1 /*===---- xmmintrin.h - SSE intrinsics -------------------------------------=== 2 * 3 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 * See https://llvm.org/LICENSE.txt for license information. 5 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 * 7 *===-----------------------------------------------------------------------=== 8 */ 9 10 #ifndef __XMMINTRIN_H 11 #define __XMMINTRIN_H 12 13 #if !defined(__i386__) && !defined(__x86_64__) 14 #error "This header is only meant to be used on x86 and x64 architecture" 15 #endif 16 17 #include <mmintrin.h> 18 19 typedef int __v4si __attribute__((__vector_size__(16))); 20 typedef float __v4sf __attribute__((__vector_size__(16))); 21 typedef float __m128 __attribute__((__vector_size__(16), __aligned__(16))); 22 23 typedef float __m128_u __attribute__((__vector_size__(16), __aligned__(1))); 24 25 /* Unsigned types */ 26 typedef unsigned int __v4su __attribute__((__vector_size__(16))); 27 28 /* This header should only be included in a hosted environment as it depends on 29 * a standard library to provide allocation routines. */ 30 #if __STDC_HOSTED__ 31 #include <mm_malloc.h> 32 #endif 33 34 /* Define the default attributes for the functions in this file. */ 35 #define __DEFAULT_FN_ATTRS \ 36 __attribute__((__always_inline__, __nodebug__, __target__("sse,no-evex512"), \ 37 __min_vector_width__(128))) 38 #define __DEFAULT_FN_ATTRS_MMX \ 39 __attribute__((__always_inline__, __nodebug__, \ 40 __target__("mmx,sse,no-evex512"), __min_vector_width__(64))) 41 42 /// Adds the 32-bit float values in the low-order bits of the operands. 43 /// 44 /// \headerfile <x86intrin.h> 45 /// 46 /// This intrinsic corresponds to the <c> VADDSS / ADDSS </c> instructions. 47 /// 48 /// \param __a 49 /// A 128-bit vector of [4 x float] containing one of the source operands. 50 /// The lower 32 bits of this operand are used in the calculation. 51 /// \param __b 52 /// A 128-bit vector of [4 x float] containing one of the source operands. 53 /// The lower 32 bits of this operand are used in the calculation. 54 /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the sum 55 /// of the lower 32 bits of both operands. The upper 96 bits are copied from 56 /// the upper 96 bits of the first source operand. 57 static __inline__ __m128 __DEFAULT_FN_ATTRS 58 _mm_add_ss(__m128 __a, __m128 __b) 59 { 60 __a[0] += __b[0]; 61 return __a; 62 } 63 64 /// Adds two 128-bit vectors of [4 x float], and returns the results of 65 /// the addition. 66 /// 67 /// \headerfile <x86intrin.h> 68 /// 69 /// This intrinsic corresponds to the <c> VADDPS / ADDPS </c> instructions. 70 /// 71 /// \param __a 72 /// A 128-bit vector of [4 x float] containing one of the source operands. 73 /// \param __b 74 /// A 128-bit vector of [4 x float] containing one of the source operands. 75 /// \returns A 128-bit vector of [4 x float] containing the sums of both 76 /// operands. 77 static __inline__ __m128 __DEFAULT_FN_ATTRS 78 _mm_add_ps(__m128 __a, __m128 __b) 79 { 80 return (__m128)((__v4sf)__a + (__v4sf)__b); 81 } 82 83 /// Subtracts the 32-bit float value in the low-order bits of the second 84 /// operand from the corresponding value in the first operand. 85 /// 86 /// \headerfile <x86intrin.h> 87 /// 88 /// This intrinsic corresponds to the <c> VSUBSS / SUBSS </c> instructions. 89 /// 90 /// \param __a 91 /// A 128-bit vector of [4 x float] containing the minuend. The lower 32 bits 92 /// of this operand are used in the calculation. 93 /// \param __b 94 /// A 128-bit vector of [4 x float] containing the subtrahend. The lower 32 95 /// bits of this operand are used in the calculation. 96 /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the 97 /// difference of the lower 32 bits of both operands. The upper 96 bits are 98 /// copied from the upper 96 bits of the first source operand. 99 static __inline__ __m128 __DEFAULT_FN_ATTRS 100 _mm_sub_ss(__m128 __a, __m128 __b) 101 { 102 __a[0] -= __b[0]; 103 return __a; 104 } 105 106 /// Subtracts each of the values of the second operand from the first 107 /// operand, both of which are 128-bit vectors of [4 x float] and returns 108 /// the results of the subtraction. 109 /// 110 /// \headerfile <x86intrin.h> 111 /// 112 /// This intrinsic corresponds to the <c> VSUBPS / SUBPS </c> instructions. 113 /// 114 /// \param __a 115 /// A 128-bit vector of [4 x float] containing the minuend. 116 /// \param __b 117 /// A 128-bit vector of [4 x float] containing the subtrahend. 118 /// \returns A 128-bit vector of [4 x float] containing the differences between 119 /// both operands. 120 static __inline__ __m128 __DEFAULT_FN_ATTRS 121 _mm_sub_ps(__m128 __a, __m128 __b) 122 { 123 return (__m128)((__v4sf)__a - (__v4sf)__b); 124 } 125 126 /// Multiplies two 32-bit float values in the low-order bits of the 127 /// operands. 128 /// 129 /// \headerfile <x86intrin.h> 130 /// 131 /// This intrinsic corresponds to the <c> VMULSS / MULSS </c> instructions. 132 /// 133 /// \param __a 134 /// A 128-bit vector of [4 x float] containing one of the source operands. 135 /// The lower 32 bits of this operand are used in the calculation. 136 /// \param __b 137 /// A 128-bit vector of [4 x float] containing one of the source operands. 138 /// The lower 32 bits of this operand are used in the calculation. 139 /// \returns A 128-bit vector of [4 x float] containing the product of the lower 140 /// 32 bits of both operands. The upper 96 bits are copied from the upper 96 141 /// bits of the first source operand. 142 static __inline__ __m128 __DEFAULT_FN_ATTRS 143 _mm_mul_ss(__m128 __a, __m128 __b) 144 { 145 __a[0] *= __b[0]; 146 return __a; 147 } 148 149 /// Multiplies two 128-bit vectors of [4 x float] and returns the 150 /// results of the multiplication. 151 /// 152 /// \headerfile <x86intrin.h> 153 /// 154 /// This intrinsic corresponds to the <c> VMULPS / MULPS </c> instructions. 155 /// 156 /// \param __a 157 /// A 128-bit vector of [4 x float] containing one of the source operands. 158 /// \param __b 159 /// A 128-bit vector of [4 x float] containing one of the source operands. 160 /// \returns A 128-bit vector of [4 x float] containing the products of both 161 /// operands. 162 static __inline__ __m128 __DEFAULT_FN_ATTRS 163 _mm_mul_ps(__m128 __a, __m128 __b) 164 { 165 return (__m128)((__v4sf)__a * (__v4sf)__b); 166 } 167 168 /// Divides the value in the low-order 32 bits of the first operand by 169 /// the corresponding value in the second operand. 170 /// 171 /// \headerfile <x86intrin.h> 172 /// 173 /// This intrinsic corresponds to the <c> VDIVSS / DIVSS </c> instructions. 174 /// 175 /// \param __a 176 /// A 128-bit vector of [4 x float] containing the dividend. The lower 32 177 /// bits of this operand are used in the calculation. 178 /// \param __b 179 /// A 128-bit vector of [4 x float] containing the divisor. The lower 32 bits 180 /// of this operand are used in the calculation. 181 /// \returns A 128-bit vector of [4 x float] containing the quotients of the 182 /// lower 32 bits of both operands. The upper 96 bits are copied from the 183 /// upper 96 bits of the first source operand. 184 static __inline__ __m128 __DEFAULT_FN_ATTRS 185 _mm_div_ss(__m128 __a, __m128 __b) 186 { 187 __a[0] /= __b[0]; 188 return __a; 189 } 190 191 /// Divides two 128-bit vectors of [4 x float]. 192 /// 193 /// \headerfile <x86intrin.h> 194 /// 195 /// This intrinsic corresponds to the <c> VDIVPS / DIVPS </c> instructions. 196 /// 197 /// \param __a 198 /// A 128-bit vector of [4 x float] containing the dividend. 199 /// \param __b 200 /// A 128-bit vector of [4 x float] containing the divisor. 201 /// \returns A 128-bit vector of [4 x float] containing the quotients of both 202 /// operands. 203 static __inline__ __m128 __DEFAULT_FN_ATTRS 204 _mm_div_ps(__m128 __a, __m128 __b) 205 { 206 return (__m128)((__v4sf)__a / (__v4sf)__b); 207 } 208 209 /// Calculates the square root of the value stored in the low-order bits 210 /// of a 128-bit vector of [4 x float]. 211 /// 212 /// \headerfile <x86intrin.h> 213 /// 214 /// This intrinsic corresponds to the <c> VSQRTSS / SQRTSS </c> instructions. 215 /// 216 /// \param __a 217 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 218 /// used in the calculation. 219 /// \returns A 128-bit vector of [4 x float] containing the square root of the 220 /// value in the low-order bits of the operand. 221 static __inline__ __m128 __DEFAULT_FN_ATTRS 222 _mm_sqrt_ss(__m128 __a) 223 { 224 return (__m128)__builtin_ia32_sqrtss((__v4sf)__a); 225 } 226 227 /// Calculates the square roots of the values stored in a 128-bit vector 228 /// of [4 x float]. 229 /// 230 /// \headerfile <x86intrin.h> 231 /// 232 /// This intrinsic corresponds to the <c> VSQRTPS / SQRTPS </c> instructions. 233 /// 234 /// \param __a 235 /// A 128-bit vector of [4 x float]. 236 /// \returns A 128-bit vector of [4 x float] containing the square roots of the 237 /// values in the operand. 238 static __inline__ __m128 __DEFAULT_FN_ATTRS 239 _mm_sqrt_ps(__m128 __a) 240 { 241 return __builtin_ia32_sqrtps((__v4sf)__a); 242 } 243 244 /// Calculates the approximate reciprocal of the value stored in the 245 /// low-order bits of a 128-bit vector of [4 x float]. 246 /// 247 /// \headerfile <x86intrin.h> 248 /// 249 /// This intrinsic corresponds to the <c> VRCPSS / RCPSS </c> instructions. 250 /// 251 /// \param __a 252 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 253 /// used in the calculation. 254 /// \returns A 128-bit vector of [4 x float] containing the approximate 255 /// reciprocal of the value in the low-order bits of the operand. 256 static __inline__ __m128 __DEFAULT_FN_ATTRS 257 _mm_rcp_ss(__m128 __a) 258 { 259 return (__m128)__builtin_ia32_rcpss((__v4sf)__a); 260 } 261 262 /// Calculates the approximate reciprocals of the values stored in a 263 /// 128-bit vector of [4 x float]. 264 /// 265 /// \headerfile <x86intrin.h> 266 /// 267 /// This intrinsic corresponds to the <c> VRCPPS / RCPPS </c> instructions. 268 /// 269 /// \param __a 270 /// A 128-bit vector of [4 x float]. 271 /// \returns A 128-bit vector of [4 x float] containing the approximate 272 /// reciprocals of the values in the operand. 273 static __inline__ __m128 __DEFAULT_FN_ATTRS 274 _mm_rcp_ps(__m128 __a) 275 { 276 return (__m128)__builtin_ia32_rcpps((__v4sf)__a); 277 } 278 279 /// Calculates the approximate reciprocal of the square root of the value 280 /// stored in the low-order bits of a 128-bit vector of [4 x float]. 281 /// 282 /// \headerfile <x86intrin.h> 283 /// 284 /// This intrinsic corresponds to the <c> VRSQRTSS / RSQRTSS </c> instructions. 285 /// 286 /// \param __a 287 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 288 /// used in the calculation. 289 /// \returns A 128-bit vector of [4 x float] containing the approximate 290 /// reciprocal of the square root of the value in the low-order bits of the 291 /// operand. 292 static __inline__ __m128 __DEFAULT_FN_ATTRS 293 _mm_rsqrt_ss(__m128 __a) 294 { 295 return __builtin_ia32_rsqrtss((__v4sf)__a); 296 } 297 298 /// Calculates the approximate reciprocals of the square roots of the 299 /// values stored in a 128-bit vector of [4 x float]. 300 /// 301 /// \headerfile <x86intrin.h> 302 /// 303 /// This intrinsic corresponds to the <c> VRSQRTPS / RSQRTPS </c> instructions. 304 /// 305 /// \param __a 306 /// A 128-bit vector of [4 x float]. 307 /// \returns A 128-bit vector of [4 x float] containing the approximate 308 /// reciprocals of the square roots of the values in the operand. 309 static __inline__ __m128 __DEFAULT_FN_ATTRS 310 _mm_rsqrt_ps(__m128 __a) 311 { 312 return __builtin_ia32_rsqrtps((__v4sf)__a); 313 } 314 315 /// Compares two 32-bit float values in the low-order bits of both 316 /// operands and returns the lesser value in the low-order bits of the 317 /// vector of [4 x float]. 318 /// 319 /// If either value in a comparison is NaN, returns the value from \a __b. 320 /// 321 /// \headerfile <x86intrin.h> 322 /// 323 /// This intrinsic corresponds to the <c> VMINSS / MINSS </c> instructions. 324 /// 325 /// \param __a 326 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 327 /// 32 bits of this operand are used in the comparison. 328 /// \param __b 329 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 330 /// 32 bits of this operand are used in the comparison. 331 /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the 332 /// minimum value between both operands. The upper 96 bits are copied from 333 /// the upper 96 bits of the first source operand. 334 static __inline__ __m128 __DEFAULT_FN_ATTRS 335 _mm_min_ss(__m128 __a, __m128 __b) 336 { 337 return __builtin_ia32_minss((__v4sf)__a, (__v4sf)__b); 338 } 339 340 /// Compares two 128-bit vectors of [4 x float] and returns the lesser 341 /// of each pair of values. 342 /// 343 /// If either value in a comparison is NaN, returns the value from \a __b. 344 /// 345 /// \headerfile <x86intrin.h> 346 /// 347 /// This intrinsic corresponds to the <c> VMINPS / MINPS </c> instructions. 348 /// 349 /// \param __a 350 /// A 128-bit vector of [4 x float] containing one of the operands. 351 /// \param __b 352 /// A 128-bit vector of [4 x float] containing one of the operands. 353 /// \returns A 128-bit vector of [4 x float] containing the minimum values 354 /// between both operands. 355 static __inline__ __m128 __DEFAULT_FN_ATTRS 356 _mm_min_ps(__m128 __a, __m128 __b) 357 { 358 return __builtin_ia32_minps((__v4sf)__a, (__v4sf)__b); 359 } 360 361 /// Compares two 32-bit float values in the low-order bits of both 362 /// operands and returns the greater value in the low-order bits of a 128-bit 363 /// vector of [4 x float]. 364 /// 365 /// If either value in a comparison is NaN, returns the value from \a __b. 366 /// 367 /// \headerfile <x86intrin.h> 368 /// 369 /// This intrinsic corresponds to the <c> VMAXSS / MAXSS </c> instructions. 370 /// 371 /// \param __a 372 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 373 /// 32 bits of this operand are used in the comparison. 374 /// \param __b 375 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 376 /// 32 bits of this operand are used in the comparison. 377 /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the 378 /// maximum value between both operands. The upper 96 bits are copied from 379 /// the upper 96 bits of the first source operand. 380 static __inline__ __m128 __DEFAULT_FN_ATTRS 381 _mm_max_ss(__m128 __a, __m128 __b) 382 { 383 return __builtin_ia32_maxss((__v4sf)__a, (__v4sf)__b); 384 } 385 386 /// Compares two 128-bit vectors of [4 x float] and returns the greater 387 /// of each pair of values. 388 /// 389 /// If either value in a comparison is NaN, returns the value from \a __b. 390 /// 391 /// \headerfile <x86intrin.h> 392 /// 393 /// This intrinsic corresponds to the <c> VMAXPS / MAXPS </c> instructions. 394 /// 395 /// \param __a 396 /// A 128-bit vector of [4 x float] containing one of the operands. 397 /// \param __b 398 /// A 128-bit vector of [4 x float] containing one of the operands. 399 /// \returns A 128-bit vector of [4 x float] containing the maximum values 400 /// between both operands. 401 static __inline__ __m128 __DEFAULT_FN_ATTRS 402 _mm_max_ps(__m128 __a, __m128 __b) 403 { 404 return __builtin_ia32_maxps((__v4sf)__a, (__v4sf)__b); 405 } 406 407 /// Performs a bitwise AND of two 128-bit vectors of [4 x float]. 408 /// 409 /// \headerfile <x86intrin.h> 410 /// 411 /// This intrinsic corresponds to the <c> VANDPS / ANDPS </c> instructions. 412 /// 413 /// \param __a 414 /// A 128-bit vector containing one of the source operands. 415 /// \param __b 416 /// A 128-bit vector containing one of the source operands. 417 /// \returns A 128-bit vector of [4 x float] containing the bitwise AND of the 418 /// values between both operands. 419 static __inline__ __m128 __DEFAULT_FN_ATTRS 420 _mm_and_ps(__m128 __a, __m128 __b) 421 { 422 return (__m128)((__v4su)__a & (__v4su)__b); 423 } 424 425 /// Performs a bitwise AND of two 128-bit vectors of [4 x float], using 426 /// the one's complement of the values contained in the first source 427 /// operand. 428 /// 429 /// \headerfile <x86intrin.h> 430 /// 431 /// This intrinsic corresponds to the <c> VANDNPS / ANDNPS </c> instructions. 432 /// 433 /// \param __a 434 /// A 128-bit vector of [4 x float] containing the first source operand. The 435 /// one's complement of this value is used in the bitwise AND. 436 /// \param __b 437 /// A 128-bit vector of [4 x float] containing the second source operand. 438 /// \returns A 128-bit vector of [4 x float] containing the bitwise AND of the 439 /// one's complement of the first operand and the values in the second 440 /// operand. 441 static __inline__ __m128 __DEFAULT_FN_ATTRS 442 _mm_andnot_ps(__m128 __a, __m128 __b) 443 { 444 return (__m128)(~(__v4su)__a & (__v4su)__b); 445 } 446 447 /// Performs a bitwise OR of two 128-bit vectors of [4 x float]. 448 /// 449 /// \headerfile <x86intrin.h> 450 /// 451 /// This intrinsic corresponds to the <c> VORPS / ORPS </c> instructions. 452 /// 453 /// \param __a 454 /// A 128-bit vector of [4 x float] containing one of the source operands. 455 /// \param __b 456 /// A 128-bit vector of [4 x float] containing one of the source operands. 457 /// \returns A 128-bit vector of [4 x float] containing the bitwise OR of the 458 /// values between both operands. 459 static __inline__ __m128 __DEFAULT_FN_ATTRS 460 _mm_or_ps(__m128 __a, __m128 __b) 461 { 462 return (__m128)((__v4su)__a | (__v4su)__b); 463 } 464 465 /// Performs a bitwise exclusive OR of two 128-bit vectors of 466 /// [4 x float]. 467 /// 468 /// \headerfile <x86intrin.h> 469 /// 470 /// This intrinsic corresponds to the <c> VXORPS / XORPS </c> instructions. 471 /// 472 /// \param __a 473 /// A 128-bit vector of [4 x float] containing one of the source operands. 474 /// \param __b 475 /// A 128-bit vector of [4 x float] containing one of the source operands. 476 /// \returns A 128-bit vector of [4 x float] containing the bitwise exclusive OR 477 /// of the values between both operands. 478 static __inline__ __m128 __DEFAULT_FN_ATTRS 479 _mm_xor_ps(__m128 __a, __m128 __b) 480 { 481 return (__m128)((__v4su)__a ^ (__v4su)__b); 482 } 483 484 /// Compares two 32-bit float values in the low-order bits of both 485 /// operands for equality. 486 /// 487 /// The comparison returns 0x0 for false, 0xFFFFFFFF for true, in the 488 /// low-order bits of a vector [4 x float]. 489 /// If either value in a comparison is NaN, returns false. 490 /// 491 /// \headerfile <x86intrin.h> 492 /// 493 /// This intrinsic corresponds to the <c> VCMPEQSS / CMPEQSS </c> instructions. 494 /// 495 /// \param __a 496 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 497 /// 32 bits of this operand are used in the comparison. 498 /// \param __b 499 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 500 /// 32 bits of this operand are used in the comparison. 501 /// \returns A 128-bit vector of [4 x float] containing the comparison results 502 /// in the low-order bits. 503 static __inline__ __m128 __DEFAULT_FN_ATTRS 504 _mm_cmpeq_ss(__m128 __a, __m128 __b) 505 { 506 return (__m128)__builtin_ia32_cmpeqss((__v4sf)__a, (__v4sf)__b); 507 } 508 509 /// Compares each of the corresponding 32-bit float values of the 510 /// 128-bit vectors of [4 x float] for equality. 511 /// 512 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. 513 /// If either value in a comparison is NaN, returns false. 514 /// 515 /// \headerfile <x86intrin.h> 516 /// 517 /// This intrinsic corresponds to the <c> VCMPEQPS / CMPEQPS </c> instructions. 518 /// 519 /// \param __a 520 /// A 128-bit vector of [4 x float]. 521 /// \param __b 522 /// A 128-bit vector of [4 x float]. 523 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 524 static __inline__ __m128 __DEFAULT_FN_ATTRS 525 _mm_cmpeq_ps(__m128 __a, __m128 __b) 526 { 527 return (__m128)__builtin_ia32_cmpeqps((__v4sf)__a, (__v4sf)__b); 528 } 529 530 /// Compares two 32-bit float values in the low-order bits of both 531 /// operands to determine if the value in the first operand is less than the 532 /// corresponding value in the second operand. 533 /// 534 /// The comparison returns 0x0 for false, 0xFFFFFFFF for true, in the 535 /// low-order bits of a vector of [4 x float]. 536 /// If either value in a comparison is NaN, returns false. 537 /// 538 /// \headerfile <x86intrin.h> 539 /// 540 /// This intrinsic corresponds to the <c> VCMPLTSS / CMPLTSS </c> instructions. 541 /// 542 /// \param __a 543 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 544 /// 32 bits of this operand are used in the comparison. 545 /// \param __b 546 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 547 /// 32 bits of this operand are used in the comparison. 548 /// \returns A 128-bit vector of [4 x float] containing the comparison results 549 /// in the low-order bits. 550 static __inline__ __m128 __DEFAULT_FN_ATTRS 551 _mm_cmplt_ss(__m128 __a, __m128 __b) 552 { 553 return (__m128)__builtin_ia32_cmpltss((__v4sf)__a, (__v4sf)__b); 554 } 555 556 /// Compares each of the corresponding 32-bit float values of the 557 /// 128-bit vectors of [4 x float] to determine if the values in the first 558 /// operand are less than those in the second operand. 559 /// 560 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true. 561 /// If either value in a comparison is NaN, returns false. 562 /// 563 /// \headerfile <x86intrin.h> 564 /// 565 /// This intrinsic corresponds to the <c> VCMPLTPS / CMPLTPS </c> instructions. 566 /// 567 /// \param __a 568 /// A 128-bit vector of [4 x float]. 569 /// \param __b 570 /// A 128-bit vector of [4 x float]. 571 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 572 static __inline__ __m128 __DEFAULT_FN_ATTRS 573 _mm_cmplt_ps(__m128 __a, __m128 __b) 574 { 575 return (__m128)__builtin_ia32_cmpltps((__v4sf)__a, (__v4sf)__b); 576 } 577 578 /// Compares two 32-bit float values in the low-order bits of both 579 /// operands to determine if the value in the first operand is less than or 580 /// equal to the corresponding value in the second operand. 581 /// 582 /// The comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true, in 583 /// the low-order bits of a vector of [4 x float]. 584 /// If either value in a comparison is NaN, returns false. 585 /// 586 /// \headerfile <x86intrin.h> 587 /// 588 /// This intrinsic corresponds to the <c> VCMPLESS / CMPLESS </c> instructions. 589 /// 590 /// \param __a 591 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 592 /// 32 bits of this operand are used in the comparison. 593 /// \param __b 594 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 595 /// 32 bits of this operand are used in the comparison. 596 /// \returns A 128-bit vector of [4 x float] containing the comparison results 597 /// in the low-order bits. 598 static __inline__ __m128 __DEFAULT_FN_ATTRS 599 _mm_cmple_ss(__m128 __a, __m128 __b) 600 { 601 return (__m128)__builtin_ia32_cmpless((__v4sf)__a, (__v4sf)__b); 602 } 603 604 /// Compares each of the corresponding 32-bit float values of the 605 /// 128-bit vectors of [4 x float] to determine if the values in the first 606 /// operand are less than or equal to those in the second operand. 607 /// 608 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. 609 /// If either value in a comparison is NaN, returns false. 610 /// 611 /// \headerfile <x86intrin.h> 612 /// 613 /// This intrinsic corresponds to the <c> VCMPLEPS / CMPLEPS </c> instructions. 614 /// 615 /// \param __a 616 /// A 128-bit vector of [4 x float]. 617 /// \param __b 618 /// A 128-bit vector of [4 x float]. 619 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 620 static __inline__ __m128 __DEFAULT_FN_ATTRS 621 _mm_cmple_ps(__m128 __a, __m128 __b) 622 { 623 return (__m128)__builtin_ia32_cmpleps((__v4sf)__a, (__v4sf)__b); 624 } 625 626 /// Compares two 32-bit float values in the low-order bits of both 627 /// operands to determine if the value in the first operand is greater than 628 /// the corresponding value in the second operand. 629 /// 630 /// The comparison returns 0x0 for false, 0xFFFFFFFF for true, in the 631 /// low-order bits of a vector of [4 x float]. 632 /// If either value in a comparison is NaN, returns false. 633 /// 634 /// \headerfile <x86intrin.h> 635 /// 636 /// This intrinsic corresponds to the <c> VCMPLTSS / CMPLTSS </c> instructions. 637 /// 638 /// \param __a 639 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 640 /// 32 bits of this operand are used in the comparison. 641 /// \param __b 642 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 643 /// 32 bits of this operand are used in the comparison. 644 /// \returns A 128-bit vector of [4 x float] containing the comparison results 645 /// in the low-order bits. 646 static __inline__ __m128 __DEFAULT_FN_ATTRS 647 _mm_cmpgt_ss(__m128 __a, __m128 __b) 648 { 649 return (__m128)__builtin_shufflevector((__v4sf)__a, 650 (__v4sf)__builtin_ia32_cmpltss((__v4sf)__b, (__v4sf)__a), 651 4, 1, 2, 3); 652 } 653 654 /// Compares each of the corresponding 32-bit float values of the 655 /// 128-bit vectors of [4 x float] to determine if the values in the first 656 /// operand are greater than those in the second operand. 657 /// 658 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. 659 /// If either value in a comparison is NaN, returns false. 660 /// 661 /// \headerfile <x86intrin.h> 662 /// 663 /// This intrinsic corresponds to the <c> VCMPLTPS / CMPLTPS </c> instructions. 664 /// 665 /// \param __a 666 /// A 128-bit vector of [4 x float]. 667 /// \param __b 668 /// A 128-bit vector of [4 x float]. 669 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 670 static __inline__ __m128 __DEFAULT_FN_ATTRS 671 _mm_cmpgt_ps(__m128 __a, __m128 __b) 672 { 673 return (__m128)__builtin_ia32_cmpltps((__v4sf)__b, (__v4sf)__a); 674 } 675 676 /// Compares two 32-bit float values in the low-order bits of both 677 /// operands to determine if the value in the first operand is greater than 678 /// or equal to the corresponding value in the second operand. 679 /// 680 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true, in the 681 /// low-order bits of a vector of [4 x float]. 682 /// If either value in a comparison is NaN, returns false. 683 /// 684 /// \headerfile <x86intrin.h> 685 /// 686 /// This intrinsic corresponds to the <c> VCMPLESS / CMPLESS </c> instructions. 687 /// 688 /// \param __a 689 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 690 /// 32 bits of this operand are used in the comparison. 691 /// \param __b 692 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 693 /// 32 bits of this operand are used in the comparison. 694 /// \returns A 128-bit vector of [4 x float] containing the comparison results 695 /// in the low-order bits. 696 static __inline__ __m128 __DEFAULT_FN_ATTRS 697 _mm_cmpge_ss(__m128 __a, __m128 __b) 698 { 699 return (__m128)__builtin_shufflevector((__v4sf)__a, 700 (__v4sf)__builtin_ia32_cmpless((__v4sf)__b, (__v4sf)__a), 701 4, 1, 2, 3); 702 } 703 704 /// Compares each of the corresponding 32-bit float values of the 705 /// 128-bit vectors of [4 x float] to determine if the values in the first 706 /// operand are greater than or equal to those in the second operand. 707 /// 708 /// Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true. 709 /// If either value in a comparison is NaN, returns false. 710 /// 711 /// \headerfile <x86intrin.h> 712 /// 713 /// This intrinsic corresponds to the <c> VCMPLEPS / CMPLEPS </c> instructions. 714 /// 715 /// \param __a 716 /// A 128-bit vector of [4 x float]. 717 /// \param __b 718 /// A 128-bit vector of [4 x float]. 719 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 720 static __inline__ __m128 __DEFAULT_FN_ATTRS 721 _mm_cmpge_ps(__m128 __a, __m128 __b) 722 { 723 return (__m128)__builtin_ia32_cmpleps((__v4sf)__b, (__v4sf)__a); 724 } 725 726 /// Compares two 32-bit float values in the low-order bits of both operands 727 /// for inequality. 728 /// 729 /// The comparison returns 0x0 for false, 0xFFFFFFFF for true, in the 730 /// low-order bits of a vector of [4 x float]. 731 /// If either value in a comparison is NaN, returns true. 732 /// 733 /// \headerfile <x86intrin.h> 734 /// 735 /// This intrinsic corresponds to the <c> VCMPNEQSS / CMPNEQSS </c> 736 /// instructions. 737 /// 738 /// \param __a 739 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 740 /// 32 bits of this operand are used in the comparison. 741 /// \param __b 742 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 743 /// 32 bits of this operand are used in the comparison. 744 /// \returns A 128-bit vector of [4 x float] containing the comparison results 745 /// in the low-order bits. 746 static __inline__ __m128 __DEFAULT_FN_ATTRS 747 _mm_cmpneq_ss(__m128 __a, __m128 __b) 748 { 749 return (__m128)__builtin_ia32_cmpneqss((__v4sf)__a, (__v4sf)__b); 750 } 751 752 /// Compares each of the corresponding 32-bit float values of the 753 /// 128-bit vectors of [4 x float] for inequality. 754 /// 755 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. 756 /// If either value in a comparison is NaN, returns true. 757 /// 758 /// \headerfile <x86intrin.h> 759 /// 760 /// This intrinsic corresponds to the <c> VCMPNEQPS / CMPNEQPS </c> 761 /// instructions. 762 /// 763 /// \param __a 764 /// A 128-bit vector of [4 x float]. 765 /// \param __b 766 /// A 128-bit vector of [4 x float]. 767 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 768 static __inline__ __m128 __DEFAULT_FN_ATTRS 769 _mm_cmpneq_ps(__m128 __a, __m128 __b) 770 { 771 return (__m128)__builtin_ia32_cmpneqps((__v4sf)__a, (__v4sf)__b); 772 } 773 774 /// Compares two 32-bit float values in the low-order bits of both 775 /// operands to determine if the value in the first operand is not less than 776 /// the corresponding value in the second operand. 777 /// 778 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true, in the 779 /// low-order bits of a vector of [4 x float]. 780 /// If either value in a comparison is NaN, returns true. 781 /// 782 /// \headerfile <x86intrin.h> 783 /// 784 /// This intrinsic corresponds to the <c> VCMPNLTSS / CMPNLTSS </c> 785 /// instructions. 786 /// 787 /// \param __a 788 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 789 /// 32 bits of this operand are used in the comparison. 790 /// \param __b 791 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 792 /// 32 bits of this operand are used in the comparison. 793 /// \returns A 128-bit vector of [4 x float] containing the comparison results 794 /// in the low-order bits. 795 static __inline__ __m128 __DEFAULT_FN_ATTRS 796 _mm_cmpnlt_ss(__m128 __a, __m128 __b) 797 { 798 return (__m128)__builtin_ia32_cmpnltss((__v4sf)__a, (__v4sf)__b); 799 } 800 801 /// Compares each of the corresponding 32-bit float values of the 802 /// 128-bit vectors of [4 x float] to determine if the values in the first 803 /// operand are not less than those in the second operand. 804 /// 805 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. 806 /// If either value in a comparison is NaN, returns true. 807 /// 808 /// \headerfile <x86intrin.h> 809 /// 810 /// This intrinsic corresponds to the <c> VCMPNLTPS / CMPNLTPS </c> 811 /// instructions. 812 /// 813 /// \param __a 814 /// A 128-bit vector of [4 x float]. 815 /// \param __b 816 /// A 128-bit vector of [4 x float]. 817 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 818 static __inline__ __m128 __DEFAULT_FN_ATTRS 819 _mm_cmpnlt_ps(__m128 __a, __m128 __b) 820 { 821 return (__m128)__builtin_ia32_cmpnltps((__v4sf)__a, (__v4sf)__b); 822 } 823 824 /// Compares two 32-bit float values in the low-order bits of both 825 /// operands to determine if the value in the first operand is not less than 826 /// or equal to the corresponding value in the second operand. 827 /// 828 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true, in the 829 /// low-order bits of a vector of [4 x float]. 830 /// If either value in a comparison is NaN, returns true. 831 /// 832 /// \headerfile <x86intrin.h> 833 /// 834 /// This intrinsic corresponds to the <c> VCMPNLESS / CMPNLESS </c> 835 /// instructions. 836 /// 837 /// \param __a 838 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 839 /// 32 bits of this operand are used in the comparison. 840 /// \param __b 841 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 842 /// 32 bits of this operand are used in the comparison. 843 /// \returns A 128-bit vector of [4 x float] containing the comparison results 844 /// in the low-order bits. 845 static __inline__ __m128 __DEFAULT_FN_ATTRS 846 _mm_cmpnle_ss(__m128 __a, __m128 __b) 847 { 848 return (__m128)__builtin_ia32_cmpnless((__v4sf)__a, (__v4sf)__b); 849 } 850 851 /// Compares each of the corresponding 32-bit float values of the 852 /// 128-bit vectors of [4 x float] to determine if the values in the first 853 /// operand are not less than or equal to those in the second operand. 854 /// 855 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. 856 /// If either value in a comparison is NaN, returns true. 857 /// 858 /// \headerfile <x86intrin.h> 859 /// 860 /// This intrinsic corresponds to the <c> VCMPNLEPS / CMPNLEPS </c> 861 /// instructions. 862 /// 863 /// \param __a 864 /// A 128-bit vector of [4 x float]. 865 /// \param __b 866 /// A 128-bit vector of [4 x float]. 867 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 868 static __inline__ __m128 __DEFAULT_FN_ATTRS 869 _mm_cmpnle_ps(__m128 __a, __m128 __b) 870 { 871 return (__m128)__builtin_ia32_cmpnleps((__v4sf)__a, (__v4sf)__b); 872 } 873 874 /// Compares two 32-bit float values in the low-order bits of both 875 /// operands to determine if the value in the first operand is not greater 876 /// than the corresponding value in the second operand. 877 /// 878 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true, in the 879 /// low-order bits of a vector of [4 x float]. 880 /// If either value in a comparison is NaN, returns true. 881 /// 882 /// \headerfile <x86intrin.h> 883 /// 884 /// This intrinsic corresponds to the <c> VCMPNLTSS / CMPNLTSS </c> 885 /// instructions. 886 /// 887 /// \param __a 888 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 889 /// 32 bits of this operand are used in the comparison. 890 /// \param __b 891 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 892 /// 32 bits of this operand are used in the comparison. 893 /// \returns A 128-bit vector of [4 x float] containing the comparison results 894 /// in the low-order bits. 895 static __inline__ __m128 __DEFAULT_FN_ATTRS 896 _mm_cmpngt_ss(__m128 __a, __m128 __b) 897 { 898 return (__m128)__builtin_shufflevector((__v4sf)__a, 899 (__v4sf)__builtin_ia32_cmpnltss((__v4sf)__b, (__v4sf)__a), 900 4, 1, 2, 3); 901 } 902 903 /// Compares each of the corresponding 32-bit float values of the 904 /// 128-bit vectors of [4 x float] to determine if the values in the first 905 /// operand are not greater than those in the second operand. 906 /// 907 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. 908 /// If either value in a comparison is NaN, returns true. 909 /// 910 /// \headerfile <x86intrin.h> 911 /// 912 /// This intrinsic corresponds to the <c> VCMPNLTPS / CMPNLTPS </c> 913 /// instructions. 914 /// 915 /// \param __a 916 /// A 128-bit vector of [4 x float]. 917 /// \param __b 918 /// A 128-bit vector of [4 x float]. 919 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 920 static __inline__ __m128 __DEFAULT_FN_ATTRS 921 _mm_cmpngt_ps(__m128 __a, __m128 __b) 922 { 923 return (__m128)__builtin_ia32_cmpnltps((__v4sf)__b, (__v4sf)__a); 924 } 925 926 /// Compares two 32-bit float values in the low-order bits of both 927 /// operands to determine if the value in the first operand is not greater 928 /// than or equal to the corresponding value in the second operand. 929 /// 930 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true, in the 931 /// low-order bits of a vector of [4 x float]. 932 /// If either value in a comparison is NaN, returns true. 933 /// 934 /// \headerfile <x86intrin.h> 935 /// 936 /// This intrinsic corresponds to the <c> VCMPNLESS / CMPNLESS </c> 937 /// instructions. 938 /// 939 /// \param __a 940 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 941 /// 32 bits of this operand are used in the comparison. 942 /// \param __b 943 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 944 /// 32 bits of this operand are used in the comparison. 945 /// \returns A 128-bit vector of [4 x float] containing the comparison results 946 /// in the low-order bits. 947 static __inline__ __m128 __DEFAULT_FN_ATTRS 948 _mm_cmpnge_ss(__m128 __a, __m128 __b) 949 { 950 return (__m128)__builtin_shufflevector((__v4sf)__a, 951 (__v4sf)__builtin_ia32_cmpnless((__v4sf)__b, (__v4sf)__a), 952 4, 1, 2, 3); 953 } 954 955 /// Compares each of the corresponding 32-bit float values of the 956 /// 128-bit vectors of [4 x float] to determine if the values in the first 957 /// operand are not greater than or equal to those in the second operand. 958 /// 959 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. 960 /// If either value in a comparison is NaN, returns true. 961 /// 962 /// \headerfile <x86intrin.h> 963 /// 964 /// This intrinsic corresponds to the <c> VCMPNLEPS / CMPNLEPS </c> 965 /// instructions. 966 /// 967 /// \param __a 968 /// A 128-bit vector of [4 x float]. 969 /// \param __b 970 /// A 128-bit vector of [4 x float]. 971 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 972 static __inline__ __m128 __DEFAULT_FN_ATTRS 973 _mm_cmpnge_ps(__m128 __a, __m128 __b) 974 { 975 return (__m128)__builtin_ia32_cmpnleps((__v4sf)__b, (__v4sf)__a); 976 } 977 978 /// Compares two 32-bit float values in the low-order bits of both 979 /// operands to determine if the value in the first operand is ordered with 980 /// respect to the corresponding value in the second operand. 981 /// 982 /// A pair of floating-point values are ordered with respect to each 983 /// other if neither value is a NaN. Each comparison returns 0x0 for false, 984 /// 0xFFFFFFFF for true. 985 /// 986 /// \headerfile <x86intrin.h> 987 /// 988 /// This intrinsic corresponds to the <c> VCMPORDSS / CMPORDSS </c> 989 /// instructions. 990 /// 991 /// \param __a 992 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 993 /// 32 bits of this operand are used in the comparison. 994 /// \param __b 995 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 996 /// 32 bits of this operand are used in the comparison. 997 /// \returns A 128-bit vector of [4 x float] containing the comparison results 998 /// in the low-order bits. 999 static __inline__ __m128 __DEFAULT_FN_ATTRS 1000 _mm_cmpord_ss(__m128 __a, __m128 __b) 1001 { 1002 return (__m128)__builtin_ia32_cmpordss((__v4sf)__a, (__v4sf)__b); 1003 } 1004 1005 /// Compares each of the corresponding 32-bit float values of the 1006 /// 128-bit vectors of [4 x float] to determine if the values in the first 1007 /// operand are ordered with respect to those in the second operand. 1008 /// 1009 /// A pair of floating-point values are ordered with respect to each 1010 /// other if neither value is a NaN. Each comparison returns 0x0 for false, 1011 /// 0xFFFFFFFF for true. 1012 /// 1013 /// \headerfile <x86intrin.h> 1014 /// 1015 /// This intrinsic corresponds to the <c> VCMPORDPS / CMPORDPS </c> 1016 /// instructions. 1017 /// 1018 /// \param __a 1019 /// A 128-bit vector of [4 x float]. 1020 /// \param __b 1021 /// A 128-bit vector of [4 x float]. 1022 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 1023 static __inline__ __m128 __DEFAULT_FN_ATTRS 1024 _mm_cmpord_ps(__m128 __a, __m128 __b) 1025 { 1026 return (__m128)__builtin_ia32_cmpordps((__v4sf)__a, (__v4sf)__b); 1027 } 1028 1029 /// Compares two 32-bit float values in the low-order bits of both 1030 /// operands to determine if the value in the first operand is unordered 1031 /// with respect to the corresponding value in the second operand. 1032 /// 1033 /// A pair of double-precision values are unordered with respect to each 1034 /// other if one or both values are NaN. Each comparison returns 0x0 for 1035 /// false, 0xFFFFFFFF for true. 1036 /// 1037 /// \headerfile <x86intrin.h> 1038 /// 1039 /// This intrinsic corresponds to the <c> VCMPUNORDSS / CMPUNORDSS </c> 1040 /// instructions. 1041 /// 1042 /// \param __a 1043 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 1044 /// 32 bits of this operand are used in the comparison. 1045 /// \param __b 1046 /// A 128-bit vector of [4 x float] containing one of the operands. The lower 1047 /// 32 bits of this operand are used in the comparison. 1048 /// \returns A 128-bit vector of [4 x float] containing the comparison results 1049 /// in the low-order bits. 1050 static __inline__ __m128 __DEFAULT_FN_ATTRS 1051 _mm_cmpunord_ss(__m128 __a, __m128 __b) 1052 { 1053 return (__m128)__builtin_ia32_cmpunordss((__v4sf)__a, (__v4sf)__b); 1054 } 1055 1056 /// Compares each of the corresponding 32-bit float values of the 1057 /// 128-bit vectors of [4 x float] to determine if the values in the first 1058 /// operand are unordered with respect to those in the second operand. 1059 /// 1060 /// A pair of double-precision values are unordered with respect to each 1061 /// other if one or both values are NaN. Each comparison returns 0x0 for 1062 /// false, 0xFFFFFFFFFFFFFFFF for true. 1063 /// 1064 /// \headerfile <x86intrin.h> 1065 /// 1066 /// This intrinsic corresponds to the <c> VCMPUNORDPS / CMPUNORDPS </c> 1067 /// instructions. 1068 /// 1069 /// \param __a 1070 /// A 128-bit vector of [4 x float]. 1071 /// \param __b 1072 /// A 128-bit vector of [4 x float]. 1073 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 1074 static __inline__ __m128 __DEFAULT_FN_ATTRS 1075 _mm_cmpunord_ps(__m128 __a, __m128 __b) 1076 { 1077 return (__m128)__builtin_ia32_cmpunordps((__v4sf)__a, (__v4sf)__b); 1078 } 1079 1080 /// Compares two 32-bit float values in the low-order bits of both 1081 /// operands for equality. 1082 /// 1083 /// The comparison returns 0 for false, 1 for true. If either value in a 1084 /// comparison is NaN, returns 0. 1085 /// 1086 /// \headerfile <x86intrin.h> 1087 /// 1088 /// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> 1089 /// instructions. 1090 /// 1091 /// \param __a 1092 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1093 /// used in the comparison. 1094 /// \param __b 1095 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1096 /// used in the comparison. 1097 /// \returns An integer containing the comparison results. 1098 static __inline__ int __DEFAULT_FN_ATTRS 1099 _mm_comieq_ss(__m128 __a, __m128 __b) 1100 { 1101 return __builtin_ia32_comieq((__v4sf)__a, (__v4sf)__b); 1102 } 1103 1104 /// Compares two 32-bit float values in the low-order bits of both 1105 /// operands to determine if the first operand is less than the second 1106 /// operand. 1107 /// 1108 /// The comparison returns 0 for false, 1 for true. If either value in a 1109 /// comparison is NaN, returns 0. 1110 /// 1111 /// \headerfile <x86intrin.h> 1112 /// 1113 /// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> 1114 /// instructions. 1115 /// 1116 /// \param __a 1117 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1118 /// used in the comparison. 1119 /// \param __b 1120 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1121 /// used in the comparison. 1122 /// \returns An integer containing the comparison results. 1123 static __inline__ int __DEFAULT_FN_ATTRS 1124 _mm_comilt_ss(__m128 __a, __m128 __b) 1125 { 1126 return __builtin_ia32_comilt((__v4sf)__a, (__v4sf)__b); 1127 } 1128 1129 /// Compares two 32-bit float values in the low-order bits of both 1130 /// operands to determine if the first operand is less than or equal to the 1131 /// second operand. 1132 /// 1133 /// The comparison returns 0 for false, 1 for true. If either value in a 1134 /// comparison is NaN, returns 0. 1135 /// 1136 /// \headerfile <x86intrin.h> 1137 /// 1138 /// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions. 1139 /// 1140 /// \param __a 1141 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1142 /// used in the comparison. 1143 /// \param __b 1144 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1145 /// used in the comparison. 1146 /// \returns An integer containing the comparison results. 1147 static __inline__ int __DEFAULT_FN_ATTRS 1148 _mm_comile_ss(__m128 __a, __m128 __b) 1149 { 1150 return __builtin_ia32_comile((__v4sf)__a, (__v4sf)__b); 1151 } 1152 1153 /// Compares two 32-bit float values in the low-order bits of both 1154 /// operands to determine if the first operand is greater than the second 1155 /// operand. 1156 /// 1157 /// The comparison returns 0 for false, 1 for true. If either value in a 1158 /// comparison is NaN, returns 0. 1159 /// 1160 /// \headerfile <x86intrin.h> 1161 /// 1162 /// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions. 1163 /// 1164 /// \param __a 1165 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1166 /// used in the comparison. 1167 /// \param __b 1168 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1169 /// used in the comparison. 1170 /// \returns An integer containing the comparison results. 1171 static __inline__ int __DEFAULT_FN_ATTRS 1172 _mm_comigt_ss(__m128 __a, __m128 __b) 1173 { 1174 return __builtin_ia32_comigt((__v4sf)__a, (__v4sf)__b); 1175 } 1176 1177 /// Compares two 32-bit float values in the low-order bits of both 1178 /// operands to determine if the first operand is greater than or equal to 1179 /// the second operand. 1180 /// 1181 /// The comparison returns 0 for false, 1 for true. If either value in a 1182 /// comparison is NaN, returns 0. 1183 /// 1184 /// \headerfile <x86intrin.h> 1185 /// 1186 /// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions. 1187 /// 1188 /// \param __a 1189 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1190 /// used in the comparison. 1191 /// \param __b 1192 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1193 /// used in the comparison. 1194 /// \returns An integer containing the comparison results. 1195 static __inline__ int __DEFAULT_FN_ATTRS 1196 _mm_comige_ss(__m128 __a, __m128 __b) 1197 { 1198 return __builtin_ia32_comige((__v4sf)__a, (__v4sf)__b); 1199 } 1200 1201 /// Compares two 32-bit float values in the low-order bits of both 1202 /// operands to determine if the first operand is not equal to the second 1203 /// operand. 1204 /// 1205 /// The comparison returns 0 for false, 1 for true. If either value in a 1206 /// comparison is NaN, returns 1. 1207 /// 1208 /// \headerfile <x86intrin.h> 1209 /// 1210 /// This intrinsic corresponds to the <c> VCOMISS / COMISS </c> instructions. 1211 /// 1212 /// \param __a 1213 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1214 /// used in the comparison. 1215 /// \param __b 1216 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1217 /// used in the comparison. 1218 /// \returns An integer containing the comparison results. 1219 static __inline__ int __DEFAULT_FN_ATTRS 1220 _mm_comineq_ss(__m128 __a, __m128 __b) 1221 { 1222 return __builtin_ia32_comineq((__v4sf)__a, (__v4sf)__b); 1223 } 1224 1225 /// Performs an unordered comparison of two 32-bit float values using 1226 /// the low-order bits of both operands to determine equality. 1227 /// 1228 /// The comparison returns 0 for false, 1 for true. If either value in a 1229 /// comparison is NaN, returns 0. 1230 /// 1231 /// \headerfile <x86intrin.h> 1232 /// 1233 /// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions. 1234 /// 1235 /// \param __a 1236 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1237 /// used in the comparison. 1238 /// \param __b 1239 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1240 /// used in the comparison. 1241 /// \returns An integer containing the comparison results. 1242 static __inline__ int __DEFAULT_FN_ATTRS 1243 _mm_ucomieq_ss(__m128 __a, __m128 __b) 1244 { 1245 return __builtin_ia32_ucomieq((__v4sf)__a, (__v4sf)__b); 1246 } 1247 1248 /// Performs an unordered comparison of two 32-bit float values using 1249 /// the low-order bits of both operands to determine if the first operand is 1250 /// less than the second operand. 1251 /// 1252 /// The comparison returns 0 for false, 1 for true. If either value in a 1253 /// comparison is NaN, returns 0. 1254 /// 1255 /// \headerfile <x86intrin.h> 1256 /// 1257 /// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions. 1258 /// 1259 /// \param __a 1260 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1261 /// used in the comparison. 1262 /// \param __b 1263 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1264 /// used in the comparison. 1265 /// \returns An integer containing the comparison results. 1266 static __inline__ int __DEFAULT_FN_ATTRS 1267 _mm_ucomilt_ss(__m128 __a, __m128 __b) 1268 { 1269 return __builtin_ia32_ucomilt((__v4sf)__a, (__v4sf)__b); 1270 } 1271 1272 /// Performs an unordered comparison of two 32-bit float values using 1273 /// the low-order bits of both operands to determine if the first operand is 1274 /// less than or equal to the second operand. 1275 /// 1276 /// The comparison returns 0 for false, 1 for true. If either value in a 1277 /// comparison is NaN, returns 0. 1278 /// 1279 /// \headerfile <x86intrin.h> 1280 /// 1281 /// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions. 1282 /// 1283 /// \param __a 1284 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1285 /// used in the comparison. 1286 /// \param __b 1287 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1288 /// used in the comparison. 1289 /// \returns An integer containing the comparison results. 1290 static __inline__ int __DEFAULT_FN_ATTRS 1291 _mm_ucomile_ss(__m128 __a, __m128 __b) 1292 { 1293 return __builtin_ia32_ucomile((__v4sf)__a, (__v4sf)__b); 1294 } 1295 1296 /// Performs an unordered comparison of two 32-bit float values using 1297 /// the low-order bits of both operands to determine if the first operand is 1298 /// greater than the second operand. 1299 /// 1300 /// The comparison returns 0 for false, 1 for true. If either value in a 1301 /// comparison is NaN, returns 0. 1302 /// 1303 /// \headerfile <x86intrin.h> 1304 /// 1305 /// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions. 1306 /// 1307 /// \param __a 1308 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1309 /// used in the comparison. 1310 /// \param __b 1311 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1312 /// used in the comparison. 1313 /// \returns An integer containing the comparison results. 1314 static __inline__ int __DEFAULT_FN_ATTRS 1315 _mm_ucomigt_ss(__m128 __a, __m128 __b) 1316 { 1317 return __builtin_ia32_ucomigt((__v4sf)__a, (__v4sf)__b); 1318 } 1319 1320 /// Performs an unordered comparison of two 32-bit float values using 1321 /// the low-order bits of both operands to determine if the first operand is 1322 /// greater than or equal to the second operand. 1323 /// 1324 /// The comparison returns 0 for false, 1 for true. If either value in a 1325 /// comparison is NaN, returns 0. 1326 /// 1327 /// \headerfile <x86intrin.h> 1328 /// 1329 /// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions. 1330 /// 1331 /// \param __a 1332 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1333 /// used in the comparison. 1334 /// \param __b 1335 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1336 /// used in the comparison. 1337 /// \returns An integer containing the comparison results. 1338 static __inline__ int __DEFAULT_FN_ATTRS 1339 _mm_ucomige_ss(__m128 __a, __m128 __b) 1340 { 1341 return __builtin_ia32_ucomige((__v4sf)__a, (__v4sf)__b); 1342 } 1343 1344 /// Performs an unordered comparison of two 32-bit float values using 1345 /// the low-order bits of both operands to determine inequality. 1346 /// 1347 /// The comparison returns 0 for false, 1 for true. If either value in a 1348 /// comparison is NaN, returns 0. 1349 /// 1350 /// \headerfile <x86intrin.h> 1351 /// 1352 /// This intrinsic corresponds to the <c> VUCOMISS / UCOMISS </c> instructions. 1353 /// 1354 /// \param __a 1355 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1356 /// used in the comparison. 1357 /// \param __b 1358 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1359 /// used in the comparison. 1360 /// \returns An integer containing the comparison results. 1361 static __inline__ int __DEFAULT_FN_ATTRS 1362 _mm_ucomineq_ss(__m128 __a, __m128 __b) 1363 { 1364 return __builtin_ia32_ucomineq((__v4sf)__a, (__v4sf)__b); 1365 } 1366 1367 /// Converts a float value contained in the lower 32 bits of a vector of 1368 /// [4 x float] into a 32-bit integer. 1369 /// 1370 /// If the converted value does not fit in a 32-bit integer, raises a 1371 /// floating-point invalid exception. If the exception is masked, returns 1372 /// the most negative integer. 1373 /// 1374 /// \headerfile <x86intrin.h> 1375 /// 1376 /// This intrinsic corresponds to the <c> VCVTSS2SI / CVTSS2SI </c> 1377 /// instructions. 1378 /// 1379 /// \param __a 1380 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1381 /// used in the conversion. 1382 /// \returns A 32-bit integer containing the converted value. 1383 static __inline__ int __DEFAULT_FN_ATTRS 1384 _mm_cvtss_si32(__m128 __a) 1385 { 1386 return __builtin_ia32_cvtss2si((__v4sf)__a); 1387 } 1388 1389 /// Converts a float value contained in the lower 32 bits of a vector of 1390 /// [4 x float] into a 32-bit integer. 1391 /// 1392 /// If the converted value does not fit in a 32-bit integer, raises a 1393 /// floating-point invalid exception. If the exception is masked, returns 1394 /// the most negative integer. 1395 /// 1396 /// \headerfile <x86intrin.h> 1397 /// 1398 /// This intrinsic corresponds to the <c> VCVTSS2SI / CVTSS2SI </c> 1399 /// instructions. 1400 /// 1401 /// \param __a 1402 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1403 /// used in the conversion. 1404 /// \returns A 32-bit integer containing the converted value. 1405 static __inline__ int __DEFAULT_FN_ATTRS 1406 _mm_cvt_ss2si(__m128 __a) 1407 { 1408 return _mm_cvtss_si32(__a); 1409 } 1410 1411 #ifdef __x86_64__ 1412 1413 /// Converts a float value contained in the lower 32 bits of a vector of 1414 /// [4 x float] into a 64-bit integer. 1415 /// 1416 /// If the converted value does not fit in a 32-bit integer, raises a 1417 /// floating-point invalid exception. If the exception is masked, returns 1418 /// the most negative integer. 1419 /// 1420 /// \headerfile <x86intrin.h> 1421 /// 1422 /// This intrinsic corresponds to the <c> VCVTSS2SI / CVTSS2SI </c> 1423 /// instructions. 1424 /// 1425 /// \param __a 1426 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1427 /// used in the conversion. 1428 /// \returns A 64-bit integer containing the converted value. 1429 static __inline__ long long __DEFAULT_FN_ATTRS 1430 _mm_cvtss_si64(__m128 __a) 1431 { 1432 return __builtin_ia32_cvtss2si64((__v4sf)__a); 1433 } 1434 1435 #endif 1436 1437 /// Converts two low-order float values in a 128-bit vector of 1438 /// [4 x float] into a 64-bit vector of [2 x i32]. 1439 /// 1440 /// If a converted value does not fit in a 32-bit integer, raises a 1441 /// floating-point invalid exception. If the exception is masked, returns 1442 /// the most negative integer. 1443 /// 1444 /// \headerfile <x86intrin.h> 1445 /// 1446 /// This intrinsic corresponds to the <c> CVTPS2PI </c> instruction. 1447 /// 1448 /// \param __a 1449 /// A 128-bit vector of [4 x float]. 1450 /// \returns A 64-bit integer vector containing the converted values. 1451 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 1452 _mm_cvtps_pi32(__m128 __a) 1453 { 1454 return (__m64)__builtin_ia32_cvtps2pi((__v4sf)__a); 1455 } 1456 1457 /// Converts two low-order float values in a 128-bit vector of 1458 /// [4 x float] into a 64-bit vector of [2 x i32]. 1459 /// 1460 /// If a converted value does not fit in a 32-bit integer, raises a 1461 /// floating-point invalid exception. If the exception is masked, returns 1462 /// the most negative integer. 1463 /// 1464 /// \headerfile <x86intrin.h> 1465 /// 1466 /// This intrinsic corresponds to the <c> CVTPS2PI </c> instruction. 1467 /// 1468 /// \param __a 1469 /// A 128-bit vector of [4 x float]. 1470 /// \returns A 64-bit integer vector containing the converted values. 1471 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 1472 _mm_cvt_ps2pi(__m128 __a) 1473 { 1474 return _mm_cvtps_pi32(__a); 1475 } 1476 1477 /// Converts the lower (first) element of a vector of [4 x float] into a signed 1478 /// truncated (rounded toward zero) 32-bit integer. 1479 /// 1480 /// If the converted value does not fit in a 32-bit integer, raises a 1481 /// floating-point invalid exception. If the exception is masked, returns 1482 /// the most negative integer. 1483 /// 1484 /// \headerfile <x86intrin.h> 1485 /// 1486 /// This intrinsic corresponds to the <c> VCVTTSS2SI / CVTTSS2SI </c> 1487 /// instructions. 1488 /// 1489 /// \param __a 1490 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1491 /// used in the conversion. 1492 /// \returns A 32-bit integer containing the converted value. 1493 static __inline__ int __DEFAULT_FN_ATTRS 1494 _mm_cvttss_si32(__m128 __a) 1495 { 1496 return __builtin_ia32_cvttss2si((__v4sf)__a); 1497 } 1498 1499 /// Converts the lower (first) element of a vector of [4 x float] into a signed 1500 /// truncated (rounded toward zero) 32-bit integer. 1501 /// 1502 /// If the converted value does not fit in a 32-bit integer, raises a 1503 /// floating-point invalid exception. If the exception is masked, returns 1504 /// the most negative integer. 1505 /// 1506 /// \headerfile <x86intrin.h> 1507 /// 1508 /// This intrinsic corresponds to the <c> VCVTTSS2SI / CVTTSS2SI </c> 1509 /// instructions. 1510 /// 1511 /// \param __a 1512 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1513 /// used in the conversion. 1514 /// \returns A 32-bit integer containing the converted value. 1515 static __inline__ int __DEFAULT_FN_ATTRS 1516 _mm_cvtt_ss2si(__m128 __a) 1517 { 1518 return _mm_cvttss_si32(__a); 1519 } 1520 1521 #ifdef __x86_64__ 1522 /// Converts the lower (first) element of a vector of [4 x float] into a signed 1523 /// truncated (rounded toward zero) 64-bit integer. 1524 /// 1525 /// If the converted value does not fit in a 64-bit integer, raises a 1526 /// floating-point invalid exception. If the exception is masked, returns 1527 /// the most negative integer. 1528 /// 1529 /// \headerfile <x86intrin.h> 1530 /// 1531 /// This intrinsic corresponds to the <c> VCVTTSS2SI / CVTTSS2SI </c> 1532 /// instructions. 1533 /// 1534 /// \param __a 1535 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1536 /// used in the conversion. 1537 /// \returns A 64-bit integer containing the converted value. 1538 static __inline__ long long __DEFAULT_FN_ATTRS 1539 _mm_cvttss_si64(__m128 __a) 1540 { 1541 return __builtin_ia32_cvttss2si64((__v4sf)__a); 1542 } 1543 #endif 1544 1545 /// Converts the lower (first) two elements of a 128-bit vector of [4 x float] 1546 /// into two signed truncated (rounded toward zero) 32-bit integers, 1547 /// returned in a 64-bit vector of [2 x i32]. 1548 /// 1549 /// If a converted value does not fit in a 32-bit integer, raises a 1550 /// floating-point invalid exception. If the exception is masked, returns 1551 /// the most negative integer. 1552 /// 1553 /// \headerfile <x86intrin.h> 1554 /// 1555 /// This intrinsic corresponds to the <c> CVTTPS2PI / VTTPS2PI </c> 1556 /// instructions. 1557 /// 1558 /// \param __a 1559 /// A 128-bit vector of [4 x float]. 1560 /// \returns A 64-bit integer vector containing the converted values. 1561 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 1562 _mm_cvttps_pi32(__m128 __a) 1563 { 1564 return (__m64)__builtin_ia32_cvttps2pi((__v4sf)__a); 1565 } 1566 1567 /// Converts the lower (first) two elements of a 128-bit vector of [4 x float] 1568 /// into two signed truncated (rounded toward zero) 64-bit integers, 1569 /// returned in a 64-bit vector of [2 x i32]. 1570 /// 1571 /// If a converted value does not fit in a 32-bit integer, raises a 1572 /// floating-point invalid exception. If the exception is masked, returns 1573 /// the most negative integer. 1574 /// 1575 /// \headerfile <x86intrin.h> 1576 /// 1577 /// This intrinsic corresponds to the <c> CVTTPS2PI </c> instruction. 1578 /// 1579 /// \param __a 1580 /// A 128-bit vector of [4 x float]. 1581 /// \returns A 64-bit integer vector containing the converted values. 1582 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 1583 _mm_cvtt_ps2pi(__m128 __a) 1584 { 1585 return _mm_cvttps_pi32(__a); 1586 } 1587 1588 /// Converts a 32-bit signed integer value into a floating point value 1589 /// and writes it to the lower 32 bits of the destination. The remaining 1590 /// higher order elements of the destination vector are copied from the 1591 /// corresponding elements in the first operand. 1592 /// 1593 /// \headerfile <x86intrin.h> 1594 /// 1595 /// This intrinsic corresponds to the <c> VCVTSI2SS / CVTSI2SS </c> instruction. 1596 /// 1597 /// \param __a 1598 /// A 128-bit vector of [4 x float]. 1599 /// \param __b 1600 /// A 32-bit signed integer operand containing the value to be converted. 1601 /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the 1602 /// converted value of the second operand. The upper 96 bits are copied from 1603 /// the upper 96 bits of the first operand. 1604 static __inline__ __m128 __DEFAULT_FN_ATTRS 1605 _mm_cvtsi32_ss(__m128 __a, int __b) 1606 { 1607 __a[0] = __b; 1608 return __a; 1609 } 1610 1611 /// Converts a 32-bit signed integer value into a floating point value 1612 /// and writes it to the lower 32 bits of the destination. The remaining 1613 /// higher order elements of the destination are copied from the 1614 /// corresponding elements in the first operand. 1615 /// 1616 /// \headerfile <x86intrin.h> 1617 /// 1618 /// This intrinsic corresponds to the <c> VCVTSI2SS / CVTSI2SS </c> instruction. 1619 /// 1620 /// \param __a 1621 /// A 128-bit vector of [4 x float]. 1622 /// \param __b 1623 /// A 32-bit signed integer operand containing the value to be converted. 1624 /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the 1625 /// converted value of the second operand. The upper 96 bits are copied from 1626 /// the upper 96 bits of the first operand. 1627 static __inline__ __m128 __DEFAULT_FN_ATTRS 1628 _mm_cvt_si2ss(__m128 __a, int __b) 1629 { 1630 return _mm_cvtsi32_ss(__a, __b); 1631 } 1632 1633 #ifdef __x86_64__ 1634 1635 /// Converts a 64-bit signed integer value into a floating point value 1636 /// and writes it to the lower 32 bits of the destination. The remaining 1637 /// higher order elements of the destination are copied from the 1638 /// corresponding elements in the first operand. 1639 /// 1640 /// \headerfile <x86intrin.h> 1641 /// 1642 /// This intrinsic corresponds to the <c> VCVTSI2SS / CVTSI2SS </c> instruction. 1643 /// 1644 /// \param __a 1645 /// A 128-bit vector of [4 x float]. 1646 /// \param __b 1647 /// A 64-bit signed integer operand containing the value to be converted. 1648 /// \returns A 128-bit vector of [4 x float] whose lower 32 bits contain the 1649 /// converted value of the second operand. The upper 96 bits are copied from 1650 /// the upper 96 bits of the first operand. 1651 static __inline__ __m128 __DEFAULT_FN_ATTRS 1652 _mm_cvtsi64_ss(__m128 __a, long long __b) 1653 { 1654 __a[0] = __b; 1655 return __a; 1656 } 1657 1658 #endif 1659 1660 /// Converts two elements of a 64-bit vector of [2 x i32] into two 1661 /// floating point values and writes them to the lower 64-bits of the 1662 /// destination. The remaining higher order elements of the destination are 1663 /// copied from the corresponding elements in the first operand. 1664 /// 1665 /// \headerfile <x86intrin.h> 1666 /// 1667 /// This intrinsic corresponds to the <c> CVTPI2PS </c> instruction. 1668 /// 1669 /// \param __a 1670 /// A 128-bit vector of [4 x float]. 1671 /// \param __b 1672 /// A 64-bit vector of [2 x i32]. The elements in this vector are converted 1673 /// and written to the corresponding low-order elements in the destination. 1674 /// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the 1675 /// converted value of the second operand. The upper 64 bits are copied from 1676 /// the upper 64 bits of the first operand. 1677 static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX 1678 _mm_cvtpi32_ps(__m128 __a, __m64 __b) 1679 { 1680 return __builtin_ia32_cvtpi2ps((__v4sf)__a, (__v2si)__b); 1681 } 1682 1683 /// Converts two elements of a 64-bit vector of [2 x i32] into two 1684 /// floating point values and writes them to the lower 64-bits of the 1685 /// destination. The remaining higher order elements of the destination are 1686 /// copied from the corresponding elements in the first operand. 1687 /// 1688 /// \headerfile <x86intrin.h> 1689 /// 1690 /// This intrinsic corresponds to the <c> CVTPI2PS </c> instruction. 1691 /// 1692 /// \param __a 1693 /// A 128-bit vector of [4 x float]. 1694 /// \param __b 1695 /// A 64-bit vector of [2 x i32]. The elements in this vector are converted 1696 /// and written to the corresponding low-order elements in the destination. 1697 /// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the 1698 /// converted value from the second operand. The upper 64 bits are copied 1699 /// from the upper 64 bits of the first operand. 1700 static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX 1701 _mm_cvt_pi2ps(__m128 __a, __m64 __b) 1702 { 1703 return _mm_cvtpi32_ps(__a, __b); 1704 } 1705 1706 /// Extracts a float value contained in the lower 32 bits of a vector of 1707 /// [4 x float]. 1708 /// 1709 /// \headerfile <x86intrin.h> 1710 /// 1711 /// This intrinsic has no corresponding instruction. 1712 /// 1713 /// \param __a 1714 /// A 128-bit vector of [4 x float]. The lower 32 bits of this operand are 1715 /// used in the extraction. 1716 /// \returns A 32-bit float containing the extracted value. 1717 static __inline__ float __DEFAULT_FN_ATTRS 1718 _mm_cvtss_f32(__m128 __a) 1719 { 1720 return __a[0]; 1721 } 1722 1723 /// Loads two packed float values from the address \a __p into the 1724 /// high-order bits of a 128-bit vector of [4 x float]. The low-order bits 1725 /// are copied from the low-order bits of the first operand. 1726 /// 1727 /// \headerfile <x86intrin.h> 1728 /// 1729 /// This intrinsic corresponds to the <c> VMOVHPD / MOVHPD </c> instruction. 1730 /// 1731 /// \param __a 1732 /// A 128-bit vector of [4 x float]. Bits [63:0] are written to bits [63:0] 1733 /// of the destination. 1734 /// \param __p 1735 /// A pointer to two packed float values. Bits [63:0] are written to bits 1736 /// [127:64] of the destination. 1737 /// \returns A 128-bit vector of [4 x float] containing the moved values. 1738 static __inline__ __m128 __DEFAULT_FN_ATTRS 1739 _mm_loadh_pi(__m128 __a, const __m64 *__p) 1740 { 1741 typedef float __mm_loadh_pi_v2f32 __attribute__((__vector_size__(8))); 1742 struct __mm_loadh_pi_struct { 1743 __mm_loadh_pi_v2f32 __u; 1744 } __attribute__((__packed__, __may_alias__)); 1745 __mm_loadh_pi_v2f32 __b = ((const struct __mm_loadh_pi_struct*)__p)->__u; 1746 __m128 __bb = __builtin_shufflevector(__b, __b, 0, 1, 0, 1); 1747 return __builtin_shufflevector(__a, __bb, 0, 1, 4, 5); 1748 } 1749 1750 /// Loads two packed float values from the address \a __p into the 1751 /// low-order bits of a 128-bit vector of [4 x float]. The high-order bits 1752 /// are copied from the high-order bits of the first operand. 1753 /// 1754 /// \headerfile <x86intrin.h> 1755 /// 1756 /// This intrinsic corresponds to the <c> VMOVLPD / MOVLPD </c> instruction. 1757 /// 1758 /// \param __a 1759 /// A 128-bit vector of [4 x float]. Bits [127:64] are written to bits 1760 /// [127:64] of the destination. 1761 /// \param __p 1762 /// A pointer to two packed float values. Bits [63:0] are written to bits 1763 /// [63:0] of the destination. 1764 /// \returns A 128-bit vector of [4 x float] containing the moved values. 1765 static __inline__ __m128 __DEFAULT_FN_ATTRS 1766 _mm_loadl_pi(__m128 __a, const __m64 *__p) 1767 { 1768 typedef float __mm_loadl_pi_v2f32 __attribute__((__vector_size__(8))); 1769 struct __mm_loadl_pi_struct { 1770 __mm_loadl_pi_v2f32 __u; 1771 } __attribute__((__packed__, __may_alias__)); 1772 __mm_loadl_pi_v2f32 __b = ((const struct __mm_loadl_pi_struct*)__p)->__u; 1773 __m128 __bb = __builtin_shufflevector(__b, __b, 0, 1, 0, 1); 1774 return __builtin_shufflevector(__a, __bb, 4, 5, 2, 3); 1775 } 1776 1777 /// Constructs a 128-bit floating-point vector of [4 x float]. The lower 1778 /// 32 bits of the vector are initialized with the single-precision 1779 /// floating-point value loaded from a specified memory location. The upper 1780 /// 96 bits are set to zero. 1781 /// 1782 /// \headerfile <x86intrin.h> 1783 /// 1784 /// This intrinsic corresponds to the <c> VMOVSS / MOVSS </c> instruction. 1785 /// 1786 /// \param __p 1787 /// A pointer to a 32-bit memory location containing a single-precision 1788 /// floating-point value. 1789 /// \returns An initialized 128-bit floating-point vector of [4 x float]. The 1790 /// lower 32 bits contain the value loaded from the memory location. The 1791 /// upper 96 bits are set to zero. 1792 static __inline__ __m128 __DEFAULT_FN_ATTRS 1793 _mm_load_ss(const float *__p) 1794 { 1795 struct __mm_load_ss_struct { 1796 float __u; 1797 } __attribute__((__packed__, __may_alias__)); 1798 float __u = ((const struct __mm_load_ss_struct*)__p)->__u; 1799 return __extension__ (__m128){ __u, 0, 0, 0 }; 1800 } 1801 1802 /// Loads a 32-bit float value and duplicates it to all four vector 1803 /// elements of a 128-bit vector of [4 x float]. 1804 /// 1805 /// \headerfile <x86intrin.h> 1806 /// 1807 /// This intrinsic corresponds to the <c> VBROADCASTSS / MOVSS + shuffling </c> 1808 /// instruction. 1809 /// 1810 /// \param __p 1811 /// A pointer to a float value to be loaded and duplicated. 1812 /// \returns A 128-bit vector of [4 x float] containing the loaded and 1813 /// duplicated values. 1814 static __inline__ __m128 __DEFAULT_FN_ATTRS 1815 _mm_load1_ps(const float *__p) 1816 { 1817 struct __mm_load1_ps_struct { 1818 float __u; 1819 } __attribute__((__packed__, __may_alias__)); 1820 float __u = ((const struct __mm_load1_ps_struct*)__p)->__u; 1821 return __extension__ (__m128){ __u, __u, __u, __u }; 1822 } 1823 1824 #define _mm_load_ps1(p) _mm_load1_ps(p) 1825 1826 /// Loads a 128-bit floating-point vector of [4 x float] from an aligned 1827 /// memory location. 1828 /// 1829 /// \headerfile <x86intrin.h> 1830 /// 1831 /// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS </c> instruction. 1832 /// 1833 /// \param __p 1834 /// A pointer to a 128-bit memory location. The address of the memory 1835 /// location has to be 128-bit aligned. 1836 /// \returns A 128-bit vector of [4 x float] containing the loaded values. 1837 static __inline__ __m128 __DEFAULT_FN_ATTRS 1838 _mm_load_ps(const float *__p) 1839 { 1840 return *(const __m128*)__p; 1841 } 1842 1843 /// Loads a 128-bit floating-point vector of [4 x float] from an 1844 /// unaligned memory location. 1845 /// 1846 /// \headerfile <x86intrin.h> 1847 /// 1848 /// This intrinsic corresponds to the <c> VMOVUPS / MOVUPS </c> instruction. 1849 /// 1850 /// \param __p 1851 /// A pointer to a 128-bit memory location. The address of the memory 1852 /// location does not have to be aligned. 1853 /// \returns A 128-bit vector of [4 x float] containing the loaded values. 1854 static __inline__ __m128 __DEFAULT_FN_ATTRS 1855 _mm_loadu_ps(const float *__p) 1856 { 1857 struct __loadu_ps { 1858 __m128_u __v; 1859 } __attribute__((__packed__, __may_alias__)); 1860 return ((const struct __loadu_ps*)__p)->__v; 1861 } 1862 1863 /// Loads four packed float values, in reverse order, from an aligned 1864 /// memory location to 32-bit elements in a 128-bit vector of [4 x float]. 1865 /// 1866 /// \headerfile <x86intrin.h> 1867 /// 1868 /// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS + shuffling </c> 1869 /// instruction. 1870 /// 1871 /// \param __p 1872 /// A pointer to a 128-bit memory location. The address of the memory 1873 /// location has to be 128-bit aligned. 1874 /// \returns A 128-bit vector of [4 x float] containing the moved values, loaded 1875 /// in reverse order. 1876 static __inline__ __m128 __DEFAULT_FN_ATTRS 1877 _mm_loadr_ps(const float *__p) 1878 { 1879 __m128 __a = _mm_load_ps(__p); 1880 return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 3, 2, 1, 0); 1881 } 1882 1883 /// Create a 128-bit vector of [4 x float] with undefined values. 1884 /// 1885 /// \headerfile <x86intrin.h> 1886 /// 1887 /// This intrinsic has no corresponding instruction. 1888 /// 1889 /// \returns A 128-bit vector of [4 x float] containing undefined values. 1890 static __inline__ __m128 __DEFAULT_FN_ATTRS 1891 _mm_undefined_ps(void) 1892 { 1893 return (__m128)__builtin_ia32_undef128(); 1894 } 1895 1896 /// Constructs a 128-bit floating-point vector of [4 x float]. The lower 1897 /// 32 bits of the vector are initialized with the specified single-precision 1898 /// floating-point value. The upper 96 bits are set to zero. 1899 /// 1900 /// \headerfile <x86intrin.h> 1901 /// 1902 /// This intrinsic corresponds to the <c> VMOVSS / MOVSS </c> instruction. 1903 /// 1904 /// \param __w 1905 /// A single-precision floating-point value used to initialize the lower 32 1906 /// bits of the result. 1907 /// \returns An initialized 128-bit floating-point vector of [4 x float]. The 1908 /// lower 32 bits contain the value provided in the source operand. The 1909 /// upper 96 bits are set to zero. 1910 static __inline__ __m128 __DEFAULT_FN_ATTRS 1911 _mm_set_ss(float __w) 1912 { 1913 return __extension__ (__m128){ __w, 0.0f, 0.0f, 0.0f }; 1914 } 1915 1916 /// Constructs a 128-bit floating-point vector of [4 x float], with each 1917 /// of the four single-precision floating-point vector elements set to the 1918 /// specified single-precision floating-point value. 1919 /// 1920 /// \headerfile <x86intrin.h> 1921 /// 1922 /// This intrinsic corresponds to the <c> VPERMILPS / PERMILPS </c> instruction. 1923 /// 1924 /// \param __w 1925 /// A single-precision floating-point value used to initialize each vector 1926 /// element of the result. 1927 /// \returns An initialized 128-bit floating-point vector of [4 x float]. 1928 static __inline__ __m128 __DEFAULT_FN_ATTRS 1929 _mm_set1_ps(float __w) 1930 { 1931 return __extension__ (__m128){ __w, __w, __w, __w }; 1932 } 1933 1934 /* Microsoft specific. */ 1935 /// Constructs a 128-bit floating-point vector of [4 x float], with each 1936 /// of the four single-precision floating-point vector elements set to the 1937 /// specified single-precision floating-point value. 1938 /// 1939 /// \headerfile <x86intrin.h> 1940 /// 1941 /// This intrinsic corresponds to the <c> VPERMILPS / PERMILPS </c> instruction. 1942 /// 1943 /// \param __w 1944 /// A single-precision floating-point value used to initialize each vector 1945 /// element of the result. 1946 /// \returns An initialized 128-bit floating-point vector of [4 x float]. 1947 static __inline__ __m128 __DEFAULT_FN_ATTRS 1948 _mm_set_ps1(float __w) 1949 { 1950 return _mm_set1_ps(__w); 1951 } 1952 1953 /// Constructs a 128-bit floating-point vector of [4 x float] 1954 /// initialized with the specified single-precision floating-point values. 1955 /// 1956 /// \headerfile <x86intrin.h> 1957 /// 1958 /// This intrinsic is a utility function and does not correspond to a specific 1959 /// instruction. 1960 /// 1961 /// \param __z 1962 /// A single-precision floating-point value used to initialize bits [127:96] 1963 /// of the result. 1964 /// \param __y 1965 /// A single-precision floating-point value used to initialize bits [95:64] 1966 /// of the result. 1967 /// \param __x 1968 /// A single-precision floating-point value used to initialize bits [63:32] 1969 /// of the result. 1970 /// \param __w 1971 /// A single-precision floating-point value used to initialize bits [31:0] 1972 /// of the result. 1973 /// \returns An initialized 128-bit floating-point vector of [4 x float]. 1974 static __inline__ __m128 __DEFAULT_FN_ATTRS 1975 _mm_set_ps(float __z, float __y, float __x, float __w) 1976 { 1977 return __extension__ (__m128){ __w, __x, __y, __z }; 1978 } 1979 1980 /// Constructs a 128-bit floating-point vector of [4 x float], 1981 /// initialized in reverse order with the specified 32-bit single-precision 1982 /// float-point values. 1983 /// 1984 /// \headerfile <x86intrin.h> 1985 /// 1986 /// This intrinsic is a utility function and does not correspond to a specific 1987 /// instruction. 1988 /// 1989 /// \param __z 1990 /// A single-precision floating-point value used to initialize bits [31:0] 1991 /// of the result. 1992 /// \param __y 1993 /// A single-precision floating-point value used to initialize bits [63:32] 1994 /// of the result. 1995 /// \param __x 1996 /// A single-precision floating-point value used to initialize bits [95:64] 1997 /// of the result. 1998 /// \param __w 1999 /// A single-precision floating-point value used to initialize bits [127:96] 2000 /// of the result. 2001 /// \returns An initialized 128-bit floating-point vector of [4 x float]. 2002 static __inline__ __m128 __DEFAULT_FN_ATTRS 2003 _mm_setr_ps(float __z, float __y, float __x, float __w) 2004 { 2005 return __extension__ (__m128){ __z, __y, __x, __w }; 2006 } 2007 2008 /// Constructs a 128-bit floating-point vector of [4 x float] initialized 2009 /// to zero. 2010 /// 2011 /// \headerfile <x86intrin.h> 2012 /// 2013 /// This intrinsic corresponds to the <c> VXORPS / XORPS </c> instruction. 2014 /// 2015 /// \returns An initialized 128-bit floating-point vector of [4 x float] with 2016 /// all elements set to zero. 2017 static __inline__ __m128 __DEFAULT_FN_ATTRS 2018 _mm_setzero_ps(void) 2019 { 2020 return __extension__ (__m128){ 0.0f, 0.0f, 0.0f, 0.0f }; 2021 } 2022 2023 /// Stores the upper 64 bits of a 128-bit vector of [4 x float] to a 2024 /// memory location. 2025 /// 2026 /// \headerfile <x86intrin.h> 2027 /// 2028 /// This intrinsic corresponds to the <c> VPEXTRQ / PEXTRQ </c> instruction. 2029 /// 2030 /// \param __p 2031 /// A pointer to a 64-bit memory location. 2032 /// \param __a 2033 /// A 128-bit vector of [4 x float] containing the values to be stored. 2034 static __inline__ void __DEFAULT_FN_ATTRS 2035 _mm_storeh_pi(__m64 *__p, __m128 __a) 2036 { 2037 typedef float __mm_storeh_pi_v2f32 __attribute__((__vector_size__(8))); 2038 struct __mm_storeh_pi_struct { 2039 __mm_storeh_pi_v2f32 __u; 2040 } __attribute__((__packed__, __may_alias__)); 2041 ((struct __mm_storeh_pi_struct*)__p)->__u = __builtin_shufflevector(__a, __a, 2, 3); 2042 } 2043 2044 /// Stores the lower 64 bits of a 128-bit vector of [4 x float] to a 2045 /// memory location. 2046 /// 2047 /// \headerfile <x86intrin.h> 2048 /// 2049 /// This intrinsic corresponds to the <c> VMOVLPS / MOVLPS </c> instruction. 2050 /// 2051 /// \param __p 2052 /// A pointer to a memory location that will receive the float values. 2053 /// \param __a 2054 /// A 128-bit vector of [4 x float] containing the values to be stored. 2055 static __inline__ void __DEFAULT_FN_ATTRS 2056 _mm_storel_pi(__m64 *__p, __m128 __a) 2057 { 2058 typedef float __mm_storeh_pi_v2f32 __attribute__((__vector_size__(8))); 2059 struct __mm_storeh_pi_struct { 2060 __mm_storeh_pi_v2f32 __u; 2061 } __attribute__((__packed__, __may_alias__)); 2062 ((struct __mm_storeh_pi_struct*)__p)->__u = __builtin_shufflevector(__a, __a, 0, 1); 2063 } 2064 2065 /// Stores the lower 32 bits of a 128-bit vector of [4 x float] to a 2066 /// memory location. 2067 /// 2068 /// \headerfile <x86intrin.h> 2069 /// 2070 /// This intrinsic corresponds to the <c> VMOVSS / MOVSS </c> instruction. 2071 /// 2072 /// \param __p 2073 /// A pointer to a 32-bit memory location. 2074 /// \param __a 2075 /// A 128-bit vector of [4 x float] containing the value to be stored. 2076 static __inline__ void __DEFAULT_FN_ATTRS 2077 _mm_store_ss(float *__p, __m128 __a) 2078 { 2079 struct __mm_store_ss_struct { 2080 float __u; 2081 } __attribute__((__packed__, __may_alias__)); 2082 ((struct __mm_store_ss_struct*)__p)->__u = __a[0]; 2083 } 2084 2085 /// Stores a 128-bit vector of [4 x float] to an unaligned memory 2086 /// location. 2087 /// 2088 /// \headerfile <x86intrin.h> 2089 /// 2090 /// This intrinsic corresponds to the <c> VMOVUPS / MOVUPS </c> instruction. 2091 /// 2092 /// \param __p 2093 /// A pointer to a 128-bit memory location. The address of the memory 2094 /// location does not have to be aligned. 2095 /// \param __a 2096 /// A 128-bit vector of [4 x float] containing the values to be stored. 2097 static __inline__ void __DEFAULT_FN_ATTRS 2098 _mm_storeu_ps(float *__p, __m128 __a) 2099 { 2100 struct __storeu_ps { 2101 __m128_u __v; 2102 } __attribute__((__packed__, __may_alias__)); 2103 ((struct __storeu_ps*)__p)->__v = __a; 2104 } 2105 2106 /// Stores a 128-bit vector of [4 x float] into an aligned memory 2107 /// location. 2108 /// 2109 /// \headerfile <x86intrin.h> 2110 /// 2111 /// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS </c> instruction. 2112 /// 2113 /// \param __p 2114 /// A pointer to a 128-bit memory location. The address of the memory 2115 /// location has to be 16-byte aligned. 2116 /// \param __a 2117 /// A 128-bit vector of [4 x float] containing the values to be stored. 2118 static __inline__ void __DEFAULT_FN_ATTRS 2119 _mm_store_ps(float *__p, __m128 __a) 2120 { 2121 *(__m128*)__p = __a; 2122 } 2123 2124 /// Stores the lower 32 bits of a 128-bit vector of [4 x float] into 2125 /// four contiguous elements in an aligned memory location. 2126 /// 2127 /// \headerfile <x86intrin.h> 2128 /// 2129 /// This intrinsic corresponds to <c> VMOVAPS / MOVAPS + shuffling </c> 2130 /// instruction. 2131 /// 2132 /// \param __p 2133 /// A pointer to a 128-bit memory location. 2134 /// \param __a 2135 /// A 128-bit vector of [4 x float] whose lower 32 bits are stored to each 2136 /// of the four contiguous elements pointed by \a __p. 2137 static __inline__ void __DEFAULT_FN_ATTRS 2138 _mm_store1_ps(float *__p, __m128 __a) 2139 { 2140 __a = __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 0, 0, 0); 2141 _mm_store_ps(__p, __a); 2142 } 2143 2144 /// Stores the lower 32 bits of a 128-bit vector of [4 x float] into 2145 /// four contiguous elements in an aligned memory location. 2146 /// 2147 /// \headerfile <x86intrin.h> 2148 /// 2149 /// This intrinsic corresponds to <c> VMOVAPS / MOVAPS + shuffling </c> 2150 /// instruction. 2151 /// 2152 /// \param __p 2153 /// A pointer to a 128-bit memory location. 2154 /// \param __a 2155 /// A 128-bit vector of [4 x float] whose lower 32 bits are stored to each 2156 /// of the four contiguous elements pointed by \a __p. 2157 static __inline__ void __DEFAULT_FN_ATTRS 2158 _mm_store_ps1(float *__p, __m128 __a) 2159 { 2160 _mm_store1_ps(__p, __a); 2161 } 2162 2163 /// Stores float values from a 128-bit vector of [4 x float] to an 2164 /// aligned memory location in reverse order. 2165 /// 2166 /// \headerfile <x86intrin.h> 2167 /// 2168 /// This intrinsic corresponds to the <c> VMOVAPS / MOVAPS + shuffling </c> 2169 /// instruction. 2170 /// 2171 /// \param __p 2172 /// A pointer to a 128-bit memory location. The address of the memory 2173 /// location has to be 128-bit aligned. 2174 /// \param __a 2175 /// A 128-bit vector of [4 x float] containing the values to be stored. 2176 static __inline__ void __DEFAULT_FN_ATTRS 2177 _mm_storer_ps(float *__p, __m128 __a) 2178 { 2179 __a = __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 3, 2, 1, 0); 2180 _mm_store_ps(__p, __a); 2181 } 2182 2183 #define _MM_HINT_ET0 7 2184 #define _MM_HINT_ET1 6 2185 #define _MM_HINT_T0 3 2186 #define _MM_HINT_T1 2 2187 #define _MM_HINT_T2 1 2188 #define _MM_HINT_NTA 0 2189 2190 #ifndef _MSC_VER 2191 /* FIXME: We have to #define this because "sel" must be a constant integer, and 2192 Sema doesn't do any form of constant propagation yet. */ 2193 2194 /// Loads one cache line of data from the specified address to a location 2195 /// closer to the processor. 2196 /// 2197 /// \headerfile <x86intrin.h> 2198 /// 2199 /// \code 2200 /// void _mm_prefetch(const void *a, const int sel); 2201 /// \endcode 2202 /// 2203 /// This intrinsic corresponds to the <c> PREFETCHNTA </c> instruction. 2204 /// 2205 /// \param a 2206 /// A pointer to a memory location containing a cache line of data. 2207 /// \param sel 2208 /// A predefined integer constant specifying the type of prefetch 2209 /// operation: \n 2210 /// _MM_HINT_NTA: Move data using the non-temporal access (NTA) hint. The 2211 /// PREFETCHNTA instruction will be generated. \n 2212 /// _MM_HINT_T0: Move data using the T0 hint. The PREFETCHT0 instruction will 2213 /// be generated. \n 2214 /// _MM_HINT_T1: Move data using the T1 hint. The PREFETCHT1 instruction will 2215 /// be generated. \n 2216 /// _MM_HINT_T2: Move data using the T2 hint. The PREFETCHT2 instruction will 2217 /// be generated. 2218 #define _mm_prefetch(a, sel) (__builtin_prefetch((const void *)(a), \ 2219 ((sel) >> 2) & 1, (sel) & 0x3)) 2220 #endif 2221 2222 /// Stores a 64-bit integer in the specified aligned memory location. To 2223 /// minimize caching, the data is flagged as non-temporal (unlikely to be 2224 /// used again soon). 2225 /// 2226 /// \headerfile <x86intrin.h> 2227 /// 2228 /// This intrinsic corresponds to the <c> MOVNTQ </c> instruction. 2229 /// 2230 /// \param __p 2231 /// A pointer to an aligned memory location used to store the register value. 2232 /// \param __a 2233 /// A 64-bit integer containing the value to be stored. 2234 static __inline__ void __DEFAULT_FN_ATTRS_MMX 2235 _mm_stream_pi(void *__p, __m64 __a) 2236 { 2237 __builtin_ia32_movntq((__m64 *)__p, __a); 2238 } 2239 2240 /// Moves packed float values from a 128-bit vector of [4 x float] to a 2241 /// 128-bit aligned memory location. To minimize caching, the data is flagged 2242 /// as non-temporal (unlikely to be used again soon). 2243 /// 2244 /// \headerfile <x86intrin.h> 2245 /// 2246 /// This intrinsic corresponds to the <c> VMOVNTPS / MOVNTPS </c> instruction. 2247 /// 2248 /// \param __p 2249 /// A pointer to a 128-bit aligned memory location that will receive the 2250 /// single-precision floating-point values. 2251 /// \param __a 2252 /// A 128-bit vector of [4 x float] containing the values to be moved. 2253 static __inline__ void __DEFAULT_FN_ATTRS 2254 _mm_stream_ps(void *__p, __m128 __a) 2255 { 2256 __builtin_nontemporal_store((__v4sf)__a, (__v4sf*)__p); 2257 } 2258 2259 #if defined(__cplusplus) 2260 extern "C" { 2261 #endif 2262 2263 /// Forces strong memory ordering (serialization) between store 2264 /// instructions preceding this instruction and store instructions following 2265 /// this instruction, ensuring the system completes all previous stores 2266 /// before executing subsequent stores. 2267 /// 2268 /// \headerfile <x86intrin.h> 2269 /// 2270 /// This intrinsic corresponds to the <c> SFENCE </c> instruction. 2271 /// 2272 void _mm_sfence(void); 2273 2274 #if defined(__cplusplus) 2275 } // extern "C" 2276 #endif 2277 2278 /// Extracts 16-bit element from a 64-bit vector of [4 x i16] and 2279 /// returns it, as specified by the immediate integer operand. 2280 /// 2281 /// \headerfile <x86intrin.h> 2282 /// 2283 /// \code 2284 /// int _mm_extract_pi16(__m64 a, int n); 2285 /// \endcode 2286 /// 2287 /// This intrinsic corresponds to the <c> VPEXTRW / PEXTRW </c> instruction. 2288 /// 2289 /// \param a 2290 /// A 64-bit vector of [4 x i16]. 2291 /// \param n 2292 /// An immediate integer operand that determines which bits are extracted: \n 2293 /// 0: Bits [15:0] are copied to the destination. \n 2294 /// 1: Bits [31:16] are copied to the destination. \n 2295 /// 2: Bits [47:32] are copied to the destination. \n 2296 /// 3: Bits [63:48] are copied to the destination. 2297 /// \returns A 16-bit integer containing the extracted 16 bits of packed data. 2298 #define _mm_extract_pi16(a, n) \ 2299 ((int)__builtin_ia32_vec_ext_v4hi((__v4hi)a, (int)n)) 2300 2301 /// Copies data from the 64-bit vector of [4 x i16] to the destination, 2302 /// and inserts the lower 16-bits of an integer operand at the 16-bit offset 2303 /// specified by the immediate operand \a n. 2304 /// 2305 /// \headerfile <x86intrin.h> 2306 /// 2307 /// \code 2308 /// __m64 _mm_insert_pi16(__m64 a, int d, int n); 2309 /// \endcode 2310 /// 2311 /// This intrinsic corresponds to the <c> PINSRW </c> instruction. 2312 /// 2313 /// \param a 2314 /// A 64-bit vector of [4 x i16]. 2315 /// \param d 2316 /// An integer. The lower 16-bit value from this operand is written to the 2317 /// destination at the offset specified by operand \a n. 2318 /// \param n 2319 /// An immediate integer operant that determines which the bits to be used 2320 /// in the destination. \n 2321 /// 0: Bits [15:0] are copied to the destination. \n 2322 /// 1: Bits [31:16] are copied to the destination. \n 2323 /// 2: Bits [47:32] are copied to the destination. \n 2324 /// 3: Bits [63:48] are copied to the destination. \n 2325 /// The remaining bits in the destination are copied from the corresponding 2326 /// bits in operand \a a. 2327 /// \returns A 64-bit integer vector containing the copied packed data from the 2328 /// operands. 2329 #define _mm_insert_pi16(a, d, n) \ 2330 ((__m64)__builtin_ia32_vec_set_v4hi((__v4hi)a, (int)d, (int)n)) 2331 2332 /// Compares each of the corresponding packed 16-bit integer values of 2333 /// the 64-bit integer vectors, and writes the greater value to the 2334 /// corresponding bits in the destination. 2335 /// 2336 /// \headerfile <x86intrin.h> 2337 /// 2338 /// This intrinsic corresponds to the <c> PMAXSW </c> instruction. 2339 /// 2340 /// \param __a 2341 /// A 64-bit integer vector containing one of the source operands. 2342 /// \param __b 2343 /// A 64-bit integer vector containing one of the source operands. 2344 /// \returns A 64-bit integer vector containing the comparison results. 2345 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 2346 _mm_max_pi16(__m64 __a, __m64 __b) 2347 { 2348 return (__m64)__builtin_ia32_pmaxsw((__v4hi)__a, (__v4hi)__b); 2349 } 2350 2351 /// Compares each of the corresponding packed 8-bit unsigned integer 2352 /// values of the 64-bit integer vectors, and writes the greater value to the 2353 /// corresponding bits in the destination. 2354 /// 2355 /// \headerfile <x86intrin.h> 2356 /// 2357 /// This intrinsic corresponds to the <c> PMAXUB </c> instruction. 2358 /// 2359 /// \param __a 2360 /// A 64-bit integer vector containing one of the source operands. 2361 /// \param __b 2362 /// A 64-bit integer vector containing one of the source operands. 2363 /// \returns A 64-bit integer vector containing the comparison results. 2364 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 2365 _mm_max_pu8(__m64 __a, __m64 __b) 2366 { 2367 return (__m64)__builtin_ia32_pmaxub((__v8qi)__a, (__v8qi)__b); 2368 } 2369 2370 /// Compares each of the corresponding packed 16-bit integer values of 2371 /// the 64-bit integer vectors, and writes the lesser value to the 2372 /// corresponding bits in the destination. 2373 /// 2374 /// \headerfile <x86intrin.h> 2375 /// 2376 /// This intrinsic corresponds to the <c> PMINSW </c> instruction. 2377 /// 2378 /// \param __a 2379 /// A 64-bit integer vector containing one of the source operands. 2380 /// \param __b 2381 /// A 64-bit integer vector containing one of the source operands. 2382 /// \returns A 64-bit integer vector containing the comparison results. 2383 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 2384 _mm_min_pi16(__m64 __a, __m64 __b) 2385 { 2386 return (__m64)__builtin_ia32_pminsw((__v4hi)__a, (__v4hi)__b); 2387 } 2388 2389 /// Compares each of the corresponding packed 8-bit unsigned integer 2390 /// values of the 64-bit integer vectors, and writes the lesser value to the 2391 /// corresponding bits in the destination. 2392 /// 2393 /// \headerfile <x86intrin.h> 2394 /// 2395 /// This intrinsic corresponds to the <c> PMINUB </c> instruction. 2396 /// 2397 /// \param __a 2398 /// A 64-bit integer vector containing one of the source operands. 2399 /// \param __b 2400 /// A 64-bit integer vector containing one of the source operands. 2401 /// \returns A 64-bit integer vector containing the comparison results. 2402 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 2403 _mm_min_pu8(__m64 __a, __m64 __b) 2404 { 2405 return (__m64)__builtin_ia32_pminub((__v8qi)__a, (__v8qi)__b); 2406 } 2407 2408 /// Takes the most significant bit from each 8-bit element in a 64-bit 2409 /// integer vector to create an 8-bit mask value. Zero-extends the value to 2410 /// 32-bit integer and writes it to the destination. 2411 /// 2412 /// \headerfile <x86intrin.h> 2413 /// 2414 /// This intrinsic corresponds to the <c> PMOVMSKB </c> instruction. 2415 /// 2416 /// \param __a 2417 /// A 64-bit integer vector containing the values with bits to be extracted. 2418 /// \returns The most significant bit from each 8-bit element in \a __a, 2419 /// written to bits [7:0]. 2420 static __inline__ int __DEFAULT_FN_ATTRS_MMX 2421 _mm_movemask_pi8(__m64 __a) 2422 { 2423 return __builtin_ia32_pmovmskb((__v8qi)__a); 2424 } 2425 2426 /// Multiplies packed 16-bit unsigned integer values and writes the 2427 /// high-order 16 bits of each 32-bit product to the corresponding bits in 2428 /// the destination. 2429 /// 2430 /// \headerfile <x86intrin.h> 2431 /// 2432 /// This intrinsic corresponds to the <c> PMULHUW </c> instruction. 2433 /// 2434 /// \param __a 2435 /// A 64-bit integer vector containing one of the source operands. 2436 /// \param __b 2437 /// A 64-bit integer vector containing one of the source operands. 2438 /// \returns A 64-bit integer vector containing the products of both operands. 2439 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 2440 _mm_mulhi_pu16(__m64 __a, __m64 __b) 2441 { 2442 return (__m64)__builtin_ia32_pmulhuw((__v4hi)__a, (__v4hi)__b); 2443 } 2444 2445 /// Shuffles the 4 16-bit integers from a 64-bit integer vector to the 2446 /// destination, as specified by the immediate value operand. 2447 /// 2448 /// \headerfile <x86intrin.h> 2449 /// 2450 /// \code 2451 /// __m64 _mm_shuffle_pi16(__m64 a, const int n); 2452 /// \endcode 2453 /// 2454 /// This intrinsic corresponds to the <c> PSHUFW </c> instruction. 2455 /// 2456 /// \param a 2457 /// A 64-bit integer vector containing the values to be shuffled. 2458 /// \param n 2459 /// An immediate value containing an 8-bit value specifying which elements to 2460 /// copy from \a a. The destinations within the 64-bit destination are 2461 /// assigned values as follows: \n 2462 /// Bits [1:0] are used to assign values to bits [15:0] in the 2463 /// destination. \n 2464 /// Bits [3:2] are used to assign values to bits [31:16] in the 2465 /// destination. \n 2466 /// Bits [5:4] are used to assign values to bits [47:32] in the 2467 /// destination. \n 2468 /// Bits [7:6] are used to assign values to bits [63:48] in the 2469 /// destination. \n 2470 /// Bit value assignments: \n 2471 /// 00: assigned from bits [15:0] of \a a. \n 2472 /// 01: assigned from bits [31:16] of \a a. \n 2473 /// 10: assigned from bits [47:32] of \a a. \n 2474 /// 11: assigned from bits [63:48] of \a a. \n 2475 /// Note: To generate a mask, you can use the \c _MM_SHUFFLE macro. 2476 /// <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form 2477 /// <c>[b6, b4, b2, b0]</c>. 2478 /// \returns A 64-bit integer vector containing the shuffled values. 2479 #define _mm_shuffle_pi16(a, n) \ 2480 ((__m64)__builtin_ia32_pshufw((__v4hi)(__m64)(a), (n))) 2481 2482 /// Conditionally copies the values from each 8-bit element in the first 2483 /// 64-bit integer vector operand to the specified memory location, as 2484 /// specified by the most significant bit in the corresponding element in the 2485 /// second 64-bit integer vector operand. 2486 /// 2487 /// To minimize caching, the data is flagged as non-temporal 2488 /// (unlikely to be used again soon). 2489 /// 2490 /// \headerfile <x86intrin.h> 2491 /// 2492 /// This intrinsic corresponds to the <c> MASKMOVQ </c> instruction. 2493 /// 2494 /// \param __d 2495 /// A 64-bit integer vector containing the values with elements to be copied. 2496 /// \param __n 2497 /// A 64-bit integer vector operand. The most significant bit from each 8-bit 2498 /// element determines whether the corresponding element in operand \a __d 2499 /// is copied. If the most significant bit of a given element is 1, the 2500 /// corresponding element in operand \a __d is copied. 2501 /// \param __p 2502 /// A pointer to a 64-bit memory location that will receive the conditionally 2503 /// copied integer values. The address of the memory location does not have 2504 /// to be aligned. 2505 static __inline__ void __DEFAULT_FN_ATTRS_MMX 2506 _mm_maskmove_si64(__m64 __d, __m64 __n, char *__p) 2507 { 2508 __builtin_ia32_maskmovq((__v8qi)__d, (__v8qi)__n, __p); 2509 } 2510 2511 /// Computes the rounded averages of the packed unsigned 8-bit integer 2512 /// values and writes the averages to the corresponding bits in the 2513 /// destination. 2514 /// 2515 /// \headerfile <x86intrin.h> 2516 /// 2517 /// This intrinsic corresponds to the <c> PAVGB </c> instruction. 2518 /// 2519 /// \param __a 2520 /// A 64-bit integer vector containing one of the source operands. 2521 /// \param __b 2522 /// A 64-bit integer vector containing one of the source operands. 2523 /// \returns A 64-bit integer vector containing the averages of both operands. 2524 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 2525 _mm_avg_pu8(__m64 __a, __m64 __b) 2526 { 2527 return (__m64)__builtin_ia32_pavgb((__v8qi)__a, (__v8qi)__b); 2528 } 2529 2530 /// Computes the rounded averages of the packed unsigned 16-bit integer 2531 /// values and writes the averages to the corresponding bits in the 2532 /// destination. 2533 /// 2534 /// \headerfile <x86intrin.h> 2535 /// 2536 /// This intrinsic corresponds to the <c> PAVGW </c> instruction. 2537 /// 2538 /// \param __a 2539 /// A 64-bit integer vector containing one of the source operands. 2540 /// \param __b 2541 /// A 64-bit integer vector containing one of the source operands. 2542 /// \returns A 64-bit integer vector containing the averages of both operands. 2543 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 2544 _mm_avg_pu16(__m64 __a, __m64 __b) 2545 { 2546 return (__m64)__builtin_ia32_pavgw((__v4hi)__a, (__v4hi)__b); 2547 } 2548 2549 /// Subtracts the corresponding 8-bit unsigned integer values of the two 2550 /// 64-bit vector operands and computes the absolute value for each of the 2551 /// difference. Then sum of the 8 absolute differences is written to the 2552 /// bits [15:0] of the destination; the remaining bits [63:16] are cleared. 2553 /// 2554 /// \headerfile <x86intrin.h> 2555 /// 2556 /// This intrinsic corresponds to the <c> PSADBW </c> instruction. 2557 /// 2558 /// \param __a 2559 /// A 64-bit integer vector containing one of the source operands. 2560 /// \param __b 2561 /// A 64-bit integer vector containing one of the source operands. 2562 /// \returns A 64-bit integer vector whose lower 16 bits contain the sums of the 2563 /// sets of absolute differences between both operands. The upper bits are 2564 /// cleared. 2565 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 2566 _mm_sad_pu8(__m64 __a, __m64 __b) 2567 { 2568 return (__m64)__builtin_ia32_psadbw((__v8qi)__a, (__v8qi)__b); 2569 } 2570 2571 #if defined(__cplusplus) 2572 extern "C" { 2573 #endif 2574 2575 /// Returns the contents of the MXCSR register as a 32-bit unsigned 2576 /// integer value. 2577 /// 2578 /// There are several groups of macros associated with this 2579 /// intrinsic, including: 2580 /// <ul> 2581 /// <li> 2582 /// For checking exception states: _MM_EXCEPT_INVALID, _MM_EXCEPT_DIV_ZERO, 2583 /// _MM_EXCEPT_DENORM, _MM_EXCEPT_OVERFLOW, _MM_EXCEPT_UNDERFLOW, 2584 /// _MM_EXCEPT_INEXACT. There is a convenience wrapper 2585 /// _MM_GET_EXCEPTION_STATE(). 2586 /// </li> 2587 /// <li> 2588 /// For checking exception masks: _MM_MASK_UNDERFLOW, _MM_MASK_OVERFLOW, 2589 /// _MM_MASK_INVALID, _MM_MASK_DENORM, _MM_MASK_DIV_ZERO, _MM_MASK_INEXACT. 2590 /// There is a convenience wrapper _MM_GET_EXCEPTION_MASK(). 2591 /// </li> 2592 /// <li> 2593 /// For checking rounding modes: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, 2594 /// _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO. There is a convenience wrapper 2595 /// _MM_GET_ROUNDING_MODE(). 2596 /// </li> 2597 /// <li> 2598 /// For checking flush-to-zero mode: _MM_FLUSH_ZERO_ON, _MM_FLUSH_ZERO_OFF. 2599 /// There is a convenience wrapper _MM_GET_FLUSH_ZERO_MODE(). 2600 /// </li> 2601 /// <li> 2602 /// For checking denormals-are-zero mode: _MM_DENORMALS_ZERO_ON, 2603 /// _MM_DENORMALS_ZERO_OFF. There is a convenience wrapper 2604 /// _MM_GET_DENORMALS_ZERO_MODE(). 2605 /// </li> 2606 /// </ul> 2607 /// 2608 /// For example, the following expression checks if an overflow exception has 2609 /// occurred: 2610 /// \code 2611 /// ( _mm_getcsr() & _MM_EXCEPT_OVERFLOW ) 2612 /// \endcode 2613 /// 2614 /// The following expression gets the current rounding mode: 2615 /// \code 2616 /// _MM_GET_ROUNDING_MODE() 2617 /// \endcode 2618 /// 2619 /// \headerfile <x86intrin.h> 2620 /// 2621 /// This intrinsic corresponds to the <c> VSTMXCSR / STMXCSR </c> instruction. 2622 /// 2623 /// \returns A 32-bit unsigned integer containing the contents of the MXCSR 2624 /// register. 2625 unsigned int _mm_getcsr(void); 2626 2627 /// Sets the MXCSR register with the 32-bit unsigned integer value. 2628 /// 2629 /// There are several groups of macros associated with this intrinsic, 2630 /// including: 2631 /// <ul> 2632 /// <li> 2633 /// For setting exception states: _MM_EXCEPT_INVALID, _MM_EXCEPT_DIV_ZERO, 2634 /// _MM_EXCEPT_DENORM, _MM_EXCEPT_OVERFLOW, _MM_EXCEPT_UNDERFLOW, 2635 /// _MM_EXCEPT_INEXACT. There is a convenience wrapper 2636 /// _MM_SET_EXCEPTION_STATE(x) where x is one of these macros. 2637 /// </li> 2638 /// <li> 2639 /// For setting exception masks: _MM_MASK_UNDERFLOW, _MM_MASK_OVERFLOW, 2640 /// _MM_MASK_INVALID, _MM_MASK_DENORM, _MM_MASK_DIV_ZERO, _MM_MASK_INEXACT. 2641 /// There is a convenience wrapper _MM_SET_EXCEPTION_MASK(x) where x is one 2642 /// of these macros. 2643 /// </li> 2644 /// <li> 2645 /// For setting rounding modes: _MM_ROUND_NEAREST, _MM_ROUND_DOWN, 2646 /// _MM_ROUND_UP, _MM_ROUND_TOWARD_ZERO. There is a convenience wrapper 2647 /// _MM_SET_ROUNDING_MODE(x) where x is one of these macros. 2648 /// </li> 2649 /// <li> 2650 /// For setting flush-to-zero mode: _MM_FLUSH_ZERO_ON, _MM_FLUSH_ZERO_OFF. 2651 /// There is a convenience wrapper _MM_SET_FLUSH_ZERO_MODE(x) where x is 2652 /// one of these macros. 2653 /// </li> 2654 /// <li> 2655 /// For setting denormals-are-zero mode: _MM_DENORMALS_ZERO_ON, 2656 /// _MM_DENORMALS_ZERO_OFF. There is a convenience wrapper 2657 /// _MM_SET_DENORMALS_ZERO_MODE(x) where x is one of these macros. 2658 /// </li> 2659 /// </ul> 2660 /// 2661 /// For example, the following expression causes subsequent floating-point 2662 /// operations to round up: 2663 /// _mm_setcsr(_mm_getcsr() | _MM_ROUND_UP) 2664 /// 2665 /// The following example sets the DAZ and FTZ flags: 2666 /// \code 2667 /// void setFlags() { 2668 /// _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON); 2669 /// _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON); 2670 /// } 2671 /// \endcode 2672 /// 2673 /// \headerfile <x86intrin.h> 2674 /// 2675 /// This intrinsic corresponds to the <c> VLDMXCSR / LDMXCSR </c> instruction. 2676 /// 2677 /// \param __i 2678 /// A 32-bit unsigned integer value to be written to the MXCSR register. 2679 void _mm_setcsr(unsigned int __i); 2680 2681 #if defined(__cplusplus) 2682 } // extern "C" 2683 #endif 2684 2685 /// Selects 4 float values from the 128-bit operands of [4 x float], as 2686 /// specified by the immediate value operand. 2687 /// 2688 /// \headerfile <x86intrin.h> 2689 /// 2690 /// \code 2691 /// __m128 _mm_shuffle_ps(__m128 a, __m128 b, const int mask); 2692 /// \endcode 2693 /// 2694 /// This intrinsic corresponds to the <c> VSHUFPS / SHUFPS </c> instruction. 2695 /// 2696 /// \param a 2697 /// A 128-bit vector of [4 x float]. 2698 /// \param b 2699 /// A 128-bit vector of [4 x float]. 2700 /// \param mask 2701 /// An immediate value containing an 8-bit value specifying which elements to 2702 /// copy from \a a and \a b. \n 2703 /// Bits [3:0] specify the values copied from operand \a a. \n 2704 /// Bits [7:4] specify the values copied from operand \a b. \n 2705 /// The destinations within the 128-bit destination are assigned values as 2706 /// follows: \n 2707 /// Bits [1:0] are used to assign values to bits [31:0] in the 2708 /// destination. \n 2709 /// Bits [3:2] are used to assign values to bits [63:32] in the 2710 /// destination. \n 2711 /// Bits [5:4] are used to assign values to bits [95:64] in the 2712 /// destination. \n 2713 /// Bits [7:6] are used to assign values to bits [127:96] in the 2714 /// destination. \n 2715 /// Bit value assignments: \n 2716 /// 00: Bits [31:0] copied from the specified operand. \n 2717 /// 01: Bits [63:32] copied from the specified operand. \n 2718 /// 10: Bits [95:64] copied from the specified operand. \n 2719 /// 11: Bits [127:96] copied from the specified operand. \n 2720 /// Note: To generate a mask, you can use the \c _MM_SHUFFLE macro. 2721 /// <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form 2722 /// <c>[b6, b4, b2, b0]</c>. 2723 /// \returns A 128-bit vector of [4 x float] containing the shuffled values. 2724 #define _mm_shuffle_ps(a, b, mask) \ 2725 ((__m128)__builtin_ia32_shufps((__v4sf)(__m128)(a), (__v4sf)(__m128)(b), \ 2726 (int)(mask))) 2727 2728 /// Unpacks the high-order (index 2,3) values from two 128-bit vectors of 2729 /// [4 x float] and interleaves them into a 128-bit vector of [4 x float]. 2730 /// 2731 /// \headerfile <x86intrin.h> 2732 /// 2733 /// This intrinsic corresponds to the <c> VUNPCKHPS / UNPCKHPS </c> instruction. 2734 /// 2735 /// \param __a 2736 /// A 128-bit vector of [4 x float]. \n 2737 /// Bits [95:64] are written to bits [31:0] of the destination. \n 2738 /// Bits [127:96] are written to bits [95:64] of the destination. 2739 /// \param __b 2740 /// A 128-bit vector of [4 x float]. 2741 /// Bits [95:64] are written to bits [63:32] of the destination. \n 2742 /// Bits [127:96] are written to bits [127:96] of the destination. 2743 /// \returns A 128-bit vector of [4 x float] containing the interleaved values. 2744 static __inline__ __m128 __DEFAULT_FN_ATTRS 2745 _mm_unpackhi_ps(__m128 __a, __m128 __b) 2746 { 2747 return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 2, 6, 3, 7); 2748 } 2749 2750 /// Unpacks the low-order (index 0,1) values from two 128-bit vectors of 2751 /// [4 x float] and interleaves them into a 128-bit vector of [4 x float]. 2752 /// 2753 /// \headerfile <x86intrin.h> 2754 /// 2755 /// This intrinsic corresponds to the <c> VUNPCKLPS / UNPCKLPS </c> instruction. 2756 /// 2757 /// \param __a 2758 /// A 128-bit vector of [4 x float]. \n 2759 /// Bits [31:0] are written to bits [31:0] of the destination. \n 2760 /// Bits [63:32] are written to bits [95:64] of the destination. 2761 /// \param __b 2762 /// A 128-bit vector of [4 x float]. \n 2763 /// Bits [31:0] are written to bits [63:32] of the destination. \n 2764 /// Bits [63:32] are written to bits [127:96] of the destination. 2765 /// \returns A 128-bit vector of [4 x float] containing the interleaved values. 2766 static __inline__ __m128 __DEFAULT_FN_ATTRS 2767 _mm_unpacklo_ps(__m128 __a, __m128 __b) 2768 { 2769 return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 0, 4, 1, 5); 2770 } 2771 2772 /// Constructs a 128-bit floating-point vector of [4 x float]. The lower 2773 /// 32 bits are set to the lower 32 bits of the second parameter. The upper 2774 /// 96 bits are set to the upper 96 bits of the first parameter. 2775 /// 2776 /// \headerfile <x86intrin.h> 2777 /// 2778 /// This intrinsic corresponds to the <c> VBLENDPS / BLENDPS / MOVSS </c> 2779 /// instruction. 2780 /// 2781 /// \param __a 2782 /// A 128-bit floating-point vector of [4 x float]. The upper 96 bits are 2783 /// written to the upper 96 bits of the result. 2784 /// \param __b 2785 /// A 128-bit floating-point vector of [4 x float]. The lower 32 bits are 2786 /// written to the lower 32 bits of the result. 2787 /// \returns A 128-bit floating-point vector of [4 x float]. 2788 static __inline__ __m128 __DEFAULT_FN_ATTRS 2789 _mm_move_ss(__m128 __a, __m128 __b) 2790 { 2791 __a[0] = __b[0]; 2792 return __a; 2793 } 2794 2795 /// Constructs a 128-bit floating-point vector of [4 x float]. The lower 2796 /// 64 bits are set to the upper 64 bits of the second parameter. The upper 2797 /// 64 bits are set to the upper 64 bits of the first parameter. 2798 /// 2799 /// \headerfile <x86intrin.h> 2800 /// 2801 /// This intrinsic corresponds to the <c> VUNPCKHPD / UNPCKHPD </c> instruction. 2802 /// 2803 /// \param __a 2804 /// A 128-bit floating-point vector of [4 x float]. The upper 64 bits are 2805 /// written to the upper 64 bits of the result. 2806 /// \param __b 2807 /// A 128-bit floating-point vector of [4 x float]. The upper 64 bits are 2808 /// written to the lower 64 bits of the result. 2809 /// \returns A 128-bit floating-point vector of [4 x float]. 2810 static __inline__ __m128 __DEFAULT_FN_ATTRS 2811 _mm_movehl_ps(__m128 __a, __m128 __b) 2812 { 2813 return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 6, 7, 2, 3); 2814 } 2815 2816 /// Constructs a 128-bit floating-point vector of [4 x float]. The lower 2817 /// 64 bits are set to the lower 64 bits of the first parameter. The upper 2818 /// 64 bits are set to the lower 64 bits of the second parameter. 2819 /// 2820 /// \headerfile <x86intrin.h> 2821 /// 2822 /// This intrinsic corresponds to the <c> VUNPCKLPD / UNPCKLPD </c> instruction. 2823 /// 2824 /// \param __a 2825 /// A 128-bit floating-point vector of [4 x float]. The lower 64 bits are 2826 /// written to the lower 64 bits of the result. 2827 /// \param __b 2828 /// A 128-bit floating-point vector of [4 x float]. The lower 64 bits are 2829 /// written to the upper 64 bits of the result. 2830 /// \returns A 128-bit floating-point vector of [4 x float]. 2831 static __inline__ __m128 __DEFAULT_FN_ATTRS 2832 _mm_movelh_ps(__m128 __a, __m128 __b) 2833 { 2834 return __builtin_shufflevector((__v4sf)__a, (__v4sf)__b, 0, 1, 4, 5); 2835 } 2836 2837 /// Converts a 64-bit vector of [4 x i16] into a 128-bit vector of [4 x 2838 /// float]. 2839 /// 2840 /// \headerfile <x86intrin.h> 2841 /// 2842 /// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction. 2843 /// 2844 /// \param __a 2845 /// A 64-bit vector of [4 x i16]. The elements of the destination are copied 2846 /// from the corresponding elements in this operand. 2847 /// \returns A 128-bit vector of [4 x float] containing the copied and converted 2848 /// values from the operand. 2849 static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX 2850 _mm_cvtpi16_ps(__m64 __a) 2851 { 2852 __m64 __b, __c; 2853 __m128 __r; 2854 2855 __b = _mm_setzero_si64(); 2856 __b = _mm_cmpgt_pi16(__b, __a); 2857 __c = _mm_unpackhi_pi16(__a, __b); 2858 __r = _mm_setzero_ps(); 2859 __r = _mm_cvtpi32_ps(__r, __c); 2860 __r = _mm_movelh_ps(__r, __r); 2861 __c = _mm_unpacklo_pi16(__a, __b); 2862 __r = _mm_cvtpi32_ps(__r, __c); 2863 2864 return __r; 2865 } 2866 2867 /// Converts a 64-bit vector of 16-bit unsigned integer values into a 2868 /// 128-bit vector of [4 x float]. 2869 /// 2870 /// \headerfile <x86intrin.h> 2871 /// 2872 /// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction. 2873 /// 2874 /// \param __a 2875 /// A 64-bit vector of 16-bit unsigned integer values. The elements of the 2876 /// destination are copied from the corresponding elements in this operand. 2877 /// \returns A 128-bit vector of [4 x float] containing the copied and converted 2878 /// values from the operand. 2879 static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX 2880 _mm_cvtpu16_ps(__m64 __a) 2881 { 2882 __m64 __b, __c; 2883 __m128 __r; 2884 2885 __b = _mm_setzero_si64(); 2886 __c = _mm_unpackhi_pi16(__a, __b); 2887 __r = _mm_setzero_ps(); 2888 __r = _mm_cvtpi32_ps(__r, __c); 2889 __r = _mm_movelh_ps(__r, __r); 2890 __c = _mm_unpacklo_pi16(__a, __b); 2891 __r = _mm_cvtpi32_ps(__r, __c); 2892 2893 return __r; 2894 } 2895 2896 /// Converts the lower four 8-bit values from a 64-bit vector of [8 x i8] 2897 /// into a 128-bit vector of [4 x float]. 2898 /// 2899 /// \headerfile <x86intrin.h> 2900 /// 2901 /// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction. 2902 /// 2903 /// \param __a 2904 /// A 64-bit vector of [8 x i8]. The elements of the destination are copied 2905 /// from the corresponding lower 4 elements in this operand. 2906 /// \returns A 128-bit vector of [4 x float] containing the copied and converted 2907 /// values from the operand. 2908 static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX 2909 _mm_cvtpi8_ps(__m64 __a) 2910 { 2911 __m64 __b; 2912 2913 __b = _mm_setzero_si64(); 2914 __b = _mm_cmpgt_pi8(__b, __a); 2915 __b = _mm_unpacklo_pi8(__a, __b); 2916 2917 return _mm_cvtpi16_ps(__b); 2918 } 2919 2920 /// Converts the lower four unsigned 8-bit integer values from a 64-bit 2921 /// vector of [8 x u8] into a 128-bit vector of [4 x float]. 2922 /// 2923 /// \headerfile <x86intrin.h> 2924 /// 2925 /// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction. 2926 /// 2927 /// \param __a 2928 /// A 64-bit vector of unsigned 8-bit integer values. The elements of the 2929 /// destination are copied from the corresponding lower 4 elements in this 2930 /// operand. 2931 /// \returns A 128-bit vector of [4 x float] containing the copied and converted 2932 /// values from the source operand. 2933 static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX 2934 _mm_cvtpu8_ps(__m64 __a) 2935 { 2936 __m64 __b; 2937 2938 __b = _mm_setzero_si64(); 2939 __b = _mm_unpacklo_pi8(__a, __b); 2940 2941 return _mm_cvtpi16_ps(__b); 2942 } 2943 2944 /// Converts the two 32-bit signed integer values from each 64-bit vector 2945 /// operand of [2 x i32] into a 128-bit vector of [4 x float]. 2946 /// 2947 /// \headerfile <x86intrin.h> 2948 /// 2949 /// This intrinsic corresponds to the <c> CVTPI2PS + COMPOSITE </c> instruction. 2950 /// 2951 /// \param __a 2952 /// A 64-bit vector of [2 x i32]. The lower elements of the destination are 2953 /// copied from the elements in this operand. 2954 /// \param __b 2955 /// A 64-bit vector of [2 x i32]. The upper elements of the destination are 2956 /// copied from the elements in this operand. 2957 /// \returns A 128-bit vector of [4 x float] whose lower 64 bits contain the 2958 /// copied and converted values from the first operand. The upper 64 bits 2959 /// contain the copied and converted values from the second operand. 2960 static __inline__ __m128 __DEFAULT_FN_ATTRS_MMX 2961 _mm_cvtpi32x2_ps(__m64 __a, __m64 __b) 2962 { 2963 __m128 __c; 2964 2965 __c = _mm_setzero_ps(); 2966 __c = _mm_cvtpi32_ps(__c, __b); 2967 __c = _mm_movelh_ps(__c, __c); 2968 2969 return _mm_cvtpi32_ps(__c, __a); 2970 } 2971 2972 /// Converts each single-precision floating-point element of a 128-bit 2973 /// floating-point vector of [4 x float] into a 16-bit signed integer, and 2974 /// packs the results into a 64-bit integer vector of [4 x i16]. 2975 /// 2976 /// If the floating-point element is NaN or infinity, or if the 2977 /// floating-point element is greater than 0x7FFFFFFF or less than -0x8000, 2978 /// it is converted to 0x8000. Otherwise if the floating-point element is 2979 /// greater than 0x7FFF, it is converted to 0x7FFF. 2980 /// 2981 /// \headerfile <x86intrin.h> 2982 /// 2983 /// This intrinsic corresponds to the <c> CVTPS2PI + COMPOSITE </c> instruction. 2984 /// 2985 /// \param __a 2986 /// A 128-bit floating-point vector of [4 x float]. 2987 /// \returns A 64-bit integer vector of [4 x i16] containing the converted 2988 /// values. 2989 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 2990 _mm_cvtps_pi16(__m128 __a) 2991 { 2992 __m64 __b, __c; 2993 2994 __b = _mm_cvtps_pi32(__a); 2995 __a = _mm_movehl_ps(__a, __a); 2996 __c = _mm_cvtps_pi32(__a); 2997 2998 return _mm_packs_pi32(__b, __c); 2999 } 3000 3001 /// Converts each single-precision floating-point element of a 128-bit 3002 /// floating-point vector of [4 x float] into an 8-bit signed integer, and 3003 /// packs the results into the lower 32 bits of a 64-bit integer vector of 3004 /// [8 x i8]. The upper 32 bits of the vector are set to 0. 3005 /// 3006 /// If the floating-point element is NaN or infinity, or if the 3007 /// floating-point element is greater than 0x7FFFFFFF or less than -0x80, it 3008 /// is converted to 0x80. Otherwise if the floating-point element is greater 3009 /// than 0x7F, it is converted to 0x7F. 3010 /// 3011 /// \headerfile <x86intrin.h> 3012 /// 3013 /// This intrinsic corresponds to the <c> CVTPS2PI + COMPOSITE </c> instruction. 3014 /// 3015 /// \param __a 3016 /// 128-bit floating-point vector of [4 x float]. 3017 /// \returns A 64-bit integer vector of [8 x i8]. The lower 32 bits contain the 3018 /// converted values and the uppper 32 bits are set to zero. 3019 static __inline__ __m64 __DEFAULT_FN_ATTRS_MMX 3020 _mm_cvtps_pi8(__m128 __a) 3021 { 3022 __m64 __b, __c; 3023 3024 __b = _mm_cvtps_pi16(__a); 3025 __c = _mm_setzero_si64(); 3026 3027 return _mm_packs_pi16(__b, __c); 3028 } 3029 3030 /// Extracts the sign bits from each single-precision floating-point 3031 /// element of a 128-bit floating-point vector of [4 x float] and returns the 3032 /// sign bits in bits [0:3] of the result. Bits [31:4] of the result are set 3033 /// to zero. 3034 /// 3035 /// \headerfile <x86intrin.h> 3036 /// 3037 /// This intrinsic corresponds to the <c> VMOVMSKPS / MOVMSKPS </c> instruction. 3038 /// 3039 /// \param __a 3040 /// A 128-bit floating-point vector of [4 x float]. 3041 /// \returns A 32-bit integer value. Bits [3:0] contain the sign bits from each 3042 /// single-precision floating-point element of the parameter. Bits [31:4] are 3043 /// set to zero. 3044 static __inline__ int __DEFAULT_FN_ATTRS 3045 _mm_movemask_ps(__m128 __a) 3046 { 3047 return __builtin_ia32_movmskps((__v4sf)__a); 3048 } 3049 3050 /* Compare */ 3051 #define _CMP_EQ_OQ 0x00 /* Equal (ordered, non-signaling) */ 3052 #define _CMP_LT_OS 0x01 /* Less-than (ordered, signaling) */ 3053 #define _CMP_LE_OS 0x02 /* Less-than-or-equal (ordered, signaling) */ 3054 #define _CMP_UNORD_Q 0x03 /* Unordered (non-signaling) */ 3055 #define _CMP_NEQ_UQ 0x04 /* Not-equal (unordered, non-signaling) */ 3056 #define _CMP_NLT_US 0x05 /* Not-less-than (unordered, signaling) */ 3057 #define _CMP_NLE_US 0x06 /* Not-less-than-or-equal (unordered, signaling) */ 3058 #define _CMP_ORD_Q 0x07 /* Ordered (non-signaling) */ 3059 3060 /// Compares each of the corresponding values of two 128-bit vectors of 3061 /// [4 x float], using the operation specified by the immediate integer 3062 /// operand. 3063 /// 3064 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. 3065 /// If either value in a comparison is NaN, comparisons that are ordered 3066 /// return false, and comparisons that are unordered return true. 3067 /// 3068 /// \headerfile <x86intrin.h> 3069 /// 3070 /// \code 3071 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c); 3072 /// \endcode 3073 /// 3074 /// This intrinsic corresponds to the <c> (V)CMPPS </c> instruction. 3075 /// 3076 /// \param a 3077 /// A 128-bit vector of [4 x float]. 3078 /// \param b 3079 /// A 128-bit vector of [4 x float]. 3080 /// \param c 3081 /// An immediate integer operand, with bits [4:0] specifying which comparison 3082 /// operation to use: \n 3083 /// 0x00: Equal (ordered, non-signaling) \n 3084 /// 0x01: Less-than (ordered, signaling) \n 3085 /// 0x02: Less-than-or-equal (ordered, signaling) \n 3086 /// 0x03: Unordered (non-signaling) \n 3087 /// 0x04: Not-equal (unordered, non-signaling) \n 3088 /// 0x05: Not-less-than (unordered, signaling) \n 3089 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n 3090 /// 0x07: Ordered (non-signaling) \n 3091 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 3092 #define _mm_cmp_ps(a, b, c) \ 3093 ((__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), (__v4sf)(__m128)(b), (c))) 3094 3095 /// Compares each of the corresponding scalar values of two 128-bit 3096 /// vectors of [4 x float], using the operation specified by the immediate 3097 /// integer operand. 3098 /// 3099 /// Each comparison returns 0x0 for false, 0xFFFFFFFF for true. 3100 /// If either value in a comparison is NaN, comparisons that are ordered 3101 /// return false, and comparisons that are unordered return true. 3102 /// 3103 /// \headerfile <x86intrin.h> 3104 /// 3105 /// \code 3106 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c); 3107 /// \endcode 3108 /// 3109 /// This intrinsic corresponds to the <c> (V)CMPSS </c> instruction. 3110 /// 3111 /// \param a 3112 /// A 128-bit vector of [4 x float]. 3113 /// \param b 3114 /// A 128-bit vector of [4 x float]. 3115 /// \param c 3116 /// An immediate integer operand, with bits [4:0] specifying which comparison 3117 /// operation to use: \n 3118 /// 0x00: Equal (ordered, non-signaling) \n 3119 /// 0x01: Less-than (ordered, signaling) \n 3120 /// 0x02: Less-than-or-equal (ordered, signaling) \n 3121 /// 0x03: Unordered (non-signaling) \n 3122 /// 0x04: Not-equal (unordered, non-signaling) \n 3123 /// 0x05: Not-less-than (unordered, signaling) \n 3124 /// 0x06: Not-less-than-or-equal (unordered, signaling) \n 3125 /// 0x07: Ordered (non-signaling) \n 3126 /// \returns A 128-bit vector of [4 x float] containing the comparison results. 3127 #define _mm_cmp_ss(a, b, c) \ 3128 ((__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), (__v4sf)(__m128)(b), (c))) 3129 3130 #define _MM_ALIGN16 __attribute__((aligned(16))) 3131 3132 #define _MM_SHUFFLE(z, y, x, w) (((z) << 6) | ((y) << 4) | ((x) << 2) | (w)) 3133 3134 #define _MM_EXCEPT_INVALID (0x0001U) 3135 #define _MM_EXCEPT_DENORM (0x0002U) 3136 #define _MM_EXCEPT_DIV_ZERO (0x0004U) 3137 #define _MM_EXCEPT_OVERFLOW (0x0008U) 3138 #define _MM_EXCEPT_UNDERFLOW (0x0010U) 3139 #define _MM_EXCEPT_INEXACT (0x0020U) 3140 #define _MM_EXCEPT_MASK (0x003fU) 3141 3142 #define _MM_MASK_INVALID (0x0080U) 3143 #define _MM_MASK_DENORM (0x0100U) 3144 #define _MM_MASK_DIV_ZERO (0x0200U) 3145 #define _MM_MASK_OVERFLOW (0x0400U) 3146 #define _MM_MASK_UNDERFLOW (0x0800U) 3147 #define _MM_MASK_INEXACT (0x1000U) 3148 #define _MM_MASK_MASK (0x1f80U) 3149 3150 #define _MM_ROUND_NEAREST (0x0000U) 3151 #define _MM_ROUND_DOWN (0x2000U) 3152 #define _MM_ROUND_UP (0x4000U) 3153 #define _MM_ROUND_TOWARD_ZERO (0x6000U) 3154 #define _MM_ROUND_MASK (0x6000U) 3155 3156 #define _MM_FLUSH_ZERO_MASK (0x8000U) 3157 #define _MM_FLUSH_ZERO_ON (0x8000U) 3158 #define _MM_FLUSH_ZERO_OFF (0x0000U) 3159 3160 #define _MM_GET_EXCEPTION_MASK() (_mm_getcsr() & _MM_MASK_MASK) 3161 #define _MM_GET_EXCEPTION_STATE() (_mm_getcsr() & _MM_EXCEPT_MASK) 3162 #define _MM_GET_FLUSH_ZERO_MODE() (_mm_getcsr() & _MM_FLUSH_ZERO_MASK) 3163 #define _MM_GET_ROUNDING_MODE() (_mm_getcsr() & _MM_ROUND_MASK) 3164 3165 #define _MM_SET_EXCEPTION_MASK(x) (_mm_setcsr((_mm_getcsr() & ~_MM_MASK_MASK) | (x))) 3166 #define _MM_SET_EXCEPTION_STATE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_EXCEPT_MASK) | (x))) 3167 #define _MM_SET_FLUSH_ZERO_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_FLUSH_ZERO_MASK) | (x))) 3168 #define _MM_SET_ROUNDING_MODE(x) (_mm_setcsr((_mm_getcsr() & ~_MM_ROUND_MASK) | (x))) 3169 3170 #define _MM_TRANSPOSE4_PS(row0, row1, row2, row3) \ 3171 do { \ 3172 __m128 tmp3, tmp2, tmp1, tmp0; \ 3173 tmp0 = _mm_unpacklo_ps((row0), (row1)); \ 3174 tmp2 = _mm_unpacklo_ps((row2), (row3)); \ 3175 tmp1 = _mm_unpackhi_ps((row0), (row1)); \ 3176 tmp3 = _mm_unpackhi_ps((row2), (row3)); \ 3177 (row0) = _mm_movelh_ps(tmp0, tmp2); \ 3178 (row1) = _mm_movehl_ps(tmp2, tmp0); \ 3179 (row2) = _mm_movelh_ps(tmp1, tmp3); \ 3180 (row3) = _mm_movehl_ps(tmp3, tmp1); \ 3181 } while (0) 3182 3183 /* Aliases for compatibility. */ 3184 #define _m_pextrw _mm_extract_pi16 3185 #define _m_pinsrw _mm_insert_pi16 3186 #define _m_pmaxsw _mm_max_pi16 3187 #define _m_pmaxub _mm_max_pu8 3188 #define _m_pminsw _mm_min_pi16 3189 #define _m_pminub _mm_min_pu8 3190 #define _m_pmovmskb _mm_movemask_pi8 3191 #define _m_pmulhuw _mm_mulhi_pu16 3192 #define _m_pshufw _mm_shuffle_pi16 3193 #define _m_maskmovq _mm_maskmove_si64 3194 #define _m_pavgb _mm_avg_pu8 3195 #define _m_pavgw _mm_avg_pu16 3196 #define _m_psadbw _mm_sad_pu8 3197 #define _m_ _mm_ 3198 3199 #undef __DEFAULT_FN_ATTRS 3200 #undef __DEFAULT_FN_ATTRS_MMX 3201 3202 /* Ugly hack for backwards-compatibility (compatible with gcc) */ 3203 #if defined(__SSE2__) && !__building_module(_Builtin_intrinsics) 3204 #include <emmintrin.h> 3205 #endif 3206 3207 #endif /* __XMMINTRIN_H */ 3208