix);
1992         UDSuffixToken = i;
1993         UDSuffixOffset = ThisTokEnd - ThisTokBuf;
1994         UDSuffixTokLoc = StringToks[i].getLocation();
1995       } else {
1996         SmallString<32> ExpandedUDSuffix;
1997         if (StringToks[i].hasUCN()) {
1998           expandUCNs(ExpandedUDSuffix, UDSuffix);
1999           UDSuffix = ExpandedUDSuffix;
2000         }
2001 
2002         // C++11 [lex.ext]p8: At the end of phase 6, if a string literal is the
2003         // result of a concatenation involving at least one user-defined-string-
2004         // literal, all the participating user-defined-string-literals shall
2005         // have the same ud-suffix.
2006         bool UnevaluatedStringHasUDL = isUnevaluated() && !UDSuffix.empty();
2007         if (UDSuffixBuf != UDSuffix || UnevaluatedStringHasUDL) {
2008           if (Diags) {
2009             SourceLocation TokLoc = StringToks[i].getLocation();
2010             if (UnevaluatedStringHasUDL) {
2011               Diags->Report(TokLoc, diag::err_unevaluated_string_udl)
2012                   << SourceRange(TokLoc, TokLoc);
2013             } else {
2014               Diags->Report(TokLoc, diag::err_string_concat_mixed_suffix)
2015                   << UDSuffixBuf << UDSuffix
2016                   << SourceRange(UDSuffixTokLoc, UDSuffixTokLoc);
2017             }
2018           }
2019           hadError = true;
2020         }
2021       }
2022     }
2023 
2024     // Strip the end quote.
2025     --ThisTokEnd;
2026 
2027     // TODO: Input character set mapping support.
2028 
2029     // Skip marker for wide or unicode strings.
2030     if (ThisTokBuf[0] == 'L' || ThisTokBuf[0] == 'u' || ThisTokBuf[0] == 'U') {
2031       ++ThisTokBuf;
2032       // Skip 8 of u8 marker for utf8 strings.
2033       if (ThisTokBuf[0] == '8')
2034         ++ThisTokBuf;
2035     }
2036 
2037     // Check for raw string
2038     if (ThisTokBuf[0] == 'R') {
2039       if (ThisTokBuf[1] != '"') {
2040         // The file may have come from PCH and then changed after loading the
2041         // PCH; Fail gracefully.
2042         return DiagnoseLexingError(StringToks[i].getLocation());
2043       }
2044       ThisTokBuf += 2; // skip R"
2045 
2046       // C++11 [lex.string]p2: A `d-char-sequence` shall consist of at most 16
2047       // characters.
2048       constexpr unsigned MaxRawStrDelimLen = 16;
2049 
2050       const char *Prefix = ThisTokBuf;
2051       while (static_cast<unsigned>(ThisTokBuf - Prefix) < MaxRawStrDelimLen &&
2052              ThisTokBuf[0] != '(')
2053         ++ThisTokBuf;
2054       if (ThisTokBuf[0] != '(')
2055         return DiagnoseLexingError(StringToks[i].getLocation());
2056       ++ThisTokBuf; // skip '('
2057 
2058       // Remove same number of characters from the end
2059       ThisTokEnd -= ThisTokBuf - Prefix;
2060       if (ThisTokEnd < ThisTokBuf)
2061         return DiagnoseLexingError(StringToks[i].getLocation());
2062 
2063       // C++14 [lex.string]p4: A source-file new-line in a raw string literal
2064       // results in a new-line in the resulting execution string-literal.
2065       StringRef RemainingTokenSpan(ThisTokBuf, ThisTokEnd - ThisTokBuf);
2066       while (!RemainingTokenSpan.empty()) {
2067         // Split the string literal on \r\n boundaries.
2068         size_t CRLFPos = RemainingTokenSpan.find("\r\n");
2069         StringRef BeforeCRLF = RemainingTokenSpan.substr(0, CRLFPos);
2070         StringRef AfterCRLF = RemainingTokenSpan.substr(CRLFPos);
2071 
2072         // Copy everything before the \r\n sequence into the string literal.
2073         if (CopyStringFragment(StringToks[i], ThisTokBegin, BeforeCRLF))
2074           hadError = true;
2075 
2076         // Point into the \n inside the \r\n sequence and operate on the
2077         // remaining portion of the literal.
2078         RemainingTokenSpan = AfterCRLF.substr(1);
2079       }
2080     } else {
2081       if (ThisTokBuf[0] != '"') {
2082         // The file may have come from PCH and then changed after loading the
2083         // PCH; Fail gracefully.
2084         return DiagnoseLexingError(StringToks[i].getLocation());
2085       }
2086       ++ThisTokBuf; // skip "
2087 
2088       // Check if this is a pascal string
2089       if (!isUnevaluated() && Features.PascalStrings &&
2090           ThisTokBuf + 1 != ThisTokEnd && ThisTokBuf[0] == '\\' &&
2091           ThisTokBuf[1] == 'p') {
2092 
2093         // If the \p sequence is found in the first token, we have a pascal string
2094         // Otherwise, if we already have a pascal string, ignore the first \p
2095         if (i == 0) {
2096           ++ThisTokBuf;
2097           Pascal = true;
2098         } else if (Pascal)
2099           ThisTokBuf += 2;
2100       }
2101 
2102       while (ThisTokBuf != ThisTokEnd) {
2103         // Is this a span of non-escape characters?
2104         if (ThisTokBuf[0] != '\\') {
2105           const char *InStart = ThisTokBuf;
2106           do {
2107             ++ThisTokBuf;
2108           } while (ThisTokBuf != ThisTokEnd && ThisTokBuf[0] != '\\');
2109 
2110           // Copy the character span over.
2111           if (CopyStringFragment(StringToks[i], ThisTokBegin,
2112                                  StringRef(InStart, ThisTokBuf - InStart)))
2113             hadError = true;
2114           continue;
2115         }
2116         // Is this a Universal Character Name escape?
2117         if (ThisTokBuf[1] == 'u' || ThisTokBuf[1] == 'U' ||
2118             ThisTokBuf[1] == 'N') {
2119           EncodeUCNEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd,
2120                           ResultPtr, hadError,
2121                           FullSourceLoc(StringToks[i].getLocation(), SM),
2122                           CharByteWidth, Diags, Features);
2123           continue;
2124         }
2125         // Otherwise, this is a non-UCN escape character.  Process it.
2126         unsigned ResultChar =
2127             ProcessCharEscape(ThisTokBegin, ThisTokBuf, ThisTokEnd, hadError,
2128                               FullSourceLoc(StringToks[i].getLocation(), SM),
2129                               CharByteWidth * 8, Diags, Features, EvalMethod);
2130 
2131         if (CharByteWidth == 4) {
2132           // FIXME: Make the type of the result buffer correct instead of
2133           // using reinterpret_cast.
2134           llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultPtr);
2135           *ResultWidePtr = ResultChar;
2136           ResultPtr += 4;
2137         } else if (CharByteWidth == 2) {
2138           // FIXME: Make the type of the result buffer correct instead of
2139           // using reinterpret_cast.
2140           llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultPtr);
2141           *ResultWidePtr = ResultChar & 0xFFFF;
2142           ResultPtr += 2;
2143         } else {
2144           assert(CharByteWidth == 1 && "Unexpected char width");
2145           *ResultPtr++ = ResultChar & 0xFF;
2146         }
2147       }
2148     }
2149   }
2150 
2151   assert((!Pascal || !isUnevaluated()) &&
2152          "Pascal string in unevaluated context");
2153   if (Pascal) {
2154     if (CharByteWidth == 4) {
2155       // FIXME: Make the type of the result buffer correct instead of
2156       // using reinterpret_cast.
2157       llvm::UTF32 *ResultWidePtr = reinterpret_cast<llvm::UTF32*>(ResultBuf.data());
2158       ResultWidePtr[0] = GetNumStringChars() - 1;
2159     } else if (CharByteWidth == 2) {
2160       // FIXME: Make the type of the result buffer correct instead of
2161       // using reinterpret_cast.
2162       llvm::UTF16 *ResultWidePtr = reinterpret_cast<llvm::UTF16*>(ResultBuf.data());
2163       ResultWidePtr[0] = GetNumStringChars() - 1;
2164     } else {
2165       assert(CharByteWidth == 1 && "Unexpected char width");
2166       ResultBuf[0] = GetNumStringChars() - 1;
2167     }
2168 
2169     // Verify that pascal strings aren't too large.
2170     if (GetStringLength() > 256) {
2171       if (Diags)
2172         Diags->Report(StringToks.front().getLocation(),
2173                       diag::err_pascal_string_too_long)
2174           << SourceRange(StringToks.front().getLocation(),
2175                          StringToks.back().getLocation());
2176       hadError = true;
2177       return;
2178     }
2179   } else if (Diags) {
2180     // Complain if this string literal has too many characters.
2181     unsigned MaxChars = Features.CPlusPlus? 65536 : Features.C99 ? 4095 : 509;
2182 
2183     if (GetNumStringChars() > MaxChars)
2184       Diags->Report(StringToks.front().getLocation(),
2185                     diag::ext_string_too_long)
2186         << GetNumStringChars() << MaxChars
2187         << (Features.CPlusPlus ? 2 : Features.C99 ? 1 : 0)
2188         << SourceRange(StringToks.front().getLocation(),
2189                        StringToks.back().getLocation());
2190   }
2191 }
2192 
2193 static const char *resyncUTF8(const char *Err, const char *End) {
2194   if (Err == End)
2195     return End;
2196   End = Err + std::min<unsigned>(llvm::getNumBytesForUTF8(*Err), End-Err);
2197   while (++Err != End && (*Err & 0xC0) == 0x80)
2198     ;
2199   return Err;
2200 }
2201 
2202 /// This function copies from Fragment, which is a sequence of bytes
2203 /// within Tok's contents (which begin at TokBegin) into ResultPtr.
2204 /// Performs widening for multi-byte characters.
2205 bool StringLiteralParser::CopyStringFragment(const Token &Tok,
2206                                              const char *TokBegin,
2207                                              StringRef Fragment) {
2208   const llvm::UTF8 *ErrorPtrTmp;
2209   if (ConvertUTF8toWide(CharByteWidth, Fragment, ResultPtr, ErrorPtrTmp))
2210     return false;
2211 
2212   // If we see bad encoding for unprefixed string literals, warn and
2213   // simply copy the byte values, for compatibility with gcc and older
2214   // versions of clang.
2215   bool NoErrorOnBadEncoding = isOrdinary();
2216   if (NoErrorOnBadEncoding) {
2217     memcpy(ResultPtr, Fragment.data(), Fragment.size());
2218     ResultPtr += Fragment.size();
2219   }
2220 
2221   if (Diags) {
2222     const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2223 
2224     FullSourceLoc SourceLoc(Tok.getLocation(), SM);
2225     const DiagnosticBuilder &Builder =
2226       Diag(Diags, Features, SourceLoc, TokBegin,
2227            ErrorPtr, resyncUTF8(ErrorPtr, Fragment.end()),
2228            NoErrorOnBadEncoding ? diag::warn_bad_string_encoding
2229                                 : diag::err_bad_string_encoding);
2230 
2231     const char *NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2232     StringRef NextFragment(NextStart, Fragment.end()-NextStart);
2233 
2234     // Decode into a dummy buffer.
2235     SmallString<512> Dummy;
2236     Dummy.reserve(Fragment.size() * CharByteWidth);
2237     char *Ptr = Dummy.data();
2238 
2239     while (!ConvertUTF8toWide(CharByteWidth, NextFragment, Ptr, ErrorPtrTmp)) {
2240       const char *ErrorPtr = reinterpret_cast<const char *>(ErrorPtrTmp);
2241       NextStart = resyncUTF8(ErrorPtr, Fragment.end());
2242       Builder << MakeCharSourceRange(Features, SourceLoc, TokBegin,
2243                                      ErrorPtr, NextStart);
2244       NextFragment = StringRef(NextStart, Fragment.end()-NextStart);
2245     }
2246   }
2247   return !NoErrorOnBadEncoding;
2248 }
2249 
2250 void StringLiteralParser::DiagnoseLexingError(SourceLocation Loc) {
2251   hadError = true;
2252   if (Diags)
2253     Diags->Report(Loc, diag::err_lexing_string);
2254 }
2255 
2256 /// getOffsetOfStringByte - This function returns the offset of the
2257 /// specified byte of the string data represented by Token.  This handles
2258 /// advancing over escape sequences in the string.
2259 unsigned StringLiteralParser::getOffsetOfStringByte(const Token &Tok,
2260                                                     unsigned ByteNo) const {
2261   // Get the spelling of the token.
2262   SmallString<32> SpellingBuffer;
2263   SpellingBuffer.resize(Tok.getLength());
2264 
2265   bool StringInvalid = false;
2266   const char *SpellingPtr = &SpellingBuffer[0];
2267   unsigned TokLen = Lexer::getSpelling(Tok, SpellingPtr, SM, Features,
2268                                        &StringInvalid);
2269   if (StringInvalid)
2270     return 0;
2271 
2272   const char *SpellingStart = SpellingPtr;
2273   const char *SpellingEnd = SpellingPtr+TokLen;
2274 
2275   // Handle UTF-8 strings just like narrow strings.
2276   if (SpellingPtr[0] == 'u' && SpellingPtr[1] == '8')
2277     SpellingPtr += 2;
2278 
2279   assert(SpellingPtr[0] != 'L' && SpellingPtr[0] != 'u' &&
2280          SpellingPtr[0] != 'U' && "Doesn't handle wide or utf strings yet");
2281 
2282   // For raw string literals, this is easy.
2283   if (SpellingPtr[0] == 'R') {
2284     assert(SpellingPtr[1] == '"' && "Should be a raw string literal!");
2285     // Skip 'R"'.
2286     SpellingPtr += 2;
2287     while (*SpellingPtr != '(') {
2288       ++SpellingPtr;
2289       assert(SpellingPtr < SpellingEnd && "Missing ( for raw string literal");
2290     }
2291     // Skip '('.
2292     ++SpellingPtr;
2293     return SpellingPtr - SpellingStart + ByteNo;
2294   }
2295 
2296   // Skip over the leading quote
2297   assert(SpellingPtr[0] == '"' && "Should be a string literal!");
2298   ++SpellingPtr;
2299 
2300   // Skip over bytes until we find the offset we're looking for.
2301   while (ByteNo) {
2302     assert(SpellingPtr < SpellingEnd && "Didn't find byte offset!");
2303 
2304     // Step over non-escapes simply.
2305     if (*SpellingPtr != '\\') {
2306       ++SpellingPtr;
2307       --ByteNo;
2308       continue;
2309     }
2310 
2311     // Otherwise, this is an escape character.  Advance over it.
2312     bool HadError = false;
2313     if (SpellingPtr[1] == 'u' || SpellingPtr[1] == 'U' ||
2314         SpellingPtr[1] == 'N') {
2315       const char *EscapePtr = SpellingPtr;
2316       unsigned Len = MeasureUCNEscape(SpellingStart, SpellingPtr, SpellingEnd,
2317                                       1, Features, HadError);
2318       if (Len > ByteNo) {
2319         // ByteNo is somewhere within the escape sequence.
2320         SpellingPtr = EscapePtr;
2321         break;
2322       }
2323       ByteNo -= Len;
2324     } else {
2325       ProcessCharEscape(SpellingStart, SpellingPtr, SpellingEnd, HadError,
2326                         FullSourceLoc(Tok.getLocation(), SM), CharByteWidth * 8,
2327                         Diags, Features, StringLiteralEvalMethod::Evaluated);
2328       --ByteNo;
2329     }
2330     assert(!HadError && "This method isn't valid on erroneous strings");
2331   }
2332 
2333   return SpellingPtr-SpellingStart;
2334 }
2335 
2336 /// Determine whether a suffix is a valid ud-suffix. We avoid treating reserved
2337 /// suffixes as ud-suffixes, because the diagnostic experience is better if we
2338 /// treat it as an invalid suffix.
2339 bool StringLiteralParser::isValidUDSuffix(const LangOptions &LangOpts,
2340                                           StringRef Suffix) {
2341   return NumericLiteralParser::isValidUDSuffix(LangOpts, Suffix) ||
2342          Suffix == "sv";
2343 }
2344