1 //===- Lexer.cpp - C Language Family Lexer --------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Lexer and Token interfaces. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "clang/Lex/Lexer.h" 14 #include "UnicodeCharSets.h" 15 #include "clang/Basic/CharInfo.h" 16 #include "clang/Basic/Diagnostic.h" 17 #include "clang/Basic/IdentifierTable.h" 18 #include "clang/Basic/LLVM.h" 19 #include "clang/Basic/LangOptions.h" 20 #include "clang/Basic/SourceLocation.h" 21 #include "clang/Basic/SourceManager.h" 22 #include "clang/Basic/TokenKinds.h" 23 #include "clang/Lex/LexDiagnostic.h" 24 #include "clang/Lex/LiteralSupport.h" 25 #include "clang/Lex/MultipleIncludeOpt.h" 26 #include "clang/Lex/Preprocessor.h" 27 #include "clang/Lex/PreprocessorOptions.h" 28 #include "clang/Lex/Token.h" 29 #include "llvm/ADT/None.h" 30 #include "llvm/ADT/Optional.h" 31 #include "llvm/ADT/STLExtras.h" 32 #include "llvm/ADT/StringExtras.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/StringSwitch.h" 35 #include "llvm/Support/Compiler.h" 36 #include "llvm/Support/ConvertUTF.h" 37 #include "llvm/Support/MathExtras.h" 38 #include "llvm/Support/MemoryBufferRef.h" 39 #include "llvm/Support/NativeFormatting.h" 40 #include "llvm/Support/Unicode.h" 41 #include "llvm/Support/UnicodeCharRanges.h" 42 #include <algorithm> 43 #include <cassert> 44 #include <cstddef> 45 #include <cstdint> 46 #include <cstring> 47 #include <string> 48 #include <tuple> 49 #include <utility> 50 51 using namespace clang; 52 53 //===----------------------------------------------------------------------===// 54 // Token Class Implementation 55 //===----------------------------------------------------------------------===// 56 57 /// isObjCAtKeyword - Return true if we have an ObjC keyword identifier. 58 bool Token::isObjCAtKeyword(tok::ObjCKeywordKind objcKey) const { 59 if (isAnnotation()) 60 return false; 61 if (IdentifierInfo *II = getIdentifierInfo()) 62 return II->getObjCKeywordID() == objcKey; 63 return false; 64 } 65 66 /// getObjCKeywordID - Return the ObjC keyword kind. 67 tok::ObjCKeywordKind Token::getObjCKeywordID() const { 68 if (isAnnotation()) 69 return tok::objc_not_keyword; 70 IdentifierInfo *specId = getIdentifierInfo(); 71 return specId ? specId->getObjCKeywordID() : tok::objc_not_keyword; 72 } 73 74 //===----------------------------------------------------------------------===// 75 // Lexer Class Implementation 76 //===----------------------------------------------------------------------===// 77 78 void Lexer::anchor() {} 79 80 void Lexer::InitLexer(const char *BufStart, const char *BufPtr, 81 const char *BufEnd) { 82 BufferStart = BufStart; 83 BufferPtr = BufPtr; 84 BufferEnd = BufEnd; 85 86 assert(BufEnd[0] == 0 && 87 "We assume that the input buffer has a null character at the end" 88 " to simplify lexing!"); 89 90 // Check whether we have a BOM in the beginning of the buffer. If yes - act 91 // accordingly. Right now we support only UTF-8 with and without BOM, so, just 92 // skip the UTF-8 BOM if it's present. 93 if (BufferStart == BufferPtr) { 94 // Determine the size of the BOM. 95 StringRef Buf(BufferStart, BufferEnd - BufferStart); 96 size_t BOMLength = llvm::StringSwitch<size_t>(Buf) 97 .StartsWith("\xEF\xBB\xBF", 3) // UTF-8 BOM 98 .Default(0); 99 100 // Skip the BOM. 101 BufferPtr += BOMLength; 102 } 103 104 Is_PragmaLexer = false; 105 CurrentConflictMarkerState = CMK_None; 106 107 // Start of the file is a start of line. 108 IsAtStartOfLine = true; 109 IsAtPhysicalStartOfLine = true; 110 111 HasLeadingSpace = false; 112 HasLeadingEmptyMacro = false; 113 114 // We are not after parsing a #. 115 ParsingPreprocessorDirective = false; 116 117 // We are not after parsing #include. 118 ParsingFilename = false; 119 120 // We are not in raw mode. Raw mode disables diagnostics and interpretation 121 // of tokens (e.g. identifiers, thus disabling macro expansion). It is used 122 // to quickly lex the tokens of the buffer, e.g. when handling a "#if 0" block 123 // or otherwise skipping over tokens. 124 LexingRawMode = false; 125 126 // Default to not keeping comments. 127 ExtendedTokenMode = 0; 128 129 NewLinePtr = nullptr; 130 } 131 132 /// Lexer constructor - Create a new lexer object for the specified buffer 133 /// with the specified preprocessor managing the lexing process. This lexer 134 /// assumes that the associated file buffer and Preprocessor objects will 135 /// outlive it, so it doesn't take ownership of either of them. 136 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &InputFile, 137 Preprocessor &PP, bool IsFirstIncludeOfFile) 138 : PreprocessorLexer(&PP, FID), 139 FileLoc(PP.getSourceManager().getLocForStartOfFile(FID)), 140 LangOpts(PP.getLangOpts()), LineComment(LangOpts.LineComment), 141 IsFirstTimeLexingFile(IsFirstIncludeOfFile) { 142 InitLexer(InputFile.getBufferStart(), InputFile.getBufferStart(), 143 InputFile.getBufferEnd()); 144 145 resetExtendedTokenMode(); 146 } 147 148 /// Lexer constructor - Create a new raw lexer object. This object is only 149 /// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text 150 /// range will outlive it, so it doesn't take ownership of it. 151 Lexer::Lexer(SourceLocation fileloc, const LangOptions &langOpts, 152 const char *BufStart, const char *BufPtr, const char *BufEnd, 153 bool IsFirstIncludeOfFile) 154 : FileLoc(fileloc), LangOpts(langOpts), LineComment(LangOpts.LineComment), 155 IsFirstTimeLexingFile(IsFirstIncludeOfFile) { 156 InitLexer(BufStart, BufPtr, BufEnd); 157 158 // We *are* in raw mode. 159 LexingRawMode = true; 160 } 161 162 /// Lexer constructor - Create a new raw lexer object. This object is only 163 /// suitable for calls to 'LexFromRawLexer'. This lexer assumes that the text 164 /// range will outlive it, so it doesn't take ownership of it. 165 Lexer::Lexer(FileID FID, const llvm::MemoryBufferRef &FromFile, 166 const SourceManager &SM, const LangOptions &langOpts, 167 bool IsFirstIncludeOfFile) 168 : Lexer(SM.getLocForStartOfFile(FID), langOpts, FromFile.getBufferStart(), 169 FromFile.getBufferStart(), FromFile.getBufferEnd(), 170 IsFirstIncludeOfFile) {} 171 172 void Lexer::resetExtendedTokenMode() { 173 assert(PP && "Cannot reset token mode without a preprocessor"); 174 if (LangOpts.TraditionalCPP) 175 SetKeepWhitespaceMode(true); 176 else 177 SetCommentRetentionState(PP->getCommentRetentionState()); 178 } 179 180 /// Create_PragmaLexer: Lexer constructor - Create a new lexer object for 181 /// _Pragma expansion. This has a variety of magic semantics that this method 182 /// sets up. It returns a new'd Lexer that must be delete'd when done. 183 /// 184 /// On entrance to this routine, TokStartLoc is a macro location which has a 185 /// spelling loc that indicates the bytes to be lexed for the token and an 186 /// expansion location that indicates where all lexed tokens should be 187 /// "expanded from". 188 /// 189 /// TODO: It would really be nice to make _Pragma just be a wrapper around a 190 /// normal lexer that remaps tokens as they fly by. This would require making 191 /// Preprocessor::Lex virtual. Given that, we could just dump in a magic lexer 192 /// interface that could handle this stuff. This would pull GetMappedTokenLoc 193 /// out of the critical path of the lexer! 194 /// 195 Lexer *Lexer::Create_PragmaLexer(SourceLocation SpellingLoc, 196 SourceLocation ExpansionLocStart, 197 SourceLocation ExpansionLocEnd, 198 unsigned TokLen, Preprocessor &PP) { 199 SourceManager &SM = PP.getSourceManager(); 200 201 // Create the lexer as if we were going to lex the file normally. 202 FileID SpellingFID = SM.getFileID(SpellingLoc); 203 llvm::MemoryBufferRef InputFile = SM.getBufferOrFake(SpellingFID); 204 Lexer *L = new Lexer(SpellingFID, InputFile, PP); 205 206 // Now that the lexer is created, change the start/end locations so that we 207 // just lex the subsection of the file that we want. This is lexing from a 208 // scratch buffer. 209 const char *StrData = SM.getCharacterData(SpellingLoc); 210 211 L->BufferPtr = StrData; 212 L->BufferEnd = StrData+TokLen; 213 assert(L->BufferEnd[0] == 0 && "Buffer is not nul terminated!"); 214 215 // Set the SourceLocation with the remapping information. This ensures that 216 // GetMappedTokenLoc will remap the tokens as they are lexed. 217 L->FileLoc = SM.createExpansionLoc(SM.getLocForStartOfFile(SpellingFID), 218 ExpansionLocStart, 219 ExpansionLocEnd, TokLen); 220 221 // Ensure that the lexer thinks it is inside a directive, so that end \n will 222 // return an EOD token. 223 L->ParsingPreprocessorDirective = true; 224 225 // This lexer really is for _Pragma. 226 L->Is_PragmaLexer = true; 227 return L; 228 } 229 230 void Lexer::seek(unsigned Offset, bool IsAtStartOfLine) { 231 this->IsAtPhysicalStartOfLine = IsAtStartOfLine; 232 this->IsAtStartOfLine = IsAtStartOfLine; 233 assert((BufferStart + Offset) <= BufferEnd); 234 BufferPtr = BufferStart + Offset; 235 } 236 237 template <typename T> static void StringifyImpl(T &Str, char Quote) { 238 typename T::size_type i = 0, e = Str.size(); 239 while (i < e) { 240 if (Str[i] == '\\' || Str[i] == Quote) { 241 Str.insert(Str.begin() + i, '\\'); 242 i += 2; 243 ++e; 244 } else if (Str[i] == '\n' || Str[i] == '\r') { 245 // Replace '\r\n' and '\n\r' to '\\' followed by 'n'. 246 if ((i < e - 1) && (Str[i + 1] == '\n' || Str[i + 1] == '\r') && 247 Str[i] != Str[i + 1]) { 248 Str[i] = '\\'; 249 Str[i + 1] = 'n'; 250 } else { 251 // Replace '\n' and '\r' to '\\' followed by 'n'. 252 Str[i] = '\\'; 253 Str.insert(Str.begin() + i + 1, 'n'); 254 ++e; 255 } 256 i += 2; 257 } else 258 ++i; 259 } 260 } 261 262 std::string Lexer::Stringify(StringRef Str, bool Charify) { 263 std::string Result = std::string(Str); 264 char Quote = Charify ? '\'' : '"'; 265 StringifyImpl(Result, Quote); 266 return Result; 267 } 268 269 void Lexer::Stringify(SmallVectorImpl<char> &Str) { StringifyImpl(Str, '"'); } 270 271 //===----------------------------------------------------------------------===// 272 // Token Spelling 273 //===----------------------------------------------------------------------===// 274 275 /// Slow case of getSpelling. Extract the characters comprising the 276 /// spelling of this token from the provided input buffer. 277 static size_t getSpellingSlow(const Token &Tok, const char *BufPtr, 278 const LangOptions &LangOpts, char *Spelling) { 279 assert(Tok.needsCleaning() && "getSpellingSlow called on simple token"); 280 281 size_t Length = 0; 282 const char *BufEnd = BufPtr + Tok.getLength(); 283 284 if (tok::isStringLiteral(Tok.getKind())) { 285 // Munch the encoding-prefix and opening double-quote. 286 while (BufPtr < BufEnd) { 287 unsigned Size; 288 Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts); 289 BufPtr += Size; 290 291 if (Spelling[Length - 1] == '"') 292 break; 293 } 294 295 // Raw string literals need special handling; trigraph expansion and line 296 // splicing do not occur within their d-char-sequence nor within their 297 // r-char-sequence. 298 if (Length >= 2 && 299 Spelling[Length - 2] == 'R' && Spelling[Length - 1] == '"') { 300 // Search backwards from the end of the token to find the matching closing 301 // quote. 302 const char *RawEnd = BufEnd; 303 do --RawEnd; while (*RawEnd != '"'); 304 size_t RawLength = RawEnd - BufPtr + 1; 305 306 // Everything between the quotes is included verbatim in the spelling. 307 memcpy(Spelling + Length, BufPtr, RawLength); 308 Length += RawLength; 309 BufPtr += RawLength; 310 311 // The rest of the token is lexed normally. 312 } 313 } 314 315 while (BufPtr < BufEnd) { 316 unsigned Size; 317 Spelling[Length++] = Lexer::getCharAndSizeNoWarn(BufPtr, Size, LangOpts); 318 BufPtr += Size; 319 } 320 321 assert(Length < Tok.getLength() && 322 "NeedsCleaning flag set on token that didn't need cleaning!"); 323 return Length; 324 } 325 326 /// getSpelling() - Return the 'spelling' of this token. The spelling of a 327 /// token are the characters used to represent the token in the source file 328 /// after trigraph expansion and escaped-newline folding. In particular, this 329 /// wants to get the true, uncanonicalized, spelling of things like digraphs 330 /// UCNs, etc. 331 StringRef Lexer::getSpelling(SourceLocation loc, 332 SmallVectorImpl<char> &buffer, 333 const SourceManager &SM, 334 const LangOptions &options, 335 bool *invalid) { 336 // Break down the source location. 337 std::pair<FileID, unsigned> locInfo = SM.getDecomposedLoc(loc); 338 339 // Try to the load the file buffer. 340 bool invalidTemp = false; 341 StringRef file = SM.getBufferData(locInfo.first, &invalidTemp); 342 if (invalidTemp) { 343 if (invalid) *invalid = true; 344 return {}; 345 } 346 347 const char *tokenBegin = file.data() + locInfo.second; 348 349 // Lex from the start of the given location. 350 Lexer lexer(SM.getLocForStartOfFile(locInfo.first), options, 351 file.begin(), tokenBegin, file.end()); 352 Token token; 353 lexer.LexFromRawLexer(token); 354 355 unsigned length = token.getLength(); 356 357 // Common case: no need for cleaning. 358 if (!token.needsCleaning()) 359 return StringRef(tokenBegin, length); 360 361 // Hard case, we need to relex the characters into the string. 362 buffer.resize(length); 363 buffer.resize(getSpellingSlow(token, tokenBegin, options, buffer.data())); 364 return StringRef(buffer.data(), buffer.size()); 365 } 366 367 /// getSpelling() - Return the 'spelling' of this token. The spelling of a 368 /// token are the characters used to represent the token in the source file 369 /// after trigraph expansion and escaped-newline folding. In particular, this 370 /// wants to get the true, uncanonicalized, spelling of things like digraphs 371 /// UCNs, etc. 372 std::string Lexer::getSpelling(const Token &Tok, const SourceManager &SourceMgr, 373 const LangOptions &LangOpts, bool *Invalid) { 374 assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); 375 376 bool CharDataInvalid = false; 377 const char *TokStart = SourceMgr.getCharacterData(Tok.getLocation(), 378 &CharDataInvalid); 379 if (Invalid) 380 *Invalid = CharDataInvalid; 381 if (CharDataInvalid) 382 return {}; 383 384 // If this token contains nothing interesting, return it directly. 385 if (!Tok.needsCleaning()) 386 return std::string(TokStart, TokStart + Tok.getLength()); 387 388 std::string Result; 389 Result.resize(Tok.getLength()); 390 Result.resize(getSpellingSlow(Tok, TokStart, LangOpts, &*Result.begin())); 391 return Result; 392 } 393 394 /// getSpelling - This method is used to get the spelling of a token into a 395 /// preallocated buffer, instead of as an std::string. The caller is required 396 /// to allocate enough space for the token, which is guaranteed to be at least 397 /// Tok.getLength() bytes long. The actual length of the token is returned. 398 /// 399 /// Note that this method may do two possible things: it may either fill in 400 /// the buffer specified with characters, or it may *change the input pointer* 401 /// to point to a constant buffer with the data already in it (avoiding a 402 /// copy). The caller is not allowed to modify the returned buffer pointer 403 /// if an internal buffer is returned. 404 unsigned Lexer::getSpelling(const Token &Tok, const char *&Buffer, 405 const SourceManager &SourceMgr, 406 const LangOptions &LangOpts, bool *Invalid) { 407 assert((int)Tok.getLength() >= 0 && "Token character range is bogus!"); 408 409 const char *TokStart = nullptr; 410 // NOTE: this has to be checked *before* testing for an IdentifierInfo. 411 if (Tok.is(tok::raw_identifier)) 412 TokStart = Tok.getRawIdentifier().data(); 413 else if (!Tok.hasUCN()) { 414 if (const IdentifierInfo *II = Tok.getIdentifierInfo()) { 415 // Just return the string from the identifier table, which is very quick. 416 Buffer = II->getNameStart(); 417 return II->getLength(); 418 } 419 } 420 421 // NOTE: this can be checked even after testing for an IdentifierInfo. 422 if (Tok.isLiteral()) 423 TokStart = Tok.getLiteralData(); 424 425 if (!TokStart) { 426 // Compute the start of the token in the input lexer buffer. 427 bool CharDataInvalid = false; 428 TokStart = SourceMgr.getCharacterData(Tok.getLocation(), &CharDataInvalid); 429 if (Invalid) 430 *Invalid = CharDataInvalid; 431 if (CharDataInvalid) { 432 Buffer = ""; 433 return 0; 434 } 435 } 436 437 // If this token contains nothing interesting, return it directly. 438 if (!Tok.needsCleaning()) { 439 Buffer = TokStart; 440 return Tok.getLength(); 441 } 442 443 // Otherwise, hard case, relex the characters into the string. 444 return getSpellingSlow(Tok, TokStart, LangOpts, const_cast<char*>(Buffer)); 445 } 446 447 /// MeasureTokenLength - Relex the token at the specified location and return 448 /// its length in bytes in the input file. If the token needs cleaning (e.g. 449 /// includes a trigraph or an escaped newline) then this count includes bytes 450 /// that are part of that. 451 unsigned Lexer::MeasureTokenLength(SourceLocation Loc, 452 const SourceManager &SM, 453 const LangOptions &LangOpts) { 454 Token TheTok; 455 if (getRawToken(Loc, TheTok, SM, LangOpts)) 456 return 0; 457 return TheTok.getLength(); 458 } 459 460 /// Relex the token at the specified location. 461 /// \returns true if there was a failure, false on success. 462 bool Lexer::getRawToken(SourceLocation Loc, Token &Result, 463 const SourceManager &SM, 464 const LangOptions &LangOpts, 465 bool IgnoreWhiteSpace) { 466 // TODO: this could be special cased for common tokens like identifiers, ')', 467 // etc to make this faster, if it mattered. Just look at StrData[0] to handle 468 // all obviously single-char tokens. This could use 469 // Lexer::isObviouslySimpleCharacter for example to handle identifiers or 470 // something. 471 472 // If this comes from a macro expansion, we really do want the macro name, not 473 // the token this macro expanded to. 474 Loc = SM.getExpansionLoc(Loc); 475 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 476 bool Invalid = false; 477 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 478 if (Invalid) 479 return true; 480 481 const char *StrData = Buffer.data()+LocInfo.second; 482 483 if (!IgnoreWhiteSpace && isWhitespace(StrData[0])) 484 return true; 485 486 // Create a lexer starting at the beginning of this token. 487 Lexer TheLexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, 488 Buffer.begin(), StrData, Buffer.end()); 489 TheLexer.SetCommentRetentionState(true); 490 TheLexer.LexFromRawLexer(Result); 491 return false; 492 } 493 494 /// Returns the pointer that points to the beginning of line that contains 495 /// the given offset, or null if the offset if invalid. 496 static const char *findBeginningOfLine(StringRef Buffer, unsigned Offset) { 497 const char *BufStart = Buffer.data(); 498 if (Offset >= Buffer.size()) 499 return nullptr; 500 501 const char *LexStart = BufStart + Offset; 502 for (; LexStart != BufStart; --LexStart) { 503 if (isVerticalWhitespace(LexStart[0]) && 504 !Lexer::isNewLineEscaped(BufStart, LexStart)) { 505 // LexStart should point at first character of logical line. 506 ++LexStart; 507 break; 508 } 509 } 510 return LexStart; 511 } 512 513 static SourceLocation getBeginningOfFileToken(SourceLocation Loc, 514 const SourceManager &SM, 515 const LangOptions &LangOpts) { 516 assert(Loc.isFileID()); 517 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 518 if (LocInfo.first.isInvalid()) 519 return Loc; 520 521 bool Invalid = false; 522 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 523 if (Invalid) 524 return Loc; 525 526 // Back up from the current location until we hit the beginning of a line 527 // (or the buffer). We'll relex from that point. 528 const char *StrData = Buffer.data() + LocInfo.second; 529 const char *LexStart = findBeginningOfLine(Buffer, LocInfo.second); 530 if (!LexStart || LexStart == StrData) 531 return Loc; 532 533 // Create a lexer starting at the beginning of this token. 534 SourceLocation LexerStartLoc = Loc.getLocWithOffset(-LocInfo.second); 535 Lexer TheLexer(LexerStartLoc, LangOpts, Buffer.data(), LexStart, 536 Buffer.end()); 537 TheLexer.SetCommentRetentionState(true); 538 539 // Lex tokens until we find the token that contains the source location. 540 Token TheTok; 541 do { 542 TheLexer.LexFromRawLexer(TheTok); 543 544 if (TheLexer.getBufferLocation() > StrData) { 545 // Lexing this token has taken the lexer past the source location we're 546 // looking for. If the current token encompasses our source location, 547 // return the beginning of that token. 548 if (TheLexer.getBufferLocation() - TheTok.getLength() <= StrData) 549 return TheTok.getLocation(); 550 551 // We ended up skipping over the source location entirely, which means 552 // that it points into whitespace. We're done here. 553 break; 554 } 555 } while (TheTok.getKind() != tok::eof); 556 557 // We've passed our source location; just return the original source location. 558 return Loc; 559 } 560 561 SourceLocation Lexer::GetBeginningOfToken(SourceLocation Loc, 562 const SourceManager &SM, 563 const LangOptions &LangOpts) { 564 if (Loc.isFileID()) 565 return getBeginningOfFileToken(Loc, SM, LangOpts); 566 567 if (!SM.isMacroArgExpansion(Loc)) 568 return Loc; 569 570 SourceLocation FileLoc = SM.getSpellingLoc(Loc); 571 SourceLocation BeginFileLoc = getBeginningOfFileToken(FileLoc, SM, LangOpts); 572 std::pair<FileID, unsigned> FileLocInfo = SM.getDecomposedLoc(FileLoc); 573 std::pair<FileID, unsigned> BeginFileLocInfo = 574 SM.getDecomposedLoc(BeginFileLoc); 575 assert(FileLocInfo.first == BeginFileLocInfo.first && 576 FileLocInfo.second >= BeginFileLocInfo.second); 577 return Loc.getLocWithOffset(BeginFileLocInfo.second - FileLocInfo.second); 578 } 579 580 namespace { 581 582 enum PreambleDirectiveKind { 583 PDK_Skipped, 584 PDK_Unknown 585 }; 586 587 } // namespace 588 589 PreambleBounds Lexer::ComputePreamble(StringRef Buffer, 590 const LangOptions &LangOpts, 591 unsigned MaxLines) { 592 // Create a lexer starting at the beginning of the file. Note that we use a 593 // "fake" file source location at offset 1 so that the lexer will track our 594 // position within the file. 595 const SourceLocation::UIntTy StartOffset = 1; 596 SourceLocation FileLoc = SourceLocation::getFromRawEncoding(StartOffset); 597 Lexer TheLexer(FileLoc, LangOpts, Buffer.begin(), Buffer.begin(), 598 Buffer.end()); 599 TheLexer.SetCommentRetentionState(true); 600 601 bool InPreprocessorDirective = false; 602 Token TheTok; 603 SourceLocation ActiveCommentLoc; 604 605 unsigned MaxLineOffset = 0; 606 if (MaxLines) { 607 const char *CurPtr = Buffer.begin(); 608 unsigned CurLine = 0; 609 while (CurPtr != Buffer.end()) { 610 char ch = *CurPtr++; 611 if (ch == '\n') { 612 ++CurLine; 613 if (CurLine == MaxLines) 614 break; 615 } 616 } 617 if (CurPtr != Buffer.end()) 618 MaxLineOffset = CurPtr - Buffer.begin(); 619 } 620 621 do { 622 TheLexer.LexFromRawLexer(TheTok); 623 624 if (InPreprocessorDirective) { 625 // If we've hit the end of the file, we're done. 626 if (TheTok.getKind() == tok::eof) { 627 break; 628 } 629 630 // If we haven't hit the end of the preprocessor directive, skip this 631 // token. 632 if (!TheTok.isAtStartOfLine()) 633 continue; 634 635 // We've passed the end of the preprocessor directive, and will look 636 // at this token again below. 637 InPreprocessorDirective = false; 638 } 639 640 // Keep track of the # of lines in the preamble. 641 if (TheTok.isAtStartOfLine()) { 642 unsigned TokOffset = TheTok.getLocation().getRawEncoding() - StartOffset; 643 644 // If we were asked to limit the number of lines in the preamble, 645 // and we're about to exceed that limit, we're done. 646 if (MaxLineOffset && TokOffset >= MaxLineOffset) 647 break; 648 } 649 650 // Comments are okay; skip over them. 651 if (TheTok.getKind() == tok::comment) { 652 if (ActiveCommentLoc.isInvalid()) 653 ActiveCommentLoc = TheTok.getLocation(); 654 continue; 655 } 656 657 if (TheTok.isAtStartOfLine() && TheTok.getKind() == tok::hash) { 658 // This is the start of a preprocessor directive. 659 Token HashTok = TheTok; 660 InPreprocessorDirective = true; 661 ActiveCommentLoc = SourceLocation(); 662 663 // Figure out which directive this is. Since we're lexing raw tokens, 664 // we don't have an identifier table available. Instead, just look at 665 // the raw identifier to recognize and categorize preprocessor directives. 666 TheLexer.LexFromRawLexer(TheTok); 667 if (TheTok.getKind() == tok::raw_identifier && !TheTok.needsCleaning()) { 668 StringRef Keyword = TheTok.getRawIdentifier(); 669 PreambleDirectiveKind PDK 670 = llvm::StringSwitch<PreambleDirectiveKind>(Keyword) 671 .Case("include", PDK_Skipped) 672 .Case("__include_macros", PDK_Skipped) 673 .Case("define", PDK_Skipped) 674 .Case("undef", PDK_Skipped) 675 .Case("line", PDK_Skipped) 676 .Case("error", PDK_Skipped) 677 .Case("pragma", PDK_Skipped) 678 .Case("import", PDK_Skipped) 679 .Case("include_next", PDK_Skipped) 680 .Case("warning", PDK_Skipped) 681 .Case("ident", PDK_Skipped) 682 .Case("sccs", PDK_Skipped) 683 .Case("assert", PDK_Skipped) 684 .Case("unassert", PDK_Skipped) 685 .Case("if", PDK_Skipped) 686 .Case("ifdef", PDK_Skipped) 687 .Case("ifndef", PDK_Skipped) 688 .Case("elif", PDK_Skipped) 689 .Case("elifdef", PDK_Skipped) 690 .Case("elifndef", PDK_Skipped) 691 .Case("else", PDK_Skipped) 692 .Case("endif", PDK_Skipped) 693 .Default(PDK_Unknown); 694 695 switch (PDK) { 696 case PDK_Skipped: 697 continue; 698 699 case PDK_Unknown: 700 // We don't know what this directive is; stop at the '#'. 701 break; 702 } 703 } 704 705 // We only end up here if we didn't recognize the preprocessor 706 // directive or it was one that can't occur in the preamble at this 707 // point. Roll back the current token to the location of the '#'. 708 TheTok = HashTok; 709 } 710 711 // We hit a token that we don't recognize as being in the 712 // "preprocessing only" part of the file, so we're no longer in 713 // the preamble. 714 break; 715 } while (true); 716 717 SourceLocation End; 718 if (ActiveCommentLoc.isValid()) 719 End = ActiveCommentLoc; // don't truncate a decl comment. 720 else 721 End = TheTok.getLocation(); 722 723 return PreambleBounds(End.getRawEncoding() - FileLoc.getRawEncoding(), 724 TheTok.isAtStartOfLine()); 725 } 726 727 unsigned Lexer::getTokenPrefixLength(SourceLocation TokStart, unsigned CharNo, 728 const SourceManager &SM, 729 const LangOptions &LangOpts) { 730 // Figure out how many physical characters away the specified expansion 731 // character is. This needs to take into consideration newlines and 732 // trigraphs. 733 bool Invalid = false; 734 const char *TokPtr = SM.getCharacterData(TokStart, &Invalid); 735 736 // If they request the first char of the token, we're trivially done. 737 if (Invalid || (CharNo == 0 && Lexer::isObviouslySimpleCharacter(*TokPtr))) 738 return 0; 739 740 unsigned PhysOffset = 0; 741 742 // The usual case is that tokens don't contain anything interesting. Skip 743 // over the uninteresting characters. If a token only consists of simple 744 // chars, this method is extremely fast. 745 while (Lexer::isObviouslySimpleCharacter(*TokPtr)) { 746 if (CharNo == 0) 747 return PhysOffset; 748 ++TokPtr; 749 --CharNo; 750 ++PhysOffset; 751 } 752 753 // If we have a character that may be a trigraph or escaped newline, use a 754 // lexer to parse it correctly. 755 for (; CharNo; --CharNo) { 756 unsigned Size; 757 Lexer::getCharAndSizeNoWarn(TokPtr, Size, LangOpts); 758 TokPtr += Size; 759 PhysOffset += Size; 760 } 761 762 // Final detail: if we end up on an escaped newline, we want to return the 763 // location of the actual byte of the token. For example foo\<newline>bar 764 // advanced by 3 should return the location of b, not of \\. One compounding 765 // detail of this is that the escape may be made by a trigraph. 766 if (!Lexer::isObviouslySimpleCharacter(*TokPtr)) 767 PhysOffset += Lexer::SkipEscapedNewLines(TokPtr)-TokPtr; 768 769 return PhysOffset; 770 } 771 772 /// Computes the source location just past the end of the 773 /// token at this source location. 774 /// 775 /// This routine can be used to produce a source location that 776 /// points just past the end of the token referenced by \p Loc, and 777 /// is generally used when a diagnostic needs to point just after a 778 /// token where it expected something different that it received. If 779 /// the returned source location would not be meaningful (e.g., if 780 /// it points into a macro), this routine returns an invalid 781 /// source location. 782 /// 783 /// \param Offset an offset from the end of the token, where the source 784 /// location should refer to. The default offset (0) produces a source 785 /// location pointing just past the end of the token; an offset of 1 produces 786 /// a source location pointing to the last character in the token, etc. 787 SourceLocation Lexer::getLocForEndOfToken(SourceLocation Loc, unsigned Offset, 788 const SourceManager &SM, 789 const LangOptions &LangOpts) { 790 if (Loc.isInvalid()) 791 return {}; 792 793 if (Loc.isMacroID()) { 794 if (Offset > 0 || !isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc)) 795 return {}; // Points inside the macro expansion. 796 } 797 798 unsigned Len = Lexer::MeasureTokenLength(Loc, SM, LangOpts); 799 if (Len > Offset) 800 Len = Len - Offset; 801 else 802 return Loc; 803 804 return Loc.getLocWithOffset(Len); 805 } 806 807 /// Returns true if the given MacroID location points at the first 808 /// token of the macro expansion. 809 bool Lexer::isAtStartOfMacroExpansion(SourceLocation loc, 810 const SourceManager &SM, 811 const LangOptions &LangOpts, 812 SourceLocation *MacroBegin) { 813 assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc"); 814 815 SourceLocation expansionLoc; 816 if (!SM.isAtStartOfImmediateMacroExpansion(loc, &expansionLoc)) 817 return false; 818 819 if (expansionLoc.isFileID()) { 820 // No other macro expansions, this is the first. 821 if (MacroBegin) 822 *MacroBegin = expansionLoc; 823 return true; 824 } 825 826 return isAtStartOfMacroExpansion(expansionLoc, SM, LangOpts, MacroBegin); 827 } 828 829 /// Returns true if the given MacroID location points at the last 830 /// token of the macro expansion. 831 bool Lexer::isAtEndOfMacroExpansion(SourceLocation loc, 832 const SourceManager &SM, 833 const LangOptions &LangOpts, 834 SourceLocation *MacroEnd) { 835 assert(loc.isValid() && loc.isMacroID() && "Expected a valid macro loc"); 836 837 SourceLocation spellLoc = SM.getSpellingLoc(loc); 838 unsigned tokLen = MeasureTokenLength(spellLoc, SM, LangOpts); 839 if (tokLen == 0) 840 return false; 841 842 SourceLocation afterLoc = loc.getLocWithOffset(tokLen); 843 SourceLocation expansionLoc; 844 if (!SM.isAtEndOfImmediateMacroExpansion(afterLoc, &expansionLoc)) 845 return false; 846 847 if (expansionLoc.isFileID()) { 848 // No other macro expansions. 849 if (MacroEnd) 850 *MacroEnd = expansionLoc; 851 return true; 852 } 853 854 return isAtEndOfMacroExpansion(expansionLoc, SM, LangOpts, MacroEnd); 855 } 856 857 static CharSourceRange makeRangeFromFileLocs(CharSourceRange Range, 858 const SourceManager &SM, 859 const LangOptions &LangOpts) { 860 SourceLocation Begin = Range.getBegin(); 861 SourceLocation End = Range.getEnd(); 862 assert(Begin.isFileID() && End.isFileID()); 863 if (Range.isTokenRange()) { 864 End = Lexer::getLocForEndOfToken(End, 0, SM,LangOpts); 865 if (End.isInvalid()) 866 return {}; 867 } 868 869 // Break down the source locations. 870 FileID FID; 871 unsigned BeginOffs; 872 std::tie(FID, BeginOffs) = SM.getDecomposedLoc(Begin); 873 if (FID.isInvalid()) 874 return {}; 875 876 unsigned EndOffs; 877 if (!SM.isInFileID(End, FID, &EndOffs) || 878 BeginOffs > EndOffs) 879 return {}; 880 881 return CharSourceRange::getCharRange(Begin, End); 882 } 883 884 // Assumes that `Loc` is in an expansion. 885 static bool isInExpansionTokenRange(const SourceLocation Loc, 886 const SourceManager &SM) { 887 return SM.getSLocEntry(SM.getFileID(Loc)) 888 .getExpansion() 889 .isExpansionTokenRange(); 890 } 891 892 CharSourceRange Lexer::makeFileCharRange(CharSourceRange Range, 893 const SourceManager &SM, 894 const LangOptions &LangOpts) { 895 SourceLocation Begin = Range.getBegin(); 896 SourceLocation End = Range.getEnd(); 897 if (Begin.isInvalid() || End.isInvalid()) 898 return {}; 899 900 if (Begin.isFileID() && End.isFileID()) 901 return makeRangeFromFileLocs(Range, SM, LangOpts); 902 903 if (Begin.isMacroID() && End.isFileID()) { 904 if (!isAtStartOfMacroExpansion(Begin, SM, LangOpts, &Begin)) 905 return {}; 906 Range.setBegin(Begin); 907 return makeRangeFromFileLocs(Range, SM, LangOpts); 908 } 909 910 if (Begin.isFileID() && End.isMacroID()) { 911 if (Range.isTokenRange()) { 912 if (!isAtEndOfMacroExpansion(End, SM, LangOpts, &End)) 913 return {}; 914 // Use the *original* end, not the expanded one in `End`. 915 Range.setTokenRange(isInExpansionTokenRange(Range.getEnd(), SM)); 916 } else if (!isAtStartOfMacroExpansion(End, SM, LangOpts, &End)) 917 return {}; 918 Range.setEnd(End); 919 return makeRangeFromFileLocs(Range, SM, LangOpts); 920 } 921 922 assert(Begin.isMacroID() && End.isMacroID()); 923 SourceLocation MacroBegin, MacroEnd; 924 if (isAtStartOfMacroExpansion(Begin, SM, LangOpts, &MacroBegin) && 925 ((Range.isTokenRange() && isAtEndOfMacroExpansion(End, SM, LangOpts, 926 &MacroEnd)) || 927 (Range.isCharRange() && isAtStartOfMacroExpansion(End, SM, LangOpts, 928 &MacroEnd)))) { 929 Range.setBegin(MacroBegin); 930 Range.setEnd(MacroEnd); 931 // Use the *original* `End`, not the expanded one in `MacroEnd`. 932 if (Range.isTokenRange()) 933 Range.setTokenRange(isInExpansionTokenRange(End, SM)); 934 return makeRangeFromFileLocs(Range, SM, LangOpts); 935 } 936 937 bool Invalid = false; 938 const SrcMgr::SLocEntry &BeginEntry = SM.getSLocEntry(SM.getFileID(Begin), 939 &Invalid); 940 if (Invalid) 941 return {}; 942 943 if (BeginEntry.getExpansion().isMacroArgExpansion()) { 944 const SrcMgr::SLocEntry &EndEntry = SM.getSLocEntry(SM.getFileID(End), 945 &Invalid); 946 if (Invalid) 947 return {}; 948 949 if (EndEntry.getExpansion().isMacroArgExpansion() && 950 BeginEntry.getExpansion().getExpansionLocStart() == 951 EndEntry.getExpansion().getExpansionLocStart()) { 952 Range.setBegin(SM.getImmediateSpellingLoc(Begin)); 953 Range.setEnd(SM.getImmediateSpellingLoc(End)); 954 return makeFileCharRange(Range, SM, LangOpts); 955 } 956 } 957 958 return {}; 959 } 960 961 StringRef Lexer::getSourceText(CharSourceRange Range, 962 const SourceManager &SM, 963 const LangOptions &LangOpts, 964 bool *Invalid) { 965 Range = makeFileCharRange(Range, SM, LangOpts); 966 if (Range.isInvalid()) { 967 if (Invalid) *Invalid = true; 968 return {}; 969 } 970 971 // Break down the source location. 972 std::pair<FileID, unsigned> beginInfo = SM.getDecomposedLoc(Range.getBegin()); 973 if (beginInfo.first.isInvalid()) { 974 if (Invalid) *Invalid = true; 975 return {}; 976 } 977 978 unsigned EndOffs; 979 if (!SM.isInFileID(Range.getEnd(), beginInfo.first, &EndOffs) || 980 beginInfo.second > EndOffs) { 981 if (Invalid) *Invalid = true; 982 return {}; 983 } 984 985 // Try to the load the file buffer. 986 bool invalidTemp = false; 987 StringRef file = SM.getBufferData(beginInfo.first, &invalidTemp); 988 if (invalidTemp) { 989 if (Invalid) *Invalid = true; 990 return {}; 991 } 992 993 if (Invalid) *Invalid = false; 994 return file.substr(beginInfo.second, EndOffs - beginInfo.second); 995 } 996 997 StringRef Lexer::getImmediateMacroName(SourceLocation Loc, 998 const SourceManager &SM, 999 const LangOptions &LangOpts) { 1000 assert(Loc.isMacroID() && "Only reasonable to call this on macros"); 1001 1002 // Find the location of the immediate macro expansion. 1003 while (true) { 1004 FileID FID = SM.getFileID(Loc); 1005 const SrcMgr::SLocEntry *E = &SM.getSLocEntry(FID); 1006 const SrcMgr::ExpansionInfo &Expansion = E->getExpansion(); 1007 Loc = Expansion.getExpansionLocStart(); 1008 if (!Expansion.isMacroArgExpansion()) 1009 break; 1010 1011 // For macro arguments we need to check that the argument did not come 1012 // from an inner macro, e.g: "MAC1( MAC2(foo) )" 1013 1014 // Loc points to the argument id of the macro definition, move to the 1015 // macro expansion. 1016 Loc = SM.getImmediateExpansionRange(Loc).getBegin(); 1017 SourceLocation SpellLoc = Expansion.getSpellingLoc(); 1018 if (SpellLoc.isFileID()) 1019 break; // No inner macro. 1020 1021 // If spelling location resides in the same FileID as macro expansion 1022 // location, it means there is no inner macro. 1023 FileID MacroFID = SM.getFileID(Loc); 1024 if (SM.isInFileID(SpellLoc, MacroFID)) 1025 break; 1026 1027 // Argument came from inner macro. 1028 Loc = SpellLoc; 1029 } 1030 1031 // Find the spelling location of the start of the non-argument expansion 1032 // range. This is where the macro name was spelled in order to begin 1033 // expanding this macro. 1034 Loc = SM.getSpellingLoc(Loc); 1035 1036 // Dig out the buffer where the macro name was spelled and the extents of the 1037 // name so that we can render it into the expansion note. 1038 std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc); 1039 unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts); 1040 StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first); 1041 return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength); 1042 } 1043 1044 StringRef Lexer::getImmediateMacroNameForDiagnostics( 1045 SourceLocation Loc, const SourceManager &SM, const LangOptions &LangOpts) { 1046 assert(Loc.isMacroID() && "Only reasonable to call this on macros"); 1047 // Walk past macro argument expansions. 1048 while (SM.isMacroArgExpansion(Loc)) 1049 Loc = SM.getImmediateExpansionRange(Loc).getBegin(); 1050 1051 // If the macro's spelling has no FileID, then it's actually a token paste 1052 // or stringization (or similar) and not a macro at all. 1053 if (!SM.getFileEntryForID(SM.getFileID(SM.getSpellingLoc(Loc)))) 1054 return {}; 1055 1056 // Find the spelling location of the start of the non-argument expansion 1057 // range. This is where the macro name was spelled in order to begin 1058 // expanding this macro. 1059 Loc = SM.getSpellingLoc(SM.getImmediateExpansionRange(Loc).getBegin()); 1060 1061 // Dig out the buffer where the macro name was spelled and the extents of the 1062 // name so that we can render it into the expansion note. 1063 std::pair<FileID, unsigned> ExpansionInfo = SM.getDecomposedLoc(Loc); 1064 unsigned MacroTokenLength = Lexer::MeasureTokenLength(Loc, SM, LangOpts); 1065 StringRef ExpansionBuffer = SM.getBufferData(ExpansionInfo.first); 1066 return ExpansionBuffer.substr(ExpansionInfo.second, MacroTokenLength); 1067 } 1068 1069 bool Lexer::isAsciiIdentifierContinueChar(char c, const LangOptions &LangOpts) { 1070 return isAsciiIdentifierContinue(c, LangOpts.DollarIdents); 1071 } 1072 1073 bool Lexer::isNewLineEscaped(const char *BufferStart, const char *Str) { 1074 assert(isVerticalWhitespace(Str[0])); 1075 if (Str - 1 < BufferStart) 1076 return false; 1077 1078 if ((Str[0] == '\n' && Str[-1] == '\r') || 1079 (Str[0] == '\r' && Str[-1] == '\n')) { 1080 if (Str - 2 < BufferStart) 1081 return false; 1082 --Str; 1083 } 1084 --Str; 1085 1086 // Rewind to first non-space character: 1087 while (Str > BufferStart && isHorizontalWhitespace(*Str)) 1088 --Str; 1089 1090 return *Str == '\\'; 1091 } 1092 1093 StringRef Lexer::getIndentationForLine(SourceLocation Loc, 1094 const SourceManager &SM) { 1095 if (Loc.isInvalid() || Loc.isMacroID()) 1096 return {}; 1097 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 1098 if (LocInfo.first.isInvalid()) 1099 return {}; 1100 bool Invalid = false; 1101 StringRef Buffer = SM.getBufferData(LocInfo.first, &Invalid); 1102 if (Invalid) 1103 return {}; 1104 const char *Line = findBeginningOfLine(Buffer, LocInfo.second); 1105 if (!Line) 1106 return {}; 1107 StringRef Rest = Buffer.substr(Line - Buffer.data()); 1108 size_t NumWhitespaceChars = Rest.find_first_not_of(" \t"); 1109 return NumWhitespaceChars == StringRef::npos 1110 ? "" 1111 : Rest.take_front(NumWhitespaceChars); 1112 } 1113 1114 //===----------------------------------------------------------------------===// 1115 // Diagnostics forwarding code. 1116 //===----------------------------------------------------------------------===// 1117 1118 /// GetMappedTokenLoc - If lexing out of a 'mapped buffer', where we pretend the 1119 /// lexer buffer was all expanded at a single point, perform the mapping. 1120 /// This is currently only used for _Pragma implementation, so it is the slow 1121 /// path of the hot getSourceLocation method. Do not allow it to be inlined. 1122 static LLVM_ATTRIBUTE_NOINLINE SourceLocation GetMappedTokenLoc( 1123 Preprocessor &PP, SourceLocation FileLoc, unsigned CharNo, unsigned TokLen); 1124 static SourceLocation GetMappedTokenLoc(Preprocessor &PP, 1125 SourceLocation FileLoc, 1126 unsigned CharNo, unsigned TokLen) { 1127 assert(FileLoc.isMacroID() && "Must be a macro expansion"); 1128 1129 // Otherwise, we're lexing "mapped tokens". This is used for things like 1130 // _Pragma handling. Combine the expansion location of FileLoc with the 1131 // spelling location. 1132 SourceManager &SM = PP.getSourceManager(); 1133 1134 // Create a new SLoc which is expanded from Expansion(FileLoc) but whose 1135 // characters come from spelling(FileLoc)+Offset. 1136 SourceLocation SpellingLoc = SM.getSpellingLoc(FileLoc); 1137 SpellingLoc = SpellingLoc.getLocWithOffset(CharNo); 1138 1139 // Figure out the expansion loc range, which is the range covered by the 1140 // original _Pragma(...) sequence. 1141 CharSourceRange II = SM.getImmediateExpansionRange(FileLoc); 1142 1143 return SM.createExpansionLoc(SpellingLoc, II.getBegin(), II.getEnd(), TokLen); 1144 } 1145 1146 /// getSourceLocation - Return a source location identifier for the specified 1147 /// offset in the current file. 1148 SourceLocation Lexer::getSourceLocation(const char *Loc, 1149 unsigned TokLen) const { 1150 assert(Loc >= BufferStart && Loc <= BufferEnd && 1151 "Location out of range for this buffer!"); 1152 1153 // In the normal case, we're just lexing from a simple file buffer, return 1154 // the file id from FileLoc with the offset specified. 1155 unsigned CharNo = Loc-BufferStart; 1156 if (FileLoc.isFileID()) 1157 return FileLoc.getLocWithOffset(CharNo); 1158 1159 // Otherwise, this is the _Pragma lexer case, which pretends that all of the 1160 // tokens are lexed from where the _Pragma was defined. 1161 assert(PP && "This doesn't work on raw lexers"); 1162 return GetMappedTokenLoc(*PP, FileLoc, CharNo, TokLen); 1163 } 1164 1165 /// Diag - Forwarding function for diagnostics. This translate a source 1166 /// position in the current buffer into a SourceLocation object for rendering. 1167 DiagnosticBuilder Lexer::Diag(const char *Loc, unsigned DiagID) const { 1168 return PP->Diag(getSourceLocation(Loc), DiagID); 1169 } 1170 1171 //===----------------------------------------------------------------------===// 1172 // Trigraph and Escaped Newline Handling Code. 1173 //===----------------------------------------------------------------------===// 1174 1175 /// GetTrigraphCharForLetter - Given a character that occurs after a ?? pair, 1176 /// return the decoded trigraph letter it corresponds to, or '\0' if nothing. 1177 static char GetTrigraphCharForLetter(char Letter) { 1178 switch (Letter) { 1179 default: return 0; 1180 case '=': return '#'; 1181 case ')': return ']'; 1182 case '(': return '['; 1183 case '!': return '|'; 1184 case '\'': return '^'; 1185 case '>': return '}'; 1186 case '/': return '\\'; 1187 case '<': return '{'; 1188 case '-': return '~'; 1189 } 1190 } 1191 1192 /// DecodeTrigraphChar - If the specified character is a legal trigraph when 1193 /// prefixed with ??, emit a trigraph warning. If trigraphs are enabled, 1194 /// return the result character. Finally, emit a warning about trigraph use 1195 /// whether trigraphs are enabled or not. 1196 static char DecodeTrigraphChar(const char *CP, Lexer *L, bool Trigraphs) { 1197 char Res = GetTrigraphCharForLetter(*CP); 1198 if (!Res || !L) return Res; 1199 1200 if (!Trigraphs) { 1201 if (!L->isLexingRawMode()) 1202 L->Diag(CP-2, diag::trigraph_ignored); 1203 return 0; 1204 } 1205 1206 if (!L->isLexingRawMode()) 1207 L->Diag(CP-2, diag::trigraph_converted) << StringRef(&Res, 1); 1208 return Res; 1209 } 1210 1211 /// getEscapedNewLineSize - Return the size of the specified escaped newline, 1212 /// or 0 if it is not an escaped newline. P[-1] is known to be a "\" or a 1213 /// trigraph equivalent on entry to this function. 1214 unsigned Lexer::getEscapedNewLineSize(const char *Ptr) { 1215 unsigned Size = 0; 1216 while (isWhitespace(Ptr[Size])) { 1217 ++Size; 1218 1219 if (Ptr[Size-1] != '\n' && Ptr[Size-1] != '\r') 1220 continue; 1221 1222 // If this is a \r\n or \n\r, skip the other half. 1223 if ((Ptr[Size] == '\r' || Ptr[Size] == '\n') && 1224 Ptr[Size-1] != Ptr[Size]) 1225 ++Size; 1226 1227 return Size; 1228 } 1229 1230 // Not an escaped newline, must be a \t or something else. 1231 return 0; 1232 } 1233 1234 /// SkipEscapedNewLines - If P points to an escaped newline (or a series of 1235 /// them), skip over them and return the first non-escaped-newline found, 1236 /// otherwise return P. 1237 const char *Lexer::SkipEscapedNewLines(const char *P) { 1238 while (true) { 1239 const char *AfterEscape; 1240 if (*P == '\\') { 1241 AfterEscape = P+1; 1242 } else if (*P == '?') { 1243 // If not a trigraph for escape, bail out. 1244 if (P[1] != '?' || P[2] != '/') 1245 return P; 1246 // FIXME: Take LangOpts into account; the language might not 1247 // support trigraphs. 1248 AfterEscape = P+3; 1249 } else { 1250 return P; 1251 } 1252 1253 unsigned NewLineSize = Lexer::getEscapedNewLineSize(AfterEscape); 1254 if (NewLineSize == 0) return P; 1255 P = AfterEscape+NewLineSize; 1256 } 1257 } 1258 1259 Optional<Token> Lexer::findNextToken(SourceLocation Loc, 1260 const SourceManager &SM, 1261 const LangOptions &LangOpts) { 1262 if (Loc.isMacroID()) { 1263 if (!Lexer::isAtEndOfMacroExpansion(Loc, SM, LangOpts, &Loc)) 1264 return None; 1265 } 1266 Loc = Lexer::getLocForEndOfToken(Loc, 0, SM, LangOpts); 1267 1268 // Break down the source location. 1269 std::pair<FileID, unsigned> LocInfo = SM.getDecomposedLoc(Loc); 1270 1271 // Try to load the file buffer. 1272 bool InvalidTemp = false; 1273 StringRef File = SM.getBufferData(LocInfo.first, &InvalidTemp); 1274 if (InvalidTemp) 1275 return None; 1276 1277 const char *TokenBegin = File.data() + LocInfo.second; 1278 1279 // Lex from the start of the given location. 1280 Lexer lexer(SM.getLocForStartOfFile(LocInfo.first), LangOpts, File.begin(), 1281 TokenBegin, File.end()); 1282 // Find the token. 1283 Token Tok; 1284 lexer.LexFromRawLexer(Tok); 1285 return Tok; 1286 } 1287 1288 /// Checks that the given token is the first token that occurs after the 1289 /// given location (this excludes comments and whitespace). Returns the location 1290 /// immediately after the specified token. If the token is not found or the 1291 /// location is inside a macro, the returned source location will be invalid. 1292 SourceLocation Lexer::findLocationAfterToken( 1293 SourceLocation Loc, tok::TokenKind TKind, const SourceManager &SM, 1294 const LangOptions &LangOpts, bool SkipTrailingWhitespaceAndNewLine) { 1295 Optional<Token> Tok = findNextToken(Loc, SM, LangOpts); 1296 if (!Tok || Tok->isNot(TKind)) 1297 return {}; 1298 SourceLocation TokenLoc = Tok->getLocation(); 1299 1300 // Calculate how much whitespace needs to be skipped if any. 1301 unsigned NumWhitespaceChars = 0; 1302 if (SkipTrailingWhitespaceAndNewLine) { 1303 const char *TokenEnd = SM.getCharacterData(TokenLoc) + Tok->getLength(); 1304 unsigned char C = *TokenEnd; 1305 while (isHorizontalWhitespace(C)) { 1306 C = *(++TokenEnd); 1307 NumWhitespaceChars++; 1308 } 1309 1310 // Skip \r, \n, \r\n, or \n\r 1311 if (C == '\n' || C == '\r') { 1312 char PrevC = C; 1313 C = *(++TokenEnd); 1314 NumWhitespaceChars++; 1315 if ((C == '\n' || C == '\r') && C != PrevC) 1316 NumWhitespaceChars++; 1317 } 1318 } 1319 1320 return TokenLoc.getLocWithOffset(Tok->getLength() + NumWhitespaceChars); 1321 } 1322 1323 /// getCharAndSizeSlow - Peek a single 'character' from the specified buffer, 1324 /// get its size, and return it. This is tricky in several cases: 1325 /// 1. If currently at the start of a trigraph, we warn about the trigraph, 1326 /// then either return the trigraph (skipping 3 chars) or the '?', 1327 /// depending on whether trigraphs are enabled or not. 1328 /// 2. If this is an escaped newline (potentially with whitespace between 1329 /// the backslash and newline), implicitly skip the newline and return 1330 /// the char after it. 1331 /// 1332 /// This handles the slow/uncommon case of the getCharAndSize method. Here we 1333 /// know that we can accumulate into Size, and that we have already incremented 1334 /// Ptr by Size bytes. 1335 /// 1336 /// NOTE: When this method is updated, getCharAndSizeSlowNoWarn (below) should 1337 /// be updated to match. 1338 char Lexer::getCharAndSizeSlow(const char *Ptr, unsigned &Size, 1339 Token *Tok) { 1340 // If we have a slash, look for an escaped newline. 1341 if (Ptr[0] == '\\') { 1342 ++Size; 1343 ++Ptr; 1344 Slash: 1345 // Common case, backslash-char where the char is not whitespace. 1346 if (!isWhitespace(Ptr[0])) return '\\'; 1347 1348 // See if we have optional whitespace characters between the slash and 1349 // newline. 1350 if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) { 1351 // Remember that this token needs to be cleaned. 1352 if (Tok) Tok->setFlag(Token::NeedsCleaning); 1353 1354 // Warn if there was whitespace between the backslash and newline. 1355 if (Ptr[0] != '\n' && Ptr[0] != '\r' && Tok && !isLexingRawMode()) 1356 Diag(Ptr, diag::backslash_newline_space); 1357 1358 // Found backslash<whitespace><newline>. Parse the char after it. 1359 Size += EscapedNewLineSize; 1360 Ptr += EscapedNewLineSize; 1361 1362 // Use slow version to accumulate a correct size field. 1363 return getCharAndSizeSlow(Ptr, Size, Tok); 1364 } 1365 1366 // Otherwise, this is not an escaped newline, just return the slash. 1367 return '\\'; 1368 } 1369 1370 // If this is a trigraph, process it. 1371 if (Ptr[0] == '?' && Ptr[1] == '?') { 1372 // If this is actually a legal trigraph (not something like "??x"), emit 1373 // a trigraph warning. If so, and if trigraphs are enabled, return it. 1374 if (char C = DecodeTrigraphChar(Ptr + 2, Tok ? this : nullptr, 1375 LangOpts.Trigraphs)) { 1376 // Remember that this token needs to be cleaned. 1377 if (Tok) Tok->setFlag(Token::NeedsCleaning); 1378 1379 Ptr += 3; 1380 Size += 3; 1381 if (C == '\\') goto Slash; 1382 return C; 1383 } 1384 } 1385 1386 // If this is neither, return a single character. 1387 ++Size; 1388 return *Ptr; 1389 } 1390 1391 /// getCharAndSizeSlowNoWarn - Handle the slow/uncommon case of the 1392 /// getCharAndSizeNoWarn method. Here we know that we can accumulate into Size, 1393 /// and that we have already incremented Ptr by Size bytes. 1394 /// 1395 /// NOTE: When this method is updated, getCharAndSizeSlow (above) should 1396 /// be updated to match. 1397 char Lexer::getCharAndSizeSlowNoWarn(const char *Ptr, unsigned &Size, 1398 const LangOptions &LangOpts) { 1399 // If we have a slash, look for an escaped newline. 1400 if (Ptr[0] == '\\') { 1401 ++Size; 1402 ++Ptr; 1403 Slash: 1404 // Common case, backslash-char where the char is not whitespace. 1405 if (!isWhitespace(Ptr[0])) return '\\'; 1406 1407 // See if we have optional whitespace characters followed by a newline. 1408 if (unsigned EscapedNewLineSize = getEscapedNewLineSize(Ptr)) { 1409 // Found backslash<whitespace><newline>. Parse the char after it. 1410 Size += EscapedNewLineSize; 1411 Ptr += EscapedNewLineSize; 1412 1413 // Use slow version to accumulate a correct size field. 1414 return getCharAndSizeSlowNoWarn(Ptr, Size, LangOpts); 1415 } 1416 1417 // Otherwise, this is not an escaped newline, just return the slash. 1418 return '\\'; 1419 } 1420 1421 // If this is a trigraph, process it. 1422 if (LangOpts.Trigraphs && Ptr[0] == '?' && Ptr[1] == '?') { 1423 // If this is actually a legal trigraph (not something like "??x"), return 1424 // it. 1425 if (char C = GetTrigraphCharForLetter(Ptr[2])) { 1426 Ptr += 3; 1427 Size += 3; 1428 if (C == '\\') goto Slash; 1429 return C; 1430 } 1431 } 1432 1433 // If this is neither, return a single character. 1434 ++Size; 1435 return *Ptr; 1436 } 1437 1438 //===----------------------------------------------------------------------===// 1439 // Helper methods for lexing. 1440 //===----------------------------------------------------------------------===// 1441 1442 /// Routine that indiscriminately sets the offset into the source file. 1443 void Lexer::SetByteOffset(unsigned Offset, bool StartOfLine) { 1444 BufferPtr = BufferStart + Offset; 1445 if (BufferPtr > BufferEnd) 1446 BufferPtr = BufferEnd; 1447 // FIXME: What exactly does the StartOfLine bit mean? There are two 1448 // possible meanings for the "start" of the line: the first token on the 1449 // unexpanded line, or the first token on the expanded line. 1450 IsAtStartOfLine = StartOfLine; 1451 IsAtPhysicalStartOfLine = StartOfLine; 1452 } 1453 1454 static bool isUnicodeWhitespace(uint32_t Codepoint) { 1455 static const llvm::sys::UnicodeCharSet UnicodeWhitespaceChars( 1456 UnicodeWhitespaceCharRanges); 1457 return UnicodeWhitespaceChars.contains(Codepoint); 1458 } 1459 1460 static bool isAllowedIDChar(uint32_t C, const LangOptions &LangOpts) { 1461 if (LangOpts.AsmPreprocessor) { 1462 return false; 1463 } else if (LangOpts.DollarIdents && '$' == C) { 1464 return true; 1465 } else if (LangOpts.CPlusPlus || LangOpts.C2x) { 1466 // A non-leading codepoint must have the XID_Continue property. 1467 // XIDContinueRanges doesn't contains characters also in XIDStartRanges, 1468 // so we need to check both tables. 1469 // '_' doesn't have the XID_Continue property but is allowed in C and C++. 1470 static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges); 1471 static const llvm::sys::UnicodeCharSet XIDContinueChars(XIDContinueRanges); 1472 return C == '_' || XIDStartChars.contains(C) || 1473 XIDContinueChars.contains(C); 1474 } else if (LangOpts.C11) { 1475 static const llvm::sys::UnicodeCharSet C11AllowedIDChars( 1476 C11AllowedIDCharRanges); 1477 return C11AllowedIDChars.contains(C); 1478 } else { 1479 static const llvm::sys::UnicodeCharSet C99AllowedIDChars( 1480 C99AllowedIDCharRanges); 1481 return C99AllowedIDChars.contains(C); 1482 } 1483 } 1484 1485 static bool isAllowedInitiallyIDChar(uint32_t C, const LangOptions &LangOpts) { 1486 if (LangOpts.AsmPreprocessor) { 1487 return false; 1488 } 1489 if (LangOpts.CPlusPlus || LangOpts.C2x) { 1490 static const llvm::sys::UnicodeCharSet XIDStartChars(XIDStartRanges); 1491 // '_' doesn't have the XID_Start property but is allowed in C++. 1492 return C == '_' || XIDStartChars.contains(C); 1493 } 1494 if (!isAllowedIDChar(C, LangOpts)) 1495 return false; 1496 if (LangOpts.C11) { 1497 static const llvm::sys::UnicodeCharSet C11DisallowedInitialIDChars( 1498 C11DisallowedInitialIDCharRanges); 1499 return !C11DisallowedInitialIDChars.contains(C); 1500 } 1501 static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars( 1502 C99DisallowedInitialIDCharRanges); 1503 return !C99DisallowedInitialIDChars.contains(C); 1504 } 1505 1506 static inline CharSourceRange makeCharRange(Lexer &L, const char *Begin, 1507 const char *End) { 1508 return CharSourceRange::getCharRange(L.getSourceLocation(Begin), 1509 L.getSourceLocation(End)); 1510 } 1511 1512 static void maybeDiagnoseIDCharCompat(DiagnosticsEngine &Diags, uint32_t C, 1513 CharSourceRange Range, bool IsFirst) { 1514 // Check C99 compatibility. 1515 if (!Diags.isIgnored(diag::warn_c99_compat_unicode_id, Range.getBegin())) { 1516 enum { 1517 CannotAppearInIdentifier = 0, 1518 CannotStartIdentifier 1519 }; 1520 1521 static const llvm::sys::UnicodeCharSet C99AllowedIDChars( 1522 C99AllowedIDCharRanges); 1523 static const llvm::sys::UnicodeCharSet C99DisallowedInitialIDChars( 1524 C99DisallowedInitialIDCharRanges); 1525 if (!C99AllowedIDChars.contains(C)) { 1526 Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id) 1527 << Range 1528 << CannotAppearInIdentifier; 1529 } else if (IsFirst && C99DisallowedInitialIDChars.contains(C)) { 1530 Diags.Report(Range.getBegin(), diag::warn_c99_compat_unicode_id) 1531 << Range 1532 << CannotStartIdentifier; 1533 } 1534 } 1535 } 1536 1537 /// After encountering UTF-8 character C and interpreting it as an identifier 1538 /// character, check whether it's a homoglyph for a common non-identifier 1539 /// source character that is unlikely to be an intentional identifier 1540 /// character and warn if so. 1541 static void maybeDiagnoseUTF8Homoglyph(DiagnosticsEngine &Diags, uint32_t C, 1542 CharSourceRange Range) { 1543 // FIXME: Handle Unicode quotation marks (smart quotes, fullwidth quotes). 1544 struct HomoglyphPair { 1545 uint32_t Character; 1546 char LooksLike; 1547 bool operator<(HomoglyphPair R) const { return Character < R.Character; } 1548 }; 1549 static constexpr HomoglyphPair SortedHomoglyphs[] = { 1550 {U'\u00ad', 0}, // SOFT HYPHEN 1551 {U'\u01c3', '!'}, // LATIN LETTER RETROFLEX CLICK 1552 {U'\u037e', ';'}, // GREEK QUESTION MARK 1553 {U'\u200b', 0}, // ZERO WIDTH SPACE 1554 {U'\u200c', 0}, // ZERO WIDTH NON-JOINER 1555 {U'\u200d', 0}, // ZERO WIDTH JOINER 1556 {U'\u2060', 0}, // WORD JOINER 1557 {U'\u2061', 0}, // FUNCTION APPLICATION 1558 {U'\u2062', 0}, // INVISIBLE TIMES 1559 {U'\u2063', 0}, // INVISIBLE SEPARATOR 1560 {U'\u2064', 0}, // INVISIBLE PLUS 1561 {U'\u2212', '-'}, // MINUS SIGN 1562 {U'\u2215', '/'}, // DIVISION SLASH 1563 {U'\u2216', '\\'}, // SET MINUS 1564 {U'\u2217', '*'}, // ASTERISK OPERATOR 1565 {U'\u2223', '|'}, // DIVIDES 1566 {U'\u2227', '^'}, // LOGICAL AND 1567 {U'\u2236', ':'}, // RATIO 1568 {U'\u223c', '~'}, // TILDE OPERATOR 1569 {U'\ua789', ':'}, // MODIFIER LETTER COLON 1570 {U'\ufeff', 0}, // ZERO WIDTH NO-BREAK SPACE 1571 {U'\uff01', '!'}, // FULLWIDTH EXCLAMATION MARK 1572 {U'\uff03', '#'}, // FULLWIDTH NUMBER SIGN 1573 {U'\uff04', '$'}, // FULLWIDTH DOLLAR SIGN 1574 {U'\uff05', '%'}, // FULLWIDTH PERCENT SIGN 1575 {U'\uff06', '&'}, // FULLWIDTH AMPERSAND 1576 {U'\uff08', '('}, // FULLWIDTH LEFT PARENTHESIS 1577 {U'\uff09', ')'}, // FULLWIDTH RIGHT PARENTHESIS 1578 {U'\uff0a', '*'}, // FULLWIDTH ASTERISK 1579 {U'\uff0b', '+'}, // FULLWIDTH ASTERISK 1580 {U'\uff0c', ','}, // FULLWIDTH COMMA 1581 {U'\uff0d', '-'}, // FULLWIDTH HYPHEN-MINUS 1582 {U'\uff0e', '.'}, // FULLWIDTH FULL STOP 1583 {U'\uff0f', '/'}, // FULLWIDTH SOLIDUS 1584 {U'\uff1a', ':'}, // FULLWIDTH COLON 1585 {U'\uff1b', ';'}, // FULLWIDTH SEMICOLON 1586 {U'\uff1c', '<'}, // FULLWIDTH LESS-THAN SIGN 1587 {U'\uff1d', '='}, // FULLWIDTH EQUALS SIGN 1588 {U'\uff1e', '>'}, // FULLWIDTH GREATER-THAN SIGN 1589 {U'\uff1f', '?'}, // FULLWIDTH QUESTION MARK 1590 {U'\uff20', '@'}, // FULLWIDTH COMMERCIAL AT 1591 {U'\uff3b', '['}, // FULLWIDTH LEFT SQUARE BRACKET 1592 {U'\uff3c', '\\'}, // FULLWIDTH REVERSE SOLIDUS 1593 {U'\uff3d', ']'}, // FULLWIDTH RIGHT SQUARE BRACKET 1594 {U'\uff3e', '^'}, // FULLWIDTH CIRCUMFLEX ACCENT 1595 {U'\uff5b', '{'}, // FULLWIDTH LEFT CURLY BRACKET 1596 {U'\uff5c', '|'}, // FULLWIDTH VERTICAL LINE 1597 {U'\uff5d', '}'}, // FULLWIDTH RIGHT CURLY BRACKET 1598 {U'\uff5e', '~'}, // FULLWIDTH TILDE 1599 {0, 0} 1600 }; 1601 auto Homoglyph = 1602 std::lower_bound(std::begin(SortedHomoglyphs), 1603 std::end(SortedHomoglyphs) - 1, HomoglyphPair{C, '\0'}); 1604 if (Homoglyph->Character == C) { 1605 llvm::SmallString<5> CharBuf; 1606 { 1607 llvm::raw_svector_ostream CharOS(CharBuf); 1608 llvm::write_hex(CharOS, C, llvm::HexPrintStyle::Upper, 4); 1609 } 1610 if (Homoglyph->LooksLike) { 1611 const char LooksLikeStr[] = {Homoglyph->LooksLike, 0}; 1612 Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_homoglyph) 1613 << Range << CharBuf << LooksLikeStr; 1614 } else { 1615 Diags.Report(Range.getBegin(), diag::warn_utf8_symbol_zero_width) 1616 << Range << CharBuf; 1617 } 1618 } 1619 } 1620 1621 static void diagnoseInvalidUnicodeCodepointInIdentifier( 1622 DiagnosticsEngine &Diags, const LangOptions &LangOpts, uint32_t CodePoint, 1623 CharSourceRange Range, bool IsFirst) { 1624 if (isASCII(CodePoint)) 1625 return; 1626 1627 bool IsIDStart = isAllowedInitiallyIDChar(CodePoint, LangOpts); 1628 bool IsIDContinue = IsIDStart || isAllowedIDChar(CodePoint, LangOpts); 1629 1630 if ((IsFirst && IsIDStart) || (!IsFirst && IsIDContinue)) 1631 return; 1632 1633 bool InvalidOnlyAtStart = IsFirst && !IsIDStart && IsIDContinue; 1634 1635 llvm::SmallString<5> CharBuf; 1636 llvm::raw_svector_ostream CharOS(CharBuf); 1637 llvm::write_hex(CharOS, CodePoint, llvm::HexPrintStyle::Upper, 4); 1638 1639 if (!IsFirst || InvalidOnlyAtStart) { 1640 Diags.Report(Range.getBegin(), diag::err_character_not_allowed_identifier) 1641 << Range << CharBuf << int(InvalidOnlyAtStart) 1642 << FixItHint::CreateRemoval(Range); 1643 } else { 1644 Diags.Report(Range.getBegin(), diag::err_character_not_allowed) 1645 << Range << CharBuf << FixItHint::CreateRemoval(Range); 1646 } 1647 } 1648 1649 bool Lexer::tryConsumeIdentifierUCN(const char *&CurPtr, unsigned Size, 1650 Token &Result) { 1651 const char *UCNPtr = CurPtr + Size; 1652 uint32_t CodePoint = tryReadUCN(UCNPtr, CurPtr, /*Token=*/nullptr); 1653 if (CodePoint == 0) { 1654 return false; 1655 } 1656 1657 if (!isAllowedIDChar(CodePoint, LangOpts)) { 1658 if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint)) 1659 return false; 1660 if (!isLexingRawMode() && !ParsingPreprocessorDirective && 1661 !PP->isPreprocessedOutput()) 1662 diagnoseInvalidUnicodeCodepointInIdentifier( 1663 PP->getDiagnostics(), LangOpts, CodePoint, 1664 makeCharRange(*this, CurPtr, UCNPtr), 1665 /*IsFirst=*/false); 1666 1667 // We got a unicode codepoint that is neither a space nor a 1668 // a valid identifier part. 1669 // Carry on as if the codepoint was valid for recovery purposes. 1670 } else if (!isLexingRawMode()) 1671 maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint, 1672 makeCharRange(*this, CurPtr, UCNPtr), 1673 /*IsFirst=*/false); 1674 1675 Result.setFlag(Token::HasUCN); 1676 if ((UCNPtr - CurPtr == 6 && CurPtr[1] == 'u') || 1677 (UCNPtr - CurPtr == 10 && CurPtr[1] == 'U')) 1678 CurPtr = UCNPtr; 1679 else 1680 while (CurPtr != UCNPtr) 1681 (void)getAndAdvanceChar(CurPtr, Result); 1682 return true; 1683 } 1684 1685 bool Lexer::tryConsumeIdentifierUTF8Char(const char *&CurPtr) { 1686 const char *UnicodePtr = CurPtr; 1687 llvm::UTF32 CodePoint; 1688 llvm::ConversionResult Result = 1689 llvm::convertUTF8Sequence((const llvm::UTF8 **)&UnicodePtr, 1690 (const llvm::UTF8 *)BufferEnd, 1691 &CodePoint, 1692 llvm::strictConversion); 1693 if (Result != llvm::conversionOK) 1694 return false; 1695 1696 if (!isAllowedIDChar(static_cast<uint32_t>(CodePoint), LangOpts)) { 1697 if (isASCII(CodePoint) || isUnicodeWhitespace(CodePoint)) 1698 return false; 1699 1700 if (!isLexingRawMode() && !ParsingPreprocessorDirective && 1701 !PP->isPreprocessedOutput()) 1702 diagnoseInvalidUnicodeCodepointInIdentifier( 1703 PP->getDiagnostics(), LangOpts, CodePoint, 1704 makeCharRange(*this, CurPtr, UnicodePtr), /*IsFirst=*/false); 1705 // We got a unicode codepoint that is neither a space nor a 1706 // a valid identifier part. Carry on as if the codepoint was 1707 // valid for recovery purposes. 1708 } else if (!isLexingRawMode()) { 1709 maybeDiagnoseIDCharCompat(PP->getDiagnostics(), CodePoint, 1710 makeCharRange(*this, CurPtr, UnicodePtr), 1711 /*IsFirst=*/false); 1712 maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), CodePoint, 1713 makeCharRange(*this, CurPtr, UnicodePtr)); 1714 } 1715 1716 CurPtr = UnicodePtr; 1717 return true; 1718 } 1719 1720 bool Lexer::LexUnicodeIdentifierStart(Token &Result, uint32_t C, 1721 const char *CurPtr) { 1722 if (isAllowedInitiallyIDChar(C, LangOpts)) { 1723 if (!isLexingRawMode() && !ParsingPreprocessorDirective && 1724 !PP->isPreprocessedOutput()) { 1725 maybeDiagnoseIDCharCompat(PP->getDiagnostics(), C, 1726 makeCharRange(*this, BufferPtr, CurPtr), 1727 /*IsFirst=*/true); 1728 maybeDiagnoseUTF8Homoglyph(PP->getDiagnostics(), C, 1729 makeCharRange(*this, BufferPtr, CurPtr)); 1730 } 1731 1732 MIOpt.ReadToken(); 1733 return LexIdentifierContinue(Result, CurPtr); 1734 } 1735 1736 if (!isLexingRawMode() && !ParsingPreprocessorDirective && 1737 !PP->isPreprocessedOutput() && !isASCII(*BufferPtr) && 1738 !isAllowedInitiallyIDChar(C, LangOpts) && !isUnicodeWhitespace(C)) { 1739 // Non-ASCII characters tend to creep into source code unintentionally. 1740 // Instead of letting the parser complain about the unknown token, 1741 // just drop the character. 1742 // Note that we can /only/ do this when the non-ASCII character is actually 1743 // spelled as Unicode, not written as a UCN. The standard requires that 1744 // we not throw away any possible preprocessor tokens, but there's a 1745 // loophole in the mapping of Unicode characters to basic character set 1746 // characters that allows us to map these particular characters to, say, 1747 // whitespace. 1748 diagnoseInvalidUnicodeCodepointInIdentifier( 1749 PP->getDiagnostics(), LangOpts, C, 1750 makeCharRange(*this, BufferPtr, CurPtr), /*IsStart*/ true); 1751 BufferPtr = CurPtr; 1752 return false; 1753 } 1754 1755 // Otherwise, we have an explicit UCN or a character that's unlikely to show 1756 // up by accident. 1757 MIOpt.ReadToken(); 1758 FormTokenWithChars(Result, CurPtr, tok::unknown); 1759 return true; 1760 } 1761 1762 bool Lexer::LexIdentifierContinue(Token &Result, const char *CurPtr) { 1763 // Match [_A-Za-z0-9]*, we have already matched an identifier start. 1764 while (true) { 1765 unsigned char C = *CurPtr; 1766 // Fast path. 1767 if (isAsciiIdentifierContinue(C)) { 1768 ++CurPtr; 1769 continue; 1770 } 1771 1772 unsigned Size; 1773 // Slow path: handle trigraph, unicode codepoints, UCNs. 1774 C = getCharAndSize(CurPtr, Size); 1775 if (isAsciiIdentifierContinue(C)) { 1776 CurPtr = ConsumeChar(CurPtr, Size, Result); 1777 continue; 1778 } 1779 if (C == '$') { 1780 // If we hit a $ and they are not supported in identifiers, we are done. 1781 if (!LangOpts.DollarIdents) 1782 break; 1783 // Otherwise, emit a diagnostic and continue. 1784 if (!isLexingRawMode()) 1785 Diag(CurPtr, diag::ext_dollar_in_identifier); 1786 CurPtr = ConsumeChar(CurPtr, Size, Result); 1787 continue; 1788 } 1789 if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) 1790 continue; 1791 if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) 1792 continue; 1793 // Neither an expected Unicode codepoint nor a UCN. 1794 break; 1795 } 1796 1797 const char *IdStart = BufferPtr; 1798 FormTokenWithChars(Result, CurPtr, tok::raw_identifier); 1799 Result.setRawIdentifierData(IdStart); 1800 1801 // If we are in raw mode, return this identifier raw. There is no need to 1802 // look up identifier information or attempt to macro expand it. 1803 if (LexingRawMode) 1804 return true; 1805 1806 // Fill in Result.IdentifierInfo and update the token kind, 1807 // looking up the identifier in the identifier table. 1808 IdentifierInfo *II = PP->LookUpIdentifierInfo(Result); 1809 // Note that we have to call PP->LookUpIdentifierInfo() even for code 1810 // completion, it writes IdentifierInfo into Result, and callers rely on it. 1811 1812 // If the completion point is at the end of an identifier, we want to treat 1813 // the identifier as incomplete even if it resolves to a macro or a keyword. 1814 // This allows e.g. 'class^' to complete to 'classifier'. 1815 if (isCodeCompletionPoint(CurPtr)) { 1816 // Return the code-completion token. 1817 Result.setKind(tok::code_completion); 1818 // Skip the code-completion char and all immediate identifier characters. 1819 // This ensures we get consistent behavior when completing at any point in 1820 // an identifier (i.e. at the start, in the middle, at the end). Note that 1821 // only simple cases (i.e. [a-zA-Z0-9_]) are supported to keep the code 1822 // simpler. 1823 assert(*CurPtr == 0 && "Completion character must be 0"); 1824 ++CurPtr; 1825 // Note that code completion token is not added as a separate character 1826 // when the completion point is at the end of the buffer. Therefore, we need 1827 // to check if the buffer has ended. 1828 if (CurPtr < BufferEnd) { 1829 while (isAsciiIdentifierContinue(*CurPtr)) 1830 ++CurPtr; 1831 } 1832 BufferPtr = CurPtr; 1833 return true; 1834 } 1835 1836 // Finally, now that we know we have an identifier, pass this off to the 1837 // preprocessor, which may macro expand it or something. 1838 if (II->isHandleIdentifierCase()) 1839 return PP->HandleIdentifier(Result); 1840 1841 return true; 1842 } 1843 1844 /// isHexaLiteral - Return true if Start points to a hex constant. 1845 /// in microsoft mode (where this is supposed to be several different tokens). 1846 bool Lexer::isHexaLiteral(const char *Start, const LangOptions &LangOpts) { 1847 unsigned Size; 1848 char C1 = Lexer::getCharAndSizeNoWarn(Start, Size, LangOpts); 1849 if (C1 != '0') 1850 return false; 1851 char C2 = Lexer::getCharAndSizeNoWarn(Start + Size, Size, LangOpts); 1852 return (C2 == 'x' || C2 == 'X'); 1853 } 1854 1855 /// LexNumericConstant - Lex the remainder of a integer or floating point 1856 /// constant. From[-1] is the first character lexed. Return the end of the 1857 /// constant. 1858 bool Lexer::LexNumericConstant(Token &Result, const char *CurPtr) { 1859 unsigned Size; 1860 char C = getCharAndSize(CurPtr, Size); 1861 char PrevCh = 0; 1862 while (isPreprocessingNumberBody(C)) { 1863 CurPtr = ConsumeChar(CurPtr, Size, Result); 1864 PrevCh = C; 1865 C = getCharAndSize(CurPtr, Size); 1866 } 1867 1868 // If we fell out, check for a sign, due to 1e+12. If we have one, continue. 1869 if ((C == '-' || C == '+') && (PrevCh == 'E' || PrevCh == 'e')) { 1870 // If we are in Microsoft mode, don't continue if the constant is hex. 1871 // For example, MSVC will accept the following as 3 tokens: 0x1234567e+1 1872 if (!LangOpts.MicrosoftExt || !isHexaLiteral(BufferPtr, LangOpts)) 1873 return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result)); 1874 } 1875 1876 // If we have a hex FP constant, continue. 1877 if ((C == '-' || C == '+') && (PrevCh == 'P' || PrevCh == 'p')) { 1878 // Outside C99 and C++17, we accept hexadecimal floating point numbers as a 1879 // not-quite-conforming extension. Only do so if this looks like it's 1880 // actually meant to be a hexfloat, and not if it has a ud-suffix. 1881 bool IsHexFloat = true; 1882 if (!LangOpts.C99) { 1883 if (!isHexaLiteral(BufferPtr, LangOpts)) 1884 IsHexFloat = false; 1885 else if (!LangOpts.CPlusPlus17 && 1886 std::find(BufferPtr, CurPtr, '_') != CurPtr) 1887 IsHexFloat = false; 1888 } 1889 if (IsHexFloat) 1890 return LexNumericConstant(Result, ConsumeChar(CurPtr, Size, Result)); 1891 } 1892 1893 // If we have a digit separator, continue. 1894 if (C == '\'' && (LangOpts.CPlusPlus14 || LangOpts.C2x)) { 1895 unsigned NextSize; 1896 char Next = getCharAndSizeNoWarn(CurPtr + Size, NextSize, LangOpts); 1897 if (isAsciiIdentifierContinue(Next)) { 1898 if (!isLexingRawMode()) 1899 Diag(CurPtr, LangOpts.CPlusPlus 1900 ? diag::warn_cxx11_compat_digit_separator 1901 : diag::warn_c2x_compat_digit_separator); 1902 CurPtr = ConsumeChar(CurPtr, Size, Result); 1903 CurPtr = ConsumeChar(CurPtr, NextSize, Result); 1904 return LexNumericConstant(Result, CurPtr); 1905 } 1906 } 1907 1908 // If we have a UCN or UTF-8 character (perhaps in a ud-suffix), continue. 1909 if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) 1910 return LexNumericConstant(Result, CurPtr); 1911 if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) 1912 return LexNumericConstant(Result, CurPtr); 1913 1914 // Update the location of token as well as BufferPtr. 1915 const char *TokStart = BufferPtr; 1916 FormTokenWithChars(Result, CurPtr, tok::numeric_constant); 1917 Result.setLiteralData(TokStart); 1918 return true; 1919 } 1920 1921 /// LexUDSuffix - Lex the ud-suffix production for user-defined literal suffixes 1922 /// in C++11, or warn on a ud-suffix in C++98. 1923 const char *Lexer::LexUDSuffix(Token &Result, const char *CurPtr, 1924 bool IsStringLiteral) { 1925 assert(LangOpts.CPlusPlus); 1926 1927 // Maximally munch an identifier. 1928 unsigned Size; 1929 char C = getCharAndSize(CurPtr, Size); 1930 bool Consumed = false; 1931 1932 if (!isAsciiIdentifierStart(C)) { 1933 if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) 1934 Consumed = true; 1935 else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) 1936 Consumed = true; 1937 else 1938 return CurPtr; 1939 } 1940 1941 if (!LangOpts.CPlusPlus11) { 1942 if (!isLexingRawMode()) 1943 Diag(CurPtr, 1944 C == '_' ? diag::warn_cxx11_compat_user_defined_literal 1945 : diag::warn_cxx11_compat_reserved_user_defined_literal) 1946 << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " "); 1947 return CurPtr; 1948 } 1949 1950 // C++11 [lex.ext]p10, [usrlit.suffix]p1: A program containing a ud-suffix 1951 // that does not start with an underscore is ill-formed. As a conforming 1952 // extension, we treat all such suffixes as if they had whitespace before 1953 // them. We assume a suffix beginning with a UCN or UTF-8 character is more 1954 // likely to be a ud-suffix than a macro, however, and accept that. 1955 if (!Consumed) { 1956 bool IsUDSuffix = false; 1957 if (C == '_') 1958 IsUDSuffix = true; 1959 else if (IsStringLiteral && LangOpts.CPlusPlus14) { 1960 // In C++1y, we need to look ahead a few characters to see if this is a 1961 // valid suffix for a string literal or a numeric literal (this could be 1962 // the 'operator""if' defining a numeric literal operator). 1963 const unsigned MaxStandardSuffixLength = 3; 1964 char Buffer[MaxStandardSuffixLength] = { C }; 1965 unsigned Consumed = Size; 1966 unsigned Chars = 1; 1967 while (true) { 1968 unsigned NextSize; 1969 char Next = getCharAndSizeNoWarn(CurPtr + Consumed, NextSize, LangOpts); 1970 if (!isAsciiIdentifierContinue(Next)) { 1971 // End of suffix. Check whether this is on the allowed list. 1972 const StringRef CompleteSuffix(Buffer, Chars); 1973 IsUDSuffix = 1974 StringLiteralParser::isValidUDSuffix(LangOpts, CompleteSuffix); 1975 break; 1976 } 1977 1978 if (Chars == MaxStandardSuffixLength) 1979 // Too long: can't be a standard suffix. 1980 break; 1981 1982 Buffer[Chars++] = Next; 1983 Consumed += NextSize; 1984 } 1985 } 1986 1987 if (!IsUDSuffix) { 1988 if (!isLexingRawMode()) 1989 Diag(CurPtr, LangOpts.MSVCCompat 1990 ? diag::ext_ms_reserved_user_defined_literal 1991 : diag::ext_reserved_user_defined_literal) 1992 << FixItHint::CreateInsertion(getSourceLocation(CurPtr), " "); 1993 return CurPtr; 1994 } 1995 1996 CurPtr = ConsumeChar(CurPtr, Size, Result); 1997 } 1998 1999 Result.setFlag(Token::HasUDSuffix); 2000 while (true) { 2001 C = getCharAndSize(CurPtr, Size); 2002 if (isAsciiIdentifierContinue(C)) { 2003 CurPtr = ConsumeChar(CurPtr, Size, Result); 2004 } else if (C == '\\' && tryConsumeIdentifierUCN(CurPtr, Size, Result)) { 2005 } else if (!isASCII(C) && tryConsumeIdentifierUTF8Char(CurPtr)) { 2006 } else 2007 break; 2008 } 2009 2010 return CurPtr; 2011 } 2012 2013 /// LexStringLiteral - Lex the remainder of a string literal, after having lexed 2014 /// either " or L" or u8" or u" or U". 2015 bool Lexer::LexStringLiteral(Token &Result, const char *CurPtr, 2016 tok::TokenKind Kind) { 2017 const char *AfterQuote = CurPtr; 2018 // Does this string contain the \0 character? 2019 const char *NulCharacter = nullptr; 2020 2021 if (!isLexingRawMode() && 2022 (Kind == tok::utf8_string_literal || 2023 Kind == tok::utf16_string_literal || 2024 Kind == tok::utf32_string_literal)) 2025 Diag(BufferPtr, LangOpts.CPlusPlus ? diag::warn_cxx98_compat_unicode_literal 2026 : diag::warn_c99_compat_unicode_literal); 2027 2028 char C = getAndAdvanceChar(CurPtr, Result); 2029 while (C != '"') { 2030 // Skip escaped characters. Escaped newlines will already be processed by 2031 // getAndAdvanceChar. 2032 if (C == '\\') 2033 C = getAndAdvanceChar(CurPtr, Result); 2034 2035 if (C == '\n' || C == '\r' || // Newline. 2036 (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. 2037 if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) 2038 Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 1; 2039 FormTokenWithChars(Result, CurPtr-1, tok::unknown); 2040 return true; 2041 } 2042 2043 if (C == 0) { 2044 if (isCodeCompletionPoint(CurPtr-1)) { 2045 if (ParsingFilename) 2046 codeCompleteIncludedFile(AfterQuote, CurPtr - 1, /*IsAngled=*/false); 2047 else 2048 PP->CodeCompleteNaturalLanguage(); 2049 FormTokenWithChars(Result, CurPtr - 1, tok::unknown); 2050 cutOffLexing(); 2051 return true; 2052 } 2053 2054 NulCharacter = CurPtr-1; 2055 } 2056 C = getAndAdvanceChar(CurPtr, Result); 2057 } 2058 2059 // If we are in C++11, lex the optional ud-suffix. 2060 if (LangOpts.CPlusPlus) 2061 CurPtr = LexUDSuffix(Result, CurPtr, true); 2062 2063 // If a nul character existed in the string, warn about it. 2064 if (NulCharacter && !isLexingRawMode()) 2065 Diag(NulCharacter, diag::null_in_char_or_string) << 1; 2066 2067 // Update the location of the token as well as the BufferPtr instance var. 2068 const char *TokStart = BufferPtr; 2069 FormTokenWithChars(Result, CurPtr, Kind); 2070 Result.setLiteralData(TokStart); 2071 return true; 2072 } 2073 2074 /// LexRawStringLiteral - Lex the remainder of a raw string literal, after 2075 /// having lexed R", LR", u8R", uR", or UR". 2076 bool Lexer::LexRawStringLiteral(Token &Result, const char *CurPtr, 2077 tok::TokenKind Kind) { 2078 // This function doesn't use getAndAdvanceChar because C++0x [lex.pptoken]p3: 2079 // Between the initial and final double quote characters of the raw string, 2080 // any transformations performed in phases 1 and 2 (trigraphs, 2081 // universal-character-names, and line splicing) are reverted. 2082 2083 if (!isLexingRawMode()) 2084 Diag(BufferPtr, diag::warn_cxx98_compat_raw_string_literal); 2085 2086 unsigned PrefixLen = 0; 2087 2088 while (PrefixLen != 16 && isRawStringDelimBody(CurPtr[PrefixLen])) 2089 ++PrefixLen; 2090 2091 // If the last character was not a '(', then we didn't lex a valid delimiter. 2092 if (CurPtr[PrefixLen] != '(') { 2093 if (!isLexingRawMode()) { 2094 const char *PrefixEnd = &CurPtr[PrefixLen]; 2095 if (PrefixLen == 16) { 2096 Diag(PrefixEnd, diag::err_raw_delim_too_long); 2097 } else { 2098 Diag(PrefixEnd, diag::err_invalid_char_raw_delim) 2099 << StringRef(PrefixEnd, 1); 2100 } 2101 } 2102 2103 // Search for the next '"' in hopes of salvaging the lexer. Unfortunately, 2104 // it's possible the '"' was intended to be part of the raw string, but 2105 // there's not much we can do about that. 2106 while (true) { 2107 char C = *CurPtr++; 2108 2109 if (C == '"') 2110 break; 2111 if (C == 0 && CurPtr-1 == BufferEnd) { 2112 --CurPtr; 2113 break; 2114 } 2115 } 2116 2117 FormTokenWithChars(Result, CurPtr, tok::unknown); 2118 return true; 2119 } 2120 2121 // Save prefix and move CurPtr past it 2122 const char *Prefix = CurPtr; 2123 CurPtr += PrefixLen + 1; // skip over prefix and '(' 2124 2125 while (true) { 2126 char C = *CurPtr++; 2127 2128 if (C == ')') { 2129 // Check for prefix match and closing quote. 2130 if (strncmp(CurPtr, Prefix, PrefixLen) == 0 && CurPtr[PrefixLen] == '"') { 2131 CurPtr += PrefixLen + 1; // skip over prefix and '"' 2132 break; 2133 } 2134 } else if (C == 0 && CurPtr-1 == BufferEnd) { // End of file. 2135 if (!isLexingRawMode()) 2136 Diag(BufferPtr, diag::err_unterminated_raw_string) 2137 << StringRef(Prefix, PrefixLen); 2138 FormTokenWithChars(Result, CurPtr-1, tok::unknown); 2139 return true; 2140 } 2141 } 2142 2143 // If we are in C++11, lex the optional ud-suffix. 2144 if (LangOpts.CPlusPlus) 2145 CurPtr = LexUDSuffix(Result, CurPtr, true); 2146 2147 // Update the location of token as well as BufferPtr. 2148 const char *TokStart = BufferPtr; 2149 FormTokenWithChars(Result, CurPtr, Kind); 2150 Result.setLiteralData(TokStart); 2151 return true; 2152 } 2153 2154 /// LexAngledStringLiteral - Lex the remainder of an angled string literal, 2155 /// after having lexed the '<' character. This is used for #include filenames. 2156 bool Lexer::LexAngledStringLiteral(Token &Result, const char *CurPtr) { 2157 // Does this string contain the \0 character? 2158 const char *NulCharacter = nullptr; 2159 const char *AfterLessPos = CurPtr; 2160 char C = getAndAdvanceChar(CurPtr, Result); 2161 while (C != '>') { 2162 // Skip escaped characters. Escaped newlines will already be processed by 2163 // getAndAdvanceChar. 2164 if (C == '\\') 2165 C = getAndAdvanceChar(CurPtr, Result); 2166 2167 if (isVerticalWhitespace(C) || // Newline. 2168 (C == 0 && (CurPtr - 1 == BufferEnd))) { // End of file. 2169 // If the filename is unterminated, then it must just be a lone < 2170 // character. Return this as such. 2171 FormTokenWithChars(Result, AfterLessPos, tok::less); 2172 return true; 2173 } 2174 2175 if (C == 0) { 2176 if (isCodeCompletionPoint(CurPtr - 1)) { 2177 codeCompleteIncludedFile(AfterLessPos, CurPtr - 1, /*IsAngled=*/true); 2178 cutOffLexing(); 2179 FormTokenWithChars(Result, CurPtr - 1, tok::unknown); 2180 return true; 2181 } 2182 NulCharacter = CurPtr-1; 2183 } 2184 C = getAndAdvanceChar(CurPtr, Result); 2185 } 2186 2187 // If a nul character existed in the string, warn about it. 2188 if (NulCharacter && !isLexingRawMode()) 2189 Diag(NulCharacter, diag::null_in_char_or_string) << 1; 2190 2191 // Update the location of token as well as BufferPtr. 2192 const char *TokStart = BufferPtr; 2193 FormTokenWithChars(Result, CurPtr, tok::header_name); 2194 Result.setLiteralData(TokStart); 2195 return true; 2196 } 2197 2198 void Lexer::codeCompleteIncludedFile(const char *PathStart, 2199 const char *CompletionPoint, 2200 bool IsAngled) { 2201 // Completion only applies to the filename, after the last slash. 2202 StringRef PartialPath(PathStart, CompletionPoint - PathStart); 2203 llvm::StringRef SlashChars = LangOpts.MSVCCompat ? "/\\" : "/"; 2204 auto Slash = PartialPath.find_last_of(SlashChars); 2205 StringRef Dir = 2206 (Slash == StringRef::npos) ? "" : PartialPath.take_front(Slash); 2207 const char *StartOfFilename = 2208 (Slash == StringRef::npos) ? PathStart : PathStart + Slash + 1; 2209 // Code completion filter range is the filename only, up to completion point. 2210 PP->setCodeCompletionIdentifierInfo(&PP->getIdentifierTable().get( 2211 StringRef(StartOfFilename, CompletionPoint - StartOfFilename))); 2212 // We should replace the characters up to the closing quote or closest slash, 2213 // if any. 2214 while (CompletionPoint < BufferEnd) { 2215 char Next = *(CompletionPoint + 1); 2216 if (Next == 0 || Next == '\r' || Next == '\n') 2217 break; 2218 ++CompletionPoint; 2219 if (Next == (IsAngled ? '>' : '"')) 2220 break; 2221 if (llvm::is_contained(SlashChars, Next)) 2222 break; 2223 } 2224 2225 PP->setCodeCompletionTokenRange( 2226 FileLoc.getLocWithOffset(StartOfFilename - BufferStart), 2227 FileLoc.getLocWithOffset(CompletionPoint - BufferStart)); 2228 PP->CodeCompleteIncludedFile(Dir, IsAngled); 2229 } 2230 2231 /// LexCharConstant - Lex the remainder of a character constant, after having 2232 /// lexed either ' or L' or u8' or u' or U'. 2233 bool Lexer::LexCharConstant(Token &Result, const char *CurPtr, 2234 tok::TokenKind Kind) { 2235 // Does this character contain the \0 character? 2236 const char *NulCharacter = nullptr; 2237 2238 if (!isLexingRawMode()) { 2239 if (Kind == tok::utf16_char_constant || Kind == tok::utf32_char_constant) 2240 Diag(BufferPtr, LangOpts.CPlusPlus 2241 ? diag::warn_cxx98_compat_unicode_literal 2242 : diag::warn_c99_compat_unicode_literal); 2243 else if (Kind == tok::utf8_char_constant) 2244 Diag(BufferPtr, diag::warn_cxx14_compat_u8_character_literal); 2245 } 2246 2247 char C = getAndAdvanceChar(CurPtr, Result); 2248 if (C == '\'') { 2249 if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) 2250 Diag(BufferPtr, diag::ext_empty_character); 2251 FormTokenWithChars(Result, CurPtr, tok::unknown); 2252 return true; 2253 } 2254 2255 while (C != '\'') { 2256 // Skip escaped characters. 2257 if (C == '\\') 2258 C = getAndAdvanceChar(CurPtr, Result); 2259 2260 if (C == '\n' || C == '\r' || // Newline. 2261 (C == 0 && CurPtr-1 == BufferEnd)) { // End of file. 2262 if (!isLexingRawMode() && !LangOpts.AsmPreprocessor) 2263 Diag(BufferPtr, diag::ext_unterminated_char_or_string) << 0; 2264 FormTokenWithChars(Result, CurPtr-1, tok::unknown); 2265 return true; 2266 } 2267 2268 if (C == 0) { 2269 if (isCodeCompletionPoint(CurPtr-1)) { 2270 PP->CodeCompleteNaturalLanguage(); 2271 FormTokenWithChars(Result, CurPtr-1, tok::unknown); 2272 cutOffLexing(); 2273 return true; 2274 } 2275 2276 NulCharacter = CurPtr-1; 2277 } 2278 C = getAndAdvanceChar(CurPtr, Result); 2279 } 2280 2281 // If we are in C++11, lex the optional ud-suffix. 2282 if (LangOpts.CPlusPlus) 2283 CurPtr = LexUDSuffix(Result, CurPtr, false); 2284 2285 // If a nul character existed in the character, warn about it. 2286 if (NulCharacter && !isLexingRawMode()) 2287 Diag(NulCharacter, diag::null_in_char_or_string) << 0; 2288 2289 // Update the location of token as well as BufferPtr. 2290 const char *TokStart = BufferPtr; 2291 FormTokenWithChars(Result, CurPtr, Kind); 2292 Result.setLiteralData(TokStart); 2293 return true; 2294 } 2295 2296 /// SkipWhitespace - Efficiently skip over a series of whitespace characters. 2297 /// Update BufferPtr to point to the next non-whitespace character and return. 2298 /// 2299 /// This method forms a token and returns true if KeepWhitespaceMode is enabled. 2300 bool Lexer::SkipWhitespace(Token &Result, const char *CurPtr, 2301 bool &TokAtPhysicalStartOfLine) { 2302 // Whitespace - Skip it, then return the token after the whitespace. 2303 bool SawNewline = isVerticalWhitespace(CurPtr[-1]); 2304 2305 unsigned char Char = *CurPtr; 2306 2307 const char *lastNewLine = nullptr; 2308 auto setLastNewLine = [&](const char *Ptr) { 2309 lastNewLine = Ptr; 2310 if (!NewLinePtr) 2311 NewLinePtr = Ptr; 2312 }; 2313 if (SawNewline) 2314 setLastNewLine(CurPtr - 1); 2315 2316 // Skip consecutive spaces efficiently. 2317 while (true) { 2318 // Skip horizontal whitespace very aggressively. 2319 while (isHorizontalWhitespace(Char)) 2320 Char = *++CurPtr; 2321 2322 // Otherwise if we have something other than whitespace, we're done. 2323 if (!isVerticalWhitespace(Char)) 2324 break; 2325 2326 if (ParsingPreprocessorDirective) { 2327 // End of preprocessor directive line, let LexTokenInternal handle this. 2328 BufferPtr = CurPtr; 2329 return false; 2330 } 2331 2332 // OK, but handle newline. 2333 if (*CurPtr == '\n') 2334 setLastNewLine(CurPtr); 2335 SawNewline = true; 2336 Char = *++CurPtr; 2337 } 2338 2339 // If the client wants us to return whitespace, return it now. 2340 if (isKeepWhitespaceMode()) { 2341 FormTokenWithChars(Result, CurPtr, tok::unknown); 2342 if (SawNewline) { 2343 IsAtStartOfLine = true; 2344 IsAtPhysicalStartOfLine = true; 2345 } 2346 // FIXME: The next token will not have LeadingSpace set. 2347 return true; 2348 } 2349 2350 // If this isn't immediately after a newline, there is leading space. 2351 char PrevChar = CurPtr[-1]; 2352 bool HasLeadingSpace = !isVerticalWhitespace(PrevChar); 2353 2354 Result.setFlagValue(Token::LeadingSpace, HasLeadingSpace); 2355 if (SawNewline) { 2356 Result.setFlag(Token::StartOfLine); 2357 TokAtPhysicalStartOfLine = true; 2358 2359 if (NewLinePtr && lastNewLine && NewLinePtr != lastNewLine && PP) { 2360 if (auto *Handler = PP->getEmptylineHandler()) 2361 Handler->HandleEmptyline(SourceRange(getSourceLocation(NewLinePtr + 1), 2362 getSourceLocation(lastNewLine))); 2363 } 2364 } 2365 2366 BufferPtr = CurPtr; 2367 return false; 2368 } 2369 2370 /// We have just read the // characters from input. Skip until we find the 2371 /// newline character that terminates the comment. Then update BufferPtr and 2372 /// return. 2373 /// 2374 /// If we're in KeepCommentMode or any CommentHandler has inserted 2375 /// some tokens, this will store the first token and return true. 2376 bool Lexer::SkipLineComment(Token &Result, const char *CurPtr, 2377 bool &TokAtPhysicalStartOfLine) { 2378 // If Line comments aren't explicitly enabled for this language, emit an 2379 // extension warning. 2380 if (!LineComment) { 2381 if (!isLexingRawMode()) // There's no PP in raw mode, so can't emit diags. 2382 Diag(BufferPtr, diag::ext_line_comment); 2383 2384 // Mark them enabled so we only emit one warning for this translation 2385 // unit. 2386 LineComment = true; 2387 } 2388 2389 // Scan over the body of the comment. The common case, when scanning, is that 2390 // the comment contains normal ascii characters with nothing interesting in 2391 // them. As such, optimize for this case with the inner loop. 2392 // 2393 // This loop terminates with CurPtr pointing at the newline (or end of buffer) 2394 // character that ends the line comment. 2395 2396 // C++23 [lex.phases] p1 2397 // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a 2398 // diagnostic only once per entire ill-formed subsequence to avoid 2399 // emiting to many diagnostics (see http://unicode.org/review/pr-121.html). 2400 bool UnicodeDecodingAlreadyDiagnosed = false; 2401 2402 char C; 2403 while (true) { 2404 C = *CurPtr; 2405 // Skip over characters in the fast loop. 2406 while (isASCII(C) && C != 0 && // Potentially EOF. 2407 C != '\n' && C != '\r') { // Newline or DOS-style newline. 2408 C = *++CurPtr; 2409 UnicodeDecodingAlreadyDiagnosed = false; 2410 } 2411 2412 if (!isASCII(C)) { 2413 unsigned Length = llvm::getUTF8SequenceSize( 2414 (const llvm::UTF8 *)CurPtr, (const llvm::UTF8 *)BufferEnd); 2415 if (Length == 0) { 2416 if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode()) 2417 Diag(CurPtr, diag::warn_invalid_utf8_in_comment); 2418 UnicodeDecodingAlreadyDiagnosed = true; 2419 ++CurPtr; 2420 } else { 2421 UnicodeDecodingAlreadyDiagnosed = false; 2422 CurPtr += Length; 2423 } 2424 continue; 2425 } 2426 2427 const char *NextLine = CurPtr; 2428 if (C != 0) { 2429 // We found a newline, see if it's escaped. 2430 const char *EscapePtr = CurPtr-1; 2431 bool HasSpace = false; 2432 while (isHorizontalWhitespace(*EscapePtr)) { // Skip whitespace. 2433 --EscapePtr; 2434 HasSpace = true; 2435 } 2436 2437 if (*EscapePtr == '\\') 2438 // Escaped newline. 2439 CurPtr = EscapePtr; 2440 else if (EscapePtr[0] == '/' && EscapePtr[-1] == '?' && 2441 EscapePtr[-2] == '?' && LangOpts.Trigraphs) 2442 // Trigraph-escaped newline. 2443 CurPtr = EscapePtr-2; 2444 else 2445 break; // This is a newline, we're done. 2446 2447 // If there was space between the backslash and newline, warn about it. 2448 if (HasSpace && !isLexingRawMode()) 2449 Diag(EscapePtr, diag::backslash_newline_space); 2450 } 2451 2452 // Otherwise, this is a hard case. Fall back on getAndAdvanceChar to 2453 // properly decode the character. Read it in raw mode to avoid emitting 2454 // diagnostics about things like trigraphs. If we see an escaped newline, 2455 // we'll handle it below. 2456 const char *OldPtr = CurPtr; 2457 bool OldRawMode = isLexingRawMode(); 2458 LexingRawMode = true; 2459 C = getAndAdvanceChar(CurPtr, Result); 2460 LexingRawMode = OldRawMode; 2461 2462 // If we only read only one character, then no special handling is needed. 2463 // We're done and can skip forward to the newline. 2464 if (C != 0 && CurPtr == OldPtr+1) { 2465 CurPtr = NextLine; 2466 break; 2467 } 2468 2469 // If we read multiple characters, and one of those characters was a \r or 2470 // \n, then we had an escaped newline within the comment. Emit diagnostic 2471 // unless the next line is also a // comment. 2472 if (CurPtr != OldPtr + 1 && C != '/' && 2473 (CurPtr == BufferEnd + 1 || CurPtr[0] != '/')) { 2474 for (; OldPtr != CurPtr; ++OldPtr) 2475 if (OldPtr[0] == '\n' || OldPtr[0] == '\r') { 2476 // Okay, we found a // comment that ends in a newline, if the next 2477 // line is also a // comment, but has spaces, don't emit a diagnostic. 2478 if (isWhitespace(C)) { 2479 const char *ForwardPtr = CurPtr; 2480 while (isWhitespace(*ForwardPtr)) // Skip whitespace. 2481 ++ForwardPtr; 2482 if (ForwardPtr[0] == '/' && ForwardPtr[1] == '/') 2483 break; 2484 } 2485 2486 if (!isLexingRawMode()) 2487 Diag(OldPtr-1, diag::ext_multi_line_line_comment); 2488 break; 2489 } 2490 } 2491 2492 if (C == '\r' || C == '\n' || CurPtr == BufferEnd + 1) { 2493 --CurPtr; 2494 break; 2495 } 2496 2497 if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) { 2498 PP->CodeCompleteNaturalLanguage(); 2499 cutOffLexing(); 2500 return false; 2501 } 2502 } 2503 2504 // Found but did not consume the newline. Notify comment handlers about the 2505 // comment unless we're in a #if 0 block. 2506 if (PP && !isLexingRawMode() && 2507 PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr), 2508 getSourceLocation(CurPtr)))) { 2509 BufferPtr = CurPtr; 2510 return true; // A token has to be returned. 2511 } 2512 2513 // If we are returning comments as tokens, return this comment as a token. 2514 if (inKeepCommentMode()) 2515 return SaveLineComment(Result, CurPtr); 2516 2517 // If we are inside a preprocessor directive and we see the end of line, 2518 // return immediately, so that the lexer can return this as an EOD token. 2519 if (ParsingPreprocessorDirective || CurPtr == BufferEnd) { 2520 BufferPtr = CurPtr; 2521 return false; 2522 } 2523 2524 // Otherwise, eat the \n character. We don't care if this is a \n\r or 2525 // \r\n sequence. This is an efficiency hack (because we know the \n can't 2526 // contribute to another token), it isn't needed for correctness. Note that 2527 // this is ok even in KeepWhitespaceMode, because we would have returned the 2528 /// comment above in that mode. 2529 NewLinePtr = CurPtr++; 2530 2531 // The next returned token is at the start of the line. 2532 Result.setFlag(Token::StartOfLine); 2533 TokAtPhysicalStartOfLine = true; 2534 // No leading whitespace seen so far. 2535 Result.clearFlag(Token::LeadingSpace); 2536 BufferPtr = CurPtr; 2537 return false; 2538 } 2539 2540 /// If in save-comment mode, package up this Line comment in an appropriate 2541 /// way and return it. 2542 bool Lexer::SaveLineComment(Token &Result, const char *CurPtr) { 2543 // If we're not in a preprocessor directive, just return the // comment 2544 // directly. 2545 FormTokenWithChars(Result, CurPtr, tok::comment); 2546 2547 if (!ParsingPreprocessorDirective || LexingRawMode) 2548 return true; 2549 2550 // If this Line-style comment is in a macro definition, transmogrify it into 2551 // a C-style block comment. 2552 bool Invalid = false; 2553 std::string Spelling = PP->getSpelling(Result, &Invalid); 2554 if (Invalid) 2555 return true; 2556 2557 assert(Spelling[0] == '/' && Spelling[1] == '/' && "Not line comment?"); 2558 Spelling[1] = '*'; // Change prefix to "/*". 2559 Spelling += "*/"; // add suffix. 2560 2561 Result.setKind(tok::comment); 2562 PP->CreateString(Spelling, Result, 2563 Result.getLocation(), Result.getLocation()); 2564 return true; 2565 } 2566 2567 /// isBlockCommentEndOfEscapedNewLine - Return true if the specified newline 2568 /// character (either \\n or \\r) is part of an escaped newline sequence. Issue 2569 /// a diagnostic if so. We know that the newline is inside of a block comment. 2570 static bool isEndOfBlockCommentWithEscapedNewLine(const char *CurPtr, Lexer *L, 2571 bool Trigraphs) { 2572 assert(CurPtr[0] == '\n' || CurPtr[0] == '\r'); 2573 2574 // Position of the first trigraph in the ending sequence. 2575 const char *TrigraphPos = nullptr; 2576 // Position of the first whitespace after a '\' in the ending sequence. 2577 const char *SpacePos = nullptr; 2578 2579 while (true) { 2580 // Back up off the newline. 2581 --CurPtr; 2582 2583 // If this is a two-character newline sequence, skip the other character. 2584 if (CurPtr[0] == '\n' || CurPtr[0] == '\r') { 2585 // \n\n or \r\r -> not escaped newline. 2586 if (CurPtr[0] == CurPtr[1]) 2587 return false; 2588 // \n\r or \r\n -> skip the newline. 2589 --CurPtr; 2590 } 2591 2592 // If we have horizontal whitespace, skip over it. We allow whitespace 2593 // between the slash and newline. 2594 while (isHorizontalWhitespace(*CurPtr) || *CurPtr == 0) { 2595 SpacePos = CurPtr; 2596 --CurPtr; 2597 } 2598 2599 // If we have a slash, this is an escaped newline. 2600 if (*CurPtr == '\\') { 2601 --CurPtr; 2602 } else if (CurPtr[0] == '/' && CurPtr[-1] == '?' && CurPtr[-2] == '?') { 2603 // This is a trigraph encoding of a slash. 2604 TrigraphPos = CurPtr - 2; 2605 CurPtr -= 3; 2606 } else { 2607 return false; 2608 } 2609 2610 // If the character preceding the escaped newline is a '*', then after line 2611 // splicing we have a '*/' ending the comment. 2612 if (*CurPtr == '*') 2613 break; 2614 2615 if (*CurPtr != '\n' && *CurPtr != '\r') 2616 return false; 2617 } 2618 2619 if (TrigraphPos) { 2620 // If no trigraphs are enabled, warn that we ignored this trigraph and 2621 // ignore this * character. 2622 if (!Trigraphs) { 2623 if (!L->isLexingRawMode()) 2624 L->Diag(TrigraphPos, diag::trigraph_ignored_block_comment); 2625 return false; 2626 } 2627 if (!L->isLexingRawMode()) 2628 L->Diag(TrigraphPos, diag::trigraph_ends_block_comment); 2629 } 2630 2631 // Warn about having an escaped newline between the */ characters. 2632 if (!L->isLexingRawMode()) 2633 L->Diag(CurPtr + 1, diag::escaped_newline_block_comment_end); 2634 2635 // If there was space between the backslash and newline, warn about it. 2636 if (SpacePos && !L->isLexingRawMode()) 2637 L->Diag(SpacePos, diag::backslash_newline_space); 2638 2639 return true; 2640 } 2641 2642 #ifdef __SSE2__ 2643 #include <emmintrin.h> 2644 #elif __ALTIVEC__ 2645 #include <altivec.h> 2646 #undef bool 2647 #endif 2648 2649 /// We have just read from input the / and * characters that started a comment. 2650 /// Read until we find the * and / characters that terminate the comment. 2651 /// Note that we don't bother decoding trigraphs or escaped newlines in block 2652 /// comments, because they cannot cause the comment to end. The only thing 2653 /// that can happen is the comment could end with an escaped newline between 2654 /// the terminating * and /. 2655 /// 2656 /// If we're in KeepCommentMode or any CommentHandler has inserted 2657 /// some tokens, this will store the first token and return true. 2658 bool Lexer::SkipBlockComment(Token &Result, const char *CurPtr, 2659 bool &TokAtPhysicalStartOfLine) { 2660 // Scan one character past where we should, looking for a '/' character. Once 2661 // we find it, check to see if it was preceded by a *. This common 2662 // optimization helps people who like to put a lot of * characters in their 2663 // comments. 2664 2665 // The first character we get with newlines and trigraphs skipped to handle 2666 // the degenerate /*/ case below correctly if the * has an escaped newline 2667 // after it. 2668 unsigned CharSize; 2669 unsigned char C = getCharAndSize(CurPtr, CharSize); 2670 CurPtr += CharSize; 2671 if (C == 0 && CurPtr == BufferEnd+1) { 2672 if (!isLexingRawMode()) 2673 Diag(BufferPtr, diag::err_unterminated_block_comment); 2674 --CurPtr; 2675 2676 // KeepWhitespaceMode should return this broken comment as a token. Since 2677 // it isn't a well formed comment, just return it as an 'unknown' token. 2678 if (isKeepWhitespaceMode()) { 2679 FormTokenWithChars(Result, CurPtr, tok::unknown); 2680 return true; 2681 } 2682 2683 BufferPtr = CurPtr; 2684 return false; 2685 } 2686 2687 // Check to see if the first character after the '/*' is another /. If so, 2688 // then this slash does not end the block comment, it is part of it. 2689 if (C == '/') 2690 C = *CurPtr++; 2691 2692 // C++23 [lex.phases] p1 2693 // Diagnose invalid UTF-8 if the corresponding warning is enabled, emitting a 2694 // diagnostic only once per entire ill-formed subsequence to avoid 2695 // emiting to many diagnostics (see http://unicode.org/review/pr-121.html). 2696 bool UnicodeDecodingAlreadyDiagnosed = false; 2697 2698 while (true) { 2699 // Skip over all non-interesting characters until we find end of buffer or a 2700 // (probably ending) '/' character. 2701 if (CurPtr + 24 < BufferEnd && 2702 // If there is a code-completion point avoid the fast scan because it 2703 // doesn't check for '\0'. 2704 !(PP && PP->getCodeCompletionFileLoc() == FileLoc)) { 2705 // While not aligned to a 16-byte boundary. 2706 while (C != '/' && (intptr_t)CurPtr % 16 != 0) { 2707 if (!isASCII(C)) 2708 goto MultiByteUTF8; 2709 C = *CurPtr++; 2710 } 2711 if (C == '/') goto FoundSlash; 2712 2713 #ifdef __SSE2__ 2714 __m128i Slashes = _mm_set1_epi8('/'); 2715 while (CurPtr + 16 < BufferEnd) { 2716 int Mask = _mm_movemask_epi8(*(const __m128i *)CurPtr); 2717 if (LLVM_UNLIKELY(Mask != 0)) { 2718 goto MultiByteUTF8; 2719 } 2720 // look for slashes 2721 int cmp = _mm_movemask_epi8(_mm_cmpeq_epi8(*(const __m128i*)CurPtr, 2722 Slashes)); 2723 if (cmp != 0) { 2724 // Adjust the pointer to point directly after the first slash. It's 2725 // not necessary to set C here, it will be overwritten at the end of 2726 // the outer loop. 2727 CurPtr += llvm::countTrailingZeros<unsigned>(cmp) + 1; 2728 goto FoundSlash; 2729 } 2730 CurPtr += 16; 2731 } 2732 #elif __ALTIVEC__ 2733 __vector unsigned char LongUTF = {0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 2734 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 2735 0x80, 0x80, 0x80, 0x80}; 2736 __vector unsigned char Slashes = { 2737 '/', '/', '/', '/', '/', '/', '/', '/', 2738 '/', '/', '/', '/', '/', '/', '/', '/' 2739 }; 2740 while (CurPtr + 16 < BufferEnd) { 2741 if (LLVM_UNLIKELY( 2742 vec_any_ge(*(const __vector unsigned char *)CurPtr, LongUTF))) 2743 goto MultiByteUTF8; 2744 if (vec_any_eq(*(const __vector unsigned char *)CurPtr, Slashes)) { 2745 break; 2746 } 2747 CurPtr += 16; 2748 } 2749 2750 #else 2751 while (CurPtr + 16 < BufferEnd) { 2752 bool HasNonASCII = false; 2753 for (unsigned I = 0; I < 16; ++I) 2754 HasNonASCII |= !isASCII(CurPtr[I]); 2755 2756 if (LLVM_UNLIKELY(HasNonASCII)) 2757 goto MultiByteUTF8; 2758 2759 bool HasSlash = false; 2760 for (unsigned I = 0; I < 16; ++I) 2761 HasSlash |= CurPtr[I] == '/'; 2762 if (HasSlash) 2763 break; 2764 CurPtr += 16; 2765 } 2766 #endif 2767 2768 // It has to be one of the bytes scanned, increment to it and read one. 2769 C = *CurPtr++; 2770 } 2771 2772 // Loop to scan the remainder, warning on invalid UTF-8 2773 // if the corresponding warning is enabled, emitting a diagnostic only once 2774 // per sequence that cannot be decoded. 2775 while (C != '/' && C != '\0') { 2776 if (isASCII(C)) { 2777 UnicodeDecodingAlreadyDiagnosed = false; 2778 C = *CurPtr++; 2779 continue; 2780 } 2781 MultiByteUTF8: 2782 // CurPtr is 1 code unit past C, so to decode 2783 // the codepoint, we need to read from the previous position. 2784 unsigned Length = llvm::getUTF8SequenceSize( 2785 (const llvm::UTF8 *)CurPtr - 1, (const llvm::UTF8 *)BufferEnd); 2786 if (Length == 0) { 2787 if (!UnicodeDecodingAlreadyDiagnosed && !isLexingRawMode()) 2788 Diag(CurPtr - 1, diag::warn_invalid_utf8_in_comment); 2789 UnicodeDecodingAlreadyDiagnosed = true; 2790 } else { 2791 UnicodeDecodingAlreadyDiagnosed = false; 2792 CurPtr += Length - 1; 2793 } 2794 C = *CurPtr++; 2795 } 2796 2797 if (C == '/') { 2798 FoundSlash: 2799 if (CurPtr[-2] == '*') // We found the final */. We're done! 2800 break; 2801 2802 if ((CurPtr[-2] == '\n' || CurPtr[-2] == '\r')) { 2803 if (isEndOfBlockCommentWithEscapedNewLine(CurPtr - 2, this, 2804 LangOpts.Trigraphs)) { 2805 // We found the final */, though it had an escaped newline between the 2806 // * and /. We're done! 2807 break; 2808 } 2809 } 2810 if (CurPtr[0] == '*' && CurPtr[1] != '/') { 2811 // If this is a /* inside of the comment, emit a warning. Don't do this 2812 // if this is a /*/, which will end the comment. This misses cases with 2813 // embedded escaped newlines, but oh well. 2814 if (!isLexingRawMode()) 2815 Diag(CurPtr-1, diag::warn_nested_block_comment); 2816 } 2817 } else if (C == 0 && CurPtr == BufferEnd+1) { 2818 if (!isLexingRawMode()) 2819 Diag(BufferPtr, diag::err_unterminated_block_comment); 2820 // Note: the user probably forgot a */. We could continue immediately 2821 // after the /*, but this would involve lexing a lot of what really is the 2822 // comment, which surely would confuse the parser. 2823 --CurPtr; 2824 2825 // KeepWhitespaceMode should return this broken comment as a token. Since 2826 // it isn't a well formed comment, just return it as an 'unknown' token. 2827 if (isKeepWhitespaceMode()) { 2828 FormTokenWithChars(Result, CurPtr, tok::unknown); 2829 return true; 2830 } 2831 2832 BufferPtr = CurPtr; 2833 return false; 2834 } else if (C == '\0' && isCodeCompletionPoint(CurPtr-1)) { 2835 PP->CodeCompleteNaturalLanguage(); 2836 cutOffLexing(); 2837 return false; 2838 } 2839 2840 C = *CurPtr++; 2841 } 2842 2843 // Notify comment handlers about the comment unless we're in a #if 0 block. 2844 if (PP && !isLexingRawMode() && 2845 PP->HandleComment(Result, SourceRange(getSourceLocation(BufferPtr), 2846 getSourceLocation(CurPtr)))) { 2847 BufferPtr = CurPtr; 2848 return true; // A token has to be returned. 2849 } 2850 2851 // If we are returning comments as tokens, return this comment as a token. 2852 if (inKeepCommentMode()) { 2853 FormTokenWithChars(Result, CurPtr, tok::comment); 2854 return true; 2855 } 2856 2857 // It is common for the tokens immediately after a /**/ comment to be 2858 // whitespace. Instead of going through the big switch, handle it 2859 // efficiently now. This is safe even in KeepWhitespaceMode because we would 2860 // have already returned above with the comment as a token. 2861 if (isHorizontalWhitespace(*CurPtr)) { 2862 SkipWhitespace(Result, CurPtr+1, TokAtPhysicalStartOfLine); 2863 return false; 2864 } 2865 2866 // Otherwise, just return so that the next character will be lexed as a token. 2867 BufferPtr = CurPtr; 2868 Result.setFlag(Token::LeadingSpace); 2869 return false; 2870 } 2871 2872 //===----------------------------------------------------------------------===// 2873 // Primary Lexing Entry Points 2874 //===----------------------------------------------------------------------===// 2875 2876 /// ReadToEndOfLine - Read the rest of the current preprocessor line as an 2877 /// uninterpreted string. This switches the lexer out of directive mode. 2878 void Lexer::ReadToEndOfLine(SmallVectorImpl<char> *Result) { 2879 assert(ParsingPreprocessorDirective && ParsingFilename == false && 2880 "Must be in a preprocessing directive!"); 2881 Token Tmp; 2882 Tmp.startToken(); 2883 2884 // CurPtr - Cache BufferPtr in an automatic variable. 2885 const char *CurPtr = BufferPtr; 2886 while (true) { 2887 char Char = getAndAdvanceChar(CurPtr, Tmp); 2888 switch (Char) { 2889 default: 2890 if (Result) 2891 Result->push_back(Char); 2892 break; 2893 case 0: // Null. 2894 // Found end of file? 2895 if (CurPtr-1 != BufferEnd) { 2896 if (isCodeCompletionPoint(CurPtr-1)) { 2897 PP->CodeCompleteNaturalLanguage(); 2898 cutOffLexing(); 2899 return; 2900 } 2901 2902 // Nope, normal character, continue. 2903 if (Result) 2904 Result->push_back(Char); 2905 break; 2906 } 2907 // FALL THROUGH. 2908 LLVM_FALLTHROUGH; 2909 case '\r': 2910 case '\n': 2911 // Okay, we found the end of the line. First, back up past the \0, \r, \n. 2912 assert(CurPtr[-1] == Char && "Trigraphs for newline?"); 2913 BufferPtr = CurPtr-1; 2914 2915 // Next, lex the character, which should handle the EOD transition. 2916 Lex(Tmp); 2917 if (Tmp.is(tok::code_completion)) { 2918 if (PP) 2919 PP->CodeCompleteNaturalLanguage(); 2920 Lex(Tmp); 2921 } 2922 assert(Tmp.is(tok::eod) && "Unexpected token!"); 2923 2924 // Finally, we're done; 2925 return; 2926 } 2927 } 2928 } 2929 2930 /// LexEndOfFile - CurPtr points to the end of this file. Handle this 2931 /// condition, reporting diagnostics and handling other edge cases as required. 2932 /// This returns true if Result contains a token, false if PP.Lex should be 2933 /// called again. 2934 bool Lexer::LexEndOfFile(Token &Result, const char *CurPtr) { 2935 // If we hit the end of the file while parsing a preprocessor directive, 2936 // end the preprocessor directive first. The next token returned will 2937 // then be the end of file. 2938 if (ParsingPreprocessorDirective) { 2939 // Done parsing the "line". 2940 ParsingPreprocessorDirective = false; 2941 // Update the location of token as well as BufferPtr. 2942 FormTokenWithChars(Result, CurPtr, tok::eod); 2943 2944 // Restore comment saving mode, in case it was disabled for directive. 2945 if (PP) 2946 resetExtendedTokenMode(); 2947 return true; // Have a token. 2948 } 2949 2950 // If we are in raw mode, return this event as an EOF token. Let the caller 2951 // that put us in raw mode handle the event. 2952 if (isLexingRawMode()) { 2953 Result.startToken(); 2954 BufferPtr = BufferEnd; 2955 FormTokenWithChars(Result, BufferEnd, tok::eof); 2956 return true; 2957 } 2958 2959 if (PP->isRecordingPreamble() && PP->isInPrimaryFile()) { 2960 PP->setRecordedPreambleConditionalStack(ConditionalStack); 2961 // If the preamble cuts off the end of a header guard, consider it guarded. 2962 // The guard is valid for the preamble content itself, and for tools the 2963 // most useful answer is "yes, this file has a header guard". 2964 if (!ConditionalStack.empty()) 2965 MIOpt.ExitTopLevelConditional(); 2966 ConditionalStack.clear(); 2967 } 2968 2969 // Issue diagnostics for unterminated #if and missing newline. 2970 2971 // If we are in a #if directive, emit an error. 2972 while (!ConditionalStack.empty()) { 2973 if (PP->getCodeCompletionFileLoc() != FileLoc) 2974 PP->Diag(ConditionalStack.back().IfLoc, 2975 diag::err_pp_unterminated_conditional); 2976 ConditionalStack.pop_back(); 2977 } 2978 2979 // C99 5.1.1.2p2: If the file is non-empty and didn't end in a newline, issue 2980 // a pedwarn. 2981 if (CurPtr != BufferStart && (CurPtr[-1] != '\n' && CurPtr[-1] != '\r')) { 2982 DiagnosticsEngine &Diags = PP->getDiagnostics(); 2983 SourceLocation EndLoc = getSourceLocation(BufferEnd); 2984 unsigned DiagID; 2985 2986 if (LangOpts.CPlusPlus11) { 2987 // C++11 [lex.phases] 2.2 p2 2988 // Prefer the C++98 pedantic compatibility warning over the generic, 2989 // non-extension, user-requested "missing newline at EOF" warning. 2990 if (!Diags.isIgnored(diag::warn_cxx98_compat_no_newline_eof, EndLoc)) { 2991 DiagID = diag::warn_cxx98_compat_no_newline_eof; 2992 } else { 2993 DiagID = diag::warn_no_newline_eof; 2994 } 2995 } else { 2996 DiagID = diag::ext_no_newline_eof; 2997 } 2998 2999 Diag(BufferEnd, DiagID) 3000 << FixItHint::CreateInsertion(EndLoc, "\n"); 3001 } 3002 3003 BufferPtr = CurPtr; 3004 3005 // Finally, let the preprocessor handle this. 3006 return PP->HandleEndOfFile(Result, isPragmaLexer()); 3007 } 3008 3009 /// isNextPPTokenLParen - Return 1 if the next unexpanded token lexed from 3010 /// the specified lexer will return a tok::l_paren token, 0 if it is something 3011 /// else and 2 if there are no more tokens in the buffer controlled by the 3012 /// lexer. 3013 unsigned Lexer::isNextPPTokenLParen() { 3014 assert(!LexingRawMode && "How can we expand a macro from a skipping buffer?"); 3015 3016 if (isDependencyDirectivesLexer()) { 3017 if (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size()) 3018 return 2; 3019 return DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is( 3020 tok::l_paren); 3021 } 3022 3023 // Switch to 'skipping' mode. This will ensure that we can lex a token 3024 // without emitting diagnostics, disables macro expansion, and will cause EOF 3025 // to return an EOF token instead of popping the include stack. 3026 LexingRawMode = true; 3027 3028 // Save state that can be changed while lexing so that we can restore it. 3029 const char *TmpBufferPtr = BufferPtr; 3030 bool inPPDirectiveMode = ParsingPreprocessorDirective; 3031 bool atStartOfLine = IsAtStartOfLine; 3032 bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine; 3033 bool leadingSpace = HasLeadingSpace; 3034 3035 Token Tok; 3036 Lex(Tok); 3037 3038 // Restore state that may have changed. 3039 BufferPtr = TmpBufferPtr; 3040 ParsingPreprocessorDirective = inPPDirectiveMode; 3041 HasLeadingSpace = leadingSpace; 3042 IsAtStartOfLine = atStartOfLine; 3043 IsAtPhysicalStartOfLine = atPhysicalStartOfLine; 3044 3045 // Restore the lexer back to non-skipping mode. 3046 LexingRawMode = false; 3047 3048 if (Tok.is(tok::eof)) 3049 return 2; 3050 return Tok.is(tok::l_paren); 3051 } 3052 3053 /// Find the end of a version control conflict marker. 3054 static const char *FindConflictEnd(const char *CurPtr, const char *BufferEnd, 3055 ConflictMarkerKind CMK) { 3056 const char *Terminator = CMK == CMK_Perforce ? "<<<<\n" : ">>>>>>>"; 3057 size_t TermLen = CMK == CMK_Perforce ? 5 : 7; 3058 auto RestOfBuffer = StringRef(CurPtr, BufferEnd - CurPtr).substr(TermLen); 3059 size_t Pos = RestOfBuffer.find(Terminator); 3060 while (Pos != StringRef::npos) { 3061 // Must occur at start of line. 3062 if (Pos == 0 || 3063 (RestOfBuffer[Pos - 1] != '\r' && RestOfBuffer[Pos - 1] != '\n')) { 3064 RestOfBuffer = RestOfBuffer.substr(Pos+TermLen); 3065 Pos = RestOfBuffer.find(Terminator); 3066 continue; 3067 } 3068 return RestOfBuffer.data()+Pos; 3069 } 3070 return nullptr; 3071 } 3072 3073 /// IsStartOfConflictMarker - If the specified pointer is the start of a version 3074 /// control conflict marker like '<<<<<<<', recognize it as such, emit an error 3075 /// and recover nicely. This returns true if it is a conflict marker and false 3076 /// if not. 3077 bool Lexer::IsStartOfConflictMarker(const char *CurPtr) { 3078 // Only a conflict marker if it starts at the beginning of a line. 3079 if (CurPtr != BufferStart && 3080 CurPtr[-1] != '\n' && CurPtr[-1] != '\r') 3081 return false; 3082 3083 // Check to see if we have <<<<<<< or >>>>. 3084 if (!StringRef(CurPtr, BufferEnd - CurPtr).startswith("<<<<<<<") && 3085 !StringRef(CurPtr, BufferEnd - CurPtr).startswith(">>>> ")) 3086 return false; 3087 3088 // If we have a situation where we don't care about conflict markers, ignore 3089 // it. 3090 if (CurrentConflictMarkerState || isLexingRawMode()) 3091 return false; 3092 3093 ConflictMarkerKind Kind = *CurPtr == '<' ? CMK_Normal : CMK_Perforce; 3094 3095 // Check to see if there is an ending marker somewhere in the buffer at the 3096 // start of a line to terminate this conflict marker. 3097 if (FindConflictEnd(CurPtr, BufferEnd, Kind)) { 3098 // We found a match. We are really in a conflict marker. 3099 // Diagnose this, and ignore to the end of line. 3100 Diag(CurPtr, diag::err_conflict_marker); 3101 CurrentConflictMarkerState = Kind; 3102 3103 // Skip ahead to the end of line. We know this exists because the 3104 // end-of-conflict marker starts with \r or \n. 3105 while (*CurPtr != '\r' && *CurPtr != '\n') { 3106 assert(CurPtr != BufferEnd && "Didn't find end of line"); 3107 ++CurPtr; 3108 } 3109 BufferPtr = CurPtr; 3110 return true; 3111 } 3112 3113 // No end of conflict marker found. 3114 return false; 3115 } 3116 3117 /// HandleEndOfConflictMarker - If this is a '====' or '||||' or '>>>>', or if 3118 /// it is '<<<<' and the conflict marker started with a '>>>>' marker, then it 3119 /// is the end of a conflict marker. Handle it by ignoring up until the end of 3120 /// the line. This returns true if it is a conflict marker and false if not. 3121 bool Lexer::HandleEndOfConflictMarker(const char *CurPtr) { 3122 // Only a conflict marker if it starts at the beginning of a line. 3123 if (CurPtr != BufferStart && 3124 CurPtr[-1] != '\n' && CurPtr[-1] != '\r') 3125 return false; 3126 3127 // If we have a situation where we don't care about conflict markers, ignore 3128 // it. 3129 if (!CurrentConflictMarkerState || isLexingRawMode()) 3130 return false; 3131 3132 // Check to see if we have the marker (4 characters in a row). 3133 for (unsigned i = 1; i != 4; ++i) 3134 if (CurPtr[i] != CurPtr[0]) 3135 return false; 3136 3137 // If we do have it, search for the end of the conflict marker. This could 3138 // fail if it got skipped with a '#if 0' or something. Note that CurPtr might 3139 // be the end of conflict marker. 3140 if (const char *End = FindConflictEnd(CurPtr, BufferEnd, 3141 CurrentConflictMarkerState)) { 3142 CurPtr = End; 3143 3144 // Skip ahead to the end of line. 3145 while (CurPtr != BufferEnd && *CurPtr != '\r' && *CurPtr != '\n') 3146 ++CurPtr; 3147 3148 BufferPtr = CurPtr; 3149 3150 // No longer in the conflict marker. 3151 CurrentConflictMarkerState = CMK_None; 3152 return true; 3153 } 3154 3155 return false; 3156 } 3157 3158 static const char *findPlaceholderEnd(const char *CurPtr, 3159 const char *BufferEnd) { 3160 if (CurPtr == BufferEnd) 3161 return nullptr; 3162 BufferEnd -= 1; // Scan until the second last character. 3163 for (; CurPtr != BufferEnd; ++CurPtr) { 3164 if (CurPtr[0] == '#' && CurPtr[1] == '>') 3165 return CurPtr + 2; 3166 } 3167 return nullptr; 3168 } 3169 3170 bool Lexer::lexEditorPlaceholder(Token &Result, const char *CurPtr) { 3171 assert(CurPtr[-1] == '<' && CurPtr[0] == '#' && "Not a placeholder!"); 3172 if (!PP || !PP->getPreprocessorOpts().LexEditorPlaceholders || LexingRawMode) 3173 return false; 3174 const char *End = findPlaceholderEnd(CurPtr + 1, BufferEnd); 3175 if (!End) 3176 return false; 3177 const char *Start = CurPtr - 1; 3178 if (!LangOpts.AllowEditorPlaceholders) 3179 Diag(Start, diag::err_placeholder_in_source); 3180 Result.startToken(); 3181 FormTokenWithChars(Result, End, tok::raw_identifier); 3182 Result.setRawIdentifierData(Start); 3183 PP->LookUpIdentifierInfo(Result); 3184 Result.setFlag(Token::IsEditorPlaceholder); 3185 BufferPtr = End; 3186 return true; 3187 } 3188 3189 bool Lexer::isCodeCompletionPoint(const char *CurPtr) const { 3190 if (PP && PP->isCodeCompletionEnabled()) { 3191 SourceLocation Loc = FileLoc.getLocWithOffset(CurPtr-BufferStart); 3192 return Loc == PP->getCodeCompletionLoc(); 3193 } 3194 3195 return false; 3196 } 3197 3198 llvm::Optional<uint32_t> Lexer::tryReadNumericUCN(const char *&StartPtr, 3199 const char *SlashLoc, 3200 Token *Result) { 3201 unsigned CharSize; 3202 char Kind = getCharAndSize(StartPtr, CharSize); 3203 assert((Kind == 'u' || Kind == 'U') && "expected a UCN"); 3204 3205 unsigned NumHexDigits; 3206 if (Kind == 'u') 3207 NumHexDigits = 4; 3208 else if (Kind == 'U') 3209 NumHexDigits = 8; 3210 3211 bool Delimited = false; 3212 bool FoundEndDelimiter = false; 3213 unsigned Count = 0; 3214 bool Diagnose = Result && !isLexingRawMode(); 3215 3216 if (!LangOpts.CPlusPlus && !LangOpts.C99) { 3217 if (Diagnose) 3218 Diag(SlashLoc, diag::warn_ucn_not_valid_in_c89); 3219 return llvm::None; 3220 } 3221 3222 const char *CurPtr = StartPtr + CharSize; 3223 const char *KindLoc = &CurPtr[-1]; 3224 3225 uint32_t CodePoint = 0; 3226 while (Count != NumHexDigits || Delimited) { 3227 char C = getCharAndSize(CurPtr, CharSize); 3228 if (!Delimited && C == '{') { 3229 Delimited = true; 3230 CurPtr += CharSize; 3231 continue; 3232 } 3233 3234 if (Delimited && C == '}') { 3235 CurPtr += CharSize; 3236 FoundEndDelimiter = true; 3237 break; 3238 } 3239 3240 unsigned Value = llvm::hexDigitValue(C); 3241 if (Value == -1U) { 3242 if (!Delimited) 3243 break; 3244 if (Diagnose) 3245 Diag(BufferPtr, diag::warn_delimited_ucn_incomplete) 3246 << StringRef(KindLoc, 1); 3247 return llvm::None; 3248 } 3249 3250 if (CodePoint & 0xF000'0000) { 3251 if (Diagnose) 3252 Diag(KindLoc, diag::err_escape_too_large) << 0; 3253 return llvm::None; 3254 } 3255 3256 CodePoint <<= 4; 3257 CodePoint |= Value; 3258 CurPtr += CharSize; 3259 Count++; 3260 } 3261 3262 if (Count == 0) { 3263 if (Diagnose) 3264 Diag(StartPtr, FoundEndDelimiter ? diag::warn_delimited_ucn_empty 3265 : diag::warn_ucn_escape_no_digits) 3266 << StringRef(KindLoc, 1); 3267 return llvm::None; 3268 } 3269 3270 if (Delimited && Kind == 'U') { 3271 if (Diagnose) 3272 Diag(StartPtr, diag::err_hex_escape_no_digits) << StringRef(KindLoc, 1); 3273 return llvm::None; 3274 } 3275 3276 if (!Delimited && Count != NumHexDigits) { 3277 if (Diagnose) { 3278 Diag(BufferPtr, diag::warn_ucn_escape_incomplete); 3279 // If the user wrote \U1234, suggest a fixit to \u. 3280 if (Count == 4 && NumHexDigits == 8) { 3281 CharSourceRange URange = makeCharRange(*this, KindLoc, KindLoc + 1); 3282 Diag(KindLoc, diag::note_ucn_four_not_eight) 3283 << FixItHint::CreateReplacement(URange, "u"); 3284 } 3285 } 3286 return llvm::None; 3287 } 3288 3289 if (Delimited && PP) { 3290 Diag(BufferPtr, PP->getLangOpts().CPlusPlus2b 3291 ? diag::warn_cxx2b_delimited_escape_sequence 3292 : diag::ext_delimited_escape_sequence) 3293 << /*delimited*/ 0 << (PP->getLangOpts().CPlusPlus ? 1 : 0); 3294 } 3295 3296 if (Result) { 3297 Result->setFlag(Token::HasUCN); 3298 if (CurPtr - StartPtr == (ptrdiff_t)(Count + 2 + (Delimited ? 2 : 0))) 3299 StartPtr = CurPtr; 3300 else 3301 while (StartPtr != CurPtr) 3302 (void)getAndAdvanceChar(StartPtr, *Result); 3303 } else { 3304 StartPtr = CurPtr; 3305 } 3306 return CodePoint; 3307 } 3308 3309 llvm::Optional<uint32_t> Lexer::tryReadNamedUCN(const char *&StartPtr, 3310 Token *Result) { 3311 unsigned CharSize; 3312 bool Diagnose = Result && !isLexingRawMode(); 3313 3314 char C = getCharAndSize(StartPtr, CharSize); 3315 assert(C == 'N' && "expected \\N{...}"); 3316 3317 const char *CurPtr = StartPtr + CharSize; 3318 const char *KindLoc = &CurPtr[-1]; 3319 3320 C = getCharAndSize(CurPtr, CharSize); 3321 if (C != '{') { 3322 if (Diagnose) 3323 Diag(StartPtr, diag::warn_ucn_escape_incomplete); 3324 return llvm::None; 3325 } 3326 CurPtr += CharSize; 3327 const char *StartName = CurPtr; 3328 bool FoundEndDelimiter = false; 3329 llvm::SmallVector<char, 30> Buffer; 3330 while (C) { 3331 C = getCharAndSize(CurPtr, CharSize); 3332 CurPtr += CharSize; 3333 if (C == '}') { 3334 FoundEndDelimiter = true; 3335 break; 3336 } 3337 3338 if (!isAlphanumeric(C) && C != '_' && C != '-' && C != ' ') 3339 break; 3340 Buffer.push_back(C); 3341 } 3342 3343 if (!FoundEndDelimiter || Buffer.empty()) { 3344 if (Diagnose) 3345 Diag(StartPtr, FoundEndDelimiter ? diag::warn_delimited_ucn_empty 3346 : diag::warn_delimited_ucn_incomplete) 3347 << StringRef(KindLoc, 1); 3348 return llvm::None; 3349 } 3350 3351 StringRef Name(Buffer.data(), Buffer.size()); 3352 llvm::Optional<char32_t> Res = 3353 llvm::sys::unicode::nameToCodepointStrict(Name); 3354 llvm::Optional<llvm::sys::unicode::LooseMatchingResult> LooseMatch; 3355 if (!Res) { 3356 if (!isLexingRawMode()) { 3357 Diag(StartPtr, diag::err_invalid_ucn_name) 3358 << StringRef(Buffer.data(), Buffer.size()); 3359 LooseMatch = llvm::sys::unicode::nameToCodepointLooseMatching(Name); 3360 if (LooseMatch) { 3361 Diag(StartName, diag::note_invalid_ucn_name_loose_matching) 3362 << FixItHint::CreateReplacement( 3363 makeCharRange(*this, StartName, CurPtr - CharSize), 3364 LooseMatch->Name); 3365 } 3366 } 3367 // When finding a match using Unicode loose matching rules 3368 // recover after having emitted a diagnostic. 3369 if (!LooseMatch) 3370 return llvm::None; 3371 // We do not offer missspelled character names suggestions here 3372 // as the set of what would be a valid suggestion depends on context, 3373 // and we should not make invalid suggestions. 3374 } 3375 3376 if (Diagnose && PP && !LooseMatch) 3377 Diag(BufferPtr, PP->getLangOpts().CPlusPlus2b 3378 ? diag::warn_cxx2b_delimited_escape_sequence 3379 : diag::ext_delimited_escape_sequence) 3380 << /*named*/ 1 << (PP->getLangOpts().CPlusPlus ? 1 : 0); 3381 3382 if (LooseMatch) 3383 Res = LooseMatch->CodePoint; 3384 3385 if (Result) { 3386 Result->setFlag(Token::HasUCN); 3387 if (CurPtr - StartPtr == (ptrdiff_t)(Buffer.size() + 4)) 3388 StartPtr = CurPtr; 3389 else 3390 while (StartPtr != CurPtr) 3391 (void)getAndAdvanceChar(StartPtr, *Result); 3392 } else { 3393 StartPtr = CurPtr; 3394 } 3395 return *Res; 3396 } 3397 3398 uint32_t Lexer::tryReadUCN(const char *&StartPtr, const char *SlashLoc, 3399 Token *Result) { 3400 3401 unsigned CharSize; 3402 llvm::Optional<uint32_t> CodePointOpt; 3403 char Kind = getCharAndSize(StartPtr, CharSize); 3404 if (Kind == 'u' || Kind == 'U') 3405 CodePointOpt = tryReadNumericUCN(StartPtr, SlashLoc, Result); 3406 else if (Kind == 'N') 3407 CodePointOpt = tryReadNamedUCN(StartPtr, Result); 3408 3409 if (!CodePointOpt) 3410 return 0; 3411 3412 uint32_t CodePoint = *CodePointOpt; 3413 3414 // Don't apply C family restrictions to UCNs in assembly mode 3415 if (LangOpts.AsmPreprocessor) 3416 return CodePoint; 3417 3418 // C99 6.4.3p2: A universal character name shall not specify a character whose 3419 // short identifier is less than 00A0 other than 0024 ($), 0040 (@), or 3420 // 0060 (`), nor one in the range D800 through DFFF inclusive.) 3421 // C++11 [lex.charset]p2: If the hexadecimal value for a 3422 // universal-character-name corresponds to a surrogate code point (in the 3423 // range 0xD800-0xDFFF, inclusive), the program is ill-formed. Additionally, 3424 // if the hexadecimal value for a universal-character-name outside the 3425 // c-char-sequence, s-char-sequence, or r-char-sequence of a character or 3426 // string literal corresponds to a control character (in either of the 3427 // ranges 0x00-0x1F or 0x7F-0x9F, both inclusive) or to a character in the 3428 // basic source character set, the program is ill-formed. 3429 if (CodePoint < 0xA0) { 3430 if (CodePoint == 0x24 || CodePoint == 0x40 || CodePoint == 0x60) 3431 return CodePoint; 3432 3433 // We don't use isLexingRawMode() here because we need to warn about bad 3434 // UCNs even when skipping preprocessing tokens in a #if block. 3435 if (Result && PP) { 3436 if (CodePoint < 0x20 || CodePoint >= 0x7F) 3437 Diag(BufferPtr, diag::err_ucn_control_character); 3438 else { 3439 char C = static_cast<char>(CodePoint); 3440 Diag(BufferPtr, diag::err_ucn_escape_basic_scs) << StringRef(&C, 1); 3441 } 3442 } 3443 3444 return 0; 3445 } else if (CodePoint >= 0xD800 && CodePoint <= 0xDFFF) { 3446 // C++03 allows UCNs representing surrogate characters. C99 and C++11 don't. 3447 // We don't use isLexingRawMode() here because we need to diagnose bad 3448 // UCNs even when skipping preprocessing tokens in a #if block. 3449 if (Result && PP) { 3450 if (LangOpts.CPlusPlus && !LangOpts.CPlusPlus11) 3451 Diag(BufferPtr, diag::warn_ucn_escape_surrogate); 3452 else 3453 Diag(BufferPtr, diag::err_ucn_escape_invalid); 3454 } 3455 return 0; 3456 } 3457 3458 return CodePoint; 3459 } 3460 3461 bool Lexer::CheckUnicodeWhitespace(Token &Result, uint32_t C, 3462 const char *CurPtr) { 3463 if (!isLexingRawMode() && !PP->isPreprocessedOutput() && 3464 isUnicodeWhitespace(C)) { 3465 Diag(BufferPtr, diag::ext_unicode_whitespace) 3466 << makeCharRange(*this, BufferPtr, CurPtr); 3467 3468 Result.setFlag(Token::LeadingSpace); 3469 return true; 3470 } 3471 return false; 3472 } 3473 3474 void Lexer::PropagateLineStartLeadingSpaceInfo(Token &Result) { 3475 IsAtStartOfLine = Result.isAtStartOfLine(); 3476 HasLeadingSpace = Result.hasLeadingSpace(); 3477 HasLeadingEmptyMacro = Result.hasLeadingEmptyMacro(); 3478 // Note that this doesn't affect IsAtPhysicalStartOfLine. 3479 } 3480 3481 bool Lexer::Lex(Token &Result) { 3482 assert(!isDependencyDirectivesLexer()); 3483 3484 // Start a new token. 3485 Result.startToken(); 3486 3487 // Set up misc whitespace flags for LexTokenInternal. 3488 if (IsAtStartOfLine) { 3489 Result.setFlag(Token::StartOfLine); 3490 IsAtStartOfLine = false; 3491 } 3492 3493 if (HasLeadingSpace) { 3494 Result.setFlag(Token::LeadingSpace); 3495 HasLeadingSpace = false; 3496 } 3497 3498 if (HasLeadingEmptyMacro) { 3499 Result.setFlag(Token::LeadingEmptyMacro); 3500 HasLeadingEmptyMacro = false; 3501 } 3502 3503 bool atPhysicalStartOfLine = IsAtPhysicalStartOfLine; 3504 IsAtPhysicalStartOfLine = false; 3505 bool isRawLex = isLexingRawMode(); 3506 (void) isRawLex; 3507 bool returnedToken = LexTokenInternal(Result, atPhysicalStartOfLine); 3508 // (After the LexTokenInternal call, the lexer might be destroyed.) 3509 assert((returnedToken || !isRawLex) && "Raw lex must succeed"); 3510 return returnedToken; 3511 } 3512 3513 /// LexTokenInternal - This implements a simple C family lexer. It is an 3514 /// extremely performance critical piece of code. This assumes that the buffer 3515 /// has a null character at the end of the file. This returns a preprocessing 3516 /// token, not a normal token, as such, it is an internal interface. It assumes 3517 /// that the Flags of result have been cleared before calling this. 3518 bool Lexer::LexTokenInternal(Token &Result, bool TokAtPhysicalStartOfLine) { 3519 LexNextToken: 3520 // New token, can't need cleaning yet. 3521 Result.clearFlag(Token::NeedsCleaning); 3522 Result.setIdentifierInfo(nullptr); 3523 3524 // CurPtr - Cache BufferPtr in an automatic variable. 3525 const char *CurPtr = BufferPtr; 3526 3527 // Small amounts of horizontal whitespace is very common between tokens. 3528 if (isHorizontalWhitespace(*CurPtr)) { 3529 do { 3530 ++CurPtr; 3531 } while (isHorizontalWhitespace(*CurPtr)); 3532 3533 // If we are keeping whitespace and other tokens, just return what we just 3534 // skipped. The next lexer invocation will return the token after the 3535 // whitespace. 3536 if (isKeepWhitespaceMode()) { 3537 FormTokenWithChars(Result, CurPtr, tok::unknown); 3538 // FIXME: The next token will not have LeadingSpace set. 3539 return true; 3540 } 3541 3542 BufferPtr = CurPtr; 3543 Result.setFlag(Token::LeadingSpace); 3544 } 3545 3546 unsigned SizeTmp, SizeTmp2; // Temporaries for use in cases below. 3547 3548 // Read a character, advancing over it. 3549 char Char = getAndAdvanceChar(CurPtr, Result); 3550 tok::TokenKind Kind; 3551 3552 if (!isVerticalWhitespace(Char)) 3553 NewLinePtr = nullptr; 3554 3555 switch (Char) { 3556 case 0: // Null. 3557 // Found end of file? 3558 if (CurPtr-1 == BufferEnd) 3559 return LexEndOfFile(Result, CurPtr-1); 3560 3561 // Check if we are performing code completion. 3562 if (isCodeCompletionPoint(CurPtr-1)) { 3563 // Return the code-completion token. 3564 Result.startToken(); 3565 FormTokenWithChars(Result, CurPtr, tok::code_completion); 3566 return true; 3567 } 3568 3569 if (!isLexingRawMode()) 3570 Diag(CurPtr-1, diag::null_in_file); 3571 Result.setFlag(Token::LeadingSpace); 3572 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) 3573 return true; // KeepWhitespaceMode 3574 3575 // We know the lexer hasn't changed, so just try again with this lexer. 3576 // (We manually eliminate the tail call to avoid recursion.) 3577 goto LexNextToken; 3578 3579 case 26: // DOS & CP/M EOF: "^Z". 3580 // If we're in Microsoft extensions mode, treat this as end of file. 3581 if (LangOpts.MicrosoftExt) { 3582 if (!isLexingRawMode()) 3583 Diag(CurPtr-1, diag::ext_ctrl_z_eof_microsoft); 3584 return LexEndOfFile(Result, CurPtr-1); 3585 } 3586 3587 // If Microsoft extensions are disabled, this is just random garbage. 3588 Kind = tok::unknown; 3589 break; 3590 3591 case '\r': 3592 if (CurPtr[0] == '\n') 3593 (void)getAndAdvanceChar(CurPtr, Result); 3594 LLVM_FALLTHROUGH; 3595 case '\n': 3596 // If we are inside a preprocessor directive and we see the end of line, 3597 // we know we are done with the directive, so return an EOD token. 3598 if (ParsingPreprocessorDirective) { 3599 // Done parsing the "line". 3600 ParsingPreprocessorDirective = false; 3601 3602 // Restore comment saving mode, in case it was disabled for directive. 3603 if (PP) 3604 resetExtendedTokenMode(); 3605 3606 // Since we consumed a newline, we are back at the start of a line. 3607 IsAtStartOfLine = true; 3608 IsAtPhysicalStartOfLine = true; 3609 NewLinePtr = CurPtr - 1; 3610 3611 Kind = tok::eod; 3612 break; 3613 } 3614 3615 // No leading whitespace seen so far. 3616 Result.clearFlag(Token::LeadingSpace); 3617 3618 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) 3619 return true; // KeepWhitespaceMode 3620 3621 // We only saw whitespace, so just try again with this lexer. 3622 // (We manually eliminate the tail call to avoid recursion.) 3623 goto LexNextToken; 3624 case ' ': 3625 case '\t': 3626 case '\f': 3627 case '\v': 3628 SkipHorizontalWhitespace: 3629 Result.setFlag(Token::LeadingSpace); 3630 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) 3631 return true; // KeepWhitespaceMode 3632 3633 SkipIgnoredUnits: 3634 CurPtr = BufferPtr; 3635 3636 // If the next token is obviously a // or /* */ comment, skip it efficiently 3637 // too (without going through the big switch stmt). 3638 if (CurPtr[0] == '/' && CurPtr[1] == '/' && !inKeepCommentMode() && 3639 LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP)) { 3640 if (SkipLineComment(Result, CurPtr+2, TokAtPhysicalStartOfLine)) 3641 return true; // There is a token to return. 3642 goto SkipIgnoredUnits; 3643 } else if (CurPtr[0] == '/' && CurPtr[1] == '*' && !inKeepCommentMode()) { 3644 if (SkipBlockComment(Result, CurPtr+2, TokAtPhysicalStartOfLine)) 3645 return true; // There is a token to return. 3646 goto SkipIgnoredUnits; 3647 } else if (isHorizontalWhitespace(*CurPtr)) { 3648 goto SkipHorizontalWhitespace; 3649 } 3650 // We only saw whitespace, so just try again with this lexer. 3651 // (We manually eliminate the tail call to avoid recursion.) 3652 goto LexNextToken; 3653 3654 // C99 6.4.4.1: Integer Constants. 3655 // C99 6.4.4.2: Floating Constants. 3656 case '0': case '1': case '2': case '3': case '4': 3657 case '5': case '6': case '7': case '8': case '9': 3658 // Notify MIOpt that we read a non-whitespace/non-comment token. 3659 MIOpt.ReadToken(); 3660 return LexNumericConstant(Result, CurPtr); 3661 3662 // Identifier (e.g., uber), or 3663 // UTF-8 (C2x/C++17) or UTF-16 (C11/C++11) character literal, or 3664 // UTF-8 or UTF-16 string literal (C11/C++11). 3665 case 'u': 3666 // Notify MIOpt that we read a non-whitespace/non-comment token. 3667 MIOpt.ReadToken(); 3668 3669 if (LangOpts.CPlusPlus11 || LangOpts.C11) { 3670 Char = getCharAndSize(CurPtr, SizeTmp); 3671 3672 // UTF-16 string literal 3673 if (Char == '"') 3674 return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3675 tok::utf16_string_literal); 3676 3677 // UTF-16 character constant 3678 if (Char == '\'') 3679 return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3680 tok::utf16_char_constant); 3681 3682 // UTF-16 raw string literal 3683 if (Char == 'R' && LangOpts.CPlusPlus11 && 3684 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"') 3685 return LexRawStringLiteral(Result, 3686 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3687 SizeTmp2, Result), 3688 tok::utf16_string_literal); 3689 3690 if (Char == '8') { 3691 char Char2 = getCharAndSize(CurPtr + SizeTmp, SizeTmp2); 3692 3693 // UTF-8 string literal 3694 if (Char2 == '"') 3695 return LexStringLiteral(Result, 3696 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3697 SizeTmp2, Result), 3698 tok::utf8_string_literal); 3699 if (Char2 == '\'' && (LangOpts.CPlusPlus17 || LangOpts.C2x)) 3700 return LexCharConstant( 3701 Result, ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3702 SizeTmp2, Result), 3703 tok::utf8_char_constant); 3704 3705 if (Char2 == 'R' && LangOpts.CPlusPlus11) { 3706 unsigned SizeTmp3; 3707 char Char3 = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3); 3708 // UTF-8 raw string literal 3709 if (Char3 == '"') { 3710 return LexRawStringLiteral(Result, 3711 ConsumeChar(ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3712 SizeTmp2, Result), 3713 SizeTmp3, Result), 3714 tok::utf8_string_literal); 3715 } 3716 } 3717 } 3718 } 3719 3720 // treat u like the start of an identifier. 3721 return LexIdentifierContinue(Result, CurPtr); 3722 3723 case 'U': // Identifier (e.g. Uber) or C11/C++11 UTF-32 string literal 3724 // Notify MIOpt that we read a non-whitespace/non-comment token. 3725 MIOpt.ReadToken(); 3726 3727 if (LangOpts.CPlusPlus11 || LangOpts.C11) { 3728 Char = getCharAndSize(CurPtr, SizeTmp); 3729 3730 // UTF-32 string literal 3731 if (Char == '"') 3732 return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3733 tok::utf32_string_literal); 3734 3735 // UTF-32 character constant 3736 if (Char == '\'') 3737 return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3738 tok::utf32_char_constant); 3739 3740 // UTF-32 raw string literal 3741 if (Char == 'R' && LangOpts.CPlusPlus11 && 3742 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"') 3743 return LexRawStringLiteral(Result, 3744 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3745 SizeTmp2, Result), 3746 tok::utf32_string_literal); 3747 } 3748 3749 // treat U like the start of an identifier. 3750 return LexIdentifierContinue(Result, CurPtr); 3751 3752 case 'R': // Identifier or C++0x raw string literal 3753 // Notify MIOpt that we read a non-whitespace/non-comment token. 3754 MIOpt.ReadToken(); 3755 3756 if (LangOpts.CPlusPlus11) { 3757 Char = getCharAndSize(CurPtr, SizeTmp); 3758 3759 if (Char == '"') 3760 return LexRawStringLiteral(Result, 3761 ConsumeChar(CurPtr, SizeTmp, Result), 3762 tok::string_literal); 3763 } 3764 3765 // treat R like the start of an identifier. 3766 return LexIdentifierContinue(Result, CurPtr); 3767 3768 case 'L': // Identifier (Loony) or wide literal (L'x' or L"xyz"). 3769 // Notify MIOpt that we read a non-whitespace/non-comment token. 3770 MIOpt.ReadToken(); 3771 Char = getCharAndSize(CurPtr, SizeTmp); 3772 3773 // Wide string literal. 3774 if (Char == '"') 3775 return LexStringLiteral(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3776 tok::wide_string_literal); 3777 3778 // Wide raw string literal. 3779 if (LangOpts.CPlusPlus11 && Char == 'R' && 3780 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == '"') 3781 return LexRawStringLiteral(Result, 3782 ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3783 SizeTmp2, Result), 3784 tok::wide_string_literal); 3785 3786 // Wide character constant. 3787 if (Char == '\'') 3788 return LexCharConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3789 tok::wide_char_constant); 3790 // FALL THROUGH, treating L like the start of an identifier. 3791 LLVM_FALLTHROUGH; 3792 3793 // C99 6.4.2: Identifiers. 3794 case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': case 'G': 3795 case 'H': case 'I': case 'J': case 'K': /*'L'*/case 'M': case 'N': 3796 case 'O': case 'P': case 'Q': /*'R'*/case 'S': case 'T': /*'U'*/ 3797 case 'V': case 'W': case 'X': case 'Y': case 'Z': 3798 case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': case 'g': 3799 case 'h': case 'i': case 'j': case 'k': case 'l': case 'm': case 'n': 3800 case 'o': case 'p': case 'q': case 'r': case 's': case 't': /*'u'*/ 3801 case 'v': case 'w': case 'x': case 'y': case 'z': 3802 case '_': 3803 // Notify MIOpt that we read a non-whitespace/non-comment token. 3804 MIOpt.ReadToken(); 3805 return LexIdentifierContinue(Result, CurPtr); 3806 3807 case '$': // $ in identifiers. 3808 if (LangOpts.DollarIdents) { 3809 if (!isLexingRawMode()) 3810 Diag(CurPtr-1, diag::ext_dollar_in_identifier); 3811 // Notify MIOpt that we read a non-whitespace/non-comment token. 3812 MIOpt.ReadToken(); 3813 return LexIdentifierContinue(Result, CurPtr); 3814 } 3815 3816 Kind = tok::unknown; 3817 break; 3818 3819 // C99 6.4.4: Character Constants. 3820 case '\'': 3821 // Notify MIOpt that we read a non-whitespace/non-comment token. 3822 MIOpt.ReadToken(); 3823 return LexCharConstant(Result, CurPtr, tok::char_constant); 3824 3825 // C99 6.4.5: String Literals. 3826 case '"': 3827 // Notify MIOpt that we read a non-whitespace/non-comment token. 3828 MIOpt.ReadToken(); 3829 return LexStringLiteral(Result, CurPtr, 3830 ParsingFilename ? tok::header_name 3831 : tok::string_literal); 3832 3833 // C99 6.4.6: Punctuators. 3834 case '?': 3835 Kind = tok::question; 3836 break; 3837 case '[': 3838 Kind = tok::l_square; 3839 break; 3840 case ']': 3841 Kind = tok::r_square; 3842 break; 3843 case '(': 3844 Kind = tok::l_paren; 3845 break; 3846 case ')': 3847 Kind = tok::r_paren; 3848 break; 3849 case '{': 3850 Kind = tok::l_brace; 3851 break; 3852 case '}': 3853 Kind = tok::r_brace; 3854 break; 3855 case '.': 3856 Char = getCharAndSize(CurPtr, SizeTmp); 3857 if (Char >= '0' && Char <= '9') { 3858 // Notify MIOpt that we read a non-whitespace/non-comment token. 3859 MIOpt.ReadToken(); 3860 3861 return LexNumericConstant(Result, ConsumeChar(CurPtr, SizeTmp, Result)); 3862 } else if (LangOpts.CPlusPlus && Char == '*') { 3863 Kind = tok::periodstar; 3864 CurPtr += SizeTmp; 3865 } else if (Char == '.' && 3866 getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '.') { 3867 Kind = tok::ellipsis; 3868 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3869 SizeTmp2, Result); 3870 } else { 3871 Kind = tok::period; 3872 } 3873 break; 3874 case '&': 3875 Char = getCharAndSize(CurPtr, SizeTmp); 3876 if (Char == '&') { 3877 Kind = tok::ampamp; 3878 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3879 } else if (Char == '=') { 3880 Kind = tok::ampequal; 3881 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3882 } else { 3883 Kind = tok::amp; 3884 } 3885 break; 3886 case '*': 3887 if (getCharAndSize(CurPtr, SizeTmp) == '=') { 3888 Kind = tok::starequal; 3889 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3890 } else { 3891 Kind = tok::star; 3892 } 3893 break; 3894 case '+': 3895 Char = getCharAndSize(CurPtr, SizeTmp); 3896 if (Char == '+') { 3897 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3898 Kind = tok::plusplus; 3899 } else if (Char == '=') { 3900 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3901 Kind = tok::plusequal; 3902 } else { 3903 Kind = tok::plus; 3904 } 3905 break; 3906 case '-': 3907 Char = getCharAndSize(CurPtr, SizeTmp); 3908 if (Char == '-') { // -- 3909 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3910 Kind = tok::minusminus; 3911 } else if (Char == '>' && LangOpts.CPlusPlus && 3912 getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == '*') { // C++ ->* 3913 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3914 SizeTmp2, Result); 3915 Kind = tok::arrowstar; 3916 } else if (Char == '>') { // -> 3917 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3918 Kind = tok::arrow; 3919 } else if (Char == '=') { // -= 3920 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3921 Kind = tok::minusequal; 3922 } else { 3923 Kind = tok::minus; 3924 } 3925 break; 3926 case '~': 3927 Kind = tok::tilde; 3928 break; 3929 case '!': 3930 if (getCharAndSize(CurPtr, SizeTmp) == '=') { 3931 Kind = tok::exclaimequal; 3932 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3933 } else { 3934 Kind = tok::exclaim; 3935 } 3936 break; 3937 case '/': 3938 // 6.4.9: Comments 3939 Char = getCharAndSize(CurPtr, SizeTmp); 3940 if (Char == '/') { // Line comment. 3941 // Even if Line comments are disabled (e.g. in C89 mode), we generally 3942 // want to lex this as a comment. There is one problem with this though, 3943 // that in one particular corner case, this can change the behavior of the 3944 // resultant program. For example, In "foo //**/ bar", C89 would lex 3945 // this as "foo / bar" and languages with Line comments would lex it as 3946 // "foo". Check to see if the character after the second slash is a '*'. 3947 // If so, we will lex that as a "/" instead of the start of a comment. 3948 // However, we never do this if we are just preprocessing. 3949 bool TreatAsComment = 3950 LineComment && (LangOpts.CPlusPlus || !LangOpts.TraditionalCPP); 3951 if (!TreatAsComment) 3952 if (!(PP && PP->isPreprocessedOutput())) 3953 TreatAsComment = getCharAndSize(CurPtr+SizeTmp, SizeTmp2) != '*'; 3954 3955 if (TreatAsComment) { 3956 if (SkipLineComment(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3957 TokAtPhysicalStartOfLine)) 3958 return true; // There is a token to return. 3959 3960 // It is common for the tokens immediately after a // comment to be 3961 // whitespace (indentation for the next line). Instead of going through 3962 // the big switch, handle it efficiently now. 3963 goto SkipIgnoredUnits; 3964 } 3965 } 3966 3967 if (Char == '*') { // /**/ comment. 3968 if (SkipBlockComment(Result, ConsumeChar(CurPtr, SizeTmp, Result), 3969 TokAtPhysicalStartOfLine)) 3970 return true; // There is a token to return. 3971 3972 // We only saw whitespace, so just try again with this lexer. 3973 // (We manually eliminate the tail call to avoid recursion.) 3974 goto LexNextToken; 3975 } 3976 3977 if (Char == '=') { 3978 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3979 Kind = tok::slashequal; 3980 } else { 3981 Kind = tok::slash; 3982 } 3983 break; 3984 case '%': 3985 Char = getCharAndSize(CurPtr, SizeTmp); 3986 if (Char == '=') { 3987 Kind = tok::percentequal; 3988 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3989 } else if (LangOpts.Digraphs && Char == '>') { 3990 Kind = tok::r_brace; // '%>' -> '}' 3991 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3992 } else if (LangOpts.Digraphs && Char == ':') { 3993 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 3994 Char = getCharAndSize(CurPtr, SizeTmp); 3995 if (Char == '%' && getCharAndSize(CurPtr+SizeTmp, SizeTmp2) == ':') { 3996 Kind = tok::hashhash; // '%:%:' -> '##' 3997 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 3998 SizeTmp2, Result); 3999 } else if (Char == '@' && LangOpts.MicrosoftExt) {// %:@ -> #@ -> Charize 4000 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4001 if (!isLexingRawMode()) 4002 Diag(BufferPtr, diag::ext_charize_microsoft); 4003 Kind = tok::hashat; 4004 } else { // '%:' -> '#' 4005 // We parsed a # character. If this occurs at the start of the line, 4006 // it's actually the start of a preprocessing directive. Callback to 4007 // the preprocessor to handle it. 4008 // TODO: -fpreprocessed mode?? 4009 if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer) 4010 goto HandleDirective; 4011 4012 Kind = tok::hash; 4013 } 4014 } else { 4015 Kind = tok::percent; 4016 } 4017 break; 4018 case '<': 4019 Char = getCharAndSize(CurPtr, SizeTmp); 4020 if (ParsingFilename) { 4021 return LexAngledStringLiteral(Result, CurPtr); 4022 } else if (Char == '<') { 4023 char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2); 4024 if (After == '=') { 4025 Kind = tok::lesslessequal; 4026 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 4027 SizeTmp2, Result); 4028 } else if (After == '<' && IsStartOfConflictMarker(CurPtr-1)) { 4029 // If this is actually a '<<<<<<<' version control conflict marker, 4030 // recognize it as such and recover nicely. 4031 goto LexNextToken; 4032 } else if (After == '<' && HandleEndOfConflictMarker(CurPtr-1)) { 4033 // If this is '<<<<' and we're in a Perforce-style conflict marker, 4034 // ignore it. 4035 goto LexNextToken; 4036 } else if (LangOpts.CUDA && After == '<') { 4037 Kind = tok::lesslessless; 4038 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 4039 SizeTmp2, Result); 4040 } else { 4041 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4042 Kind = tok::lessless; 4043 } 4044 } else if (Char == '=') { 4045 char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2); 4046 if (After == '>') { 4047 if (LangOpts.CPlusPlus20) { 4048 if (!isLexingRawMode()) 4049 Diag(BufferPtr, diag::warn_cxx17_compat_spaceship); 4050 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 4051 SizeTmp2, Result); 4052 Kind = tok::spaceship; 4053 break; 4054 } 4055 // Suggest adding a space between the '<=' and the '>' to avoid a 4056 // change in semantics if this turns up in C++ <=17 mode. 4057 if (LangOpts.CPlusPlus && !isLexingRawMode()) { 4058 Diag(BufferPtr, diag::warn_cxx20_compat_spaceship) 4059 << FixItHint::CreateInsertion( 4060 getSourceLocation(CurPtr + SizeTmp, SizeTmp2), " "); 4061 } 4062 } 4063 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4064 Kind = tok::lessequal; 4065 } else if (LangOpts.Digraphs && Char == ':') { // '<:' -> '[' 4066 if (LangOpts.CPlusPlus11 && 4067 getCharAndSize(CurPtr + SizeTmp, SizeTmp2) == ':') { 4068 // C++0x [lex.pptoken]p3: 4069 // Otherwise, if the next three characters are <:: and the subsequent 4070 // character is neither : nor >, the < is treated as a preprocessor 4071 // token by itself and not as the first character of the alternative 4072 // token <:. 4073 unsigned SizeTmp3; 4074 char After = getCharAndSize(CurPtr + SizeTmp + SizeTmp2, SizeTmp3); 4075 if (After != ':' && After != '>') { 4076 Kind = tok::less; 4077 if (!isLexingRawMode()) 4078 Diag(BufferPtr, diag::warn_cxx98_compat_less_colon_colon); 4079 break; 4080 } 4081 } 4082 4083 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4084 Kind = tok::l_square; 4085 } else if (LangOpts.Digraphs && Char == '%') { // '<%' -> '{' 4086 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4087 Kind = tok::l_brace; 4088 } else if (Char == '#' && /*Not a trigraph*/ SizeTmp == 1 && 4089 lexEditorPlaceholder(Result, CurPtr)) { 4090 return true; 4091 } else { 4092 Kind = tok::less; 4093 } 4094 break; 4095 case '>': 4096 Char = getCharAndSize(CurPtr, SizeTmp); 4097 if (Char == '=') { 4098 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4099 Kind = tok::greaterequal; 4100 } else if (Char == '>') { 4101 char After = getCharAndSize(CurPtr+SizeTmp, SizeTmp2); 4102 if (After == '=') { 4103 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 4104 SizeTmp2, Result); 4105 Kind = tok::greatergreaterequal; 4106 } else if (After == '>' && IsStartOfConflictMarker(CurPtr-1)) { 4107 // If this is actually a '>>>>' conflict marker, recognize it as such 4108 // and recover nicely. 4109 goto LexNextToken; 4110 } else if (After == '>' && HandleEndOfConflictMarker(CurPtr-1)) { 4111 // If this is '>>>>>>>' and we're in a conflict marker, ignore it. 4112 goto LexNextToken; 4113 } else if (LangOpts.CUDA && After == '>') { 4114 Kind = tok::greatergreatergreater; 4115 CurPtr = ConsumeChar(ConsumeChar(CurPtr, SizeTmp, Result), 4116 SizeTmp2, Result); 4117 } else { 4118 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4119 Kind = tok::greatergreater; 4120 } 4121 } else { 4122 Kind = tok::greater; 4123 } 4124 break; 4125 case '^': 4126 Char = getCharAndSize(CurPtr, SizeTmp); 4127 if (Char == '=') { 4128 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4129 Kind = tok::caretequal; 4130 } else if (LangOpts.OpenCL && Char == '^') { 4131 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4132 Kind = tok::caretcaret; 4133 } else { 4134 Kind = tok::caret; 4135 } 4136 break; 4137 case '|': 4138 Char = getCharAndSize(CurPtr, SizeTmp); 4139 if (Char == '=') { 4140 Kind = tok::pipeequal; 4141 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4142 } else if (Char == '|') { 4143 // If this is '|||||||' and we're in a conflict marker, ignore it. 4144 if (CurPtr[1] == '|' && HandleEndOfConflictMarker(CurPtr-1)) 4145 goto LexNextToken; 4146 Kind = tok::pipepipe; 4147 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4148 } else { 4149 Kind = tok::pipe; 4150 } 4151 break; 4152 case ':': 4153 Char = getCharAndSize(CurPtr, SizeTmp); 4154 if (LangOpts.Digraphs && Char == '>') { 4155 Kind = tok::r_square; // ':>' -> ']' 4156 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4157 } else if ((LangOpts.CPlusPlus || 4158 LangOpts.DoubleSquareBracketAttributes) && 4159 Char == ':') { 4160 Kind = tok::coloncolon; 4161 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4162 } else { 4163 Kind = tok::colon; 4164 } 4165 break; 4166 case ';': 4167 Kind = tok::semi; 4168 break; 4169 case '=': 4170 Char = getCharAndSize(CurPtr, SizeTmp); 4171 if (Char == '=') { 4172 // If this is '====' and we're in a conflict marker, ignore it. 4173 if (CurPtr[1] == '=' && HandleEndOfConflictMarker(CurPtr-1)) 4174 goto LexNextToken; 4175 4176 Kind = tok::equalequal; 4177 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4178 } else { 4179 Kind = tok::equal; 4180 } 4181 break; 4182 case ',': 4183 Kind = tok::comma; 4184 break; 4185 case '#': 4186 Char = getCharAndSize(CurPtr, SizeTmp); 4187 if (Char == '#') { 4188 Kind = tok::hashhash; 4189 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4190 } else if (Char == '@' && LangOpts.MicrosoftExt) { // #@ -> Charize 4191 Kind = tok::hashat; 4192 if (!isLexingRawMode()) 4193 Diag(BufferPtr, diag::ext_charize_microsoft); 4194 CurPtr = ConsumeChar(CurPtr, SizeTmp, Result); 4195 } else { 4196 // We parsed a # character. If this occurs at the start of the line, 4197 // it's actually the start of a preprocessing directive. Callback to 4198 // the preprocessor to handle it. 4199 // TODO: -fpreprocessed mode?? 4200 if (TokAtPhysicalStartOfLine && !LexingRawMode && !Is_PragmaLexer) 4201 goto HandleDirective; 4202 4203 Kind = tok::hash; 4204 } 4205 break; 4206 4207 case '@': 4208 // Objective C support. 4209 if (CurPtr[-1] == '@' && LangOpts.ObjC) 4210 Kind = tok::at; 4211 else 4212 Kind = tok::unknown; 4213 break; 4214 4215 // UCNs (C99 6.4.3, C++11 [lex.charset]p2) 4216 case '\\': 4217 if (!LangOpts.AsmPreprocessor) { 4218 if (uint32_t CodePoint = tryReadUCN(CurPtr, BufferPtr, &Result)) { 4219 if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) { 4220 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) 4221 return true; // KeepWhitespaceMode 4222 4223 // We only saw whitespace, so just try again with this lexer. 4224 // (We manually eliminate the tail call to avoid recursion.) 4225 goto LexNextToken; 4226 } 4227 4228 return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr); 4229 } 4230 } 4231 4232 Kind = tok::unknown; 4233 break; 4234 4235 default: { 4236 if (isASCII(Char)) { 4237 Kind = tok::unknown; 4238 break; 4239 } 4240 4241 llvm::UTF32 CodePoint; 4242 4243 // We can't just reset CurPtr to BufferPtr because BufferPtr may point to 4244 // an escaped newline. 4245 --CurPtr; 4246 llvm::ConversionResult Status = 4247 llvm::convertUTF8Sequence((const llvm::UTF8 **)&CurPtr, 4248 (const llvm::UTF8 *)BufferEnd, 4249 &CodePoint, 4250 llvm::strictConversion); 4251 if (Status == llvm::conversionOK) { 4252 if (CheckUnicodeWhitespace(Result, CodePoint, CurPtr)) { 4253 if (SkipWhitespace(Result, CurPtr, TokAtPhysicalStartOfLine)) 4254 return true; // KeepWhitespaceMode 4255 4256 // We only saw whitespace, so just try again with this lexer. 4257 // (We manually eliminate the tail call to avoid recursion.) 4258 goto LexNextToken; 4259 } 4260 return LexUnicodeIdentifierStart(Result, CodePoint, CurPtr); 4261 } 4262 4263 if (isLexingRawMode() || ParsingPreprocessorDirective || 4264 PP->isPreprocessedOutput()) { 4265 ++CurPtr; 4266 Kind = tok::unknown; 4267 break; 4268 } 4269 4270 // Non-ASCII characters tend to creep into source code unintentionally. 4271 // Instead of letting the parser complain about the unknown token, 4272 // just diagnose the invalid UTF-8, then drop the character. 4273 Diag(CurPtr, diag::err_invalid_utf8); 4274 4275 BufferPtr = CurPtr+1; 4276 // We're pretending the character didn't exist, so just try again with 4277 // this lexer. 4278 // (We manually eliminate the tail call to avoid recursion.) 4279 goto LexNextToken; 4280 } 4281 } 4282 4283 // Notify MIOpt that we read a non-whitespace/non-comment token. 4284 MIOpt.ReadToken(); 4285 4286 // Update the location of token as well as BufferPtr. 4287 FormTokenWithChars(Result, CurPtr, Kind); 4288 return true; 4289 4290 HandleDirective: 4291 // We parsed a # character and it's the start of a preprocessing directive. 4292 4293 FormTokenWithChars(Result, CurPtr, tok::hash); 4294 PP->HandleDirective(Result); 4295 4296 if (PP->hadModuleLoaderFatalFailure()) { 4297 // With a fatal failure in the module loader, we abort parsing. 4298 assert(Result.is(tok::eof) && "Preprocessor did not set tok:eof"); 4299 return true; 4300 } 4301 4302 // We parsed the directive; lex a token with the new state. 4303 return false; 4304 } 4305 4306 const char *Lexer::convertDependencyDirectiveToken( 4307 const dependency_directives_scan::Token &DDTok, Token &Result) { 4308 const char *TokPtr = BufferStart + DDTok.Offset; 4309 Result.startToken(); 4310 Result.setLocation(getSourceLocation(TokPtr)); 4311 Result.setKind(DDTok.Kind); 4312 Result.setFlag((Token::TokenFlags)DDTok.Flags); 4313 Result.setLength(DDTok.Length); 4314 BufferPtr = TokPtr + DDTok.Length; 4315 return TokPtr; 4316 } 4317 4318 bool Lexer::LexDependencyDirectiveToken(Token &Result) { 4319 assert(isDependencyDirectivesLexer()); 4320 4321 using namespace dependency_directives_scan; 4322 4323 while (NextDepDirectiveTokenIndex == DepDirectives.front().Tokens.size()) { 4324 if (DepDirectives.front().Kind == pp_eof) 4325 return LexEndOfFile(Result, BufferEnd); 4326 NextDepDirectiveTokenIndex = 0; 4327 DepDirectives = DepDirectives.drop_front(); 4328 } 4329 4330 const dependency_directives_scan::Token &DDTok = 4331 DepDirectives.front().Tokens[NextDepDirectiveTokenIndex++]; 4332 if (NextDepDirectiveTokenIndex > 1 || DDTok.Kind != tok::hash) { 4333 // Read something other than a preprocessor directive hash. 4334 MIOpt.ReadToken(); 4335 } 4336 4337 const char *TokPtr = convertDependencyDirectiveToken(DDTok, Result); 4338 4339 if (Result.is(tok::hash) && Result.isAtStartOfLine()) { 4340 PP->HandleDirective(Result); 4341 return false; 4342 } 4343 if (Result.is(tok::raw_identifier)) { 4344 Result.setRawIdentifierData(TokPtr); 4345 if (!isLexingRawMode()) { 4346 IdentifierInfo *II = PP->LookUpIdentifierInfo(Result); 4347 if (II->isHandleIdentifierCase()) 4348 return PP->HandleIdentifier(Result); 4349 } 4350 return true; 4351 } 4352 if (Result.isLiteral()) { 4353 Result.setLiteralData(TokPtr); 4354 return true; 4355 } 4356 if (Result.is(tok::colon) && 4357 (LangOpts.CPlusPlus || LangOpts.DoubleSquareBracketAttributes)) { 4358 // Convert consecutive colons to 'tok::coloncolon'. 4359 if (*BufferPtr == ':') { 4360 assert(DepDirectives.front().Tokens[NextDepDirectiveTokenIndex].is( 4361 tok::colon)); 4362 ++NextDepDirectiveTokenIndex; 4363 Result.setKind(tok::coloncolon); 4364 } 4365 return true; 4366 } 4367 if (Result.is(tok::eod)) 4368 ParsingPreprocessorDirective = false; 4369 4370 return true; 4371 } 4372 4373 bool Lexer::LexDependencyDirectiveTokenWhileSkipping(Token &Result) { 4374 assert(isDependencyDirectivesLexer()); 4375 4376 using namespace dependency_directives_scan; 4377 4378 bool Stop = false; 4379 unsigned NestedIfs = 0; 4380 do { 4381 DepDirectives = DepDirectives.drop_front(); 4382 switch (DepDirectives.front().Kind) { 4383 case pp_none: 4384 llvm_unreachable("unexpected 'pp_none'"); 4385 case pp_include: 4386 case pp___include_macros: 4387 case pp_define: 4388 case pp_undef: 4389 case pp_import: 4390 case pp_pragma_import: 4391 case pp_pragma_once: 4392 case pp_pragma_push_macro: 4393 case pp_pragma_pop_macro: 4394 case pp_pragma_include_alias: 4395 case pp_include_next: 4396 case decl_at_import: 4397 case cxx_module_decl: 4398 case cxx_import_decl: 4399 case cxx_export_module_decl: 4400 case cxx_export_import_decl: 4401 break; 4402 case pp_if: 4403 case pp_ifdef: 4404 case pp_ifndef: 4405 ++NestedIfs; 4406 break; 4407 case pp_elif: 4408 case pp_elifdef: 4409 case pp_elifndef: 4410 case pp_else: 4411 if (!NestedIfs) { 4412 Stop = true; 4413 } 4414 break; 4415 case pp_endif: 4416 if (!NestedIfs) { 4417 Stop = true; 4418 } else { 4419 --NestedIfs; 4420 } 4421 break; 4422 case pp_eof: 4423 NextDepDirectiveTokenIndex = 0; 4424 return LexEndOfFile(Result, BufferEnd); 4425 } 4426 } while (!Stop); 4427 4428 const dependency_directives_scan::Token &DDTok = 4429 DepDirectives.front().Tokens.front(); 4430 assert(DDTok.is(tok::hash)); 4431 NextDepDirectiveTokenIndex = 1; 4432 4433 convertDependencyDirectiveToken(DDTok, Result); 4434 return false; 4435 } 4436