1 //===------ Interpreter.cpp - Incremental Compilation and Execution -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the component which performs incremental code 10 // compilation and execution. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "DeviceOffload.h" 15 #include "IncrementalExecutor.h" 16 #include "IncrementalParser.h" 17 #include "InterpreterUtils.h" 18 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Mangle.h" 21 #include "clang/AST/TypeVisitor.h" 22 #include "clang/Basic/DiagnosticSema.h" 23 #include "clang/Basic/TargetInfo.h" 24 #include "clang/CodeGen/CodeGenAction.h" 25 #include "clang/CodeGen/ModuleBuilder.h" 26 #include "clang/CodeGen/ObjectFilePCHContainerOperations.h" 27 #include "clang/Driver/Compilation.h" 28 #include "clang/Driver/Driver.h" 29 #include "clang/Driver/Job.h" 30 #include "clang/Driver/Options.h" 31 #include "clang/Driver/Tool.h" 32 #include "clang/Frontend/CompilerInstance.h" 33 #include "clang/Frontend/TextDiagnosticBuffer.h" 34 #include "clang/Interpreter/Interpreter.h" 35 #include "clang/Interpreter/Value.h" 36 #include "clang/Lex/PreprocessorOptions.h" 37 #include "clang/Sema/Lookup.h" 38 #include "llvm/ExecutionEngine/JITSymbol.h" 39 #include "llvm/ExecutionEngine/Orc/LLJIT.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/Support/Errc.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/raw_ostream.h" 44 #include "llvm/TargetParser/Host.h" 45 using namespace clang; 46 47 // FIXME: Figure out how to unify with namespace init_convenience from 48 // tools/clang-import-test/clang-import-test.cpp 49 namespace { 50 /// Retrieves the clang CC1 specific flags out of the compilation's jobs. 51 /// \returns NULL on error. 52 static llvm::Expected<const llvm::opt::ArgStringList *> 53 GetCC1Arguments(DiagnosticsEngine *Diagnostics, 54 driver::Compilation *Compilation) { 55 // We expect to get back exactly one Command job, if we didn't something 56 // failed. Extract that job from the Compilation. 57 const driver::JobList &Jobs = Compilation->getJobs(); 58 if (!Jobs.size() || !isa<driver::Command>(*Jobs.begin())) 59 return llvm::createStringError(llvm::errc::not_supported, 60 "Driver initialization failed. " 61 "Unable to create a driver job"); 62 63 // The one job we find should be to invoke clang again. 64 const driver::Command *Cmd = cast<driver::Command>(&(*Jobs.begin())); 65 if (llvm::StringRef(Cmd->getCreator().getName()) != "clang") 66 return llvm::createStringError(llvm::errc::not_supported, 67 "Driver initialization failed"); 68 69 return &Cmd->getArguments(); 70 } 71 72 static llvm::Expected<std::unique_ptr<CompilerInstance>> 73 CreateCI(const llvm::opt::ArgStringList &Argv) { 74 std::unique_ptr<CompilerInstance> Clang(new CompilerInstance()); 75 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 76 77 // Register the support for object-file-wrapped Clang modules. 78 // FIXME: Clang should register these container operations automatically. 79 auto PCHOps = Clang->getPCHContainerOperations(); 80 PCHOps->registerWriter(std::make_unique<ObjectFilePCHContainerWriter>()); 81 PCHOps->registerReader(std::make_unique<ObjectFilePCHContainerReader>()); 82 83 // Buffer diagnostics from argument parsing so that we can output them using 84 // a well formed diagnostic object. 85 IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = new DiagnosticOptions(); 86 TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer; 87 DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer); 88 bool Success = CompilerInvocation::CreateFromArgs( 89 Clang->getInvocation(), llvm::ArrayRef(Argv.begin(), Argv.size()), Diags); 90 91 // Infer the builtin include path if unspecified. 92 if (Clang->getHeaderSearchOpts().UseBuiltinIncludes && 93 Clang->getHeaderSearchOpts().ResourceDir.empty()) 94 Clang->getHeaderSearchOpts().ResourceDir = 95 CompilerInvocation::GetResourcesPath(Argv[0], nullptr); 96 97 // Create the actual diagnostics engine. 98 Clang->createDiagnostics(); 99 if (!Clang->hasDiagnostics()) 100 return llvm::createStringError(llvm::errc::not_supported, 101 "Initialization failed. " 102 "Unable to create diagnostics engine"); 103 104 DiagsBuffer->FlushDiagnostics(Clang->getDiagnostics()); 105 if (!Success) 106 return llvm::createStringError(llvm::errc::not_supported, 107 "Initialization failed. " 108 "Unable to flush diagnostics"); 109 110 // FIXME: Merge with CompilerInstance::ExecuteAction. 111 llvm::MemoryBuffer *MB = llvm::MemoryBuffer::getMemBuffer("").release(); 112 Clang->getPreprocessorOpts().addRemappedFile("<<< inputs >>>", MB); 113 114 Clang->setTarget(TargetInfo::CreateTargetInfo( 115 Clang->getDiagnostics(), Clang->getInvocation().TargetOpts)); 116 if (!Clang->hasTarget()) 117 return llvm::createStringError(llvm::errc::not_supported, 118 "Initialization failed. " 119 "Target is missing"); 120 121 Clang->getTarget().adjust(Clang->getDiagnostics(), Clang->getLangOpts()); 122 123 // Don't clear the AST before backend codegen since we do codegen multiple 124 // times, reusing the same AST. 125 Clang->getCodeGenOpts().ClearASTBeforeBackend = false; 126 127 Clang->getFrontendOpts().DisableFree = false; 128 Clang->getCodeGenOpts().DisableFree = false; 129 return std::move(Clang); 130 } 131 132 } // anonymous namespace 133 134 llvm::Expected<std::unique_ptr<CompilerInstance>> 135 IncrementalCompilerBuilder::create(std::vector<const char *> &ClangArgv) { 136 137 // If we don't know ClangArgv0 or the address of main() at this point, try 138 // to guess it anyway (it's possible on some platforms). 139 std::string MainExecutableName = 140 llvm::sys::fs::getMainExecutable(nullptr, nullptr); 141 142 ClangArgv.insert(ClangArgv.begin(), MainExecutableName.c_str()); 143 144 // Prepending -c to force the driver to do something if no action was 145 // specified. By prepending we allow users to override the default 146 // action and use other actions in incremental mode. 147 // FIXME: Print proper driver diagnostics if the driver flags are wrong. 148 // We do C++ by default; append right after argv[0] if no "-x" given 149 ClangArgv.insert(ClangArgv.end(), "-Xclang"); 150 ClangArgv.insert(ClangArgv.end(), "-fincremental-extensions"); 151 ClangArgv.insert(ClangArgv.end(), "-c"); 152 153 // Put a dummy C++ file on to ensure there's at least one compile job for the 154 // driver to construct. 155 ClangArgv.push_back("<<< inputs >>>"); 156 157 // Buffer diagnostics from argument parsing so that we can output them using a 158 // well formed diagnostic object. 159 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 160 IntrusiveRefCntPtr<DiagnosticOptions> DiagOpts = 161 CreateAndPopulateDiagOpts(ClangArgv); 162 TextDiagnosticBuffer *DiagsBuffer = new TextDiagnosticBuffer; 163 DiagnosticsEngine Diags(DiagID, &*DiagOpts, DiagsBuffer); 164 165 driver::Driver Driver(/*MainBinaryName=*/ClangArgv[0], 166 llvm::sys::getProcessTriple(), Diags); 167 Driver.setCheckInputsExist(false); // the input comes from mem buffers 168 llvm::ArrayRef<const char *> RF = llvm::ArrayRef(ClangArgv); 169 std::unique_ptr<driver::Compilation> Compilation(Driver.BuildCompilation(RF)); 170 171 if (Compilation->getArgs().hasArg(driver::options::OPT_v)) 172 Compilation->getJobs().Print(llvm::errs(), "\n", /*Quote=*/false); 173 174 auto ErrOrCC1Args = GetCC1Arguments(&Diags, Compilation.get()); 175 if (auto Err = ErrOrCC1Args.takeError()) 176 return std::move(Err); 177 178 return CreateCI(**ErrOrCC1Args); 179 } 180 181 llvm::Expected<std::unique_ptr<CompilerInstance>> 182 IncrementalCompilerBuilder::CreateCpp() { 183 std::vector<const char *> Argv; 184 Argv.reserve(5 + 1 + UserArgs.size()); 185 Argv.push_back("-xc++"); 186 Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end()); 187 188 return IncrementalCompilerBuilder::create(Argv); 189 } 190 191 llvm::Expected<std::unique_ptr<CompilerInstance>> 192 IncrementalCompilerBuilder::createCuda(bool device) { 193 std::vector<const char *> Argv; 194 Argv.reserve(5 + 4 + UserArgs.size()); 195 196 Argv.push_back("-xcuda"); 197 if (device) 198 Argv.push_back("--cuda-device-only"); 199 else 200 Argv.push_back("--cuda-host-only"); 201 202 std::string SDKPathArg = "--cuda-path="; 203 if (!CudaSDKPath.empty()) { 204 SDKPathArg += CudaSDKPath; 205 Argv.push_back(SDKPathArg.c_str()); 206 } 207 208 std::string ArchArg = "--offload-arch="; 209 if (!OffloadArch.empty()) { 210 ArchArg += OffloadArch; 211 Argv.push_back(ArchArg.c_str()); 212 } 213 214 Argv.insert(Argv.end(), UserArgs.begin(), UserArgs.end()); 215 216 return IncrementalCompilerBuilder::create(Argv); 217 } 218 219 llvm::Expected<std::unique_ptr<CompilerInstance>> 220 IncrementalCompilerBuilder::CreateCudaDevice() { 221 return IncrementalCompilerBuilder::createCuda(true); 222 } 223 224 llvm::Expected<std::unique_ptr<CompilerInstance>> 225 IncrementalCompilerBuilder::CreateCudaHost() { 226 return IncrementalCompilerBuilder::createCuda(false); 227 } 228 229 Interpreter::Interpreter(std::unique_ptr<CompilerInstance> CI, 230 llvm::Error &Err) { 231 llvm::ErrorAsOutParameter EAO(&Err); 232 auto LLVMCtx = std::make_unique<llvm::LLVMContext>(); 233 TSCtx = std::make_unique<llvm::orc::ThreadSafeContext>(std::move(LLVMCtx)); 234 IncrParser = std::make_unique<IncrementalParser>(*this, std::move(CI), 235 *TSCtx->getContext(), Err); 236 } 237 238 Interpreter::~Interpreter() { 239 if (IncrExecutor) { 240 if (llvm::Error Err = IncrExecutor->cleanUp()) 241 llvm::report_fatal_error( 242 llvm::Twine("Failed to clean up IncrementalExecutor: ") + 243 toString(std::move(Err))); 244 } 245 } 246 247 // These better to put in a runtime header but we can't. This is because we 248 // can't find the precise resource directory in unittests so we have to hard 249 // code them. 250 const char *const Runtimes = R"( 251 void* operator new(__SIZE_TYPE__, void* __p) noexcept; 252 void *__clang_Interpreter_SetValueWithAlloc(void*, void*, void*); 253 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*); 254 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, void*); 255 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, float); 256 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, double); 257 void __clang_Interpreter_SetValueNoAlloc(void*, void*, void*, long double); 258 void __clang_Interpreter_SetValueNoAlloc(void*,void*,void*,unsigned long long); 259 template <class T, class = T (*)() /*disable for arrays*/> 260 void __clang_Interpreter_SetValueCopyArr(T* Src, void* Placement, unsigned long Size) { 261 for (auto Idx = 0; Idx < Size; ++Idx) 262 new ((void*)(((T*)Placement) + Idx)) T(Src[Idx]); 263 } 264 template <class T, unsigned long N> 265 void __clang_Interpreter_SetValueCopyArr(const T (*Src)[N], void* Placement, unsigned long Size) { 266 __clang_Interpreter_SetValueCopyArr(Src[0], Placement, Size); 267 } 268 )"; 269 270 llvm::Expected<std::unique_ptr<Interpreter>> 271 Interpreter::create(std::unique_ptr<CompilerInstance> CI) { 272 llvm::Error Err = llvm::Error::success(); 273 auto Interp = 274 std::unique_ptr<Interpreter>(new Interpreter(std::move(CI), Err)); 275 if (Err) 276 return std::move(Err); 277 278 auto PTU = Interp->Parse(Runtimes); 279 if (!PTU) 280 return PTU.takeError(); 281 282 Interp->ValuePrintingInfo.resize(3); 283 // FIXME: This is a ugly hack. Undo command checks its availability by looking 284 // at the size of the PTU list. However we have parsed something in the 285 // beginning of the REPL so we have to mark them as 'Irrevocable'. 286 Interp->InitPTUSize = Interp->IncrParser->getPTUs().size(); 287 return std::move(Interp); 288 } 289 290 llvm::Expected<std::unique_ptr<Interpreter>> 291 Interpreter::createWithCUDA(std::unique_ptr<CompilerInstance> CI, 292 std::unique_ptr<CompilerInstance> DCI) { 293 // avoid writing fat binary to disk using an in-memory virtual file system 294 llvm::IntrusiveRefCntPtr<llvm::vfs::InMemoryFileSystem> IMVFS = 295 std::make_unique<llvm::vfs::InMemoryFileSystem>(); 296 llvm::IntrusiveRefCntPtr<llvm::vfs::OverlayFileSystem> OverlayVFS = 297 std::make_unique<llvm::vfs::OverlayFileSystem>( 298 llvm::vfs::getRealFileSystem()); 299 OverlayVFS->pushOverlay(IMVFS); 300 CI->createFileManager(OverlayVFS); 301 302 auto Interp = Interpreter::create(std::move(CI)); 303 if (auto E = Interp.takeError()) 304 return std::move(E); 305 306 llvm::Error Err = llvm::Error::success(); 307 auto DeviceParser = std::make_unique<IncrementalCUDADeviceParser>( 308 **Interp, std::move(DCI), *(*Interp)->IncrParser.get(), 309 *(*Interp)->TSCtx->getContext(), IMVFS, Err); 310 if (Err) 311 return std::move(Err); 312 313 (*Interp)->DeviceParser = std::move(DeviceParser); 314 315 return Interp; 316 } 317 318 const CompilerInstance *Interpreter::getCompilerInstance() const { 319 return IncrParser->getCI(); 320 } 321 322 CompilerInstance *Interpreter::getCompilerInstance() { 323 return IncrParser->getCI(); 324 } 325 326 llvm::Expected<llvm::orc::LLJIT &> Interpreter::getExecutionEngine() { 327 if (!IncrExecutor) { 328 if (auto Err = CreateExecutor()) 329 return std::move(Err); 330 } 331 332 return IncrExecutor->GetExecutionEngine(); 333 } 334 335 ASTContext &Interpreter::getASTContext() { 336 return getCompilerInstance()->getASTContext(); 337 } 338 339 const ASTContext &Interpreter::getASTContext() const { 340 return getCompilerInstance()->getASTContext(); 341 } 342 343 size_t Interpreter::getEffectivePTUSize() const { 344 std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs(); 345 assert(PTUs.size() >= InitPTUSize && "empty PTU list?"); 346 return PTUs.size() - InitPTUSize; 347 } 348 349 llvm::Expected<PartialTranslationUnit &> 350 Interpreter::Parse(llvm::StringRef Code) { 351 // If we have a device parser, parse it first. 352 // The generated code will be included in the host compilation 353 if (DeviceParser) { 354 auto DevicePTU = DeviceParser->Parse(Code); 355 if (auto E = DevicePTU.takeError()) 356 return std::move(E); 357 } 358 359 // Tell the interpreter sliently ignore unused expressions since value 360 // printing could cause it. 361 getCompilerInstance()->getDiagnostics().setSeverity( 362 clang::diag::warn_unused_expr, diag::Severity::Ignored, SourceLocation()); 363 return IncrParser->Parse(Code); 364 } 365 366 llvm::Error Interpreter::CreateExecutor() { 367 const clang::TargetInfo &TI = 368 getCompilerInstance()->getASTContext().getTargetInfo(); 369 llvm::Error Err = llvm::Error::success(); 370 auto Executor = std::make_unique<IncrementalExecutor>(*TSCtx, Err, TI); 371 if (!Err) 372 IncrExecutor = std::move(Executor); 373 374 return Err; 375 } 376 377 llvm::Error Interpreter::Execute(PartialTranslationUnit &T) { 378 assert(T.TheModule); 379 if (!IncrExecutor) { 380 auto Err = CreateExecutor(); 381 if (Err) 382 return Err; 383 } 384 // FIXME: Add a callback to retain the llvm::Module once the JIT is done. 385 if (auto Err = IncrExecutor->addModule(T)) 386 return Err; 387 388 if (auto Err = IncrExecutor->runCtors()) 389 return Err; 390 391 return llvm::Error::success(); 392 } 393 394 llvm::Error Interpreter::ParseAndExecute(llvm::StringRef Code, Value *V) { 395 396 auto PTU = Parse(Code); 397 if (!PTU) 398 return PTU.takeError(); 399 if (PTU->TheModule) 400 if (llvm::Error Err = Execute(*PTU)) 401 return Err; 402 403 if (LastValue.isValid()) { 404 if (!V) { 405 LastValue.dump(); 406 LastValue.clear(); 407 } else 408 *V = std::move(LastValue); 409 } 410 return llvm::Error::success(); 411 } 412 413 llvm::Expected<llvm::orc::ExecutorAddr> 414 Interpreter::getSymbolAddress(GlobalDecl GD) const { 415 if (!IncrExecutor) 416 return llvm::make_error<llvm::StringError>("Operation failed. " 417 "No execution engine", 418 std::error_code()); 419 llvm::StringRef MangledName = IncrParser->GetMangledName(GD); 420 return getSymbolAddress(MangledName); 421 } 422 423 llvm::Expected<llvm::orc::ExecutorAddr> 424 Interpreter::getSymbolAddress(llvm::StringRef IRName) const { 425 if (!IncrExecutor) 426 return llvm::make_error<llvm::StringError>("Operation failed. " 427 "No execution engine", 428 std::error_code()); 429 430 return IncrExecutor->getSymbolAddress(IRName, IncrementalExecutor::IRName); 431 } 432 433 llvm::Expected<llvm::orc::ExecutorAddr> 434 Interpreter::getSymbolAddressFromLinkerName(llvm::StringRef Name) const { 435 if (!IncrExecutor) 436 return llvm::make_error<llvm::StringError>("Operation failed. " 437 "No execution engine", 438 std::error_code()); 439 440 return IncrExecutor->getSymbolAddress(Name, IncrementalExecutor::LinkerName); 441 } 442 443 llvm::Error Interpreter::Undo(unsigned N) { 444 445 std::list<PartialTranslationUnit> &PTUs = IncrParser->getPTUs(); 446 if (N > getEffectivePTUSize()) 447 return llvm::make_error<llvm::StringError>("Operation failed. " 448 "Too many undos", 449 std::error_code()); 450 for (unsigned I = 0; I < N; I++) { 451 if (IncrExecutor) { 452 if (llvm::Error Err = IncrExecutor->removeModule(PTUs.back())) 453 return Err; 454 } 455 456 IncrParser->CleanUpPTU(PTUs.back()); 457 PTUs.pop_back(); 458 } 459 return llvm::Error::success(); 460 } 461 462 llvm::Error Interpreter::LoadDynamicLibrary(const char *name) { 463 auto EE = getExecutionEngine(); 464 if (!EE) 465 return EE.takeError(); 466 467 auto &DL = EE->getDataLayout(); 468 469 if (auto DLSG = llvm::orc::DynamicLibrarySearchGenerator::Load( 470 name, DL.getGlobalPrefix())) 471 EE->getMainJITDylib().addGenerator(std::move(*DLSG)); 472 else 473 return DLSG.takeError(); 474 475 return llvm::Error::success(); 476 } 477 478 llvm::Expected<llvm::orc::ExecutorAddr> 479 Interpreter::CompileDtorCall(CXXRecordDecl *CXXRD) { 480 assert(CXXRD && "Cannot compile a destructor for a nullptr"); 481 if (auto Dtor = Dtors.find(CXXRD); Dtor != Dtors.end()) 482 return Dtor->getSecond(); 483 484 if (CXXRD->hasIrrelevantDestructor()) 485 return llvm::orc::ExecutorAddr{}; 486 487 CXXDestructorDecl *DtorRD = 488 getCompilerInstance()->getSema().LookupDestructor(CXXRD); 489 490 llvm::StringRef Name = 491 IncrParser->GetMangledName(GlobalDecl(DtorRD, Dtor_Base)); 492 auto AddrOrErr = getSymbolAddress(Name); 493 if (!AddrOrErr) 494 return AddrOrErr.takeError(); 495 496 Dtors[CXXRD] = *AddrOrErr; 497 return AddrOrErr; 498 } 499 500 static constexpr llvm::StringRef MagicRuntimeInterface[] = { 501 "__clang_Interpreter_SetValueNoAlloc", 502 "__clang_Interpreter_SetValueWithAlloc", 503 "__clang_Interpreter_SetValueCopyArr"}; 504 505 bool Interpreter::FindRuntimeInterface() { 506 if (llvm::all_of(ValuePrintingInfo, [](Expr *E) { return E != nullptr; })) 507 return true; 508 509 Sema &S = getCompilerInstance()->getSema(); 510 ASTContext &Ctx = S.getASTContext(); 511 512 auto LookupInterface = [&](Expr *&Interface, llvm::StringRef Name) { 513 LookupResult R(S, &Ctx.Idents.get(Name), SourceLocation(), 514 Sema::LookupOrdinaryName, Sema::ForVisibleRedeclaration); 515 S.LookupQualifiedName(R, Ctx.getTranslationUnitDecl()); 516 if (R.empty()) 517 return false; 518 519 CXXScopeSpec CSS; 520 Interface = S.BuildDeclarationNameExpr(CSS, R, /*ADL=*/false).get(); 521 return true; 522 }; 523 524 if (!LookupInterface(ValuePrintingInfo[NoAlloc], 525 MagicRuntimeInterface[NoAlloc])) 526 return false; 527 if (!LookupInterface(ValuePrintingInfo[WithAlloc], 528 MagicRuntimeInterface[WithAlloc])) 529 return false; 530 if (!LookupInterface(ValuePrintingInfo[CopyArray], 531 MagicRuntimeInterface[CopyArray])) 532 return false; 533 return true; 534 } 535 536 namespace { 537 538 class RuntimeInterfaceBuilder 539 : public TypeVisitor<RuntimeInterfaceBuilder, Interpreter::InterfaceKind> { 540 clang::Interpreter &Interp; 541 ASTContext &Ctx; 542 Sema &S; 543 Expr *E; 544 llvm::SmallVector<Expr *, 3> Args; 545 546 public: 547 RuntimeInterfaceBuilder(clang::Interpreter &In, ASTContext &C, Sema &SemaRef, 548 Expr *VE, ArrayRef<Expr *> FixedArgs) 549 : Interp(In), Ctx(C), S(SemaRef), E(VE) { 550 // The Interpreter* parameter and the out parameter `OutVal`. 551 for (Expr *E : FixedArgs) 552 Args.push_back(E); 553 554 // Get rid of ExprWithCleanups. 555 if (auto *EWC = llvm::dyn_cast_if_present<ExprWithCleanups>(E)) 556 E = EWC->getSubExpr(); 557 } 558 559 ExprResult getCall() { 560 QualType Ty = E->getType(); 561 QualType DesugaredTy = Ty.getDesugaredType(Ctx); 562 563 // For lvalue struct, we treat it as a reference. 564 if (DesugaredTy->isRecordType() && E->isLValue()) { 565 DesugaredTy = Ctx.getLValueReferenceType(DesugaredTy); 566 Ty = Ctx.getLValueReferenceType(Ty); 567 } 568 569 Expr *TypeArg = 570 CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)Ty.getAsOpaquePtr()); 571 // The QualType parameter `OpaqueType`, represented as `void*`. 572 Args.push_back(TypeArg); 573 574 // We push the last parameter based on the type of the Expr. Note we need 575 // special care for rvalue struct. 576 Interpreter::InterfaceKind Kind = Visit(&*DesugaredTy); 577 switch (Kind) { 578 case Interpreter::InterfaceKind::WithAlloc: 579 case Interpreter::InterfaceKind::CopyArray: { 580 // __clang_Interpreter_SetValueWithAlloc. 581 ExprResult AllocCall = S.ActOnCallExpr( 582 /*Scope=*/nullptr, 583 Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::WithAlloc], 584 E->getBeginLoc(), Args, E->getEndLoc()); 585 assert(!AllocCall.isInvalid() && "Can't create runtime interface call!"); 586 587 TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ty, SourceLocation()); 588 589 // Force CodeGen to emit destructor. 590 if (auto *RD = Ty->getAsCXXRecordDecl()) { 591 auto *Dtor = S.LookupDestructor(RD); 592 Dtor->addAttr(UsedAttr::CreateImplicit(Ctx)); 593 Interp.getCompilerInstance()->getASTConsumer().HandleTopLevelDecl( 594 DeclGroupRef(Dtor)); 595 } 596 597 // __clang_Interpreter_SetValueCopyArr. 598 if (Kind == Interpreter::InterfaceKind::CopyArray) { 599 const auto *ConstantArrTy = 600 cast<ConstantArrayType>(DesugaredTy.getTypePtr()); 601 size_t ArrSize = Ctx.getConstantArrayElementCount(ConstantArrTy); 602 Expr *ArrSizeExpr = IntegerLiteralExpr(Ctx, ArrSize); 603 Expr *Args[] = {E, AllocCall.get(), ArrSizeExpr}; 604 return S.ActOnCallExpr( 605 /*Scope *=*/nullptr, 606 Interp 607 .getValuePrintingInfo()[Interpreter::InterfaceKind::CopyArray], 608 SourceLocation(), Args, SourceLocation()); 609 } 610 Expr *Args[] = {AllocCall.get()}; 611 ExprResult CXXNewCall = S.BuildCXXNew( 612 E->getSourceRange(), 613 /*UseGlobal=*/true, /*PlacementLParen=*/SourceLocation(), Args, 614 /*PlacementRParen=*/SourceLocation(), 615 /*TypeIdParens=*/SourceRange(), TSI->getType(), TSI, std::nullopt, 616 E->getSourceRange(), E); 617 618 assert(!CXXNewCall.isInvalid() && 619 "Can't create runtime placement new call!"); 620 621 return S.ActOnFinishFullExpr(CXXNewCall.get(), 622 /*DiscardedValue=*/false); 623 } 624 // __clang_Interpreter_SetValueNoAlloc. 625 case Interpreter::InterfaceKind::NoAlloc: { 626 return S.ActOnCallExpr( 627 /*Scope=*/nullptr, 628 Interp.getValuePrintingInfo()[Interpreter::InterfaceKind::NoAlloc], 629 E->getBeginLoc(), Args, E->getEndLoc()); 630 } 631 } 632 llvm_unreachable("Unhandled Interpreter::InterfaceKind"); 633 } 634 635 Interpreter::InterfaceKind VisitRecordType(const RecordType *Ty) { 636 return Interpreter::InterfaceKind::WithAlloc; 637 } 638 639 Interpreter::InterfaceKind 640 VisitMemberPointerType(const MemberPointerType *Ty) { 641 return Interpreter::InterfaceKind::WithAlloc; 642 } 643 644 Interpreter::InterfaceKind 645 VisitConstantArrayType(const ConstantArrayType *Ty) { 646 return Interpreter::InterfaceKind::CopyArray; 647 } 648 649 Interpreter::InterfaceKind 650 VisitFunctionProtoType(const FunctionProtoType *Ty) { 651 HandlePtrType(Ty); 652 return Interpreter::InterfaceKind::NoAlloc; 653 } 654 655 Interpreter::InterfaceKind VisitPointerType(const PointerType *Ty) { 656 HandlePtrType(Ty); 657 return Interpreter::InterfaceKind::NoAlloc; 658 } 659 660 Interpreter::InterfaceKind VisitReferenceType(const ReferenceType *Ty) { 661 ExprResult AddrOfE = S.CreateBuiltinUnaryOp(SourceLocation(), UO_AddrOf, E); 662 assert(!AddrOfE.isInvalid() && "Can not create unary expression"); 663 Args.push_back(AddrOfE.get()); 664 return Interpreter::InterfaceKind::NoAlloc; 665 } 666 667 Interpreter::InterfaceKind VisitBuiltinType(const BuiltinType *Ty) { 668 if (Ty->isNullPtrType()) 669 Args.push_back(E); 670 else if (Ty->isFloatingType()) 671 Args.push_back(E); 672 else if (Ty->isIntegralOrEnumerationType()) 673 HandleIntegralOrEnumType(Ty); 674 else if (Ty->isVoidType()) { 675 // Do we need to still run `E`? 676 } 677 678 return Interpreter::InterfaceKind::NoAlloc; 679 } 680 681 Interpreter::InterfaceKind VisitEnumType(const EnumType *Ty) { 682 HandleIntegralOrEnumType(Ty); 683 return Interpreter::InterfaceKind::NoAlloc; 684 } 685 686 private: 687 // Force cast these types to uint64 to reduce the number of overloads of 688 // `__clang_Interpreter_SetValueNoAlloc`. 689 void HandleIntegralOrEnumType(const Type *Ty) { 690 TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.UnsignedLongLongTy); 691 ExprResult CastedExpr = 692 S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); 693 assert(!CastedExpr.isInvalid() && "Cannot create cstyle cast expr"); 694 Args.push_back(CastedExpr.get()); 695 } 696 697 void HandlePtrType(const Type *Ty) { 698 TypeSourceInfo *TSI = Ctx.getTrivialTypeSourceInfo(Ctx.VoidPtrTy); 699 ExprResult CastedExpr = 700 S.BuildCStyleCastExpr(SourceLocation(), TSI, SourceLocation(), E); 701 assert(!CastedExpr.isInvalid() && "Can not create cstyle cast expression"); 702 Args.push_back(CastedExpr.get()); 703 } 704 }; 705 } // namespace 706 707 // This synthesizes a call expression to a speciall 708 // function that is responsible for generating the Value. 709 // In general, we transform: 710 // clang-repl> x 711 // To: 712 // // 1. If x is a built-in type like int, float. 713 // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, x); 714 // // 2. If x is a struct, and a lvalue. 715 // __clang_Interpreter_SetValueNoAlloc(ThisInterp, OpaqueValue, xQualType, 716 // &x); 717 // // 3. If x is a struct, but a rvalue. 718 // new (__clang_Interpreter_SetValueWithAlloc(ThisInterp, OpaqueValue, 719 // xQualType)) (x); 720 721 Expr *Interpreter::SynthesizeExpr(Expr *E) { 722 Sema &S = getCompilerInstance()->getSema(); 723 ASTContext &Ctx = S.getASTContext(); 724 725 if (!FindRuntimeInterface()) 726 llvm_unreachable("We can't find the runtime iterface for pretty print!"); 727 728 // Create parameter `ThisInterp`. 729 auto *ThisInterp = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)this); 730 731 // Create parameter `OutVal`. 732 auto *OutValue = CStyleCastPtrExpr(S, Ctx.VoidPtrTy, (uintptr_t)&LastValue); 733 734 // Build `__clang_Interpreter_SetValue*` call. 735 RuntimeInterfaceBuilder Builder(*this, Ctx, S, E, {ThisInterp, OutValue}); 736 737 ExprResult Result = Builder.getCall(); 738 // It could fail, like printing an array type in C. (not supported) 739 if (Result.isInvalid()) 740 return E; 741 return Result.get(); 742 } 743 744 // Temporary rvalue struct that need special care. 745 REPL_EXTERNAL_VISIBILITY void * 746 __clang_Interpreter_SetValueWithAlloc(void *This, void *OutVal, 747 void *OpaqueType) { 748 Value &VRef = *(Value *)OutVal; 749 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 750 return VRef.getPtr(); 751 } 752 753 // Pointers, lvalue struct that can take as a reference. 754 REPL_EXTERNAL_VISIBILITY void 755 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 756 void *Val) { 757 Value &VRef = *(Value *)OutVal; 758 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 759 VRef.setPtr(Val); 760 } 761 762 REPL_EXTERNAL_VISIBILITY void 763 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, 764 void *OpaqueType) { 765 Value &VRef = *(Value *)OutVal; 766 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 767 } 768 769 static void SetValueDataBasedOnQualType(Value &V, unsigned long long Data) { 770 QualType QT = V.getType(); 771 if (const auto *ET = QT->getAs<EnumType>()) 772 QT = ET->getDecl()->getIntegerType(); 773 774 switch (QT->castAs<BuiltinType>()->getKind()) { 775 default: 776 llvm_unreachable("unknown type kind!"); 777 #define X(type, name) \ 778 case BuiltinType::name: \ 779 V.set##name(Data); \ 780 break; 781 REPL_BUILTIN_TYPES 782 #undef X 783 } 784 } 785 786 REPL_EXTERNAL_VISIBILITY void 787 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 788 unsigned long long Val) { 789 Value &VRef = *(Value *)OutVal; 790 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 791 SetValueDataBasedOnQualType(VRef, Val); 792 } 793 794 REPL_EXTERNAL_VISIBILITY void 795 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 796 float Val) { 797 Value &VRef = *(Value *)OutVal; 798 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 799 VRef.setFloat(Val); 800 } 801 802 REPL_EXTERNAL_VISIBILITY void 803 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 804 double Val) { 805 Value &VRef = *(Value *)OutVal; 806 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 807 VRef.setDouble(Val); 808 } 809 810 REPL_EXTERNAL_VISIBILITY void 811 __clang_Interpreter_SetValueNoAlloc(void *This, void *OutVal, void *OpaqueType, 812 long double Val) { 813 Value &VRef = *(Value *)OutVal; 814 VRef = Value(static_cast<Interpreter *>(This), OpaqueType); 815 VRef.setLongDouble(Val); 816 } 817