xref: /freebsd/contrib/llvm-project/clang/lib/Headers/keylockerintrin.h (revision 7fdf597e96a02165cfe22ff357b857d5fa15ed8a)
1 /*===----------------- keylockerintrin.h - KL Intrinsics -------------------===
2  *
3  * Permission is hereby granted, free of charge, to any person obtaining a copy
4  * of this software and associated documentation files (the "Software"), to deal
5  * in the Software without restriction, including without limitation the rights
6  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
7  * copies of the Software, and to permit persons to whom the Software is
8  * furnished to do so, subject to the following conditions:
9  *
10  * The above copyright notice and this permission notice shall be included in
11  * all copies or substantial portions of the Software.
12  *
13  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19  * THE SOFTWARE.
20  *
21  *===-----------------------------------------------------------------------===
22  */
23 
24 #ifndef __IMMINTRIN_H
25 #error "Never use <keylockerintrin.h> directly; include <immintrin.h> instead."
26 #endif
27 
28 #ifndef _KEYLOCKERINTRIN_H
29 #define _KEYLOCKERINTRIN_H
30 
31 #if !defined(__SCE__) || __has_feature(modules) || defined(__KL__)
32 
33 /* Define the default attributes for the functions in this file. */
34 #define __DEFAULT_FN_ATTRS \
35   __attribute__((__always_inline__, __nodebug__, __target__("kl"),\
36                  __min_vector_width__(128)))
37 
38 /// Load internal wrapping key from __intkey, __enkey_lo and __enkey_hi. __ctl
39 /// will assigned to EAX, whch specifies the KeySource and whether backing up
40 /// the key is permitted. The 256-bit encryption key is loaded from the two
41 /// explicit operands (__enkey_lo and __enkey_hi). The 128-bit integrity key is
42 /// loaded from the implicit operand XMM0 which assigned by __intkey.
43 ///
44 /// \headerfile <x86intrin.h>
45 ///
46 /// This intrinsic corresponds to the <c> LOADIWKEY </c> instructions.
47 ///
48 /// \code{.operation}
49 /// IF CPL > 0 // LOADKWKEY only allowed at ring 0 (supervisor mode)
50 ///   GP (0)
51 /// FI
52 /// IF “LOADIWKEY exiting” VM execution control set
53 ///   VMexit
54 /// FI
55 /// IF __ctl[4:1] > 1 // Reserved KeySource encoding used
56 ///   GP (0)
57 /// FI
58 /// IF __ctl[31:5] != 0 // Reserved bit in __ctl is set
59 ///   GP (0)
60 /// FI
61 /// IF __ctl[0] AND (CPUID.19H.ECX[0] == 0) // NoBackup is not supported on this part
62 ///   GP (0)
63 /// FI
64 /// IF (__ctl[4:1] == 1) AND (CPUID.19H.ECX[1] == 0) // KeySource of 1 is not supported on this part
65 ///   GP (0)
66 /// FI
67 /// IF (__ctl[4:1] == 0) // KeySource of 0.
68 ///   IWKey.Encryption Key[127:0] := __enkey_hi[127:0]:
69 ///   IWKey.Encryption Key[255:128] := __enkey_lo[127:0]
70 ///   IWKey.IntegrityKey[127:0] := __intkey[127:0]
71 ///   IWKey.NoBackup := __ctl[0]
72 ///   IWKey.KeySource := __ctl[4:1]
73 ///   ZF := 0
74 /// ELSE // KeySource of 1. See RDSEED definition for details of randomness
75 ///   IF HW_NRND_GEN.ready == 1 // Full-entropy random data from RDSEED was received
76 ///     IWKey.Encryption Key[127:0] := __enkey_hi[127:0] XOR HW_NRND_GEN.data[127:0]
77 ///     IWKey.Encryption Key[255:128] := __enkey_lo[127:0] XOR HW_NRND_GEN.data[255:128]
78 ///     IWKey.Encryption Key[255:0] := __enkey_hi[127:0]:__enkey_lo[127:0] XOR HW_NRND_GEN.data[255:0]
79 ///     IWKey.IntegrityKey[127:0] := __intkey[127:0] XOR HW_NRND_GEN.data[383:256]
80 ///     IWKey.NoBackup := __ctl[0]
81 ///     IWKey.KeySource := __ctl[4:1]
82 ///     ZF := 0
83 ///   ELSE // Random data was not returned from RDSEED. IWKey was not loaded
84 ///     ZF := 1
85 ///   FI
86 /// FI
87 /// dst := ZF
88 /// OF := 0
89 /// SF := 0
90 /// AF := 0
91 /// PF := 0
92 /// CF := 0
93 /// \endcode
94 static __inline__ void __DEFAULT_FN_ATTRS
95 _mm_loadiwkey (unsigned int __ctl, __m128i __intkey,
96                __m128i __enkey_lo, __m128i __enkey_hi) {
97   __builtin_ia32_loadiwkey (__intkey, __enkey_lo, __enkey_hi, __ctl);
98 }
99 
100 /// Wrap a 128-bit AES key from __key into a key handle and output in
101 /// ((__m128i*)__h) to ((__m128i*)__h) + 2  and a 32-bit value as return.
102 /// The explicit source operand __htype specifies handle restrictions.
103 ///
104 /// \headerfile <x86intrin.h>
105 ///
106 /// This intrinsic corresponds to the <c> ENCODEKEY128 </c> instructions.
107 ///
108 /// \code{.operation}
109 /// InputKey[127:0] := __key[127:0]
110 /// KeyMetadata[2:0] := __htype[2:0]
111 /// KeyMetadata[23:3] := 0 // Reserved for future usage
112 /// KeyMetadata[27:24] := 0 // KeyType is AES-128 (value of 0)
113 /// KeyMetadata[127:28] := 0 // Reserved for future usage
114 /// Handle[383:0] := WrapKey128(InputKey[127:0], KeyMetadata[127:0],
115 ///                  IWKey.Integrity Key[127:0], IWKey.Encryption Key[255:0])
116 /// dst[0] := IWKey.NoBackup
117 /// dst[4:1] := IWKey.KeySource[3:0]
118 /// dst[31:5] := 0
119 /// MEM[__h+127:__h] := Handle[127:0]   // AAD
120 /// MEM[__h+255:__h+128] := Handle[255:128] // Integrity Tag
121 /// MEM[__h+383:__h+256] := Handle[383:256] // CipherText
122 /// OF := 0
123 /// SF := 0
124 /// ZF := 0
125 /// AF := 0
126 /// PF := 0
127 /// CF := 0
128 /// \endcode
129 static __inline__ unsigned int __DEFAULT_FN_ATTRS
130 _mm_encodekey128_u32(unsigned int __htype, __m128i __key, void *__h) {
131   return __builtin_ia32_encodekey128_u32(__htype, (__v2di)__key, __h);
132 }
133 
134 /// Wrap a 256-bit AES key from __key_hi:__key_lo into a key handle, then
135 /// output handle in ((__m128i*)__h) to ((__m128i*)__h) + 3 and
136 /// a 32-bit value as return.
137 /// The explicit source operand __htype specifies handle restrictions.
138 ///
139 /// \headerfile <x86intrin.h>
140 ///
141 /// This intrinsic corresponds to the <c> ENCODEKEY256 </c> instructions.
142 ///
143 /// \code{.operation}
144 /// InputKey[127:0] := __key_lo[127:0]
145 /// InputKey[255:128] := __key_hi[255:128]
146 /// KeyMetadata[2:0] := __htype[2:0]
147 /// KeyMetadata[23:3] := 0 // Reserved for future usage
148 /// KeyMetadata[27:24] := 1 // KeyType is AES-256 (value of 1)
149 /// KeyMetadata[127:28] := 0 // Reserved for future usage
150 /// Handle[511:0] := WrapKey256(InputKey[255:0], KeyMetadata[127:0],
151 ///                  IWKey.Integrity Key[127:0], IWKey.Encryption Key[255:0])
152 /// dst[0] := IWKey.NoBackup
153 /// dst[4:1] := IWKey.KeySource[3:0]
154 /// dst[31:5] := 0
155 /// MEM[__h+127:__h]   := Handle[127:0] // AAD
156 /// MEM[__h+255:__h+128] := Handle[255:128] // Tag
157 /// MEM[__h+383:__h+256] := Handle[383:256] // CipherText[127:0]
158 /// MEM[__h+511:__h+384] := Handle[511:384] // CipherText[255:128]
159 /// OF := 0
160 /// SF := 0
161 /// ZF := 0
162 /// AF := 0
163 /// PF := 0
164 /// CF := 0
165 /// \endcode
166 static __inline__ unsigned int __DEFAULT_FN_ATTRS
167 _mm_encodekey256_u32(unsigned int __htype, __m128i __key_lo, __m128i __key_hi,
168                      void *__h) {
169   return __builtin_ia32_encodekey256_u32(__htype, (__v2di)__key_lo,
170                                          (__v2di)__key_hi, __h);
171 }
172 
173 /// The AESENC128KL performs 10 rounds of AES to encrypt the __idata using
174 /// the 128-bit key in the handle from the __h. It stores the result in the
175 /// __odata. And return the affected ZF flag status.
176 ///
177 /// \headerfile <x86intrin.h>
178 ///
179 /// This intrinsic corresponds to the <c> AESENC128KL </c> instructions.
180 ///
181 /// \code{.operation}
182 /// Handle[383:0] := MEM[__h+383:__h] // Load is not guaranteed to be atomic.
183 /// IllegalHandle := ( HandleReservedBitSet (Handle[383:0]) ||
184 ///                    (Handle[127:0] AND (CPL > 0)) ||
185 ///                    Handle[383:256] ||
186 ///                    HandleKeyType (Handle[383:0]) != HANDLE_KEY_TYPE_AES128 )
187 /// IF (IllegalHandle)
188 ///   ZF := 1
189 /// ELSE
190 ///   (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey)
191 ///   IF (Authentic == 0)
192 ///     ZF := 1
193 ///   ELSE
194 ///     MEM[__odata+127:__odata] := AES128Encrypt (__idata[127:0], UnwrappedKey)
195 ///     ZF := 0
196 ///   FI
197 /// FI
198 /// dst := ZF
199 /// OF := 0
200 /// SF := 0
201 /// AF := 0
202 /// PF := 0
203 /// CF := 0
204 /// \endcode
205 static __inline__ unsigned char __DEFAULT_FN_ATTRS
206 _mm_aesenc128kl_u8(__m128i* __odata, __m128i __idata, const void *__h) {
207   return __builtin_ia32_aesenc128kl_u8((__v2di *)__odata, (__v2di)__idata, __h);
208 }
209 
210 /// The AESENC256KL performs 14 rounds of AES to encrypt the __idata using
211 /// the 256-bit key in the handle from the __h. It stores the result in the
212 /// __odata. And return the affected ZF flag status.
213 ///
214 /// \headerfile <x86intrin.h>
215 ///
216 /// This intrinsic corresponds to the <c> AESENC256KL </c> instructions.
217 ///
218 /// \code{.operation}
219 /// Handle[511:0] := MEM[__h+511:__h] // Load is not guaranteed to be atomic.
220 /// IllegalHandle := ( HandleReservedBitSet (Handle[511:0]) ||
221 ///                    (Handle[127:0] AND (CPL > 0)) ||
222 ///                    Handle[255:128] ||
223 ///                    HandleKeyType (Handle[511:0]) != HANDLE_KEY_TYPE_AES256 )
224 /// IF (IllegalHandle)
225 ///   ZF := 1
226 ///   MEM[__odata+127:__odata] := 0
227 /// ELSE
228 ///   (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey)
229 ///   IF (Authentic == 0)
230 ///     ZF := 1
231 ///     MEM[__odata+127:__odata] := 0
232 ///   ELSE
233 ///     MEM[__odata+127:__odata] := AES256Encrypt (__idata[127:0], UnwrappedKey)
234 ///     ZF := 0
235 ///   FI
236 /// FI
237 /// dst := ZF
238 /// OF := 0
239 /// SF := 0
240 /// AF := 0
241 /// PF := 0
242 /// CF := 0
243 /// \endcode
244 static __inline__ unsigned char __DEFAULT_FN_ATTRS
245 _mm_aesenc256kl_u8(__m128i* __odata, __m128i __idata, const void *__h) {
246   return __builtin_ia32_aesenc256kl_u8((__v2di *)__odata, (__v2di)__idata, __h);
247 }
248 
249 /// The AESDEC128KL performs 10 rounds of AES to decrypt the __idata using
250 /// the 128-bit key in the handle from the __h. It stores the result in the
251 /// __odata. And return the affected ZF flag status.
252 ///
253 /// \headerfile <x86intrin.h>
254 ///
255 /// This intrinsic corresponds to the <c> AESDEC128KL </c> instructions.
256 ///
257 /// \code{.operation}
258 /// Handle[383:0] := MEM[__h+383:__h] // Load is not guaranteed to be atomic.
259 /// IllegalHandle := (HandleReservedBitSet (Handle[383:0]) ||
260 ///                  (Handle[127:0] AND (CPL > 0)) ||
261 ///                  Handle[383:256] ||
262 ///                  HandleKeyType (Handle[383:0]) != HANDLE_KEY_TYPE_AES128)
263 /// IF (IllegalHandle)
264 ///   ZF := 1
265 ///   MEM[__odata+127:__odata] := 0
266 /// ELSE
267 ///   (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey)
268 ///   IF (Authentic == 0)
269 ///     ZF := 1
270 ///     MEM[__odata+127:__odata] := 0
271 ///   ELSE
272 ///     MEM[__odata+127:__odata] := AES128Decrypt (__idata[127:0], UnwrappedKey)
273 ///     ZF := 0
274 ///   FI
275 /// FI
276 /// dst := ZF
277 /// OF := 0
278 /// SF := 0
279 /// AF := 0
280 /// PF := 0
281 /// CF := 0
282 /// \endcode
283 static __inline__ unsigned char __DEFAULT_FN_ATTRS
284 _mm_aesdec128kl_u8(__m128i* __odata, __m128i __idata, const void *__h) {
285   return __builtin_ia32_aesdec128kl_u8((__v2di *)__odata, (__v2di)__idata, __h);
286 }
287 
288 /// The AESDEC256KL performs 10 rounds of AES to decrypt the __idata using
289 /// the 256-bit key in the handle from the __h. It stores the result in the
290 /// __odata. And return the affected ZF flag status.
291 ///
292 /// \headerfile <x86intrin.h>
293 ///
294 /// This intrinsic corresponds to the <c> AESDEC256KL </c> instructions.
295 ///
296 /// \code{.operation}
297 /// Handle[511:0] := MEM[__h+511:__h]
298 /// IllegalHandle := (HandleReservedBitSet (Handle[511:0]) ||
299 ///                   (Handle[127:0] AND (CPL > 0)) ||
300 ///                   Handle[383:256] ||
301 ///                   HandleKeyType (Handle[511:0]) != HANDLE_KEY_TYPE_AES256)
302 /// IF (IllegalHandle)
303 ///   ZF := 1
304 ///   MEM[__odata+127:__odata] := 0
305 /// ELSE
306 ///   (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey)
307 ///   IF (Authentic == 0)
308 ///     ZF := 1
309 ///     MEM[__odata+127:__odata] := 0
310 ///   ELSE
311 ///     MEM[__odata+127:__odata] := AES256Decrypt (__idata[127:0], UnwrappedKey)
312 ///     ZF := 0
313 ///   FI
314 /// FI
315 /// dst := ZF
316 /// OF := 0
317 /// SF := 0
318 /// AF := 0
319 /// PF := 0
320 /// CF := 0
321 /// \endcode
322 static __inline__ unsigned char __DEFAULT_FN_ATTRS
323 _mm_aesdec256kl_u8(__m128i* __odata, __m128i __idata, const void *__h) {
324   return __builtin_ia32_aesdec256kl_u8((__v2di *)__odata, (__v2di)__idata, __h);
325 }
326 
327 #undef __DEFAULT_FN_ATTRS
328 
329 #endif /* !defined(__SCE__ || __has_feature(modules) || defined(__KL__) */
330 
331 #if !defined(__SCE__) || __has_feature(modules) || defined(__WIDEKL__)
332 
333 /* Define the default attributes for the functions in this file. */
334 #define __DEFAULT_FN_ATTRS \
335   __attribute__((__always_inline__, __nodebug__, __target__("kl,widekl"),\
336                  __min_vector_width__(128)))
337 
338 /// Encrypt __idata[0] to __idata[7] using 128-bit AES key indicated by handle
339 /// at __h and store each resultant block back from __odata to __odata+7. And
340 /// return the affected ZF flag status.
341 ///
342 /// \headerfile <x86intrin.h>
343 ///
344 /// This intrinsic corresponds to the <c> AESENCWIDE128KL </c> instructions.
345 ///
346 /// \code{.operation}
347 /// Handle := MEM[__h+383:__h]
348 /// IllegalHandle := ( HandleReservedBitSet (Handle[383:0]) ||
349 ///                    (Handle[127:0] AND (CPL > 0)) ||
350 ///                    Handle[255:128] ||
351 ///                    HandleKeyType (Handle[383:0]) != HANDLE_KEY_TYPE_AES128 )
352 /// IF (IllegalHandle)
353 ///   ZF := 1
354 ///   FOR i := 0 to 7
355 ///     __odata[i] := 0
356 ///   ENDFOR
357 /// ELSE
358 ///   (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey)
359 ///   IF Authentic == 0
360 ///     ZF := 1
361 ///     FOR i := 0 to 7
362 ///       __odata[i] := 0
363 ///     ENDFOR
364 ///   ELSE
365 ///     FOR i := 0 to 7
366 ///       __odata[i] := AES128Encrypt (__idata[i], UnwrappedKey)
367 ///     ENDFOR
368 ///     ZF := 0
369 ///   FI
370 /// FI
371 /// dst := ZF
372 /// OF := 0
373 /// SF := 0
374 /// AF := 0
375 /// PF := 0
376 /// CF := 0
377 /// \endcode
378 static __inline__ unsigned char __DEFAULT_FN_ATTRS
379 _mm_aesencwide128kl_u8(__m128i __odata[8], const __m128i __idata[8], const void* __h) {
380   return __builtin_ia32_aesencwide128kl_u8((__v2di *)__odata,
381                                            (const __v2di *)__idata, __h);
382 }
383 
384 /// Encrypt __idata[0] to __idata[7] using 256-bit AES key indicated by handle
385 /// at __h and store each resultant block back from __odata to __odata+7. And
386 /// return the affected ZF flag status.
387 ///
388 /// \headerfile <x86intrin.h>
389 ///
390 /// This intrinsic corresponds to the <c> AESENCWIDE256KL </c> instructions.
391 ///
392 /// \code{.operation}
393 /// Handle[511:0] := MEM[__h+511:__h]
394 /// IllegalHandle := ( HandleReservedBitSet (Handle[511:0]) ||
395 ///                    (Handle[127:0] AND (CPL > 0)) ||
396 ///                    Handle[255:128] ||
397 ///                    HandleKeyType (Handle[511:0]) != HANDLE_KEY_TYPE_AES512 )
398 /// IF (IllegalHandle)
399 ///   ZF := 1
400 ///   FOR i := 0 to 7
401 ///     __odata[i] := 0
402 ///   ENDFOR
403 /// ELSE
404 ///   (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey)
405 ///   IF Authentic == 0
406 ///     ZF := 1
407 ///     FOR i := 0 to 7
408 ///       __odata[i] := 0
409 ///     ENDFOR
410 ///   ELSE
411 ///     FOR i := 0 to 7
412 ///       __odata[i] := AES256Encrypt (__idata[i], UnwrappedKey)
413 ///     ENDFOR
414 ///     ZF := 0
415 ///   FI
416 /// FI
417 /// dst := ZF
418 /// OF := 0
419 /// SF := 0
420 /// AF := 0
421 /// PF := 0
422 /// CF := 0
423 /// \endcode
424 static __inline__ unsigned char __DEFAULT_FN_ATTRS
425 _mm_aesencwide256kl_u8(__m128i __odata[8], const __m128i __idata[8], const void* __h) {
426   return __builtin_ia32_aesencwide256kl_u8((__v2di *)__odata,
427                                            (const __v2di *)__idata, __h);
428 }
429 
430 /// Decrypt __idata[0] to __idata[7] using 128-bit AES key indicated by handle
431 /// at __h and store each resultant block back from __odata to __odata+7. And
432 /// return the affected ZF flag status.
433 ///
434 /// \headerfile <x86intrin.h>
435 ///
436 /// This intrinsic corresponds to the <c> AESDECWIDE128KL </c> instructions.
437 ///
438 /// \code{.operation}
439 /// Handle[383:0] := MEM[__h+383:__h]
440 /// IllegalHandle := ( HandleReservedBitSet (Handle[383:0]) ||
441 ///                    (Handle[127:0] AND (CPL > 0)) ||
442 ///                    Handle[255:128] ||
443 ///                    HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES128 )
444 /// IF (IllegalHandle)
445 ///   ZF := 1
446 ///   FOR i := 0 to 7
447 ///     __odata[i] := 0
448 ///   ENDFOR
449 /// ELSE
450 ///   (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate384 (Handle[383:0], IWKey)
451 ///   IF Authentic == 0
452 ///     ZF := 1
453 ///     FOR i := 0 to 7
454 ///       __odata[i] := 0
455 ///     ENDFOR
456 ///   ELSE
457 ///     FOR i := 0 to 7
458 ///       __odata[i] := AES128Decrypt (__idata[i], UnwrappedKey)
459 ///     ENDFOR
460 ///     ZF := 0
461 ///   FI
462 /// FI
463 /// dst := ZF
464 /// OF := 0
465 /// SF := 0
466 /// AF := 0
467 /// PF := 0
468 /// CF := 0
469 /// \endcode
470 static __inline__ unsigned char __DEFAULT_FN_ATTRS
471 _mm_aesdecwide128kl_u8(__m128i __odata[8], const __m128i __idata[8], const void* __h) {
472   return __builtin_ia32_aesdecwide128kl_u8((__v2di *)__odata,
473                                            (const __v2di *)__idata, __h);
474 }
475 
476 /// Decrypt __idata[0] to __idata[7] using 256-bit AES key indicated by handle
477 /// at __h and store each resultant block back from __odata to __odata+7. And
478 /// return the affected ZF flag status.
479 ///
480 /// \headerfile <x86intrin.h>
481 ///
482 /// This intrinsic corresponds to the <c> AESDECWIDE256KL </c> instructions.
483 ///
484 /// \code{.operation}
485 /// Handle[511:0] := MEM[__h+511:__h]
486 /// IllegalHandle = ( HandleReservedBitSet (Handle[511:0]) ||
487 ///                   (Handle[127:0] AND (CPL > 0)) ||
488 ///                   Handle[255:128] ||
489 ///                   HandleKeyType (Handle) != HANDLE_KEY_TYPE_AES512 )
490 /// If (IllegalHandle)
491 ///   ZF := 1
492 ///   FOR i := 0 to 7
493 ///     __odata[i] := 0
494 ///   ENDFOR
495 /// ELSE
496 ///   (UnwrappedKey, Authentic) := UnwrapKeyAndAuthenticate512 (Handle[511:0], IWKey)
497 ///   IF Authentic == 0
498 ///     ZF := 1
499 ///     FOR i := 0 to 7
500 ///       __odata[i] := 0
501 ///     ENDFOR
502 ///   ELSE
503 ///     FOR i := 0 to 7
504 ///       __odata[i] := AES256Decrypt (__idata[i], UnwrappedKey)
505 ///     ENDFOR
506 ///     ZF := 0
507 ///   FI
508 /// FI
509 /// dst := ZF
510 /// OF := 0
511 /// SF := 0
512 /// AF := 0
513 /// PF := 0
514 /// CF := 0
515 /// \endcode
516 static __inline__ unsigned char __DEFAULT_FN_ATTRS
517 _mm_aesdecwide256kl_u8(__m128i __odata[8], const __m128i __idata[8], const void* __h) {
518   return __builtin_ia32_aesdecwide256kl_u8((__v2di *)__odata,
519                                            (const __v2di *)__idata, __h);
520 }
521 
522 #undef __DEFAULT_FN_ATTRS
523 
524 #endif /* !defined(__SCE__) || __has_feature(modules) || defined(__WIDEKL__)   \
525         */
526 
527 #endif /* _KEYLOCKERINTRIN_H */
528