xref: /freebsd/contrib/llvm-project/clang/lib/Headers/avxintrin.h (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 
10 #ifndef __IMMINTRIN_H
11 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
12 #endif
13 
14 #ifndef __AVXINTRIN_H
15 #define __AVXINTRIN_H
16 
17 typedef double __v4df __attribute__ ((__vector_size__ (32)));
18 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
19 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
20 typedef int __v8si __attribute__ ((__vector_size__ (32)));
21 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
22 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
23 
24 /* Unsigned types */
25 typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
26 typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
27 typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
28 typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
29 
30 /* We need an explicitly signed variant for char. Note that this shouldn't
31  * appear in the interface though. */
32 typedef signed char __v32qs __attribute__((__vector_size__(32)));
33 
34 typedef float __m256 __attribute__ ((__vector_size__ (32), __aligned__(32)));
35 typedef double __m256d __attribute__((__vector_size__(32), __aligned__(32)));
36 typedef long long __m256i __attribute__((__vector_size__(32), __aligned__(32)));
37 
38 typedef float __m256_u __attribute__ ((__vector_size__ (32), __aligned__(1)));
39 typedef double __m256d_u __attribute__((__vector_size__(32), __aligned__(1)));
40 typedef long long __m256i_u __attribute__((__vector_size__(32), __aligned__(1)));
41 
42 #ifdef __SSE2__
43 /* Both _Float16 and __bf16 require SSE2 being enabled. */
44 typedef _Float16 __v16hf __attribute__((__vector_size__(32), __aligned__(32)));
45 typedef _Float16 __m256h __attribute__((__vector_size__(32), __aligned__(32)));
46 typedef _Float16 __m256h_u __attribute__((__vector_size__(32), __aligned__(1)));
47 
48 typedef __bf16 __v16bf __attribute__((__vector_size__(32), __aligned__(32)));
49 typedef __bf16 __m256bh __attribute__((__vector_size__(32), __aligned__(32)));
50 #endif
51 
52 /* Define the default attributes for the functions in this file. */
53 #define __DEFAULT_FN_ATTRS                                                     \
54   __attribute__((__always_inline__, __nodebug__, __target__("avx,no-evex512"), \
55                  __min_vector_width__(256)))
56 #define __DEFAULT_FN_ATTRS128                                                  \
57   __attribute__((__always_inline__, __nodebug__, __target__("avx,no-evex512"), \
58                  __min_vector_width__(128)))
59 
60 /* Arithmetic */
61 /// Adds two 256-bit vectors of [4 x double].
62 ///
63 /// \headerfile <x86intrin.h>
64 ///
65 /// This intrinsic corresponds to the <c> VADDPD </c> instruction.
66 ///
67 /// \param __a
68 ///    A 256-bit vector of [4 x double] containing one of the source operands.
69 /// \param __b
70 ///    A 256-bit vector of [4 x double] containing one of the source operands.
71 /// \returns A 256-bit vector of [4 x double] containing the sums of both
72 ///    operands.
73 static __inline __m256d __DEFAULT_FN_ATTRS
74 _mm256_add_pd(__m256d __a, __m256d __b)
75 {
76   return (__m256d)((__v4df)__a+(__v4df)__b);
77 }
78 
79 /// Adds two 256-bit vectors of [8 x float].
80 ///
81 /// \headerfile <x86intrin.h>
82 ///
83 /// This intrinsic corresponds to the <c> VADDPS </c> instruction.
84 ///
85 /// \param __a
86 ///    A 256-bit vector of [8 x float] containing one of the source operands.
87 /// \param __b
88 ///    A 256-bit vector of [8 x float] containing one of the source operands.
89 /// \returns A 256-bit vector of [8 x float] containing the sums of both
90 ///    operands.
91 static __inline __m256 __DEFAULT_FN_ATTRS
92 _mm256_add_ps(__m256 __a, __m256 __b)
93 {
94   return (__m256)((__v8sf)__a+(__v8sf)__b);
95 }
96 
97 /// Subtracts two 256-bit vectors of [4 x double].
98 ///
99 /// \headerfile <x86intrin.h>
100 ///
101 /// This intrinsic corresponds to the <c> VSUBPD </c> instruction.
102 ///
103 /// \param __a
104 ///    A 256-bit vector of [4 x double] containing the minuend.
105 /// \param __b
106 ///    A 256-bit vector of [4 x double] containing the subtrahend.
107 /// \returns A 256-bit vector of [4 x double] containing the differences between
108 ///    both operands.
109 static __inline __m256d __DEFAULT_FN_ATTRS
110 _mm256_sub_pd(__m256d __a, __m256d __b)
111 {
112   return (__m256d)((__v4df)__a-(__v4df)__b);
113 }
114 
115 /// Subtracts two 256-bit vectors of [8 x float].
116 ///
117 /// \headerfile <x86intrin.h>
118 ///
119 /// This intrinsic corresponds to the <c> VSUBPS </c> instruction.
120 ///
121 /// \param __a
122 ///    A 256-bit vector of [8 x float] containing the minuend.
123 /// \param __b
124 ///    A 256-bit vector of [8 x float] containing the subtrahend.
125 /// \returns A 256-bit vector of [8 x float] containing the differences between
126 ///    both operands.
127 static __inline __m256 __DEFAULT_FN_ATTRS
128 _mm256_sub_ps(__m256 __a, __m256 __b)
129 {
130   return (__m256)((__v8sf)__a-(__v8sf)__b);
131 }
132 
133 /// Adds the even-indexed values and subtracts the odd-indexed values of
134 ///    two 256-bit vectors of [4 x double].
135 ///
136 /// \headerfile <x86intrin.h>
137 ///
138 /// This intrinsic corresponds to the <c> VADDSUBPD </c> instruction.
139 ///
140 /// \param __a
141 ///    A 256-bit vector of [4 x double] containing the left source operand.
142 /// \param __b
143 ///    A 256-bit vector of [4 x double] containing the right source operand.
144 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
145 ///    and differences between both operands.
146 static __inline __m256d __DEFAULT_FN_ATTRS
147 _mm256_addsub_pd(__m256d __a, __m256d __b)
148 {
149   return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
150 }
151 
152 /// Adds the even-indexed values and subtracts the odd-indexed values of
153 ///    two 256-bit vectors of [8 x float].
154 ///
155 /// \headerfile <x86intrin.h>
156 ///
157 /// This intrinsic corresponds to the <c> VADDSUBPS </c> instruction.
158 ///
159 /// \param __a
160 ///    A 256-bit vector of [8 x float] containing the left source operand.
161 /// \param __b
162 ///    A 256-bit vector of [8 x float] containing the right source operand.
163 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
164 ///    differences between both operands.
165 static __inline __m256 __DEFAULT_FN_ATTRS
166 _mm256_addsub_ps(__m256 __a, __m256 __b)
167 {
168   return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
169 }
170 
171 /// Divides two 256-bit vectors of [4 x double].
172 ///
173 /// \headerfile <x86intrin.h>
174 ///
175 /// This intrinsic corresponds to the <c> VDIVPD </c> instruction.
176 ///
177 /// \param __a
178 ///    A 256-bit vector of [4 x double] containing the dividend.
179 /// \param __b
180 ///    A 256-bit vector of [4 x double] containing the divisor.
181 /// \returns A 256-bit vector of [4 x double] containing the quotients of both
182 ///    operands.
183 static __inline __m256d __DEFAULT_FN_ATTRS
184 _mm256_div_pd(__m256d __a, __m256d __b)
185 {
186   return (__m256d)((__v4df)__a/(__v4df)__b);
187 }
188 
189 /// Divides two 256-bit vectors of [8 x float].
190 ///
191 /// \headerfile <x86intrin.h>
192 ///
193 /// This intrinsic corresponds to the <c> VDIVPS </c> instruction.
194 ///
195 /// \param __a
196 ///    A 256-bit vector of [8 x float] containing the dividend.
197 /// \param __b
198 ///    A 256-bit vector of [8 x float] containing the divisor.
199 /// \returns A 256-bit vector of [8 x float] containing the quotients of both
200 ///    operands.
201 static __inline __m256 __DEFAULT_FN_ATTRS
202 _mm256_div_ps(__m256 __a, __m256 __b)
203 {
204   return (__m256)((__v8sf)__a/(__v8sf)__b);
205 }
206 
207 /// Compares two 256-bit vectors of [4 x double] and returns the greater
208 ///    of each pair of values.
209 ///
210 ///    If either value in a comparison is NaN, returns the value from \a __b.
211 ///
212 /// \headerfile <x86intrin.h>
213 ///
214 /// This intrinsic corresponds to the <c> VMAXPD </c> instruction.
215 ///
216 /// \param __a
217 ///    A 256-bit vector of [4 x double] containing one of the operands.
218 /// \param __b
219 ///    A 256-bit vector of [4 x double] containing one of the operands.
220 /// \returns A 256-bit vector of [4 x double] containing the maximum values
221 ///    between both operands.
222 static __inline __m256d __DEFAULT_FN_ATTRS
223 _mm256_max_pd(__m256d __a, __m256d __b)
224 {
225   return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
226 }
227 
228 /// Compares two 256-bit vectors of [8 x float] and returns the greater
229 ///    of each pair of values.
230 ///
231 ///    If either value in a comparison is NaN, returns the value from \a __b.
232 ///
233 /// \headerfile <x86intrin.h>
234 ///
235 /// This intrinsic corresponds to the <c> VMAXPS </c> instruction.
236 ///
237 /// \param __a
238 ///    A 256-bit vector of [8 x float] containing one of the operands.
239 /// \param __b
240 ///    A 256-bit vector of [8 x float] containing one of the operands.
241 /// \returns A 256-bit vector of [8 x float] containing the maximum values
242 ///    between both operands.
243 static __inline __m256 __DEFAULT_FN_ATTRS
244 _mm256_max_ps(__m256 __a, __m256 __b)
245 {
246   return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
247 }
248 
249 /// Compares two 256-bit vectors of [4 x double] and returns the lesser
250 ///    of each pair of values.
251 ///
252 ///    If either value in a comparison is NaN, returns the value from \a __b.
253 ///
254 /// \headerfile <x86intrin.h>
255 ///
256 /// This intrinsic corresponds to the <c> VMINPD </c> instruction.
257 ///
258 /// \param __a
259 ///    A 256-bit vector of [4 x double] containing one of the operands.
260 /// \param __b
261 ///    A 256-bit vector of [4 x double] containing one of the operands.
262 /// \returns A 256-bit vector of [4 x double] containing the minimum values
263 ///    between both operands.
264 static __inline __m256d __DEFAULT_FN_ATTRS
265 _mm256_min_pd(__m256d __a, __m256d __b)
266 {
267   return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
268 }
269 
270 /// Compares two 256-bit vectors of [8 x float] and returns the lesser
271 ///    of each pair of values.
272 ///
273 ///    If either value in a comparison is NaN, returns the value from \a __b.
274 ///
275 /// \headerfile <x86intrin.h>
276 ///
277 /// This intrinsic corresponds to the <c> VMINPS </c> instruction.
278 ///
279 /// \param __a
280 ///    A 256-bit vector of [8 x float] containing one of the operands.
281 /// \param __b
282 ///    A 256-bit vector of [8 x float] containing one of the operands.
283 /// \returns A 256-bit vector of [8 x float] containing the minimum values
284 ///    between both operands.
285 static __inline __m256 __DEFAULT_FN_ATTRS
286 _mm256_min_ps(__m256 __a, __m256 __b)
287 {
288   return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
289 }
290 
291 /// Multiplies two 256-bit vectors of [4 x double].
292 ///
293 /// \headerfile <x86intrin.h>
294 ///
295 /// This intrinsic corresponds to the <c> VMULPD </c> instruction.
296 ///
297 /// \param __a
298 ///    A 256-bit vector of [4 x double] containing one of the operands.
299 /// \param __b
300 ///    A 256-bit vector of [4 x double] containing one of the operands.
301 /// \returns A 256-bit vector of [4 x double] containing the products of both
302 ///    operands.
303 static __inline __m256d __DEFAULT_FN_ATTRS
304 _mm256_mul_pd(__m256d __a, __m256d __b)
305 {
306   return (__m256d)((__v4df)__a * (__v4df)__b);
307 }
308 
309 /// Multiplies two 256-bit vectors of [8 x float].
310 ///
311 /// \headerfile <x86intrin.h>
312 ///
313 /// This intrinsic corresponds to the <c> VMULPS </c> instruction.
314 ///
315 /// \param __a
316 ///    A 256-bit vector of [8 x float] containing one of the operands.
317 /// \param __b
318 ///    A 256-bit vector of [8 x float] containing one of the operands.
319 /// \returns A 256-bit vector of [8 x float] containing the products of both
320 ///    operands.
321 static __inline __m256 __DEFAULT_FN_ATTRS
322 _mm256_mul_ps(__m256 __a, __m256 __b)
323 {
324   return (__m256)((__v8sf)__a * (__v8sf)__b);
325 }
326 
327 /// Calculates the square roots of the values in a 256-bit vector of
328 ///    [4 x double].
329 ///
330 /// \headerfile <x86intrin.h>
331 ///
332 /// This intrinsic corresponds to the <c> VSQRTPD </c> instruction.
333 ///
334 /// \param __a
335 ///    A 256-bit vector of [4 x double].
336 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
337 ///    values in the operand.
338 static __inline __m256d __DEFAULT_FN_ATTRS
339 _mm256_sqrt_pd(__m256d __a)
340 {
341   return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
342 }
343 
344 /// Calculates the square roots of the values in a 256-bit vector of
345 ///    [8 x float].
346 ///
347 /// \headerfile <x86intrin.h>
348 ///
349 /// This intrinsic corresponds to the <c> VSQRTPS </c> instruction.
350 ///
351 /// \param __a
352 ///    A 256-bit vector of [8 x float].
353 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
354 ///    values in the operand.
355 static __inline __m256 __DEFAULT_FN_ATTRS
356 _mm256_sqrt_ps(__m256 __a)
357 {
358   return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
359 }
360 
361 /// Calculates the reciprocal square roots of the values in a 256-bit
362 ///    vector of [8 x float].
363 ///
364 /// \headerfile <x86intrin.h>
365 ///
366 /// This intrinsic corresponds to the <c> VRSQRTPS </c> instruction.
367 ///
368 /// \param __a
369 ///    A 256-bit vector of [8 x float].
370 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
371 ///    roots of the values in the operand.
372 static __inline __m256 __DEFAULT_FN_ATTRS
373 _mm256_rsqrt_ps(__m256 __a)
374 {
375   return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
376 }
377 
378 /// Calculates the reciprocals of the values in a 256-bit vector of
379 ///    [8 x float].
380 ///
381 /// \headerfile <x86intrin.h>
382 ///
383 /// This intrinsic corresponds to the <c> VRCPPS </c> instruction.
384 ///
385 /// \param __a
386 ///    A 256-bit vector of [8 x float].
387 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
388 ///    values in the operand.
389 static __inline __m256 __DEFAULT_FN_ATTRS
390 _mm256_rcp_ps(__m256 __a)
391 {
392   return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
393 }
394 
395 /// Rounds the values in a 256-bit vector of [4 x double] as specified
396 ///    by the byte operand. The source values are rounded to integer values and
397 ///    returned as 64-bit double-precision floating-point values.
398 ///
399 /// \headerfile <x86intrin.h>
400 ///
401 /// \code
402 /// __m256d _mm256_round_pd(__m256d V, const int M);
403 /// \endcode
404 ///
405 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
406 ///
407 /// \param V
408 ///    A 256-bit vector of [4 x double].
409 /// \param M
410 ///    An integer value that specifies the rounding operation. \n
411 ///    Bits [7:4] are reserved. \n
412 ///    Bit [3] is a precision exception value: \n
413 ///      0: A normal PE exception is used. \n
414 ///      1: The PE field is not updated. \n
415 ///    Bit [2] is the rounding control source: \n
416 ///      0: Use bits [1:0] of \a M. \n
417 ///      1: Use the current MXCSR setting. \n
418 ///    Bits [1:0] contain the rounding control definition: \n
419 ///      00: Nearest. \n
420 ///      01: Downward (toward negative infinity). \n
421 ///      10: Upward (toward positive infinity). \n
422 ///      11: Truncated.
423 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
424 #define _mm256_round_pd(V, M) \
425   ((__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)))
426 
427 /// Rounds the values stored in a 256-bit vector of [8 x float] as
428 ///    specified by the byte operand. The source values are rounded to integer
429 ///    values and returned as floating-point values.
430 ///
431 /// \headerfile <x86intrin.h>
432 ///
433 /// \code
434 /// __m256 _mm256_round_ps(__m256 V, const int M);
435 /// \endcode
436 ///
437 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
438 ///
439 /// \param V
440 ///    A 256-bit vector of [8 x float].
441 /// \param M
442 ///    An integer value that specifies the rounding operation. \n
443 ///    Bits [7:4] are reserved. \n
444 ///    Bit [3] is a precision exception value: \n
445 ///      0: A normal PE exception is used. \n
446 ///      1: The PE field is not updated. \n
447 ///    Bit [2] is the rounding control source: \n
448 ///      0: Use bits [1:0] of \a M. \n
449 ///      1: Use the current MXCSR setting. \n
450 ///    Bits [1:0] contain the rounding control definition: \n
451 ///      00: Nearest. \n
452 ///      01: Downward (toward negative infinity). \n
453 ///      10: Upward (toward positive infinity). \n
454 ///      11: Truncated.
455 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
456 #define _mm256_round_ps(V, M) \
457   ((__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)))
458 
459 /// Rounds up the values stored in a 256-bit vector of [4 x double]. The
460 ///    source values are rounded up to integer values and returned as 64-bit
461 ///    double-precision floating-point values.
462 ///
463 /// \headerfile <x86intrin.h>
464 ///
465 /// \code
466 /// __m256d _mm256_ceil_pd(__m256d V);
467 /// \endcode
468 ///
469 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
470 ///
471 /// \param V
472 ///    A 256-bit vector of [4 x double].
473 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
474 #define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)
475 
476 /// Rounds down the values stored in a 256-bit vector of [4 x double].
477 ///    The source values are rounded down to integer values and returned as
478 ///    64-bit double-precision floating-point values.
479 ///
480 /// \headerfile <x86intrin.h>
481 ///
482 /// \code
483 /// __m256d _mm256_floor_pd(__m256d V);
484 /// \endcode
485 ///
486 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
487 ///
488 /// \param V
489 ///    A 256-bit vector of [4 x double].
490 /// \returns A 256-bit vector of [4 x double] containing the rounded down
491 ///    values.
492 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
493 
494 /// Rounds up the values stored in a 256-bit vector of [8 x float]. The
495 ///    source values are rounded up to integer values and returned as
496 ///    floating-point values.
497 ///
498 /// \headerfile <x86intrin.h>
499 ///
500 /// \code
501 /// __m256 _mm256_ceil_ps(__m256 V);
502 /// \endcode
503 ///
504 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
505 ///
506 /// \param V
507 ///    A 256-bit vector of [8 x float].
508 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
509 #define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)
510 
511 /// Rounds down the values stored in a 256-bit vector of [8 x float]. The
512 ///    source values are rounded down to integer values and returned as
513 ///    floating-point values.
514 ///
515 /// \headerfile <x86intrin.h>
516 ///
517 /// \code
518 /// __m256 _mm256_floor_ps(__m256 V);
519 /// \endcode
520 ///
521 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
522 ///
523 /// \param V
524 ///    A 256-bit vector of [8 x float].
525 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
526 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
527 
528 /* Logical */
529 /// Performs a bitwise AND of two 256-bit vectors of [4 x double].
530 ///
531 /// \headerfile <x86intrin.h>
532 ///
533 /// This intrinsic corresponds to the <c> VANDPD </c> instruction.
534 ///
535 /// \param __a
536 ///    A 256-bit vector of [4 x double] containing one of the source operands.
537 /// \param __b
538 ///    A 256-bit vector of [4 x double] containing one of the source operands.
539 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
540 ///    values between both operands.
541 static __inline __m256d __DEFAULT_FN_ATTRS
542 _mm256_and_pd(__m256d __a, __m256d __b)
543 {
544   return (__m256d)((__v4du)__a & (__v4du)__b);
545 }
546 
547 /// Performs a bitwise AND of two 256-bit vectors of [8 x float].
548 ///
549 /// \headerfile <x86intrin.h>
550 ///
551 /// This intrinsic corresponds to the <c> VANDPS </c> instruction.
552 ///
553 /// \param __a
554 ///    A 256-bit vector of [8 x float] containing one of the source operands.
555 /// \param __b
556 ///    A 256-bit vector of [8 x float] containing one of the source operands.
557 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
558 ///    values between both operands.
559 static __inline __m256 __DEFAULT_FN_ATTRS
560 _mm256_and_ps(__m256 __a, __m256 __b)
561 {
562   return (__m256)((__v8su)__a & (__v8su)__b);
563 }
564 
565 /// Performs a bitwise AND of two 256-bit vectors of [4 x double], using
566 ///    the one's complement of the values contained in the first source operand.
567 ///
568 /// \headerfile <x86intrin.h>
569 ///
570 /// This intrinsic corresponds to the <c> VANDNPD </c> instruction.
571 ///
572 /// \param __a
573 ///    A 256-bit vector of [4 x double] containing the left source operand. The
574 ///    one's complement of this value is used in the bitwise AND.
575 /// \param __b
576 ///    A 256-bit vector of [4 x double] containing the right source operand.
577 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
578 ///    values of the second operand and the one's complement of the first
579 ///    operand.
580 static __inline __m256d __DEFAULT_FN_ATTRS
581 _mm256_andnot_pd(__m256d __a, __m256d __b)
582 {
583   return (__m256d)(~(__v4du)__a & (__v4du)__b);
584 }
585 
586 /// Performs a bitwise AND of two 256-bit vectors of [8 x float], using
587 ///    the one's complement of the values contained in the first source operand.
588 ///
589 /// \headerfile <x86intrin.h>
590 ///
591 /// This intrinsic corresponds to the <c> VANDNPS </c> instruction.
592 ///
593 /// \param __a
594 ///    A 256-bit vector of [8 x float] containing the left source operand. The
595 ///    one's complement of this value is used in the bitwise AND.
596 /// \param __b
597 ///    A 256-bit vector of [8 x float] containing the right source operand.
598 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
599 ///    values of the second operand and the one's complement of the first
600 ///    operand.
601 static __inline __m256 __DEFAULT_FN_ATTRS
602 _mm256_andnot_ps(__m256 __a, __m256 __b)
603 {
604   return (__m256)(~(__v8su)__a & (__v8su)__b);
605 }
606 
607 /// Performs a bitwise OR of two 256-bit vectors of [4 x double].
608 ///
609 /// \headerfile <x86intrin.h>
610 ///
611 /// This intrinsic corresponds to the <c> VORPD </c> instruction.
612 ///
613 /// \param __a
614 ///    A 256-bit vector of [4 x double] containing one of the source operands.
615 /// \param __b
616 ///    A 256-bit vector of [4 x double] containing one of the source operands.
617 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
618 ///    values between both operands.
619 static __inline __m256d __DEFAULT_FN_ATTRS
620 _mm256_or_pd(__m256d __a, __m256d __b)
621 {
622   return (__m256d)((__v4du)__a | (__v4du)__b);
623 }
624 
625 /// Performs a bitwise OR of two 256-bit vectors of [8 x float].
626 ///
627 /// \headerfile <x86intrin.h>
628 ///
629 /// This intrinsic corresponds to the <c> VORPS </c> instruction.
630 ///
631 /// \param __a
632 ///    A 256-bit vector of [8 x float] containing one of the source operands.
633 /// \param __b
634 ///    A 256-bit vector of [8 x float] containing one of the source operands.
635 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
636 ///    values between both operands.
637 static __inline __m256 __DEFAULT_FN_ATTRS
638 _mm256_or_ps(__m256 __a, __m256 __b)
639 {
640   return (__m256)((__v8su)__a | (__v8su)__b);
641 }
642 
643 /// Performs a bitwise XOR of two 256-bit vectors of [4 x double].
644 ///
645 /// \headerfile <x86intrin.h>
646 ///
647 /// This intrinsic corresponds to the <c> VXORPD </c> instruction.
648 ///
649 /// \param __a
650 ///    A 256-bit vector of [4 x double] containing one of the source operands.
651 /// \param __b
652 ///    A 256-bit vector of [4 x double] containing one of the source operands.
653 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
654 ///    values between both operands.
655 static __inline __m256d __DEFAULT_FN_ATTRS
656 _mm256_xor_pd(__m256d __a, __m256d __b)
657 {
658   return (__m256d)((__v4du)__a ^ (__v4du)__b);
659 }
660 
661 /// Performs a bitwise XOR of two 256-bit vectors of [8 x float].
662 ///
663 /// \headerfile <x86intrin.h>
664 ///
665 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
666 ///
667 /// \param __a
668 ///    A 256-bit vector of [8 x float] containing one of the source operands.
669 /// \param __b
670 ///    A 256-bit vector of [8 x float] containing one of the source operands.
671 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
672 ///    values between both operands.
673 static __inline __m256 __DEFAULT_FN_ATTRS
674 _mm256_xor_ps(__m256 __a, __m256 __b)
675 {
676   return (__m256)((__v8su)__a ^ (__v8su)__b);
677 }
678 
679 /* Horizontal arithmetic */
680 /// Horizontally adds the adjacent pairs of values contained in two
681 ///    256-bit vectors of [4 x double].
682 ///
683 /// \headerfile <x86intrin.h>
684 ///
685 /// This intrinsic corresponds to the <c> VHADDPD </c> instruction.
686 ///
687 /// \param __a
688 ///    A 256-bit vector of [4 x double] containing one of the source operands.
689 ///    The horizontal sums of the values are returned in the even-indexed
690 ///    elements of a vector of [4 x double].
691 /// \param __b
692 ///    A 256-bit vector of [4 x double] containing one of the source operands.
693 ///    The horizontal sums of the values are returned in the odd-indexed
694 ///    elements of a vector of [4 x double].
695 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
696 ///    both operands.
697 static __inline __m256d __DEFAULT_FN_ATTRS
698 _mm256_hadd_pd(__m256d __a, __m256d __b)
699 {
700   return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
701 }
702 
703 /// Horizontally adds the adjacent pairs of values contained in two
704 ///    256-bit vectors of [8 x float].
705 ///
706 /// \headerfile <x86intrin.h>
707 ///
708 /// This intrinsic corresponds to the <c> VHADDPS </c> instruction.
709 ///
710 /// \param __a
711 ///    A 256-bit vector of [8 x float] containing one of the source operands.
712 ///    The horizontal sums of the values are returned in the elements with
713 ///    index 0, 1, 4, 5 of a vector of [8 x float].
714 /// \param __b
715 ///    A 256-bit vector of [8 x float] containing one of the source operands.
716 ///    The horizontal sums of the values are returned in the elements with
717 ///    index 2, 3, 6, 7 of a vector of [8 x float].
718 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
719 ///    both operands.
720 static __inline __m256 __DEFAULT_FN_ATTRS
721 _mm256_hadd_ps(__m256 __a, __m256 __b)
722 {
723   return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
724 }
725 
726 /// Horizontally subtracts the adjacent pairs of values contained in two
727 ///    256-bit vectors of [4 x double].
728 ///
729 /// \headerfile <x86intrin.h>
730 ///
731 /// This intrinsic corresponds to the <c> VHSUBPD </c> instruction.
732 ///
733 /// \param __a
734 ///    A 256-bit vector of [4 x double] containing one of the source operands.
735 ///    The horizontal differences between the values are returned in the
736 ///    even-indexed elements of a vector of [4 x double].
737 /// \param __b
738 ///    A 256-bit vector of [4 x double] containing one of the source operands.
739 ///    The horizontal differences between the values are returned in the
740 ///    odd-indexed elements of a vector of [4 x double].
741 /// \returns A 256-bit vector of [4 x double] containing the horizontal
742 ///    differences of both operands.
743 static __inline __m256d __DEFAULT_FN_ATTRS
744 _mm256_hsub_pd(__m256d __a, __m256d __b)
745 {
746   return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
747 }
748 
749 /// Horizontally subtracts the adjacent pairs of values contained in two
750 ///    256-bit vectors of [8 x float].
751 ///
752 /// \headerfile <x86intrin.h>
753 ///
754 /// This intrinsic corresponds to the <c> VHSUBPS </c> instruction.
755 ///
756 /// \param __a
757 ///    A 256-bit vector of [8 x float] containing one of the source operands.
758 ///    The horizontal differences between the values are returned in the
759 ///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
760 /// \param __b
761 ///    A 256-bit vector of [8 x float] containing one of the source operands.
762 ///    The horizontal differences between the values are returned in the
763 ///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
764 /// \returns A 256-bit vector of [8 x float] containing the horizontal
765 ///    differences of both operands.
766 static __inline __m256 __DEFAULT_FN_ATTRS
767 _mm256_hsub_ps(__m256 __a, __m256 __b)
768 {
769   return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
770 }
771 
772 /* Vector permutations */
773 /// Copies the values in a 128-bit vector of [2 x double] as specified
774 ///    by the 128-bit integer vector operand.
775 ///
776 /// \headerfile <x86intrin.h>
777 ///
778 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
779 ///
780 /// \param __a
781 ///    A 128-bit vector of [2 x double].
782 /// \param __c
783 ///    A 128-bit integer vector operand specifying how the values are to be
784 ///    copied. \n
785 ///    Bit [1]: \n
786 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
787 ///         vector. \n
788 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
789 ///         returned vector. \n
790 ///    Bit [65]: \n
791 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
792 ///         returned vector. \n
793 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
794 ///         returned vector.
795 /// \returns A 128-bit vector of [2 x double] containing the copied values.
796 static __inline __m128d __DEFAULT_FN_ATTRS128
797 _mm_permutevar_pd(__m128d __a, __m128i __c)
798 {
799   return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
800 }
801 
802 /// Copies the values in a 256-bit vector of [4 x double] as specified
803 ///    by the 256-bit integer vector operand.
804 ///
805 /// \headerfile <x86intrin.h>
806 ///
807 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
808 ///
809 /// \param __a
810 ///    A 256-bit vector of [4 x double].
811 /// \param __c
812 ///    A 256-bit integer vector operand specifying how the values are to be
813 ///    copied. \n
814 ///    Bit [1]: \n
815 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
816 ///         vector. \n
817 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
818 ///         returned vector. \n
819 ///    Bit [65]: \n
820 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
821 ///         returned vector. \n
822 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
823 ///         returned vector. \n
824 ///    Bit [129]: \n
825 ///      0: Bits [191:128] of the source are copied to bits [191:128] of the
826 ///         returned vector. \n
827 ///      1: Bits [255:192] of the source are copied to bits [191:128] of the
828 ///         returned vector. \n
829 ///    Bit [193]: \n
830 ///      0: Bits [191:128] of the source are copied to bits [255:192] of the
831 ///         returned vector. \n
832 ///      1: Bits [255:192] of the source are copied to bits [255:192] of the
833 ///    returned vector.
834 /// \returns A 256-bit vector of [4 x double] containing the copied values.
835 static __inline __m256d __DEFAULT_FN_ATTRS
836 _mm256_permutevar_pd(__m256d __a, __m256i __c)
837 {
838   return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
839 }
840 
841 /// Copies the values stored in a 128-bit vector of [4 x float] as
842 ///    specified by the 128-bit integer vector operand.
843 ///
844 /// \headerfile <x86intrin.h>
845 ///
846 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
847 ///
848 /// \param __a
849 ///    A 128-bit vector of [4 x float].
850 /// \param __c
851 ///    A 128-bit integer vector operand specifying how the values are to be
852 ///    copied. \n
853 ///    Bits [1:0]: \n
854 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
855 ///          returned vector. \n
856 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
857 ///          returned vector. \n
858 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
859 ///          returned vector. \n
860 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
861 ///          returned vector. \n
862 ///    Bits [33:32]: \n
863 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
864 ///          returned vector. \n
865 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
866 ///          returned vector. \n
867 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
868 ///          returned vector. \n
869 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
870 ///          returned vector. \n
871 ///    Bits [65:64]: \n
872 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
873 ///          returned vector. \n
874 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
875 ///          returned vector. \n
876 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
877 ///          returned vector. \n
878 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
879 ///          returned vector. \n
880 ///    Bits [97:96]: \n
881 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
882 ///          returned vector. \n
883 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
884 ///          returned vector. \n
885 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
886 ///          returned vector. \n
887 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
888 ///          returned vector.
889 /// \returns A 128-bit vector of [4 x float] containing the copied values.
890 static __inline __m128 __DEFAULT_FN_ATTRS128
891 _mm_permutevar_ps(__m128 __a, __m128i __c)
892 {
893   return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
894 }
895 
896 /// Copies the values stored in a 256-bit vector of [8 x float] as
897 ///    specified by the 256-bit integer vector operand.
898 ///
899 /// \headerfile <x86intrin.h>
900 ///
901 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
902 ///
903 /// \param __a
904 ///    A 256-bit vector of [8 x float].
905 /// \param __c
906 ///    A 256-bit integer vector operand specifying how the values are to be
907 ///    copied. \n
908 ///    Bits [1:0]: \n
909 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
910 ///          returned vector. \n
911 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
912 ///          returned vector. \n
913 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
914 ///          returned vector. \n
915 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
916 ///          returned vector. \n
917 ///    Bits [33:32]: \n
918 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
919 ///          returned vector. \n
920 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
921 ///          returned vector. \n
922 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
923 ///          returned vector. \n
924 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
925 ///          returned vector. \n
926 ///    Bits [65:64]: \n
927 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
928 ///          returned vector. \n
929 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
930 ///          returned vector. \n
931 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
932 ///          returned vector. \n
933 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
934 ///          returned vector. \n
935 ///    Bits [97:96]: \n
936 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
937 ///          returned vector. \n
938 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
939 ///          returned vector. \n
940 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
941 ///          returned vector. \n
942 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
943 ///          returned vector. \n
944 ///    Bits [129:128]: \n
945 ///      00: Bits [159:128] of the source are copied to bits [159:128] of the
946 ///          returned vector. \n
947 ///      01: Bits [191:160] of the source are copied to bits [159:128] of the
948 ///          returned vector. \n
949 ///      10: Bits [223:192] of the source are copied to bits [159:128] of the
950 ///          returned vector. \n
951 ///      11: Bits [255:224] of the source are copied to bits [159:128] of the
952 ///          returned vector. \n
953 ///    Bits [161:160]: \n
954 ///      00: Bits [159:128] of the source are copied to bits [191:160] of the
955 ///          returned vector. \n
956 ///      01: Bits [191:160] of the source are copied to bits [191:160] of the
957 ///          returned vector. \n
958 ///      10: Bits [223:192] of the source are copied to bits [191:160] of the
959 ///          returned vector. \n
960 ///      11: Bits [255:224] of the source are copied to bits [191:160] of the
961 ///          returned vector. \n
962 ///    Bits [193:192]: \n
963 ///      00: Bits [159:128] of the source are copied to bits [223:192] of the
964 ///          returned vector. \n
965 ///      01: Bits [191:160] of the source are copied to bits [223:192] of the
966 ///          returned vector. \n
967 ///      10: Bits [223:192] of the source are copied to bits [223:192] of the
968 ///          returned vector. \n
969 ///      11: Bits [255:224] of the source are copied to bits [223:192] of the
970 ///          returned vector. \n
971 ///    Bits [225:224]: \n
972 ///      00: Bits [159:128] of the source are copied to bits [255:224] of the
973 ///          returned vector. \n
974 ///      01: Bits [191:160] of the source are copied to bits [255:224] of the
975 ///          returned vector. \n
976 ///      10: Bits [223:192] of the source are copied to bits [255:224] of the
977 ///          returned vector. \n
978 ///      11: Bits [255:224] of the source are copied to bits [255:224] of the
979 ///          returned vector.
980 /// \returns A 256-bit vector of [8 x float] containing the copied values.
981 static __inline __m256 __DEFAULT_FN_ATTRS
982 _mm256_permutevar_ps(__m256 __a, __m256i __c)
983 {
984   return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
985 }
986 
987 /// Copies the values in a 128-bit vector of [2 x double] as specified
988 ///    by the immediate integer operand.
989 ///
990 /// \headerfile <x86intrin.h>
991 ///
992 /// \code
993 /// __m128d _mm_permute_pd(__m128d A, const int C);
994 /// \endcode
995 ///
996 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
997 ///
998 /// \param A
999 ///    A 128-bit vector of [2 x double].
1000 /// \param C
1001 ///    An immediate integer operand specifying how the values are to be
1002 ///    copied. \n
1003 ///    Bit [0]: \n
1004 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1005 ///         vector. \n
1006 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
1007 ///         returned vector. \n
1008 ///    Bit [1]: \n
1009 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
1010 ///         returned vector. \n
1011 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
1012 ///         returned vector.
1013 /// \returns A 128-bit vector of [2 x double] containing the copied values.
1014 #define _mm_permute_pd(A, C) \
1015   ((__m128d)__builtin_ia32_vpermilpd((__v2df)(__m128d)(A), (int)(C)))
1016 
1017 /// Copies the values in a 256-bit vector of [4 x double] as specified by
1018 ///    the immediate integer operand.
1019 ///
1020 /// \headerfile <x86intrin.h>
1021 ///
1022 /// \code
1023 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1024 /// \endcode
1025 ///
1026 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1027 ///
1028 /// \param A
1029 ///    A 256-bit vector of [4 x double].
1030 /// \param C
1031 ///    An immediate integer operand specifying how the values are to be
1032 ///    copied. \n
1033 ///    Bit [0]: \n
1034 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1035 ///         vector. \n
1036 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
1037 ///         returned vector. \n
1038 ///    Bit [1]: \n
1039 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
1040 ///         returned vector. \n
1041 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
1042 ///         returned vector. \n
1043 ///    Bit [2]: \n
1044 ///      0: Bits [191:128] of the source are copied to bits [191:128] of the
1045 ///         returned vector. \n
1046 ///      1: Bits [255:192] of the source are copied to bits [191:128] of the
1047 ///         returned vector. \n
1048 ///    Bit [3]: \n
1049 ///      0: Bits [191:128] of the source are copied to bits [255:192] of the
1050 ///         returned vector. \n
1051 ///      1: Bits [255:192] of the source are copied to bits [255:192] of the
1052 ///         returned vector.
1053 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1054 #define _mm256_permute_pd(A, C) \
1055   ((__m256d)__builtin_ia32_vpermilpd256((__v4df)(__m256d)(A), (int)(C)))
1056 
1057 /// Copies the values in a 128-bit vector of [4 x float] as specified by
1058 ///    the immediate integer operand.
1059 ///
1060 /// \headerfile <x86intrin.h>
1061 ///
1062 /// \code
1063 /// __m128 _mm_permute_ps(__m128 A, const int C);
1064 /// \endcode
1065 ///
1066 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1067 ///
1068 /// \param A
1069 ///    A 128-bit vector of [4 x float].
1070 /// \param C
1071 ///    An immediate integer operand specifying how the values are to be
1072 ///    copied. \n
1073 ///    Bits [1:0]: \n
1074 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
1075 ///          returned vector. \n
1076 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
1077 ///          returned vector. \n
1078 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
1079 ///          returned vector. \n
1080 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
1081 ///          returned vector. \n
1082 ///    Bits [3:2]: \n
1083 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
1084 ///          returned vector. \n
1085 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
1086 ///          returned vector. \n
1087 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
1088 ///          returned vector. \n
1089 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
1090 ///          returned vector. \n
1091 ///    Bits [5:4]: \n
1092 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
1093 ///          returned vector. \n
1094 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
1095 ///          returned vector. \n
1096 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
1097 ///          returned vector. \n
1098 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
1099 ///          returned vector. \n
1100 ///    Bits [7:6]: \n
1101 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
1102 ///          returned vector. \n
1103 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
1104 ///          returned vector. \n
1105 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
1106 ///          returned vector. \n
1107 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
1108 ///          returned vector.
1109 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1110 #define _mm_permute_ps(A, C) \
1111   ((__m128)__builtin_ia32_vpermilps((__v4sf)(__m128)(A), (int)(C)))
1112 
1113 /// Copies the values in a 256-bit vector of [8 x float] as specified by
1114 ///    the immediate integer operand.
1115 ///
1116 /// \headerfile <x86intrin.h>
1117 ///
1118 /// \code
1119 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1120 /// \endcode
1121 ///
1122 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1123 ///
1124 /// \param A
1125 ///    A 256-bit vector of [8 x float].
1126 /// \param C
1127 ///    An immediate integer operand specifying how the values are to be
1128 ///    copied. \n
1129 ///    Bits [1:0]: \n
1130 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
1131 ///          returned vector. \n
1132 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
1133 ///          returned vector. \n
1134 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
1135 ///          returned vector. \n
1136 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
1137 ///          returned vector. \n
1138 ///    Bits [3:2]: \n
1139 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
1140 ///          returned vector. \n
1141 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
1142 ///          returned vector. \n
1143 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
1144 ///          returned vector. \n
1145 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
1146 ///          returned vector. \n
1147 ///    Bits [5:4]: \n
1148 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
1149 ///          returned vector. \n
1150 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
1151 ///          returned vector. \n
1152 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
1153 ///          returned vector. \n
1154 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
1155 ///          returned vector. \n
1156 ///    Bits [7:6]: \n
1157 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
1158 ///          returned vector. \n
1159 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
1160 ///          returned vector. \n
1161 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
1162 ///          returned vector. \n
1163 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
1164 ///          returned vector. \n
1165 ///    Bits [1:0]: \n
1166 ///      00: Bits [159:128] of the source are copied to bits [159:128] of the
1167 ///          returned vector. \n
1168 ///      01: Bits [191:160] of the source are copied to bits [159:128] of the
1169 ///          returned vector. \n
1170 ///      10: Bits [223:192] of the source are copied to bits [159:128] of the
1171 ///          returned vector. \n
1172 ///      11: Bits [255:224] of the source are copied to bits [159:128] of the
1173 ///          returned vector. \n
1174 ///    Bits [3:2]: \n
1175 ///      00: Bits [159:128] of the source are copied to bits [191:160] of the
1176 ///          returned vector. \n
1177 ///      01: Bits [191:160] of the source are copied to bits [191:160] of the
1178 ///          returned vector. \n
1179 ///      10: Bits [223:192] of the source are copied to bits [191:160] of the
1180 ///          returned vector. \n
1181 ///      11: Bits [255:224] of the source are copied to bits [191:160] of the
1182 ///          returned vector. \n
1183 ///    Bits [5:4]: \n
1184 ///      00: Bits [159:128] of the source are copied to bits [223:192] of the
1185 ///          returned vector. \n
1186 ///      01: Bits [191:160] of the source are copied to bits [223:192] of the
1187 ///          returned vector. \n
1188 ///      10: Bits [223:192] of the source are copied to bits [223:192] of the
1189 ///          returned vector. \n
1190 ///      11: Bits [255:224] of the source are copied to bits [223:192] of the
1191 ///          returned vector. \n
1192 ///    Bits [7:6]: \n
1193 ///      00: Bits [159:128] of the source are copied to bits [255:224] of the
1194 ///          returned vector. \n
1195 ///      01: Bits [191:160] of the source are copied to bits [255:224] of the
1196 ///          returned vector. \n
1197 ///      10: Bits [223:192] of the source are copied to bits [255:224] of the
1198 ///          returned vector. \n
1199 ///      11: Bits [255:224] of the source are copied to bits [255:224] of the
1200 ///          returned vector.
1201 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1202 #define _mm256_permute_ps(A, C) \
1203   ((__m256)__builtin_ia32_vpermilps256((__v8sf)(__m256)(A), (int)(C)))
1204 
1205 /// Permutes 128-bit data values stored in two 256-bit vectors of
1206 ///    [4 x double], as specified by the immediate integer operand.
1207 ///
1208 /// \headerfile <x86intrin.h>
1209 ///
1210 /// \code
1211 /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1212 /// \endcode
1213 ///
1214 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1215 ///
1216 /// \param V1
1217 ///    A 256-bit vector of [4 x double].
1218 /// \param V2
1219 ///    A 256-bit vector of [4 x double.
1220 /// \param M
1221 ///    An immediate integer operand specifying how the values are to be
1222 ///    permuted. \n
1223 ///    Bits [1:0]: \n
1224 ///      00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1225 ///          destination. \n
1226 ///      01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1227 ///          destination. \n
1228 ///      10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1229 ///          destination. \n
1230 ///      11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1231 ///          destination. \n
1232 ///    Bits [5:4]: \n
1233 ///      00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1234 ///          destination. \n
1235 ///      01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1236 ///          destination. \n
1237 ///      10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1238 ///          destination. \n
1239 ///      11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1240 ///          destination.
1241 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1242 #define _mm256_permute2f128_pd(V1, V2, M) \
1243   ((__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1244                                             (__v4df)(__m256d)(V2), (int)(M)))
1245 
1246 /// Permutes 128-bit data values stored in two 256-bit vectors of
1247 ///    [8 x float], as specified by the immediate integer operand.
1248 ///
1249 /// \headerfile <x86intrin.h>
1250 ///
1251 /// \code
1252 /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1253 /// \endcode
1254 ///
1255 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1256 ///
1257 /// \param V1
1258 ///    A 256-bit vector of [8 x float].
1259 /// \param V2
1260 ///    A 256-bit vector of [8 x float].
1261 /// \param M
1262 ///    An immediate integer operand specifying how the values are to be
1263 ///    permuted. \n
1264 ///    Bits [1:0]: \n
1265 ///    00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1266 ///    destination. \n
1267 ///    01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1268 ///    destination. \n
1269 ///    10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1270 ///    destination. \n
1271 ///    11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1272 ///    destination. \n
1273 ///    Bits [5:4]: \n
1274 ///    00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1275 ///    destination. \n
1276 ///    01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1277 ///    destination. \n
1278 ///    10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1279 ///    destination. \n
1280 ///    11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1281 ///    destination.
1282 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1283 #define _mm256_permute2f128_ps(V1, V2, M) \
1284   ((__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1285                                            (__v8sf)(__m256)(V2), (int)(M)))
1286 
1287 /// Permutes 128-bit data values stored in two 256-bit integer vectors,
1288 ///    as specified by the immediate integer operand.
1289 ///
1290 /// \headerfile <x86intrin.h>
1291 ///
1292 /// \code
1293 /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1294 /// \endcode
1295 ///
1296 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1297 ///
1298 /// \param V1
1299 ///    A 256-bit integer vector.
1300 /// \param V2
1301 ///    A 256-bit integer vector.
1302 /// \param M
1303 ///    An immediate integer operand specifying how the values are to be copied.
1304 ///    Bits [1:0]: \n
1305 ///    00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1306 ///    destination. \n
1307 ///    01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1308 ///    destination. \n
1309 ///    10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1310 ///    destination. \n
1311 ///    11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1312 ///    destination. \n
1313 ///    Bits [5:4]: \n
1314 ///    00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1315 ///    destination. \n
1316 ///    01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1317 ///    destination. \n
1318 ///    10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1319 ///    destination. \n
1320 ///    11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1321 ///    destination.
1322 /// \returns A 256-bit integer vector containing the copied values.
1323 #define _mm256_permute2f128_si256(V1, V2, M) \
1324   ((__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1325                                             (__v8si)(__m256i)(V2), (int)(M)))
1326 
1327 /* Vector Blend */
1328 /// Merges 64-bit double-precision data values stored in either of the
1329 ///    two 256-bit vectors of [4 x double], as specified by the immediate
1330 ///    integer operand.
1331 ///
1332 /// \headerfile <x86intrin.h>
1333 ///
1334 /// \code
1335 /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1336 /// \endcode
1337 ///
1338 /// This intrinsic corresponds to the <c> VBLENDPD </c> instruction.
1339 ///
1340 /// \param V1
1341 ///    A 256-bit vector of [4 x double].
1342 /// \param V2
1343 ///    A 256-bit vector of [4 x double].
1344 /// \param M
1345 ///    An immediate integer operand, with mask bits [3:0] specifying how the
1346 ///    values are to be copied. The position of the mask bit corresponds to the
1347 ///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
1348 ///    element in operand \a V1 is copied to the same position in the
1349 ///    destination. When a mask bit is 1, the corresponding 64-bit element in
1350 ///    operand \a V2 is copied to the same position in the destination.
1351 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1352 #define _mm256_blend_pd(V1, V2, M) \
1353   ((__m256d)__builtin_ia32_blendpd256((__v4df)(__m256d)(V1), \
1354                                       (__v4df)(__m256d)(V2), (int)(M)))
1355 
1356 /// Merges 32-bit single-precision data values stored in either of the
1357 ///    two 256-bit vectors of [8 x float], as specified by the immediate
1358 ///    integer operand.
1359 ///
1360 /// \headerfile <x86intrin.h>
1361 ///
1362 /// \code
1363 /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1364 /// \endcode
1365 ///
1366 /// This intrinsic corresponds to the <c> VBLENDPS </c> instruction.
1367 ///
1368 /// \param V1
1369 ///    A 256-bit vector of [8 x float].
1370 /// \param V2
1371 ///    A 256-bit vector of [8 x float].
1372 /// \param M
1373 ///    An immediate integer operand, with mask bits [7:0] specifying how the
1374 ///    values are to be copied. The position of the mask bit corresponds to the
1375 ///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
1376 ///    element in operand \a V1 is copied to the same position in the
1377 ///    destination. When a mask bit is 1, the corresponding 32-bit element in
1378 ///    operand \a V2 is copied to the same position in the destination.
1379 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1380 #define _mm256_blend_ps(V1, V2, M) \
1381   ((__m256)__builtin_ia32_blendps256((__v8sf)(__m256)(V1), \
1382                                      (__v8sf)(__m256)(V2), (int)(M)))
1383 
1384 /// Merges 64-bit double-precision data values stored in either of the
1385 ///    two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1386 ///    operand.
1387 ///
1388 /// \headerfile <x86intrin.h>
1389 ///
1390 /// This intrinsic corresponds to the <c> VBLENDVPD </c> instruction.
1391 ///
1392 /// \param __a
1393 ///    A 256-bit vector of [4 x double].
1394 /// \param __b
1395 ///    A 256-bit vector of [4 x double].
1396 /// \param __c
1397 ///    A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1398 ///    how the values are to be copied. The position of the mask bit corresponds
1399 ///    to the most significant bit of a copied value. When a mask bit is 0, the
1400 ///    corresponding 64-bit element in operand \a __a is copied to the same
1401 ///    position in the destination. When a mask bit is 1, the corresponding
1402 ///    64-bit element in operand \a __b is copied to the same position in the
1403 ///    destination.
1404 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1405 static __inline __m256d __DEFAULT_FN_ATTRS
1406 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1407 {
1408   return (__m256d)__builtin_ia32_blendvpd256(
1409     (__v4df)__a, (__v4df)__b, (__v4df)__c);
1410 }
1411 
1412 /// Merges 32-bit single-precision data values stored in either of the
1413 ///    two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1414 ///    operand.
1415 ///
1416 /// \headerfile <x86intrin.h>
1417 ///
1418 /// This intrinsic corresponds to the <c> VBLENDVPS </c> instruction.
1419 ///
1420 /// \param __a
1421 ///    A 256-bit vector of [8 x float].
1422 /// \param __b
1423 ///    A 256-bit vector of [8 x float].
1424 /// \param __c
1425 ///    A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1426 ///    and 31 specifying how the values are to be copied. The position of the
1427 ///    mask bit corresponds to the most significant bit of a copied value. When
1428 ///    a mask bit is 0, the corresponding 32-bit element in operand \a __a is
1429 ///    copied to the same position in the destination. When a mask bit is 1, the
1430 ///    corresponding 32-bit element in operand \a __b is copied to the same
1431 ///    position in the destination.
1432 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1433 static __inline __m256 __DEFAULT_FN_ATTRS
1434 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1435 {
1436   return (__m256)__builtin_ia32_blendvps256(
1437     (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1438 }
1439 
1440 /* Vector Dot Product */
1441 /// Computes two dot products in parallel, using the lower and upper
1442 ///    halves of two [8 x float] vectors as input to the two computations, and
1443 ///    returning the two dot products in the lower and upper halves of the
1444 ///    [8 x float] result.
1445 ///
1446 ///    The immediate integer operand controls which input elements will
1447 ///    contribute to the dot product, and where the final results are returned.
1448 ///    In general, for each dot product, the four corresponding elements of the
1449 ///    input vectors are multiplied; the first two and second two products are
1450 ///    summed, then the two sums are added to form the final result.
1451 ///
1452 /// \headerfile <x86intrin.h>
1453 ///
1454 /// \code
1455 /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1456 /// \endcode
1457 ///
1458 /// This intrinsic corresponds to the <c> VDPPS </c> instruction.
1459 ///
1460 /// \param V1
1461 ///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1462 /// \param V2
1463 ///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1464 /// \param M
1465 ///    An immediate integer argument. Bits [7:4] determine which elements of
1466 ///    the input vectors are used, with bit [4] corresponding to the lowest
1467 ///    element and bit [7] corresponding to the highest element of each [4 x
1468 ///    float] subvector. If a bit is set, the corresponding elements from the
1469 ///    two input vectors are used as an input for dot product; otherwise that
1470 ///    input is treated as zero. Bits [3:0] determine which elements of the
1471 ///    result will receive a copy of the final dot product, with bit [0]
1472 ///    corresponding to the lowest element and bit [3] corresponding to the
1473 ///    highest element of each [4 x float] subvector. If a bit is set, the dot
1474 ///    product is returned in the corresponding element; otherwise that element
1475 ///    is set to zero. The bitmask is applied in the same way to each of the
1476 ///    two parallel dot product computations.
1477 /// \returns A 256-bit vector of [8 x float] containing the two dot products.
1478 #define _mm256_dp_ps(V1, V2, M) \
1479   ((__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1480                                   (__v8sf)(__m256)(V2), (M)))
1481 
1482 /* Vector shuffle */
1483 /// Selects 8 float values from the 256-bit operands of [8 x float], as
1484 ///    specified by the immediate value operand.
1485 ///
1486 ///    The four selected elements in each operand are copied to the destination
1487 ///    according to the bits specified in the immediate operand. The selected
1488 ///    elements from the first 256-bit operand are copied to bits [63:0] and
1489 ///    bits [191:128] of the destination, and the selected elements from the
1490 ///    second 256-bit operand are copied to bits [127:64] and bits [255:192] of
1491 ///    the destination. For example, if bits [7:0] of the immediate operand
1492 ///    contain a value of 0xFF, the 256-bit destination vector would contain the
1493 ///    following values: b[7], b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1494 ///
1495 /// \headerfile <x86intrin.h>
1496 ///
1497 /// \code
1498 /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1499 /// \endcode
1500 ///
1501 /// This intrinsic corresponds to the <c> VSHUFPS </c> instruction.
1502 ///
1503 /// \param a
1504 ///    A 256-bit vector of [8 x float]. The four selected elements in this
1505 ///    operand are copied to bits [63:0] and bits [191:128] in the destination,
1506 ///    according to the bits specified in the immediate operand.
1507 /// \param b
1508 ///    A 256-bit vector of [8 x float]. The four selected elements in this
1509 ///    operand are copied to bits [127:64] and bits [255:192] in the
1510 ///    destination, according to the bits specified in the immediate operand.
1511 /// \param mask
1512 ///    An immediate value containing an 8-bit value specifying which elements to
1513 ///    copy from \a a and \a b \n.
1514 ///    Bits [3:0] specify the values copied from operand \a a. \n
1515 ///    Bits [7:4] specify the values copied from operand \a b. \n
1516 ///    The destinations within the 256-bit destination are assigned values as
1517 ///    follows, according to the bit value assignments described below: \n
1518 ///    Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1519 ///    destination. \n
1520 ///    Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1521 ///    destination. \n
1522 ///    Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1523 ///    destination. \n
1524 ///    Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1525 ///    the destination. \n
1526 ///    Bit value assignments: \n
1527 ///    00: Bits [31:0] and [159:128] are copied from the selected operand. \n
1528 ///    01: Bits [63:32] and [191:160] are copied from the selected operand. \n
1529 ///    10: Bits [95:64] and [223:192] are copied from the selected operand. \n
1530 ///    11: Bits [127:96] and [255:224] are copied from the selected operand. \n
1531 ///    Note: To generate a mask, you can use the \c _MM_SHUFFLE macro.
1532 ///    <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form
1533 ///    <c>[b6, b4, b2, b0]</c>.
1534 /// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1535 #define _mm256_shuffle_ps(a, b, mask) \
1536   ((__m256)__builtin_ia32_shufps256((__v8sf)(__m256)(a), \
1537                                     (__v8sf)(__m256)(b), (int)(mask)))
1538 
1539 /// Selects four double-precision values from the 256-bit operands of
1540 ///    [4 x double], as specified by the immediate value operand.
1541 ///
1542 ///    The selected elements from the first 256-bit operand are copied to bits
1543 ///    [63:0] and bits [191:128] in the destination, and the selected elements
1544 ///    from the second 256-bit operand are copied to bits [127:64] and bits
1545 ///    [255:192] in the destination. For example, if bits [3:0] of the immediate
1546 ///    operand contain a value of 0xF, the 256-bit destination vector would
1547 ///    contain the following values: b[3], a[3], b[1], a[1].
1548 ///
1549 /// \headerfile <x86intrin.h>
1550 ///
1551 /// \code
1552 /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1553 /// \endcode
1554 ///
1555 /// This intrinsic corresponds to the <c> VSHUFPD </c> instruction.
1556 ///
1557 /// \param a
1558 ///    A 256-bit vector of [4 x double].
1559 /// \param b
1560 ///    A 256-bit vector of [4 x double].
1561 /// \param mask
1562 ///    An immediate value containing 8-bit values specifying which elements to
1563 ///    copy from \a a and \a b: \n
1564 ///    Bit [0]=0: Bits [63:0] are copied from \a a to bits [63:0] of the
1565 ///    destination. \n
1566 ///    Bit [0]=1: Bits [127:64] are copied from \a a to bits [63:0] of the
1567 ///    destination. \n
1568 ///    Bit [1]=0: Bits [63:0] are copied from \a b to bits [127:64] of the
1569 ///    destination. \n
1570 ///    Bit [1]=1: Bits [127:64] are copied from \a b to bits [127:64] of the
1571 ///    destination. \n
1572 ///    Bit [2]=0: Bits [191:128] are copied from \a a to bits [191:128] of the
1573 ///    destination. \n
1574 ///    Bit [2]=1: Bits [255:192] are copied from \a a to bits [191:128] of the
1575 ///    destination. \n
1576 ///    Bit [3]=0: Bits [191:128] are copied from \a b to bits [255:192] of the
1577 ///    destination. \n
1578 ///    Bit [3]=1: Bits [255:192] are copied from \a b to bits [255:192] of the
1579 ///    destination.
1580 /// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1581 #define _mm256_shuffle_pd(a, b, mask) \
1582   ((__m256d)__builtin_ia32_shufpd256((__v4df)(__m256d)(a), \
1583                                      (__v4df)(__m256d)(b), (int)(mask)))
1584 
1585 /* Compare */
1586 #define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
1587 #define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unordered, signaling)  */
1588 #define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
1589 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
1590 #define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
1591 #define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
1592 #define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
1593 #define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
1594 #define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
1595 #define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
1596 #define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
1597 #define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
1598 #define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
1599 #define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
1600 #define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unordered, non-signaling)  */
1601 #define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
1602 #define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
1603 #define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unordered, non-signaling)  */
1604 #define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
1605 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
1606 #define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
1607 #define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
1608 #define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
1609 #define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */
1610 
1611 /* Below intrinsic defined in emmintrin.h can be used for AVX */
1612 /// Compares each of the corresponding double-precision values of two
1613 ///    128-bit vectors of [2 x double], using the operation specified by the
1614 ///    immediate integer operand.
1615 ///
1616 ///    Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1617 ///    If either value in a comparison is NaN, comparisons that are ordered
1618 ///    return false, and comparisons that are unordered return true.
1619 ///
1620 /// \headerfile <x86intrin.h>
1621 ///
1622 /// \code
1623 /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1624 /// \endcode
1625 ///
1626 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1627 ///
1628 /// \param a
1629 ///    A 128-bit vector of [2 x double].
1630 /// \param b
1631 ///    A 128-bit vector of [2 x double].
1632 /// \param c
1633 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1634 ///    operation to use: \n
1635 ///    0x00: Equal (ordered, non-signaling) \n
1636 ///    0x01: Less-than (ordered, signaling) \n
1637 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1638 ///    0x03: Unordered (non-signaling) \n
1639 ///    0x04: Not-equal (unordered, non-signaling) \n
1640 ///    0x05: Not-less-than (unordered, signaling) \n
1641 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1642 ///    0x07: Ordered (non-signaling) \n
1643 ///    0x08: Equal (unordered, non-signaling) \n
1644 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1645 ///    0x0A: Not-greater-than (unordered, signaling) \n
1646 ///    0x0B: False (ordered, non-signaling) \n
1647 ///    0x0C: Not-equal (ordered, non-signaling) \n
1648 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1649 ///    0x0E: Greater-than (ordered, signaling) \n
1650 ///    0x0F: True (unordered, non-signaling) \n
1651 ///    0x10: Equal (ordered, signaling) \n
1652 ///    0x11: Less-than (ordered, non-signaling) \n
1653 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1654 ///    0x13: Unordered (signaling) \n
1655 ///    0x14: Not-equal (unordered, signaling) \n
1656 ///    0x15: Not-less-than (unordered, non-signaling) \n
1657 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1658 ///    0x17: Ordered (signaling) \n
1659 ///    0x18: Equal (unordered, signaling) \n
1660 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1661 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1662 ///    0x1B: False (ordered, signaling) \n
1663 ///    0x1C: Not-equal (ordered, signaling) \n
1664 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1665 ///    0x1E: Greater-than (ordered, non-signaling) \n
1666 ///    0x1F: True (unordered, signaling)
1667 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1668 /// \fn __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c)
1669 
1670 /* Below intrinsic defined in xmmintrin.h can be used for AVX */
1671 /// Compares each of the corresponding values of two 128-bit vectors of
1672 ///    [4 x float], using the operation specified by the immediate integer
1673 ///    operand.
1674 ///
1675 ///    Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1676 ///    If either value in a comparison is NaN, comparisons that are ordered
1677 ///    return false, and comparisons that are unordered return true.
1678 ///
1679 /// \headerfile <x86intrin.h>
1680 ///
1681 /// \code
1682 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1683 /// \endcode
1684 ///
1685 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1686 ///
1687 /// \param a
1688 ///    A 128-bit vector of [4 x float].
1689 /// \param b
1690 ///    A 128-bit vector of [4 x float].
1691 /// \param c
1692 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1693 ///    operation to use: \n
1694 ///    0x00: Equal (ordered, non-signaling) \n
1695 ///    0x01: Less-than (ordered, signaling) \n
1696 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1697 ///    0x03: Unordered (non-signaling) \n
1698 ///    0x04: Not-equal (unordered, non-signaling) \n
1699 ///    0x05: Not-less-than (unordered, signaling) \n
1700 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1701 ///    0x07: Ordered (non-signaling) \n
1702 ///    0x08: Equal (unordered, non-signaling) \n
1703 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1704 ///    0x0A: Not-greater-than (unordered, signaling) \n
1705 ///    0x0B: False (ordered, non-signaling) \n
1706 ///    0x0C: Not-equal (ordered, non-signaling) \n
1707 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1708 ///    0x0E: Greater-than (ordered, signaling) \n
1709 ///    0x0F: True (unordered, non-signaling) \n
1710 ///    0x10: Equal (ordered, signaling) \n
1711 ///    0x11: Less-than (ordered, non-signaling) \n
1712 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1713 ///    0x13: Unordered (signaling) \n
1714 ///    0x14: Not-equal (unordered, signaling) \n
1715 ///    0x15: Not-less-than (unordered, non-signaling) \n
1716 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1717 ///    0x17: Ordered (signaling) \n
1718 ///    0x18: Equal (unordered, signaling) \n
1719 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1720 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1721 ///    0x1B: False (ordered, signaling) \n
1722 ///    0x1C: Not-equal (ordered, signaling) \n
1723 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1724 ///    0x1E: Greater-than (ordered, non-signaling) \n
1725 ///    0x1F: True (unordered, signaling)
1726 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1727 /// \fn __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c)
1728 
1729 /// Compares each of the corresponding double-precision values of two
1730 ///    256-bit vectors of [4 x double], using the operation specified by the
1731 ///    immediate integer operand.
1732 ///
1733 ///    Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1734 ///    If either value in a comparison is NaN, comparisons that are ordered
1735 ///    return false, and comparisons that are unordered return true.
1736 ///
1737 /// \headerfile <x86intrin.h>
1738 ///
1739 /// \code
1740 /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1741 /// \endcode
1742 ///
1743 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1744 ///
1745 /// \param a
1746 ///    A 256-bit vector of [4 x double].
1747 /// \param b
1748 ///    A 256-bit vector of [4 x double].
1749 /// \param c
1750 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1751 ///    operation to use: \n
1752 ///    0x00: Equal (ordered, non-signaling) \n
1753 ///    0x01: Less-than (ordered, signaling) \n
1754 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1755 ///    0x03: Unordered (non-signaling) \n
1756 ///    0x04: Not-equal (unordered, non-signaling) \n
1757 ///    0x05: Not-less-than (unordered, signaling) \n
1758 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1759 ///    0x07: Ordered (non-signaling) \n
1760 ///    0x08: Equal (unordered, non-signaling) \n
1761 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1762 ///    0x0A: Not-greater-than (unordered, signaling) \n
1763 ///    0x0B: False (ordered, non-signaling) \n
1764 ///    0x0C: Not-equal (ordered, non-signaling) \n
1765 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1766 ///    0x0E: Greater-than (ordered, signaling) \n
1767 ///    0x0F: True (unordered, non-signaling) \n
1768 ///    0x10: Equal (ordered, signaling) \n
1769 ///    0x11: Less-than (ordered, non-signaling) \n
1770 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1771 ///    0x13: Unordered (signaling) \n
1772 ///    0x14: Not-equal (unordered, signaling) \n
1773 ///    0x15: Not-less-than (unordered, non-signaling) \n
1774 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1775 ///    0x17: Ordered (signaling) \n
1776 ///    0x18: Equal (unordered, signaling) \n
1777 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1778 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1779 ///    0x1B: False (ordered, signaling) \n
1780 ///    0x1C: Not-equal (ordered, signaling) \n
1781 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1782 ///    0x1E: Greater-than (ordered, non-signaling) \n
1783 ///    0x1F: True (unordered, signaling)
1784 /// \returns A 256-bit vector of [4 x double] containing the comparison results.
1785 #define _mm256_cmp_pd(a, b, c) \
1786   ((__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1787                                     (__v4df)(__m256d)(b), (c)))
1788 
1789 /// Compares each of the corresponding values of two 256-bit vectors of
1790 ///    [8 x float], using the operation specified by the immediate integer
1791 ///    operand.
1792 ///
1793 ///    Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1794 ///    If either value in a comparison is NaN, comparisons that are ordered
1795 ///    return false, and comparisons that are unordered return true.
1796 ///
1797 /// \headerfile <x86intrin.h>
1798 ///
1799 /// \code
1800 /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1801 /// \endcode
1802 ///
1803 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1804 ///
1805 /// \param a
1806 ///    A 256-bit vector of [8 x float].
1807 /// \param b
1808 ///    A 256-bit vector of [8 x float].
1809 /// \param c
1810 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1811 ///    operation to use: \n
1812 ///    0x00: Equal (ordered, non-signaling) \n
1813 ///    0x01: Less-than (ordered, signaling) \n
1814 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1815 ///    0x03: Unordered (non-signaling) \n
1816 ///    0x04: Not-equal (unordered, non-signaling) \n
1817 ///    0x05: Not-less-than (unordered, signaling) \n
1818 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1819 ///    0x07: Ordered (non-signaling) \n
1820 ///    0x08: Equal (unordered, non-signaling) \n
1821 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1822 ///    0x0A: Not-greater-than (unordered, signaling) \n
1823 ///    0x0B: False (ordered, non-signaling) \n
1824 ///    0x0C: Not-equal (ordered, non-signaling) \n
1825 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1826 ///    0x0E: Greater-than (ordered, signaling) \n
1827 ///    0x0F: True (unordered, non-signaling) \n
1828 ///    0x10: Equal (ordered, signaling) \n
1829 ///    0x11: Less-than (ordered, non-signaling) \n
1830 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1831 ///    0x13: Unordered (signaling) \n
1832 ///    0x14: Not-equal (unordered, signaling) \n
1833 ///    0x15: Not-less-than (unordered, non-signaling) \n
1834 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1835 ///    0x17: Ordered (signaling) \n
1836 ///    0x18: Equal (unordered, signaling) \n
1837 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1838 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1839 ///    0x1B: False (ordered, signaling) \n
1840 ///    0x1C: Not-equal (ordered, signaling) \n
1841 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1842 ///    0x1E: Greater-than (ordered, non-signaling) \n
1843 ///    0x1F: True (unordered, signaling)
1844 /// \returns A 256-bit vector of [8 x float] containing the comparison results.
1845 #define _mm256_cmp_ps(a, b, c) \
1846   ((__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1847                                    (__v8sf)(__m256)(b), (c)))
1848 
1849 /* Below intrinsic defined in emmintrin.h can be used for AVX */
1850 /// Compares each of the corresponding scalar double-precision values of
1851 ///    two 128-bit vectors of [2 x double], using the operation specified by the
1852 ///    immediate integer operand.
1853 ///
1854 ///    Each comparison returns 0x0 for false, 0xFFFFFFFFFFFFFFFF for true.
1855 ///    If either value in a comparison is NaN, comparisons that are ordered
1856 ///    return false, and comparisons that are unordered return true.
1857 ///
1858 /// \headerfile <x86intrin.h>
1859 ///
1860 /// \code
1861 /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1862 /// \endcode
1863 ///
1864 /// This intrinsic corresponds to the <c> VCMPSD </c> instruction.
1865 ///
1866 /// \param a
1867 ///    A 128-bit vector of [2 x double].
1868 /// \param b
1869 ///    A 128-bit vector of [2 x double].
1870 /// \param c
1871 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1872 ///    operation to use: \n
1873 ///    0x00: Equal (ordered, non-signaling) \n
1874 ///    0x01: Less-than (ordered, signaling) \n
1875 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1876 ///    0x03: Unordered (non-signaling) \n
1877 ///    0x04: Not-equal (unordered, non-signaling) \n
1878 ///    0x05: Not-less-than (unordered, signaling) \n
1879 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1880 ///    0x07: Ordered (non-signaling) \n
1881 ///    0x08: Equal (unordered, non-signaling) \n
1882 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1883 ///    0x0A: Not-greater-than (unordered, signaling) \n
1884 ///    0x0B: False (ordered, non-signaling) \n
1885 ///    0x0C: Not-equal (ordered, non-signaling) \n
1886 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1887 ///    0x0E: Greater-than (ordered, signaling) \n
1888 ///    0x0F: True (unordered, non-signaling) \n
1889 ///    0x10: Equal (ordered, signaling) \n
1890 ///    0x11: Less-than (ordered, non-signaling) \n
1891 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1892 ///    0x13: Unordered (signaling) \n
1893 ///    0x14: Not-equal (unordered, signaling) \n
1894 ///    0x15: Not-less-than (unordered, non-signaling) \n
1895 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1896 ///    0x17: Ordered (signaling) \n
1897 ///    0x18: Equal (unordered, signaling) \n
1898 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1899 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1900 ///    0x1B: False (ordered, signaling) \n
1901 ///    0x1C: Not-equal (ordered, signaling) \n
1902 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1903 ///    0x1E: Greater-than (ordered, non-signaling) \n
1904 ///    0x1F: True (unordered, signaling)
1905 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1906 /// \fn __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c)
1907 
1908 /* Below intrinsic defined in xmmintrin.h can be used for AVX */
1909 /// Compares each of the corresponding scalar values of two 128-bit
1910 ///    vectors of [4 x float], using the operation specified by the immediate
1911 ///    integer operand.
1912 ///
1913 ///    Each comparison returns 0x0 for false, 0xFFFFFFFF for true.
1914 ///    If either value in a comparison is NaN, comparisons that are ordered
1915 ///    return false, and comparisons that are unordered return true.
1916 ///
1917 /// \headerfile <x86intrin.h>
1918 ///
1919 /// \code
1920 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1921 /// \endcode
1922 ///
1923 /// This intrinsic corresponds to the <c> VCMPSS </c> instruction.
1924 ///
1925 /// \param a
1926 ///    A 128-bit vector of [4 x float].
1927 /// \param b
1928 ///    A 128-bit vector of [4 x float].
1929 /// \param c
1930 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1931 ///    operation to use: \n
1932 ///    0x00: Equal (ordered, non-signaling) \n
1933 ///    0x01: Less-than (ordered, signaling) \n
1934 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1935 ///    0x03: Unordered (non-signaling) \n
1936 ///    0x04: Not-equal (unordered, non-signaling) \n
1937 ///    0x05: Not-less-than (unordered, signaling) \n
1938 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1939 ///    0x07: Ordered (non-signaling) \n
1940 ///    0x08: Equal (unordered, non-signaling) \n
1941 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1942 ///    0x0A: Not-greater-than (unordered, signaling) \n
1943 ///    0x0B: False (ordered, non-signaling) \n
1944 ///    0x0C: Not-equal (ordered, non-signaling) \n
1945 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1946 ///    0x0E: Greater-than (ordered, signaling) \n
1947 ///    0x0F: True (unordered, non-signaling) \n
1948 ///    0x10: Equal (ordered, signaling) \n
1949 ///    0x11: Less-than (ordered, non-signaling) \n
1950 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1951 ///    0x13: Unordered (signaling) \n
1952 ///    0x14: Not-equal (unordered, signaling) \n
1953 ///    0x15: Not-less-than (unordered, non-signaling) \n
1954 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1955 ///    0x17: Ordered (signaling) \n
1956 ///    0x18: Equal (unordered, signaling) \n
1957 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1958 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1959 ///    0x1B: False (ordered, signaling) \n
1960 ///    0x1C: Not-equal (ordered, signaling) \n
1961 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1962 ///    0x1E: Greater-than (ordered, non-signaling) \n
1963 ///    0x1F: True (unordered, signaling)
1964 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1965 /// \fn __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c)
1966 
1967 /// Takes a [8 x i32] vector and returns the vector element value
1968 ///    indexed by the immediate constant operand.
1969 ///
1970 /// \headerfile <x86intrin.h>
1971 ///
1972 /// \code
1973 /// int _mm256_extract_epi32(__m256i X, const int N);
1974 /// \endcode
1975 ///
1976 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1977 ///   instruction.
1978 ///
1979 /// \param X
1980 ///    A 256-bit vector of [8 x i32].
1981 /// \param N
1982 ///    An immediate integer operand with bits [2:0] determining which vector
1983 ///    element is extracted and returned.
1984 /// \returns A 32-bit integer containing the extracted 32 bits of extended
1985 ///    packed data.
1986 #define _mm256_extract_epi32(X, N) \
1987   ((int)__builtin_ia32_vec_ext_v8si((__v8si)(__m256i)(X), (int)(N)))
1988 
1989 /// Takes a [16 x i16] vector and returns the vector element value
1990 ///    indexed by the immediate constant operand.
1991 ///
1992 /// \headerfile <x86intrin.h>
1993 ///
1994 /// \code
1995 /// int _mm256_extract_epi16(__m256i X, const int N);
1996 /// \endcode
1997 ///
1998 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1999 ///   instruction.
2000 ///
2001 /// \param X
2002 ///    A 256-bit integer vector of [16 x i16].
2003 /// \param N
2004 ///    An immediate integer operand with bits [3:0] determining which vector
2005 ///    element is extracted and returned.
2006 /// \returns A 32-bit integer containing the extracted 16 bits of zero extended
2007 ///    packed data.
2008 #define _mm256_extract_epi16(X, N) \
2009   ((int)(unsigned short)__builtin_ia32_vec_ext_v16hi((__v16hi)(__m256i)(X), \
2010                                                      (int)(N)))
2011 
2012 /// Takes a [32 x i8] vector and returns the vector element value
2013 ///    indexed by the immediate constant operand.
2014 ///
2015 /// \headerfile <x86intrin.h>
2016 ///
2017 /// \code
2018 /// int _mm256_extract_epi8(__m256i X, const int N);
2019 /// \endcode
2020 ///
2021 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2022 ///   instruction.
2023 ///
2024 /// \param X
2025 ///    A 256-bit integer vector of [32 x i8].
2026 /// \param N
2027 ///    An immediate integer operand with bits [4:0] determining which vector
2028 ///    element is extracted and returned.
2029 /// \returns A 32-bit integer containing the extracted 8 bits of zero extended
2030 ///    packed data.
2031 #define _mm256_extract_epi8(X, N) \
2032   ((int)(unsigned char)__builtin_ia32_vec_ext_v32qi((__v32qi)(__m256i)(X), \
2033                                                     (int)(N)))
2034 
2035 #ifdef __x86_64__
2036 /// Takes a [4 x i64] vector and returns the vector element value
2037 ///    indexed by the immediate constant operand.
2038 ///
2039 /// \headerfile <x86intrin.h>
2040 ///
2041 /// \code
2042 /// long long _mm256_extract_epi64(__m256i X, const int N);
2043 /// \endcode
2044 ///
2045 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2046 ///   instruction.
2047 ///
2048 /// \param X
2049 ///    A 256-bit integer vector of [4 x i64].
2050 /// \param N
2051 ///    An immediate integer operand with bits [1:0] determining which vector
2052 ///    element is extracted and returned.
2053 /// \returns A 64-bit integer containing the extracted 64 bits of extended
2054 ///    packed data.
2055 #define _mm256_extract_epi64(X, N) \
2056   ((long long)__builtin_ia32_vec_ext_v4di((__v4di)(__m256i)(X), (int)(N)))
2057 #endif
2058 
2059 /// Takes a [8 x i32] vector and replaces the vector element value
2060 ///    indexed by the immediate constant operand by a new value. Returns the
2061 ///    modified vector.
2062 ///
2063 /// \headerfile <x86intrin.h>
2064 ///
2065 /// \code
2066 /// __m256i _mm256_insert_epi32(__m256i X, int I, const int N);
2067 /// \endcode
2068 ///
2069 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2070 ///   instruction.
2071 ///
2072 /// \param X
2073 ///    A vector of [8 x i32] to be used by the insert operation.
2074 /// \param I
2075 ///    An integer value. The replacement value for the insert operation.
2076 /// \param N
2077 ///    An immediate integer specifying the index of the vector element to be
2078 ///    replaced.
2079 /// \returns A copy of vector \a X, after replacing its element indexed by
2080 ///    \a N with \a I.
2081 #define _mm256_insert_epi32(X, I, N) \
2082   ((__m256i)__builtin_ia32_vec_set_v8si((__v8si)(__m256i)(X), \
2083                                         (int)(I), (int)(N)))
2084 
2085 
2086 /// Takes a [16 x i16] vector and replaces the vector element value
2087 ///    indexed by the immediate constant operand with a new value. Returns the
2088 ///    modified vector.
2089 ///
2090 /// \headerfile <x86intrin.h>
2091 ///
2092 /// \code
2093 /// __m256i _mm256_insert_epi16(__m256i X, int I, const int N);
2094 /// \endcode
2095 ///
2096 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2097 ///   instruction.
2098 ///
2099 /// \param X
2100 ///    A vector of [16 x i16] to be used by the insert operation.
2101 /// \param I
2102 ///    An i16 integer value. The replacement value for the insert operation.
2103 /// \param N
2104 ///    An immediate integer specifying the index of the vector element to be
2105 ///    replaced.
2106 /// \returns A copy of vector \a X, after replacing its element indexed by
2107 ///    \a N with \a I.
2108 #define _mm256_insert_epi16(X, I, N) \
2109   ((__m256i)__builtin_ia32_vec_set_v16hi((__v16hi)(__m256i)(X), \
2110                                          (int)(I), (int)(N)))
2111 
2112 /// Takes a [32 x i8] vector and replaces the vector element value
2113 ///    indexed by the immediate constant operand with a new value. Returns the
2114 ///    modified vector.
2115 ///
2116 /// \headerfile <x86intrin.h>
2117 ///
2118 /// \code
2119 /// __m256i _mm256_insert_epi8(__m256i X, int I, const int N);
2120 /// \endcode
2121 ///
2122 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2123 ///   instruction.
2124 ///
2125 /// \param X
2126 ///    A vector of [32 x i8] to be used by the insert operation.
2127 /// \param I
2128 ///    An i8 integer value. The replacement value for the insert operation.
2129 /// \param N
2130 ///    An immediate integer specifying the index of the vector element to be
2131 ///    replaced.
2132 /// \returns A copy of vector \a X, after replacing its element indexed by
2133 ///    \a N with \a I.
2134 #define _mm256_insert_epi8(X, I, N) \
2135   ((__m256i)__builtin_ia32_vec_set_v32qi((__v32qi)(__m256i)(X), \
2136                                          (int)(I), (int)(N)))
2137 
2138 #ifdef __x86_64__
2139 /// Takes a [4 x i64] vector and replaces the vector element value
2140 ///    indexed by the immediate constant operand with a new value. Returns the
2141 ///    modified vector.
2142 ///
2143 /// \headerfile <x86intrin.h>
2144 ///
2145 /// \code
2146 /// __m256i _mm256_insert_epi64(__m256i X, int I, const int N);
2147 /// \endcode
2148 ///
2149 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2150 ///   instruction.
2151 ///
2152 /// \param X
2153 ///    A vector of [4 x i64] to be used by the insert operation.
2154 /// \param I
2155 ///    A 64-bit integer value. The replacement value for the insert operation.
2156 /// \param N
2157 ///    An immediate integer specifying the index of the vector element to be
2158 ///    replaced.
2159 /// \returns A copy of vector \a X, after replacing its element indexed by
2160 ///     \a N with \a I.
2161 #define _mm256_insert_epi64(X, I, N) \
2162   ((__m256i)__builtin_ia32_vec_set_v4di((__v4di)(__m256i)(X), \
2163                                         (long long)(I), (int)(N)))
2164 #endif
2165 
2166 /* Conversion */
2167 /// Converts a vector of [4 x i32] into a vector of [4 x double].
2168 ///
2169 /// \headerfile <x86intrin.h>
2170 ///
2171 /// This intrinsic corresponds to the <c> VCVTDQ2PD </c> instruction.
2172 ///
2173 /// \param __a
2174 ///    A 128-bit integer vector of [4 x i32].
2175 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2176 static __inline __m256d __DEFAULT_FN_ATTRS
2177 _mm256_cvtepi32_pd(__m128i __a)
2178 {
2179   return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2180 }
2181 
2182 /// Converts a vector of [8 x i32] into a vector of [8 x float].
2183 ///
2184 /// \headerfile <x86intrin.h>
2185 ///
2186 /// This intrinsic corresponds to the <c> VCVTDQ2PS </c> instruction.
2187 ///
2188 /// \param __a
2189 ///    A 256-bit integer vector.
2190 /// \returns A 256-bit vector of [8 x float] containing the converted values.
2191 static __inline __m256 __DEFAULT_FN_ATTRS
2192 _mm256_cvtepi32_ps(__m256i __a)
2193 {
2194   return (__m256)__builtin_convertvector((__v8si)__a, __v8sf);
2195 }
2196 
2197 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2198 ///    [4 x float].
2199 ///
2200 /// \headerfile <x86intrin.h>
2201 ///
2202 /// This intrinsic corresponds to the <c> VCVTPD2PS </c> instruction.
2203 ///
2204 /// \param __a
2205 ///    A 256-bit vector of [4 x double].
2206 /// \returns A 128-bit vector of [4 x float] containing the converted values.
2207 static __inline __m128 __DEFAULT_FN_ATTRS
2208 _mm256_cvtpd_ps(__m256d __a)
2209 {
2210   return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2211 }
2212 
2213 /// Converts a vector of [8 x float] into a vector of [8 x i32].
2214 ///
2215 ///    If a converted value does not fit in a 32-bit integer, raises a
2216 ///    floating-point invalid exception. If the exception is masked, returns
2217 ///    the most negative integer.
2218 ///
2219 /// \headerfile <x86intrin.h>
2220 ///
2221 /// This intrinsic corresponds to the <c> VCVTPS2DQ </c> instruction.
2222 ///
2223 /// \param __a
2224 ///    A 256-bit vector of [8 x float].
2225 /// \returns A 256-bit integer vector containing the converted values.
2226 static __inline __m256i __DEFAULT_FN_ATTRS
2227 _mm256_cvtps_epi32(__m256 __a)
2228 {
2229   return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2230 }
2231 
2232 /// Converts a 128-bit vector of [4 x float] into a 256-bit vector of [4
2233 ///    x double].
2234 ///
2235 /// \headerfile <x86intrin.h>
2236 ///
2237 /// This intrinsic corresponds to the <c> VCVTPS2PD </c> instruction.
2238 ///
2239 /// \param __a
2240 ///    A 128-bit vector of [4 x float].
2241 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2242 static __inline __m256d __DEFAULT_FN_ATTRS
2243 _mm256_cvtps_pd(__m128 __a)
2244 {
2245   return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2246 }
2247 
2248 /// Converts a 256-bit vector of [4 x double] into four signed truncated
2249 ///    (rounded toward zero) 32-bit integers returned in a 128-bit vector of
2250 ///    [4 x i32].
2251 ///
2252 ///    If a converted value does not fit in a 32-bit integer, raises a
2253 ///    floating-point invalid exception. If the exception is masked, returns
2254 ///    the most negative integer.
2255 ///
2256 /// \headerfile <x86intrin.h>
2257 ///
2258 /// This intrinsic corresponds to the <c> VCVTTPD2DQ </c> instruction.
2259 ///
2260 /// \param __a
2261 ///    A 256-bit vector of [4 x double].
2262 /// \returns A 128-bit integer vector containing the converted values.
2263 static __inline __m128i __DEFAULT_FN_ATTRS
2264 _mm256_cvttpd_epi32(__m256d __a)
2265 {
2266   return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
2267 }
2268 
2269 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2270 ///    [4 x i32].
2271 ///
2272 ///    If a converted value does not fit in a 32-bit integer, raises a
2273 ///    floating-point invalid exception. If the exception is masked, returns
2274 ///    the most negative integer.
2275 ///
2276 /// \headerfile <x86intrin.h>
2277 ///
2278 /// This intrinsic corresponds to the <c> VCVTPD2DQ </c> instruction.
2279 ///
2280 /// \param __a
2281 ///    A 256-bit vector of [4 x double].
2282 /// \returns A 128-bit integer vector containing the converted values.
2283 static __inline __m128i __DEFAULT_FN_ATTRS
2284 _mm256_cvtpd_epi32(__m256d __a)
2285 {
2286   return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2287 }
2288 
2289 /// Converts a vector of [8 x float] into eight signed truncated (rounded
2290 ///    toward zero) 32-bit integers returned in a vector of [8 x i32].
2291 ///
2292 ///    If a converted value does not fit in a 32-bit integer, raises a
2293 ///    floating-point invalid exception. If the exception is masked, returns
2294 ///    the most negative integer.
2295 ///
2296 /// \headerfile <x86intrin.h>
2297 ///
2298 /// This intrinsic corresponds to the <c> VCVTTPS2DQ </c> instruction.
2299 ///
2300 /// \param __a
2301 ///    A 256-bit vector of [8 x float].
2302 /// \returns A 256-bit integer vector containing the converted values.
2303 static __inline __m256i __DEFAULT_FN_ATTRS
2304 _mm256_cvttps_epi32(__m256 __a)
2305 {
2306   return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
2307 }
2308 
2309 /// Returns the first element of the input vector of [4 x double].
2310 ///
2311 /// \headerfile <x86intrin.h>
2312 ///
2313 /// This intrinsic is a utility function and does not correspond to a specific
2314 ///    instruction.
2315 ///
2316 /// \param __a
2317 ///    A 256-bit vector of [4 x double].
2318 /// \returns A 64 bit double containing the first element of the input vector.
2319 static __inline double __DEFAULT_FN_ATTRS
2320 _mm256_cvtsd_f64(__m256d __a)
2321 {
2322  return __a[0];
2323 }
2324 
2325 /// Returns the first element of the input vector of [8 x i32].
2326 ///
2327 /// \headerfile <x86intrin.h>
2328 ///
2329 /// This intrinsic is a utility function and does not correspond to a specific
2330 ///    instruction.
2331 ///
2332 /// \param __a
2333 ///    A 256-bit vector of [8 x i32].
2334 /// \returns A 32 bit integer containing the first element of the input vector.
2335 static __inline int __DEFAULT_FN_ATTRS
2336 _mm256_cvtsi256_si32(__m256i __a)
2337 {
2338  __v8si __b = (__v8si)__a;
2339  return __b[0];
2340 }
2341 
2342 /// Returns the first element of the input vector of [8 x float].
2343 ///
2344 /// \headerfile <x86intrin.h>
2345 ///
2346 /// This intrinsic is a utility function and does not correspond to a specific
2347 ///    instruction.
2348 ///
2349 /// \param __a
2350 ///    A 256-bit vector of [8 x float].
2351 /// \returns A 32 bit float containing the first element of the input vector.
2352 static __inline float __DEFAULT_FN_ATTRS
2353 _mm256_cvtss_f32(__m256 __a)
2354 {
2355  return __a[0];
2356 }
2357 
2358 /* Vector replicate */
2359 /// Moves and duplicates odd-indexed values from a 256-bit vector of
2360 ///    [8 x float] to float values in a 256-bit vector of [8 x float].
2361 ///
2362 /// \headerfile <x86intrin.h>
2363 ///
2364 /// This intrinsic corresponds to the <c> VMOVSHDUP </c> instruction.
2365 ///
2366 /// \param __a
2367 ///    A 256-bit vector of [8 x float]. \n
2368 ///    Bits [255:224] of \a __a are written to bits [255:224] and [223:192] of
2369 ///    the return value. \n
2370 ///    Bits [191:160] of \a __a are written to bits [191:160] and [159:128] of
2371 ///    the return value. \n
2372 ///    Bits [127:96] of \a __a are written to bits [127:96] and [95:64] of the
2373 ///    return value. \n
2374 ///    Bits [63:32] of \a __a are written to bits [63:32] and [31:0] of the
2375 ///    return value.
2376 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2377 ///    values.
2378 static __inline __m256 __DEFAULT_FN_ATTRS
2379 _mm256_movehdup_ps(__m256 __a)
2380 {
2381   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2382 }
2383 
2384 /// Moves and duplicates even-indexed values from a 256-bit vector of
2385 ///    [8 x float] to float values in a 256-bit vector of [8 x float].
2386 ///
2387 /// \headerfile <x86intrin.h>
2388 ///
2389 /// This intrinsic corresponds to the <c> VMOVSLDUP </c> instruction.
2390 ///
2391 /// \param __a
2392 ///    A 256-bit vector of [8 x float]. \n
2393 ///    Bits [223:192] of \a __a are written to bits [255:224] and [223:192] of
2394 ///    the return value. \n
2395 ///    Bits [159:128] of \a __a are written to bits [191:160] and [159:128] of
2396 ///    the return value. \n
2397 ///    Bits [95:64] of \a __a are written to bits [127:96] and [95:64] of the
2398 ///    return value. \n
2399 ///    Bits [31:0] of \a __a are written to bits [63:32] and [31:0] of the
2400 ///    return value.
2401 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2402 ///    values.
2403 static __inline __m256 __DEFAULT_FN_ATTRS
2404 _mm256_moveldup_ps(__m256 __a)
2405 {
2406   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2407 }
2408 
2409 /// Moves and duplicates double-precision floating point values from a
2410 ///    256-bit vector of [4 x double] to double-precision values in a 256-bit
2411 ///    vector of [4 x double].
2412 ///
2413 /// \headerfile <x86intrin.h>
2414 ///
2415 /// This intrinsic corresponds to the <c> VMOVDDUP </c> instruction.
2416 ///
2417 /// \param __a
2418 ///    A 256-bit vector of [4 x double]. \n
2419 ///    Bits [63:0] of \a __a are written to bits [127:64] and [63:0] of the
2420 ///    return value. \n
2421 ///    Bits [191:128] of \a __a are written to bits [255:192] and [191:128] of
2422 ///    the return value.
2423 /// \returns A 256-bit vector of [4 x double] containing the moved and
2424 ///    duplicated values.
2425 static __inline __m256d __DEFAULT_FN_ATTRS
2426 _mm256_movedup_pd(__m256d __a)
2427 {
2428   return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2429 }
2430 
2431 /* Unpack and Interleave */
2432 /// Unpacks the odd-indexed vector elements from two 256-bit vectors of
2433 ///    [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2434 ///
2435 /// \headerfile <x86intrin.h>
2436 ///
2437 /// This intrinsic corresponds to the <c> VUNPCKHPD </c> instruction.
2438 ///
2439 /// \param __a
2440 ///    A 256-bit floating-point vector of [4 x double]. \n
2441 ///    Bits [127:64] are written to bits [63:0] of the return value. \n
2442 ///    Bits [255:192] are written to bits [191:128] of the return value. \n
2443 /// \param __b
2444 ///    A 256-bit floating-point vector of [4 x double]. \n
2445 ///    Bits [127:64] are written to bits [127:64] of the return value. \n
2446 ///    Bits [255:192] are written to bits [255:192] of the return value. \n
2447 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2448 static __inline __m256d __DEFAULT_FN_ATTRS
2449 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
2450 {
2451   return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2452 }
2453 
2454 /// Unpacks the even-indexed vector elements from two 256-bit vectors of
2455 ///    [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2456 ///
2457 /// \headerfile <x86intrin.h>
2458 ///
2459 /// This intrinsic corresponds to the <c> VUNPCKLPD </c> instruction.
2460 ///
2461 /// \param __a
2462 ///    A 256-bit floating-point vector of [4 x double]. \n
2463 ///    Bits [63:0] are written to bits [63:0] of the return value. \n
2464 ///    Bits [191:128] are written to bits [191:128] of the return value.
2465 /// \param __b
2466 ///    A 256-bit floating-point vector of [4 x double]. \n
2467 ///    Bits [63:0] are written to bits [127:64] of the return value. \n
2468 ///    Bits [191:128] are written to bits [255:192] of the return value. \n
2469 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2470 static __inline __m256d __DEFAULT_FN_ATTRS
2471 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
2472 {
2473   return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2474 }
2475 
2476 /// Unpacks the 32-bit vector elements 2, 3, 6 and 7 from each of the
2477 ///    two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2478 ///    vector of [8 x float].
2479 ///
2480 /// \headerfile <x86intrin.h>
2481 ///
2482 /// This intrinsic corresponds to the <c> VUNPCKHPS </c> instruction.
2483 ///
2484 /// \param __a
2485 ///    A 256-bit vector of [8 x float]. \n
2486 ///    Bits [95:64] are written to bits [31:0] of the return value. \n
2487 ///    Bits [127:96] are written to bits [95:64] of the return value. \n
2488 ///    Bits [223:192] are written to bits [159:128] of the return value. \n
2489 ///    Bits [255:224] are written to bits [223:192] of the return value.
2490 /// \param __b
2491 ///    A 256-bit vector of [8 x float]. \n
2492 ///    Bits [95:64] are written to bits [63:32] of the return value. \n
2493 ///    Bits [127:96] are written to bits [127:96] of the return value. \n
2494 ///    Bits [223:192] are written to bits [191:160] of the return value. \n
2495 ///    Bits [255:224] are written to bits [255:224] of the return value.
2496 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2497 static __inline __m256 __DEFAULT_FN_ATTRS
2498 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
2499 {
2500   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2501 }
2502 
2503 /// Unpacks the 32-bit vector elements 0, 1, 4 and 5 from each of the
2504 ///    two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2505 ///    vector of [8 x float].
2506 ///
2507 /// \headerfile <x86intrin.h>
2508 ///
2509 /// This intrinsic corresponds to the <c> VUNPCKLPS </c> instruction.
2510 ///
2511 /// \param __a
2512 ///    A 256-bit vector of [8 x float]. \n
2513 ///    Bits [31:0] are written to bits [31:0] of the return value. \n
2514 ///    Bits [63:32] are written to bits [95:64] of the return value. \n
2515 ///    Bits [159:128] are written to bits [159:128] of the return value. \n
2516 ///    Bits [191:160] are written to bits [223:192] of the return value.
2517 /// \param __b
2518 ///    A 256-bit vector of [8 x float]. \n
2519 ///    Bits [31:0] are written to bits [63:32] of the return value. \n
2520 ///    Bits [63:32] are written to bits [127:96] of the return value. \n
2521 ///    Bits [159:128] are written to bits [191:160] of the return value. \n
2522 ///    Bits [191:160] are written to bits [255:224] of the return value.
2523 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2524 static __inline __m256 __DEFAULT_FN_ATTRS
2525 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
2526 {
2527   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2528 }
2529 
2530 /* Bit Test */
2531 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2532 ///    element-by-element comparison of the double-precision element in the
2533 ///    first source vector and the corresponding element in the second source
2534 ///    vector.
2535 ///
2536 ///    The EFLAGS register is updated as follows: \n
2537 ///    If there is at least one pair of double-precision elements where the
2538 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2539 ///    ZF flag is set to 1. \n
2540 ///    If there is at least one pair of double-precision elements where the
2541 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2542 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2543 ///    This intrinsic returns the value of the ZF flag.
2544 ///
2545 /// \headerfile <x86intrin.h>
2546 ///
2547 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2548 ///
2549 /// \param __a
2550 ///    A 128-bit vector of [2 x double].
2551 /// \param __b
2552 ///    A 128-bit vector of [2 x double].
2553 /// \returns the ZF flag in the EFLAGS register.
2554 static __inline int __DEFAULT_FN_ATTRS128
2555 _mm_testz_pd(__m128d __a, __m128d __b)
2556 {
2557   return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2558 }
2559 
2560 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2561 ///    element-by-element comparison of the double-precision element in the
2562 ///    first source vector and the corresponding element in the second source
2563 ///    vector.
2564 ///
2565 ///    The EFLAGS register is updated as follows: \n
2566 ///    If there is at least one pair of double-precision elements where the
2567 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2568 ///    ZF flag is set to 1. \n
2569 ///    If there is at least one pair of double-precision elements where the
2570 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2571 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2572 ///    This intrinsic returns the value of the CF flag.
2573 ///
2574 /// \headerfile <x86intrin.h>
2575 ///
2576 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2577 ///
2578 /// \param __a
2579 ///    A 128-bit vector of [2 x double].
2580 /// \param __b
2581 ///    A 128-bit vector of [2 x double].
2582 /// \returns the CF flag in the EFLAGS register.
2583 static __inline int __DEFAULT_FN_ATTRS128
2584 _mm_testc_pd(__m128d __a, __m128d __b)
2585 {
2586   return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2587 }
2588 
2589 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2590 ///    element-by-element comparison of the double-precision element in the
2591 ///    first source vector and the corresponding element in the second source
2592 ///    vector.
2593 ///
2594 ///    The EFLAGS register is updated as follows: \n
2595 ///    If there is at least one pair of double-precision elements where the
2596 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2597 ///    ZF flag is set to 1. \n
2598 ///    If there is at least one pair of double-precision elements where the
2599 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2600 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2601 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2602 ///    otherwise it returns 0.
2603 ///
2604 /// \headerfile <x86intrin.h>
2605 ///
2606 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2607 ///
2608 /// \param __a
2609 ///    A 128-bit vector of [2 x double].
2610 /// \param __b
2611 ///    A 128-bit vector of [2 x double].
2612 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2613 static __inline int __DEFAULT_FN_ATTRS128
2614 _mm_testnzc_pd(__m128d __a, __m128d __b)
2615 {
2616   return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2617 }
2618 
2619 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2620 ///    element-by-element comparison of the single-precision element in the
2621 ///    first source vector and the corresponding element in the second source
2622 ///    vector.
2623 ///
2624 ///    The EFLAGS register is updated as follows: \n
2625 ///    If there is at least one pair of single-precision elements where the
2626 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2627 ///    ZF flag is set to 1. \n
2628 ///    If there is at least one pair of single-precision elements where the
2629 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2630 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2631 ///    This intrinsic returns the value of the ZF flag.
2632 ///
2633 /// \headerfile <x86intrin.h>
2634 ///
2635 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2636 ///
2637 /// \param __a
2638 ///    A 128-bit vector of [4 x float].
2639 /// \param __b
2640 ///    A 128-bit vector of [4 x float].
2641 /// \returns the ZF flag.
2642 static __inline int __DEFAULT_FN_ATTRS128
2643 _mm_testz_ps(__m128 __a, __m128 __b)
2644 {
2645   return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2646 }
2647 
2648 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2649 ///    element-by-element comparison of the single-precision element in the
2650 ///    first source vector and the corresponding element in the second source
2651 ///    vector.
2652 ///
2653 ///    The EFLAGS register is updated as follows: \n
2654 ///    If there is at least one pair of single-precision elements where the
2655 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2656 ///    ZF flag is set to 1. \n
2657 ///    If there is at least one pair of single-precision elements where the
2658 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2659 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2660 ///    This intrinsic returns the value of the CF flag.
2661 ///
2662 /// \headerfile <x86intrin.h>
2663 ///
2664 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2665 ///
2666 /// \param __a
2667 ///    A 128-bit vector of [4 x float].
2668 /// \param __b
2669 ///    A 128-bit vector of [4 x float].
2670 /// \returns the CF flag.
2671 static __inline int __DEFAULT_FN_ATTRS128
2672 _mm_testc_ps(__m128 __a, __m128 __b)
2673 {
2674   return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2675 }
2676 
2677 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2678 ///    element-by-element comparison of the single-precision element in the
2679 ///    first source vector and the corresponding element in the second source
2680 ///    vector.
2681 ///
2682 ///    The EFLAGS register is updated as follows: \n
2683 ///    If there is at least one pair of single-precision elements where the
2684 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2685 ///    ZF flag is set to 1. \n
2686 ///    If there is at least one pair of single-precision elements where the
2687 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2688 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2689 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2690 ///    otherwise it returns 0.
2691 ///
2692 /// \headerfile <x86intrin.h>
2693 ///
2694 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2695 ///
2696 /// \param __a
2697 ///    A 128-bit vector of [4 x float].
2698 /// \param __b
2699 ///    A 128-bit vector of [4 x float].
2700 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2701 static __inline int __DEFAULT_FN_ATTRS128
2702 _mm_testnzc_ps(__m128 __a, __m128 __b)
2703 {
2704   return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2705 }
2706 
2707 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2708 ///    element-by-element comparison of the double-precision elements in the
2709 ///    first source vector and the corresponding elements in the second source
2710 ///    vector.
2711 ///
2712 ///    The EFLAGS register is updated as follows: \n
2713 ///    If there is at least one pair of double-precision elements where the
2714 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2715 ///    ZF flag is set to 1. \n
2716 ///    If there is at least one pair of double-precision elements where the
2717 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2718 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2719 ///    This intrinsic returns the value of the ZF flag.
2720 ///
2721 /// \headerfile <x86intrin.h>
2722 ///
2723 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2724 ///
2725 /// \param __a
2726 ///    A 256-bit vector of [4 x double].
2727 /// \param __b
2728 ///    A 256-bit vector of [4 x double].
2729 /// \returns the ZF flag.
2730 static __inline int __DEFAULT_FN_ATTRS
2731 _mm256_testz_pd(__m256d __a, __m256d __b)
2732 {
2733   return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2734 }
2735 
2736 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2737 ///    element-by-element comparison of the double-precision elements in the
2738 ///    first source vector and the corresponding elements in the second source
2739 ///    vector.
2740 ///
2741 ///    The EFLAGS register is updated as follows: \n
2742 ///    If there is at least one pair of double-precision elements where the
2743 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2744 ///    ZF flag is set to 1. \n
2745 ///    If there is at least one pair of double-precision elements where the
2746 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2747 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2748 ///    This intrinsic returns the value of the CF flag.
2749 ///
2750 /// \headerfile <x86intrin.h>
2751 ///
2752 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2753 ///
2754 /// \param __a
2755 ///    A 256-bit vector of [4 x double].
2756 /// \param __b
2757 ///    A 256-bit vector of [4 x double].
2758 /// \returns the CF flag.
2759 static __inline int __DEFAULT_FN_ATTRS
2760 _mm256_testc_pd(__m256d __a, __m256d __b)
2761 {
2762   return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2763 }
2764 
2765 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2766 ///    element-by-element comparison of the double-precision elements in the
2767 ///    first source vector and the corresponding elements in the second source
2768 ///    vector.
2769 ///
2770 ///    The EFLAGS register is updated as follows: \n
2771 ///    If there is at least one pair of double-precision elements where the
2772 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2773 ///    ZF flag is set to 1. \n
2774 ///    If there is at least one pair of double-precision elements where the
2775 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2776 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2777 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2778 ///    otherwise it returns 0.
2779 ///
2780 /// \headerfile <x86intrin.h>
2781 ///
2782 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2783 ///
2784 /// \param __a
2785 ///    A 256-bit vector of [4 x double].
2786 /// \param __b
2787 ///    A 256-bit vector of [4 x double].
2788 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2789 static __inline int __DEFAULT_FN_ATTRS
2790 _mm256_testnzc_pd(__m256d __a, __m256d __b)
2791 {
2792   return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2793 }
2794 
2795 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2796 ///    element-by-element comparison of the single-precision element in the
2797 ///    first source vector and the corresponding element in the second source
2798 ///    vector.
2799 ///
2800 ///    The EFLAGS register is updated as follows: \n
2801 ///    If there is at least one pair of single-precision elements where the
2802 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2803 ///    ZF flag is set to 1. \n
2804 ///    If there is at least one pair of single-precision elements where the
2805 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2806 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2807 ///    This intrinsic returns the value of the ZF flag.
2808 ///
2809 /// \headerfile <x86intrin.h>
2810 ///
2811 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2812 ///
2813 /// \param __a
2814 ///    A 256-bit vector of [8 x float].
2815 /// \param __b
2816 ///    A 256-bit vector of [8 x float].
2817 /// \returns the ZF flag.
2818 static __inline int __DEFAULT_FN_ATTRS
2819 _mm256_testz_ps(__m256 __a, __m256 __b)
2820 {
2821   return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2822 }
2823 
2824 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2825 ///    element-by-element comparison of the single-precision element in the
2826 ///    first source vector and the corresponding element in the second source
2827 ///    vector.
2828 ///
2829 ///    The EFLAGS register is updated as follows: \n
2830 ///    If there is at least one pair of single-precision elements where the
2831 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2832 ///    ZF flag is set to 1. \n
2833 ///    If there is at least one pair of single-precision elements where the
2834 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2835 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2836 ///    This intrinsic returns the value of the CF flag.
2837 ///
2838 /// \headerfile <x86intrin.h>
2839 ///
2840 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2841 ///
2842 /// \param __a
2843 ///    A 256-bit vector of [8 x float].
2844 /// \param __b
2845 ///    A 256-bit vector of [8 x float].
2846 /// \returns the CF flag.
2847 static __inline int __DEFAULT_FN_ATTRS
2848 _mm256_testc_ps(__m256 __a, __m256 __b)
2849 {
2850   return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2851 }
2852 
2853 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2854 ///    element-by-element comparison of the single-precision elements in the
2855 ///    first source vector and the corresponding elements in the second source
2856 ///    vector.
2857 ///
2858 ///    The EFLAGS register is updated as follows: \n
2859 ///    If there is at least one pair of single-precision elements where the
2860 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2861 ///    ZF flag is set to 1. \n
2862 ///    If there is at least one pair of single-precision elements where the
2863 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2864 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2865 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2866 ///    otherwise it returns 0.
2867 ///
2868 /// \headerfile <x86intrin.h>
2869 ///
2870 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2871 ///
2872 /// \param __a
2873 ///    A 256-bit vector of [8 x float].
2874 /// \param __b
2875 ///    A 256-bit vector of [8 x float].
2876 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2877 static __inline int __DEFAULT_FN_ATTRS
2878 _mm256_testnzc_ps(__m256 __a, __m256 __b)
2879 {
2880   return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2881 }
2882 
2883 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2884 ///    of the two source vectors.
2885 ///
2886 ///    The EFLAGS register is updated as follows: \n
2887 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2888 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2889 ///    If there is at least one pair of bits where the bit from the first source
2890 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2891 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2892 ///    This intrinsic returns the value of the ZF flag.
2893 ///
2894 /// \headerfile <x86intrin.h>
2895 ///
2896 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2897 ///
2898 /// \param __a
2899 ///    A 256-bit integer vector.
2900 /// \param __b
2901 ///    A 256-bit integer vector.
2902 /// \returns the ZF flag.
2903 static __inline int __DEFAULT_FN_ATTRS
2904 _mm256_testz_si256(__m256i __a, __m256i __b)
2905 {
2906   return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2907 }
2908 
2909 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2910 ///    of the two source vectors.
2911 ///
2912 ///    The EFLAGS register is updated as follows: \n
2913 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2914 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2915 ///    If there is at least one pair of bits where the bit from the first source
2916 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2917 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2918 ///    This intrinsic returns the value of the CF flag.
2919 ///
2920 /// \headerfile <x86intrin.h>
2921 ///
2922 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2923 ///
2924 /// \param __a
2925 ///    A 256-bit integer vector.
2926 /// \param __b
2927 ///    A 256-bit integer vector.
2928 /// \returns the CF flag.
2929 static __inline int __DEFAULT_FN_ATTRS
2930 _mm256_testc_si256(__m256i __a, __m256i __b)
2931 {
2932   return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2933 }
2934 
2935 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2936 ///    of the two source vectors.
2937 ///
2938 ///    The EFLAGS register is updated as follows: \n
2939 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2940 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2941 ///    If there is at least one pair of bits where the bit from the first source
2942 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2943 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2944 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2945 ///    otherwise it returns 0.
2946 ///
2947 /// \headerfile <x86intrin.h>
2948 ///
2949 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2950 ///
2951 /// \param __a
2952 ///    A 256-bit integer vector.
2953 /// \param __b
2954 ///    A 256-bit integer vector.
2955 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2956 static __inline int __DEFAULT_FN_ATTRS
2957 _mm256_testnzc_si256(__m256i __a, __m256i __b)
2958 {
2959   return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2960 }
2961 
2962 /* Vector extract sign mask */
2963 /// Extracts the sign bits of double-precision floating point elements
2964 ///    in a 256-bit vector of [4 x double] and writes them to the lower order
2965 ///    bits of the return value.
2966 ///
2967 /// \headerfile <x86intrin.h>
2968 ///
2969 /// This intrinsic corresponds to the <c> VMOVMSKPD </c> instruction.
2970 ///
2971 /// \param __a
2972 ///    A 256-bit vector of [4 x double] containing the double-precision
2973 ///    floating point values with sign bits to be extracted.
2974 /// \returns The sign bits from the operand, written to bits [3:0].
2975 static __inline int __DEFAULT_FN_ATTRS
2976 _mm256_movemask_pd(__m256d __a)
2977 {
2978   return __builtin_ia32_movmskpd256((__v4df)__a);
2979 }
2980 
2981 /// Extracts the sign bits of single-precision floating point elements
2982 ///    in a 256-bit vector of [8 x float] and writes them to the lower order
2983 ///    bits of the return value.
2984 ///
2985 /// \headerfile <x86intrin.h>
2986 ///
2987 /// This intrinsic corresponds to the <c> VMOVMSKPS </c> instruction.
2988 ///
2989 /// \param __a
2990 ///    A 256-bit vector of [8 x float] containing the single-precision floating
2991 ///    point values with sign bits to be extracted.
2992 /// \returns The sign bits from the operand, written to bits [7:0].
2993 static __inline int __DEFAULT_FN_ATTRS
2994 _mm256_movemask_ps(__m256 __a)
2995 {
2996   return __builtin_ia32_movmskps256((__v8sf)__a);
2997 }
2998 
2999 /* Vector __zero */
3000 /// Zeroes the contents of all XMM or YMM registers.
3001 ///
3002 /// \headerfile <x86intrin.h>
3003 ///
3004 /// This intrinsic corresponds to the <c> VZEROALL </c> instruction.
3005 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
3006 _mm256_zeroall(void)
3007 {
3008   __builtin_ia32_vzeroall();
3009 }
3010 
3011 /// Zeroes the upper 128 bits (bits 255:128) of all YMM registers.
3012 ///
3013 /// \headerfile <x86intrin.h>
3014 ///
3015 /// This intrinsic corresponds to the <c> VZEROUPPER </c> instruction.
3016 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
3017 _mm256_zeroupper(void)
3018 {
3019   __builtin_ia32_vzeroupper();
3020 }
3021 
3022 /* Vector load with broadcast */
3023 /// Loads a scalar single-precision floating point value from the
3024 ///    specified address pointed to by \a __a and broadcasts it to the elements
3025 ///    of a [4 x float] vector.
3026 ///
3027 /// \headerfile <x86intrin.h>
3028 ///
3029 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3030 ///
3031 /// \param __a
3032 ///    The single-precision floating point value to be broadcast.
3033 /// \returns A 128-bit vector of [4 x float] whose 32-bit elements are set
3034 ///    equal to the broadcast value.
3035 static __inline __m128 __DEFAULT_FN_ATTRS128
3036 _mm_broadcast_ss(float const *__a)
3037 {
3038   struct __mm_broadcast_ss_struct {
3039     float __f;
3040   } __attribute__((__packed__, __may_alias__));
3041   float __f = ((const struct __mm_broadcast_ss_struct*)__a)->__f;
3042   return __extension__ (__m128){ __f, __f, __f, __f };
3043 }
3044 
3045 /// Loads a scalar double-precision floating point value from the
3046 ///    specified address pointed to by \a __a and broadcasts it to the elements
3047 ///    of a [4 x double] vector.
3048 ///
3049 /// \headerfile <x86intrin.h>
3050 ///
3051 /// This intrinsic corresponds to the <c> VBROADCASTSD </c> instruction.
3052 ///
3053 /// \param __a
3054 ///    The double-precision floating point value to be broadcast.
3055 /// \returns A 256-bit vector of [4 x double] whose 64-bit elements are set
3056 ///    equal to the broadcast value.
3057 static __inline __m256d __DEFAULT_FN_ATTRS
3058 _mm256_broadcast_sd(double const *__a)
3059 {
3060   struct __mm256_broadcast_sd_struct {
3061     double __d;
3062   } __attribute__((__packed__, __may_alias__));
3063   double __d = ((const struct __mm256_broadcast_sd_struct*)__a)->__d;
3064   return __extension__ (__m256d)(__v4df){ __d, __d, __d, __d };
3065 }
3066 
3067 /// Loads a scalar single-precision floating point value from the
3068 ///    specified address pointed to by \a __a and broadcasts it to the elements
3069 ///    of a [8 x float] vector.
3070 ///
3071 /// \headerfile <x86intrin.h>
3072 ///
3073 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3074 ///
3075 /// \param __a
3076 ///    The single-precision floating point value to be broadcast.
3077 /// \returns A 256-bit vector of [8 x float] whose 32-bit elements are set
3078 ///    equal to the broadcast value.
3079 static __inline __m256 __DEFAULT_FN_ATTRS
3080 _mm256_broadcast_ss(float const *__a)
3081 {
3082   struct __mm256_broadcast_ss_struct {
3083     float __f;
3084   } __attribute__((__packed__, __may_alias__));
3085   float __f = ((const struct __mm256_broadcast_ss_struct*)__a)->__f;
3086   return __extension__ (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
3087 }
3088 
3089 /// Loads the data from a 128-bit vector of [2 x double] from the
3090 ///    specified address pointed to by \a __a and broadcasts it to 128-bit
3091 ///    elements in a 256-bit vector of [4 x double].
3092 ///
3093 /// \headerfile <x86intrin.h>
3094 ///
3095 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3096 ///
3097 /// \param __a
3098 ///    The 128-bit vector of [2 x double] to be broadcast.
3099 /// \returns A 256-bit vector of [4 x double] whose 128-bit elements are set
3100 ///    equal to the broadcast value.
3101 static __inline __m256d __DEFAULT_FN_ATTRS
3102 _mm256_broadcast_pd(__m128d const *__a)
3103 {
3104   __m128d __b = _mm_loadu_pd((const double *)__a);
3105   return (__m256d)__builtin_shufflevector((__v2df)__b, (__v2df)__b,
3106                                           0, 1, 0, 1);
3107 }
3108 
3109 /// Loads the data from a 128-bit vector of [4 x float] from the
3110 ///    specified address pointed to by \a __a and broadcasts it to 128-bit
3111 ///    elements in a 256-bit vector of [8 x float].
3112 ///
3113 /// \headerfile <x86intrin.h>
3114 ///
3115 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3116 ///
3117 /// \param __a
3118 ///    The 128-bit vector of [4 x float] to be broadcast.
3119 /// \returns A 256-bit vector of [8 x float] whose 128-bit elements are set
3120 ///    equal to the broadcast value.
3121 static __inline __m256 __DEFAULT_FN_ATTRS
3122 _mm256_broadcast_ps(__m128 const *__a)
3123 {
3124   __m128 __b = _mm_loadu_ps((const float *)__a);
3125   return (__m256)__builtin_shufflevector((__v4sf)__b, (__v4sf)__b,
3126                                          0, 1, 2, 3, 0, 1, 2, 3);
3127 }
3128 
3129 /* SIMD load ops */
3130 /// Loads 4 double-precision floating point values from a 32-byte aligned
3131 ///    memory location pointed to by \a __p into a vector of [4 x double].
3132 ///
3133 /// \headerfile <x86intrin.h>
3134 ///
3135 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3136 ///
3137 /// \param __p
3138 ///    A 32-byte aligned pointer to a memory location containing
3139 ///    double-precision floating point values.
3140 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3141 static __inline __m256d __DEFAULT_FN_ATTRS
3142 _mm256_load_pd(double const *__p)
3143 {
3144   return *(const __m256d *)__p;
3145 }
3146 
3147 /// Loads 8 single-precision floating point values from a 32-byte aligned
3148 ///    memory location pointed to by \a __p into a vector of [8 x float].
3149 ///
3150 /// \headerfile <x86intrin.h>
3151 ///
3152 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3153 ///
3154 /// \param __p
3155 ///    A 32-byte aligned pointer to a memory location containing float values.
3156 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3157 static __inline __m256 __DEFAULT_FN_ATTRS
3158 _mm256_load_ps(float const *__p)
3159 {
3160   return *(const __m256 *)__p;
3161 }
3162 
3163 /// Loads 4 double-precision floating point values from an unaligned
3164 ///    memory location pointed to by \a __p into a vector of [4 x double].
3165 ///
3166 /// \headerfile <x86intrin.h>
3167 ///
3168 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3169 ///
3170 /// \param __p
3171 ///    A pointer to a memory location containing double-precision floating
3172 ///    point values.
3173 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3174 static __inline __m256d __DEFAULT_FN_ATTRS
3175 _mm256_loadu_pd(double const *__p)
3176 {
3177   struct __loadu_pd {
3178     __m256d_u __v;
3179   } __attribute__((__packed__, __may_alias__));
3180   return ((const struct __loadu_pd*)__p)->__v;
3181 }
3182 
3183 /// Loads 8 single-precision floating point values from an unaligned
3184 ///    memory location pointed to by \a __p into a vector of [8 x float].
3185 ///
3186 /// \headerfile <x86intrin.h>
3187 ///
3188 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3189 ///
3190 /// \param __p
3191 ///    A pointer to a memory location containing single-precision floating
3192 ///    point values.
3193 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3194 static __inline __m256 __DEFAULT_FN_ATTRS
3195 _mm256_loadu_ps(float const *__p)
3196 {
3197   struct __loadu_ps {
3198     __m256_u __v;
3199   } __attribute__((__packed__, __may_alias__));
3200   return ((const struct __loadu_ps*)__p)->__v;
3201 }
3202 
3203 /// Loads 256 bits of integer data from a 32-byte aligned memory
3204 ///    location pointed to by \a __p into elements of a 256-bit integer vector.
3205 ///
3206 /// \headerfile <x86intrin.h>
3207 ///
3208 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3209 ///
3210 /// \param __p
3211 ///    A 32-byte aligned pointer to a 256-bit integer vector containing integer
3212 ///    values.
3213 /// \returns A 256-bit integer vector containing the moved values.
3214 static __inline __m256i __DEFAULT_FN_ATTRS
3215 _mm256_load_si256(__m256i const *__p)
3216 {
3217   return *__p;
3218 }
3219 
3220 /// Loads 256 bits of integer data from an unaligned memory location
3221 ///    pointed to by \a __p into a 256-bit integer vector.
3222 ///
3223 /// \headerfile <x86intrin.h>
3224 ///
3225 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3226 ///
3227 /// \param __p
3228 ///    A pointer to a 256-bit integer vector containing integer values.
3229 /// \returns A 256-bit integer vector containing the moved values.
3230 static __inline __m256i __DEFAULT_FN_ATTRS
3231 _mm256_loadu_si256(__m256i_u const *__p)
3232 {
3233   struct __loadu_si256 {
3234     __m256i_u __v;
3235   } __attribute__((__packed__, __may_alias__));
3236   return ((const struct __loadu_si256*)__p)->__v;
3237 }
3238 
3239 /// Loads 256 bits of integer data from an unaligned memory location
3240 ///    pointed to by \a __p into a 256-bit integer vector. This intrinsic may
3241 ///    perform better than \c _mm256_loadu_si256 when the data crosses a cache
3242 ///    line boundary.
3243 ///
3244 /// \headerfile <x86intrin.h>
3245 ///
3246 /// This intrinsic corresponds to the <c> VLDDQU </c> instruction.
3247 ///
3248 /// \param __p
3249 ///    A pointer to a 256-bit integer vector containing integer values.
3250 /// \returns A 256-bit integer vector containing the moved values.
3251 static __inline __m256i __DEFAULT_FN_ATTRS
3252 _mm256_lddqu_si256(__m256i_u const *__p)
3253 {
3254   return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
3255 }
3256 
3257 /* SIMD store ops */
3258 /// Stores double-precision floating point values from a 256-bit vector
3259 ///    of [4 x double] to a 32-byte aligned memory location pointed to by
3260 ///    \a __p.
3261 ///
3262 /// \headerfile <x86intrin.h>
3263 ///
3264 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3265 ///
3266 /// \param __p
3267 ///    A 32-byte aligned pointer to a memory location that will receive the
3268 ///    double-precision floaing point values.
3269 /// \param __a
3270 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3271 static __inline void __DEFAULT_FN_ATTRS
3272 _mm256_store_pd(double *__p, __m256d __a)
3273 {
3274   *(__m256d *)__p = __a;
3275 }
3276 
3277 /// Stores single-precision floating point values from a 256-bit vector
3278 ///    of [8 x float] to a 32-byte aligned memory location pointed to by \a __p.
3279 ///
3280 /// \headerfile <x86intrin.h>
3281 ///
3282 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3283 ///
3284 /// \param __p
3285 ///    A 32-byte aligned pointer to a memory location that will receive the
3286 ///    float values.
3287 /// \param __a
3288 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3289 static __inline void __DEFAULT_FN_ATTRS
3290 _mm256_store_ps(float *__p, __m256 __a)
3291 {
3292   *(__m256 *)__p = __a;
3293 }
3294 
3295 /// Stores double-precision floating point values from a 256-bit vector
3296 ///    of [4 x double] to an unaligned memory location pointed to by \a __p.
3297 ///
3298 /// \headerfile <x86intrin.h>
3299 ///
3300 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3301 ///
3302 /// \param __p
3303 ///    A pointer to a memory location that will receive the double-precision
3304 ///    floating point values.
3305 /// \param __a
3306 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3307 static __inline void __DEFAULT_FN_ATTRS
3308 _mm256_storeu_pd(double *__p, __m256d __a)
3309 {
3310   struct __storeu_pd {
3311     __m256d_u __v;
3312   } __attribute__((__packed__, __may_alias__));
3313   ((struct __storeu_pd*)__p)->__v = __a;
3314 }
3315 
3316 /// Stores single-precision floating point values from a 256-bit vector
3317 ///    of [8 x float] to an unaligned memory location pointed to by \a __p.
3318 ///
3319 /// \headerfile <x86intrin.h>
3320 ///
3321 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3322 ///
3323 /// \param __p
3324 ///    A pointer to a memory location that will receive the float values.
3325 /// \param __a
3326 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3327 static __inline void __DEFAULT_FN_ATTRS
3328 _mm256_storeu_ps(float *__p, __m256 __a)
3329 {
3330   struct __storeu_ps {
3331     __m256_u __v;
3332   } __attribute__((__packed__, __may_alias__));
3333   ((struct __storeu_ps*)__p)->__v = __a;
3334 }
3335 
3336 /// Stores integer values from a 256-bit integer vector to a 32-byte
3337 ///    aligned memory location pointed to by \a __p.
3338 ///
3339 /// \headerfile <x86intrin.h>
3340 ///
3341 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3342 ///
3343 /// \param __p
3344 ///    A 32-byte aligned pointer to a memory location that will receive the
3345 ///    integer values.
3346 /// \param __a
3347 ///    A 256-bit integer vector containing the values to be moved.
3348 static __inline void __DEFAULT_FN_ATTRS
3349 _mm256_store_si256(__m256i *__p, __m256i __a)
3350 {
3351   *__p = __a;
3352 }
3353 
3354 /// Stores integer values from a 256-bit integer vector to an unaligned
3355 ///    memory location pointed to by \a __p.
3356 ///
3357 /// \headerfile <x86intrin.h>
3358 ///
3359 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3360 ///
3361 /// \param __p
3362 ///    A pointer to a memory location that will receive the integer values.
3363 /// \param __a
3364 ///    A 256-bit integer vector containing the values to be moved.
3365 static __inline void __DEFAULT_FN_ATTRS
3366 _mm256_storeu_si256(__m256i_u *__p, __m256i __a)
3367 {
3368   struct __storeu_si256 {
3369     __m256i_u __v;
3370   } __attribute__((__packed__, __may_alias__));
3371   ((struct __storeu_si256*)__p)->__v = __a;
3372 }
3373 
3374 /* Conditional load ops */
3375 /// Conditionally loads double-precision floating point elements from a
3376 ///    memory location pointed to by \a __p into a 128-bit vector of
3377 ///    [2 x double], depending on the mask bits associated with each data
3378 ///    element.
3379 ///
3380 /// \headerfile <x86intrin.h>
3381 ///
3382 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3383 ///
3384 /// \param __p
3385 ///    A pointer to a memory location that contains the double-precision
3386 ///    floating point values.
3387 /// \param __m
3388 ///    A 128-bit integer vector containing the mask. The most significant bit of
3389 ///    each data element represents the mask bits. If a mask bit is zero, the
3390 ///    corresponding value in the memory location is not loaded and the
3391 ///    corresponding field in the return value is set to zero.
3392 /// \returns A 128-bit vector of [2 x double] containing the loaded values.
3393 static __inline __m128d __DEFAULT_FN_ATTRS128
3394 _mm_maskload_pd(double const *__p, __m128i __m)
3395 {
3396   return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
3397 }
3398 
3399 /// Conditionally loads double-precision floating point elements from a
3400 ///    memory location pointed to by \a __p into a 256-bit vector of
3401 ///    [4 x double], depending on the mask bits associated with each data
3402 ///    element.
3403 ///
3404 /// \headerfile <x86intrin.h>
3405 ///
3406 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3407 ///
3408 /// \param __p
3409 ///    A pointer to a memory location that contains the double-precision
3410 ///    floating point values.
3411 /// \param __m
3412 ///    A 256-bit integer vector of [4 x quadword] containing the mask. The most
3413 ///    significant bit of each quadword element represents the mask bits. If a
3414 ///    mask bit is zero, the corresponding value in the memory location is not
3415 ///    loaded and the corresponding field in the return value is set to zero.
3416 /// \returns A 256-bit vector of [4 x double] containing the loaded values.
3417 static __inline __m256d __DEFAULT_FN_ATTRS
3418 _mm256_maskload_pd(double const *__p, __m256i __m)
3419 {
3420   return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
3421                                                (__v4di)__m);
3422 }
3423 
3424 /// Conditionally loads single-precision floating point elements from a
3425 ///    memory location pointed to by \a __p into a 128-bit vector of
3426 ///    [4 x float], depending on the mask bits associated with each data
3427 ///    element.
3428 ///
3429 /// \headerfile <x86intrin.h>
3430 ///
3431 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3432 ///
3433 /// \param __p
3434 ///    A pointer to a memory location that contains the single-precision
3435 ///    floating point values.
3436 /// \param __m
3437 ///    A 128-bit integer vector containing the mask. The most significant bit of
3438 ///    each data element represents the mask bits. If a mask bit is zero, the
3439 ///    corresponding value in the memory location is not loaded and the
3440 ///    corresponding field in the return value is set to zero.
3441 /// \returns A 128-bit vector of [4 x float] containing the loaded values.
3442 static __inline __m128 __DEFAULT_FN_ATTRS128
3443 _mm_maskload_ps(float const *__p, __m128i __m)
3444 {
3445   return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
3446 }
3447 
3448 /// Conditionally loads single-precision floating point elements from a
3449 ///    memory location pointed to by \a __p into a 256-bit vector of
3450 ///    [8 x float], depending on the mask bits associated with each data
3451 ///    element.
3452 ///
3453 /// \headerfile <x86intrin.h>
3454 ///
3455 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3456 ///
3457 /// \param __p
3458 ///    A pointer to a memory location that contains the single-precision
3459 ///    floating point values.
3460 /// \param __m
3461 ///    A 256-bit integer vector of [8 x dword] containing the mask. The most
3462 ///    significant bit of each dword element represents the mask bits. If a mask
3463 ///    bit is zero, the corresponding value in the memory location is not loaded
3464 ///    and the corresponding field in the return value is set to zero.
3465 /// \returns A 256-bit vector of [8 x float] containing the loaded values.
3466 static __inline __m256 __DEFAULT_FN_ATTRS
3467 _mm256_maskload_ps(float const *__p, __m256i __m)
3468 {
3469   return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
3470 }
3471 
3472 /* Conditional store ops */
3473 /// Moves single-precision floating point values from a 256-bit vector
3474 ///    of [8 x float] to a memory location pointed to by \a __p, according to
3475 ///    the specified mask.
3476 ///
3477 /// \headerfile <x86intrin.h>
3478 ///
3479 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3480 ///
3481 /// \param __p
3482 ///    A pointer to a memory location that will receive the float values.
3483 /// \param __m
3484 ///    A 256-bit integer vector of [8 x dword] containing the mask. The most
3485 ///    significant bit of each dword element in the mask vector represents the
3486 ///    mask bits. If a mask bit is zero, the corresponding value from vector
3487 ///    \a __a is not stored and the corresponding field in the memory location
3488 ///    pointed to by \a __p is not changed.
3489 /// \param __a
3490 ///    A 256-bit vector of [8 x float] containing the values to be stored.
3491 static __inline void __DEFAULT_FN_ATTRS
3492 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
3493 {
3494   __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
3495 }
3496 
3497 /// Moves double-precision values from a 128-bit vector of [2 x double]
3498 ///    to a memory location pointed to by \a __p, according to the specified
3499 ///    mask.
3500 ///
3501 /// \headerfile <x86intrin.h>
3502 ///
3503 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3504 ///
3505 /// \param __p
3506 ///    A pointer to a memory location that will receive the float values.
3507 /// \param __m
3508 ///    A 128-bit integer vector containing the mask. The most significant bit of
3509 ///    each field in the mask vector represents the mask bits. If a mask bit is
3510 ///    zero, the corresponding value from vector \a __a is not stored and the
3511 ///    corresponding field in the memory location pointed to by \a __p is not
3512 ///    changed.
3513 /// \param __a
3514 ///    A 128-bit vector of [2 x double] containing the values to be stored.
3515 static __inline void __DEFAULT_FN_ATTRS128
3516 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
3517 {
3518   __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
3519 }
3520 
3521 /// Moves double-precision values from a 256-bit vector of [4 x double]
3522 ///    to a memory location pointed to by \a __p, according to the specified
3523 ///    mask.
3524 ///
3525 /// \headerfile <x86intrin.h>
3526 ///
3527 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3528 ///
3529 /// \param __p
3530 ///    A pointer to a memory location that will receive the float values.
3531 /// \param __m
3532 ///    A 256-bit integer vector of [4 x quadword] containing the mask. The most
3533 ///    significant bit of each quadword element in the mask vector represents
3534 ///    the mask bits. If a mask bit is zero, the corresponding value from vector
3535 ///    __a is not stored and the corresponding field in the memory location
3536 ///    pointed to by \a __p is not changed.
3537 /// \param __a
3538 ///    A 256-bit vector of [4 x double] containing the values to be stored.
3539 static __inline void __DEFAULT_FN_ATTRS
3540 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
3541 {
3542   __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
3543 }
3544 
3545 /// Moves single-precision floating point values from a 128-bit vector
3546 ///    of [4 x float] to a memory location pointed to by \a __p, according to
3547 ///    the specified mask.
3548 ///
3549 /// \headerfile <x86intrin.h>
3550 ///
3551 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3552 ///
3553 /// \param __p
3554 ///    A pointer to a memory location that will receive the float values.
3555 /// \param __m
3556 ///    A 128-bit integer vector containing the mask. The most significant bit of
3557 ///    each field in the mask vector represents the mask bits. If a mask bit is
3558 ///    zero, the corresponding value from vector __a is not stored and the
3559 ///    corresponding field in the memory location pointed to by \a __p is not
3560 ///    changed.
3561 /// \param __a
3562 ///    A 128-bit vector of [4 x float] containing the values to be stored.
3563 static __inline void __DEFAULT_FN_ATTRS128
3564 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
3565 {
3566   __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
3567 }
3568 
3569 /* Cacheability support ops */
3570 /// Moves integer data from a 256-bit integer vector to a 32-byte
3571 ///    aligned memory location. To minimize caching, the data is flagged as
3572 ///    non-temporal (unlikely to be used again soon).
3573 ///
3574 /// \headerfile <x86intrin.h>
3575 ///
3576 /// This intrinsic corresponds to the <c> VMOVNTDQ </c> instruction.
3577 ///
3578 /// \param __a
3579 ///    A pointer to a 32-byte aligned memory location that will receive the
3580 ///    integer values.
3581 /// \param __b
3582 ///    A 256-bit integer vector containing the values to be moved.
3583 static __inline void __DEFAULT_FN_ATTRS
3584 _mm256_stream_si256(void *__a, __m256i __b)
3585 {
3586   typedef __v4di __v4di_aligned __attribute__((aligned(32)));
3587   __builtin_nontemporal_store((__v4di_aligned)__b, (__v4di_aligned*)__a);
3588 }
3589 
3590 /// Moves double-precision values from a 256-bit vector of [4 x double]
3591 ///    to a 32-byte aligned memory location. To minimize caching, the data is
3592 ///    flagged as non-temporal (unlikely to be used again soon).
3593 ///
3594 /// \headerfile <x86intrin.h>
3595 ///
3596 /// This intrinsic corresponds to the <c> VMOVNTPD </c> instruction.
3597 ///
3598 /// \param __a
3599 ///    A pointer to a 32-byte aligned memory location that will receive the
3600 ///    double-precision floating-point values.
3601 /// \param __b
3602 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3603 static __inline void __DEFAULT_FN_ATTRS
3604 _mm256_stream_pd(void *__a, __m256d __b)
3605 {
3606   typedef __v4df __v4df_aligned __attribute__((aligned(32)));
3607   __builtin_nontemporal_store((__v4df_aligned)__b, (__v4df_aligned*)__a);
3608 }
3609 
3610 /// Moves single-precision floating point values from a 256-bit vector
3611 ///    of [8 x float] to a 32-byte aligned memory location. To minimize
3612 ///    caching, the data is flagged as non-temporal (unlikely to be used again
3613 ///    soon).
3614 ///
3615 /// \headerfile <x86intrin.h>
3616 ///
3617 /// This intrinsic corresponds to the <c> VMOVNTPS </c> instruction.
3618 ///
3619 /// \param __p
3620 ///    A pointer to a 32-byte aligned memory location that will receive the
3621 ///    single-precision floating point values.
3622 /// \param __a
3623 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3624 static __inline void __DEFAULT_FN_ATTRS
3625 _mm256_stream_ps(void *__p, __m256 __a)
3626 {
3627   typedef __v8sf __v8sf_aligned __attribute__((aligned(32)));
3628   __builtin_nontemporal_store((__v8sf_aligned)__a, (__v8sf_aligned*)__p);
3629 }
3630 
3631 /* Create vectors */
3632 /// Create a 256-bit vector of [4 x double] with undefined values.
3633 ///
3634 /// \headerfile <x86intrin.h>
3635 ///
3636 /// This intrinsic has no corresponding instruction.
3637 ///
3638 /// \returns A 256-bit vector of [4 x double] containing undefined values.
3639 static __inline__ __m256d __DEFAULT_FN_ATTRS
3640 _mm256_undefined_pd(void)
3641 {
3642   return (__m256d)__builtin_ia32_undef256();
3643 }
3644 
3645 /// Create a 256-bit vector of [8 x float] with undefined values.
3646 ///
3647 /// \headerfile <x86intrin.h>
3648 ///
3649 /// This intrinsic has no corresponding instruction.
3650 ///
3651 /// \returns A 256-bit vector of [8 x float] containing undefined values.
3652 static __inline__ __m256 __DEFAULT_FN_ATTRS
3653 _mm256_undefined_ps(void)
3654 {
3655   return (__m256)__builtin_ia32_undef256();
3656 }
3657 
3658 /// Create a 256-bit integer vector with undefined values.
3659 ///
3660 /// \headerfile <x86intrin.h>
3661 ///
3662 /// This intrinsic has no corresponding instruction.
3663 ///
3664 /// \returns A 256-bit integer vector containing undefined values.
3665 static __inline__ __m256i __DEFAULT_FN_ATTRS
3666 _mm256_undefined_si256(void)
3667 {
3668   return (__m256i)__builtin_ia32_undef256();
3669 }
3670 
3671 /// Constructs a 256-bit floating-point vector of [4 x double]
3672 ///    initialized with the specified double-precision floating-point values.
3673 ///
3674 /// \headerfile <x86intrin.h>
3675 ///
3676 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3677 ///   instruction.
3678 ///
3679 /// \param __a
3680 ///    A double-precision floating-point value used to initialize bits [255:192]
3681 ///    of the result.
3682 /// \param __b
3683 ///    A double-precision floating-point value used to initialize bits [191:128]
3684 ///    of the result.
3685 /// \param __c
3686 ///    A double-precision floating-point value used to initialize bits [127:64]
3687 ///    of the result.
3688 /// \param __d
3689 ///    A double-precision floating-point value used to initialize bits [63:0]
3690 ///    of the result.
3691 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3692 static __inline __m256d __DEFAULT_FN_ATTRS
3693 _mm256_set_pd(double __a, double __b, double __c, double __d)
3694 {
3695   return __extension__ (__m256d){ __d, __c, __b, __a };
3696 }
3697 
3698 /// Constructs a 256-bit floating-point vector of [8 x float] initialized
3699 ///    with the specified single-precision floating-point values.
3700 ///
3701 /// \headerfile <x86intrin.h>
3702 ///
3703 /// This intrinsic is a utility function and does not correspond to a specific
3704 ///   instruction.
3705 ///
3706 /// \param __a
3707 ///    A single-precision floating-point value used to initialize bits [255:224]
3708 ///    of the result.
3709 /// \param __b
3710 ///    A single-precision floating-point value used to initialize bits [223:192]
3711 ///    of the result.
3712 /// \param __c
3713 ///    A single-precision floating-point value used to initialize bits [191:160]
3714 ///    of the result.
3715 /// \param __d
3716 ///    A single-precision floating-point value used to initialize bits [159:128]
3717 ///    of the result.
3718 /// \param __e
3719 ///    A single-precision floating-point value used to initialize bits [127:96]
3720 ///    of the result.
3721 /// \param __f
3722 ///    A single-precision floating-point value used to initialize bits [95:64]
3723 ///    of the result.
3724 /// \param __g
3725 ///    A single-precision floating-point value used to initialize bits [63:32]
3726 ///    of the result.
3727 /// \param __h
3728 ///    A single-precision floating-point value used to initialize bits [31:0]
3729 ///    of the result.
3730 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3731 static __inline __m256 __DEFAULT_FN_ATTRS
3732 _mm256_set_ps(float __a, float __b, float __c, float __d,
3733               float __e, float __f, float __g, float __h)
3734 {
3735   return __extension__ (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
3736 }
3737 
3738 /// Constructs a 256-bit integer vector initialized with the specified
3739 ///    32-bit integral values.
3740 ///
3741 /// \headerfile <x86intrin.h>
3742 ///
3743 /// This intrinsic is a utility function and does not correspond to a specific
3744 ///   instruction.
3745 ///
3746 /// \param __i0
3747 ///    A 32-bit integral value used to initialize bits [255:224] of the result.
3748 /// \param __i1
3749 ///    A 32-bit integral value used to initialize bits [223:192] of the result.
3750 /// \param __i2
3751 ///    A 32-bit integral value used to initialize bits [191:160] of the result.
3752 /// \param __i3
3753 ///    A 32-bit integral value used to initialize bits [159:128] of the result.
3754 /// \param __i4
3755 ///    A 32-bit integral value used to initialize bits [127:96] of the result.
3756 /// \param __i5
3757 ///    A 32-bit integral value used to initialize bits [95:64] of the result.
3758 /// \param __i6
3759 ///    A 32-bit integral value used to initialize bits [63:32] of the result.
3760 /// \param __i7
3761 ///    A 32-bit integral value used to initialize bits [31:0] of the result.
3762 /// \returns An initialized 256-bit integer vector.
3763 static __inline __m256i __DEFAULT_FN_ATTRS
3764 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
3765                  int __i4, int __i5, int __i6, int __i7)
3766 {
3767   return __extension__ (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
3768 }
3769 
3770 /// Constructs a 256-bit integer vector initialized with the specified
3771 ///    16-bit integral values.
3772 ///
3773 /// \headerfile <x86intrin.h>
3774 ///
3775 /// This intrinsic is a utility function and does not correspond to a specific
3776 ///   instruction.
3777 ///
3778 /// \param __w15
3779 ///    A 16-bit integral value used to initialize bits [255:240] of the result.
3780 /// \param __w14
3781 ///    A 16-bit integral value used to initialize bits [239:224] of the result.
3782 /// \param __w13
3783 ///    A 16-bit integral value used to initialize bits [223:208] of the result.
3784 /// \param __w12
3785 ///    A 16-bit integral value used to initialize bits [207:192] of the result.
3786 /// \param __w11
3787 ///    A 16-bit integral value used to initialize bits [191:176] of the result.
3788 /// \param __w10
3789 ///    A 16-bit integral value used to initialize bits [175:160] of the result.
3790 /// \param __w09
3791 ///    A 16-bit integral value used to initialize bits [159:144] of the result.
3792 /// \param __w08
3793 ///    A 16-bit integral value used to initialize bits [143:128] of the result.
3794 /// \param __w07
3795 ///    A 16-bit integral value used to initialize bits [127:112] of the result.
3796 /// \param __w06
3797 ///    A 16-bit integral value used to initialize bits [111:96] of the result.
3798 /// \param __w05
3799 ///    A 16-bit integral value used to initialize bits [95:80] of the result.
3800 /// \param __w04
3801 ///    A 16-bit integral value used to initialize bits [79:64] of the result.
3802 /// \param __w03
3803 ///    A 16-bit integral value used to initialize bits [63:48] of the result.
3804 /// \param __w02
3805 ///    A 16-bit integral value used to initialize bits [47:32] of the result.
3806 /// \param __w01
3807 ///    A 16-bit integral value used to initialize bits [31:16] of the result.
3808 /// \param __w00
3809 ///    A 16-bit integral value used to initialize bits [15:0] of the result.
3810 /// \returns An initialized 256-bit integer vector.
3811 static __inline __m256i __DEFAULT_FN_ATTRS
3812 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
3813                  short __w11, short __w10, short __w09, short __w08,
3814                  short __w07, short __w06, short __w05, short __w04,
3815                  short __w03, short __w02, short __w01, short __w00)
3816 {
3817   return __extension__ (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
3818     __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
3819 }
3820 
3821 /// Constructs a 256-bit integer vector initialized with the specified
3822 ///    8-bit integral values.
3823 ///
3824 /// \headerfile <x86intrin.h>
3825 ///
3826 /// This intrinsic is a utility function and does not correspond to a specific
3827 ///   instruction.
3828 ///
3829 /// \param __b31
3830 ///    An 8-bit integral value used to initialize bits [255:248] of the result.
3831 /// \param __b30
3832 ///    An 8-bit integral value used to initialize bits [247:240] of the result.
3833 /// \param __b29
3834 ///    An 8-bit integral value used to initialize bits [239:232] of the result.
3835 /// \param __b28
3836 ///    An 8-bit integral value used to initialize bits [231:224] of the result.
3837 /// \param __b27
3838 ///    An 8-bit integral value used to initialize bits [223:216] of the result.
3839 /// \param __b26
3840 ///    An 8-bit integral value used to initialize bits [215:208] of the result.
3841 /// \param __b25
3842 ///    An 8-bit integral value used to initialize bits [207:200] of the result.
3843 /// \param __b24
3844 ///    An 8-bit integral value used to initialize bits [199:192] of the result.
3845 /// \param __b23
3846 ///    An 8-bit integral value used to initialize bits [191:184] of the result.
3847 /// \param __b22
3848 ///    An 8-bit integral value used to initialize bits [183:176] of the result.
3849 /// \param __b21
3850 ///    An 8-bit integral value used to initialize bits [175:168] of the result.
3851 /// \param __b20
3852 ///    An 8-bit integral value used to initialize bits [167:160] of the result.
3853 /// \param __b19
3854 ///    An 8-bit integral value used to initialize bits [159:152] of the result.
3855 /// \param __b18
3856 ///    An 8-bit integral value used to initialize bits [151:144] of the result.
3857 /// \param __b17
3858 ///    An 8-bit integral value used to initialize bits [143:136] of the result.
3859 /// \param __b16
3860 ///    An 8-bit integral value used to initialize bits [135:128] of the result.
3861 /// \param __b15
3862 ///    An 8-bit integral value used to initialize bits [127:120] of the result.
3863 /// \param __b14
3864 ///    An 8-bit integral value used to initialize bits [119:112] of the result.
3865 /// \param __b13
3866 ///    An 8-bit integral value used to initialize bits [111:104] of the result.
3867 /// \param __b12
3868 ///    An 8-bit integral value used to initialize bits [103:96] of the result.
3869 /// \param __b11
3870 ///    An 8-bit integral value used to initialize bits [95:88] of the result.
3871 /// \param __b10
3872 ///    An 8-bit integral value used to initialize bits [87:80] of the result.
3873 /// \param __b09
3874 ///    An 8-bit integral value used to initialize bits [79:72] of the result.
3875 /// \param __b08
3876 ///    An 8-bit integral value used to initialize bits [71:64] of the result.
3877 /// \param __b07
3878 ///    An 8-bit integral value used to initialize bits [63:56] of the result.
3879 /// \param __b06
3880 ///    An 8-bit integral value used to initialize bits [55:48] of the result.
3881 /// \param __b05
3882 ///    An 8-bit integral value used to initialize bits [47:40] of the result.
3883 /// \param __b04
3884 ///    An 8-bit integral value used to initialize bits [39:32] of the result.
3885 /// \param __b03
3886 ///    An 8-bit integral value used to initialize bits [31:24] of the result.
3887 /// \param __b02
3888 ///    An 8-bit integral value used to initialize bits [23:16] of the result.
3889 /// \param __b01
3890 ///    An 8-bit integral value used to initialize bits [15:8] of the result.
3891 /// \param __b00
3892 ///    An 8-bit integral value used to initialize bits [7:0] of the result.
3893 /// \returns An initialized 256-bit integer vector.
3894 static __inline __m256i __DEFAULT_FN_ATTRS
3895 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
3896                 char __b27, char __b26, char __b25, char __b24,
3897                 char __b23, char __b22, char __b21, char __b20,
3898                 char __b19, char __b18, char __b17, char __b16,
3899                 char __b15, char __b14, char __b13, char __b12,
3900                 char __b11, char __b10, char __b09, char __b08,
3901                 char __b07, char __b06, char __b05, char __b04,
3902                 char __b03, char __b02, char __b01, char __b00)
3903 {
3904   return __extension__ (__m256i)(__v32qi){
3905     __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
3906     __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
3907     __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
3908     __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
3909   };
3910 }
3911 
3912 /// Constructs a 256-bit integer vector initialized with the specified
3913 ///    64-bit integral values.
3914 ///
3915 /// \headerfile <x86intrin.h>
3916 ///
3917 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
3918 ///   instruction.
3919 ///
3920 /// \param __a
3921 ///    A 64-bit integral value used to initialize bits [255:192] of the result.
3922 /// \param __b
3923 ///    A 64-bit integral value used to initialize bits [191:128] of the result.
3924 /// \param __c
3925 ///    A 64-bit integral value used to initialize bits [127:64] of the result.
3926 /// \param __d
3927 ///    A 64-bit integral value used to initialize bits [63:0] of the result.
3928 /// \returns An initialized 256-bit integer vector.
3929 static __inline __m256i __DEFAULT_FN_ATTRS
3930 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
3931 {
3932   return __extension__ (__m256i)(__v4di){ __d, __c, __b, __a };
3933 }
3934 
3935 /* Create vectors with elements in reverse order */
3936 /// Constructs a 256-bit floating-point vector of [4 x double],
3937 ///    initialized in reverse order with the specified double-precision
3938 ///    floating-point values.
3939 ///
3940 /// \headerfile <x86intrin.h>
3941 ///
3942 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3943 ///   instruction.
3944 ///
3945 /// \param __a
3946 ///    A double-precision floating-point value used to initialize bits [63:0]
3947 ///    of the result.
3948 /// \param __b
3949 ///    A double-precision floating-point value used to initialize bits [127:64]
3950 ///    of the result.
3951 /// \param __c
3952 ///    A double-precision floating-point value used to initialize bits [191:128]
3953 ///    of the result.
3954 /// \param __d
3955 ///    A double-precision floating-point value used to initialize bits [255:192]
3956 ///    of the result.
3957 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3958 static __inline __m256d __DEFAULT_FN_ATTRS
3959 _mm256_setr_pd(double __a, double __b, double __c, double __d)
3960 {
3961   return _mm256_set_pd(__d, __c, __b, __a);
3962 }
3963 
3964 /// Constructs a 256-bit floating-point vector of [8 x float],
3965 ///    initialized in reverse order with the specified single-precision
3966 ///    float-point values.
3967 ///
3968 /// \headerfile <x86intrin.h>
3969 ///
3970 /// This intrinsic is a utility function and does not correspond to a specific
3971 ///   instruction.
3972 ///
3973 /// \param __a
3974 ///    A single-precision floating-point value used to initialize bits [31:0]
3975 ///    of the result.
3976 /// \param __b
3977 ///    A single-precision floating-point value used to initialize bits [63:32]
3978 ///    of the result.
3979 /// \param __c
3980 ///    A single-precision floating-point value used to initialize bits [95:64]
3981 ///    of the result.
3982 /// \param __d
3983 ///    A single-precision floating-point value used to initialize bits [127:96]
3984 ///    of the result.
3985 /// \param __e
3986 ///    A single-precision floating-point value used to initialize bits [159:128]
3987 ///    of the result.
3988 /// \param __f
3989 ///    A single-precision floating-point value used to initialize bits [191:160]
3990 ///    of the result.
3991 /// \param __g
3992 ///    A single-precision floating-point value used to initialize bits [223:192]
3993 ///    of the result.
3994 /// \param __h
3995 ///    A single-precision floating-point value used to initialize bits [255:224]
3996 ///    of the result.
3997 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3998 static __inline __m256 __DEFAULT_FN_ATTRS
3999 _mm256_setr_ps(float __a, float __b, float __c, float __d,
4000                float __e, float __f, float __g, float __h)
4001 {
4002   return _mm256_set_ps(__h, __g, __f, __e, __d, __c, __b, __a);
4003 }
4004 
4005 /// Constructs a 256-bit integer vector, initialized in reverse order
4006 ///    with the specified 32-bit integral values.
4007 ///
4008 /// \headerfile <x86intrin.h>
4009 ///
4010 /// This intrinsic is a utility function and does not correspond to a specific
4011 ///   instruction.
4012 ///
4013 /// \param __i0
4014 ///    A 32-bit integral value used to initialize bits [31:0] of the result.
4015 /// \param __i1
4016 ///    A 32-bit integral value used to initialize bits [63:32] of the result.
4017 /// \param __i2
4018 ///    A 32-bit integral value used to initialize bits [95:64] of the result.
4019 /// \param __i3
4020 ///    A 32-bit integral value used to initialize bits [127:96] of the result.
4021 /// \param __i4
4022 ///    A 32-bit integral value used to initialize bits [159:128] of the result.
4023 /// \param __i5
4024 ///    A 32-bit integral value used to initialize bits [191:160] of the result.
4025 /// \param __i6
4026 ///    A 32-bit integral value used to initialize bits [223:192] of the result.
4027 /// \param __i7
4028 ///    A 32-bit integral value used to initialize bits [255:224] of the result.
4029 /// \returns An initialized 256-bit integer vector.
4030 static __inline __m256i __DEFAULT_FN_ATTRS
4031 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
4032                   int __i4, int __i5, int __i6, int __i7)
4033 {
4034   return _mm256_set_epi32(__i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0);
4035 }
4036 
4037 /// Constructs a 256-bit integer vector, initialized in reverse order
4038 ///    with the specified 16-bit integral values.
4039 ///
4040 /// \headerfile <x86intrin.h>
4041 ///
4042 /// This intrinsic is a utility function and does not correspond to a specific
4043 ///   instruction.
4044 ///
4045 /// \param __w15
4046 ///    A 16-bit integral value used to initialize bits [15:0] of the result.
4047 /// \param __w14
4048 ///    A 16-bit integral value used to initialize bits [31:16] of the result.
4049 /// \param __w13
4050 ///    A 16-bit integral value used to initialize bits [47:32] of the result.
4051 /// \param __w12
4052 ///    A 16-bit integral value used to initialize bits [63:48] of the result.
4053 /// \param __w11
4054 ///    A 16-bit integral value used to initialize bits [79:64] of the result.
4055 /// \param __w10
4056 ///    A 16-bit integral value used to initialize bits [95:80] of the result.
4057 /// \param __w09
4058 ///    A 16-bit integral value used to initialize bits [111:96] of the result.
4059 /// \param __w08
4060 ///    A 16-bit integral value used to initialize bits [127:112] of the result.
4061 /// \param __w07
4062 ///    A 16-bit integral value used to initialize bits [143:128] of the result.
4063 /// \param __w06
4064 ///    A 16-bit integral value used to initialize bits [159:144] of the result.
4065 /// \param __w05
4066 ///    A 16-bit integral value used to initialize bits [175:160] of the result.
4067 /// \param __w04
4068 ///    A 16-bit integral value used to initialize bits [191:176] of the result.
4069 /// \param __w03
4070 ///    A 16-bit integral value used to initialize bits [207:192] of the result.
4071 /// \param __w02
4072 ///    A 16-bit integral value used to initialize bits [223:208] of the result.
4073 /// \param __w01
4074 ///    A 16-bit integral value used to initialize bits [239:224] of the result.
4075 /// \param __w00
4076 ///    A 16-bit integral value used to initialize bits [255:240] of the result.
4077 /// \returns An initialized 256-bit integer vector.
4078 static __inline __m256i __DEFAULT_FN_ATTRS
4079 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
4080        short __w11, short __w10, short __w09, short __w08,
4081        short __w07, short __w06, short __w05, short __w04,
4082        short __w03, short __w02, short __w01, short __w00)
4083 {
4084   return _mm256_set_epi16(__w00, __w01, __w02, __w03,
4085                           __w04, __w05, __w06, __w07,
4086                           __w08, __w09, __w10, __w11,
4087                           __w12, __w13, __w14, __w15);
4088 }
4089 
4090 /// Constructs a 256-bit integer vector, initialized in reverse order
4091 ///    with the specified 8-bit integral values.
4092 ///
4093 /// \headerfile <x86intrin.h>
4094 ///
4095 /// This intrinsic is a utility function and does not correspond to a specific
4096 ///   instruction.
4097 ///
4098 /// \param __b31
4099 ///    An 8-bit integral value used to initialize bits [7:0] of the result.
4100 /// \param __b30
4101 ///    An 8-bit integral value used to initialize bits [15:8] of the result.
4102 /// \param __b29
4103 ///    An 8-bit integral value used to initialize bits [23:16] of the result.
4104 /// \param __b28
4105 ///    An 8-bit integral value used to initialize bits [31:24] of the result.
4106 /// \param __b27
4107 ///    An 8-bit integral value used to initialize bits [39:32] of the result.
4108 /// \param __b26
4109 ///    An 8-bit integral value used to initialize bits [47:40] of the result.
4110 /// \param __b25
4111 ///    An 8-bit integral value used to initialize bits [55:48] of the result.
4112 /// \param __b24
4113 ///    An 8-bit integral value used to initialize bits [63:56] of the result.
4114 /// \param __b23
4115 ///    An 8-bit integral value used to initialize bits [71:64] of the result.
4116 /// \param __b22
4117 ///    An 8-bit integral value used to initialize bits [79:72] of the result.
4118 /// \param __b21
4119 ///    An 8-bit integral value used to initialize bits [87:80] of the result.
4120 /// \param __b20
4121 ///    An 8-bit integral value used to initialize bits [95:88] of the result.
4122 /// \param __b19
4123 ///    An 8-bit integral value used to initialize bits [103:96] of the result.
4124 /// \param __b18
4125 ///    An 8-bit integral value used to initialize bits [111:104] of the result.
4126 /// \param __b17
4127 ///    An 8-bit integral value used to initialize bits [119:112] of the result.
4128 /// \param __b16
4129 ///    An 8-bit integral value used to initialize bits [127:120] of the result.
4130 /// \param __b15
4131 ///    An 8-bit integral value used to initialize bits [135:128] of the result.
4132 /// \param __b14
4133 ///    An 8-bit integral value used to initialize bits [143:136] of the result.
4134 /// \param __b13
4135 ///    An 8-bit integral value used to initialize bits [151:144] of the result.
4136 /// \param __b12
4137 ///    An 8-bit integral value used to initialize bits [159:152] of the result.
4138 /// \param __b11
4139 ///    An 8-bit integral value used to initialize bits [167:160] of the result.
4140 /// \param __b10
4141 ///    An 8-bit integral value used to initialize bits [175:168] of the result.
4142 /// \param __b09
4143 ///    An 8-bit integral value used to initialize bits [183:176] of the result.
4144 /// \param __b08
4145 ///    An 8-bit integral value used to initialize bits [191:184] of the result.
4146 /// \param __b07
4147 ///    An 8-bit integral value used to initialize bits [199:192] of the result.
4148 /// \param __b06
4149 ///    An 8-bit integral value used to initialize bits [207:200] of the result.
4150 /// \param __b05
4151 ///    An 8-bit integral value used to initialize bits [215:208] of the result.
4152 /// \param __b04
4153 ///    An 8-bit integral value used to initialize bits [223:216] of the result.
4154 /// \param __b03
4155 ///    An 8-bit integral value used to initialize bits [231:224] of the result.
4156 /// \param __b02
4157 ///    An 8-bit integral value used to initialize bits [239:232] of the result.
4158 /// \param __b01
4159 ///    An 8-bit integral value used to initialize bits [247:240] of the result.
4160 /// \param __b00
4161 ///    An 8-bit integral value used to initialize bits [255:248] of the result.
4162 /// \returns An initialized 256-bit integer vector.
4163 static __inline __m256i __DEFAULT_FN_ATTRS
4164 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
4165                  char __b27, char __b26, char __b25, char __b24,
4166                  char __b23, char __b22, char __b21, char __b20,
4167                  char __b19, char __b18, char __b17, char __b16,
4168                  char __b15, char __b14, char __b13, char __b12,
4169                  char __b11, char __b10, char __b09, char __b08,
4170                  char __b07, char __b06, char __b05, char __b04,
4171                  char __b03, char __b02, char __b01, char __b00)
4172 {
4173   return _mm256_set_epi8(__b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
4174                          __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
4175                          __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
4176                          __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31);
4177 }
4178 
4179 /// Constructs a 256-bit integer vector, initialized in reverse order
4180 ///    with the specified 64-bit integral values.
4181 ///
4182 /// \headerfile <x86intrin.h>
4183 ///
4184 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
4185 ///   instruction.
4186 ///
4187 /// \param __a
4188 ///    A 64-bit integral value used to initialize bits [63:0] of the result.
4189 /// \param __b
4190 ///    A 64-bit integral value used to initialize bits [127:64] of the result.
4191 /// \param __c
4192 ///    A 64-bit integral value used to initialize bits [191:128] of the result.
4193 /// \param __d
4194 ///    A 64-bit integral value used to initialize bits [255:192] of the result.
4195 /// \returns An initialized 256-bit integer vector.
4196 static __inline __m256i __DEFAULT_FN_ATTRS
4197 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
4198 {
4199   return _mm256_set_epi64x(__d, __c, __b, __a);
4200 }
4201 
4202 /* Create vectors with repeated elements */
4203 /// Constructs a 256-bit floating-point vector of [4 x double], with each
4204 ///    of the four double-precision floating-point vector elements set to the
4205 ///    specified double-precision floating-point value.
4206 ///
4207 /// \headerfile <x86intrin.h>
4208 ///
4209 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4210 ///
4211 /// \param __w
4212 ///    A double-precision floating-point value used to initialize each vector
4213 ///    element of the result.
4214 /// \returns An initialized 256-bit floating-point vector of [4 x double].
4215 static __inline __m256d __DEFAULT_FN_ATTRS
4216 _mm256_set1_pd(double __w)
4217 {
4218   return _mm256_set_pd(__w, __w, __w, __w);
4219 }
4220 
4221 /// Constructs a 256-bit floating-point vector of [8 x float], with each
4222 ///    of the eight single-precision floating-point vector elements set to the
4223 ///    specified single-precision floating-point value.
4224 ///
4225 /// \headerfile <x86intrin.h>
4226 ///
4227 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4228 ///   instruction.
4229 ///
4230 /// \param __w
4231 ///    A single-precision floating-point value used to initialize each vector
4232 ///    element of the result.
4233 /// \returns An initialized 256-bit floating-point vector of [8 x float].
4234 static __inline __m256 __DEFAULT_FN_ATTRS
4235 _mm256_set1_ps(float __w)
4236 {
4237   return _mm256_set_ps(__w, __w, __w, __w, __w, __w, __w, __w);
4238 }
4239 
4240 /// Constructs a 256-bit integer vector of [8 x i32], with each of the
4241 ///    32-bit integral vector elements set to the specified 32-bit integral
4242 ///    value.
4243 ///
4244 /// \headerfile <x86intrin.h>
4245 ///
4246 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4247 ///   instruction.
4248 ///
4249 /// \param __i
4250 ///    A 32-bit integral value used to initialize each vector element of the
4251 ///    result.
4252 /// \returns An initialized 256-bit integer vector of [8 x i32].
4253 static __inline __m256i __DEFAULT_FN_ATTRS
4254 _mm256_set1_epi32(int __i)
4255 {
4256   return _mm256_set_epi32(__i, __i, __i, __i, __i, __i, __i, __i);
4257 }
4258 
4259 /// Constructs a 256-bit integer vector of [16 x i16], with each of the
4260 ///    16-bit integral vector elements set to the specified 16-bit integral
4261 ///    value.
4262 ///
4263 /// \headerfile <x86intrin.h>
4264 ///
4265 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4266 ///
4267 /// \param __w
4268 ///    A 16-bit integral value used to initialize each vector element of the
4269 ///    result.
4270 /// \returns An initialized 256-bit integer vector of [16 x i16].
4271 static __inline __m256i __DEFAULT_FN_ATTRS
4272 _mm256_set1_epi16(short __w)
4273 {
4274   return _mm256_set_epi16(__w, __w, __w, __w, __w, __w, __w, __w,
4275                           __w, __w, __w, __w, __w, __w, __w, __w);
4276 }
4277 
4278 /// Constructs a 256-bit integer vector of [32 x i8], with each of the
4279 ///    8-bit integral vector elements set to the specified 8-bit integral value.
4280 ///
4281 /// \headerfile <x86intrin.h>
4282 ///
4283 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4284 ///
4285 /// \param __b
4286 ///    An 8-bit integral value used to initialize each vector element of the
4287 ///    result.
4288 /// \returns An initialized 256-bit integer vector of [32 x i8].
4289 static __inline __m256i __DEFAULT_FN_ATTRS
4290 _mm256_set1_epi8(char __b)
4291 {
4292   return _mm256_set_epi8(__b, __b, __b, __b, __b, __b, __b, __b,
4293                          __b, __b, __b, __b, __b, __b, __b, __b,
4294                          __b, __b, __b, __b, __b, __b, __b, __b,
4295                          __b, __b, __b, __b, __b, __b, __b, __b);
4296 }
4297 
4298 /// Constructs a 256-bit integer vector of [4 x i64], with each of the
4299 ///    64-bit integral vector elements set to the specified 64-bit integral
4300 ///    value.
4301 ///
4302 /// \headerfile <x86intrin.h>
4303 ///
4304 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4305 ///
4306 /// \param __q
4307 ///    A 64-bit integral value used to initialize each vector element of the
4308 ///    result.
4309 /// \returns An initialized 256-bit integer vector of [4 x i64].
4310 static __inline __m256i __DEFAULT_FN_ATTRS
4311 _mm256_set1_epi64x(long long __q)
4312 {
4313   return _mm256_set_epi64x(__q, __q, __q, __q);
4314 }
4315 
4316 /* Create __zeroed vectors */
4317 /// Constructs a 256-bit floating-point vector of [4 x double] with all
4318 ///    vector elements initialized to zero.
4319 ///
4320 /// \headerfile <x86intrin.h>
4321 ///
4322 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4323 ///
4324 /// \returns A 256-bit vector of [4 x double] with all elements set to zero.
4325 static __inline __m256d __DEFAULT_FN_ATTRS
4326 _mm256_setzero_pd(void)
4327 {
4328   return __extension__ (__m256d){ 0.0, 0.0, 0.0, 0.0 };
4329 }
4330 
4331 /// Constructs a 256-bit floating-point vector of [8 x float] with all
4332 ///    vector elements initialized to zero.
4333 ///
4334 /// \headerfile <x86intrin.h>
4335 ///
4336 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4337 ///
4338 /// \returns A 256-bit vector of [8 x float] with all elements set to zero.
4339 static __inline __m256 __DEFAULT_FN_ATTRS
4340 _mm256_setzero_ps(void)
4341 {
4342   return __extension__ (__m256){ 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f };
4343 }
4344 
4345 /// Constructs a 256-bit integer vector initialized to zero.
4346 ///
4347 /// \headerfile <x86intrin.h>
4348 ///
4349 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4350 ///
4351 /// \returns A 256-bit integer vector initialized to zero.
4352 static __inline __m256i __DEFAULT_FN_ATTRS
4353 _mm256_setzero_si256(void)
4354 {
4355   return __extension__ (__m256i)(__v4di){ 0, 0, 0, 0 };
4356 }
4357 
4358 /* Cast between vector types */
4359 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4360 ///    floating-point vector of [8 x float].
4361 ///
4362 /// \headerfile <x86intrin.h>
4363 ///
4364 /// This intrinsic has no corresponding instruction.
4365 ///
4366 /// \param __a
4367 ///    A 256-bit floating-point vector of [4 x double].
4368 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4369 ///    bitwise pattern as the parameter.
4370 static __inline __m256 __DEFAULT_FN_ATTRS
4371 _mm256_castpd_ps(__m256d __a)
4372 {
4373   return (__m256)__a;
4374 }
4375 
4376 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4377 ///    integer vector.
4378 ///
4379 /// \headerfile <x86intrin.h>
4380 ///
4381 /// This intrinsic has no corresponding instruction.
4382 ///
4383 /// \param __a
4384 ///    A 256-bit floating-point vector of [4 x double].
4385 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4386 ///    parameter.
4387 static __inline __m256i __DEFAULT_FN_ATTRS
4388 _mm256_castpd_si256(__m256d __a)
4389 {
4390   return (__m256i)__a;
4391 }
4392 
4393 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4394 ///    floating-point vector of [4 x double].
4395 ///
4396 /// \headerfile <x86intrin.h>
4397 ///
4398 /// This intrinsic has no corresponding instruction.
4399 ///
4400 /// \param __a
4401 ///    A 256-bit floating-point vector of [8 x float].
4402 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4403 ///    bitwise pattern as the parameter.
4404 static __inline __m256d __DEFAULT_FN_ATTRS
4405 _mm256_castps_pd(__m256 __a)
4406 {
4407   return (__m256d)__a;
4408 }
4409 
4410 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4411 ///    integer vector.
4412 ///
4413 /// \headerfile <x86intrin.h>
4414 ///
4415 /// This intrinsic has no corresponding instruction.
4416 ///
4417 /// \param __a
4418 ///    A 256-bit floating-point vector of [8 x float].
4419 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4420 ///    parameter.
4421 static __inline __m256i __DEFAULT_FN_ATTRS
4422 _mm256_castps_si256(__m256 __a)
4423 {
4424   return (__m256i)__a;
4425 }
4426 
4427 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4428 ///    of [8 x float].
4429 ///
4430 /// \headerfile <x86intrin.h>
4431 ///
4432 /// This intrinsic has no corresponding instruction.
4433 ///
4434 /// \param __a
4435 ///    A 256-bit integer vector.
4436 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4437 ///    bitwise pattern as the parameter.
4438 static __inline __m256 __DEFAULT_FN_ATTRS
4439 _mm256_castsi256_ps(__m256i __a)
4440 {
4441   return (__m256)__a;
4442 }
4443 
4444 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4445 ///    of [4 x double].
4446 ///
4447 /// \headerfile <x86intrin.h>
4448 ///
4449 /// This intrinsic has no corresponding instruction.
4450 ///
4451 /// \param __a
4452 ///    A 256-bit integer vector.
4453 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4454 ///    bitwise pattern as the parameter.
4455 static __inline __m256d __DEFAULT_FN_ATTRS
4456 _mm256_castsi256_pd(__m256i __a)
4457 {
4458   return (__m256d)__a;
4459 }
4460 
4461 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4462 ///    [4 x double] as a 128-bit floating-point vector of [2 x double].
4463 ///
4464 /// \headerfile <x86intrin.h>
4465 ///
4466 /// This intrinsic has no corresponding instruction.
4467 ///
4468 /// \param __a
4469 ///    A 256-bit floating-point vector of [4 x double].
4470 /// \returns A 128-bit floating-point vector of [2 x double] containing the
4471 ///    lower 128 bits of the parameter.
4472 static __inline __m128d __DEFAULT_FN_ATTRS
4473 _mm256_castpd256_pd128(__m256d __a)
4474 {
4475   return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
4476 }
4477 
4478 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4479 ///    [8 x float] as a 128-bit floating-point vector of [4 x float].
4480 ///
4481 /// \headerfile <x86intrin.h>
4482 ///
4483 /// This intrinsic has no corresponding instruction.
4484 ///
4485 /// \param __a
4486 ///    A 256-bit floating-point vector of [8 x float].
4487 /// \returns A 128-bit floating-point vector of [4 x float] containing the
4488 ///    lower 128 bits of the parameter.
4489 static __inline __m128 __DEFAULT_FN_ATTRS
4490 _mm256_castps256_ps128(__m256 __a)
4491 {
4492   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
4493 }
4494 
4495 /// Truncates a 256-bit integer vector into a 128-bit integer vector.
4496 ///
4497 /// \headerfile <x86intrin.h>
4498 ///
4499 /// This intrinsic has no corresponding instruction.
4500 ///
4501 /// \param __a
4502 ///    A 256-bit integer vector.
4503 /// \returns A 128-bit integer vector containing the lower 128 bits of the
4504 ///    parameter.
4505 static __inline __m128i __DEFAULT_FN_ATTRS
4506 _mm256_castsi256_si128(__m256i __a)
4507 {
4508   return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
4509 }
4510 
4511 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4512 ///    128-bit floating-point vector of [2 x double].
4513 ///
4514 ///    The lower 128 bits contain the value of the source vector. The contents
4515 ///    of the upper 128 bits are undefined.
4516 ///
4517 /// \headerfile <x86intrin.h>
4518 ///
4519 /// This intrinsic has no corresponding instruction.
4520 ///
4521 /// \param __a
4522 ///    A 128-bit vector of [2 x double].
4523 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4524 ///    contain the value of the parameter. The contents of the upper 128 bits
4525 ///    are undefined.
4526 static __inline __m256d __DEFAULT_FN_ATTRS
4527 _mm256_castpd128_pd256(__m128d __a)
4528 {
4529   return __builtin_shufflevector(
4530       (__v2df)__a, (__v2df)__builtin_nondeterministic_value(__a), 0, 1, 2, 3);
4531 }
4532 
4533 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4534 ///    128-bit floating-point vector of [4 x float].
4535 ///
4536 ///    The lower 128 bits contain the value of the source vector. The contents
4537 ///    of the upper 128 bits are undefined.
4538 ///
4539 /// \headerfile <x86intrin.h>
4540 ///
4541 /// This intrinsic has no corresponding instruction.
4542 ///
4543 /// \param __a
4544 ///    A 128-bit vector of [4 x float].
4545 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4546 ///    contain the value of the parameter. The contents of the upper 128 bits
4547 ///    are undefined.
4548 static __inline __m256 __DEFAULT_FN_ATTRS
4549 _mm256_castps128_ps256(__m128 __a)
4550 {
4551   return __builtin_shufflevector((__v4sf)__a,
4552                                  (__v4sf)__builtin_nondeterministic_value(__a),
4553                                  0, 1, 2, 3, 4, 5, 6, 7);
4554 }
4555 
4556 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4557 ///
4558 ///    The lower 128 bits contain the value of the source vector. The contents
4559 ///    of the upper 128 bits are undefined.
4560 ///
4561 /// \headerfile <x86intrin.h>
4562 ///
4563 /// This intrinsic has no corresponding instruction.
4564 ///
4565 /// \param __a
4566 ///    A 128-bit integer vector.
4567 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4568 ///    the parameter. The contents of the upper 128 bits are undefined.
4569 static __inline __m256i __DEFAULT_FN_ATTRS
4570 _mm256_castsi128_si256(__m128i __a)
4571 {
4572   return __builtin_shufflevector(
4573       (__v2di)__a, (__v2di)__builtin_nondeterministic_value(__a), 0, 1, 2, 3);
4574 }
4575 
4576 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4577 ///    128-bit floating-point vector of [2 x double]. The lower 128 bits
4578 ///    contain the value of the source vector. The upper 128 bits are set
4579 ///    to zero.
4580 ///
4581 /// \headerfile <x86intrin.h>
4582 ///
4583 /// This intrinsic has no corresponding instruction.
4584 ///
4585 /// \param __a
4586 ///    A 128-bit vector of [2 x double].
4587 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4588 ///    contain the value of the parameter. The upper 128 bits are set to zero.
4589 static __inline __m256d __DEFAULT_FN_ATTRS
4590 _mm256_zextpd128_pd256(__m128d __a)
4591 {
4592   return __builtin_shufflevector((__v2df)__a, (__v2df)_mm_setzero_pd(), 0, 1, 2, 3);
4593 }
4594 
4595 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4596 ///    128-bit floating-point vector of [4 x float]. The lower 128 bits contain
4597 ///    the value of the source vector. The upper 128 bits are set to zero.
4598 ///
4599 /// \headerfile <x86intrin.h>
4600 ///
4601 /// This intrinsic has no corresponding instruction.
4602 ///
4603 /// \param __a
4604 ///    A 128-bit vector of [4 x float].
4605 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4606 ///    contain the value of the parameter. The upper 128 bits are set to zero.
4607 static __inline __m256 __DEFAULT_FN_ATTRS
4608 _mm256_zextps128_ps256(__m128 __a)
4609 {
4610   return __builtin_shufflevector((__v4sf)__a, (__v4sf)_mm_setzero_ps(), 0, 1, 2, 3, 4, 5, 6, 7);
4611 }
4612 
4613 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4614 ///    The lower 128 bits contain the value of the source vector. The upper
4615 ///    128 bits are set to zero.
4616 ///
4617 /// \headerfile <x86intrin.h>
4618 ///
4619 /// This intrinsic has no corresponding instruction.
4620 ///
4621 /// \param __a
4622 ///    A 128-bit integer vector.
4623 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4624 ///    the parameter. The upper 128 bits are set to zero.
4625 static __inline __m256i __DEFAULT_FN_ATTRS
4626 _mm256_zextsi128_si256(__m128i __a)
4627 {
4628   return __builtin_shufflevector((__v2di)__a, (__v2di)_mm_setzero_si128(), 0, 1, 2, 3);
4629 }
4630 
4631 /*
4632    Vector insert.
4633    We use macros rather than inlines because we only want to accept
4634    invocations where the immediate M is a constant expression.
4635 */
4636 /// Constructs a new 256-bit vector of [8 x float] by first duplicating
4637 ///    a 256-bit vector of [8 x float] given in the first parameter, and then
4638 ///    replacing either the upper or the lower 128 bits with the contents of a
4639 ///    128-bit vector of [4 x float] in the second parameter.
4640 ///
4641 ///    The immediate integer parameter determines between the upper or the lower
4642 ///    128 bits.
4643 ///
4644 /// \headerfile <x86intrin.h>
4645 ///
4646 /// \code
4647 /// __m256 _mm256_insertf128_ps(__m256 V1, __m128 V2, const int M);
4648 /// \endcode
4649 ///
4650 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4651 ///
4652 /// \param V1
4653 ///    A 256-bit vector of [8 x float]. This vector is copied to the result
4654 ///    first, and then either the upper or the lower 128 bits of the result will
4655 ///    be replaced by the contents of \a V2.
4656 /// \param V2
4657 ///    A 128-bit vector of [4 x float]. The contents of this parameter are
4658 ///    written to either the upper or the lower 128 bits of the result depending
4659 ///    on the value of parameter \a M.
4660 /// \param M
4661 ///    An immediate integer. The least significant bit determines how the values
4662 ///    from the two parameters are interleaved: \n
4663 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4664 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4665 ///    result. \n
4666 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4667 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4668 ///    result.
4669 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
4670 #define _mm256_insertf128_ps(V1, V2, M) \
4671   ((__m256)__builtin_ia32_vinsertf128_ps256((__v8sf)(__m256)(V1), \
4672                                             (__v4sf)(__m128)(V2), (int)(M)))
4673 
4674 /// Constructs a new 256-bit vector of [4 x double] by first duplicating
4675 ///    a 256-bit vector of [4 x double] given in the first parameter, and then
4676 ///    replacing either the upper or the lower 128 bits with the contents of a
4677 ///    128-bit vector of [2 x double] in the second parameter.
4678 ///
4679 ///    The immediate integer parameter determines between the upper or the lower
4680 ///    128 bits.
4681 ///
4682 /// \headerfile <x86intrin.h>
4683 ///
4684 /// \code
4685 /// __m256d _mm256_insertf128_pd(__m256d V1, __m128d V2, const int M);
4686 /// \endcode
4687 ///
4688 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4689 ///
4690 /// \param V1
4691 ///    A 256-bit vector of [4 x double]. This vector is copied to the result
4692 ///    first, and then either the upper or the lower 128 bits of the result will
4693 ///    be replaced by the contents of \a V2.
4694 /// \param V2
4695 ///    A 128-bit vector of [2 x double]. The contents of this parameter are
4696 ///    written to either the upper or the lower 128 bits of the result depending
4697 ///    on the value of parameter \a M.
4698 /// \param M
4699 ///    An immediate integer. The least significant bit determines how the values
4700 ///    from the two parameters are interleaved: \n
4701 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4702 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4703 ///    result. \n
4704 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4705 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4706 ///    result.
4707 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
4708 #define _mm256_insertf128_pd(V1, V2, M) \
4709   ((__m256d)__builtin_ia32_vinsertf128_pd256((__v4df)(__m256d)(V1), \
4710                                              (__v2df)(__m128d)(V2), (int)(M)))
4711 
4712 /// Constructs a new 256-bit integer vector by first duplicating a
4713 ///    256-bit integer vector given in the first parameter, and then replacing
4714 ///    either the upper or the lower 128 bits with the contents of a 128-bit
4715 ///    integer vector in the second parameter.
4716 ///
4717 ///    The immediate integer parameter determines between the upper or the lower
4718 ///    128 bits.
4719 ///
4720 /// \headerfile <x86intrin.h>
4721 ///
4722 /// \code
4723 /// __m256i _mm256_insertf128_si256(__m256i V1, __m128i V2, const int M);
4724 /// \endcode
4725 ///
4726 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4727 ///
4728 /// \param V1
4729 ///    A 256-bit integer vector. This vector is copied to the result first, and
4730 ///    then either the upper or the lower 128 bits of the result will be
4731 ///    replaced by the contents of \a V2.
4732 /// \param V2
4733 ///    A 128-bit integer vector. The contents of this parameter are written to
4734 ///    either the upper or the lower 128 bits of the result depending on the
4735 ///     value of parameter \a M.
4736 /// \param M
4737 ///    An immediate integer. The least significant bit determines how the values
4738 ///    from the two parameters are interleaved: \n
4739 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4740 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4741 ///    result. \n
4742 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4743 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4744 ///    result.
4745 /// \returns A 256-bit integer vector containing the interleaved values.
4746 #define _mm256_insertf128_si256(V1, V2, M) \
4747   ((__m256i)__builtin_ia32_vinsertf128_si256((__v8si)(__m256i)(V1), \
4748                                              (__v4si)(__m128i)(V2), (int)(M)))
4749 
4750 /*
4751    Vector extract.
4752    We use macros rather than inlines because we only want to accept
4753    invocations where the immediate M is a constant expression.
4754 */
4755 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4756 ///    of [8 x float], as determined by the immediate integer parameter, and
4757 ///    returns the extracted bits as a 128-bit vector of [4 x float].
4758 ///
4759 /// \headerfile <x86intrin.h>
4760 ///
4761 /// \code
4762 /// __m128 _mm256_extractf128_ps(__m256 V, const int M);
4763 /// \endcode
4764 ///
4765 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4766 ///
4767 /// \param V
4768 ///    A 256-bit vector of [8 x float].
4769 /// \param M
4770 ///    An immediate integer. The least significant bit determines which bits are
4771 ///    extracted from the first parameter: \n
4772 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4773 ///    result. \n
4774 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4775 /// \returns A 128-bit vector of [4 x float] containing the extracted bits.
4776 #define _mm256_extractf128_ps(V, M) \
4777   ((__m128)__builtin_ia32_vextractf128_ps256((__v8sf)(__m256)(V), (int)(M)))
4778 
4779 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4780 ///    of [4 x double], as determined by the immediate integer parameter, and
4781 ///    returns the extracted bits as a 128-bit vector of [2 x double].
4782 ///
4783 /// \headerfile <x86intrin.h>
4784 ///
4785 /// \code
4786 /// __m128d _mm256_extractf128_pd(__m256d V, const int M);
4787 /// \endcode
4788 ///
4789 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4790 ///
4791 /// \param V
4792 ///    A 256-bit vector of [4 x double].
4793 /// \param M
4794 ///    An immediate integer. The least significant bit determines which bits are
4795 ///    extracted from the first parameter: \n
4796 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4797 ///    result. \n
4798 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4799 /// \returns A 128-bit vector of [2 x double] containing the extracted bits.
4800 #define _mm256_extractf128_pd(V, M) \
4801   ((__m128d)__builtin_ia32_vextractf128_pd256((__v4df)(__m256d)(V), (int)(M)))
4802 
4803 /// Extracts either the upper or the lower 128 bits from a 256-bit
4804 ///    integer vector, as determined by the immediate integer parameter, and
4805 ///    returns the extracted bits as a 128-bit integer vector.
4806 ///
4807 /// \headerfile <x86intrin.h>
4808 ///
4809 /// \code
4810 /// __m128i _mm256_extractf128_si256(__m256i V, const int M);
4811 /// \endcode
4812 ///
4813 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4814 ///
4815 /// \param V
4816 ///    A 256-bit integer vector.
4817 /// \param M
4818 ///    An immediate integer. The least significant bit determines which bits are
4819 ///    extracted from the first parameter:  \n
4820 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4821 ///    result. \n
4822 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4823 /// \returns A 128-bit integer vector containing the extracted bits.
4824 #define _mm256_extractf128_si256(V, M) \
4825   ((__m128i)__builtin_ia32_vextractf128_si256((__v8si)(__m256i)(V), (int)(M)))
4826 
4827 /// Constructs a 256-bit floating-point vector of [8 x float] by
4828 ///    concatenating two 128-bit floating-point vectors of [4 x float].
4829 ///
4830 /// \headerfile <x86intrin.h>
4831 ///
4832 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4833 ///
4834 /// \param __hi
4835 ///    A 128-bit floating-point vector of [4 x float] to be copied to the upper
4836 ///    128 bits of the result.
4837 /// \param __lo
4838 ///    A 128-bit floating-point vector of [4 x float] to be copied to the lower
4839 ///    128 bits of the result.
4840 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4841 ///    concatenated result.
4842 static __inline __m256 __DEFAULT_FN_ATTRS
4843 _mm256_set_m128 (__m128 __hi, __m128 __lo)
4844 {
4845   return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
4846 }
4847 
4848 /// Constructs a 256-bit floating-point vector of [4 x double] by
4849 ///    concatenating two 128-bit floating-point vectors of [2 x double].
4850 ///
4851 /// \headerfile <x86intrin.h>
4852 ///
4853 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4854 ///
4855 /// \param __hi
4856 ///    A 128-bit floating-point vector of [2 x double] to be copied to the upper
4857 ///    128 bits of the result.
4858 /// \param __lo
4859 ///    A 128-bit floating-point vector of [2 x double] to be copied to the lower
4860 ///    128 bits of the result.
4861 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4862 ///    concatenated result.
4863 static __inline __m256d __DEFAULT_FN_ATTRS
4864 _mm256_set_m128d (__m128d __hi, __m128d __lo)
4865 {
4866   return (__m256d) __builtin_shufflevector((__v2df)__lo, (__v2df)__hi, 0, 1, 2, 3);
4867 }
4868 
4869 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4870 ///    integer vectors.
4871 ///
4872 /// \headerfile <x86intrin.h>
4873 ///
4874 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4875 ///
4876 /// \param __hi
4877 ///    A 128-bit integer vector to be copied to the upper 128 bits of the
4878 ///    result.
4879 /// \param __lo
4880 ///    A 128-bit integer vector to be copied to the lower 128 bits of the
4881 ///    result.
4882 /// \returns A 256-bit integer vector containing the concatenated result.
4883 static __inline __m256i __DEFAULT_FN_ATTRS
4884 _mm256_set_m128i (__m128i __hi, __m128i __lo)
4885 {
4886   return (__m256i) __builtin_shufflevector((__v2di)__lo, (__v2di)__hi, 0, 1, 2, 3);
4887 }
4888 
4889 /// Constructs a 256-bit floating-point vector of [8 x float] by
4890 ///    concatenating two 128-bit floating-point vectors of [4 x float]. This is
4891 ///    similar to _mm256_set_m128, but the order of the input parameters is
4892 ///    swapped.
4893 ///
4894 /// \headerfile <x86intrin.h>
4895 ///
4896 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4897 ///
4898 /// \param __lo
4899 ///    A 128-bit floating-point vector of [4 x float] to be copied to the lower
4900 ///    128 bits of the result.
4901 /// \param __hi
4902 ///    A 128-bit floating-point vector of [4 x float] to be copied to the upper
4903 ///    128 bits of the result.
4904 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4905 ///    concatenated result.
4906 static __inline __m256 __DEFAULT_FN_ATTRS
4907 _mm256_setr_m128 (__m128 __lo, __m128 __hi)
4908 {
4909   return _mm256_set_m128(__hi, __lo);
4910 }
4911 
4912 /// Constructs a 256-bit floating-point vector of [4 x double] by
4913 ///    concatenating two 128-bit floating-point vectors of [2 x double]. This is
4914 ///    similar to _mm256_set_m128d, but the order of the input parameters is
4915 ///    swapped.
4916 ///
4917 /// \headerfile <x86intrin.h>
4918 ///
4919 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4920 ///
4921 /// \param __lo
4922 ///    A 128-bit floating-point vector of [2 x double] to be copied to the lower
4923 ///    128 bits of the result.
4924 /// \param __hi
4925 ///    A 128-bit floating-point vector of [2 x double] to be copied to the upper
4926 ///    128 bits of the result.
4927 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4928 ///    concatenated result.
4929 static __inline __m256d __DEFAULT_FN_ATTRS
4930 _mm256_setr_m128d (__m128d __lo, __m128d __hi)
4931 {
4932   return (__m256d)_mm256_set_m128d(__hi, __lo);
4933 }
4934 
4935 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4936 ///    integer vectors. This is similar to _mm256_set_m128i, but the order of
4937 ///    the input parameters is swapped.
4938 ///
4939 /// \headerfile <x86intrin.h>
4940 ///
4941 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4942 ///
4943 /// \param __lo
4944 ///    A 128-bit integer vector to be copied to the lower 128 bits of the
4945 ///    result.
4946 /// \param __hi
4947 ///    A 128-bit integer vector to be copied to the upper 128 bits of the
4948 ///    result.
4949 /// \returns A 256-bit integer vector containing the concatenated result.
4950 static __inline __m256i __DEFAULT_FN_ATTRS
4951 _mm256_setr_m128i (__m128i __lo, __m128i __hi)
4952 {
4953   return (__m256i)_mm256_set_m128i(__hi, __lo);
4954 }
4955 
4956 /* SIMD load ops (unaligned) */
4957 /// Loads two 128-bit floating-point vectors of [4 x float] from
4958 ///    unaligned memory locations and constructs a 256-bit floating-point vector
4959 ///    of [8 x float] by concatenating the two 128-bit vectors.
4960 ///
4961 /// \headerfile <x86intrin.h>
4962 ///
4963 /// This intrinsic corresponds to load instructions followed by the
4964 ///   <c> VINSERTF128 </c> instruction.
4965 ///
4966 /// \param __addr_hi
4967 ///    A pointer to a 128-bit memory location containing 4 consecutive
4968 ///    single-precision floating-point values. These values are to be copied to
4969 ///    bits[255:128] of the result. The address of the memory location does not
4970 ///    have to be aligned.
4971 /// \param __addr_lo
4972 ///    A pointer to a 128-bit memory location containing 4 consecutive
4973 ///    single-precision floating-point values. These values are to be copied to
4974 ///    bits[127:0] of the result. The address of the memory location does not
4975 ///    have to be aligned.
4976 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4977 ///    concatenated result.
4978 static __inline __m256 __DEFAULT_FN_ATTRS
4979 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
4980 {
4981   return _mm256_set_m128(_mm_loadu_ps(__addr_hi), _mm_loadu_ps(__addr_lo));
4982 }
4983 
4984 /// Loads two 128-bit floating-point vectors of [2 x double] from
4985 ///    unaligned memory locations and constructs a 256-bit floating-point vector
4986 ///    of [4 x double] by concatenating the two 128-bit vectors.
4987 ///
4988 /// \headerfile <x86intrin.h>
4989 ///
4990 /// This intrinsic corresponds to load instructions followed by the
4991 ///   <c> VINSERTF128 </c> instruction.
4992 ///
4993 /// \param __addr_hi
4994 ///    A pointer to a 128-bit memory location containing two consecutive
4995 ///    double-precision floating-point values. These values are to be copied to
4996 ///    bits[255:128] of the result. The address of the memory location does not
4997 ///    have to be aligned.
4998 /// \param __addr_lo
4999 ///    A pointer to a 128-bit memory location containing two consecutive
5000 ///    double-precision floating-point values. These values are to be copied to
5001 ///    bits[127:0] of the result. The address of the memory location does not
5002 ///    have to be aligned.
5003 /// \returns A 256-bit floating-point vector of [4 x double] containing the
5004 ///    concatenated result.
5005 static __inline __m256d __DEFAULT_FN_ATTRS
5006 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
5007 {
5008   return _mm256_set_m128d(_mm_loadu_pd(__addr_hi), _mm_loadu_pd(__addr_lo));
5009 }
5010 
5011 /// Loads two 128-bit integer vectors from unaligned memory locations and
5012 ///    constructs a 256-bit integer vector by concatenating the two 128-bit
5013 ///    vectors.
5014 ///
5015 /// \headerfile <x86intrin.h>
5016 ///
5017 /// This intrinsic corresponds to load instructions followed by the
5018 ///   <c> VINSERTF128 </c> instruction.
5019 ///
5020 /// \param __addr_hi
5021 ///    A pointer to a 128-bit memory location containing a 128-bit integer
5022 ///    vector. This vector is to be copied to bits[255:128] of the result. The
5023 ///    address of the memory location does not have to be aligned.
5024 /// \param __addr_lo
5025 ///    A pointer to a 128-bit memory location containing a 128-bit integer
5026 ///    vector. This vector is to be copied to bits[127:0] of the result. The
5027 ///    address of the memory location does not have to be aligned.
5028 /// \returns A 256-bit integer vector containing the concatenated result.
5029 static __inline __m256i __DEFAULT_FN_ATTRS
5030 _mm256_loadu2_m128i(__m128i_u const *__addr_hi, __m128i_u const *__addr_lo)
5031 {
5032    return _mm256_set_m128i(_mm_loadu_si128(__addr_hi), _mm_loadu_si128(__addr_lo));
5033 }
5034 
5035 /* SIMD store ops (unaligned) */
5036 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5037 ///    vector of [8 x float] into two different unaligned memory locations.
5038 ///
5039 /// \headerfile <x86intrin.h>
5040 ///
5041 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5042 ///   store instructions.
5043 ///
5044 /// \param __addr_hi
5045 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5046 ///    copied to this memory location. The address of this memory location does
5047 ///    not have to be aligned.
5048 /// \param __addr_lo
5049 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5050 ///    copied to this memory location. The address of this memory location does
5051 ///    not have to be aligned.
5052 /// \param __a
5053 ///    A 256-bit floating-point vector of [8 x float].
5054 static __inline void __DEFAULT_FN_ATTRS
5055 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
5056 {
5057   __m128 __v128;
5058 
5059   __v128 = _mm256_castps256_ps128(__a);
5060   _mm_storeu_ps(__addr_lo, __v128);
5061   __v128 = _mm256_extractf128_ps(__a, 1);
5062   _mm_storeu_ps(__addr_hi, __v128);
5063 }
5064 
5065 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5066 ///    vector of [4 x double] into two different unaligned memory locations.
5067 ///
5068 /// \headerfile <x86intrin.h>
5069 ///
5070 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5071 ///   store instructions.
5072 ///
5073 /// \param __addr_hi
5074 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5075 ///    copied to this memory location. The address of this memory location does
5076 ///    not have to be aligned.
5077 /// \param __addr_lo
5078 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5079 ///    copied to this memory location. The address of this memory location does
5080 ///    not have to be aligned.
5081 /// \param __a
5082 ///    A 256-bit floating-point vector of [4 x double].
5083 static __inline void __DEFAULT_FN_ATTRS
5084 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
5085 {
5086   __m128d __v128;
5087 
5088   __v128 = _mm256_castpd256_pd128(__a);
5089   _mm_storeu_pd(__addr_lo, __v128);
5090   __v128 = _mm256_extractf128_pd(__a, 1);
5091   _mm_storeu_pd(__addr_hi, __v128);
5092 }
5093 
5094 /// Stores the upper and lower 128 bits of a 256-bit integer vector into
5095 ///    two different unaligned memory locations.
5096 ///
5097 /// \headerfile <x86intrin.h>
5098 ///
5099 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5100 ///   store instructions.
5101 ///
5102 /// \param __addr_hi
5103 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5104 ///    copied to this memory location. The address of this memory location does
5105 ///    not have to be aligned.
5106 /// \param __addr_lo
5107 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5108 ///    copied to this memory location. The address of this memory location does
5109 ///    not have to be aligned.
5110 /// \param __a
5111 ///    A 256-bit integer vector.
5112 static __inline void __DEFAULT_FN_ATTRS
5113 _mm256_storeu2_m128i(__m128i_u *__addr_hi, __m128i_u *__addr_lo, __m256i __a)
5114 {
5115   __m128i __v128;
5116 
5117   __v128 = _mm256_castsi256_si128(__a);
5118   _mm_storeu_si128(__addr_lo, __v128);
5119   __v128 = _mm256_extractf128_si256(__a, 1);
5120   _mm_storeu_si128(__addr_hi, __v128);
5121 }
5122 
5123 #undef __DEFAULT_FN_ATTRS
5124 #undef __DEFAULT_FN_ATTRS128
5125 
5126 #endif /* __AVXINTRIN_H */
5127