xref: /freebsd/contrib/llvm-project/clang/lib/Lex/Lexer.cpp (revision c8e7f78a3d28ff6e6223ed136ada8e1e2f34965e)
1 //===- Lexer.cpp - C Language Family Lexer --------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file implements the Lexer and Token interfaces.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "clang/Lex/Lexer.h"
14 #include "UnicodeCharSets.h"
15 #include "clang/Basic/CharInfo.h"
16 #include "clang/Basic/Diagnostic.h"
17 #include "clang/Basic/IdentifierTable.h"
18 #include "clang/Basic/LLVM.h"
19 #include "clang/Basic/LangOptions.h"
20 #include "clang/Basic/SourceLocation.h"
21 #include "clang/Basic/SourceManager.h"
22 #include "clang/Basic/TokenKinds.h"
23 #include "clang/Lex/LexDiagnostic.h"
24 #include "clang/Lex/LiteralSupport.h"
25 #include "clang/Lex/MultipleIncludeOpt.h"
26 #include "clang/Lex/Preprocessor.h"
27 #include "clang/Lex/PreprocessorOptions.h"
28 #include "clang/Lex/Token.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/StringExtras.h"
31 #include "llvm/ADT/StringRef.h"
32 #include "llvm/ADT/StringSwitch.h"
33 #include "llvm/Support/Compiler.h"
34 #include "llvm/Support/ConvertUTF.h"
35 #include "llvm/Support/MathExtras.h"
36 #include "llvm/Support/MemoryBufferRef.h"
37 #include "llvm/Support/NativeFormatting.h"
38 #include "llvm/Support/Unicode.h"
39 #include "llvm/Support/UnicodeCharRanges.h"
40 #include <algorithm>
41 #include <cassert>
42 #include <cstddef>
43 #include <cstdint>
44 #include <cstring>
45 #include <optional>
46 #include <string>
47 #include <tuple>
48 #include <utility>
49 
50 using namespace clang;
51 
52 //===----------------------------------------------------------------------===//
53 // Token Class Implementation
54 //===----------------------------------------------------------------------===//
55 
56 /// isObjCAtKeyword - Return true if we have an ObjC keyword identifier.
57 bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const {
58   if (isAnnotation())
59     return false;
60   if (IdentifierInfo *II = getIdentifierInfo())
61     return II->getObjCKeywordID() == objcKey;
62   return false;
63 }
64 
65 /// getObjCKeywordID - Return the ObjC keyword kind.
66 tok::ObjCKeywordKind Token::getObjCKeywordID() const {
67   if (isAnnotation())
68     return tok::objc_not_keyword;
69   IdentifierInfo *specId = getIdentifierInfo();
70   return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword;
71 }
72 
73 //===----------------------------------------------------------------------===//
74 // Lexer Class Implementation
75 //===----------------------------------------------------------------------===//
76 
77 void Lexer::anchor() {}
78 
79 void Lexer::InitLexer(const char *BufStart, const char *BufPtr,
80                       const char *BufEnd) {
81   BufferStart = BufStart;
82   BufferPtr = BufPtr;
83   BufferEnd = BufEnd;
84 
85   assert(BufEnd[0] == 0 &&
86          "We assume that the input buffer has a null character at the end"
87          " to simplify lexing!");
88 
89   // Check whether we have a BOM in the beginning of the buffer. If yes - act
90   // accordingly. Right now we support only UTF-8 with and without BOM, so, just
91   // skip the UTF-8 BOM if it's present.
92   if (BufferStart == BufferPtr) {
93     // Determine the size of the BOM.
94     StringRef Buf(BufferStart, BufferEnd - BufferStart);
95     size_t BOMLength = llvm::StringSwitch<size_t>(Buf)
96       .StartsWith("\xEF\xBB\xBF", 3) // UTF-8 BOM
97       .Default(0);
98 
99     // Skip the BOM.
100     BufferPtr += BOMLength;
101   }
102 
103   Is_PragmaLexer = false;
104   CurrentConflictMarkerState = CMK_None;
105 
106   // Start of the file is a start of line.
107   IsAtStartOfLine = true;
108   IsAtPhysicalStartOfLine = true;
109 
110   HasLeadingSpace = false;
111   HasLeadingEmptyMacro = false;
112 
113   // We are not after parsing a #.
114   ParsingPreprocessorDirective = false;
115 
116   // We are not after parsing #include.
117   ParsingFilename = false;
118 
119   // We are not in raw mode.  Raw mode disables diagnostics and interpretation
120   // of tokens (e.g. identifiers, thus disabling macro expansion).  It is used
121   // to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block
122   // or otherwise skipping over tokens.
123   LexingRawMode = false;
124 
125   // Default to not keeping comments.
126   ExtendedTokenMode = 0;
127 
128   NewLinePtr = nullptr;
129 }
130 
131 /// Lexer constructor - Create a new lexer object for the specified buffer
132 /// with the specified preprocessor managing the lexing process.  This lexer
133 /// assumes that the associated file buffer and Preprocessor objects will
134 /// outlive it, so it doesn't take ownership of either of them.
135 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &InputFile,
136              Preprocessor &PP, bool IsFirstIncludeOfFile)
137     : PreprocessorLexer(&PP, FID),
138       FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)),
139       LangOpts(PP.getLangOpts()), LineComment(LangOpts.LineComment),
140       IsFirstTimeLexingFile(IsFirstIncludeOfFile) {
141   InitLexer(InputFile.getBufferStart(), InputFile.getBufferStart(),
142             InputFile.getBufferEnd());
143 
144   resetExtendedTokenMode();
145 }
146 
147 /// Lexer constructor - Create a new raw lexer object.  This object is only
148 /// suitable for calls to 'LexFromRawLexer'.  This lexer assumes that the text
149 /// range will outlive it, so it doesn't take ownership of it.
150 Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts,
151              const char *BufStart, const char *BufPtr, const char *BufEnd,
152              bool IsFirstIncludeOfFile)
153     : FileLoc(fileloc), LangOpts(langOpts), LineComment(LangOpts.LineComment),
154       IsFirstTimeLexingFile(IsFirstIncludeOfFile) {
155   InitLexer(BufStart, BufPtr, BufEnd);
156 
157   // We *are* in raw mode.
158   LexingRawMode = true;
159 }
160 
161 /// Lexer constructor - Create a new raw lexer object.  This object is only
162 /// suitable for calls to 'LexFromRawLexer'.  This lexer assumes that the text
163 /// range will outlive it, so it doesn't take ownership of it.
164 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &FromFile,
165              const SourceManager &SM, const LangOptions &langOpts,
166              bool IsFirstIncludeOfFile)
167     : Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile.getBufferStart(),
168             FromFile.getBufferStart(), FromFile.getBufferEnd(),
169             IsFirstIncludeOfFile) {}
170 
171 void Lexer::resetExtendedTokenMode() {
172   assert(PP && "Cannot reset token mode without a preprocessor");
173   if (LangOpts.TraditionalCPP)
174     SetKeepWhitespaceMode(true);
175   else
176     SetCommentRetentionState(PP->getCommentRetentionState());
177 }
178 
179 /// Create_PragmaLexer: Lexer constructor - Create a new lexer object for
180 /// _Pragma expansion.  This has a variety of magic semantics that this method
181 /// sets up.  It returns a new'd Lexer that must be delete'd when done.
182 ///
183 /// On entrance to this routine, TokStartLoc is a macro location which has a
184 /// spelling loc that indicates the bytes to be lexed for the token and an
185 /// expansion location that indicates where all lexed tokens should be
186 /// "expanded from".
187 ///
188 /// TODO: It would really be nice to make _Pragma just be a wrapper around a
189 /// normal lexer that remaps tokens as they fly by.  This would require making
190 /// Preprocessor::Lex virtual.  Given that, we could just dump in a magic lexer
191 /// interface that could handle this stuff.  This would pull GetMappedTokenLoc
192 /// out of the critical path of the lexer!
193 ///
194 Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc,
195                                  SourceLocation ExpansionLocStart,
196                                  SourceLocation ExpansionLocEnd,
197                                  unsigned TokLen, Preprocessor &PP) {
198   SourceManager &SM = PP.getSourceManager();
199 
200   // Create the lexer as if we were going to lex the file normally.
201   FileID SpellingFID = SM.getFileID(SpellingLoc);
202   llvm::MemoryBufferRef InputFile = SM.getBufferOrFake(SpellingFID);
203   Lexer *L = new Lexer(SpellingFID, InputFile, PP);
204 
205   // Now that the lexer is created, change the start/end locations so that we
206   // just lex the subsection of the file that we want.  This is lexing from a
207   // scratch buffer.
208   const char *StrData = SM.getCharacterData(SpellingLoc);
209 
210   L->BufferPtr = StrData;
211   L->BufferEnd = StrData+TokLen;
212   assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!");
213 
214   // Set the SourceLocation with the remapping information.  This ensures that
215   // GetMappedTokenLoc will remap the tokens as they are lexed.
216   L->FileLoc = SM.createExpansionLoc(SM.getLocForStartOfFile(SpellingFID),
217                                      ExpansionLocStart,
218                                      ExpansionLocEnd, TokLen);
219 
220   // Ensure that the lexer thinks it is inside a directive, so that end \n will
221   // return an EOD token.
222   L->ParsingPreprocessorDirective = true;
223 
224   // This lexer really is for _Pragma.
225   L->Is_PragmaLexer = true;
226   return L;
227 }
228 
229 void Lexer::seek(unsigned Offset, bool IsAtStartOfLine) {
230   this->IsAtPhysicalStartOfLine = IsAtStartOfLine;
231   this->IsAtStartOfLine = IsAtStartOfLine;
232   assert((BufferStart + Offset) <= BufferEnd);
233   BufferPtr = BufferStart + Offset;
234 }
235 
236 template <typename T> static void StringifyImpl(T &Str, char Quote) {
237   typename T::size_type i = 0, e = Str.size();
238   while (i < e) {
239     if (Str[i] == '\\' || Str[i] == Quote) {
240       Str.insert(Str.begin() + i, '\\');
241       i += 2;
242       ++e;
243     } else if (Str[i] == '\n' || Str[i] == '\r') {
244       // Replace '\r\n' and '\n\r' to '\\' followed by 'n'.
245       if ((i < e - 1) && (Str[i + 1] == '\n' || Str[i + 1] == '\r') &&
246           Str[i] != Str[i + 1]) {
247         Str[i] = '\\';
248         Str[i + 1] = 'n';
249       } else {
250         // Replace '\n' and '\r' to '\\' followed by 'n'.
251         Str[i] = '\\';
252         Str.insert(Str.begin() + i + 1, 'n');
253         ++e;
254       }
255       i += 2;
256     } else
257       ++i;
258   }
259 }
260 
261 std::string Lexer::Stringify(StringRef Str, bool Charify) {
262   std::string Result = std::string(Str);
263   char Quote = Charify ? '\'' : '"';
264   StringifyImpl(Result, Quote);
265   return Result;
266 }
267 
268 void Lexer::Stringify(SmallVectorImpl<char> &Str) { StringifyImpl(Str, '"'); }
269 
270 //===----------------------------------------------------------------------===//
271 // Token Spelling
272 //===----------------------------------------------------------------------===//
273 
274 /// Slow case of getSpelling. Extract the characters comprising the
275 /// spelling of this token from the provided input buffer.
276 static size_t getSpellingSlow(const Token &Tok, const char *BufPtr,
277                               const LangOptions &LangOpts, char *Spelling) {
278   assert(Tok.needsCleaning() && "getSpellingSlow called on simple token");
279 
280   size_t Length = 0;
281   const char *BufEnd = BufPtr + Tok.getLength();
282 
283   if (tok::isStringLiteral(Tok.getKind())) {
284     // Munch the encoding-prefix and opening double-quote.
285     while (BufPtr < BufEnd) {
286       unsigned Size;
287       Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
288       BufPtr += Size;
289 
290       if (Spelling[Length - 1] == '"')
291         break;
292     }
293 
294     // Raw string literals need special handling; trigraph expansion and line
295     // splicing do not occur within their d-char-sequence nor within their
296     // r-char-sequence.
297     if (Length >= 2 &&
298         Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') {
299       // Search backwards from the end of the token to find the matching closing
300       // quote.
301       const char *RawEnd = BufEnd;
302       do --RawEnd; while (*RawEnd != '"');
303       size_t RawLength = RawEnd - BufPtr + 1;
304 
305       // Everything between the quotes is included verbatim in the spelling.
306       memcpy(Spelling + Length, BufPtr, RawLength);
307       Length += RawLength;
308       BufPtr += RawLength;
309 
310       // The rest of the token is lexed normally.
311     }
312   }
313 
314   while (BufPtr < BufEnd) {
315     unsigned Size;
316     Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts);
317     BufPtr += Size;
318   }
319 
320   assert(Length < Tok.getLength() &&
321          "NeedsCleaning flag set on token that didn't need cleaning!");
322   return Length;
323 }
324 
325 /// getSpelling() - Return the 'spelling' of this token.  The spelling of a
326 /// token are the characters used to represent the token in the source file
327 /// after trigraph expansion and escaped-newline folding.  In particular, this
328 /// wants to get the true, uncanonicalized, spelling of things like digraphs
329 /// UCNs, etc.
330 StringRef Lexer::getSpelling(SourceLocation loc,
331                              SmallVectorImpl<char> &buffer,
332                              const SourceManager &SM,
333                              const LangOptions &options,
334                              bool *invalid) {
335   // Break down the source location.
336   std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc);
337 
338   // Try to the load the file buffer.
339   bool invalidTemp = false;
340   StringRef file = SM.getBufferData(locInfo.first, &invalidTemp);
341   if (invalidTemp) {
342     if (invalid) *invalid = true;
343     return {};
344   }
345 
346   const char *tokenBegin = file.data() + locInfo.second;
347 
348   // Lex from the start of the given location.
349   Lexer lexer(SM.getLocForStartOfFile(locInfo.first), options,
350               file.begin(), tokenBegin, file.end());
351   Token token;
352   lexer.LexFromRawLexer(token);
353 
354   unsigned length = token.getLength();
355 
356   // Common case:  no need for cleaning.
357   if (!token.needsCleaning())
358     return StringRef(tokenBegin, length);
359 
360   // Hard case, we need to relex the characters into the string.
361   buffer.resize(length);
362   buffer.resize(getSpellingSlow(token, tokenBegin, options, buffer.data()));
363   return StringRef(buffer.data(), buffer.size());
364 }
365 
366 /// getSpelling() - Return the 'spelling' of this token.  The spelling of a
367 /// token are the characters used to represent the token in the source file
368 /// after trigraph expansion and escaped-newline folding.  In particular, this
369 /// wants to get the true, uncanonicalized, spelling of things like digraphs
370 /// UCNs, etc.
371 std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr,
372                                const LangOptions &LangOpts, bool *Invalid) {
373   assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
374 
375   bool CharDataInvalid = false;
376   const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation(),
377                                                     &CharDataInvalid);
378   if (Invalid)
379     *Invalid = CharDataInvalid;
380   if (CharDataInvalid)
381     return {};
382 
383   // If this token contains nothing interesting, return it directly.
384   if (!Tok.needsCleaning())
385     return std::string(TokStart, TokStart + Tok.getLength());
386 
387   std::string Result;
388   Result.resize(Tok.getLength());
389   Result.resize(getSpellingSlow(Tok, TokStart, LangOpts, &*Result.begin()));
390   return Result;
391 }
392 
393 /// getSpelling - This method is used to get the spelling of a token into a
394 /// preallocated buffer, instead of as an std::string.  The caller is required
395 /// to allocate enough space for the token, which is guaranteed to be at least
396 /// Tok.getLength() bytes long.  The actual length of the token is returned.
397 ///
398 /// Note that this method may do two possible things: it may either fill in
399 /// the buffer specified with characters, or it may *change the input pointer*
400 /// to point to a constant buffer with the data already in it (avoiding a
401 /// copy).  The caller is not allowed to modify the returned buffer pointer
402 /// if an internal buffer is returned.
403 unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer,
404                             const SourceManager &SourceMgr,
405                             const LangOptions &LangOpts, bool *Invalid) {
406   assert((int)Tok.getLength() >= 0 && "Token character range is bogus!");
407 
408   const char *TokStart = nullptr;
409   // NOTE: this has to be checked *before* testing for an IdentifierInfo.
410   if (Tok.is(tok::raw_identifier))
411     TokStart = Tok.getRawIdentifier().data();
412   else if (!Tok.hasUCN()) {
413     if (const IdentifierInfo *II = Tok.getIdentifierInfo()) {
414       // Just return the string from the identifier table, which is very quick.
415       Buffer = II->getNameStart();
416       return II->getLength();
417     }
418   }
419 
420   // NOTE: this can be checked even after testing for an IdentifierInfo.
421   if (Tok.isLiteral())
422     TokStart = Tok.getLiteralData();
423 
424   if (!TokStart) {
425     // Compute the start of the token in the input lexer buffer.
426     bool CharDataInvalid = false;
427     TokStart = SourceMgr.getCharacterData(Tok.getLocation(), &CharDataInvalid);
428     if (Invalid)
429       *Invalid = CharDataInvalid;
430     if (CharDataInvalid) {
431       Buffer = "";
432       return 0;
433     }
434   }
435 
436   // If this token contains nothing interesting, return it directly.
437   if (!Tok.needsCleaning()) {
438     Buffer = TokStart;
439     return Tok.getLength();
440   }
441 
442   // Otherwise, hard case, relex the characters into the string.
443   return getSpellingSlow(Tok, TokStart, LangOpts, const_cast<char*>(Buffer));
444 }
445 
446 /// MeasureTokenLength - Relex the token at the specified location and return
447 /// its length in bytes in the input file.  If the token needs cleaning (e.g.
448 /// includes a trigraph or an escaped newline) then this count includes bytes
449 /// that are part of that.
450 unsigned Lexer::MeasureTokenLength(SourceLocation Loc,
451                                    const SourceManager &SM,
452                                    const LangOptions &LangOpts) {
453   Token TheTok;
454   if (getRawToken(Loc, TheTok, SM, LangOpts))
455     return 0;
456   return TheTok.getLength();
457 }
458 
459 /// Relex the token at the specified location.
460 /// \returns true if there was a failure, false on success.
461 bool Lexer::getRawToken(SourceLocation Loc, Token &Result,
462                         const SourceManager &SM,
463                         const LangOptions &LangOpts,
464                         bool IgnoreWhiteSpace) {
465   // TODO: this could be special cased for common tokens like identifiers, ')',
466   // etc to make this faster, if it mattered.  Just look at StrData[0] to handle
467   // all obviously single-char tokens.  This could use
468   // Lexer::isObviouslySimpleCharacter for example to handle identifiers or
469   // something.
470 
471   // If this comes from a macro expansion, we really do want the macro name, not
472   // the token this macro expanded to.
473   Loc = SM.getExpansionLoc(Loc);
474   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
475   bool Invalid = false;
476   StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
477   if (Invalid)
478     return true;
479 
480   const char *StrData = Buffer.data()+LocInfo.second;
481 
482   if (!IgnoreWhiteSpace && isWhitespace(StrData[0]))
483     return true;
484 
485   // Create a lexer starting at the beginning of this token.
486   Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts,
487                  Buffer.begin(), StrData, Buffer.end());
488   TheLexer.SetCommentRetentionState(true);
489   TheLexer.LexFromRawLexer(Result);
490   return false;
491 }
492 
493 /// Returns the pointer that points to the beginning of line that contains
494 /// the given offset, or null if the offset if invalid.
495 static const char *findBeginningOfLine(StringRef Buffer, unsigned Offset) {
496   const char *BufStart = Buffer.data();
497   if (Offset >= Buffer.size())
498     return nullptr;
499 
500   const char *LexStart = BufStart + Offset;
501   for (; LexStart != BufStart; --LexStart) {
502     if (isVerticalWhitespace(LexStart[0]) &&
503         !Lexer::isNewLineEscaped(BufStart, LexStart)) {
504       // LexStart should point at first character of logical line.
505       ++LexStart;
506       break;
507     }
508   }
509   return LexStart;
510 }
511 
512 static SourceLocation getBeginningOfFileToken(SourceLocation Loc,
513                                               const SourceManager &SM,
514                                               const LangOptions &LangOpts) {
515   assert(Loc.isFileID());
516   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
517   if (LocInfo.first.isInvalid())
518     return Loc;
519 
520   bool Invalid = false;
521   StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
522   if (Invalid)
523     return Loc;
524 
525   // Back up from the current location until we hit the beginning of a line
526   // (or the buffer). We'll relex from that point.
527   const char *StrData = Buffer.data() + LocInfo.second;
528   const char *LexStart = findBeginningOfLine(Buffer, LocInfo.second);
529   if (!LexStart || LexStart == StrData)
530     return Loc;
531 
532   // Create a lexer starting at the beginning of this token.
533   SourceLocation LexerStartLoc = Loc.getLocWithOffset(-LocInfo.second);
534   Lexer TheLexer(LexerStartLoc, LangOpts, Buffer.data(), LexStart,
535                  Buffer.end());
536   TheLexer.SetCommentRetentionState(true);
537 
538   // Lex tokens until we find the token that contains the source location.
539   Token TheTok;
540   do {
541     TheLexer.LexFromRawLexer(TheTok);
542 
543     if (TheLexer.getBufferLocation() > StrData) {
544       // Lexing this token has taken the lexer past the source location we're
545       // looking for. If the current token encompasses our source location,
546       // return the beginning of that token.
547       if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData)
548         return TheTok.getLocation();
549 
550       // We ended up skipping over the source location entirely, which means
551       // that it points into whitespace. We're done here.
552       break;
553     }
554   } while (TheTok.getKind() != tok::eof);
555 
556   // We've passed our source location; just return the original source location.
557   return Loc;
558 }
559 
560 SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc,
561                                           const SourceManager &SM,
562                                           const LangOptions &LangOpts) {
563   if (Loc.isFileID())
564     return getBeginningOfFileToken(Loc, SM, LangOpts);
565 
566   if (!SM.isMacroArgExpansion(Loc))
567     return Loc;
568 
569   SourceLocation FileLoc = SM.getSpellingLoc(Loc);
570   SourceLocation BeginFileLoc = getBeginningOfFileToken(FileLoc, SM, LangOpts);
571   std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(FileLoc);
572   std::pair<FileID, unsigned> BeginFileLocInfo =
573       SM.getDecomposedLoc(BeginFileLoc);
574   assert(FileLocInfo.first == BeginFileLocInfo.first &&
575          FileLocInfo.second >= BeginFileLocInfo.second);
576   return Loc.getLocWithOffset(BeginFileLocInfo.second - FileLocInfo.second);
577 }
578 
579 namespace {
580 
581 enum PreambleDirectiveKind {
582   PDK_Skipped,
583   PDK_Unknown
584 };
585 
586 } // namespace
587 
588 PreambleBounds Lexer::ComputePreamble(StringRef Buffer,
589                                       const LangOptions &LangOpts,
590                                       unsigned MaxLines) {
591   // Create a lexer starting at the beginning of the file. Note that we use a
592   // "fake" file source location at offset 1 so that the lexer will track our
593   // position within the file.
594   const SourceLocation::UIntTy StartOffset = 1;
595   SourceLocation FileLoc = SourceLocation::getFromRawEncoding(StartOffset);
596   Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(),
597                  Buffer.end());
598   TheLexer.SetCommentRetentionState(true);
599 
600   bool InPreprocessorDirective = false;
601   Token TheTok;
602   SourceLocation ActiveCommentLoc;
603 
604   unsigned MaxLineOffset = 0;
605   if (MaxLines) {
606     const char *CurPtr = Buffer.begin();
607     unsigned CurLine = 0;
608     while (CurPtr != Buffer.end()) {
609       char ch = *CurPtr++;
610       if (ch == '\n') {
611         ++CurLine;
612         if (CurLine == MaxLines)
613           break;
614       }
615     }
616     if (CurPtr != Buffer.end())
617       MaxLineOffset = CurPtr - Buffer.begin();
618   }
619 
620   do {
621     TheLexer.LexFromRawLexer(TheTok);
622 
623     if (InPreprocessorDirective) {
624       // If we've hit the end of the file, we're done.
625       if (TheTok.getKind() == tok::eof) {
626         break;
627       }
628 
629       // If we haven't hit the end of the preprocessor directive, skip this
630       // token.
631       if (!TheTok.isAtStartOfLine())
632         continue;
633 
634       // We've passed the end of the preprocessor directive, and will look
635       // at this token again below.
636       InPreprocessorDirective = false;
637     }
638 
639     // Keep track of the # of lines in the preamble.
640     if (TheTok.isAtStartOfLine()) {
641       unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset;
642 
643       // If we were asked to limit the number of lines in the preamble,
644       // and we're about to exceed that limit, we're done.
645       if (MaxLineOffset && TokOffset >= MaxLineOffset)
646         break;
647     }
648 
649     // Comments are okay; skip over them.
650     if (TheTok.getKind() == tok::comment) {
651       if (ActiveCommentLoc.isInvalid())
652         ActiveCommentLoc = TheTok.getLocation();
653       continue;
654     }
655 
656     if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) {
657       // This is the start of a preprocessor directive.
658       Token HashTok = TheTok;
659       InPreprocessorDirective = true;
660       ActiveCommentLoc = SourceLocation();
661 
662       // Figure out which directive this is. Since we're lexing raw tokens,
663       // we don't have an identifier table available. Instead, just look at
664       // the raw identifier to recognize and categorize preprocessor directives.
665       TheLexer.LexFromRawLexer(TheTok);
666       if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) {
667         StringRef Keyword = TheTok.getRawIdentifier();
668         PreambleDirectiveKind PDK
669           = llvm::StringSwitch<PreambleDirectiveKind>(Keyword)
670               .Case("include", PDK_Skipped)
671               .Case("__include_macros", PDK_Skipped)
672               .Case("define", PDK_Skipped)
673               .Case("undef", PDK_Skipped)
674               .Case("line", PDK_Skipped)
675               .Case("error", PDK_Skipped)
676               .Case("pragma", PDK_Skipped)
677               .Case("import", PDK_Skipped)
678               .Case("include_next", PDK_Skipped)
679               .Case("warning", PDK_Skipped)
680               .Case("ident", PDK_Skipped)
681               .Case("sccs", PDK_Skipped)
682               .Case("assert", PDK_Skipped)
683               .Case("unassert", PDK_Skipped)
684               .Case("if", PDK_Skipped)
685               .Case("ifdef", PDK_Skipped)
686               .Case("ifndef", PDK_Skipped)
687               .Case("elif", PDK_Skipped)
688               .Case("elifdef", PDK_Skipped)
689               .Case("elifndef", PDK_Skipped)
690               .Case("else", PDK_Skipped)
691               .Case("endif", PDK_Skipped)
692               .Default(PDK_Unknown);
693 
694         switch (PDK) {
695         case PDK_Skipped:
696           continue;
697 
698         case PDK_Unknown:
699           // We don't know what this directive is; stop at the '#'.
700           break;
701         }
702       }
703 
704       // We only end up here if we didn't recognize the preprocessor
705       // directive or it was one that can't occur in the preamble at this
706       // point. Roll back the current token to the location of the '#'.
707       TheTok = HashTok;
708     }
709 
710     // We hit a token that we don't recognize as being in the
711     // "preprocessing only" part of the file, so we're no longer in
712     // the preamble.
713     break;
714   } while (true);
715 
716   SourceLocation End;
717   if (ActiveCommentLoc.isValid())
718     End = ActiveCommentLoc; // don't truncate a decl comment.
719   else
720     End = TheTok.getLocation();
721 
722   return PreambleBounds(End.getRawEncoding() - FileLoc.getRawEncoding(),
723                         TheTok.isAtStartOfLine());
724 }
725 
726 unsigned Lexer::getTokenPrefixLength(SourceLocation TokStart, unsigned CharNo,
727                                      const SourceManager &SM,
728                                      const LangOptions &LangOpts) {
729   // Figure out how many physical characters away the specified expansion
730   // character is.  This needs to take into consideration newlines and
731   // trigraphs.
732   bool Invalid = false;
733   const char *TokPtr = SM.getCharacterData(TokStart, &Invalid);
734 
735   // If they request the first char of the token, we're trivially done.
736   if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(*TokPtr)))
737     return 0;
738 
739   unsigned PhysOffset = 0;
740 
741   // The usual case is that tokens don't contain anything interesting.  Skip
742   // over the uninteresting characters.  If a token only consists of simple
743   // chars, this method is extremely fast.
744   while (Lexer::isObviouslySimpleCharacter(*TokPtr)) {
745     if (CharNo == 0)
746       return PhysOffset;
747     ++TokPtr;
748     --CharNo;
749     ++PhysOffset;
750   }
751 
752   // If we have a character that may be a trigraph or escaped newline, use a
753   // lexer to parse it correctly.
754   for (; CharNo; --CharNo) {
755     unsigned Size;
756     Lexer::getCharAndSizeNoWarn(TokPtr, Size, LangOpts);
757     TokPtr += Size;
758     PhysOffset += Size;
759   }
760 
761   // Final detail: if we end up on an escaped newline, we want to return the
762   // location of the actual byte of the token.  For example foo\<newline>bar
763   // advanced by 3 should return the location of b, not of \\.  One compounding
764   // detail of this is that the escape may be made by a trigraph.
765   if (!Lexer::isObviouslySimpleCharacter(*TokPtr))
766     PhysOffset += Lexer::SkipEscapedNewLines(TokPtr)-TokPtr;
767 
768   return PhysOffset;
769 }
770 
771 /// Computes the source location just past the end of the
772 /// token at this source location.
773 ///
774 /// This routine can be used to produce a source location that
775 /// points just past the end of the token referenced by \p Loc, and
776 /// is generally used when a diagnostic needs to point just after a
777 /// token where it expected something different that it received. If
778 /// the returned source location would not be meaningful (e.g., if
779 /// it points into a macro), this routine returns an invalid
780 /// source location.
781 ///
782 /// \param Offset an offset from the end of the token, where the source
783 /// location should refer to. The default offset (0) produces a source
784 /// location pointing just past the end of the token; an offset of 1 produces
785 /// a source location pointing to the last character in the token, etc.
786 SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset,
787                                           const SourceManager &SM,
788                                           const LangOptions &LangOpts) {
789   if (Loc.isInvalid())
790     return {};
791 
792   if (Loc.isMacroID()) {
793     if (Offset > 0 || !isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
794       return {}; // Points inside the macro expansion.
795   }
796 
797   unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
798   if (Len > Offset)
799     Len = Len - Offset;
800   else
801     return Loc;
802 
803   return Loc.getLocWithOffset(Len);
804 }
805 
806 /// Returns true if the given MacroID location points at the first
807 /// token of the macro expansion.
808 bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc,
809                                       const SourceManager &SM,
810                                       const LangOptions &LangOpts,
811                                       SourceLocation *MacroBegin) {
812   assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
813 
814   SourceLocation expansionLoc;
815   if (!SM.isAtStartOfImmediateMacroExpansion(loc, &expansionLoc))
816     return false;
817 
818   if (expansionLoc.isFileID()) {
819     // No other macro expansions, this is the first.
820     if (MacroBegin)
821       *MacroBegin = expansionLoc;
822     return true;
823   }
824 
825   return isAtStartOfMacroExpansion(expansionLoc, SM, LangOpts, MacroBegin);
826 }
827 
828 /// Returns true if the given MacroID location points at the last
829 /// token of the macro expansion.
830 bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc,
831                                     const SourceManager &SM,
832                                     const LangOptions &LangOpts,
833                                     SourceLocation *MacroEnd) {
834   assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc");
835 
836   SourceLocation spellLoc = SM.getSpellingLoc(loc);
837   unsigned tokLen = MeasureTokenLength(spellLoc, SM, LangOpts);
838   if (tokLen == 0)
839     return false;
840 
841   SourceLocation afterLoc = loc.getLocWithOffset(tokLen);
842   SourceLocation expansionLoc;
843   if (!SM.isAtEndOfImmediateMacroExpansion(afterLoc, &expansionLoc))
844     return false;
845 
846   if (expansionLoc.isFileID()) {
847     // No other macro expansions.
848     if (MacroEnd)
849       *MacroEnd = expansionLoc;
850     return true;
851   }
852 
853   return isAtEndOfMacroExpansion(expansionLoc, SM, LangOpts, MacroEnd);
854 }
855 
856 static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range,
857                                              const SourceManager &SM,
858                                              const LangOptions &LangOpts) {
859   SourceLocation Begin = Range.getBegin();
860   SourceLocation End = Range.getEnd();
861   assert(Begin.isFileID() && End.isFileID());
862   if (Range.isTokenRange()) {
863     End = Lexer::getLocForEndOfToken(End, 0, SM,LangOpts);
864     if (End.isInvalid())
865       return {};
866   }
867 
868   // Break down the source locations.
869   FileID FID;
870   unsigned BeginOffs;
871   std::tie(FID, BeginOffs) = SM.getDecomposedLoc(Begin);
872   if (FID.isInvalid())
873     return {};
874 
875   unsigned EndOffs;
876   if (!SM.isInFileID(End, FID, &EndOffs) ||
877       BeginOffs > EndOffs)
878     return {};
879 
880   return CharSourceRange::getCharRange(Begin, End);
881 }
882 
883 // Assumes that `Loc` is in an expansion.
884 static bool isInExpansionTokenRange(const SourceLocation Loc,
885                                     const SourceManager &SM) {
886   return SM.getSLocEntry(SM.getFileID(Loc))
887       .getExpansion()
888       .isExpansionTokenRange();
889 }
890 
891 CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range,
892                                          const SourceManager &SM,
893                                          const LangOptions &LangOpts) {
894   SourceLocation Begin = Range.getBegin();
895   SourceLocation End = Range.getEnd();
896   if (Begin.isInvalid() || End.isInvalid())
897     return {};
898 
899   if (Begin.isFileID() && End.isFileID())
900     return makeRangeFromFileLocs(Range, SM, LangOpts);
901 
902   if (Begin.isMacroID() && End.isFileID()) {
903     if (!isAtStartOfMacroExpansion(Begin, SM, LangOpts, &Begin))
904       return {};
905     Range.setBegin(Begin);
906     return makeRangeFromFileLocs(Range, SM, LangOpts);
907   }
908 
909   if (Begin.isFileID() && End.isMacroID()) {
910     if (Range.isTokenRange()) {
911       if (!isAtEndOfMacroExpansion(End, SM, LangOpts, &End))
912         return {};
913       // Use the *original* end, not the expanded one in `End`.
914       Range.setTokenRange(isInExpansionTokenRange(Range.getEnd(), SM));
915     } else if (!isAtStartOfMacroExpansion(End, SM, LangOpts, &End))
916       return {};
917     Range.setEnd(End);
918     return makeRangeFromFileLocs(Range, SM, LangOpts);
919   }
920 
921   assert(Begin.isMacroID() && End.isMacroID());
922   SourceLocation MacroBegin, MacroEnd;
923   if (isAtStartOfMacroExpansion(Begin, SM, LangOpts, &MacroBegin) &&
924       ((Range.isTokenRange() && isAtEndOfMacroExpansion(End, SM, LangOpts,
925                                                         &MacroEnd)) ||
926        (Range.isCharRange() && isAtStartOfMacroExpansion(End, SM, LangOpts,
927                                                          &MacroEnd)))) {
928     Range.setBegin(MacroBegin);
929     Range.setEnd(MacroEnd);
930     // Use the *original* `End`, not the expanded one in `MacroEnd`.
931     if (Range.isTokenRange())
932       Range.setTokenRange(isInExpansionTokenRange(End, SM));
933     return makeRangeFromFileLocs(Range, SM, LangOpts);
934   }
935 
936   bool Invalid = false;
937   const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(SM.getFileID(Begin),
938                                                         &Invalid);
939   if (Invalid)
940     return {};
941 
942   if (BeginEntry.getExpansion().isMacroArgExpansion()) {
943     const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(SM.getFileID(End),
944                                                         &Invalid);
945     if (Invalid)
946       return {};
947 
948     if (EndEntry.getExpansion().isMacroArgExpansion() &&
949         BeginEntry.getExpansion().getExpansionLocStart() ==
950             EndEntry.getExpansion().getExpansionLocStart()) {
951       Range.setBegin(SM.getImmediateSpellingLoc(Begin));
952       Range.setEnd(SM.getImmediateSpellingLoc(End));
953       return makeFileCharRange(Range, SM, LangOpts);
954     }
955   }
956 
957   return {};
958 }
959 
960 StringRef Lexer::getSourceText(CharSourceRange Range,
961                                const SourceManager &SM,
962                                const LangOptions &LangOpts,
963                                bool *Invalid) {
964   Range = makeFileCharRange(Range, SM, LangOpts);
965   if (Range.isInvalid()) {
966     if (Invalid) *Invalid = true;
967     return {};
968   }
969 
970   // Break down the source location.
971   std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Range.getBegin());
972   if (beginInfo.first.isInvalid()) {
973     if (Invalid) *Invalid = true;
974     return {};
975   }
976 
977   unsigned EndOffs;
978   if (!SM.isInFileID(Range.getEnd(), beginInfo.first, &EndOffs) ||
979       beginInfo.second > EndOffs) {
980     if (Invalid) *Invalid = true;
981     return {};
982   }
983 
984   // Try to the load the file buffer.
985   bool invalidTemp = false;
986   StringRef file = SM.getBufferData(beginInfo.first, &invalidTemp);
987   if (invalidTemp) {
988     if (Invalid) *Invalid = true;
989     return {};
990   }
991 
992   if (Invalid) *Invalid = false;
993   return file.substr(beginInfo.second, EndOffs - beginInfo.second);
994 }
995 
996 StringRef Lexer::getImmediateMacroName(SourceLocation Loc,
997                                        const SourceManager &SM,
998                                        const LangOptions &LangOpts) {
999   assert(Loc.isMacroID() && "Only reasonable to call this on macros");
1000 
1001   // Find the location of the immediate macro expansion.
1002   while (true) {
1003     FileID FID = SM.getFileID(Loc);
1004     const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID);
1005     const SrcMgr::ExpansionInfo &Expansion = E->getExpansion();
1006     Loc = Expansion.getExpansionLocStart();
1007     if (!Expansion.isMacroArgExpansion())
1008       break;
1009 
1010     // For macro arguments we need to check that the argument did not come
1011     // from an inner macro, e.g: "MAC1( MAC2(foo) )"
1012 
1013     // Loc points to the argument id of the macro definition, move to the
1014     // macro expansion.
1015     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
1016     SourceLocation SpellLoc = Expansion.getSpellingLoc();
1017     if (SpellLoc.isFileID())
1018       break; // No inner macro.
1019 
1020     // If spelling location resides in the same FileID as macro expansion
1021     // location, it means there is no inner macro.
1022     FileID MacroFID = SM.getFileID(Loc);
1023     if (SM.isInFileID(SpellLoc, MacroFID))
1024       break;
1025 
1026     // Argument came from inner macro.
1027     Loc = SpellLoc;
1028   }
1029 
1030   // Find the spelling location of the start of the non-argument expansion
1031   // range. This is where the macro name was spelled in order to begin
1032   // expanding this macro.
1033   Loc = SM.getSpellingLoc(Loc);
1034 
1035   // Dig out the buffer where the macro name was spelled and the extents of the
1036   // name so that we can render it into the expansion note.
1037   std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
1038   unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
1039   StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
1040   return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
1041 }
1042 
1043 StringRef Lexer::getImmediateMacroNameForDiagnostics(
1044     SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) {
1045   assert(Loc.isMacroID() && "Only reasonable to call this on macros");
1046   // Walk past macro argument expansions.
1047   while (SM.isMacroArgExpansion(Loc))
1048     Loc = SM.getImmediateExpansionRange(Loc).getBegin();
1049 
1050   // If the macro's spelling isn't FileID or from scratch space, then it's
1051   // actually a token paste or stringization (or similar) and not a macro at
1052   // all.
1053   SourceLocation SpellLoc = SM.getSpellingLoc(Loc);
1054   if (!SpellLoc.isFileID() || SM.isWrittenInScratchSpace(SpellLoc))
1055     return {};
1056 
1057   // Find the spelling location of the start of the non-argument expansion
1058   // range. This is where the macro name was spelled in order to begin
1059   // expanding this macro.
1060   Loc = SM.getSpellingLoc(SM.getImmediateExpansionRange(Loc).getBegin());
1061 
1062   // Dig out the buffer where the macro name was spelled and the extents of the
1063   // name so that we can render it into the expansion note.
1064   std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc);
1065   unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts);
1066   StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first);
1067   return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength);
1068 }
1069 
1070 bool Lexer::isAsciiIdentifierContinueChar(char c, const LangOptions &LangOpts) {
1071   return isAsciiIdentifierContinue(c, LangOpts.DollarIdents);
1072 }
1073 
1074 bool Lexer::isNewLineEscaped(const char *BufferStart, const char *Str) {
1075   assert(isVerticalWhitespace(Str[0]));
1076   if (Str - 1 < BufferStart)
1077     return false;
1078 
1079   if ((Str[0] == '\n' && Str[-1] == '\r') ||
1080       (Str[0] == '\r' && Str[-1] == '\n')) {
1081     if (Str - 2 < BufferStart)
1082       return false;
1083     --Str;
1084   }
1085   --Str;
1086 
1087   // Rewind to first non-space character:
1088   while (Str > BufferStart && isHorizontalWhitespace(*Str))
1089     --Str;
1090 
1091   return *Str == '\\';
1092 }
1093 
1094 StringRef Lexer::getIndentationForLine(SourceLocation Loc,
1095                                        const SourceManager &SM) {
1096   if (Loc.isInvalid() || Loc.isMacroID())
1097     return {};
1098   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
1099   if (LocInfo.first.isInvalid())
1100     return {};
1101   bool Invalid = false;
1102   StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid);
1103   if (Invalid)
1104     return {};
1105   const char *Line = findBeginningOfLine(Buffer, LocInfo.second);
1106   if (!Line)
1107     return {};
1108   StringRef Rest = Buffer.substr(Line - Buffer.data());
1109   size_t NumWhitespaceChars = Rest.find_first_not_of(" \t");
1110   return NumWhitespaceChars == StringRef::npos
1111              ? ""
1112              : Rest.take_front(NumWhitespaceChars);
1113 }
1114 
1115 //===----------------------------------------------------------------------===//
1116 // Diagnostics forwarding code.
1117 //===----------------------------------------------------------------------===//
1118 
1119 /// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the
1120 /// lexer buffer was all expanded at a single point, perform the mapping.
1121 /// This is currently only used for _Pragma implementation, so it is the slow
1122 /// path of the hot getSourceLocation method.  Do not allow it to be inlined.
1123 static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc(
1124     Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen);
1125 static SourceLocation GetMappedTokenLoc(Preprocessor &PP,
1126                                         SourceLocation FileLoc,
1127                                         unsigned CharNo, unsigned TokLen) {
1128   assert(FileLoc.isMacroID() && "Must be a macro expansion");
1129 
1130   // Otherwise, we're lexing "mapped tokens".  This is used for things like
1131   // _Pragma handling.  Combine the expansion location of FileLoc with the
1132   // spelling location.
1133   SourceManager &SM = PP.getSourceManager();
1134 
1135   // Create a new SLoc which is expanded from Expansion(FileLoc) but whose
1136   // characters come from spelling(FileLoc)+Offset.
1137   SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc);
1138   SpellingLoc = SpellingLoc.getLocWithOffset(CharNo);
1139 
1140   // Figure out the expansion loc range, which is the range covered by the
1141   // original _Pragma(...) sequence.
1142   CharSourceRange II = SM.getImmediateExpansionRange(FileLoc);
1143 
1144   return SM.createExpansionLoc(SpellingLoc, II.getBegin(), II.getEnd(), TokLen);
1145 }
1146 
1147 /// getSourceLocation - Return a source location identifier for the specified
1148 /// offset in the current file.
1149 SourceLocation Lexer::getSourceLocation(const char *Loc,
1150                                         unsigned TokLen) const {
1151   assert(Loc >= BufferStart && Loc <= BufferEnd &&
1152          "Location out of range for this buffer!");
1153 
1154   // In the normal case, we're just lexing from a simple file buffer, return
1155   // the file id from FileLoc with the offset specified.
1156   unsigned CharNo = Loc-BufferStart;
1157   if (FileLoc.isFileID())
1158     return FileLoc.getLocWithOffset(CharNo);
1159 
1160   // Otherwise, this is the _Pragma lexer case, which pretends that all of the
1161   // tokens are lexed from where the _Pragma was defined.
1162   assert(PP && "This doesn't work on raw lexers");
1163   return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen);
1164 }
1165 
1166 /// Diag - Forwarding function for diagnostics.  This translate a source
1167 /// position in the current buffer into a SourceLocation object for rendering.
1168 DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const {
1169   return PP->Diag(getSourceLocation(Loc), DiagID);
1170 }
1171 
1172 //===----------------------------------------------------------------------===//
1173 // Trigraph and Escaped Newline Handling Code.
1174 //===----------------------------------------------------------------------===//
1175 
1176 /// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair,
1177 /// return the decoded trigraph letter it corresponds to, or '\0' if nothing.
1178 static char GetTrigraphCharForLetter(char Letter) {
1179   switch (Letter) {
1180   default:   return 0;
1181   case '=':  return '#';
1182   case ')':  return ']';
1183   case '(':  return '[';
1184   case '!':  return '|';
1185   case '\'': return '^';
1186   case '>':  return '}';
1187   case '/':  return '\\';
1188   case '<':  return '{';
1189   case '-':  return '~';
1190   }
1191 }
1192 
1193 /// DecodeTrigraphChar - If the specified character is a legal trigraph when
1194 /// prefixed with ??, emit a trigraph warning.  If trigraphs are enabled,
1195 /// return the result character.  Finally, emit a warning about trigraph use
1196 /// whether trigraphs are enabled or not.
1197 static char DecodeTrigraphChar(const char *CP, Lexer *L, bool Trigraphs) {
1198   char Res = GetTrigraphCharForLetter(*CP);
1199   if (!Res)
1200     return Res;
1201 
1202   if (!Trigraphs) {
1203     if (L && !L->isLexingRawMode())
1204       L->Diag(CP-2, diag::trigraph_ignored);
1205     return 0;
1206   }
1207 
1208   if (L && !L->isLexingRawMode())
1209     L->Diag(CP-2, diag::trigraph_converted) << StringRef(&Res, 1);
1210   return Res;
1211 }
1212 
1213 /// getEscapedNewLineSize - Return the size of the specified escaped newline,
1214 /// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a
1215 /// trigraph equivalent on entry to this function.
1216 unsigned Lexer::getEscapedNewLineSize(const char *Ptr) {
1217   unsigned Size = 0;
1218   while (isWhitespace(Ptr[Size])) {
1219     ++Size;
1220 
1221     if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r')
1222       continue;
1223 
1224     // If this is a \r\n or \n\r, skip the other half.
1225     if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') &&
1226         Ptr[Size-1] != Ptr[Size])
1227       ++Size;
1228 
1229     return Size;
1230   }
1231 
1232   // Not an escaped newline, must be a \t or something else.
1233   return 0;
1234 }
1235 
1236 /// SkipEscapedNewLines - If P points to an escaped newline (or a series of
1237 /// them), skip over them and return the first non-escaped-newline found,
1238 /// otherwise return P.
1239 const char *Lexer::SkipEscapedNewLines(const char *P) {
1240   while (true) {
1241     const char *AfterEscape;
1242     if (*P == '\\') {
1243       AfterEscape = P+1;
1244     } else if (*P == '?') {
1245       // If not a trigraph for escape, bail out.
1246       if (P[1] != '?' || P[2] != '/')
1247         return P;
1248       // FIXME: Take LangOpts into account; the language might not
1249       // support trigraphs.
1250       AfterEscape = P+3;
1251     } else {
1252       return P;
1253     }
1254 
1255     unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape);
1256     if (NewLineSize == 0) return P;
1257     P = AfterEscape+NewLineSize;
1258   }
1259 }
1260 
1261 std::optional<Token> Lexer::findNextToken(SourceLocation Loc,
1262                                           const SourceManager &SM,
1263                                           const LangOptions &LangOpts) {
1264   if (Loc.isMacroID()) {
1265     if (!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc))
1266       return std::nullopt;
1267   }
1268   Loc = Lexer::getLocForEndOfToken(Loc, 0, SM, LangOpts);
1269 
1270   // Break down the source location.
1271   std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc);
1272 
1273   // Try to load the file buffer.
1274   bool InvalidTemp = false;
1275   StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp);
1276   if (InvalidTemp)
1277     return std::nullopt;
1278 
1279   const char *TokenBegin = File.data() + LocInfo.second;
1280 
1281   // Lex from the start of the given location.
1282   Lexer lexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, File.begin(),
1283                                       TokenBegin, File.end());
1284   // Find the token.
1285   Token Tok;
1286   lexer.LexFromRawLexer(Tok);
1287   return Tok;
1288 }
1289 
1290 /// Checks that the given token is the first token that occurs after the
1291 /// given location (this excludes comments and whitespace). Returns the location
1292 /// immediately after the specified token. If the token is not found or the
1293 /// location is inside a macro, the returned source location will be invalid.
1294 SourceLocation Lexer::findLocationAfterToken(
1295     SourceLocation Loc, tok::TokenKind TKind, const SourceManager &SM,
1296     const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine) {
1297   std::optional<Token> Tok = findNextToken(Loc, SM, LangOpts);
1298   if (!Tok || Tok->isNot(TKind))
1299     return {};
1300   SourceLocation TokenLoc = Tok->getLocation();
1301 
1302   // Calculate how much whitespace needs to be skipped if any.
1303   unsigned NumWhitespaceChars = 0;
1304   if (SkipTrailingWhitespaceAndNewLine) {
1305     const char *TokenEnd = SM.getCharacterData(TokenLoc) + Tok->getLength();
1306     unsigned char C = *TokenEnd;
1307     while (isHorizontalWhitespace(C)) {
1308       C = *(++TokenEnd);
1309       NumWhitespaceChars++;
1310     }
1311 
1312     // Skip \r, \n, \r\n, or \n\r
1313     if (C == '\n' || C == '\r') {
1314       char PrevC = C;
1315       C = *(++TokenEnd);
1316       NumWhitespaceChars++;
1317       if ((C == '\n' || C == '\r') && C != PrevC)
1318         NumWhitespaceChars++;
1319     }
1320   }
1321 
1322   return TokenLoc.getLocWithOffset(Tok->getLength() + NumWhitespaceChars);
1323 }
1324 
1325 /// getCharAndSizeSlow - Peek a single 'character' from the specified buffer,
1326 /// get its size, and return it.  This is tricky in several cases:
1327 ///   1. If currently at the start of a trigraph, we warn about the trigraph,
1328 ///      then either return the trigraph (skipping 3 chars) or the '?',
1329 ///      depending on whether trigraphs are enabled or not.
1330 ///   2. If this is an escaped newline (potentially with whitespace between
1331 ///      the backslash and newline), implicitly skip the newline and return
1332 ///      the char after it.
1333 ///
1334 /// This handles the slow/uncommon case of the getCharAndSize method.  Here we
1335 /// know that we can accumulate into Size, and that we have already incremented
1336 /// Ptr by Size bytes.
1337 ///
1338 /// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should
1339 /// be updated to match.
1340 char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size,
1341                                Token *Tok) {
1342   // If we have a slash, look for an escaped newline.
1343   if (Ptr[0] == '\\') {
1344     ++Size;
1345     ++Ptr;
1346 Slash:
1347     // Common case, backslash-char where the char is not whitespace.
1348     if (!isWhitespace(Ptr[0])) return '\\';
1349 
1350     // See if we have optional whitespace characters between the slash and
1351     // newline.
1352     if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
1353       // Remember that this token needs to be cleaned.
1354       if (Tok) Tok->setFlag(Token::NeedsCleaning);
1355 
1356       // Warn if there was whitespace between the backslash and newline.
1357       if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode())
1358         Diag(Ptr, diag::backslash_newline_space);
1359 
1360       // Found backslash<whitespace><newline>.  Parse the char after it.
1361       Size += EscapedNewLineSize;
1362       Ptr  += EscapedNewLineSize;
1363 
1364       // Use slow version to accumulate a correct size field.
1365       return getCharAndSizeSlow(Ptr, Size, Tok);
1366     }
1367 
1368     // Otherwise, this is not an escaped newline, just return the slash.
1369     return '\\';
1370   }
1371 
1372   // If this is a trigraph, process it.
1373   if (Ptr[0] == '?' && Ptr[1] == '?') {
1374     // If this is actually a legal trigraph (not something like "??x"), emit
1375     // a trigraph warning.  If so, and if trigraphs are enabled, return it.
1376     if (char C = DecodeTrigraphChar(Ptr + 2, Tok ? this : nullptr,
1377                                     LangOpts.Trigraphs)) {
1378       // Remember that this token needs to be cleaned.
1379       if (Tok) Tok->setFlag(Token::NeedsCleaning);
1380 
1381       Ptr += 3;
1382       Size += 3;
1383       if (C == '\\') goto Slash;
1384       return C;
1385     }
1386   }
1387 
1388   // If this is neither, return a single character.
1389   ++Size;
1390   return *Ptr;
1391 }
1392 
1393 /// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the
1394 /// getCharAndSizeNoWarn method.  Here we know that we can accumulate into Size,
1395 /// and that we have already incremented Ptr by Size bytes.
1396 ///
1397 /// NOTE: When this method is updated, getCharAndSizeSlow (above) should
1398 /// be updated to match.
1399 char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size,
1400                                      const LangOptions &LangOpts) {
1401   // If we have a slash, look for an escaped newline.
1402   if (Ptr[0] == '\\') {
1403     ++Size;
1404     ++Ptr;
1405 Slash:
1406     // Common case, backslash-char where the char is not whitespace.
1407     if (!isWhitespace(Ptr[0])) return '\\';
1408 
1409     // See if we have optional whitespace characters followed by a newline.
1410     if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) {
1411       // Found backslash<whitespace><newline>.  Parse the char after it.
1412       Size += EscapedNewLineSize;
1413       Ptr  += EscapedNewLineSize;
1414 
1415       // Use slow version to accumulate a correct size field.
1416       return getCharAndSizeSlowNoWarn(Ptr, Size, LangOpts);
1417     }
1418 
1419     // Otherwise, this is not an escaped newline, just return the slash.
1420     return '\\';
1421   }
1422 
1423   // If this is a trigraph, process it.
1424   if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') {
1425     // If this is actually a legal trigraph (not something like "??x"), return
1426     // it.
1427     if (char C = GetTrigraphCharForLetter(Ptr[2])) {
1428       Ptr += 3;
1429       Size += 3;
1430       if (C == '\\') goto Slash;
1431       return C;
1432     }
1433   }
1434 
1435   // If this is neither, return a single character.
1436   ++Size;
1437   return *Ptr;
1438 }
1439 
1440 //===----------------------------------------------------------------------===//
1441 // Helper methods for lexing.
1442 //===----------------------------------------------------------------------===//
1443 
1444 /// Routine that indiscriminately sets the offset into the source file.
1445 void Lexer::SetByteOffset(unsigned Offset, bool StartOfLine) {
1446   BufferPtr = BufferStart + Offset;
1447   if (BufferPtr > BufferEnd)
1448     BufferPtr = BufferEnd;
1449   // FIXME: What exactly does the StartOfLine bit mean?  There are two
1450   // possible meanings for the "start" of the line: the first token on the
1451   // unexpanded line, or the first token on the expanded line.
1452   IsAtStartOfLine = StartOfLine;
1453   IsAtPhysicalStartOfLine = StartOfLine;
1454 }
1455 
1456 static bool isUnicodeWhitespace(uint32_t Codepoint) {
1457   static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars(
1458       UnicodeWhitespaceCharRanges);
1459   return UnicodeWhitespaceChars.contains(Codepoint);
1460 }
1461 
1462 static llvm::SmallString<5> codepointAsHexString(uint32_t C) {
1463   llvm::SmallString<5> CharBuf;
1464   llvm::raw_svector_ostream CharOS(CharBuf);
1465   llvm::write_hex(CharOS, C, llvm::HexPrintStyle::Upper, 4);
1466   return CharBuf;
1467 }
1468 
1469 // To mitigate https://github.com/llvm/llvm-project/issues/54732,
1470 // we allow "Mathematical Notation Characters" in identifiers.
1471 // This is a proposed profile that extends the XID_Start/XID_continue
1472 // with mathematical symbols, superscipts and subscripts digits
1473 // found in some production software.
1474 // https://www.unicode.org/L2/L2022/22230-math-profile.pdf
1475 static bool isMathematicalExtensionID(uint32_t C, const LangOptions &LangOpts,
1476                                       bool IsStart, bool &IsExtension) {
1477   static const llvm::sys::UnicodeCharSet MathStartChars(
1478       MathematicalNotationProfileIDStartRanges);
1479   static const llvm::sys::UnicodeCharSet MathContinueChars(
1480       MathematicalNotationProfileIDContinueRanges);
1481   if (MathStartChars.contains(C) ||
1482       (!IsStart && MathContinueChars.contains(C))) {
1483     IsExtension = true;
1484     return true;
1485   }
1486   return false;
1487 }
1488 
1489 static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts,
1490                             bool &IsExtension) {
1491   if (LangOpts.AsmPreprocessor) {
1492     return false;
1493   } else if (LangOpts.DollarIdents && '$' == C) {
1494     return true;
1495   } else if (LangOpts.CPlusPlus || LangOpts.C2x) {
1496     // A non-leading codepoint must have the XID_Continue property.
1497     // XIDContinueRanges doesn't contains characters also in XIDStartRanges,
1498     // so we need to check both tables.
1499     // '_' doesn't have the XID_Continue property but is allowed in C and C++.
1500     static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges);
1501     static const llvm::sys::UnicodeCharSet XIDContinueChars(XIDContinueRanges);
1502     if (C == '_' || XIDStartChars.contains(C) || XIDContinueChars.contains(C))
1503       return true;
1504     return isMathematicalExtensionID(C, LangOpts, /*IsStart=*/false,
1505                                      IsExtension);
1506   } else if (LangOpts.C11) {
1507     static const llvm::sys::UnicodeCharSet C11AllowedIDChars(
1508         C11AllowedIDCharRanges);
1509     return C11AllowedIDChars.contains(C);
1510   } else {
1511     static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
1512         C99AllowedIDCharRanges);
1513     return C99AllowedIDChars.contains(C);
1514   }
1515 }
1516 
1517 static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts,
1518                                      bool &IsExtension) {
1519   assert(C > 0x7F && "isAllowedInitiallyIDChar called with an ASCII codepoint");
1520   IsExtension = false;
1521   if (LangOpts.AsmPreprocessor) {
1522     return false;
1523   }
1524   if (LangOpts.CPlusPlus || LangOpts.C2x) {
1525     static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges);
1526     if (XIDStartChars.contains(C))
1527       return true;
1528     return isMathematicalExtensionID(C, LangOpts, /*IsStart=*/true,
1529                                      IsExtension);
1530   }
1531   if (!isAllowedIDChar(C, LangOpts, IsExtension))
1532     return false;
1533   if (LangOpts.C11) {
1534     static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars(
1535         C11DisallowedInitialIDCharRanges);
1536     return !C11DisallowedInitialIDChars.contains(C);
1537   }
1538   static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
1539       C99DisallowedInitialIDCharRanges);
1540   return !C99DisallowedInitialIDChars.contains(C);
1541 }
1542 
1543 static void diagnoseExtensionInIdentifier(DiagnosticsEngine &Diags, uint32_t C,
1544                                           CharSourceRange Range) {
1545 
1546   static const llvm::sys::UnicodeCharSet MathStartChars(
1547       MathematicalNotationProfileIDStartRanges);
1548   static const llvm::sys::UnicodeCharSet MathContinueChars(
1549       MathematicalNotationProfileIDContinueRanges);
1550 
1551   (void)MathStartChars;
1552   (void)MathContinueChars;
1553   assert((MathStartChars.contains(C) || MathContinueChars.contains(C)) &&
1554          "Unexpected mathematical notation codepoint");
1555   Diags.Report(Range.getBegin(), diag::ext_mathematical_notation)
1556       << codepointAsHexString(C) << Range;
1557 }
1558 
1559 static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin,
1560                                             const char *End) {
1561   return CharSourceRange::getCharRange(L.getSourceLocation(Begin),
1562                                        L.getSourceLocation(End));
1563 }
1564 
1565 static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C,
1566                                       CharSourceRange Range, bool IsFirst) {
1567   // Check C99 compatibility.
1568   if (!Diags.isIgnored(diag::warn_c99_compat_unicode_id, Range.getBegin())) {
1569     enum {
1570       CannotAppearInIdentifier = 0,
1571       CannotStartIdentifier
1572     };
1573 
1574     static const llvm::sys::UnicodeCharSet C99AllowedIDChars(
1575         C99AllowedIDCharRanges);
1576     static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars(
1577         C99DisallowedInitialIDCharRanges);
1578     if (!C99AllowedIDChars.contains(C)) {
1579       Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
1580         << Range
1581         << CannotAppearInIdentifier;
1582     } else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) {
1583       Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id)
1584         << Range
1585         << CannotStartIdentifier;
1586     }
1587   }
1588 }
1589 
1590 /// After encountering UTF-8 character C and interpreting it as an identifier
1591 /// character, check whether it's a homoglyph for a common non-identifier
1592 /// source character that is unlikely to be an intentional identifier
1593 /// character and warn if so.
1594 static void maybeDiagnoseUTF8Homoglyph(DiagnosticsEngine &Diags, uint32_t C,
1595                                        CharSourceRange Range) {
1596   // FIXME: Handle Unicode quotation marks (smart quotes, fullwidth quotes).
1597   struct HomoglyphPair {
1598     uint32_t Character;
1599     char LooksLike;
1600     bool operator<(HomoglyphPair R) const { return Character < R.Character; }
1601   };
1602   static constexpr HomoglyphPair SortedHomoglyphs[] = {
1603     {U'\u00ad', 0},   // SOFT HYPHEN
1604     {U'\u01c3', '!'}, // LATIN LETTER RETROFLEX CLICK
1605     {U'\u037e', ';'}, // GREEK QUESTION MARK
1606     {U'\u200b', 0},   // ZERO WIDTH SPACE
1607     {U'\u200c', 0},   // ZERO WIDTH NON-JOINER
1608     {U'\u200d', 0},   // ZERO WIDTH JOINER
1609     {U'\u2060', 0},   // WORD JOINER
1610     {U'\u2061', 0},   // FUNCTION APPLICATION
1611     {U'\u2062', 0},   // INVISIBLE TIMES
1612     {U'\u2063', 0},   // INVISIBLE SEPARATOR
1613     {U'\u2064', 0},   // INVISIBLE PLUS
1614     {U'\u2212', '-'}, // MINUS SIGN
1615     {U'\u2215', '/'}, // DIVISION SLASH
1616     {U'\u2216', '\\'}, // SET MINUS
1617     {U'\u2217', '*'}, // ASTERISK OPERATOR
1618     {U'\u2223', '|'}, // DIVIDES
1619     {U'\u2227', '^'}, // LOGICAL AND
1620     {U'\u2236', ':'}, // RATIO
1621     {U'\u223c', '~'}, // TILDE OPERATOR
1622     {U'\ua789', ':'}, // MODIFIER LETTER COLON
1623     {U'\ufeff', 0},   // ZERO WIDTH NO-BREAK SPACE
1624     {U'\uff01', '!'}, // FULLWIDTH EXCLAMATION MARK
1625     {U'\uff03', '#'}, // FULLWIDTH NUMBER SIGN
1626     {U'\uff04', '$'}, // FULLWIDTH DOLLAR SIGN
1627     {U'\uff05', '%'}, // FULLWIDTH PERCENT SIGN
1628     {U'\uff06', '&'}, // FULLWIDTH AMPERSAND
1629     {U'\uff08', '('}, // FULLWIDTH LEFT PARENTHESIS
1630     {U'\uff09', ')'}, // FULLWIDTH RIGHT PARENTHESIS
1631     {U'\uff0a', '*'}, // FULLWIDTH ASTERISK
1632     {U'\uff0b', '+'}, // FULLWIDTH ASTERISK
1633     {U'\uff0c', ','}, // FULLWIDTH COMMA
1634     {U'\uff0d', '-'}, // FULLWIDTH HYPHEN-MINUS
1635     {U'\uff0e', '.'}, // FULLWIDTH FULL STOP
1636     {U'\uff0f', '/'}, // FULLWIDTH SOLIDUS
1637     {U'\uff1a', ':'}, // FULLWIDTH COLON
1638     {U'\uff1b', ';'}, // FULLWIDTH SEMICOLON
1639     {U'\uff1c', '<'}, // FULLWIDTH LESS-THAN SIGN
1640     {U'\uff1d', '='}, // FULLWIDTH EQUALS SIGN
1641     {U'\uff1e', '>'}, // FULLWIDTH GREATER-THAN SIGN
1642     {U'\uff1f', '?'}, // FULLWIDTH QUESTION MARK
1643     {U'\uff20', '@'}, // FULLWIDTH COMMERCIAL AT
1644     {U'\uff3b', '['}, // FULLWIDTH LEFT SQUARE BRACKET
1645     {U'\uff3c', '\\'}, // FULLWIDTH REVERSE SOLIDUS
1646     {U'\uff3d', ']'}, // FULLWIDTH RIGHT SQUARE BRACKET
1647     {U'\uff3e', '^'}, // FULLWIDTH CIRCUMFLEX ACCENT
1648     {U'\uff5b', '{'}, // FULLWIDTH LEFT CURLY BRACKET
1649     {U'\uff5c', '|'}, // FULLWIDTH VERTICAL LINE
1650     {U'\uff5d', '}'}, // FULLWIDTH RIGHT CURLY BRACKET
1651     {U'\uff5e', '~'}, // FULLWIDTH TILDE
1652     {0, 0}
1653   };
1654   auto Homoglyph =
1655       std::lower_bound(std::begin(SortedHomoglyphs),
1656                        std::end(SortedHomoglyphs) - 1, HomoglyphPair{C, '\0'});
1657   if (Homoglyph->Character == C) {
1658     if (Homoglyph->LooksLike) {
1659       const char LooksLikeStr[] = {Homoglyph->LooksLike, 0};
1660       Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_homoglyph)
1661           << Range << codepointAsHexString(C) << LooksLikeStr;
1662     } else {
1663       Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_zero_width)
1664           << Range << codepointAsHexString(C);
1665     }
1666   }
1667 }
1668 
1669 static void diagnoseInvalidUnicodeCodepointInIdentifier(
1670     DiagnosticsEngine &Diags, const LangOptions &LangOpts, uint32_t CodePoint,
1671     CharSourceRange Range, bool IsFirst) {
1672   if (isASCII(CodePoint))
1673     return;
1674 
1675   bool IsExtension;
1676   bool IsIDStart = isAllowedInitiallyIDChar(CodePoint, LangOpts, IsExtension);
1677   bool IsIDContinue =
1678       IsIDStart || isAllowedIDChar(CodePoint, LangOpts, IsExtension);
1679 
1680   if ((IsFirst && IsIDStart) || (!IsFirst && IsIDContinue))
1681     return;
1682 
1683   bool InvalidOnlyAtStart = IsFirst && !IsIDStart && IsIDContinue;
1684 
1685   if (!IsFirst || InvalidOnlyAtStart) {
1686     Diags.Report(Range.getBegin(), diag::err_character_not_allowed_identifier)
1687         << Range << codepointAsHexString(CodePoint) << int(InvalidOnlyAtStart)
1688         << FixItHint::CreateRemoval(Range);
1689   } else {
1690     Diags.Report(Range.getBegin(), diag::err_character_not_allowed)
1691         << Range << codepointAsHexString(CodePoint)
1692         << FixItHint::CreateRemoval(Range);
1693   }
1694 }
1695 
1696 bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size,
1697                                     Token &Result) {
1698   const char *UCNPtr = CurPtr + Size;
1699   uint32_t CodePoint = tryReadUCN(UCNPtr, CurPtr, /*Token=*/nullptr);
1700   if (CodePoint == 0) {
1701     return false;
1702   }
1703   bool IsExtension = false;
1704   if (!isAllowedIDChar(CodePoint, LangOpts, IsExtension)) {
1705     if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint))
1706       return false;
1707     if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1708         !PP->isPreprocessedOutput())
1709       diagnoseInvalidUnicodeCodepointInIdentifier(
1710           PP->getDiagnostics(), LangOpts, CodePoint,
1711           makeCharRange(*this, CurPtr, UCNPtr),
1712           /*IsFirst=*/false);
1713 
1714     // We got a unicode codepoint that is neither a space nor a
1715     // a valid identifier part.
1716     // Carry on as if the codepoint was valid for recovery purposes.
1717   } else if (!isLexingRawMode()) {
1718     if (IsExtension)
1719       diagnoseExtensionInIdentifier(PP->getDiagnostics(), CodePoint,
1720                                     makeCharRange(*this, CurPtr, UCNPtr));
1721 
1722     maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
1723                               makeCharRange(*this, CurPtr, UCNPtr),
1724                               /*IsFirst=*/false);
1725   }
1726 
1727   Result.setFlag(Token::HasUCN);
1728   if ((UCNPtr - CurPtr ==  6 && CurPtr[1] == 'u') ||
1729       (UCNPtr - CurPtr == 10 && CurPtr[1] == 'U'))
1730     CurPtr = UCNPtr;
1731   else
1732     while (CurPtr != UCNPtr)
1733       (void)getAndAdvanceChar(CurPtr, Result);
1734   return true;
1735 }
1736 
1737 bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr) {
1738   const char *UnicodePtr = CurPtr;
1739   llvm::UTF32 CodePoint;
1740   llvm::ConversionResult Result =
1741       llvm::convertUTF8Sequence((const llvm::UTF8 **)&UnicodePtr,
1742                                 (const llvm::UTF8 *)BufferEnd,
1743                                 &CodePoint,
1744                                 llvm::strictConversion);
1745   if (Result != llvm::conversionOK)
1746     return false;
1747 
1748   bool IsExtension = false;
1749   if (!isAllowedIDChar(static_cast<uint32_t>(CodePoint), LangOpts,
1750                        IsExtension)) {
1751     if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint))
1752       return false;
1753 
1754     if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1755         !PP->isPreprocessedOutput())
1756       diagnoseInvalidUnicodeCodepointInIdentifier(
1757           PP->getDiagnostics(), LangOpts, CodePoint,
1758           makeCharRange(*this, CurPtr, UnicodePtr), /*IsFirst=*/false);
1759     // We got a unicode codepoint that is neither a space nor a
1760     // a valid identifier part. Carry on as if the codepoint was
1761     // valid for recovery purposes.
1762   } else if (!isLexingRawMode()) {
1763     if (IsExtension)
1764       diagnoseExtensionInIdentifier(PP->getDiagnostics(), CodePoint,
1765                                     makeCharRange(*this, CurPtr, UnicodePtr));
1766     maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint,
1767                               makeCharRange(*this, CurPtr, UnicodePtr),
1768                               /*IsFirst=*/false);
1769     maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), CodePoint,
1770                                makeCharRange(*this, CurPtr, UnicodePtr));
1771   }
1772 
1773   CurPtr = UnicodePtr;
1774   return true;
1775 }
1776 
1777 bool Lexer::LexUnicodeIdentifierStart(Token &Result, uint32_t C,
1778                                       const char *CurPtr) {
1779   bool IsExtension = false;
1780   if (isAllowedInitiallyIDChar(C, LangOpts, IsExtension)) {
1781     if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1782         !PP->isPreprocessedOutput()) {
1783       if (IsExtension)
1784         diagnoseExtensionInIdentifier(PP->getDiagnostics(), C,
1785                                       makeCharRange(*this, BufferPtr, CurPtr));
1786       maybeDiagnoseIDCharCompat(PP->getDiagnostics(), C,
1787                                 makeCharRange(*this, BufferPtr, CurPtr),
1788                                 /*IsFirst=*/true);
1789       maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), C,
1790                                  makeCharRange(*this, BufferPtr, CurPtr));
1791     }
1792 
1793     MIOpt.ReadToken();
1794     return LexIdentifierContinue(Result, CurPtr);
1795   }
1796 
1797   if (!isLexingRawMode() && !ParsingPreprocessorDirective &&
1798       !PP->isPreprocessedOutput() && !isASCII(*BufferPtr) &&
1799       !isUnicodeWhitespace(C)) {
1800     // Non-ASCII characters tend to creep into source code unintentionally.
1801     // Instead of letting the parser complain about the unknown token,
1802     // just drop the character.
1803     // Note that we can /only/ do this when the non-ASCII character is actually
1804     // spelled as Unicode, not written as a UCN. The standard requires that
1805     // we not throw away any possible preprocessor tokens, but there's a
1806     // loophole in the mapping of Unicode characters to basic character set
1807     // characters that allows us to map these particular characters to, say,
1808     // whitespace.
1809     diagnoseInvalidUnicodeCodepointInIdentifier(
1810         PP->getDiagnostics(), LangOpts, C,
1811         makeCharRange(*this, BufferPtr, CurPtr), /*IsStart*/ true);
1812     BufferPtr = CurPtr;
1813     return false;
1814   }
1815 
1816   // Otherwise, we have an explicit UCN or a character that's unlikely to show
1817   // up by accident.
1818   MIOpt.ReadToken();
1819   FormTokenWithChars(Result, CurPtr, tok::unknown);
1820   return true;
1821 }
1822 
1823 bool Lexer::LexIdentifierContinue(Token &Result, const char *CurPtr) {
1824   // Match [_A-Za-z0-9]*, we have already matched an identifier start.
1825   while (true) {
1826     unsigned char C = *CurPtr;
1827     // Fast path.
1828     if (isAsciiIdentifierContinue(C)) {
1829       ++CurPtr;
1830       continue;
1831     }
1832 
1833     unsigned Size;
1834     // Slow path: handle trigraph, unicode codepoints, UCNs.
1835     C = getCharAndSize(CurPtr, Size);
1836     if (isAsciiIdentifierContinue(C)) {
1837       CurPtr = ConsumeChar(CurPtr, Size, Result);
1838       continue;
1839     }
1840     if (C == '$') {
1841       // If we hit a $ and they are not supported in identifiers, we are done.
1842       if (!LangOpts.DollarIdents)
1843         break;
1844       // Otherwise, emit a diagnostic and continue.
1845       if (!isLexingRawMode())
1846         Diag(CurPtr, diag::ext_dollar_in_identifier);
1847       CurPtr = ConsumeChar(CurPtr, Size, Result);
1848       continue;
1849     }
1850     if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
1851       continue;
1852     if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
1853       continue;
1854     // Neither an expected Unicode codepoint nor a UCN.
1855     break;
1856   }
1857 
1858   const char *IdStart = BufferPtr;
1859   FormTokenWithChars(Result, CurPtr, tok::raw_identifier);
1860   Result.setRawIdentifierData(IdStart);
1861 
1862   // If we are in raw mode, return this identifier raw.  There is no need to
1863   // look up identifier information or attempt to macro expand it.
1864   if (LexingRawMode)
1865     return true;
1866 
1867   // Fill in Result.IdentifierInfo and update the token kind,
1868   // looking up the identifier in the identifier table.
1869   IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
1870   // Note that we have to call PP->LookUpIdentifierInfo() even for code
1871   // completion, it writes IdentifierInfo into Result, and callers rely on it.
1872 
1873   // If the completion point is at the end of an identifier, we want to treat
1874   // the identifier as incomplete even if it resolves to a macro or a keyword.
1875   // This allows e.g. 'class^' to complete to 'classifier'.
1876   if (isCodeCompletionPoint(CurPtr)) {
1877     // Return the code-completion token.
1878     Result.setKind(tok::code_completion);
1879     // Skip the code-completion char and all immediate identifier characters.
1880     // This ensures we get consistent behavior when completing at any point in
1881     // an identifier (i.e. at the start, in the middle, at the end). Note that
1882     // only simple cases (i.e. [a-zA-Z0-9_]) are supported to keep the code
1883     // simpler.
1884     assert(*CurPtr == 0 && "Completion character must be 0");
1885     ++CurPtr;
1886     // Note that code completion token is not added as a separate character
1887     // when the completion point is at the end of the buffer. Therefore, we need
1888     // to check if the buffer has ended.
1889     if (CurPtr < BufferEnd) {
1890       while (isAsciiIdentifierContinue(*CurPtr))
1891         ++CurPtr;
1892     }
1893     BufferPtr = CurPtr;
1894     return true;
1895   }
1896 
1897   // Finally, now that we know we have an identifier, pass this off to the
1898   // preprocessor, which may macro expand it or something.
1899   if (II->isHandleIdentifierCase())
1900     return PP->HandleIdentifier(Result);
1901 
1902   return true;
1903 }
1904 
1905 /// isHexaLiteral - Return true if Start points to a hex constant.
1906 /// in microsoft mode (where this is supposed to be several different tokens).
1907 bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) {
1908   unsigned Size;
1909   char C1 = Lexer::getCharAndSizeNoWarn(Start, Size, LangOpts);
1910   if (C1 != '0')
1911     return false;
1912   char C2 = Lexer::getCharAndSizeNoWarn(Start + Size, Size, LangOpts);
1913   return (C2 == 'x' || C2 == 'X');
1914 }
1915 
1916 /// LexNumericConstant - Lex the remainder of a integer or floating point
1917 /// constant. From[-1] is the first character lexed.  Return the end of the
1918 /// constant.
1919 bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) {
1920   unsigned Size;
1921   char C = getCharAndSize(CurPtr, Size);
1922   char PrevCh = 0;
1923   while (isPreprocessingNumberBody(C)) {
1924     CurPtr = ConsumeChar(CurPtr, Size, Result);
1925     PrevCh = C;
1926     C = getCharAndSize(CurPtr, Size);
1927   }
1928 
1929   // If we fell out, check for a sign, due to 1e+12.  If we have one, continue.
1930   if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) {
1931     // If we are in Microsoft mode, don't continue if the constant is hex.
1932     // For example, MSVC will accept the following as 3 tokens: 0x1234567e+1
1933     if (!LangOpts.MicrosoftExt || !isHexaLiteral(BufferPtr, LangOpts))
1934       return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
1935   }
1936 
1937   // If we have a hex FP constant, continue.
1938   if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) {
1939     // Outside C99 and C++17, we accept hexadecimal floating point numbers as a
1940     // not-quite-conforming extension. Only do so if this looks like it's
1941     // actually meant to be a hexfloat, and not if it has a ud-suffix.
1942     bool IsHexFloat = true;
1943     if (!LangOpts.C99) {
1944       if (!isHexaLiteral(BufferPtr, LangOpts))
1945         IsHexFloat = false;
1946       else if (!LangOpts.CPlusPlus17 &&
1947                std::find(BufferPtr, CurPtr, '_') != CurPtr)
1948         IsHexFloat = false;
1949     }
1950     if (IsHexFloat)
1951       return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result));
1952   }
1953 
1954   // If we have a digit separator, continue.
1955   if (C == '\'' && (LangOpts.CPlusPlus14 || LangOpts.C2x)) {
1956     unsigned NextSize;
1957     char Next = getCharAndSizeNoWarn(CurPtr + Size, NextSize, LangOpts);
1958     if (isAsciiIdentifierContinue(Next)) {
1959       if (!isLexingRawMode())
1960         Diag(CurPtr, LangOpts.CPlusPlus
1961                          ? diag::warn_cxx11_compat_digit_separator
1962                          : diag::warn_c2x_compat_digit_separator);
1963       CurPtr = ConsumeChar(CurPtr, Size, Result);
1964       CurPtr = ConsumeChar(CurPtr, NextSize, Result);
1965       return LexNumericConstant(Result, CurPtr);
1966     }
1967   }
1968 
1969   // If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue.
1970   if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
1971     return LexNumericConstant(Result, CurPtr);
1972   if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
1973     return LexNumericConstant(Result, CurPtr);
1974 
1975   // Update the location of token as well as BufferPtr.
1976   const char *TokStart = BufferPtr;
1977   FormTokenWithChars(Result, CurPtr, tok::numeric_constant);
1978   Result.setLiteralData(TokStart);
1979   return true;
1980 }
1981 
1982 /// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes
1983 /// in C++11, or warn on a ud-suffix in C++98.
1984 const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr,
1985                                bool IsStringLiteral) {
1986   assert(LangOpts.CPlusPlus);
1987 
1988   // Maximally munch an identifier.
1989   unsigned Size;
1990   char C = getCharAndSize(CurPtr, Size);
1991   bool Consumed = false;
1992 
1993   if (!isAsciiIdentifierStart(C)) {
1994     if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result))
1995       Consumed = true;
1996     else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr))
1997       Consumed = true;
1998     else
1999       return CurPtr;
2000   }
2001 
2002   if (!LangOpts.CPlusPlus11) {
2003     if (!isLexingRawMode())
2004       Diag(CurPtr,
2005            C == '_' ? diag::warn_cxx11_compat_user_defined_literal
2006                     : diag::warn_cxx11_compat_reserved_user_defined_literal)
2007         << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
2008     return CurPtr;
2009   }
2010 
2011   // C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix
2012   // that does not start with an underscore is ill-formed. As a conforming
2013   // extension, we treat all such suffixes as if they had whitespace before
2014   // them. We assume a suffix beginning with a UCN or UTF-8 character is more
2015   // likely to be a ud-suffix than a macro, however, and accept that.
2016   if (!Consumed) {
2017     bool IsUDSuffix = false;
2018     if (C == '_')
2019       IsUDSuffix = true;
2020     else if (IsStringLiteral && LangOpts.CPlusPlus14) {
2021       // In C++1y, we need to look ahead a few characters to see if this is a
2022       // valid suffix for a string literal or a numeric literal (this could be
2023       // the 'operator""if' defining a numeric literal operator).
2024       const unsigned MaxStandardSuffixLength = 3;
2025       char Buffer[MaxStandardSuffixLength] = { C };
2026       unsigned Consumed = Size;
2027       unsigned Chars = 1;
2028       while (true) {
2029         unsigned NextSize;
2030         char Next = getCharAndSizeNoWarn(CurPtr + Consumed, NextSize, LangOpts);
2031         if (!isAsciiIdentifierContinue(Next)) {
2032           // End of suffix. Check whether this is on the allowed list.
2033           const StringRef CompleteSuffix(Buffer, Chars);
2034           IsUDSuffix =
2035               StringLiteralParser::isValidUDSuffix(LangOpts, CompleteSuffix);
2036           break;
2037         }
2038 
2039         if (Chars == MaxStandardSuffixLength)
2040           // Too long: can't be a standard suffix.
2041           break;
2042 
2043         Buffer[Chars++] = Next;
2044         Consumed += NextSize;
2045       }
2046     }
2047 
2048     if (!IsUDSuffix) {
2049       if (!isLexingRawMode())
2050         Diag(CurPtr, LangOpts.MSVCCompat
2051                          ? diag::ext_ms_reserved_user_defined_literal
2052                          : diag::ext_reserved_user_defined_literal)
2053             << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " ");
2054       return CurPtr;
2055     }
2056 
2057     CurPtr = ConsumeChar(CurPtr, Size, Result);
2058   }
2059 
2060   Result.setFlag(Token::HasUDSuffix);
2061   while (true) {
2062     C = getCharAndSize(CurPtr, Size);
2063     if (isAsciiIdentifierContinue(C)) {
2064       CurPtr = ConsumeChar(CurPtr, Size, Result);
2065     } else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) {
2066     } else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) {
2067     } else
2068       break;
2069   }
2070 
2071   return CurPtr;
2072 }
2073 
2074 /// LexStringLiteral - Lex the remainder of a string literal, after having lexed
2075 /// either " or L" or u8" or u" or U".
2076 bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr,
2077                              tok::TokenKind Kind) {
2078   const char *AfterQuote = CurPtr;
2079   // Does this string contain the \0 character?
2080   const char *NulCharacter = nullptr;
2081 
2082   if (!isLexingRawMode() &&
2083       (Kind == tok::utf8_string_literal ||
2084        Kind == tok::utf16_string_literal ||
2085        Kind == tok::utf32_string_literal))
2086     Diag(BufferPtr, LangOpts.CPlusPlus ? diag::warn_cxx98_compat_unicode_literal
2087                                        : diag::warn_c99_compat_unicode_literal);
2088 
2089   char C = getAndAdvanceChar(CurPtr, Result);
2090   while (C != '"') {
2091     // Skip escaped characters.  Escaped newlines will already be processed by
2092     // getAndAdvanceChar.
2093     if (C == '\\')
2094       C = getAndAdvanceChar(CurPtr, Result);
2095 
2096     if (C == '\n' || C == '\r' ||             // Newline.
2097         (C == 0 && CurPtr-1 == BufferEnd)) {  // End of file.
2098       if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2099         Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 1;
2100       FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2101       return true;
2102     }
2103 
2104     if (C == 0) {
2105       if (isCodeCompletionPoint(CurPtr-1)) {
2106         if (ParsingFilename)
2107           codeCompleteIncludedFile(AfterQuote, CurPtr - 1, /*IsAngled=*/false);
2108         else
2109           PP->CodeCompleteNaturalLanguage();
2110         FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
2111         cutOffLexing();
2112         return true;
2113       }
2114 
2115       NulCharacter = CurPtr-1;
2116     }
2117     C = getAndAdvanceChar(CurPtr, Result);
2118   }
2119 
2120   // If we are in C++11, lex the optional ud-suffix.
2121   if (LangOpts.CPlusPlus)
2122     CurPtr = LexUDSuffix(Result, CurPtr, true);
2123 
2124   // If a nul character existed in the string, warn about it.
2125   if (NulCharacter && !isLexingRawMode())
2126     Diag(NulCharacter, diag::null_in_char_or_string) << 1;
2127 
2128   // Update the location of the token as well as the BufferPtr instance var.
2129   const char *TokStart = BufferPtr;
2130   FormTokenWithChars(Result, CurPtr, Kind);
2131   Result.setLiteralData(TokStart);
2132   return true;
2133 }
2134 
2135 /// LexRawStringLiteral - Lex the remainder of a raw string literal, after
2136 /// having lexed R", LR", u8R", uR", or UR".
2137 bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr,
2138                                 tok::TokenKind Kind) {
2139   // This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3:
2140   //  Between the initial and final double quote characters of the raw string,
2141   //  any transformations performed in phases 1 and 2 (trigraphs,
2142   //  universal-character-names, and line splicing) are reverted.
2143 
2144   if (!isLexingRawMode())
2145     Diag(BufferPtr, diag::warn_cxx98_compat_raw_string_literal);
2146 
2147   unsigned PrefixLen = 0;
2148 
2149   while (PrefixLen != 16 && isRawStringDelimBody(CurPtr[PrefixLen]))
2150     ++PrefixLen;
2151 
2152   // If the last character was not a '(', then we didn't lex a valid delimiter.
2153   if (CurPtr[PrefixLen] != '(') {
2154     if (!isLexingRawMode()) {
2155       const char *PrefixEnd = &CurPtr[PrefixLen];
2156       if (PrefixLen == 16) {
2157         Diag(PrefixEnd, diag::err_raw_delim_too_long);
2158       } else {
2159         Diag(PrefixEnd, diag::err_invalid_char_raw_delim)
2160           << StringRef(PrefixEnd, 1);
2161       }
2162     }
2163 
2164     // Search for the next '"' in hopes of salvaging the lexer. Unfortunately,
2165     // it's possible the '"' was intended to be part of the raw string, but
2166     // there's not much we can do about that.
2167     while (true) {
2168       char C = *CurPtr++;
2169 
2170       if (C == '"')
2171         break;
2172       if (C == 0 && CurPtr-1 == BufferEnd) {
2173         --CurPtr;
2174         break;
2175       }
2176     }
2177 
2178     FormTokenWithChars(Result, CurPtr, tok::unknown);
2179     return true;
2180   }
2181 
2182   // Save prefix and move CurPtr past it
2183   const char *Prefix = CurPtr;
2184   CurPtr += PrefixLen + 1; // skip over prefix and '('
2185 
2186   while (true) {
2187     char C = *CurPtr++;
2188 
2189     if (C == ')') {
2190       // Check for prefix match and closing quote.
2191       if (strncmp(CurPtr, Prefix, PrefixLen) == 0 && CurPtr[PrefixLen] == '"') {
2192         CurPtr += PrefixLen + 1; // skip over prefix and '"'
2193         break;
2194       }
2195     } else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file.
2196       if (!isLexingRawMode())
2197         Diag(BufferPtr, diag::err_unterminated_raw_string)
2198           << StringRef(Prefix, PrefixLen);
2199       FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2200       return true;
2201     }
2202   }
2203 
2204   // If we are in C++11, lex the optional ud-suffix.
2205   if (LangOpts.CPlusPlus)
2206     CurPtr = LexUDSuffix(Result, CurPtr, true);
2207 
2208   // Update the location of token as well as BufferPtr.
2209   const char *TokStart = BufferPtr;
2210   FormTokenWithChars(Result, CurPtr, Kind);
2211   Result.setLiteralData(TokStart);
2212   return true;
2213 }
2214 
2215 /// LexAngledStringLiteral - Lex the remainder of an angled string literal,
2216 /// after having lexed the '<' character.  This is used for #include filenames.
2217 bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) {
2218   // Does this string contain the \0 character?
2219   const char *NulCharacter = nullptr;
2220   const char *AfterLessPos = CurPtr;
2221   char C = getAndAdvanceChar(CurPtr, Result);
2222   while (C != '>') {
2223     // Skip escaped characters.  Escaped newlines will already be processed by
2224     // getAndAdvanceChar.
2225     if (C == '\\')
2226       C = getAndAdvanceChar(CurPtr, Result);
2227 
2228     if (isVerticalWhitespace(C) ||               // Newline.
2229         (C == 0 && (CurPtr - 1 == BufferEnd))) { // End of file.
2230       // If the filename is unterminated, then it must just be a lone <
2231       // character.  Return this as such.
2232       FormTokenWithChars(Result, AfterLessPos, tok::less);
2233       return true;
2234     }
2235 
2236     if (C == 0) {
2237       if (isCodeCompletionPoint(CurPtr - 1)) {
2238         codeCompleteIncludedFile(AfterLessPos, CurPtr - 1, /*IsAngled=*/true);
2239         cutOffLexing();
2240         FormTokenWithChars(Result, CurPtr - 1, tok::unknown);
2241         return true;
2242       }
2243       NulCharacter = CurPtr-1;
2244     }
2245     C = getAndAdvanceChar(CurPtr, Result);
2246   }
2247 
2248   // If a nul character existed in the string, warn about it.
2249   if (NulCharacter && !isLexingRawMode())
2250     Diag(NulCharacter, diag::null_in_char_or_string) << 1;
2251 
2252   // Update the location of token as well as BufferPtr.
2253   const char *TokStart = BufferPtr;
2254   FormTokenWithChars(Result, CurPtr, tok::header_name);
2255   Result.setLiteralData(TokStart);
2256   return true;
2257 }
2258 
2259 void Lexer::codeCompleteIncludedFile(const char *PathStart,
2260                                      const char *CompletionPoint,
2261                                      bool IsAngled) {
2262   // Completion only applies to the filename, after the last slash.
2263   StringRef PartialPath(PathStart, CompletionPoint - PathStart);
2264   llvm::StringRef SlashChars = LangOpts.MSVCCompat ? "/\\" : "/";
2265   auto Slash = PartialPath.find_last_of(SlashChars);
2266   StringRef Dir =
2267       (Slash == StringRef::npos) ? "" : PartialPath.take_front(Slash);
2268   const char *StartOfFilename =
2269       (Slash == StringRef::npos) ? PathStart : PathStart + Slash + 1;
2270   // Code completion filter range is the filename only, up to completion point.
2271   PP->setCodeCompletionIdentifierInfo(&PP->getIdentifierTable().get(
2272       StringRef(StartOfFilename, CompletionPoint - StartOfFilename)));
2273   // We should replace the characters up to the closing quote or closest slash,
2274   // if any.
2275   while (CompletionPoint < BufferEnd) {
2276     char Next = *(CompletionPoint + 1);
2277     if (Next == 0 || Next == '\r' || Next == '\n')
2278       break;
2279     ++CompletionPoint;
2280     if (Next == (IsAngled ? '>' : '"'))
2281       break;
2282     if (SlashChars.contains(Next))
2283       break;
2284   }
2285 
2286   PP->setCodeCompletionTokenRange(
2287       FileLoc.getLocWithOffset(StartOfFilename - BufferStart),
2288       FileLoc.getLocWithOffset(CompletionPoint - BufferStart));
2289   PP->CodeCompleteIncludedFile(Dir, IsAngled);
2290 }
2291 
2292 /// LexCharConstant - Lex the remainder of a character constant, after having
2293 /// lexed either ' or L' or u8' or u' or U'.
2294 bool Lexer::LexCharConstant(Token &Result, const char *CurPtr,
2295                             tok::TokenKind Kind) {
2296   // Does this character contain the \0 character?
2297   const char *NulCharacter = nullptr;
2298 
2299   if (!isLexingRawMode()) {
2300     if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant)
2301       Diag(BufferPtr, LangOpts.CPlusPlus
2302                           ? diag::warn_cxx98_compat_unicode_literal
2303                           : diag::warn_c99_compat_unicode_literal);
2304     else if (Kind == tok::utf8_char_constant)
2305       Diag(BufferPtr, diag::warn_cxx14_compat_u8_character_literal);
2306   }
2307 
2308   char C = getAndAdvanceChar(CurPtr, Result);
2309   if (C == '\'') {
2310     if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2311       Diag(BufferPtr, diag::ext_empty_character);
2312     FormTokenWithChars(Result, CurPtr, tok::unknown);
2313     return true;
2314   }
2315 
2316   while (C != '\'') {
2317     // Skip escaped characters.
2318     if (C == '\\')
2319       C = getAndAdvanceChar(CurPtr, Result);
2320 
2321     if (C == '\n' || C == '\r' ||             // Newline.
2322         (C == 0 && CurPtr-1 == BufferEnd)) {  // End of file.
2323       if (!isLexingRawMode() && !LangOpts.AsmPreprocessor)
2324         Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 0;
2325       FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2326       return true;
2327     }
2328 
2329     if (C == 0) {
2330       if (isCodeCompletionPoint(CurPtr-1)) {
2331         PP->CodeCompleteNaturalLanguage();
2332         FormTokenWithChars(Result, CurPtr-1, tok::unknown);
2333         cutOffLexing();
2334         return true;
2335       }
2336 
2337       NulCharacter = CurPtr-1;
2338     }
2339     C = getAndAdvanceChar(CurPtr, Result);
2340   }
2341 
2342   // If we are in C++11, lex the optional ud-suffix.
2343   if (LangOpts.CPlusPlus)
2344     CurPtr = LexUDSuffix(Result, CurPtr, false);
2345 
2346   // If a nul character existed in the character, warn about it.
2347   if (NulCharacter && !isLexingRawMode())
2348     Diag(NulCharacter, diag::null_in_char_or_string) << 0;
2349 
2350   // Update the location of token as well as BufferPtr.
2351   const char *TokStart = BufferPtr;
2352   FormTokenWithChars(Result, CurPtr, Kind);
2353   Result.setLiteralData(TokStart);
2354   return true;
2355 }
2356 
2357 /// SkipWhitespace - Efficiently skip over a series of whitespace characters.
2358 /// Update BufferPtr to point to the next non-whitespace character and return.
2359 ///
2360 /// This method forms a token and returns true if KeepWhitespaceMode is enabled.
2361 bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr,
2362                            bool &TokAtPhysicalStartOfLine) {
2363   // Whitespace - Skip it, then return the token after the whitespace.
2364   bool SawNewline = isVerticalWhitespace(CurPtr[-1]);
2365 
2366   unsigned char Char = *CurPtr;
2367 
2368   const char *lastNewLine = nullptr;
2369   auto setLastNewLine = [&](const char *Ptr) {
2370     lastNewLine = Ptr;
2371     if (!NewLinePtr)
2372       NewLinePtr = Ptr;
2373   };
2374   if (SawNewline)
2375     setLastNewLine(CurPtr - 1);
2376 
2377   // Skip consecutive spaces efficiently.
2378   while (true) {
2379     // Skip horizontal whitespace very aggressively.
2380     while (isHorizontalWhitespace(Char))
2381       Char = *++CurPtr;
2382 
2383     // Otherwise if we have something other than whitespace, we're done.
2384     if (!isVerticalWhitespace(Char))
2385       break;
2386 
2387     if (ParsingPreprocessorDirective) {
2388       // End of preprocessor directive line, let LexTokenInternal handle this.
2389       BufferPtr = CurPtr;
2390       return false;
2391     }
2392 
2393     // OK, but handle newline.
2394     if (*CurPtr == '\n')
2395       setLastNewLine(CurPtr);
2396     SawNewline = true;
2397     Char = *++CurPtr;
2398   }
2399 
2400   // If the client wants us to return whitespace, return it now.
2401   if (isKeepWhitespaceMode()) {
2402     FormTokenWithChars(Result, CurPtr, tok::unknown);
2403     if (SawNewline) {
2404       IsAtStartOfLine = true;
2405       IsAtPhysicalStartOfLine = true;
2406     }
2407     // FIXME: The next token will not have LeadingSpace set.
2408     return true;
2409   }
2410 
2411   // If this isn't immediately after a newline, there is leading space.
2412   char PrevChar = CurPtr[-1];
2413   bool HasLeadingSpace = !isVerticalWhitespace(PrevChar);
2414 
2415   Result.setFlagValue(Token::LeadingSpace, HasLeadingSpace);
2416   if (SawNewline) {
2417     Result.setFlag(Token::StartOfLine);
2418     TokAtPhysicalStartOfLine = true;
2419 
2420     if (NewLinePtr && lastNewLine && NewLinePtr != lastNewLine && PP) {
2421       if (auto *Handler = PP->getEmptylineHandler())
2422         Handler->HandleEmptyline(SourceRange(getSourceLocation(NewLinePtr + 1),
2423                                              getSourceLocation(lastNewLine)));
2424     }
2425   }
2426 
2427   BufferPtr = CurPtr;
2428   return false;
2429 }
2430 
2431 /// We have just read the // characters from input.  Skip until we find the
2432 /// newline character that terminates the comment.  Then update BufferPtr and
2433 /// return.
2434 ///
2435 /// If we're in KeepCommentMode or any CommentHandler has inserted
2436 /// some tokens, this will store the first token and return true.
2437 bool Lexer::SkipLineComment(Token &Result, const char *CurPtr,
2438                             bool &TokAtPhysicalStartOfLine) {
2439   // If Line comments aren't explicitly enabled for this language, emit an
2440   // extension warning.
2441   if (!LineComment) {
2442     if (!isLexingRawMode()) // There's no PP in raw mode, so can't emit diags.
2443       Diag(BufferPtr, diag::ext_line_comment);
2444 
2445     // Mark them enabled so we only emit one warning for this translation
2446     // unit.
2447     LineComment = true;
2448   }
2449 
2450   // Scan over the body of the comment.  The common case, when scanning, is that
2451   // the comment contains normal ascii characters with nothing interesting in
2452   // them.  As such, optimize for this case with the inner loop.
2453   //
2454   // This loop terminates with CurPtr pointing at the newline (or end of buffer)
2455   // character that ends the line comment.
2456 
2457   // C++23 [lex.phases] p1
2458   // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a
2459   // diagnostic only once per entire ill-formed subsequence to avoid
2460   // emiting to many diagnostics (see http://unicode.org/review/pr-121.html).
2461   bool UnicodeDecodingAlreadyDiagnosed = false;
2462 
2463   char C;
2464   while (true) {
2465     C = *CurPtr;
2466     // Skip over characters in the fast loop.
2467     while (isASCII(C) && C != 0 &&   // Potentially EOF.
2468            C != '\n' && C != '\r') { // Newline or DOS-style newline.
2469       C = *++CurPtr;
2470       UnicodeDecodingAlreadyDiagnosed = false;
2471     }
2472 
2473     if (!isASCII(C)) {
2474       unsigned Length = llvm::getUTF8SequenceSize(
2475           (const llvm::UTF8 *)CurPtr, (const llvm::UTF8 *)BufferEnd);
2476       if (Length == 0) {
2477         if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode())
2478           Diag(CurPtr, diag::warn_invalid_utf8_in_comment);
2479         UnicodeDecodingAlreadyDiagnosed = true;
2480         ++CurPtr;
2481       } else {
2482         UnicodeDecodingAlreadyDiagnosed = false;
2483         CurPtr += Length;
2484       }
2485       continue;
2486     }
2487 
2488     const char *NextLine = CurPtr;
2489     if (C != 0) {
2490       // We found a newline, see if it's escaped.
2491       const char *EscapePtr = CurPtr-1;
2492       bool HasSpace = false;
2493       while (isHorizontalWhitespace(*EscapePtr)) { // Skip whitespace.
2494         --EscapePtr;
2495         HasSpace = true;
2496       }
2497 
2498       if (*EscapePtr == '\\')
2499         // Escaped newline.
2500         CurPtr = EscapePtr;
2501       else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' &&
2502                EscapePtr[-2] == '?' && LangOpts.Trigraphs)
2503         // Trigraph-escaped newline.
2504         CurPtr = EscapePtr-2;
2505       else
2506         break; // This is a newline, we're done.
2507 
2508       // If there was space between the backslash and newline, warn about it.
2509       if (HasSpace && !isLexingRawMode())
2510         Diag(EscapePtr, diag::backslash_newline_space);
2511     }
2512 
2513     // Otherwise, this is a hard case.  Fall back on getAndAdvanceChar to
2514     // properly decode the character.  Read it in raw mode to avoid emitting
2515     // diagnostics about things like trigraphs.  If we see an escaped newline,
2516     // we'll handle it below.
2517     const char *OldPtr = CurPtr;
2518     bool OldRawMode = isLexingRawMode();
2519     LexingRawMode = true;
2520     C = getAndAdvanceChar(CurPtr, Result);
2521     LexingRawMode = OldRawMode;
2522 
2523     // If we only read only one character, then no special handling is needed.
2524     // We're done and can skip forward to the newline.
2525     if (C != 0 && CurPtr == OldPtr+1) {
2526       CurPtr = NextLine;
2527       break;
2528     }
2529 
2530     // If we read multiple characters, and one of those characters was a \r or
2531     // \n, then we had an escaped newline within the comment.  Emit diagnostic
2532     // unless the next line is also a // comment.
2533     if (CurPtr != OldPtr + 1 && C != '/' &&
2534         (CurPtr == BufferEnd + 1 || CurPtr[0] != '/')) {
2535       for (; OldPtr != CurPtr; ++OldPtr)
2536         if (OldPtr[0] == '\n' || OldPtr[0] == '\r') {
2537           // Okay, we found a // comment that ends in a newline, if the next
2538           // line is also a // comment, but has spaces, don't emit a diagnostic.
2539           if (isWhitespace(C)) {
2540             const char *ForwardPtr = CurPtr;
2541             while (isWhitespace(*ForwardPtr))  // Skip whitespace.
2542               ++ForwardPtr;
2543             if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/')
2544               break;
2545           }
2546 
2547           if (!isLexingRawMode())
2548             Diag(OldPtr-1, diag::ext_multi_line_line_comment);
2549           break;
2550         }
2551     }
2552 
2553     if (C == '\r' || C == '\n' || CurPtr == BufferEnd + 1) {
2554       --CurPtr;
2555       break;
2556     }
2557 
2558     if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
2559       PP->CodeCompleteNaturalLanguage();
2560       cutOffLexing();
2561       return false;
2562     }
2563   }
2564 
2565   // Found but did not consume the newline.  Notify comment handlers about the
2566   // comment unless we're in a #if 0 block.
2567   if (PP && !isLexingRawMode() &&
2568       PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
2569                                             getSourceLocation(CurPtr)))) {
2570     BufferPtr = CurPtr;
2571     return true; // A token has to be returned.
2572   }
2573 
2574   // If we are returning comments as tokens, return this comment as a token.
2575   if (inKeepCommentMode())
2576     return SaveLineComment(Result, CurPtr);
2577 
2578   // If we are inside a preprocessor directive and we see the end of line,
2579   // return immediately, so that the lexer can return this as an EOD token.
2580   if (ParsingPreprocessorDirective || CurPtr == BufferEnd) {
2581     BufferPtr = CurPtr;
2582     return false;
2583   }
2584 
2585   // Otherwise, eat the \n character.  We don't care if this is a \n\r or
2586   // \r\n sequence.  This is an efficiency hack (because we know the \n can't
2587   // contribute to another token), it isn't needed for correctness.  Note that
2588   // this is ok even in KeepWhitespaceMode, because we would have returned the
2589   /// comment above in that mode.
2590   NewLinePtr = CurPtr++;
2591 
2592   // The next returned token is at the start of the line.
2593   Result.setFlag(Token::StartOfLine);
2594   TokAtPhysicalStartOfLine = true;
2595   // No leading whitespace seen so far.
2596   Result.clearFlag(Token::LeadingSpace);
2597   BufferPtr = CurPtr;
2598   return false;
2599 }
2600 
2601 /// If in save-comment mode, package up this Line comment in an appropriate
2602 /// way and return it.
2603 bool Lexer::SaveLineComment(Token &Result, const char *CurPtr) {
2604   // If we're not in a preprocessor directive, just return the // comment
2605   // directly.
2606   FormTokenWithChars(Result, CurPtr, tok::comment);
2607 
2608   if (!ParsingPreprocessorDirective || LexingRawMode)
2609     return true;
2610 
2611   // If this Line-style comment is in a macro definition, transmogrify it into
2612   // a C-style block comment.
2613   bool Invalid = false;
2614   std::string Spelling = PP->getSpelling(Result, &Invalid);
2615   if (Invalid)
2616     return true;
2617 
2618   assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?");
2619   Spelling[1] = '*';   // Change prefix to "/*".
2620   Spelling += "*/";    // add suffix.
2621 
2622   Result.setKind(tok::comment);
2623   PP->CreateString(Spelling, Result,
2624                    Result.getLocation(), Result.getLocation());
2625   return true;
2626 }
2627 
2628 /// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline
2629 /// character (either \\n or \\r) is part of an escaped newline sequence.  Issue
2630 /// a diagnostic if so.  We know that the newline is inside of a block comment.
2631 static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr, Lexer *L,
2632                                                   bool Trigraphs) {
2633   assert(CurPtr[0] == '\n' || CurPtr[0] == '\r');
2634 
2635   // Position of the first trigraph in the ending sequence.
2636   const char *TrigraphPos = nullptr;
2637   // Position of the first whitespace after a '\' in the ending sequence.
2638   const char *SpacePos = nullptr;
2639 
2640   while (true) {
2641     // Back up off the newline.
2642     --CurPtr;
2643 
2644     // If this is a two-character newline sequence, skip the other character.
2645     if (CurPtr[0] == '\n' || CurPtr[0] == '\r') {
2646       // \n\n or \r\r -> not escaped newline.
2647       if (CurPtr[0] == CurPtr[1])
2648         return false;
2649       // \n\r or \r\n -> skip the newline.
2650       --CurPtr;
2651     }
2652 
2653     // If we have horizontal whitespace, skip over it.  We allow whitespace
2654     // between the slash and newline.
2655     while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) {
2656       SpacePos = CurPtr;
2657       --CurPtr;
2658     }
2659 
2660     // If we have a slash, this is an escaped newline.
2661     if (*CurPtr == '\\') {
2662       --CurPtr;
2663     } else if (CurPtr[0] == '/' && CurPtr[-1] == '?' && CurPtr[-2] == '?') {
2664       // This is a trigraph encoding of a slash.
2665       TrigraphPos = CurPtr - 2;
2666       CurPtr -= 3;
2667     } else {
2668       return false;
2669     }
2670 
2671     // If the character preceding the escaped newline is a '*', then after line
2672     // splicing we have a '*/' ending the comment.
2673     if (*CurPtr == '*')
2674       break;
2675 
2676     if (*CurPtr != '\n' && *CurPtr != '\r')
2677       return false;
2678   }
2679 
2680   if (TrigraphPos) {
2681     // If no trigraphs are enabled, warn that we ignored this trigraph and
2682     // ignore this * character.
2683     if (!Trigraphs) {
2684       if (!L->isLexingRawMode())
2685         L->Diag(TrigraphPos, diag::trigraph_ignored_block_comment);
2686       return false;
2687     }
2688     if (!L->isLexingRawMode())
2689       L->Diag(TrigraphPos, diag::trigraph_ends_block_comment);
2690   }
2691 
2692   // Warn about having an escaped newline between the */ characters.
2693   if (!L->isLexingRawMode())
2694     L->Diag(CurPtr + 1, diag::escaped_newline_block_comment_end);
2695 
2696   // If there was space between the backslash and newline, warn about it.
2697   if (SpacePos && !L->isLexingRawMode())
2698     L->Diag(SpacePos, diag::backslash_newline_space);
2699 
2700   return true;
2701 }
2702 
2703 #ifdef __SSE2__
2704 #include <emmintrin.h>
2705 #elif __ALTIVEC__
2706 #include <altivec.h>
2707 #undef bool
2708 #endif
2709 
2710 /// We have just read from input the / and * characters that started a comment.
2711 /// Read until we find the * and / characters that terminate the comment.
2712 /// Note that we don't bother decoding trigraphs or escaped newlines in block
2713 /// comments, because they cannot cause the comment to end.  The only thing
2714 /// that can happen is the comment could end with an escaped newline between
2715 /// the terminating * and /.
2716 ///
2717 /// If we're in KeepCommentMode or any CommentHandler has inserted
2718 /// some tokens, this will store the first token and return true.
2719 bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr,
2720                              bool &TokAtPhysicalStartOfLine) {
2721   // Scan one character past where we should, looking for a '/' character.  Once
2722   // we find it, check to see if it was preceded by a *.  This common
2723   // optimization helps people who like to put a lot of * characters in their
2724   // comments.
2725 
2726   // The first character we get with newlines and trigraphs skipped to handle
2727   // the degenerate /*/ case below correctly if the * has an escaped newline
2728   // after it.
2729   unsigned CharSize;
2730   unsigned char C = getCharAndSize(CurPtr, CharSize);
2731   CurPtr += CharSize;
2732   if (C == 0 && CurPtr == BufferEnd+1) {
2733     if (!isLexingRawMode())
2734       Diag(BufferPtr, diag::err_unterminated_block_comment);
2735     --CurPtr;
2736 
2737     // KeepWhitespaceMode should return this broken comment as a token.  Since
2738     // it isn't a well formed comment, just return it as an 'unknown' token.
2739     if (isKeepWhitespaceMode()) {
2740       FormTokenWithChars(Result, CurPtr, tok::unknown);
2741       return true;
2742     }
2743 
2744     BufferPtr = CurPtr;
2745     return false;
2746   }
2747 
2748   // Check to see if the first character after the '/*' is another /.  If so,
2749   // then this slash does not end the block comment, it is part of it.
2750   if (C == '/')
2751     C = *CurPtr++;
2752 
2753   // C++23 [lex.phases] p1
2754   // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a
2755   // diagnostic only once per entire ill-formed subsequence to avoid
2756   // emiting to many diagnostics (see http://unicode.org/review/pr-121.html).
2757   bool UnicodeDecodingAlreadyDiagnosed = false;
2758 
2759   while (true) {
2760     // Skip over all non-interesting characters until we find end of buffer or a
2761     // (probably ending) '/' character.
2762     if (CurPtr + 24 < BufferEnd &&
2763         // If there is a code-completion point avoid the fast scan because it
2764         // doesn't check for '\0'.
2765         !(PP && PP->getCodeCompletionFileLoc() == FileLoc)) {
2766       // While not aligned to a 16-byte boundary.
2767       while (C != '/' && (intptr_t)CurPtr % 16 != 0) {
2768         if (!isASCII(C))
2769           goto MultiByteUTF8;
2770         C = *CurPtr++;
2771       }
2772       if (C == '/') goto FoundSlash;
2773 
2774 #ifdef __SSE2__
2775       __m128i Slashes = _mm_set1_epi8('/');
2776       while (CurPtr + 16 < BufferEnd) {
2777         int Mask = _mm_movemask_epi8(*(const __m128i *)CurPtr);
2778         if (LLVM_UNLIKELY(Mask != 0)) {
2779           goto MultiByteUTF8;
2780         }
2781         // look for slashes
2782         int cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(*(const __m128i*)CurPtr,
2783                                     Slashes));
2784         if (cmp != 0) {
2785           // Adjust the pointer to point directly after the first slash. It's
2786           // not necessary to set C here, it will be overwritten at the end of
2787           // the outer loop.
2788           CurPtr += llvm::countr_zero<unsigned>(cmp) + 1;
2789           goto FoundSlash;
2790         }
2791         CurPtr += 16;
2792       }
2793 #elif __ALTIVEC__
2794       __vector unsigned char LongUTF = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
2795                                         0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
2796                                         0x80, 0x80, 0x80, 0x80};
2797       __vector unsigned char Slashes = {
2798         '/', '/', '/', '/',  '/', '/', '/', '/',
2799         '/', '/', '/', '/',  '/', '/', '/', '/'
2800       };
2801       while (CurPtr + 16 < BufferEnd) {
2802         if (LLVM_UNLIKELY(
2803                 vec_any_ge(*(const __vector unsigned char *)CurPtr, LongUTF)))
2804           goto MultiByteUTF8;
2805         if (vec_any_eq(*(const __vector unsigned char *)CurPtr, Slashes)) {
2806           break;
2807         }
2808         CurPtr += 16;
2809       }
2810 
2811 #else
2812       while (CurPtr + 16 < BufferEnd) {
2813         bool HasNonASCII = false;
2814         for (unsigned I = 0; I < 16; ++I)
2815           HasNonASCII |= !isASCII(CurPtr[I]);
2816 
2817         if (LLVM_UNLIKELY(HasNonASCII))
2818           goto MultiByteUTF8;
2819 
2820         bool HasSlash = false;
2821         for (unsigned I = 0; I < 16; ++I)
2822           HasSlash |= CurPtr[I] == '/';
2823         if (HasSlash)
2824           break;
2825         CurPtr += 16;
2826       }
2827 #endif
2828 
2829       // It has to be one of the bytes scanned, increment to it and read one.
2830       C = *CurPtr++;
2831     }
2832 
2833     // Loop to scan the remainder, warning on invalid UTF-8
2834     // if the corresponding warning is enabled, emitting a diagnostic only once
2835     // per sequence that cannot be decoded.
2836     while (C != '/' && C != '\0') {
2837       if (isASCII(C)) {
2838         UnicodeDecodingAlreadyDiagnosed = false;
2839         C = *CurPtr++;
2840         continue;
2841       }
2842     MultiByteUTF8:
2843       // CurPtr is 1 code unit past C, so to decode
2844       // the codepoint, we need to read from the previous position.
2845       unsigned Length = llvm::getUTF8SequenceSize(
2846           (const llvm::UTF8 *)CurPtr - 1, (const llvm::UTF8 *)BufferEnd);
2847       if (Length == 0) {
2848         if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode())
2849           Diag(CurPtr - 1, diag::warn_invalid_utf8_in_comment);
2850         UnicodeDecodingAlreadyDiagnosed = true;
2851       } else {
2852         UnicodeDecodingAlreadyDiagnosed = false;
2853         CurPtr += Length - 1;
2854       }
2855       C = *CurPtr++;
2856     }
2857 
2858     if (C == '/') {
2859   FoundSlash:
2860       if (CurPtr[-2] == '*')  // We found the final */.  We're done!
2861         break;
2862 
2863       if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) {
2864         if (isEndOfBlockCommentWithEscapedNewLine(CurPtr - 2, this,
2865                                                   LangOpts.Trigraphs)) {
2866           // We found the final */, though it had an escaped newline between the
2867           // * and /.  We're done!
2868           break;
2869         }
2870       }
2871       if (CurPtr[0] == '*' && CurPtr[1] != '/') {
2872         // If this is a /* inside of the comment, emit a warning.  Don't do this
2873         // if this is a /*/, which will end the comment.  This misses cases with
2874         // embedded escaped newlines, but oh well.
2875         if (!isLexingRawMode())
2876           Diag(CurPtr-1, diag::warn_nested_block_comment);
2877       }
2878     } else if (C == 0 && CurPtr == BufferEnd+1) {
2879       if (!isLexingRawMode())
2880         Diag(BufferPtr, diag::err_unterminated_block_comment);
2881       // Note: the user probably forgot a */.  We could continue immediately
2882       // after the /*, but this would involve lexing a lot of what really is the
2883       // comment, which surely would confuse the parser.
2884       --CurPtr;
2885 
2886       // KeepWhitespaceMode should return this broken comment as a token.  Since
2887       // it isn't a well formed comment, just return it as an 'unknown' token.
2888       if (isKeepWhitespaceMode()) {
2889         FormTokenWithChars(Result, CurPtr, tok::unknown);
2890         return true;
2891       }
2892 
2893       BufferPtr = CurPtr;
2894       return false;
2895     } else if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) {
2896       PP->CodeCompleteNaturalLanguage();
2897       cutOffLexing();
2898       return false;
2899     }
2900 
2901     C = *CurPtr++;
2902   }
2903 
2904   // Notify comment handlers about the comment unless we're in a #if 0 block.
2905   if (PP && !isLexingRawMode() &&
2906       PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr),
2907                                             getSourceLocation(CurPtr)))) {
2908     BufferPtr = CurPtr;
2909     return true; // A token has to be returned.
2910   }
2911 
2912   // If we are returning comments as tokens, return this comment as a token.
2913   if (inKeepCommentMode()) {
2914     FormTokenWithChars(Result, CurPtr, tok::comment);
2915     return true;
2916   }
2917 
2918   // It is common for the tokens immediately after a /**/ comment to be
2919   // whitespace.  Instead of going through the big switch, handle it
2920   // efficiently now.  This is safe even in KeepWhitespaceMode because we would
2921   // have already returned above with the comment as a token.
2922   if (isHorizontalWhitespace(*CurPtr)) {
2923     SkipWhitespace(Result, CurPtr+1, TokAtPhysicalStartOfLine);
2924     return false;
2925   }
2926 
2927   // Otherwise, just return so that the next character will be lexed as a token.
2928   BufferPtr = CurPtr;
2929   Result.setFlag(Token::LeadingSpace);
2930   return false;
2931 }
2932 
2933 //===----------------------------------------------------------------------===//
2934 // Primary Lexing Entry Points
2935 //===----------------------------------------------------------------------===//
2936 
2937 /// ReadToEndOfLine - Read the rest of the current preprocessor line as an
2938 /// uninterpreted string.  This switches the lexer out of directive mode.
2939 void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) {
2940   assert(ParsingPreprocessorDirective && ParsingFilename == false &&
2941          "Must be in a preprocessing directive!");
2942   Token Tmp;
2943   Tmp.startToken();
2944 
2945   // CurPtr - Cache BufferPtr in an automatic variable.
2946   const char *CurPtr = BufferPtr;
2947   while (true) {
2948     char Char = getAndAdvanceChar(CurPtr, Tmp);
2949     switch (Char) {
2950     default:
2951       if (Result)
2952         Result->push_back(Char);
2953       break;
2954     case 0:  // Null.
2955       // Found end of file?
2956       if (CurPtr-1 != BufferEnd) {
2957         if (isCodeCompletionPoint(CurPtr-1)) {
2958           PP->CodeCompleteNaturalLanguage();
2959           cutOffLexing();
2960           return;
2961         }
2962 
2963         // Nope, normal character, continue.
2964         if (Result)
2965           Result->push_back(Char);
2966         break;
2967       }
2968       // FALL THROUGH.
2969       [[fallthrough]];
2970     case '\r':
2971     case '\n':
2972       // Okay, we found the end of the line. First, back up past the \0, \r, \n.
2973       assert(CurPtr[-1] == Char && "Trigraphs for newline?");
2974       BufferPtr = CurPtr-1;
2975 
2976       // Next, lex the character, which should handle the EOD transition.
2977       Lex(Tmp);
2978       if (Tmp.is(tok::code_completion)) {
2979         if (PP)
2980           PP->CodeCompleteNaturalLanguage();
2981         Lex(Tmp);
2982       }
2983       assert(Tmp.is(tok::eod) && "Unexpected token!");
2984 
2985       // Finally, we're done;
2986       return;
2987     }
2988   }
2989 }
2990 
2991 /// LexEndOfFile - CurPtr points to the end of this file.  Handle this
2992 /// condition, reporting diagnostics and handling other edge cases as required.
2993 /// This returns true if Result contains a token, false if PP.Lex should be
2994 /// called again.
2995 bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) {
2996   // If we hit the end of the file while parsing a preprocessor directive,
2997   // end the preprocessor directive first.  The next token returned will
2998   // then be the end of file.
2999   if (ParsingPreprocessorDirective) {
3000     // Done parsing the "line".
3001     ParsingPreprocessorDirective = false;
3002     // Update the location of token as well as BufferPtr.
3003     FormTokenWithChars(Result, CurPtr, tok::eod);
3004 
3005     // Restore comment saving mode, in case it was disabled for directive.
3006     if (PP)
3007       resetExtendedTokenMode();
3008     return true;  // Have a token.
3009   }
3010 
3011   // If we are in raw mode, return this event as an EOF token.  Let the caller
3012   // that put us in raw mode handle the event.
3013   if (isLexingRawMode()) {
3014     Result.startToken();
3015     BufferPtr = BufferEnd;
3016     FormTokenWithChars(Result, BufferEnd, tok::eof);
3017     return true;
3018   }
3019 
3020   if (PP->isRecordingPreamble() && PP->isInPrimaryFile()) {
3021     PP->setRecordedPreambleConditionalStack(ConditionalStack);
3022     // If the preamble cuts off the end of a header guard, consider it guarded.
3023     // The guard is valid for the preamble content itself, and for tools the
3024     // most useful answer is "yes, this file has a header guard".
3025     if (!ConditionalStack.empty())
3026       MIOpt.ExitTopLevelConditional();
3027     ConditionalStack.clear();
3028   }
3029 
3030   // Issue diagnostics for unterminated #if and missing newline.
3031 
3032   // If we are in a #if directive, emit an error.
3033   while (!ConditionalStack.empty()) {
3034     if (PP->getCodeCompletionFileLoc() != FileLoc)
3035       PP->Diag(ConditionalStack.back().IfLoc,
3036                diag::err_pp_unterminated_conditional);
3037     ConditionalStack.pop_back();
3038   }
3039 
3040   // C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue
3041   // a pedwarn.
3042   if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) {
3043     DiagnosticsEngine &Diags = PP->getDiagnostics();
3044     SourceLocation EndLoc = getSourceLocation(BufferEnd);
3045     unsigned DiagID;
3046 
3047     if (LangOpts.CPlusPlus11) {
3048       // C++11 [lex.phases] 2.2 p2
3049       // Prefer the C++98 pedantic compatibility warning over the generic,
3050       // non-extension, user-requested "missing newline at EOF" warning.
3051       if (!Diags.isIgnored(diag::warn_cxx98_compat_no_newline_eof, EndLoc)) {
3052         DiagID = diag::warn_cxx98_compat_no_newline_eof;
3053       } else {
3054         DiagID = diag::warn_no_newline_eof;
3055       }
3056     } else {
3057       DiagID = diag::ext_no_newline_eof;
3058     }
3059 
3060     Diag(BufferEnd, DiagID)
3061       << FixItHint::CreateInsertion(EndLoc, "\n");
3062   }
3063 
3064   BufferPtr = CurPtr;
3065 
3066   // Finally, let the preprocessor handle this.
3067   return PP->HandleEndOfFile(Result, isPragmaLexer());
3068 }
3069 
3070 /// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from
3071 /// the specified lexer will return a tok::l_paren token, 0 if it is something
3072 /// else and 2 if there are no more tokens in the buffer controlled by the
3073 /// lexer.
3074 unsigned Lexer::isNextPPTokenLParen() {
3075   assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?");
3076 
3077   if (isDependencyDirectivesLexer()) {
3078     if (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size())
3079       return 2;
3080     return DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is(
3081         tok::l_paren);
3082   }
3083 
3084   // Switch to 'skipping' mode.  This will ensure that we can lex a token
3085   // without emitting diagnostics, disables macro expansion, and will cause EOF
3086   // to return an EOF token instead of popping the include stack.
3087   LexingRawMode = true;
3088 
3089   // Save state that can be changed while lexing so that we can restore it.
3090   const char *TmpBufferPtr = BufferPtr;
3091   bool inPPDirectiveMode = ParsingPreprocessorDirective;
3092   bool atStartOfLine = IsAtStartOfLine;
3093   bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
3094   bool leadingSpace = HasLeadingSpace;
3095 
3096   Token Tok;
3097   Lex(Tok);
3098 
3099   // Restore state that may have changed.
3100   BufferPtr = TmpBufferPtr;
3101   ParsingPreprocessorDirective = inPPDirectiveMode;
3102   HasLeadingSpace = leadingSpace;
3103   IsAtStartOfLine = atStartOfLine;
3104   IsAtPhysicalStartOfLine = atPhysicalStartOfLine;
3105 
3106   // Restore the lexer back to non-skipping mode.
3107   LexingRawMode = false;
3108 
3109   if (Tok.is(tok::eof))
3110     return 2;
3111   return Tok.is(tok::l_paren);
3112 }
3113 
3114 /// Find the end of a version control conflict marker.
3115 static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd,
3116                                    ConflictMarkerKind CMK) {
3117   const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>";
3118   size_t TermLen = CMK == CMK_Perforce ? 5 : 7;
3119   auto RestOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(TermLen);
3120   size_t Pos = RestOfBuffer.find(Terminator);
3121   while (Pos != StringRef::npos) {
3122     // Must occur at start of line.
3123     if (Pos == 0 ||
3124         (RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) {
3125       RestOfBuffer = RestOfBuffer.substr(Pos+TermLen);
3126       Pos = RestOfBuffer.find(Terminator);
3127       continue;
3128     }
3129     return RestOfBuffer.data()+Pos;
3130   }
3131   return nullptr;
3132 }
3133 
3134 /// IsStartOfConflictMarker - If the specified pointer is the start of a version
3135 /// control conflict marker like '<<<<<<<', recognize it as such, emit an error
3136 /// and recover nicely.  This returns true if it is a conflict marker and false
3137 /// if not.
3138 bool Lexer::IsStartOfConflictMarker(const char *CurPtr) {
3139   // Only a conflict marker if it starts at the beginning of a line.
3140   if (CurPtr != BufferStart &&
3141       CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
3142     return false;
3143 
3144   // Check to see if we have <<<<<<< or >>>>.
3145   if (!StringRef(CurPtr, BufferEnd - CurPtr).startswith("<<<<<<<") &&
3146       !StringRef(CurPtr, BufferEnd - CurPtr).startswith(">>>> "))
3147     return false;
3148 
3149   // If we have a situation where we don't care about conflict markers, ignore
3150   // it.
3151   if (CurrentConflictMarkerState || isLexingRawMode())
3152     return false;
3153 
3154   ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce;
3155 
3156   // Check to see if there is an ending marker somewhere in the buffer at the
3157   // start of a line to terminate this conflict marker.
3158   if (FindConflictEnd(CurPtr, BufferEnd, Kind)) {
3159     // We found a match.  We are really in a conflict marker.
3160     // Diagnose this, and ignore to the end of line.
3161     Diag(CurPtr, diag::err_conflict_marker);
3162     CurrentConflictMarkerState = Kind;
3163 
3164     // Skip ahead to the end of line.  We know this exists because the
3165     // end-of-conflict marker starts with \r or \n.
3166     while (*CurPtr != '\r' && *CurPtr != '\n') {
3167       assert(CurPtr != BufferEnd && "Didn't find end of line");
3168       ++CurPtr;
3169     }
3170     BufferPtr = CurPtr;
3171     return true;
3172   }
3173 
3174   // No end of conflict marker found.
3175   return false;
3176 }
3177 
3178 /// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if
3179 /// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it
3180 /// is the end of a conflict marker.  Handle it by ignoring up until the end of
3181 /// the line.  This returns true if it is a conflict marker and false if not.
3182 bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) {
3183   // Only a conflict marker if it starts at the beginning of a line.
3184   if (CurPtr != BufferStart &&
3185       CurPtr[-1] != '\n' && CurPtr[-1] != '\r')
3186     return false;
3187 
3188   // If we have a situation where we don't care about conflict markers, ignore
3189   // it.
3190   if (!CurrentConflictMarkerState || isLexingRawMode())
3191     return false;
3192 
3193   // Check to see if we have the marker (4 characters in a row).
3194   for (unsigned i = 1; i != 4; ++i)
3195     if (CurPtr[i] != CurPtr[0])
3196       return false;
3197 
3198   // If we do have it, search for the end of the conflict marker.  This could
3199   // fail if it got skipped with a '#if 0' or something.  Note that CurPtr might
3200   // be the end of conflict marker.
3201   if (const char *End = FindConflictEnd(CurPtr, BufferEnd,
3202                                         CurrentConflictMarkerState)) {
3203     CurPtr = End;
3204 
3205     // Skip ahead to the end of line.
3206     while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n')
3207       ++CurPtr;
3208 
3209     BufferPtr = CurPtr;
3210 
3211     // No longer in the conflict marker.
3212     CurrentConflictMarkerState = CMK_None;
3213     return true;
3214   }
3215 
3216   return false;
3217 }
3218 
3219 static const char *findPlaceholderEnd(const char *CurPtr,
3220                                       const char *BufferEnd) {
3221   if (CurPtr == BufferEnd)
3222     return nullptr;
3223   BufferEnd -= 1; // Scan until the second last character.
3224   for (; CurPtr != BufferEnd; ++CurPtr) {
3225     if (CurPtr[0] == '#' && CurPtr[1] == '>')
3226       return CurPtr + 2;
3227   }
3228   return nullptr;
3229 }
3230 
3231 bool Lexer::lexEditorPlaceholder(Token &Result, const char *CurPtr) {
3232   assert(CurPtr[-1] == '<' && CurPtr[0] == '#' && "Not a placeholder!");
3233   if (!PP || !PP->getPreprocessorOpts().LexEditorPlaceholders || LexingRawMode)
3234     return false;
3235   const char *End = findPlaceholderEnd(CurPtr + 1, BufferEnd);
3236   if (!End)
3237     return false;
3238   const char *Start = CurPtr - 1;
3239   if (!LangOpts.AllowEditorPlaceholders)
3240     Diag(Start, diag::err_placeholder_in_source);
3241   Result.startToken();
3242   FormTokenWithChars(Result, End, tok::raw_identifier);
3243   Result.setRawIdentifierData(Start);
3244   PP->LookUpIdentifierInfo(Result);
3245   Result.setFlag(Token::IsEditorPlaceholder);
3246   BufferPtr = End;
3247   return true;
3248 }
3249 
3250 bool Lexer::isCodeCompletionPoint(const char *CurPtr) const {
3251   if (PP && PP->isCodeCompletionEnabled()) {
3252     SourceLocation Loc = FileLoc.getLocWithOffset(CurPtr-BufferStart);
3253     return Loc == PP->getCodeCompletionLoc();
3254   }
3255 
3256   return false;
3257 }
3258 
3259 std::optional<uint32_t> Lexer::tryReadNumericUCN(const char *&StartPtr,
3260                                                  const char *SlashLoc,
3261                                                  Token *Result) {
3262   unsigned CharSize;
3263   char Kind = getCharAndSize(StartPtr, CharSize);
3264   assert((Kind == 'u' || Kind == 'U') && "expected a UCN");
3265 
3266   unsigned NumHexDigits;
3267   if (Kind == 'u')
3268     NumHexDigits = 4;
3269   else if (Kind == 'U')
3270     NumHexDigits = 8;
3271 
3272   bool Delimited = false;
3273   bool FoundEndDelimiter = false;
3274   unsigned Count = 0;
3275   bool Diagnose = Result && !isLexingRawMode();
3276 
3277   if (!LangOpts.CPlusPlus && !LangOpts.C99) {
3278     if (Diagnose)
3279       Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89);
3280     return std::nullopt;
3281   }
3282 
3283   const char *CurPtr = StartPtr + CharSize;
3284   const char *KindLoc = &CurPtr[-1];
3285 
3286   uint32_t CodePoint = 0;
3287   while (Count != NumHexDigits || Delimited) {
3288     char C = getCharAndSize(CurPtr, CharSize);
3289     if (!Delimited && Count == 0 && C == '{') {
3290       Delimited = true;
3291       CurPtr += CharSize;
3292       continue;
3293     }
3294 
3295     if (Delimited && C == '}') {
3296       CurPtr += CharSize;
3297       FoundEndDelimiter = true;
3298       break;
3299     }
3300 
3301     unsigned Value = llvm::hexDigitValue(C);
3302     if (Value == -1U) {
3303       if (!Delimited)
3304         break;
3305       if (Diagnose)
3306         Diag(SlashLoc, diag::warn_delimited_ucn_incomplete)
3307             << StringRef(KindLoc, 1);
3308       return std::nullopt;
3309     }
3310 
3311     if (CodePoint & 0xF000'0000) {
3312       if (Diagnose)
3313         Diag(KindLoc, diag::err_escape_too_large) << 0;
3314       return std::nullopt;
3315     }
3316 
3317     CodePoint <<= 4;
3318     CodePoint |= Value;
3319     CurPtr += CharSize;
3320     Count++;
3321   }
3322 
3323   if (Count == 0) {
3324     if (Diagnose)
3325       Diag(SlashLoc, FoundEndDelimiter ? diag::warn_delimited_ucn_empty
3326                                        : diag::warn_ucn_escape_no_digits)
3327           << StringRef(KindLoc, 1);
3328     return std::nullopt;
3329   }
3330 
3331   if (Delimited && Kind == 'U') {
3332     if (Diagnose)
3333       Diag(SlashLoc, diag::err_hex_escape_no_digits) << StringRef(KindLoc, 1);
3334     return std::nullopt;
3335   }
3336 
3337   if (!Delimited && Count != NumHexDigits) {
3338     if (Diagnose) {
3339       Diag(SlashLoc, diag::warn_ucn_escape_incomplete);
3340       // If the user wrote \U1234, suggest a fixit to \u.
3341       if (Count == 4 && NumHexDigits == 8) {
3342         CharSourceRange URange = makeCharRange(*this, KindLoc, KindLoc + 1);
3343         Diag(KindLoc, diag::note_ucn_four_not_eight)
3344             << FixItHint::CreateReplacement(URange, "u");
3345       }
3346     }
3347     return std::nullopt;
3348   }
3349 
3350   if (Delimited && PP) {
3351     Diag(SlashLoc, PP->getLangOpts().CPlusPlus23
3352                        ? diag::warn_cxx23_delimited_escape_sequence
3353                        : diag::ext_delimited_escape_sequence)
3354         << /*delimited*/ 0 << (PP->getLangOpts().CPlusPlus ? 1 : 0);
3355   }
3356 
3357   if (Result) {
3358     Result->setFlag(Token::HasUCN);
3359     // If the UCN contains either a trigraph or a line splicing,
3360     // we need to call getAndAdvanceChar again to set the appropriate flags
3361     // on Result.
3362     if (CurPtr - StartPtr == (ptrdiff_t)(Count + 1 + (Delimited ? 2 : 0)))
3363       StartPtr = CurPtr;
3364     else
3365       while (StartPtr != CurPtr)
3366         (void)getAndAdvanceChar(StartPtr, *Result);
3367   } else {
3368     StartPtr = CurPtr;
3369   }
3370   return CodePoint;
3371 }
3372 
3373 std::optional<uint32_t> Lexer::tryReadNamedUCN(const char *&StartPtr,
3374                                                const char *SlashLoc,
3375                                                Token *Result) {
3376   unsigned CharSize;
3377   bool Diagnose = Result && !isLexingRawMode();
3378 
3379   char C = getCharAndSize(StartPtr, CharSize);
3380   assert(C == 'N' && "expected \\N{...}");
3381 
3382   const char *CurPtr = StartPtr + CharSize;
3383   const char *KindLoc = &CurPtr[-1];
3384 
3385   C = getCharAndSize(CurPtr, CharSize);
3386   if (C != '{') {
3387     if (Diagnose)
3388       Diag(SlashLoc, diag::warn_ucn_escape_incomplete);
3389     return std::nullopt;
3390   }
3391   CurPtr += CharSize;
3392   const char *StartName = CurPtr;
3393   bool FoundEndDelimiter = false;
3394   llvm::SmallVector<char, 30> Buffer;
3395   while (C) {
3396     C = getCharAndSize(CurPtr, CharSize);
3397     CurPtr += CharSize;
3398     if (C == '}') {
3399       FoundEndDelimiter = true;
3400       break;
3401     }
3402 
3403     if (isVerticalWhitespace(C))
3404       break;
3405     Buffer.push_back(C);
3406   }
3407 
3408   if (!FoundEndDelimiter || Buffer.empty()) {
3409     if (Diagnose)
3410       Diag(SlashLoc, FoundEndDelimiter ? diag::warn_delimited_ucn_empty
3411                                        : diag::warn_delimited_ucn_incomplete)
3412           << StringRef(KindLoc, 1);
3413     return std::nullopt;
3414   }
3415 
3416   StringRef Name(Buffer.data(), Buffer.size());
3417   std::optional<char32_t> Match =
3418       llvm::sys::unicode::nameToCodepointStrict(Name);
3419   std::optional<llvm::sys::unicode::LooseMatchingResult> LooseMatch;
3420   if (!Match) {
3421     LooseMatch = llvm::sys::unicode::nameToCodepointLooseMatching(Name);
3422     if (Diagnose) {
3423       Diag(StartName, diag::err_invalid_ucn_name)
3424           << StringRef(Buffer.data(), Buffer.size())
3425           << makeCharRange(*this, StartName, CurPtr - CharSize);
3426       if (LooseMatch) {
3427         Diag(StartName, diag::note_invalid_ucn_name_loose_matching)
3428             << FixItHint::CreateReplacement(
3429                    makeCharRange(*this, StartName, CurPtr - CharSize),
3430                    LooseMatch->Name);
3431       }
3432     }
3433     // We do not offer misspelled character names suggestions here
3434     // as the set of what would be a valid suggestion depends on context,
3435     // and we should not make invalid suggestions.
3436   }
3437 
3438   if (Diagnose && Match)
3439     Diag(SlashLoc, PP->getLangOpts().CPlusPlus23
3440                        ? diag::warn_cxx23_delimited_escape_sequence
3441                        : diag::ext_delimited_escape_sequence)
3442         << /*named*/ 1 << (PP->getLangOpts().CPlusPlus ? 1 : 0);
3443 
3444   // If no diagnostic has been emitted yet, likely because we are doing a
3445   // tentative lexing, we do not want to recover here to make sure the token
3446   // will not be incorrectly considered valid. This function will be called
3447   // again and a diagnostic emitted then.
3448   if (LooseMatch && Diagnose)
3449     Match = LooseMatch->CodePoint;
3450 
3451   if (Result) {
3452     Result->setFlag(Token::HasUCN);
3453     // If the UCN contains either a trigraph or a line splicing,
3454     // we need to call getAndAdvanceChar again to set the appropriate flags
3455     // on Result.
3456     if (CurPtr - StartPtr == (ptrdiff_t)(Buffer.size() + 3))
3457       StartPtr = CurPtr;
3458     else
3459       while (StartPtr != CurPtr)
3460         (void)getAndAdvanceChar(StartPtr, *Result);
3461   } else {
3462     StartPtr = CurPtr;
3463   }
3464   return Match ? std::optional<uint32_t>(*Match) : std::nullopt;
3465 }
3466 
3467 uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc,
3468                            Token *Result) {
3469 
3470   unsigned CharSize;
3471   std::optional<uint32_t> CodePointOpt;
3472   char Kind = getCharAndSize(StartPtr, CharSize);
3473   if (Kind == 'u' || Kind == 'U')
3474     CodePointOpt = tryReadNumericUCN(StartPtr, SlashLoc, Result);
3475   else if (Kind == 'N')
3476     CodePointOpt = tryReadNamedUCN(StartPtr, SlashLoc, Result);
3477 
3478   if (!CodePointOpt)
3479     return 0;
3480 
3481   uint32_t CodePoint = *CodePointOpt;
3482 
3483   // Don't apply C family restrictions to UCNs in assembly mode
3484   if (LangOpts.AsmPreprocessor)
3485     return CodePoint;
3486 
3487   // C2x 6.4.3p2: A universal character name shall not designate a code point
3488   // where the hexadecimal value is:
3489   // - in the range D800 through DFFF inclusive; or
3490   // - greater than 10FFFF.
3491   // A universal-character-name outside the c-char-sequence of a character
3492   // constant, or the s-char-sequence of a string-literal shall not designate
3493   // a control character or a character in the basic character set.
3494 
3495   // C++11 [lex.charset]p2: If the hexadecimal value for a
3496   //   universal-character-name corresponds to a surrogate code point (in the
3497   //   range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally,
3498   //   if the hexadecimal value for a universal-character-name outside the
3499   //   c-char-sequence, s-char-sequence, or r-char-sequence of a character or
3500   //   string literal corresponds to a control character (in either of the
3501   //   ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the
3502   //   basic source character set, the program is ill-formed.
3503   if (CodePoint < 0xA0) {
3504     // We don't use isLexingRawMode() here because we need to warn about bad
3505     // UCNs even when skipping preprocessing tokens in a #if block.
3506     if (Result && PP) {
3507       if (CodePoint < 0x20 || CodePoint >= 0x7F)
3508         Diag(BufferPtr, diag::err_ucn_control_character);
3509       else {
3510         char C = static_cast<char>(CodePoint);
3511         Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1);
3512       }
3513     }
3514 
3515     return 0;
3516   } else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) {
3517     // C++03 allows UCNs representing surrogate characters. C99 and C++11 don't.
3518     // We don't use isLexingRawMode() here because we need to diagnose bad
3519     // UCNs even when skipping preprocessing tokens in a #if block.
3520     if (Result && PP) {
3521       if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11)
3522         Diag(BufferPtr, diag::warn_ucn_escape_surrogate);
3523       else
3524         Diag(BufferPtr, diag::err_ucn_escape_invalid);
3525     }
3526     return 0;
3527   }
3528 
3529   return CodePoint;
3530 }
3531 
3532 bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C,
3533                                    const char *CurPtr) {
3534   if (!isLexingRawMode() && !PP->isPreprocessedOutput() &&
3535       isUnicodeWhitespace(C)) {
3536     Diag(BufferPtr, diag::ext_unicode_whitespace)
3537       << makeCharRange(*this, BufferPtr, CurPtr);
3538 
3539     Result.setFlag(Token::LeadingSpace);
3540     return true;
3541   }
3542   return false;
3543 }
3544 
3545 void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) {
3546   IsAtStartOfLine = Result.isAtStartOfLine();
3547   HasLeadingSpace = Result.hasLeadingSpace();
3548   HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro();
3549   // Note that this doesn't affect IsAtPhysicalStartOfLine.
3550 }
3551 
3552 bool Lexer::Lex(Token &Result) {
3553   assert(!isDependencyDirectivesLexer());
3554 
3555   // Start a new token.
3556   Result.startToken();
3557 
3558   // Set up misc whitespace flags for LexTokenInternal.
3559   if (IsAtStartOfLine) {
3560     Result.setFlag(Token::StartOfLine);
3561     IsAtStartOfLine = false;
3562   }
3563 
3564   if (HasLeadingSpace) {
3565     Result.setFlag(Token::LeadingSpace);
3566     HasLeadingSpace = false;
3567   }
3568 
3569   if (HasLeadingEmptyMacro) {
3570     Result.setFlag(Token::LeadingEmptyMacro);
3571     HasLeadingEmptyMacro = false;
3572   }
3573 
3574   bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine;
3575   IsAtPhysicalStartOfLine = false;
3576   bool isRawLex = isLexingRawMode();
3577   (void) isRawLex;
3578   bool returnedToken = LexTokenInternal(Result, atPhysicalStartOfLine);
3579   // (After the LexTokenInternal call, the lexer might be destroyed.)
3580   assert((returnedToken || !isRawLex) && "Raw lex must succeed");
3581   return returnedToken;
3582 }
3583 
3584 /// LexTokenInternal - This implements a simple C family lexer.  It is an
3585 /// extremely performance critical piece of code.  This assumes that the buffer
3586 /// has a null character at the end of the file.  This returns a preprocessing
3587 /// token, not a normal token, as such, it is an internal interface.  It assumes
3588 /// that the Flags of result have been cleared before calling this.
3589 bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) {
3590 LexStart:
3591   assert(!Result.needsCleaning() && "Result needs cleaning");
3592   assert(!Result.hasPtrData() && "Result has not been reset");
3593 
3594   // CurPtr - Cache BufferPtr in an automatic variable.
3595   const char *CurPtr = BufferPtr;
3596 
3597   // Small amounts of horizontal whitespace is very common between tokens.
3598   if (isHorizontalWhitespace(*CurPtr)) {
3599     do {
3600       ++CurPtr;
3601     } while (isHorizontalWhitespace(*CurPtr));
3602 
3603     // If we are keeping whitespace and other tokens, just return what we just
3604     // skipped.  The next lexer invocation will return the token after the
3605     // whitespace.
3606     if (isKeepWhitespaceMode()) {
3607       FormTokenWithChars(Result, CurPtr, tok::unknown);
3608       // FIXME: The next token will not have LeadingSpace set.
3609       return true;
3610     }
3611 
3612     BufferPtr = CurPtr;
3613     Result.setFlag(Token::LeadingSpace);
3614   }
3615 
3616   unsigned SizeTmp, SizeTmp2;   // Temporaries for use in cases below.
3617 
3618   // Read a character, advancing over it.
3619   char Char = getAndAdvanceChar(CurPtr, Result);
3620   tok::TokenKind Kind;
3621 
3622   if (!isVerticalWhitespace(Char))
3623     NewLinePtr = nullptr;
3624 
3625   switch (Char) {
3626   case 0:  // Null.
3627     // Found end of file?
3628     if (CurPtr-1 == BufferEnd)
3629       return LexEndOfFile(Result, CurPtr-1);
3630 
3631     // Check if we are performing code completion.
3632     if (isCodeCompletionPoint(CurPtr-1)) {
3633       // Return the code-completion token.
3634       Result.startToken();
3635       FormTokenWithChars(Result, CurPtr, tok::code_completion);
3636       return true;
3637     }
3638 
3639     if (!isLexingRawMode())
3640       Diag(CurPtr-1, diag::null_in_file);
3641     Result.setFlag(Token::LeadingSpace);
3642     if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3643       return true; // KeepWhitespaceMode
3644 
3645     // We know the lexer hasn't changed, so just try again with this lexer.
3646     // (We manually eliminate the tail call to avoid recursion.)
3647     goto LexNextToken;
3648 
3649   case 26:  // DOS & CP/M EOF: "^Z".
3650     // If we're in Microsoft extensions mode, treat this as end of file.
3651     if (LangOpts.MicrosoftExt) {
3652       if (!isLexingRawMode())
3653         Diag(CurPtr-1, diag::ext_ctrl_z_eof_microsoft);
3654       return LexEndOfFile(Result, CurPtr-1);
3655     }
3656 
3657     // If Microsoft extensions are disabled, this is just random garbage.
3658     Kind = tok::unknown;
3659     break;
3660 
3661   case '\r':
3662     if (CurPtr[0] == '\n')
3663       (void)getAndAdvanceChar(CurPtr, Result);
3664     [[fallthrough]];
3665   case '\n':
3666     // If we are inside a preprocessor directive and we see the end of line,
3667     // we know we are done with the directive, so return an EOD token.
3668     if (ParsingPreprocessorDirective) {
3669       // Done parsing the "line".
3670       ParsingPreprocessorDirective = false;
3671 
3672       // Restore comment saving mode, in case it was disabled for directive.
3673       if (PP)
3674         resetExtendedTokenMode();
3675 
3676       // Since we consumed a newline, we are back at the start of a line.
3677       IsAtStartOfLine = true;
3678       IsAtPhysicalStartOfLine = true;
3679       NewLinePtr = CurPtr - 1;
3680 
3681       Kind = tok::eod;
3682       break;
3683     }
3684 
3685     // No leading whitespace seen so far.
3686     Result.clearFlag(Token::LeadingSpace);
3687 
3688     if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3689       return true; // KeepWhitespaceMode
3690 
3691     // We only saw whitespace, so just try again with this lexer.
3692     // (We manually eliminate the tail call to avoid recursion.)
3693     goto LexNextToken;
3694   case ' ':
3695   case '\t':
3696   case '\f':
3697   case '\v':
3698   SkipHorizontalWhitespace:
3699     Result.setFlag(Token::LeadingSpace);
3700     if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
3701       return true; // KeepWhitespaceMode
3702 
3703   SkipIgnoredUnits:
3704     CurPtr = BufferPtr;
3705 
3706     // If the next token is obviously a // or /* */ comment, skip it efficiently
3707     // too (without going through the big switch stmt).
3708     if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() &&
3709         LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) {
3710       if (SkipLineComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
3711         return true; // There is a token to return.
3712       goto SkipIgnoredUnits;
3713     } else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) {
3714       if (SkipBlockComment(Result, CurPtr+2, TokAtPhysicalStartOfLine))
3715         return true; // There is a token to return.
3716       goto SkipIgnoredUnits;
3717     } else if (isHorizontalWhitespace(*CurPtr)) {
3718       goto SkipHorizontalWhitespace;
3719     }
3720     // We only saw whitespace, so just try again with this lexer.
3721     // (We manually eliminate the tail call to avoid recursion.)
3722     goto LexNextToken;
3723 
3724   // C99 6.4.4.1: Integer Constants.
3725   // C99 6.4.4.2: Floating Constants.
3726   case '0': case '1': case '2': case '3': case '4':
3727   case '5': case '6': case '7': case '8': case '9':
3728     // Notify MIOpt that we read a non-whitespace/non-comment token.
3729     MIOpt.ReadToken();
3730     return LexNumericConstant(Result, CurPtr);
3731 
3732   // Identifier (e.g., uber), or
3733   // UTF-8 (C2x/C++17) or UTF-16 (C11/C++11) character literal, or
3734   // UTF-8 or UTF-16 string literal (C11/C++11).
3735   case 'u':
3736     // Notify MIOpt that we read a non-whitespace/non-comment token.
3737     MIOpt.ReadToken();
3738 
3739     if (LangOpts.CPlusPlus11 || LangOpts.C11) {
3740       Char = getCharAndSize(CurPtr, SizeTmp);
3741 
3742       // UTF-16 string literal
3743       if (Char == '"')
3744         return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3745                                 tok::utf16_string_literal);
3746 
3747       // UTF-16 character constant
3748       if (Char == '\'')
3749         return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3750                                tok::utf16_char_constant);
3751 
3752       // UTF-16 raw string literal
3753       if (Char == 'R' && LangOpts.CPlusPlus11 &&
3754           getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3755         return LexRawStringLiteral(Result,
3756                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3757                                            SizeTmp2, Result),
3758                                tok::utf16_string_literal);
3759 
3760       if (Char == '8') {
3761         char Char2 = getCharAndSize(CurPtr + SizeTmp, SizeTmp2);
3762 
3763         // UTF-8 string literal
3764         if (Char2 == '"')
3765           return LexStringLiteral(Result,
3766                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3767                                            SizeTmp2, Result),
3768                                tok::utf8_string_literal);
3769         if (Char2 == '\'' && (LangOpts.CPlusPlus17 || LangOpts.C2x))
3770           return LexCharConstant(
3771               Result, ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3772                                   SizeTmp2, Result),
3773               tok::utf8_char_constant);
3774 
3775         if (Char2 == 'R' && LangOpts.CPlusPlus11) {
3776           unsigned SizeTmp3;
3777           char Char3 = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
3778           // UTF-8 raw string literal
3779           if (Char3 == '"') {
3780             return LexRawStringLiteral(Result,
3781                    ConsumeChar(ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3782                                            SizeTmp2, Result),
3783                                SizeTmp3, Result),
3784                    tok::utf8_string_literal);
3785           }
3786         }
3787       }
3788     }
3789 
3790     // treat u like the start of an identifier.
3791     return LexIdentifierContinue(Result, CurPtr);
3792 
3793   case 'U': // Identifier (e.g. Uber) or C11/C++11 UTF-32 string literal
3794     // Notify MIOpt that we read a non-whitespace/non-comment token.
3795     MIOpt.ReadToken();
3796 
3797     if (LangOpts.CPlusPlus11 || LangOpts.C11) {
3798       Char = getCharAndSize(CurPtr, SizeTmp);
3799 
3800       // UTF-32 string literal
3801       if (Char == '"')
3802         return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3803                                 tok::utf32_string_literal);
3804 
3805       // UTF-32 character constant
3806       if (Char == '\'')
3807         return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3808                                tok::utf32_char_constant);
3809 
3810       // UTF-32 raw string literal
3811       if (Char == 'R' && LangOpts.CPlusPlus11 &&
3812           getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3813         return LexRawStringLiteral(Result,
3814                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3815                                            SizeTmp2, Result),
3816                                tok::utf32_string_literal);
3817     }
3818 
3819     // treat U like the start of an identifier.
3820     return LexIdentifierContinue(Result, CurPtr);
3821 
3822   case 'R': // Identifier or C++0x raw string literal
3823     // Notify MIOpt that we read a non-whitespace/non-comment token.
3824     MIOpt.ReadToken();
3825 
3826     if (LangOpts.CPlusPlus11) {
3827       Char = getCharAndSize(CurPtr, SizeTmp);
3828 
3829       if (Char == '"')
3830         return LexRawStringLiteral(Result,
3831                                    ConsumeChar(CurPtr, SizeTmp, Result),
3832                                    tok::string_literal);
3833     }
3834 
3835     // treat R like the start of an identifier.
3836     return LexIdentifierContinue(Result, CurPtr);
3837 
3838   case 'L':   // Identifier (Loony) or wide literal (L'x' or L"xyz").
3839     // Notify MIOpt that we read a non-whitespace/non-comment token.
3840     MIOpt.ReadToken();
3841     Char = getCharAndSize(CurPtr, SizeTmp);
3842 
3843     // Wide string literal.
3844     if (Char == '"')
3845       return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3846                               tok::wide_string_literal);
3847 
3848     // Wide raw string literal.
3849     if (LangOpts.CPlusPlus11 && Char == 'R' &&
3850         getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"')
3851       return LexRawStringLiteral(Result,
3852                                ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3853                                            SizeTmp2, Result),
3854                                tok::wide_string_literal);
3855 
3856     // Wide character constant.
3857     if (Char == '\'')
3858       return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result),
3859                              tok::wide_char_constant);
3860     // FALL THROUGH, treating L like the start of an identifier.
3861     [[fallthrough]];
3862 
3863   // C99 6.4.2: Identifiers.
3864   case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G':
3865   case 'H': case 'I': case 'J': case 'K':    /*'L'*/case 'M': case 'N':
3866   case 'O': case 'P': case 'Q':    /*'R'*/case 'S': case 'T':    /*'U'*/
3867   case 'V': case 'W': case 'X': case 'Y': case 'Z':
3868   case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g':
3869   case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n':
3870   case 'o': case 'p': case 'q': case 'r': case 's': case 't':    /*'u'*/
3871   case 'v': case 'w': case 'x': case 'y': case 'z':
3872   case '_':
3873     // Notify MIOpt that we read a non-whitespace/non-comment token.
3874     MIOpt.ReadToken();
3875     return LexIdentifierContinue(Result, CurPtr);
3876 
3877   case '$':   // $ in identifiers.
3878     if (LangOpts.DollarIdents) {
3879       if (!isLexingRawMode())
3880         Diag(CurPtr-1, diag::ext_dollar_in_identifier);
3881       // Notify MIOpt that we read a non-whitespace/non-comment token.
3882       MIOpt.ReadToken();
3883       return LexIdentifierContinue(Result, CurPtr);
3884     }
3885 
3886     Kind = tok::unknown;
3887     break;
3888 
3889   // C99 6.4.4: Character Constants.
3890   case '\'':
3891     // Notify MIOpt that we read a non-whitespace/non-comment token.
3892     MIOpt.ReadToken();
3893     return LexCharConstant(Result, CurPtr, tok::char_constant);
3894 
3895   // C99 6.4.5: String Literals.
3896   case '"':
3897     // Notify MIOpt that we read a non-whitespace/non-comment token.
3898     MIOpt.ReadToken();
3899     return LexStringLiteral(Result, CurPtr,
3900                             ParsingFilename ? tok::header_name
3901                                             : tok::string_literal);
3902 
3903   // C99 6.4.6: Punctuators.
3904   case '?':
3905     Kind = tok::question;
3906     break;
3907   case '[':
3908     Kind = tok::l_square;
3909     break;
3910   case ']':
3911     Kind = tok::r_square;
3912     break;
3913   case '(':
3914     Kind = tok::l_paren;
3915     break;
3916   case ')':
3917     Kind = tok::r_paren;
3918     break;
3919   case '{':
3920     Kind = tok::l_brace;
3921     break;
3922   case '}':
3923     Kind = tok::r_brace;
3924     break;
3925   case '.':
3926     Char = getCharAndSize(CurPtr, SizeTmp);
3927     if (Char >= '0' && Char <= '9') {
3928       // Notify MIOpt that we read a non-whitespace/non-comment token.
3929       MIOpt.ReadToken();
3930 
3931       return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result));
3932     } else if (LangOpts.CPlusPlus && Char == '*') {
3933       Kind = tok::periodstar;
3934       CurPtr += SizeTmp;
3935     } else if (Char == '.' &&
3936                getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') {
3937       Kind = tok::ellipsis;
3938       CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3939                            SizeTmp2, Result);
3940     } else {
3941       Kind = tok::period;
3942     }
3943     break;
3944   case '&':
3945     Char = getCharAndSize(CurPtr, SizeTmp);
3946     if (Char == '&') {
3947       Kind = tok::ampamp;
3948       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3949     } else if (Char == '=') {
3950       Kind = tok::ampequal;
3951       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3952     } else {
3953       Kind = tok::amp;
3954     }
3955     break;
3956   case '*':
3957     if (getCharAndSize(CurPtr, SizeTmp) == '=') {
3958       Kind = tok::starequal;
3959       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3960     } else {
3961       Kind = tok::star;
3962     }
3963     break;
3964   case '+':
3965     Char = getCharAndSize(CurPtr, SizeTmp);
3966     if (Char == '+') {
3967       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3968       Kind = tok::plusplus;
3969     } else if (Char == '=') {
3970       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3971       Kind = tok::plusequal;
3972     } else {
3973       Kind = tok::plus;
3974     }
3975     break;
3976   case '-':
3977     Char = getCharAndSize(CurPtr, SizeTmp);
3978     if (Char == '-') {      // --
3979       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3980       Kind = tok::minusminus;
3981     } else if (Char == '>' && LangOpts.CPlusPlus &&
3982                getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') {  // C++ ->*
3983       CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
3984                            SizeTmp2, Result);
3985       Kind = tok::arrowstar;
3986     } else if (Char == '>') {   // ->
3987       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3988       Kind = tok::arrow;
3989     } else if (Char == '=') {   // -=
3990       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
3991       Kind = tok::minusequal;
3992     } else {
3993       Kind = tok::minus;
3994     }
3995     break;
3996   case '~':
3997     Kind = tok::tilde;
3998     break;
3999   case '!':
4000     if (getCharAndSize(CurPtr, SizeTmp) == '=') {
4001       Kind = tok::exclaimequal;
4002       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4003     } else {
4004       Kind = tok::exclaim;
4005     }
4006     break;
4007   case '/':
4008     // 6.4.9: Comments
4009     Char = getCharAndSize(CurPtr, SizeTmp);
4010     if (Char == '/') {         // Line comment.
4011       // Even if Line comments are disabled (e.g. in C89 mode), we generally
4012       // want to lex this as a comment.  There is one problem with this though,
4013       // that in one particular corner case, this can change the behavior of the
4014       // resultant program.  For example, In  "foo //**/ bar", C89 would lex
4015       // this as "foo / bar" and languages with Line comments would lex it as
4016       // "foo".  Check to see if the character after the second slash is a '*'.
4017       // If so, we will lex that as a "/" instead of the start of a comment.
4018       // However, we never do this if we are just preprocessing.
4019       bool TreatAsComment =
4020           LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP);
4021       if (!TreatAsComment)
4022         if (!(PP && PP->isPreprocessedOutput()))
4023           TreatAsComment = getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*';
4024 
4025       if (TreatAsComment) {
4026         if (SkipLineComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
4027                             TokAtPhysicalStartOfLine))
4028           return true; // There is a token to return.
4029 
4030         // It is common for the tokens immediately after a // comment to be
4031         // whitespace (indentation for the next line).  Instead of going through
4032         // the big switch, handle it efficiently now.
4033         goto SkipIgnoredUnits;
4034       }
4035     }
4036 
4037     if (Char == '*') {  // /**/ comment.
4038       if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result),
4039                            TokAtPhysicalStartOfLine))
4040         return true; // There is a token to return.
4041 
4042       // We only saw whitespace, so just try again with this lexer.
4043       // (We manually eliminate the tail call to avoid recursion.)
4044       goto LexNextToken;
4045     }
4046 
4047     if (Char == '=') {
4048       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4049       Kind = tok::slashequal;
4050     } else {
4051       Kind = tok::slash;
4052     }
4053     break;
4054   case '%':
4055     Char = getCharAndSize(CurPtr, SizeTmp);
4056     if (Char == '=') {
4057       Kind = tok::percentequal;
4058       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4059     } else if (LangOpts.Digraphs && Char == '>') {
4060       Kind = tok::r_brace;                             // '%>' -> '}'
4061       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4062     } else if (LangOpts.Digraphs && Char == ':') {
4063       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4064       Char = getCharAndSize(CurPtr, SizeTmp);
4065       if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') {
4066         Kind = tok::hashhash;                          // '%:%:' -> '##'
4067         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4068                              SizeTmp2, Result);
4069       } else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize
4070         CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4071         if (!isLexingRawMode())
4072           Diag(BufferPtr, diag::ext_charize_microsoft);
4073         Kind = tok::hashat;
4074       } else {                                         // '%:' -> '#'
4075         // We parsed a # character.  If this occurs at the start of the line,
4076         // it's actually the start of a preprocessing directive.  Callback to
4077         // the preprocessor to handle it.
4078         // TODO: -fpreprocessed mode??
4079         if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
4080           goto HandleDirective;
4081 
4082         Kind = tok::hash;
4083       }
4084     } else {
4085       Kind = tok::percent;
4086     }
4087     break;
4088   case '<':
4089     Char = getCharAndSize(CurPtr, SizeTmp);
4090     if (ParsingFilename) {
4091       return LexAngledStringLiteral(Result, CurPtr);
4092     } else if (Char == '<') {
4093       char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4094       if (After == '=') {
4095         Kind = tok::lesslessequal;
4096         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4097                              SizeTmp2, Result);
4098       } else if (After == '<' && IsStartOfConflictMarker(CurPtr-1)) {
4099         // If this is actually a '<<<<<<<' version control conflict marker,
4100         // recognize it as such and recover nicely.
4101         goto LexNextToken;
4102       } else if (After == '<' && HandleEndOfConflictMarker(CurPtr-1)) {
4103         // If this is '<<<<' and we're in a Perforce-style conflict marker,
4104         // ignore it.
4105         goto LexNextToken;
4106       } else if (LangOpts.CUDA && After == '<') {
4107         Kind = tok::lesslessless;
4108         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4109                              SizeTmp2, Result);
4110       } else {
4111         CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4112         Kind = tok::lessless;
4113       }
4114     } else if (Char == '=') {
4115       char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4116       if (After == '>') {
4117         if (LangOpts.CPlusPlus20) {
4118           if (!isLexingRawMode())
4119             Diag(BufferPtr, diag::warn_cxx17_compat_spaceship);
4120           CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4121                                SizeTmp2, Result);
4122           Kind = tok::spaceship;
4123           break;
4124         }
4125         // Suggest adding a space between the '<=' and the '>' to avoid a
4126         // change in semantics if this turns up in C++ <=17 mode.
4127         if (LangOpts.CPlusPlus && !isLexingRawMode()) {
4128           Diag(BufferPtr, diag::warn_cxx20_compat_spaceship)
4129             << FixItHint::CreateInsertion(
4130                    getSourceLocation(CurPtr + SizeTmp, SizeTmp2), " ");
4131         }
4132       }
4133       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4134       Kind = tok::lessequal;
4135     } else if (LangOpts.Digraphs && Char == ':') {     // '<:' -> '['
4136       if (LangOpts.CPlusPlus11 &&
4137           getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == ':') {
4138         // C++0x [lex.pptoken]p3:
4139         //  Otherwise, if the next three characters are <:: and the subsequent
4140         //  character is neither : nor >, the < is treated as a preprocessor
4141         //  token by itself and not as the first character of the alternative
4142         //  token <:.
4143         unsigned SizeTmp3;
4144         char After = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3);
4145         if (After != ':' && After != '>') {
4146           Kind = tok::less;
4147           if (!isLexingRawMode())
4148             Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon);
4149           break;
4150         }
4151       }
4152 
4153       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4154       Kind = tok::l_square;
4155     } else if (LangOpts.Digraphs && Char == '%') {     // '<%' -> '{'
4156       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4157       Kind = tok::l_brace;
4158     } else if (Char == '#' && /*Not a trigraph*/ SizeTmp == 1 &&
4159                lexEditorPlaceholder(Result, CurPtr)) {
4160       return true;
4161     } else {
4162       Kind = tok::less;
4163     }
4164     break;
4165   case '>':
4166     Char = getCharAndSize(CurPtr, SizeTmp);
4167     if (Char == '=') {
4168       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4169       Kind = tok::greaterequal;
4170     } else if (Char == '>') {
4171       char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2);
4172       if (After == '=') {
4173         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4174                              SizeTmp2, Result);
4175         Kind = tok::greatergreaterequal;
4176       } else if (After == '>' && IsStartOfConflictMarker(CurPtr-1)) {
4177         // If this is actually a '>>>>' conflict marker, recognize it as such
4178         // and recover nicely.
4179         goto LexNextToken;
4180       } else if (After == '>' && HandleEndOfConflictMarker(CurPtr-1)) {
4181         // If this is '>>>>>>>' and we're in a conflict marker, ignore it.
4182         goto LexNextToken;
4183       } else if (LangOpts.CUDA && After == '>') {
4184         Kind = tok::greatergreatergreater;
4185         CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result),
4186                              SizeTmp2, Result);
4187       } else {
4188         CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4189         Kind = tok::greatergreater;
4190       }
4191     } else {
4192       Kind = tok::greater;
4193     }
4194     break;
4195   case '^':
4196     Char = getCharAndSize(CurPtr, SizeTmp);
4197     if (Char == '=') {
4198       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4199       Kind = tok::caretequal;
4200     } else if (LangOpts.OpenCL && Char == '^') {
4201       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4202       Kind = tok::caretcaret;
4203     } else {
4204       Kind = tok::caret;
4205     }
4206     break;
4207   case '|':
4208     Char = getCharAndSize(CurPtr, SizeTmp);
4209     if (Char == '=') {
4210       Kind = tok::pipeequal;
4211       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4212     } else if (Char == '|') {
4213       // If this is '|||||||' and we're in a conflict marker, ignore it.
4214       if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr-1))
4215         goto LexNextToken;
4216       Kind = tok::pipepipe;
4217       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4218     } else {
4219       Kind = tok::pipe;
4220     }
4221     break;
4222   case ':':
4223     Char = getCharAndSize(CurPtr, SizeTmp);
4224     if (LangOpts.Digraphs && Char == '>') {
4225       Kind = tok::r_square; // ':>' -> ']'
4226       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4227     } else if (Char == ':') {
4228       Kind = tok::coloncolon;
4229       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4230     } else {
4231       Kind = tok::colon;
4232     }
4233     break;
4234   case ';':
4235     Kind = tok::semi;
4236     break;
4237   case '=':
4238     Char = getCharAndSize(CurPtr, SizeTmp);
4239     if (Char == '=') {
4240       // If this is '====' and we're in a conflict marker, ignore it.
4241       if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr-1))
4242         goto LexNextToken;
4243 
4244       Kind = tok::equalequal;
4245       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4246     } else {
4247       Kind = tok::equal;
4248     }
4249     break;
4250   case ',':
4251     Kind = tok::comma;
4252     break;
4253   case '#':
4254     Char = getCharAndSize(CurPtr, SizeTmp);
4255     if (Char == '#') {
4256       Kind = tok::hashhash;
4257       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4258     } else if (Char == '@' && LangOpts.MicrosoftExt) {  // #@ -> Charize
4259       Kind = tok::hashat;
4260       if (!isLexingRawMode())
4261         Diag(BufferPtr, diag::ext_charize_microsoft);
4262       CurPtr = ConsumeChar(CurPtr, SizeTmp, Result);
4263     } else {
4264       // We parsed a # character.  If this occurs at the start of the line,
4265       // it's actually the start of a preprocessing directive.  Callback to
4266       // the preprocessor to handle it.
4267       // TODO: -fpreprocessed mode??
4268       if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer)
4269         goto HandleDirective;
4270 
4271       Kind = tok::hash;
4272     }
4273     break;
4274 
4275   case '@':
4276     // Objective C support.
4277     if (CurPtr[-1] == '@' && LangOpts.ObjC)
4278       Kind = tok::at;
4279     else
4280       Kind = tok::unknown;
4281     break;
4282 
4283   // UCNs (C99 6.4.3, C++11 [lex.charset]p2)
4284   case '\\':
4285     if (!LangOpts.AsmPreprocessor) {
4286       if (uint32_t CodePoint = tryReadUCN(CurPtr, BufferPtr, &Result)) {
4287         if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
4288           if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
4289             return true; // KeepWhitespaceMode
4290 
4291           // We only saw whitespace, so just try again with this lexer.
4292           // (We manually eliminate the tail call to avoid recursion.)
4293           goto LexNextToken;
4294         }
4295 
4296         return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr);
4297       }
4298     }
4299 
4300     Kind = tok::unknown;
4301     break;
4302 
4303   default: {
4304     if (isASCII(Char)) {
4305       Kind = tok::unknown;
4306       break;
4307     }
4308 
4309     llvm::UTF32 CodePoint;
4310 
4311     // We can't just reset CurPtr to BufferPtr because BufferPtr may point to
4312     // an escaped newline.
4313     --CurPtr;
4314     llvm::ConversionResult Status =
4315         llvm::convertUTF8Sequence((const llvm::UTF8 **)&CurPtr,
4316                                   (const llvm::UTF8 *)BufferEnd,
4317                                   &CodePoint,
4318                                   llvm::strictConversion);
4319     if (Status == llvm::conversionOK) {
4320       if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) {
4321         if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine))
4322           return true; // KeepWhitespaceMode
4323 
4324         // We only saw whitespace, so just try again with this lexer.
4325         // (We manually eliminate the tail call to avoid recursion.)
4326         goto LexNextToken;
4327       }
4328       return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr);
4329     }
4330 
4331     if (isLexingRawMode() || ParsingPreprocessorDirective ||
4332         PP->isPreprocessedOutput()) {
4333       ++CurPtr;
4334       Kind = tok::unknown;
4335       break;
4336     }
4337 
4338     // Non-ASCII characters tend to creep into source code unintentionally.
4339     // Instead of letting the parser complain about the unknown token,
4340     // just diagnose the invalid UTF-8, then drop the character.
4341     Diag(CurPtr, diag::err_invalid_utf8);
4342 
4343     BufferPtr = CurPtr+1;
4344     // We're pretending the character didn't exist, so just try again with
4345     // this lexer.
4346     // (We manually eliminate the tail call to avoid recursion.)
4347     goto LexNextToken;
4348   }
4349   }
4350 
4351   // Notify MIOpt that we read a non-whitespace/non-comment token.
4352   MIOpt.ReadToken();
4353 
4354   // Update the location of token as well as BufferPtr.
4355   FormTokenWithChars(Result, CurPtr, Kind);
4356   return true;
4357 
4358 HandleDirective:
4359   // We parsed a # character and it's the start of a preprocessing directive.
4360 
4361   FormTokenWithChars(Result, CurPtr, tok::hash);
4362   PP->HandleDirective(Result);
4363 
4364   if (PP->hadModuleLoaderFatalFailure())
4365     // With a fatal failure in the module loader, we abort parsing.
4366     return true;
4367 
4368   // We parsed the directive; lex a token with the new state.
4369   return false;
4370 
4371 LexNextToken:
4372   Result.clearFlag(Token::NeedsCleaning);
4373   goto LexStart;
4374 }
4375 
4376 const char *Lexer::convertDependencyDirectiveToken(
4377     const dependency_directives_scan::Token &DDTok, Token &Result) {
4378   const char *TokPtr = BufferStart + DDTok.Offset;
4379   Result.startToken();
4380   Result.setLocation(getSourceLocation(TokPtr));
4381   Result.setKind(DDTok.Kind);
4382   Result.setFlag((Token::TokenFlags)DDTok.Flags);
4383   Result.setLength(DDTok.Length);
4384   BufferPtr = TokPtr + DDTok.Length;
4385   return TokPtr;
4386 }
4387 
4388 bool Lexer::LexDependencyDirectiveToken(Token &Result) {
4389   assert(isDependencyDirectivesLexer());
4390 
4391   using namespace dependency_directives_scan;
4392 
4393   while (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size()) {
4394     if (DepDirectives.front().Kind == pp_eof)
4395       return LexEndOfFile(Result, BufferEnd);
4396     if (DepDirectives.front().Kind == tokens_present_before_eof)
4397       MIOpt.ReadToken();
4398     NextDepDirectiveTokenIndex = 0;
4399     DepDirectives = DepDirectives.drop_front();
4400   }
4401 
4402   const dependency_directives_scan::Token &DDTok =
4403       DepDirectives.front().Tokens[NextDepDirectiveTokenIndex++];
4404   if (NextDepDirectiveTokenIndex > 1 || DDTok.Kind != tok::hash) {
4405     // Read something other than a preprocessor directive hash.
4406     MIOpt.ReadToken();
4407   }
4408 
4409   if (ParsingFilename && DDTok.is(tok::less)) {
4410     BufferPtr = BufferStart + DDTok.Offset;
4411     LexAngledStringLiteral(Result, BufferPtr + 1);
4412     if (Result.isNot(tok::header_name))
4413       return true;
4414     // Advance the index of lexed tokens.
4415     while (true) {
4416       const dependency_directives_scan::Token &NextTok =
4417           DepDirectives.front().Tokens[NextDepDirectiveTokenIndex];
4418       if (BufferStart + NextTok.Offset >= BufferPtr)
4419         break;
4420       ++NextDepDirectiveTokenIndex;
4421     }
4422     return true;
4423   }
4424 
4425   const char *TokPtr = convertDependencyDirectiveToken(DDTok, Result);
4426 
4427   if (Result.is(tok::hash) && Result.isAtStartOfLine()) {
4428     PP->HandleDirective(Result);
4429     return false;
4430   }
4431   if (Result.is(tok::raw_identifier)) {
4432     Result.setRawIdentifierData(TokPtr);
4433     if (!isLexingRawMode()) {
4434       IdentifierInfo *II = PP->LookUpIdentifierInfo(Result);
4435       if (II->isHandleIdentifierCase())
4436         return PP->HandleIdentifier(Result);
4437     }
4438     return true;
4439   }
4440   if (Result.isLiteral()) {
4441     Result.setLiteralData(TokPtr);
4442     return true;
4443   }
4444   if (Result.is(tok::colon)) {
4445     // Convert consecutive colons to 'tok::coloncolon'.
4446     if (*BufferPtr == ':') {
4447       assert(DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is(
4448           tok::colon));
4449       ++NextDepDirectiveTokenIndex;
4450       Result.setKind(tok::coloncolon);
4451     }
4452     return true;
4453   }
4454   if (Result.is(tok::eod))
4455     ParsingPreprocessorDirective = false;
4456 
4457   return true;
4458 }
4459 
4460 bool Lexer::LexDependencyDirectiveTokenWhileSkipping(Token &Result) {
4461   assert(isDependencyDirectivesLexer());
4462 
4463   using namespace dependency_directives_scan;
4464 
4465   bool Stop = false;
4466   unsigned NestedIfs = 0;
4467   do {
4468     DepDirectives = DepDirectives.drop_front();
4469     switch (DepDirectives.front().Kind) {
4470     case pp_none:
4471       llvm_unreachable("unexpected 'pp_none'");
4472     case pp_include:
4473     case pp___include_macros:
4474     case pp_define:
4475     case pp_undef:
4476     case pp_import:
4477     case pp_pragma_import:
4478     case pp_pragma_once:
4479     case pp_pragma_push_macro:
4480     case pp_pragma_pop_macro:
4481     case pp_pragma_include_alias:
4482     case pp_pragma_system_header:
4483     case pp_include_next:
4484     case decl_at_import:
4485     case cxx_module_decl:
4486     case cxx_import_decl:
4487     case cxx_export_module_decl:
4488     case cxx_export_import_decl:
4489     case tokens_present_before_eof:
4490       break;
4491     case pp_if:
4492     case pp_ifdef:
4493     case pp_ifndef:
4494       ++NestedIfs;
4495       break;
4496     case pp_elif:
4497     case pp_elifdef:
4498     case pp_elifndef:
4499     case pp_else:
4500       if (!NestedIfs) {
4501         Stop = true;
4502       }
4503       break;
4504     case pp_endif:
4505       if (!NestedIfs) {
4506         Stop = true;
4507       } else {
4508         --NestedIfs;
4509       }
4510       break;
4511     case pp_eof:
4512       NextDepDirectiveTokenIndex = 0;
4513       return LexEndOfFile(Result, BufferEnd);
4514     }
4515   } while (!Stop);
4516 
4517   const dependency_directives_scan::Token &DDTok =
4518       DepDirectives.front().Tokens.front();
4519   assert(DDTok.is(tok::hash));
4520   NextDepDirectiveTokenIndex = 1;
4521 
4522   convertDependencyDirectiveToken(DDTok, Result);
4523   return false;
4524 }
4525