xref: /freebsd/contrib/llvm-project/clang/lib/Headers/avxintrin.h (revision 4d3fc8b0570b29fb0d6ee9525f104d52176ff0d4)
1 /*===---- avxintrin.h - AVX intrinsics -------------------------------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 
10 #ifndef __IMMINTRIN_H
11 #error "Never use <avxintrin.h> directly; include <immintrin.h> instead."
12 #endif
13 
14 #ifndef __AVXINTRIN_H
15 #define __AVXINTRIN_H
16 
17 typedef double __v4df __attribute__ ((__vector_size__ (32)));
18 typedef float __v8sf __attribute__ ((__vector_size__ (32)));
19 typedef long long __v4di __attribute__ ((__vector_size__ (32)));
20 typedef int __v8si __attribute__ ((__vector_size__ (32)));
21 typedef short __v16hi __attribute__ ((__vector_size__ (32)));
22 typedef char __v32qi __attribute__ ((__vector_size__ (32)));
23 
24 /* Unsigned types */
25 typedef unsigned long long __v4du __attribute__ ((__vector_size__ (32)));
26 typedef unsigned int __v8su __attribute__ ((__vector_size__ (32)));
27 typedef unsigned short __v16hu __attribute__ ((__vector_size__ (32)));
28 typedef unsigned char __v32qu __attribute__ ((__vector_size__ (32)));
29 
30 /* We need an explicitly signed variant for char. Note that this shouldn't
31  * appear in the interface though. */
32 typedef signed char __v32qs __attribute__((__vector_size__(32)));
33 
34 typedef float __m256 __attribute__ ((__vector_size__ (32), __aligned__(32)));
35 typedef double __m256d __attribute__((__vector_size__(32), __aligned__(32)));
36 typedef long long __m256i __attribute__((__vector_size__(32), __aligned__(32)));
37 
38 typedef float __m256_u __attribute__ ((__vector_size__ (32), __aligned__(1)));
39 typedef double __m256d_u __attribute__((__vector_size__(32), __aligned__(1)));
40 typedef long long __m256i_u __attribute__((__vector_size__(32), __aligned__(1)));
41 
42 /* Define the default attributes for the functions in this file. */
43 #define __DEFAULT_FN_ATTRS __attribute__((__always_inline__, __nodebug__, __target__("avx"), __min_vector_width__(256)))
44 #define __DEFAULT_FN_ATTRS128 __attribute__((__always_inline__, __nodebug__, __target__("avx"), __min_vector_width__(128)))
45 
46 /* Arithmetic */
47 /// Adds two 256-bit vectors of [4 x double].
48 ///
49 /// \headerfile <x86intrin.h>
50 ///
51 /// This intrinsic corresponds to the <c> VADDPD </c> instruction.
52 ///
53 /// \param __a
54 ///    A 256-bit vector of [4 x double] containing one of the source operands.
55 /// \param __b
56 ///    A 256-bit vector of [4 x double] containing one of the source operands.
57 /// \returns A 256-bit vector of [4 x double] containing the sums of both
58 ///    operands.
59 static __inline __m256d __DEFAULT_FN_ATTRS
60 _mm256_add_pd(__m256d __a, __m256d __b)
61 {
62   return (__m256d)((__v4df)__a+(__v4df)__b);
63 }
64 
65 /// Adds two 256-bit vectors of [8 x float].
66 ///
67 /// \headerfile <x86intrin.h>
68 ///
69 /// This intrinsic corresponds to the <c> VADDPS </c> instruction.
70 ///
71 /// \param __a
72 ///    A 256-bit vector of [8 x float] containing one of the source operands.
73 /// \param __b
74 ///    A 256-bit vector of [8 x float] containing one of the source operands.
75 /// \returns A 256-bit vector of [8 x float] containing the sums of both
76 ///    operands.
77 static __inline __m256 __DEFAULT_FN_ATTRS
78 _mm256_add_ps(__m256 __a, __m256 __b)
79 {
80   return (__m256)((__v8sf)__a+(__v8sf)__b);
81 }
82 
83 /// Subtracts two 256-bit vectors of [4 x double].
84 ///
85 /// \headerfile <x86intrin.h>
86 ///
87 /// This intrinsic corresponds to the <c> VSUBPD </c> instruction.
88 ///
89 /// \param __a
90 ///    A 256-bit vector of [4 x double] containing the minuend.
91 /// \param __b
92 ///    A 256-bit vector of [4 x double] containing the subtrahend.
93 /// \returns A 256-bit vector of [4 x double] containing the differences between
94 ///    both operands.
95 static __inline __m256d __DEFAULT_FN_ATTRS
96 _mm256_sub_pd(__m256d __a, __m256d __b)
97 {
98   return (__m256d)((__v4df)__a-(__v4df)__b);
99 }
100 
101 /// Subtracts two 256-bit vectors of [8 x float].
102 ///
103 /// \headerfile <x86intrin.h>
104 ///
105 /// This intrinsic corresponds to the <c> VSUBPS </c> instruction.
106 ///
107 /// \param __a
108 ///    A 256-bit vector of [8 x float] containing the minuend.
109 /// \param __b
110 ///    A 256-bit vector of [8 x float] containing the subtrahend.
111 /// \returns A 256-bit vector of [8 x float] containing the differences between
112 ///    both operands.
113 static __inline __m256 __DEFAULT_FN_ATTRS
114 _mm256_sub_ps(__m256 __a, __m256 __b)
115 {
116   return (__m256)((__v8sf)__a-(__v8sf)__b);
117 }
118 
119 /// Adds the even-indexed values and subtracts the odd-indexed values of
120 ///    two 256-bit vectors of [4 x double].
121 ///
122 /// \headerfile <x86intrin.h>
123 ///
124 /// This intrinsic corresponds to the <c> VADDSUBPD </c> instruction.
125 ///
126 /// \param __a
127 ///    A 256-bit vector of [4 x double] containing the left source operand.
128 /// \param __b
129 ///    A 256-bit vector of [4 x double] containing the right source operand.
130 /// \returns A 256-bit vector of [4 x double] containing the alternating sums
131 ///    and differences between both operands.
132 static __inline __m256d __DEFAULT_FN_ATTRS
133 _mm256_addsub_pd(__m256d __a, __m256d __b)
134 {
135   return (__m256d)__builtin_ia32_addsubpd256((__v4df)__a, (__v4df)__b);
136 }
137 
138 /// Adds the even-indexed values and subtracts the odd-indexed values of
139 ///    two 256-bit vectors of [8 x float].
140 ///
141 /// \headerfile <x86intrin.h>
142 ///
143 /// This intrinsic corresponds to the <c> VADDSUBPS </c> instruction.
144 ///
145 /// \param __a
146 ///    A 256-bit vector of [8 x float] containing the left source operand.
147 /// \param __b
148 ///    A 256-bit vector of [8 x float] containing the right source operand.
149 /// \returns A 256-bit vector of [8 x float] containing the alternating sums and
150 ///    differences between both operands.
151 static __inline __m256 __DEFAULT_FN_ATTRS
152 _mm256_addsub_ps(__m256 __a, __m256 __b)
153 {
154   return (__m256)__builtin_ia32_addsubps256((__v8sf)__a, (__v8sf)__b);
155 }
156 
157 /// Divides two 256-bit vectors of [4 x double].
158 ///
159 /// \headerfile <x86intrin.h>
160 ///
161 /// This intrinsic corresponds to the <c> VDIVPD </c> instruction.
162 ///
163 /// \param __a
164 ///    A 256-bit vector of [4 x double] containing the dividend.
165 /// \param __b
166 ///    A 256-bit vector of [4 x double] containing the divisor.
167 /// \returns A 256-bit vector of [4 x double] containing the quotients of both
168 ///    operands.
169 static __inline __m256d __DEFAULT_FN_ATTRS
170 _mm256_div_pd(__m256d __a, __m256d __b)
171 {
172   return (__m256d)((__v4df)__a/(__v4df)__b);
173 }
174 
175 /// Divides two 256-bit vectors of [8 x float].
176 ///
177 /// \headerfile <x86intrin.h>
178 ///
179 /// This intrinsic corresponds to the <c> VDIVPS </c> instruction.
180 ///
181 /// \param __a
182 ///    A 256-bit vector of [8 x float] containing the dividend.
183 /// \param __b
184 ///    A 256-bit vector of [8 x float] containing the divisor.
185 /// \returns A 256-bit vector of [8 x float] containing the quotients of both
186 ///    operands.
187 static __inline __m256 __DEFAULT_FN_ATTRS
188 _mm256_div_ps(__m256 __a, __m256 __b)
189 {
190   return (__m256)((__v8sf)__a/(__v8sf)__b);
191 }
192 
193 /// Compares two 256-bit vectors of [4 x double] and returns the greater
194 ///    of each pair of values.
195 ///
196 /// \headerfile <x86intrin.h>
197 ///
198 /// This intrinsic corresponds to the <c> VMAXPD </c> instruction.
199 ///
200 /// \param __a
201 ///    A 256-bit vector of [4 x double] containing one of the operands.
202 /// \param __b
203 ///    A 256-bit vector of [4 x double] containing one of the operands.
204 /// \returns A 256-bit vector of [4 x double] containing the maximum values
205 ///    between both operands.
206 static __inline __m256d __DEFAULT_FN_ATTRS
207 _mm256_max_pd(__m256d __a, __m256d __b)
208 {
209   return (__m256d)__builtin_ia32_maxpd256((__v4df)__a, (__v4df)__b);
210 }
211 
212 /// Compares two 256-bit vectors of [8 x float] and returns the greater
213 ///    of each pair of values.
214 ///
215 /// \headerfile <x86intrin.h>
216 ///
217 /// This intrinsic corresponds to the <c> VMAXPS </c> instruction.
218 ///
219 /// \param __a
220 ///    A 256-bit vector of [8 x float] containing one of the operands.
221 /// \param __b
222 ///    A 256-bit vector of [8 x float] containing one of the operands.
223 /// \returns A 256-bit vector of [8 x float] containing the maximum values
224 ///    between both operands.
225 static __inline __m256 __DEFAULT_FN_ATTRS
226 _mm256_max_ps(__m256 __a, __m256 __b)
227 {
228   return (__m256)__builtin_ia32_maxps256((__v8sf)__a, (__v8sf)__b);
229 }
230 
231 /// Compares two 256-bit vectors of [4 x double] and returns the lesser
232 ///    of each pair of values.
233 ///
234 /// \headerfile <x86intrin.h>
235 ///
236 /// This intrinsic corresponds to the <c> VMINPD </c> instruction.
237 ///
238 /// \param __a
239 ///    A 256-bit vector of [4 x double] containing one of the operands.
240 /// \param __b
241 ///    A 256-bit vector of [4 x double] containing one of the operands.
242 /// \returns A 256-bit vector of [4 x double] containing the minimum values
243 ///    between both operands.
244 static __inline __m256d __DEFAULT_FN_ATTRS
245 _mm256_min_pd(__m256d __a, __m256d __b)
246 {
247   return (__m256d)__builtin_ia32_minpd256((__v4df)__a, (__v4df)__b);
248 }
249 
250 /// Compares two 256-bit vectors of [8 x float] and returns the lesser
251 ///    of each pair of values.
252 ///
253 /// \headerfile <x86intrin.h>
254 ///
255 /// This intrinsic corresponds to the <c> VMINPS </c> instruction.
256 ///
257 /// \param __a
258 ///    A 256-bit vector of [8 x float] containing one of the operands.
259 /// \param __b
260 ///    A 256-bit vector of [8 x float] containing one of the operands.
261 /// \returns A 256-bit vector of [8 x float] containing the minimum values
262 ///    between both operands.
263 static __inline __m256 __DEFAULT_FN_ATTRS
264 _mm256_min_ps(__m256 __a, __m256 __b)
265 {
266   return (__m256)__builtin_ia32_minps256((__v8sf)__a, (__v8sf)__b);
267 }
268 
269 /// Multiplies two 256-bit vectors of [4 x double].
270 ///
271 /// \headerfile <x86intrin.h>
272 ///
273 /// This intrinsic corresponds to the <c> VMULPD </c> instruction.
274 ///
275 /// \param __a
276 ///    A 256-bit vector of [4 x double] containing one of the operands.
277 /// \param __b
278 ///    A 256-bit vector of [4 x double] containing one of the operands.
279 /// \returns A 256-bit vector of [4 x double] containing the products of both
280 ///    operands.
281 static __inline __m256d __DEFAULT_FN_ATTRS
282 _mm256_mul_pd(__m256d __a, __m256d __b)
283 {
284   return (__m256d)((__v4df)__a * (__v4df)__b);
285 }
286 
287 /// Multiplies two 256-bit vectors of [8 x float].
288 ///
289 /// \headerfile <x86intrin.h>
290 ///
291 /// This intrinsic corresponds to the <c> VMULPS </c> instruction.
292 ///
293 /// \param __a
294 ///    A 256-bit vector of [8 x float] containing one of the operands.
295 /// \param __b
296 ///    A 256-bit vector of [8 x float] containing one of the operands.
297 /// \returns A 256-bit vector of [8 x float] containing the products of both
298 ///    operands.
299 static __inline __m256 __DEFAULT_FN_ATTRS
300 _mm256_mul_ps(__m256 __a, __m256 __b)
301 {
302   return (__m256)((__v8sf)__a * (__v8sf)__b);
303 }
304 
305 /// Calculates the square roots of the values in a 256-bit vector of
306 ///    [4 x double].
307 ///
308 /// \headerfile <x86intrin.h>
309 ///
310 /// This intrinsic corresponds to the <c> VSQRTPD </c> instruction.
311 ///
312 /// \param __a
313 ///    A 256-bit vector of [4 x double].
314 /// \returns A 256-bit vector of [4 x double] containing the square roots of the
315 ///    values in the operand.
316 static __inline __m256d __DEFAULT_FN_ATTRS
317 _mm256_sqrt_pd(__m256d __a)
318 {
319   return (__m256d)__builtin_ia32_sqrtpd256((__v4df)__a);
320 }
321 
322 /// Calculates the square roots of the values in a 256-bit vector of
323 ///    [8 x float].
324 ///
325 /// \headerfile <x86intrin.h>
326 ///
327 /// This intrinsic corresponds to the <c> VSQRTPS </c> instruction.
328 ///
329 /// \param __a
330 ///    A 256-bit vector of [8 x float].
331 /// \returns A 256-bit vector of [8 x float] containing the square roots of the
332 ///    values in the operand.
333 static __inline __m256 __DEFAULT_FN_ATTRS
334 _mm256_sqrt_ps(__m256 __a)
335 {
336   return (__m256)__builtin_ia32_sqrtps256((__v8sf)__a);
337 }
338 
339 /// Calculates the reciprocal square roots of the values in a 256-bit
340 ///    vector of [8 x float].
341 ///
342 /// \headerfile <x86intrin.h>
343 ///
344 /// This intrinsic corresponds to the <c> VRSQRTPS </c> instruction.
345 ///
346 /// \param __a
347 ///    A 256-bit vector of [8 x float].
348 /// \returns A 256-bit vector of [8 x float] containing the reciprocal square
349 ///    roots of the values in the operand.
350 static __inline __m256 __DEFAULT_FN_ATTRS
351 _mm256_rsqrt_ps(__m256 __a)
352 {
353   return (__m256)__builtin_ia32_rsqrtps256((__v8sf)__a);
354 }
355 
356 /// Calculates the reciprocals of the values in a 256-bit vector of
357 ///    [8 x float].
358 ///
359 /// \headerfile <x86intrin.h>
360 ///
361 /// This intrinsic corresponds to the <c> VRCPPS </c> instruction.
362 ///
363 /// \param __a
364 ///    A 256-bit vector of [8 x float].
365 /// \returns A 256-bit vector of [8 x float] containing the reciprocals of the
366 ///    values in the operand.
367 static __inline __m256 __DEFAULT_FN_ATTRS
368 _mm256_rcp_ps(__m256 __a)
369 {
370   return (__m256)__builtin_ia32_rcpps256((__v8sf)__a);
371 }
372 
373 /// Rounds the values in a 256-bit vector of [4 x double] as specified
374 ///    by the byte operand. The source values are rounded to integer values and
375 ///    returned as 64-bit double-precision floating-point values.
376 ///
377 /// \headerfile <x86intrin.h>
378 ///
379 /// \code
380 /// __m256d _mm256_round_pd(__m256d V, const int M);
381 /// \endcode
382 ///
383 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
384 ///
385 /// \param V
386 ///    A 256-bit vector of [4 x double].
387 /// \param M
388 ///    An integer value that specifies the rounding operation. \n
389 ///    Bits [7:4] are reserved. \n
390 ///    Bit [3] is a precision exception value: \n
391 ///      0: A normal PE exception is used. \n
392 ///      1: The PE field is not updated. \n
393 ///    Bit [2] is the rounding control source: \n
394 ///      0: Use bits [1:0] of \a M. \n
395 ///      1: Use the current MXCSR setting. \n
396 ///    Bits [1:0] contain the rounding control definition: \n
397 ///      00: Nearest. \n
398 ///      01: Downward (toward negative infinity). \n
399 ///      10: Upward (toward positive infinity). \n
400 ///      11: Truncated.
401 /// \returns A 256-bit vector of [4 x double] containing the rounded values.
402 #define _mm256_round_pd(V, M) \
403   ((__m256d)__builtin_ia32_roundpd256((__v4df)(__m256d)(V), (M)))
404 
405 /// Rounds the values stored in a 256-bit vector of [8 x float] as
406 ///    specified by the byte operand. The source values are rounded to integer
407 ///    values and returned as floating-point values.
408 ///
409 /// \headerfile <x86intrin.h>
410 ///
411 /// \code
412 /// __m256 _mm256_round_ps(__m256 V, const int M);
413 /// \endcode
414 ///
415 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
416 ///
417 /// \param V
418 ///    A 256-bit vector of [8 x float].
419 /// \param M
420 ///    An integer value that specifies the rounding operation. \n
421 ///    Bits [7:4] are reserved. \n
422 ///    Bit [3] is a precision exception value: \n
423 ///      0: A normal PE exception is used. \n
424 ///      1: The PE field is not updated. \n
425 ///    Bit [2] is the rounding control source: \n
426 ///      0: Use bits [1:0] of \a M. \n
427 ///      1: Use the current MXCSR setting. \n
428 ///    Bits [1:0] contain the rounding control definition: \n
429 ///      00: Nearest. \n
430 ///      01: Downward (toward negative infinity). \n
431 ///      10: Upward (toward positive infinity). \n
432 ///      11: Truncated.
433 /// \returns A 256-bit vector of [8 x float] containing the rounded values.
434 #define _mm256_round_ps(V, M) \
435   ((__m256)__builtin_ia32_roundps256((__v8sf)(__m256)(V), (M)))
436 
437 /// Rounds up the values stored in a 256-bit vector of [4 x double]. The
438 ///    source values are rounded up to integer values and returned as 64-bit
439 ///    double-precision floating-point values.
440 ///
441 /// \headerfile <x86intrin.h>
442 ///
443 /// \code
444 /// __m256d _mm256_ceil_pd(__m256d V);
445 /// \endcode
446 ///
447 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
448 ///
449 /// \param V
450 ///    A 256-bit vector of [4 x double].
451 /// \returns A 256-bit vector of [4 x double] containing the rounded up values.
452 #define _mm256_ceil_pd(V)  _mm256_round_pd((V), _MM_FROUND_CEIL)
453 
454 /// Rounds down the values stored in a 256-bit vector of [4 x double].
455 ///    The source values are rounded down to integer values and returned as
456 ///    64-bit double-precision floating-point values.
457 ///
458 /// \headerfile <x86intrin.h>
459 ///
460 /// \code
461 /// __m256d _mm256_floor_pd(__m256d V);
462 /// \endcode
463 ///
464 /// This intrinsic corresponds to the <c> VROUNDPD </c> instruction.
465 ///
466 /// \param V
467 ///    A 256-bit vector of [4 x double].
468 /// \returns A 256-bit vector of [4 x double] containing the rounded down
469 ///    values.
470 #define _mm256_floor_pd(V) _mm256_round_pd((V), _MM_FROUND_FLOOR)
471 
472 /// Rounds up the values stored in a 256-bit vector of [8 x float]. The
473 ///    source values are rounded up to integer values and returned as
474 ///    floating-point values.
475 ///
476 /// \headerfile <x86intrin.h>
477 ///
478 /// \code
479 /// __m256 _mm256_ceil_ps(__m256 V);
480 /// \endcode
481 ///
482 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
483 ///
484 /// \param V
485 ///    A 256-bit vector of [8 x float].
486 /// \returns A 256-bit vector of [8 x float] containing the rounded up values.
487 #define _mm256_ceil_ps(V)  _mm256_round_ps((V), _MM_FROUND_CEIL)
488 
489 /// Rounds down the values stored in a 256-bit vector of [8 x float]. The
490 ///    source values are rounded down to integer values and returned as
491 ///    floating-point values.
492 ///
493 /// \headerfile <x86intrin.h>
494 ///
495 /// \code
496 /// __m256 _mm256_floor_ps(__m256 V);
497 /// \endcode
498 ///
499 /// This intrinsic corresponds to the <c> VROUNDPS </c> instruction.
500 ///
501 /// \param V
502 ///    A 256-bit vector of [8 x float].
503 /// \returns A 256-bit vector of [8 x float] containing the rounded down values.
504 #define _mm256_floor_ps(V) _mm256_round_ps((V), _MM_FROUND_FLOOR)
505 
506 /* Logical */
507 /// Performs a bitwise AND of two 256-bit vectors of [4 x double].
508 ///
509 /// \headerfile <x86intrin.h>
510 ///
511 /// This intrinsic corresponds to the <c> VANDPD </c> instruction.
512 ///
513 /// \param __a
514 ///    A 256-bit vector of [4 x double] containing one of the source operands.
515 /// \param __b
516 ///    A 256-bit vector of [4 x double] containing one of the source operands.
517 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
518 ///    values between both operands.
519 static __inline __m256d __DEFAULT_FN_ATTRS
520 _mm256_and_pd(__m256d __a, __m256d __b)
521 {
522   return (__m256d)((__v4du)__a & (__v4du)__b);
523 }
524 
525 /// Performs a bitwise AND of two 256-bit vectors of [8 x float].
526 ///
527 /// \headerfile <x86intrin.h>
528 ///
529 /// This intrinsic corresponds to the <c> VANDPS </c> instruction.
530 ///
531 /// \param __a
532 ///    A 256-bit vector of [8 x float] containing one of the source operands.
533 /// \param __b
534 ///    A 256-bit vector of [8 x float] containing one of the source operands.
535 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
536 ///    values between both operands.
537 static __inline __m256 __DEFAULT_FN_ATTRS
538 _mm256_and_ps(__m256 __a, __m256 __b)
539 {
540   return (__m256)((__v8su)__a & (__v8su)__b);
541 }
542 
543 /// Performs a bitwise AND of two 256-bit vectors of [4 x double], using
544 ///    the one's complement of the values contained in the first source operand.
545 ///
546 /// \headerfile <x86intrin.h>
547 ///
548 /// This intrinsic corresponds to the <c> VANDNPD </c> instruction.
549 ///
550 /// \param __a
551 ///    A 256-bit vector of [4 x double] containing the left source operand. The
552 ///    one's complement of this value is used in the bitwise AND.
553 /// \param __b
554 ///    A 256-bit vector of [4 x double] containing the right source operand.
555 /// \returns A 256-bit vector of [4 x double] containing the bitwise AND of the
556 ///    values of the second operand and the one's complement of the first
557 ///    operand.
558 static __inline __m256d __DEFAULT_FN_ATTRS
559 _mm256_andnot_pd(__m256d __a, __m256d __b)
560 {
561   return (__m256d)(~(__v4du)__a & (__v4du)__b);
562 }
563 
564 /// Performs a bitwise AND of two 256-bit vectors of [8 x float], using
565 ///    the one's complement of the values contained in the first source operand.
566 ///
567 /// \headerfile <x86intrin.h>
568 ///
569 /// This intrinsic corresponds to the <c> VANDNPS </c> instruction.
570 ///
571 /// \param __a
572 ///    A 256-bit vector of [8 x float] containing the left source operand. The
573 ///    one's complement of this value is used in the bitwise AND.
574 /// \param __b
575 ///    A 256-bit vector of [8 x float] containing the right source operand.
576 /// \returns A 256-bit vector of [8 x float] containing the bitwise AND of the
577 ///    values of the second operand and the one's complement of the first
578 ///    operand.
579 static __inline __m256 __DEFAULT_FN_ATTRS
580 _mm256_andnot_ps(__m256 __a, __m256 __b)
581 {
582   return (__m256)(~(__v8su)__a & (__v8su)__b);
583 }
584 
585 /// Performs a bitwise OR of two 256-bit vectors of [4 x double].
586 ///
587 /// \headerfile <x86intrin.h>
588 ///
589 /// This intrinsic corresponds to the <c> VORPD </c> instruction.
590 ///
591 /// \param __a
592 ///    A 256-bit vector of [4 x double] containing one of the source operands.
593 /// \param __b
594 ///    A 256-bit vector of [4 x double] containing one of the source operands.
595 /// \returns A 256-bit vector of [4 x double] containing the bitwise OR of the
596 ///    values between both operands.
597 static __inline __m256d __DEFAULT_FN_ATTRS
598 _mm256_or_pd(__m256d __a, __m256d __b)
599 {
600   return (__m256d)((__v4du)__a | (__v4du)__b);
601 }
602 
603 /// Performs a bitwise OR of two 256-bit vectors of [8 x float].
604 ///
605 /// \headerfile <x86intrin.h>
606 ///
607 /// This intrinsic corresponds to the <c> VORPS </c> instruction.
608 ///
609 /// \param __a
610 ///    A 256-bit vector of [8 x float] containing one of the source operands.
611 /// \param __b
612 ///    A 256-bit vector of [8 x float] containing one of the source operands.
613 /// \returns A 256-bit vector of [8 x float] containing the bitwise OR of the
614 ///    values between both operands.
615 static __inline __m256 __DEFAULT_FN_ATTRS
616 _mm256_or_ps(__m256 __a, __m256 __b)
617 {
618   return (__m256)((__v8su)__a | (__v8su)__b);
619 }
620 
621 /// Performs a bitwise XOR of two 256-bit vectors of [4 x double].
622 ///
623 /// \headerfile <x86intrin.h>
624 ///
625 /// This intrinsic corresponds to the <c> VXORPD </c> instruction.
626 ///
627 /// \param __a
628 ///    A 256-bit vector of [4 x double] containing one of the source operands.
629 /// \param __b
630 ///    A 256-bit vector of [4 x double] containing one of the source operands.
631 /// \returns A 256-bit vector of [4 x double] containing the bitwise XOR of the
632 ///    values between both operands.
633 static __inline __m256d __DEFAULT_FN_ATTRS
634 _mm256_xor_pd(__m256d __a, __m256d __b)
635 {
636   return (__m256d)((__v4du)__a ^ (__v4du)__b);
637 }
638 
639 /// Performs a bitwise XOR of two 256-bit vectors of [8 x float].
640 ///
641 /// \headerfile <x86intrin.h>
642 ///
643 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
644 ///
645 /// \param __a
646 ///    A 256-bit vector of [8 x float] containing one of the source operands.
647 /// \param __b
648 ///    A 256-bit vector of [8 x float] containing one of the source operands.
649 /// \returns A 256-bit vector of [8 x float] containing the bitwise XOR of the
650 ///    values between both operands.
651 static __inline __m256 __DEFAULT_FN_ATTRS
652 _mm256_xor_ps(__m256 __a, __m256 __b)
653 {
654   return (__m256)((__v8su)__a ^ (__v8su)__b);
655 }
656 
657 /* Horizontal arithmetic */
658 /// Horizontally adds the adjacent pairs of values contained in two
659 ///    256-bit vectors of [4 x double].
660 ///
661 /// \headerfile <x86intrin.h>
662 ///
663 /// This intrinsic corresponds to the <c> VHADDPD </c> instruction.
664 ///
665 /// \param __a
666 ///    A 256-bit vector of [4 x double] containing one of the source operands.
667 ///    The horizontal sums of the values are returned in the even-indexed
668 ///    elements of a vector of [4 x double].
669 /// \param __b
670 ///    A 256-bit vector of [4 x double] containing one of the source operands.
671 ///    The horizontal sums of the values are returned in the odd-indexed
672 ///    elements of a vector of [4 x double].
673 /// \returns A 256-bit vector of [4 x double] containing the horizontal sums of
674 ///    both operands.
675 static __inline __m256d __DEFAULT_FN_ATTRS
676 _mm256_hadd_pd(__m256d __a, __m256d __b)
677 {
678   return (__m256d)__builtin_ia32_haddpd256((__v4df)__a, (__v4df)__b);
679 }
680 
681 /// Horizontally adds the adjacent pairs of values contained in two
682 ///    256-bit vectors of [8 x float].
683 ///
684 /// \headerfile <x86intrin.h>
685 ///
686 /// This intrinsic corresponds to the <c> VHADDPS </c> instruction.
687 ///
688 /// \param __a
689 ///    A 256-bit vector of [8 x float] containing one of the source operands.
690 ///    The horizontal sums of the values are returned in the elements with
691 ///    index 0, 1, 4, 5 of a vector of [8 x float].
692 /// \param __b
693 ///    A 256-bit vector of [8 x float] containing one of the source operands.
694 ///    The horizontal sums of the values are returned in the elements with
695 ///    index 2, 3, 6, 7 of a vector of [8 x float].
696 /// \returns A 256-bit vector of [8 x float] containing the horizontal sums of
697 ///    both operands.
698 static __inline __m256 __DEFAULT_FN_ATTRS
699 _mm256_hadd_ps(__m256 __a, __m256 __b)
700 {
701   return (__m256)__builtin_ia32_haddps256((__v8sf)__a, (__v8sf)__b);
702 }
703 
704 /// Horizontally subtracts the adjacent pairs of values contained in two
705 ///    256-bit vectors of [4 x double].
706 ///
707 /// \headerfile <x86intrin.h>
708 ///
709 /// This intrinsic corresponds to the <c> VHSUBPD </c> instruction.
710 ///
711 /// \param __a
712 ///    A 256-bit vector of [4 x double] containing one of the source operands.
713 ///    The horizontal differences between the values are returned in the
714 ///    even-indexed elements of a vector of [4 x double].
715 /// \param __b
716 ///    A 256-bit vector of [4 x double] containing one of the source operands.
717 ///    The horizontal differences between the values are returned in the
718 ///    odd-indexed elements of a vector of [4 x double].
719 /// \returns A 256-bit vector of [4 x double] containing the horizontal
720 ///    differences of both operands.
721 static __inline __m256d __DEFAULT_FN_ATTRS
722 _mm256_hsub_pd(__m256d __a, __m256d __b)
723 {
724   return (__m256d)__builtin_ia32_hsubpd256((__v4df)__a, (__v4df)__b);
725 }
726 
727 /// Horizontally subtracts the adjacent pairs of values contained in two
728 ///    256-bit vectors of [8 x float].
729 ///
730 /// \headerfile <x86intrin.h>
731 ///
732 /// This intrinsic corresponds to the <c> VHSUBPS </c> instruction.
733 ///
734 /// \param __a
735 ///    A 256-bit vector of [8 x float] containing one of the source operands.
736 ///    The horizontal differences between the values are returned in the
737 ///    elements with index 0, 1, 4, 5 of a vector of [8 x float].
738 /// \param __b
739 ///    A 256-bit vector of [8 x float] containing one of the source operands.
740 ///    The horizontal differences between the values are returned in the
741 ///    elements with index 2, 3, 6, 7 of a vector of [8 x float].
742 /// \returns A 256-bit vector of [8 x float] containing the horizontal
743 ///    differences of both operands.
744 static __inline __m256 __DEFAULT_FN_ATTRS
745 _mm256_hsub_ps(__m256 __a, __m256 __b)
746 {
747   return (__m256)__builtin_ia32_hsubps256((__v8sf)__a, (__v8sf)__b);
748 }
749 
750 /* Vector permutations */
751 /// Copies the values in a 128-bit vector of [2 x double] as specified
752 ///    by the 128-bit integer vector operand.
753 ///
754 /// \headerfile <x86intrin.h>
755 ///
756 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
757 ///
758 /// \param __a
759 ///    A 128-bit vector of [2 x double].
760 /// \param __c
761 ///    A 128-bit integer vector operand specifying how the values are to be
762 ///    copied. \n
763 ///    Bit [1]: \n
764 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
765 ///         vector. \n
766 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
767 ///         returned vector. \n
768 ///    Bit [65]: \n
769 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
770 ///         returned vector. \n
771 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
772 ///         returned vector.
773 /// \returns A 128-bit vector of [2 x double] containing the copied values.
774 static __inline __m128d __DEFAULT_FN_ATTRS128
775 _mm_permutevar_pd(__m128d __a, __m128i __c)
776 {
777   return (__m128d)__builtin_ia32_vpermilvarpd((__v2df)__a, (__v2di)__c);
778 }
779 
780 /// Copies the values in a 256-bit vector of [4 x double] as specified
781 ///    by the 256-bit integer vector operand.
782 ///
783 /// \headerfile <x86intrin.h>
784 ///
785 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
786 ///
787 /// \param __a
788 ///    A 256-bit vector of [4 x double].
789 /// \param __c
790 ///    A 256-bit integer vector operand specifying how the values are to be
791 ///    copied. \n
792 ///    Bit [1]: \n
793 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
794 ///         vector. \n
795 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
796 ///         returned vector. \n
797 ///    Bit [65]: \n
798 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
799 ///         returned vector. \n
800 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
801 ///         returned vector. \n
802 ///    Bit [129]: \n
803 ///      0: Bits [191:128] of the source are copied to bits [191:128] of the
804 ///         returned vector. \n
805 ///      1: Bits [255:192] of the source are copied to bits [191:128] of the
806 ///         returned vector. \n
807 ///    Bit [193]: \n
808 ///      0: Bits [191:128] of the source are copied to bits [255:192] of the
809 ///         returned vector. \n
810 ///      1: Bits [255:192] of the source are copied to bits [255:192] of the
811 ///    returned vector.
812 /// \returns A 256-bit vector of [4 x double] containing the copied values.
813 static __inline __m256d __DEFAULT_FN_ATTRS
814 _mm256_permutevar_pd(__m256d __a, __m256i __c)
815 {
816   return (__m256d)__builtin_ia32_vpermilvarpd256((__v4df)__a, (__v4di)__c);
817 }
818 
819 /// Copies the values stored in a 128-bit vector of [4 x float] as
820 ///    specified by the 128-bit integer vector operand.
821 /// \headerfile <x86intrin.h>
822 ///
823 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
824 ///
825 /// \param __a
826 ///    A 128-bit vector of [4 x float].
827 /// \param __c
828 ///    A 128-bit integer vector operand specifying how the values are to be
829 ///    copied. \n
830 ///    Bits [1:0]: \n
831 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
832 ///          returned vector. \n
833 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
834 ///          returned vector. \n
835 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
836 ///          returned vector. \n
837 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
838 ///          returned vector. \n
839 ///    Bits [33:32]: \n
840 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
841 ///          returned vector. \n
842 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
843 ///          returned vector. \n
844 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
845 ///          returned vector. \n
846 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
847 ///          returned vector. \n
848 ///    Bits [65:64]: \n
849 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
850 ///          returned vector. \n
851 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
852 ///          returned vector. \n
853 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
854 ///          returned vector. \n
855 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
856 ///          returned vector. \n
857 ///    Bits [97:96]: \n
858 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
859 ///          returned vector. \n
860 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
861 ///          returned vector. \n
862 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
863 ///          returned vector. \n
864 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
865 ///          returned vector.
866 /// \returns A 128-bit vector of [4 x float] containing the copied values.
867 static __inline __m128 __DEFAULT_FN_ATTRS128
868 _mm_permutevar_ps(__m128 __a, __m128i __c)
869 {
870   return (__m128)__builtin_ia32_vpermilvarps((__v4sf)__a, (__v4si)__c);
871 }
872 
873 /// Copies the values stored in a 256-bit vector of [8 x float] as
874 ///    specified by the 256-bit integer vector operand.
875 ///
876 /// \headerfile <x86intrin.h>
877 ///
878 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
879 ///
880 /// \param __a
881 ///    A 256-bit vector of [8 x float].
882 /// \param __c
883 ///    A 256-bit integer vector operand specifying how the values are to be
884 ///    copied. \n
885 ///    Bits [1:0]: \n
886 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
887 ///          returned vector. \n
888 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
889 ///          returned vector. \n
890 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
891 ///          returned vector. \n
892 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
893 ///          returned vector. \n
894 ///    Bits [33:32]: \n
895 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
896 ///          returned vector. \n
897 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
898 ///          returned vector. \n
899 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
900 ///          returned vector. \n
901 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
902 ///          returned vector. \n
903 ///    Bits [65:64]: \n
904 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
905 ///          returned vector. \n
906 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
907 ///          returned vector. \n
908 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
909 ///          returned vector. \n
910 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
911 ///          returned vector. \n
912 ///    Bits [97:96]: \n
913 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
914 ///          returned vector. \n
915 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
916 ///          returned vector. \n
917 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
918 ///          returned vector. \n
919 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
920 ///          returned vector. \n
921 ///    Bits [129:128]: \n
922 ///      00: Bits [159:128] of the source are copied to bits [159:128] of the
923 ///          returned vector. \n
924 ///      01: Bits [191:160] of the source are copied to bits [159:128] of the
925 ///          returned vector. \n
926 ///      10: Bits [223:192] of the source are copied to bits [159:128] of the
927 ///          returned vector. \n
928 ///      11: Bits [255:224] of the source are copied to bits [159:128] of the
929 ///          returned vector. \n
930 ///    Bits [161:160]: \n
931 ///      00: Bits [159:128] of the source are copied to bits [191:160] of the
932 ///          returned vector. \n
933 ///      01: Bits [191:160] of the source are copied to bits [191:160] of the
934 ///          returned vector. \n
935 ///      10: Bits [223:192] of the source are copied to bits [191:160] of the
936 ///          returned vector. \n
937 ///      11: Bits [255:224] of the source are copied to bits [191:160] of the
938 ///          returned vector. \n
939 ///    Bits [193:192]: \n
940 ///      00: Bits [159:128] of the source are copied to bits [223:192] of the
941 ///          returned vector. \n
942 ///      01: Bits [191:160] of the source are copied to bits [223:192] of the
943 ///          returned vector. \n
944 ///      10: Bits [223:192] of the source are copied to bits [223:192] of the
945 ///          returned vector. \n
946 ///      11: Bits [255:224] of the source are copied to bits [223:192] of the
947 ///          returned vector. \n
948 ///    Bits [225:224]: \n
949 ///      00: Bits [159:128] of the source are copied to bits [255:224] of the
950 ///          returned vector. \n
951 ///      01: Bits [191:160] of the source are copied to bits [255:224] of the
952 ///          returned vector. \n
953 ///      10: Bits [223:192] of the source are copied to bits [255:224] of the
954 ///          returned vector. \n
955 ///      11: Bits [255:224] of the source are copied to bits [255:224] of the
956 ///          returned vector.
957 /// \returns A 256-bit vector of [8 x float] containing the copied values.
958 static __inline __m256 __DEFAULT_FN_ATTRS
959 _mm256_permutevar_ps(__m256 __a, __m256i __c)
960 {
961   return (__m256)__builtin_ia32_vpermilvarps256((__v8sf)__a, (__v8si)__c);
962 }
963 
964 /// Copies the values in a 128-bit vector of [2 x double] as specified
965 ///    by the immediate integer operand.
966 ///
967 /// \headerfile <x86intrin.h>
968 ///
969 /// \code
970 /// __m128d _mm_permute_pd(__m128d A, const int C);
971 /// \endcode
972 ///
973 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
974 ///
975 /// \param A
976 ///    A 128-bit vector of [2 x double].
977 /// \param C
978 ///    An immediate integer operand specifying how the values are to be
979 ///    copied. \n
980 ///    Bit [0]: \n
981 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
982 ///         vector. \n
983 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
984 ///         returned vector. \n
985 ///    Bit [1]: \n
986 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
987 ///         returned vector. \n
988 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
989 ///         returned vector.
990 /// \returns A 128-bit vector of [2 x double] containing the copied values.
991 #define _mm_permute_pd(A, C) \
992   ((__m128d)__builtin_ia32_vpermilpd((__v2df)(__m128d)(A), (int)(C)))
993 
994 /// Copies the values in a 256-bit vector of [4 x double] as specified by
995 ///    the immediate integer operand.
996 ///
997 /// \headerfile <x86intrin.h>
998 ///
999 /// \code
1000 /// __m256d _mm256_permute_pd(__m256d A, const int C);
1001 /// \endcode
1002 ///
1003 /// This intrinsic corresponds to the <c> VPERMILPD </c> instruction.
1004 ///
1005 /// \param A
1006 ///    A 256-bit vector of [4 x double].
1007 /// \param C
1008 ///    An immediate integer operand specifying how the values are to be
1009 ///    copied. \n
1010 ///    Bit [0]: \n
1011 ///      0: Bits [63:0] of the source are copied to bits [63:0] of the returned
1012 ///         vector. \n
1013 ///      1: Bits [127:64] of the source are copied to bits [63:0] of the
1014 ///         returned vector. \n
1015 ///    Bit [1]: \n
1016 ///      0: Bits [63:0] of the source are copied to bits [127:64] of the
1017 ///         returned vector. \n
1018 ///      1: Bits [127:64] of the source are copied to bits [127:64] of the
1019 ///         returned vector. \n
1020 ///    Bit [2]: \n
1021 ///      0: Bits [191:128] of the source are copied to bits [191:128] of the
1022 ///         returned vector. \n
1023 ///      1: Bits [255:192] of the source are copied to bits [191:128] of the
1024 ///         returned vector. \n
1025 ///    Bit [3]: \n
1026 ///      0: Bits [191:128] of the source are copied to bits [255:192] of the
1027 ///         returned vector. \n
1028 ///      1: Bits [255:192] of the source are copied to bits [255:192] of the
1029 ///         returned vector.
1030 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1031 #define _mm256_permute_pd(A, C) \
1032   ((__m256d)__builtin_ia32_vpermilpd256((__v4df)(__m256d)(A), (int)(C)))
1033 
1034 /// Copies the values in a 128-bit vector of [4 x float] as specified by
1035 ///    the immediate integer operand.
1036 ///
1037 /// \headerfile <x86intrin.h>
1038 ///
1039 /// \code
1040 /// __m128 _mm_permute_ps(__m128 A, const int C);
1041 /// \endcode
1042 ///
1043 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1044 ///
1045 /// \param A
1046 ///    A 128-bit vector of [4 x float].
1047 /// \param C
1048 ///    An immediate integer operand specifying how the values are to be
1049 ///    copied. \n
1050 ///    Bits [1:0]: \n
1051 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
1052 ///          returned vector. \n
1053 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
1054 ///          returned vector. \n
1055 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
1056 ///          returned vector. \n
1057 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
1058 ///          returned vector. \n
1059 ///    Bits [3:2]: \n
1060 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
1061 ///          returned vector. \n
1062 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
1063 ///          returned vector. \n
1064 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
1065 ///          returned vector. \n
1066 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
1067 ///          returned vector. \n
1068 ///    Bits [5:4]: \n
1069 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
1070 ///          returned vector. \n
1071 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
1072 ///          returned vector. \n
1073 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
1074 ///          returned vector. \n
1075 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
1076 ///          returned vector. \n
1077 ///    Bits [7:6]: \n
1078 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
1079 ///          returned vector. \n
1080 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
1081 ///          returned vector. \n
1082 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
1083 ///          returned vector. \n
1084 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
1085 ///          returned vector.
1086 /// \returns A 128-bit vector of [4 x float] containing the copied values.
1087 #define _mm_permute_ps(A, C) \
1088   ((__m128)__builtin_ia32_vpermilps((__v4sf)(__m128)(A), (int)(C)))
1089 
1090 /// Copies the values in a 256-bit vector of [8 x float] as specified by
1091 ///    the immediate integer operand.
1092 ///
1093 /// \headerfile <x86intrin.h>
1094 ///
1095 /// \code
1096 /// __m256 _mm256_permute_ps(__m256 A, const int C);
1097 /// \endcode
1098 ///
1099 /// This intrinsic corresponds to the <c> VPERMILPS </c> instruction.
1100 ///
1101 /// \param A
1102 ///    A 256-bit vector of [8 x float].
1103 /// \param C
1104 ///    An immediate integer operand specifying how the values are to be
1105 ///    copied. \n
1106 ///    Bits [1:0]: \n
1107 ///      00: Bits [31:0] of the source are copied to bits [31:0] of the
1108 ///          returned vector. \n
1109 ///      01: Bits [63:32] of the source are copied to bits [31:0] of the
1110 ///          returned vector. \n
1111 ///      10: Bits [95:64] of the source are copied to bits [31:0] of the
1112 ///          returned vector. \n
1113 ///      11: Bits [127:96] of the source are copied to bits [31:0] of the
1114 ///          returned vector. \n
1115 ///    Bits [3:2]: \n
1116 ///      00: Bits [31:0] of the source are copied to bits [63:32] of the
1117 ///          returned vector. \n
1118 ///      01: Bits [63:32] of the source are copied to bits [63:32] of the
1119 ///          returned vector. \n
1120 ///      10: Bits [95:64] of the source are copied to bits [63:32] of the
1121 ///          returned vector. \n
1122 ///      11: Bits [127:96] of the source are copied to bits [63:32] of the
1123 ///          returned vector. \n
1124 ///    Bits [5:4]: \n
1125 ///      00: Bits [31:0] of the source are copied to bits [95:64] of the
1126 ///          returned vector. \n
1127 ///      01: Bits [63:32] of the source are copied to bits [95:64] of the
1128 ///          returned vector. \n
1129 ///      10: Bits [95:64] of the source are copied to bits [95:64] of the
1130 ///          returned vector. \n
1131 ///      11: Bits [127:96] of the source are copied to bits [95:64] of the
1132 ///          returned vector. \n
1133 ///    Bits [7:6]: \n
1134 ///      00: Bits [31:0] of the source are copied to bits [127:96] of the
1135 ///          returned vector. \n
1136 ///      01: Bits [63:32] of the source are copied to bits [127:96] of the
1137 ///          returned vector. \n
1138 ///      10: Bits [95:64] of the source are copied to bits [127:96] of the
1139 ///          returned vector. \n
1140 ///      11: Bits [127:96] of the source are copied to bits [127:96] of the
1141 ///          returned vector. \n
1142 ///    Bits [1:0]: \n
1143 ///      00: Bits [159:128] of the source are copied to bits [159:128] of the
1144 ///          returned vector. \n
1145 ///      01: Bits [191:160] of the source are copied to bits [159:128] of the
1146 ///          returned vector. \n
1147 ///      10: Bits [223:192] of the source are copied to bits [159:128] of the
1148 ///          returned vector. \n
1149 ///      11: Bits [255:224] of the source are copied to bits [159:128] of the
1150 ///          returned vector. \n
1151 ///    Bits [3:2]: \n
1152 ///      00: Bits [159:128] of the source are copied to bits [191:160] of the
1153 ///          returned vector. \n
1154 ///      01: Bits [191:160] of the source are copied to bits [191:160] of the
1155 ///          returned vector. \n
1156 ///      10: Bits [223:192] of the source are copied to bits [191:160] of the
1157 ///          returned vector. \n
1158 ///      11: Bits [255:224] of the source are copied to bits [191:160] of the
1159 ///          returned vector. \n
1160 ///    Bits [5:4]: \n
1161 ///      00: Bits [159:128] of the source are copied to bits [223:192] of the
1162 ///          returned vector. \n
1163 ///      01: Bits [191:160] of the source are copied to bits [223:192] of the
1164 ///          returned vector. \n
1165 ///      10: Bits [223:192] of the source are copied to bits [223:192] of the
1166 ///          returned vector. \n
1167 ///      11: Bits [255:224] of the source are copied to bits [223:192] of the
1168 ///          returned vector. \n
1169 ///    Bits [7:6]: \n
1170 ///      00: Bits [159:128] of the source are copied to bits [255:224] of the
1171 ///          returned vector. \n
1172 ///      01: Bits [191:160] of the source are copied to bits [255:224] of the
1173 ///          returned vector. \n
1174 ///      10: Bits [223:192] of the source are copied to bits [255:224] of the
1175 ///          returned vector. \n
1176 ///      11: Bits [255:224] of the source are copied to bits [255:224] of the
1177 ///          returned vector.
1178 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1179 #define _mm256_permute_ps(A, C) \
1180   ((__m256)__builtin_ia32_vpermilps256((__v8sf)(__m256)(A), (int)(C)))
1181 
1182 /// Permutes 128-bit data values stored in two 256-bit vectors of
1183 ///    [4 x double], as specified by the immediate integer operand.
1184 ///
1185 /// \headerfile <x86intrin.h>
1186 ///
1187 /// \code
1188 /// __m256d _mm256_permute2f128_pd(__m256d V1, __m256d V2, const int M);
1189 /// \endcode
1190 ///
1191 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1192 ///
1193 /// \param V1
1194 ///    A 256-bit vector of [4 x double].
1195 /// \param V2
1196 ///    A 256-bit vector of [4 x double.
1197 /// \param M
1198 ///    An immediate integer operand specifying how the values are to be
1199 ///    permuted. \n
1200 ///    Bits [1:0]: \n
1201 ///      00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1202 ///          destination. \n
1203 ///      01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1204 ///          destination. \n
1205 ///      10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1206 ///          destination. \n
1207 ///      11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1208 ///          destination. \n
1209 ///    Bits [5:4]: \n
1210 ///      00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1211 ///          destination. \n
1212 ///      01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1213 ///          destination. \n
1214 ///      10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1215 ///          destination. \n
1216 ///      11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1217 ///          destination.
1218 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1219 #define _mm256_permute2f128_pd(V1, V2, M) \
1220   ((__m256d)__builtin_ia32_vperm2f128_pd256((__v4df)(__m256d)(V1), \
1221                                             (__v4df)(__m256d)(V2), (int)(M)))
1222 
1223 /// Permutes 128-bit data values stored in two 256-bit vectors of
1224 ///    [8 x float], as specified by the immediate integer operand.
1225 ///
1226 /// \headerfile <x86intrin.h>
1227 ///
1228 /// \code
1229 /// __m256 _mm256_permute2f128_ps(__m256 V1, __m256 V2, const int M);
1230 /// \endcode
1231 ///
1232 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1233 ///
1234 /// \param V1
1235 ///    A 256-bit vector of [8 x float].
1236 /// \param V2
1237 ///    A 256-bit vector of [8 x float].
1238 /// \param M
1239 ///    An immediate integer operand specifying how the values are to be
1240 ///    permuted. \n
1241 ///    Bits [1:0]: \n
1242 ///    00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1243 ///    destination. \n
1244 ///    01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1245 ///    destination. \n
1246 ///    10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1247 ///    destination. \n
1248 ///    11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1249 ///    destination. \n
1250 ///    Bits [5:4]: \n
1251 ///    00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1252 ///    destination. \n
1253 ///    01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1254 ///    destination. \n
1255 ///    10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1256 ///    destination. \n
1257 ///    11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1258 ///    destination.
1259 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1260 #define _mm256_permute2f128_ps(V1, V2, M) \
1261   ((__m256)__builtin_ia32_vperm2f128_ps256((__v8sf)(__m256)(V1), \
1262                                            (__v8sf)(__m256)(V2), (int)(M)))
1263 
1264 /// Permutes 128-bit data values stored in two 256-bit integer vectors,
1265 ///    as specified by the immediate integer operand.
1266 ///
1267 /// \headerfile <x86intrin.h>
1268 ///
1269 /// \code
1270 /// __m256i _mm256_permute2f128_si256(__m256i V1, __m256i V2, const int M);
1271 /// \endcode
1272 ///
1273 /// This intrinsic corresponds to the <c> VPERM2F128 </c> instruction.
1274 ///
1275 /// \param V1
1276 ///    A 256-bit integer vector.
1277 /// \param V2
1278 ///    A 256-bit integer vector.
1279 /// \param M
1280 ///    An immediate integer operand specifying how the values are to be copied.
1281 ///    Bits [1:0]: \n
1282 ///    00: Bits [127:0] of operand \a V1 are copied to bits [127:0] of the
1283 ///    destination. \n
1284 ///    01: Bits [255:128] of operand \a V1 are copied to bits [127:0] of the
1285 ///    destination. \n
1286 ///    10: Bits [127:0] of operand \a V2 are copied to bits [127:0] of the
1287 ///    destination. \n
1288 ///    11: Bits [255:128] of operand \a V2 are copied to bits [127:0] of the
1289 ///    destination. \n
1290 ///    Bits [5:4]: \n
1291 ///    00: Bits [127:0] of operand \a V1 are copied to bits [255:128] of the
1292 ///    destination. \n
1293 ///    01: Bits [255:128] of operand \a V1 are copied to bits [255:128] of the
1294 ///    destination. \n
1295 ///    10: Bits [127:0] of operand \a V2 are copied to bits [255:128] of the
1296 ///    destination. \n
1297 ///    11: Bits [255:128] of operand \a V2 are copied to bits [255:128] of the
1298 ///    destination.
1299 /// \returns A 256-bit integer vector containing the copied values.
1300 #define _mm256_permute2f128_si256(V1, V2, M) \
1301   ((__m256i)__builtin_ia32_vperm2f128_si256((__v8si)(__m256i)(V1), \
1302                                             (__v8si)(__m256i)(V2), (int)(M)))
1303 
1304 /* Vector Blend */
1305 /// Merges 64-bit double-precision data values stored in either of the
1306 ///    two 256-bit vectors of [4 x double], as specified by the immediate
1307 ///    integer operand.
1308 ///
1309 /// \headerfile <x86intrin.h>
1310 ///
1311 /// \code
1312 /// __m256d _mm256_blend_pd(__m256d V1, __m256d V2, const int M);
1313 /// \endcode
1314 ///
1315 /// This intrinsic corresponds to the <c> VBLENDPD </c> instruction.
1316 ///
1317 /// \param V1
1318 ///    A 256-bit vector of [4 x double].
1319 /// \param V2
1320 ///    A 256-bit vector of [4 x double].
1321 /// \param M
1322 ///    An immediate integer operand, with mask bits [3:0] specifying how the
1323 ///    values are to be copied. The position of the mask bit corresponds to the
1324 ///    index of a copied value. When a mask bit is 0, the corresponding 64-bit
1325 ///    element in operand \a V1 is copied to the same position in the
1326 ///    destination. When a mask bit is 1, the corresponding 64-bit element in
1327 ///    operand \a V2 is copied to the same position in the destination.
1328 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1329 #define _mm256_blend_pd(V1, V2, M) \
1330   ((__m256d)__builtin_ia32_blendpd256((__v4df)(__m256d)(V1), \
1331                                       (__v4df)(__m256d)(V2), (int)(M)))
1332 
1333 /// Merges 32-bit single-precision data values stored in either of the
1334 ///    two 256-bit vectors of [8 x float], as specified by the immediate
1335 ///    integer operand.
1336 ///
1337 /// \headerfile <x86intrin.h>
1338 ///
1339 /// \code
1340 /// __m256 _mm256_blend_ps(__m256 V1, __m256 V2, const int M);
1341 /// \endcode
1342 ///
1343 /// This intrinsic corresponds to the <c> VBLENDPS </c> instruction.
1344 ///
1345 /// \param V1
1346 ///    A 256-bit vector of [8 x float].
1347 /// \param V2
1348 ///    A 256-bit vector of [8 x float].
1349 /// \param M
1350 ///    An immediate integer operand, with mask bits [7:0] specifying how the
1351 ///    values are to be copied. The position of the mask bit corresponds to the
1352 ///    index of a copied value. When a mask bit is 0, the corresponding 32-bit
1353 ///    element in operand \a V1 is copied to the same position in the
1354 ///    destination. When a mask bit is 1, the corresponding 32-bit element in
1355 ///    operand \a V2 is copied to the same position in the destination.
1356 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1357 #define _mm256_blend_ps(V1, V2, M) \
1358   ((__m256)__builtin_ia32_blendps256((__v8sf)(__m256)(V1), \
1359                                      (__v8sf)(__m256)(V2), (int)(M)))
1360 
1361 /// Merges 64-bit double-precision data values stored in either of the
1362 ///    two 256-bit vectors of [4 x double], as specified by the 256-bit vector
1363 ///    operand.
1364 ///
1365 /// \headerfile <x86intrin.h>
1366 ///
1367 /// This intrinsic corresponds to the <c> VBLENDVPD </c> instruction.
1368 ///
1369 /// \param __a
1370 ///    A 256-bit vector of [4 x double].
1371 /// \param __b
1372 ///    A 256-bit vector of [4 x double].
1373 /// \param __c
1374 ///    A 256-bit vector operand, with mask bits 255, 191, 127, and 63 specifying
1375 ///    how the values are to be copied. The position of the mask bit corresponds
1376 ///    to the most significant bit of a copied value. When a mask bit is 0, the
1377 ///    corresponding 64-bit element in operand \a __a is copied to the same
1378 ///    position in the destination. When a mask bit is 1, the corresponding
1379 ///    64-bit element in operand \a __b is copied to the same position in the
1380 ///    destination.
1381 /// \returns A 256-bit vector of [4 x double] containing the copied values.
1382 static __inline __m256d __DEFAULT_FN_ATTRS
1383 _mm256_blendv_pd(__m256d __a, __m256d __b, __m256d __c)
1384 {
1385   return (__m256d)__builtin_ia32_blendvpd256(
1386     (__v4df)__a, (__v4df)__b, (__v4df)__c);
1387 }
1388 
1389 /// Merges 32-bit single-precision data values stored in either of the
1390 ///    two 256-bit vectors of [8 x float], as specified by the 256-bit vector
1391 ///    operand.
1392 ///
1393 /// \headerfile <x86intrin.h>
1394 ///
1395 /// This intrinsic corresponds to the <c> VBLENDVPS </c> instruction.
1396 ///
1397 /// \param __a
1398 ///    A 256-bit vector of [8 x float].
1399 /// \param __b
1400 ///    A 256-bit vector of [8 x float].
1401 /// \param __c
1402 ///    A 256-bit vector operand, with mask bits 255, 223, 191, 159, 127, 95, 63,
1403 ///    and 31 specifying how the values are to be copied. The position of the
1404 ///    mask bit corresponds to the most significant bit of a copied value. When
1405 ///    a mask bit is 0, the corresponding 32-bit element in operand \a __a is
1406 ///    copied to the same position in the destination. When a mask bit is 1, the
1407 ///    corresponding 32-bit element in operand \a __b is copied to the same
1408 ///    position in the destination.
1409 /// \returns A 256-bit vector of [8 x float] containing the copied values.
1410 static __inline __m256 __DEFAULT_FN_ATTRS
1411 _mm256_blendv_ps(__m256 __a, __m256 __b, __m256 __c)
1412 {
1413   return (__m256)__builtin_ia32_blendvps256(
1414     (__v8sf)__a, (__v8sf)__b, (__v8sf)__c);
1415 }
1416 
1417 /* Vector Dot Product */
1418 /// Computes two dot products in parallel, using the lower and upper
1419 ///    halves of two [8 x float] vectors as input to the two computations, and
1420 ///    returning the two dot products in the lower and upper halves of the
1421 ///    [8 x float] result.
1422 ///
1423 ///    The immediate integer operand controls which input elements will
1424 ///    contribute to the dot product, and where the final results are returned.
1425 ///    In general, for each dot product, the four corresponding elements of the
1426 ///    input vectors are multiplied; the first two and second two products are
1427 ///    summed, then the two sums are added to form the final result.
1428 ///
1429 /// \headerfile <x86intrin.h>
1430 ///
1431 /// \code
1432 /// __m256 _mm256_dp_ps(__m256 V1, __m256 V2, const int M);
1433 /// \endcode
1434 ///
1435 /// This intrinsic corresponds to the <c> VDPPS </c> instruction.
1436 ///
1437 /// \param V1
1438 ///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1439 /// \param V2
1440 ///    A vector of [8 x float] values, treated as two [4 x float] vectors.
1441 /// \param M
1442 ///    An immediate integer argument. Bits [7:4] determine which elements of
1443 ///    the input vectors are used, with bit [4] corresponding to the lowest
1444 ///    element and bit [7] corresponding to the highest element of each [4 x
1445 ///    float] subvector. If a bit is set, the corresponding elements from the
1446 ///    two input vectors are used as an input for dot product; otherwise that
1447 ///    input is treated as zero. Bits [3:0] determine which elements of the
1448 ///    result will receive a copy of the final dot product, with bit [0]
1449 ///    corresponding to the lowest element and bit [3] corresponding to the
1450 ///    highest element of each [4 x float] subvector. If a bit is set, the dot
1451 ///    product is returned in the corresponding element; otherwise that element
1452 ///    is set to zero. The bitmask is applied in the same way to each of the
1453 ///    two parallel dot product computations.
1454 /// \returns A 256-bit vector of [8 x float] containing the two dot products.
1455 #define _mm256_dp_ps(V1, V2, M) \
1456   ((__m256)__builtin_ia32_dpps256((__v8sf)(__m256)(V1), \
1457                                   (__v8sf)(__m256)(V2), (M)))
1458 
1459 /* Vector shuffle */
1460 /// Selects 8 float values from the 256-bit operands of [8 x float], as
1461 ///    specified by the immediate value operand.
1462 ///
1463 ///    The four selected elements in each operand are copied to the destination
1464 ///    according to the bits specified in the immediate operand. The selected
1465 ///    elements from the first 256-bit operand are copied to bits [63:0] and
1466 ///    bits [191:128] of the destination, and the selected elements from the
1467 ///    second 256-bit operand are copied to bits [127:64] and bits [255:192] of
1468 ///    the destination. For example, if bits [7:0] of the immediate operand
1469 ///    contain a value of 0xFF, the 256-bit destination vector would contain the
1470 ///    following values: b[7], b[7], a[7], a[7], b[3], b[3], a[3], a[3].
1471 ///
1472 /// \headerfile <x86intrin.h>
1473 ///
1474 /// \code
1475 /// __m256 _mm256_shuffle_ps(__m256 a, __m256 b, const int mask);
1476 /// \endcode
1477 ///
1478 /// This intrinsic corresponds to the <c> VSHUFPS </c> instruction.
1479 ///
1480 /// \param a
1481 ///    A 256-bit vector of [8 x float]. The four selected elements in this
1482 ///    operand are copied to bits [63:0] and bits [191:128] in the destination,
1483 ///    according to the bits specified in the immediate operand.
1484 /// \param b
1485 ///    A 256-bit vector of [8 x float]. The four selected elements in this
1486 ///    operand are copied to bits [127:64] and bits [255:192] in the
1487 ///    destination, according to the bits specified in the immediate operand.
1488 /// \param mask
1489 ///    An immediate value containing an 8-bit value specifying which elements to
1490 ///    copy from \a a and \a b \n.
1491 ///    Bits [3:0] specify the values copied from operand \a a. \n
1492 ///    Bits [7:4] specify the values copied from operand \a b. \n
1493 ///    The destinations within the 256-bit destination are assigned values as
1494 ///    follows, according to the bit value assignments described below: \n
1495 ///    Bits [1:0] are used to assign values to bits [31:0] and [159:128] in the
1496 ///    destination. \n
1497 ///    Bits [3:2] are used to assign values to bits [63:32] and [191:160] in the
1498 ///    destination. \n
1499 ///    Bits [5:4] are used to assign values to bits [95:64] and [223:192] in the
1500 ///    destination. \n
1501 ///    Bits [7:6] are used to assign values to bits [127:96] and [255:224] in
1502 ///    the destination. \n
1503 ///    Bit value assignments: \n
1504 ///    00: Bits [31:0] and [159:128] are copied from the selected operand. \n
1505 ///    01: Bits [63:32] and [191:160] are copied from the selected operand. \n
1506 ///    10: Bits [95:64] and [223:192] are copied from the selected operand. \n
1507 ///    11: Bits [127:96] and [255:224] are copied from the selected operand. \n
1508 ///    Note: To generate a mask, you can use the \c _MM_SHUFFLE macro.
1509 ///    <c>_MM_SHUFFLE(b6, b4, b2, b0)</c> can create an 8-bit mask of the form
1510 ///    <c>[b6, b4, b2, b0]</c>.
1511 /// \returns A 256-bit vector of [8 x float] containing the shuffled values.
1512 #define _mm256_shuffle_ps(a, b, mask) \
1513   ((__m256)__builtin_ia32_shufps256((__v8sf)(__m256)(a), \
1514                                     (__v8sf)(__m256)(b), (int)(mask)))
1515 
1516 /// Selects four double-precision values from the 256-bit operands of
1517 ///    [4 x double], as specified by the immediate value operand.
1518 ///
1519 ///    The selected elements from the first 256-bit operand are copied to bits
1520 ///    [63:0] and bits [191:128] in the destination, and the selected elements
1521 ///    from the second 256-bit operand are copied to bits [127:64] and bits
1522 ///    [255:192] in the destination. For example, if bits [3:0] of the immediate
1523 ///    operand contain a value of 0xF, the 256-bit destination vector would
1524 ///    contain the following values: b[3], a[3], b[1], a[1].
1525 ///
1526 /// \headerfile <x86intrin.h>
1527 ///
1528 /// \code
1529 /// __m256d _mm256_shuffle_pd(__m256d a, __m256d b, const int mask);
1530 /// \endcode
1531 ///
1532 /// This intrinsic corresponds to the <c> VSHUFPD </c> instruction.
1533 ///
1534 /// \param a
1535 ///    A 256-bit vector of [4 x double].
1536 /// \param b
1537 ///    A 256-bit vector of [4 x double].
1538 /// \param mask
1539 ///    An immediate value containing 8-bit values specifying which elements to
1540 ///    copy from \a a and \a b: \n
1541 ///    Bit [0]=0: Bits [63:0] are copied from \a a to bits [63:0] of the
1542 ///    destination. \n
1543 ///    Bit [0]=1: Bits [127:64] are copied from \a a to bits [63:0] of the
1544 ///    destination. \n
1545 ///    Bit [1]=0: Bits [63:0] are copied from \a b to bits [127:64] of the
1546 ///    destination. \n
1547 ///    Bit [1]=1: Bits [127:64] are copied from \a b to bits [127:64] of the
1548 ///    destination. \n
1549 ///    Bit [2]=0: Bits [191:128] are copied from \a a to bits [191:128] of the
1550 ///    destination. \n
1551 ///    Bit [2]=1: Bits [255:192] are copied from \a a to bits [191:128] of the
1552 ///    destination. \n
1553 ///    Bit [3]=0: Bits [191:128] are copied from \a b to bits [255:192] of the
1554 ///    destination. \n
1555 ///    Bit [3]=1: Bits [255:192] are copied from \a b to bits [255:192] of the
1556 ///    destination.
1557 /// \returns A 256-bit vector of [4 x double] containing the shuffled values.
1558 #define _mm256_shuffle_pd(a, b, mask) \
1559   ((__m256d)__builtin_ia32_shufpd256((__v4df)(__m256d)(a), \
1560                                      (__v4df)(__m256d)(b), (int)(mask)))
1561 
1562 /* Compare */
1563 #define _CMP_EQ_OQ    0x00 /* Equal (ordered, non-signaling)  */
1564 #define _CMP_LT_OS    0x01 /* Less-than (ordered, signaling)  */
1565 #define _CMP_LE_OS    0x02 /* Less-than-or-equal (ordered, signaling)  */
1566 #define _CMP_UNORD_Q  0x03 /* Unordered (non-signaling)  */
1567 #define _CMP_NEQ_UQ   0x04 /* Not-equal (unordered, non-signaling)  */
1568 #define _CMP_NLT_US   0x05 /* Not-less-than (unordered, signaling)  */
1569 #define _CMP_NLE_US   0x06 /* Not-less-than-or-equal (unordered, signaling)  */
1570 #define _CMP_ORD_Q    0x07 /* Ordered (non-signaling)   */
1571 #define _CMP_EQ_UQ    0x08 /* Equal (unordered, non-signaling)  */
1572 #define _CMP_NGE_US   0x09 /* Not-greater-than-or-equal (unordered, signaling)  */
1573 #define _CMP_NGT_US   0x0a /* Not-greater-than (unordered, signaling)  */
1574 #define _CMP_FALSE_OQ 0x0b /* False (ordered, non-signaling)  */
1575 #define _CMP_NEQ_OQ   0x0c /* Not-equal (ordered, non-signaling)  */
1576 #define _CMP_GE_OS    0x0d /* Greater-than-or-equal (ordered, signaling)  */
1577 #define _CMP_GT_OS    0x0e /* Greater-than (ordered, signaling)  */
1578 #define _CMP_TRUE_UQ  0x0f /* True (unordered, non-signaling)  */
1579 #define _CMP_EQ_OS    0x10 /* Equal (ordered, signaling)  */
1580 #define _CMP_LT_OQ    0x11 /* Less-than (ordered, non-signaling)  */
1581 #define _CMP_LE_OQ    0x12 /* Less-than-or-equal (ordered, non-signaling)  */
1582 #define _CMP_UNORD_S  0x13 /* Unordered (signaling)  */
1583 #define _CMP_NEQ_US   0x14 /* Not-equal (unordered, signaling)  */
1584 #define _CMP_NLT_UQ   0x15 /* Not-less-than (unordered, non-signaling)  */
1585 #define _CMP_NLE_UQ   0x16 /* Not-less-than-or-equal (unordered, non-signaling)  */
1586 #define _CMP_ORD_S    0x17 /* Ordered (signaling)  */
1587 #define _CMP_EQ_US    0x18 /* Equal (unordered, signaling)  */
1588 #define _CMP_NGE_UQ   0x19 /* Not-greater-than-or-equal (unordered, non-signaling)  */
1589 #define _CMP_NGT_UQ   0x1a /* Not-greater-than (unordered, non-signaling)  */
1590 #define _CMP_FALSE_OS 0x1b /* False (ordered, signaling)  */
1591 #define _CMP_NEQ_OS   0x1c /* Not-equal (ordered, signaling)  */
1592 #define _CMP_GE_OQ    0x1d /* Greater-than-or-equal (ordered, non-signaling)  */
1593 #define _CMP_GT_OQ    0x1e /* Greater-than (ordered, non-signaling)  */
1594 #define _CMP_TRUE_US  0x1f /* True (unordered, signaling)  */
1595 
1596 /// Compares each of the corresponding double-precision values of two
1597 ///    128-bit vectors of [2 x double], using the operation specified by the
1598 ///    immediate integer operand.
1599 ///
1600 ///    Returns a [2 x double] vector consisting of two doubles corresponding to
1601 ///    the two comparison results: zero if the comparison is false, and all 1's
1602 ///    if the comparison is true.
1603 ///
1604 /// \headerfile <x86intrin.h>
1605 ///
1606 /// \code
1607 /// __m128d _mm_cmp_pd(__m128d a, __m128d b, const int c);
1608 /// \endcode
1609 ///
1610 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1611 ///
1612 /// \param a
1613 ///    A 128-bit vector of [2 x double].
1614 /// \param b
1615 ///    A 128-bit vector of [2 x double].
1616 /// \param c
1617 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1618 ///    operation to use: \n
1619 ///    0x00: Equal (ordered, non-signaling) \n
1620 ///    0x01: Less-than (ordered, signaling) \n
1621 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1622 ///    0x03: Unordered (non-signaling) \n
1623 ///    0x04: Not-equal (unordered, non-signaling) \n
1624 ///    0x05: Not-less-than (unordered, signaling) \n
1625 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1626 ///    0x07: Ordered (non-signaling) \n
1627 ///    0x08: Equal (unordered, non-signaling) \n
1628 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1629 ///    0x0A: Not-greater-than (unordered, signaling) \n
1630 ///    0x0B: False (ordered, non-signaling) \n
1631 ///    0x0C: Not-equal (ordered, non-signaling) \n
1632 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1633 ///    0x0E: Greater-than (ordered, signaling) \n
1634 ///    0x0F: True (unordered, non-signaling) \n
1635 ///    0x10: Equal (ordered, signaling) \n
1636 ///    0x11: Less-than (ordered, non-signaling) \n
1637 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1638 ///    0x13: Unordered (signaling) \n
1639 ///    0x14: Not-equal (unordered, signaling) \n
1640 ///    0x15: Not-less-than (unordered, non-signaling) \n
1641 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1642 ///    0x17: Ordered (signaling) \n
1643 ///    0x18: Equal (unordered, signaling) \n
1644 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1645 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1646 ///    0x1B: False (ordered, signaling) \n
1647 ///    0x1C: Not-equal (ordered, signaling) \n
1648 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1649 ///    0x1E: Greater-than (ordered, non-signaling) \n
1650 ///    0x1F: True (unordered, signaling)
1651 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1652 #define _mm_cmp_pd(a, b, c) \
1653   ((__m128d)__builtin_ia32_cmppd((__v2df)(__m128d)(a), \
1654                                  (__v2df)(__m128d)(b), (c)))
1655 
1656 /// Compares each of the corresponding values of two 128-bit vectors of
1657 ///    [4 x float], using the operation specified by the immediate integer
1658 ///    operand.
1659 ///
1660 ///    Returns a [4 x float] vector consisting of four floats corresponding to
1661 ///    the four comparison results: zero if the comparison is false, and all 1's
1662 ///    if the comparison is true.
1663 ///
1664 /// \headerfile <x86intrin.h>
1665 ///
1666 /// \code
1667 /// __m128 _mm_cmp_ps(__m128 a, __m128 b, const int c);
1668 /// \endcode
1669 ///
1670 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1671 ///
1672 /// \param a
1673 ///    A 128-bit vector of [4 x float].
1674 /// \param b
1675 ///    A 128-bit vector of [4 x float].
1676 /// \param c
1677 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1678 ///    operation to use: \n
1679 ///    0x00: Equal (ordered, non-signaling) \n
1680 ///    0x01: Less-than (ordered, signaling) \n
1681 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1682 ///    0x03: Unordered (non-signaling) \n
1683 ///    0x04: Not-equal (unordered, non-signaling) \n
1684 ///    0x05: Not-less-than (unordered, signaling) \n
1685 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1686 ///    0x07: Ordered (non-signaling) \n
1687 ///    0x08: Equal (unordered, non-signaling) \n
1688 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1689 ///    0x0A: Not-greater-than (unordered, signaling) \n
1690 ///    0x0B: False (ordered, non-signaling) \n
1691 ///    0x0C: Not-equal (ordered, non-signaling) \n
1692 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1693 ///    0x0E: Greater-than (ordered, signaling) \n
1694 ///    0x0F: True (unordered, non-signaling) \n
1695 ///    0x10: Equal (ordered, signaling) \n
1696 ///    0x11: Less-than (ordered, non-signaling) \n
1697 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1698 ///    0x13: Unordered (signaling) \n
1699 ///    0x14: Not-equal (unordered, signaling) \n
1700 ///    0x15: Not-less-than (unordered, non-signaling) \n
1701 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1702 ///    0x17: Ordered (signaling) \n
1703 ///    0x18: Equal (unordered, signaling) \n
1704 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1705 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1706 ///    0x1B: False (ordered, signaling) \n
1707 ///    0x1C: Not-equal (ordered, signaling) \n
1708 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1709 ///    0x1E: Greater-than (ordered, non-signaling) \n
1710 ///    0x1F: True (unordered, signaling)
1711 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1712 #define _mm_cmp_ps(a, b, c) \
1713   ((__m128)__builtin_ia32_cmpps((__v4sf)(__m128)(a), \
1714                                 (__v4sf)(__m128)(b), (c)))
1715 
1716 /// Compares each of the corresponding double-precision values of two
1717 ///    256-bit vectors of [4 x double], using the operation specified by the
1718 ///    immediate integer operand.
1719 ///
1720 ///    Returns a [4 x double] vector consisting of four doubles corresponding to
1721 ///    the four comparison results: zero if the comparison is false, and all 1's
1722 ///    if the comparison is true.
1723 ///
1724 /// \headerfile <x86intrin.h>
1725 ///
1726 /// \code
1727 /// __m256d _mm256_cmp_pd(__m256d a, __m256d b, const int c);
1728 /// \endcode
1729 ///
1730 /// This intrinsic corresponds to the <c> VCMPPD </c> instruction.
1731 ///
1732 /// \param a
1733 ///    A 256-bit vector of [4 x double].
1734 /// \param b
1735 ///    A 256-bit vector of [4 x double].
1736 /// \param c
1737 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1738 ///    operation to use: \n
1739 ///    0x00: Equal (ordered, non-signaling) \n
1740 ///    0x01: Less-than (ordered, signaling) \n
1741 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1742 ///    0x03: Unordered (non-signaling) \n
1743 ///    0x04: Not-equal (unordered, non-signaling) \n
1744 ///    0x05: Not-less-than (unordered, signaling) \n
1745 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1746 ///    0x07: Ordered (non-signaling) \n
1747 ///    0x08: Equal (unordered, non-signaling) \n
1748 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1749 ///    0x0A: Not-greater-than (unordered, signaling) \n
1750 ///    0x0B: False (ordered, non-signaling) \n
1751 ///    0x0C: Not-equal (ordered, non-signaling) \n
1752 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1753 ///    0x0E: Greater-than (ordered, signaling) \n
1754 ///    0x0F: True (unordered, non-signaling) \n
1755 ///    0x10: Equal (ordered, signaling) \n
1756 ///    0x11: Less-than (ordered, non-signaling) \n
1757 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1758 ///    0x13: Unordered (signaling) \n
1759 ///    0x14: Not-equal (unordered, signaling) \n
1760 ///    0x15: Not-less-than (unordered, non-signaling) \n
1761 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1762 ///    0x17: Ordered (signaling) \n
1763 ///    0x18: Equal (unordered, signaling) \n
1764 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1765 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1766 ///    0x1B: False (ordered, signaling) \n
1767 ///    0x1C: Not-equal (ordered, signaling) \n
1768 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1769 ///    0x1E: Greater-than (ordered, non-signaling) \n
1770 ///    0x1F: True (unordered, signaling)
1771 /// \returns A 256-bit vector of [4 x double] containing the comparison results.
1772 #define _mm256_cmp_pd(a, b, c) \
1773   ((__m256d)__builtin_ia32_cmppd256((__v4df)(__m256d)(a), \
1774                                     (__v4df)(__m256d)(b), (c)))
1775 
1776 /// Compares each of the corresponding values of two 256-bit vectors of
1777 ///    [8 x float], using the operation specified by the immediate integer
1778 ///    operand.
1779 ///
1780 ///    Returns a [8 x float] vector consisting of eight floats corresponding to
1781 ///    the eight comparison results: zero if the comparison is false, and all
1782 ///    1's if the comparison is true.
1783 ///
1784 /// \headerfile <x86intrin.h>
1785 ///
1786 /// \code
1787 /// __m256 _mm256_cmp_ps(__m256 a, __m256 b, const int c);
1788 /// \endcode
1789 ///
1790 /// This intrinsic corresponds to the <c> VCMPPS </c> instruction.
1791 ///
1792 /// \param a
1793 ///    A 256-bit vector of [8 x float].
1794 /// \param b
1795 ///    A 256-bit vector of [8 x float].
1796 /// \param c
1797 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1798 ///    operation to use: \n
1799 ///    0x00: Equal (ordered, non-signaling) \n
1800 ///    0x01: Less-than (ordered, signaling) \n
1801 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1802 ///    0x03: Unordered (non-signaling) \n
1803 ///    0x04: Not-equal (unordered, non-signaling) \n
1804 ///    0x05: Not-less-than (unordered, signaling) \n
1805 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1806 ///    0x07: Ordered (non-signaling) \n
1807 ///    0x08: Equal (unordered, non-signaling) \n
1808 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1809 ///    0x0A: Not-greater-than (unordered, signaling) \n
1810 ///    0x0B: False (ordered, non-signaling) \n
1811 ///    0x0C: Not-equal (ordered, non-signaling) \n
1812 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1813 ///    0x0E: Greater-than (ordered, signaling) \n
1814 ///    0x0F: True (unordered, non-signaling) \n
1815 ///    0x10: Equal (ordered, signaling) \n
1816 ///    0x11: Less-than (ordered, non-signaling) \n
1817 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1818 ///    0x13: Unordered (signaling) \n
1819 ///    0x14: Not-equal (unordered, signaling) \n
1820 ///    0x15: Not-less-than (unordered, non-signaling) \n
1821 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1822 ///    0x17: Ordered (signaling) \n
1823 ///    0x18: Equal (unordered, signaling) \n
1824 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1825 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1826 ///    0x1B: False (ordered, signaling) \n
1827 ///    0x1C: Not-equal (ordered, signaling) \n
1828 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1829 ///    0x1E: Greater-than (ordered, non-signaling) \n
1830 ///    0x1F: True (unordered, signaling)
1831 /// \returns A 256-bit vector of [8 x float] containing the comparison results.
1832 #define _mm256_cmp_ps(a, b, c) \
1833   ((__m256)__builtin_ia32_cmpps256((__v8sf)(__m256)(a), \
1834                                    (__v8sf)(__m256)(b), (c)))
1835 
1836 /// Compares each of the corresponding scalar double-precision values of
1837 ///    two 128-bit vectors of [2 x double], using the operation specified by the
1838 ///    immediate integer operand.
1839 ///
1840 ///    If the result is true, all 64 bits of the destination vector are set;
1841 ///    otherwise they are cleared.
1842 ///
1843 /// \headerfile <x86intrin.h>
1844 ///
1845 /// \code
1846 /// __m128d _mm_cmp_sd(__m128d a, __m128d b, const int c);
1847 /// \endcode
1848 ///
1849 /// This intrinsic corresponds to the <c> VCMPSD </c> instruction.
1850 ///
1851 /// \param a
1852 ///    A 128-bit vector of [2 x double].
1853 /// \param b
1854 ///    A 128-bit vector of [2 x double].
1855 /// \param c
1856 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1857 ///    operation to use: \n
1858 ///    0x00: Equal (ordered, non-signaling) \n
1859 ///    0x01: Less-than (ordered, signaling) \n
1860 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1861 ///    0x03: Unordered (non-signaling) \n
1862 ///    0x04: Not-equal (unordered, non-signaling) \n
1863 ///    0x05: Not-less-than (unordered, signaling) \n
1864 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1865 ///    0x07: Ordered (non-signaling) \n
1866 ///    0x08: Equal (unordered, non-signaling) \n
1867 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1868 ///    0x0A: Not-greater-than (unordered, signaling) \n
1869 ///    0x0B: False (ordered, non-signaling) \n
1870 ///    0x0C: Not-equal (ordered, non-signaling) \n
1871 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1872 ///    0x0E: Greater-than (ordered, signaling) \n
1873 ///    0x0F: True (unordered, non-signaling) \n
1874 ///    0x10: Equal (ordered, signaling) \n
1875 ///    0x11: Less-than (ordered, non-signaling) \n
1876 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1877 ///    0x13: Unordered (signaling) \n
1878 ///    0x14: Not-equal (unordered, signaling) \n
1879 ///    0x15: Not-less-than (unordered, non-signaling) \n
1880 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1881 ///    0x17: Ordered (signaling) \n
1882 ///    0x18: Equal (unordered, signaling) \n
1883 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1884 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1885 ///    0x1B: False (ordered, signaling) \n
1886 ///    0x1C: Not-equal (ordered, signaling) \n
1887 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1888 ///    0x1E: Greater-than (ordered, non-signaling) \n
1889 ///    0x1F: True (unordered, signaling)
1890 /// \returns A 128-bit vector of [2 x double] containing the comparison results.
1891 #define _mm_cmp_sd(a, b, c) \
1892   ((__m128d)__builtin_ia32_cmpsd((__v2df)(__m128d)(a), \
1893                                  (__v2df)(__m128d)(b), (c)))
1894 
1895 /// Compares each of the corresponding scalar values of two 128-bit
1896 ///    vectors of [4 x float], using the operation specified by the immediate
1897 ///    integer operand.
1898 ///
1899 ///    If the result is true, all 32 bits of the destination vector are set;
1900 ///    otherwise they are cleared.
1901 ///
1902 /// \headerfile <x86intrin.h>
1903 ///
1904 /// \code
1905 /// __m128 _mm_cmp_ss(__m128 a, __m128 b, const int c);
1906 /// \endcode
1907 ///
1908 /// This intrinsic corresponds to the <c> VCMPSS </c> instruction.
1909 ///
1910 /// \param a
1911 ///    A 128-bit vector of [4 x float].
1912 /// \param b
1913 ///    A 128-bit vector of [4 x float].
1914 /// \param c
1915 ///    An immediate integer operand, with bits [4:0] specifying which comparison
1916 ///    operation to use: \n
1917 ///    0x00: Equal (ordered, non-signaling) \n
1918 ///    0x01: Less-than (ordered, signaling) \n
1919 ///    0x02: Less-than-or-equal (ordered, signaling) \n
1920 ///    0x03: Unordered (non-signaling) \n
1921 ///    0x04: Not-equal (unordered, non-signaling) \n
1922 ///    0x05: Not-less-than (unordered, signaling) \n
1923 ///    0x06: Not-less-than-or-equal (unordered, signaling) \n
1924 ///    0x07: Ordered (non-signaling) \n
1925 ///    0x08: Equal (unordered, non-signaling) \n
1926 ///    0x09: Not-greater-than-or-equal (unordered, signaling) \n
1927 ///    0x0A: Not-greater-than (unordered, signaling) \n
1928 ///    0x0B: False (ordered, non-signaling) \n
1929 ///    0x0C: Not-equal (ordered, non-signaling) \n
1930 ///    0x0D: Greater-than-or-equal (ordered, signaling) \n
1931 ///    0x0E: Greater-than (ordered, signaling) \n
1932 ///    0x0F: True (unordered, non-signaling) \n
1933 ///    0x10: Equal (ordered, signaling) \n
1934 ///    0x11: Less-than (ordered, non-signaling) \n
1935 ///    0x12: Less-than-or-equal (ordered, non-signaling) \n
1936 ///    0x13: Unordered (signaling) \n
1937 ///    0x14: Not-equal (unordered, signaling) \n
1938 ///    0x15: Not-less-than (unordered, non-signaling) \n
1939 ///    0x16: Not-less-than-or-equal (unordered, non-signaling) \n
1940 ///    0x17: Ordered (signaling) \n
1941 ///    0x18: Equal (unordered, signaling) \n
1942 ///    0x19: Not-greater-than-or-equal (unordered, non-signaling) \n
1943 ///    0x1A: Not-greater-than (unordered, non-signaling) \n
1944 ///    0x1B: False (ordered, signaling) \n
1945 ///    0x1C: Not-equal (ordered, signaling) \n
1946 ///    0x1D: Greater-than-or-equal (ordered, non-signaling) \n
1947 ///    0x1E: Greater-than (ordered, non-signaling) \n
1948 ///    0x1F: True (unordered, signaling)
1949 /// \returns A 128-bit vector of [4 x float] containing the comparison results.
1950 #define _mm_cmp_ss(a, b, c) \
1951   ((__m128)__builtin_ia32_cmpss((__v4sf)(__m128)(a), \
1952                                 (__v4sf)(__m128)(b), (c)))
1953 
1954 /// Takes a [8 x i32] vector and returns the vector element value
1955 ///    indexed by the immediate constant operand.
1956 ///
1957 /// \headerfile <x86intrin.h>
1958 ///
1959 /// \code
1960 /// int _mm256_extract_epi32(__m256i X, const int N);
1961 /// \endcode
1962 ///
1963 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1964 ///   instruction.
1965 ///
1966 /// \param X
1967 ///    A 256-bit vector of [8 x i32].
1968 /// \param N
1969 ///    An immediate integer operand with bits [2:0] determining which vector
1970 ///    element is extracted and returned.
1971 /// \returns A 32-bit integer containing the extracted 32 bits of extended
1972 ///    packed data.
1973 #define _mm256_extract_epi32(X, N) \
1974   ((int)__builtin_ia32_vec_ext_v8si((__v8si)(__m256i)(X), (int)(N)))
1975 
1976 /// Takes a [16 x i16] vector and returns the vector element value
1977 ///    indexed by the immediate constant operand.
1978 ///
1979 /// \headerfile <x86intrin.h>
1980 ///
1981 /// \code
1982 /// int _mm256_extract_epi16(__m256i X, const int N);
1983 /// \endcode
1984 ///
1985 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
1986 ///   instruction.
1987 ///
1988 /// \param X
1989 ///    A 256-bit integer vector of [16 x i16].
1990 /// \param N
1991 ///    An immediate integer operand with bits [3:0] determining which vector
1992 ///    element is extracted and returned.
1993 /// \returns A 32-bit integer containing the extracted 16 bits of zero extended
1994 ///    packed data.
1995 #define _mm256_extract_epi16(X, N) \
1996   ((int)(unsigned short)__builtin_ia32_vec_ext_v16hi((__v16hi)(__m256i)(X), \
1997                                                      (int)(N)))
1998 
1999 /// Takes a [32 x i8] vector and returns the vector element value
2000 ///    indexed by the immediate constant operand.
2001 ///
2002 /// \headerfile <x86intrin.h>
2003 ///
2004 /// \code
2005 /// int _mm256_extract_epi8(__m256i X, const int N);
2006 /// \endcode
2007 ///
2008 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2009 ///   instruction.
2010 ///
2011 /// \param X
2012 ///    A 256-bit integer vector of [32 x i8].
2013 /// \param N
2014 ///    An immediate integer operand with bits [4:0] determining which vector
2015 ///    element is extracted and returned.
2016 /// \returns A 32-bit integer containing the extracted 8 bits of zero extended
2017 ///    packed data.
2018 #define _mm256_extract_epi8(X, N) \
2019   ((int)(unsigned char)__builtin_ia32_vec_ext_v32qi((__v32qi)(__m256i)(X), \
2020                                                     (int)(N)))
2021 
2022 #ifdef __x86_64__
2023 /// Takes a [4 x i64] vector and returns the vector element value
2024 ///    indexed by the immediate constant operand.
2025 ///
2026 /// \headerfile <x86intrin.h>
2027 ///
2028 /// \code
2029 /// long long _mm256_extract_epi64(__m256i X, const int N);
2030 /// \endcode
2031 ///
2032 /// This intrinsic corresponds to the <c> VEXTRACTF128+COMPOSITE </c>
2033 ///   instruction.
2034 ///
2035 /// \param X
2036 ///    A 256-bit integer vector of [4 x i64].
2037 /// \param N
2038 ///    An immediate integer operand with bits [1:0] determining which vector
2039 ///    element is extracted and returned.
2040 /// \returns A 64-bit integer containing the extracted 64 bits of extended
2041 ///    packed data.
2042 #define _mm256_extract_epi64(X, N) \
2043   ((long long)__builtin_ia32_vec_ext_v4di((__v4di)(__m256i)(X), (int)(N)))
2044 #endif
2045 
2046 /// Takes a [8 x i32] vector and replaces the vector element value
2047 ///    indexed by the immediate constant operand by a new value. Returns the
2048 ///    modified vector.
2049 ///
2050 /// \headerfile <x86intrin.h>
2051 ///
2052 /// \code
2053 /// __m256i _mm256_insert_epi32(__m256i X, int I, const int N);
2054 /// \endcode
2055 ///
2056 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2057 ///   instruction.
2058 ///
2059 /// \param X
2060 ///    A vector of [8 x i32] to be used by the insert operation.
2061 /// \param I
2062 ///    An integer value. The replacement value for the insert operation.
2063 /// \param N
2064 ///    An immediate integer specifying the index of the vector element to be
2065 ///    replaced.
2066 /// \returns A copy of vector \a X, after replacing its element indexed by
2067 ///    \a N with \a I.
2068 #define _mm256_insert_epi32(X, I, N) \
2069   ((__m256i)__builtin_ia32_vec_set_v8si((__v8si)(__m256i)(X), \
2070                                         (int)(I), (int)(N)))
2071 
2072 
2073 /// Takes a [16 x i16] vector and replaces the vector element value
2074 ///    indexed by the immediate constant operand with a new value. Returns the
2075 ///    modified vector.
2076 ///
2077 /// \headerfile <x86intrin.h>
2078 ///
2079 /// \code
2080 /// __m256i _mm256_insert_epi16(__m256i X, int I, const int N);
2081 /// \endcode
2082 ///
2083 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2084 ///   instruction.
2085 ///
2086 /// \param X
2087 ///    A vector of [16 x i16] to be used by the insert operation.
2088 /// \param I
2089 ///    An i16 integer value. The replacement value for the insert operation.
2090 /// \param N
2091 ///    An immediate integer specifying the index of the vector element to be
2092 ///    replaced.
2093 /// \returns A copy of vector \a X, after replacing its element indexed by
2094 ///    \a N with \a I.
2095 #define _mm256_insert_epi16(X, I, N) \
2096   ((__m256i)__builtin_ia32_vec_set_v16hi((__v16hi)(__m256i)(X), \
2097                                          (int)(I), (int)(N)))
2098 
2099 /// Takes a [32 x i8] vector and replaces the vector element value
2100 ///    indexed by the immediate constant operand with a new value. Returns the
2101 ///    modified vector.
2102 ///
2103 /// \headerfile <x86intrin.h>
2104 ///
2105 /// \code
2106 /// __m256i _mm256_insert_epi8(__m256i X, int I, const int N);
2107 /// \endcode
2108 ///
2109 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2110 ///   instruction.
2111 ///
2112 /// \param X
2113 ///    A vector of [32 x i8] to be used by the insert operation.
2114 /// \param I
2115 ///    An i8 integer value. The replacement value for the insert operation.
2116 /// \param N
2117 ///    An immediate integer specifying the index of the vector element to be
2118 ///    replaced.
2119 /// \returns A copy of vector \a X, after replacing its element indexed by
2120 ///    \a N with \a I.
2121 #define _mm256_insert_epi8(X, I, N) \
2122   ((__m256i)__builtin_ia32_vec_set_v32qi((__v32qi)(__m256i)(X), \
2123                                          (int)(I), (int)(N)))
2124 
2125 #ifdef __x86_64__
2126 /// Takes a [4 x i64] vector and replaces the vector element value
2127 ///    indexed by the immediate constant operand with a new value. Returns the
2128 ///    modified vector.
2129 ///
2130 /// \headerfile <x86intrin.h>
2131 ///
2132 /// \code
2133 /// __m256i _mm256_insert_epi64(__m256i X, int I, const int N);
2134 /// \endcode
2135 ///
2136 /// This intrinsic corresponds to the <c> VINSERTF128+COMPOSITE </c>
2137 ///   instruction.
2138 ///
2139 /// \param X
2140 ///    A vector of [4 x i64] to be used by the insert operation.
2141 /// \param I
2142 ///    A 64-bit integer value. The replacement value for the insert operation.
2143 /// \param N
2144 ///    An immediate integer specifying the index of the vector element to be
2145 ///    replaced.
2146 /// \returns A copy of vector \a X, after replacing its element indexed by
2147 ///     \a N with \a I.
2148 #define _mm256_insert_epi64(X, I, N) \
2149   ((__m256i)__builtin_ia32_vec_set_v4di((__v4di)(__m256i)(X), \
2150                                         (long long)(I), (int)(N)))
2151 #endif
2152 
2153 /* Conversion */
2154 /// Converts a vector of [4 x i32] into a vector of [4 x double].
2155 ///
2156 /// \headerfile <x86intrin.h>
2157 ///
2158 /// This intrinsic corresponds to the <c> VCVTDQ2PD </c> instruction.
2159 ///
2160 /// \param __a
2161 ///    A 128-bit integer vector of [4 x i32].
2162 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2163 static __inline __m256d __DEFAULT_FN_ATTRS
2164 _mm256_cvtepi32_pd(__m128i __a)
2165 {
2166   return (__m256d)__builtin_convertvector((__v4si)__a, __v4df);
2167 }
2168 
2169 /// Converts a vector of [8 x i32] into a vector of [8 x float].
2170 ///
2171 /// \headerfile <x86intrin.h>
2172 ///
2173 /// This intrinsic corresponds to the <c> VCVTDQ2PS </c> instruction.
2174 ///
2175 /// \param __a
2176 ///    A 256-bit integer vector.
2177 /// \returns A 256-bit vector of [8 x float] containing the converted values.
2178 static __inline __m256 __DEFAULT_FN_ATTRS
2179 _mm256_cvtepi32_ps(__m256i __a)
2180 {
2181   return (__m256)__builtin_convertvector((__v8si)__a, __v8sf);
2182 }
2183 
2184 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of
2185 ///    [4 x float].
2186 ///
2187 /// \headerfile <x86intrin.h>
2188 ///
2189 /// This intrinsic corresponds to the <c> VCVTPD2PS </c> instruction.
2190 ///
2191 /// \param __a
2192 ///    A 256-bit vector of [4 x double].
2193 /// \returns A 128-bit vector of [4 x float] containing the converted values.
2194 static __inline __m128 __DEFAULT_FN_ATTRS
2195 _mm256_cvtpd_ps(__m256d __a)
2196 {
2197   return (__m128)__builtin_ia32_cvtpd2ps256((__v4df) __a);
2198 }
2199 
2200 /// Converts a vector of [8 x float] into a vector of [8 x i32].
2201 ///
2202 /// \headerfile <x86intrin.h>
2203 ///
2204 /// This intrinsic corresponds to the <c> VCVTPS2DQ </c> instruction.
2205 ///
2206 /// \param __a
2207 ///    A 256-bit vector of [8 x float].
2208 /// \returns A 256-bit integer vector containing the converted values.
2209 static __inline __m256i __DEFAULT_FN_ATTRS
2210 _mm256_cvtps_epi32(__m256 __a)
2211 {
2212   return (__m256i)__builtin_ia32_cvtps2dq256((__v8sf) __a);
2213 }
2214 
2215 /// Converts a 128-bit vector of [4 x float] into a 256-bit vector of [4
2216 ///    x double].
2217 ///
2218 /// \headerfile <x86intrin.h>
2219 ///
2220 /// This intrinsic corresponds to the <c> VCVTPS2PD </c> instruction.
2221 ///
2222 /// \param __a
2223 ///    A 128-bit vector of [4 x float].
2224 /// \returns A 256-bit vector of [4 x double] containing the converted values.
2225 static __inline __m256d __DEFAULT_FN_ATTRS
2226 _mm256_cvtps_pd(__m128 __a)
2227 {
2228   return (__m256d)__builtin_convertvector((__v4sf)__a, __v4df);
2229 }
2230 
2231 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of [4
2232 ///    x i32], truncating the result by rounding towards zero when it is
2233 ///    inexact.
2234 ///
2235 /// \headerfile <x86intrin.h>
2236 ///
2237 /// This intrinsic corresponds to the <c> VCVTTPD2DQ </c> instruction.
2238 ///
2239 /// \param __a
2240 ///    A 256-bit vector of [4 x double].
2241 /// \returns A 128-bit integer vector containing the converted values.
2242 static __inline __m128i __DEFAULT_FN_ATTRS
2243 _mm256_cvttpd_epi32(__m256d __a)
2244 {
2245   return (__m128i)__builtin_ia32_cvttpd2dq256((__v4df) __a);
2246 }
2247 
2248 /// Converts a 256-bit vector of [4 x double] into a 128-bit vector of [4
2249 ///    x i32]. When a conversion is inexact, the value returned is rounded
2250 ///    according to the rounding control bits in the MXCSR register.
2251 ///
2252 /// \headerfile <x86intrin.h>
2253 ///
2254 /// This intrinsic corresponds to the <c> VCVTPD2DQ </c> instruction.
2255 ///
2256 /// \param __a
2257 ///    A 256-bit vector of [4 x double].
2258 /// \returns A 128-bit integer vector containing the converted values.
2259 static __inline __m128i __DEFAULT_FN_ATTRS
2260 _mm256_cvtpd_epi32(__m256d __a)
2261 {
2262   return (__m128i)__builtin_ia32_cvtpd2dq256((__v4df) __a);
2263 }
2264 
2265 /// Converts a vector of [8 x float] into a vector of [8 x i32],
2266 ///    truncating the result by rounding towards zero when it is inexact.
2267 ///
2268 /// \headerfile <x86intrin.h>
2269 ///
2270 /// This intrinsic corresponds to the <c> VCVTTPS2DQ </c> instruction.
2271 ///
2272 /// \param __a
2273 ///    A 256-bit vector of [8 x float].
2274 /// \returns A 256-bit integer vector containing the converted values.
2275 static __inline __m256i __DEFAULT_FN_ATTRS
2276 _mm256_cvttps_epi32(__m256 __a)
2277 {
2278   return (__m256i)__builtin_ia32_cvttps2dq256((__v8sf) __a);
2279 }
2280 
2281 /// Returns the first element of the input vector of [4 x double].
2282 ///
2283 /// \headerfile <x86intrin.h>
2284 ///
2285 /// This intrinsic is a utility function and does not correspond to a specific
2286 ///    instruction.
2287 ///
2288 /// \param __a
2289 ///    A 256-bit vector of [4 x double].
2290 /// \returns A 64 bit double containing the first element of the input vector.
2291 static __inline double __DEFAULT_FN_ATTRS
2292 _mm256_cvtsd_f64(__m256d __a)
2293 {
2294  return __a[0];
2295 }
2296 
2297 /// Returns the first element of the input vector of [8 x i32].
2298 ///
2299 /// \headerfile <x86intrin.h>
2300 ///
2301 /// This intrinsic is a utility function and does not correspond to a specific
2302 ///    instruction.
2303 ///
2304 /// \param __a
2305 ///    A 256-bit vector of [8 x i32].
2306 /// \returns A 32 bit integer containing the first element of the input vector.
2307 static __inline int __DEFAULT_FN_ATTRS
2308 _mm256_cvtsi256_si32(__m256i __a)
2309 {
2310  __v8si __b = (__v8si)__a;
2311  return __b[0];
2312 }
2313 
2314 /// Returns the first element of the input vector of [8 x float].
2315 ///
2316 /// \headerfile <x86intrin.h>
2317 ///
2318 /// This intrinsic is a utility function and does not correspond to a specific
2319 ///    instruction.
2320 ///
2321 /// \param __a
2322 ///    A 256-bit vector of [8 x float].
2323 /// \returns A 32 bit float containing the first element of the input vector.
2324 static __inline float __DEFAULT_FN_ATTRS
2325 _mm256_cvtss_f32(__m256 __a)
2326 {
2327  return __a[0];
2328 }
2329 
2330 /* Vector replicate */
2331 /// Moves and duplicates odd-indexed values from a 256-bit vector of
2332 ///    [8 x float] to float values in a 256-bit vector of [8 x float].
2333 ///
2334 /// \headerfile <x86intrin.h>
2335 ///
2336 /// This intrinsic corresponds to the <c> VMOVSHDUP </c> instruction.
2337 ///
2338 /// \param __a
2339 ///    A 256-bit vector of [8 x float]. \n
2340 ///    Bits [255:224] of \a __a are written to bits [255:224] and [223:192] of
2341 ///    the return value. \n
2342 ///    Bits [191:160] of \a __a are written to bits [191:160] and [159:128] of
2343 ///    the return value. \n
2344 ///    Bits [127:96] of \a __a are written to bits [127:96] and [95:64] of the
2345 ///    return value. \n
2346 ///    Bits [63:32] of \a __a are written to bits [63:32] and [31:0] of the
2347 ///    return value.
2348 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2349 ///    values.
2350 static __inline __m256 __DEFAULT_FN_ATTRS
2351 _mm256_movehdup_ps(__m256 __a)
2352 {
2353   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 1, 1, 3, 3, 5, 5, 7, 7);
2354 }
2355 
2356 /// Moves and duplicates even-indexed values from a 256-bit vector of
2357 ///    [8 x float] to float values in a 256-bit vector of [8 x float].
2358 ///
2359 /// \headerfile <x86intrin.h>
2360 ///
2361 /// This intrinsic corresponds to the <c> VMOVSLDUP </c> instruction.
2362 ///
2363 /// \param __a
2364 ///    A 256-bit vector of [8 x float]. \n
2365 ///    Bits [223:192] of \a __a are written to bits [255:224] and [223:192] of
2366 ///    the return value. \n
2367 ///    Bits [159:128] of \a __a are written to bits [191:160] and [159:128] of
2368 ///    the return value. \n
2369 ///    Bits [95:64] of \a __a are written to bits [127:96] and [95:64] of the
2370 ///    return value. \n
2371 ///    Bits [31:0] of \a __a are written to bits [63:32] and [31:0] of the
2372 ///    return value.
2373 /// \returns A 256-bit vector of [8 x float] containing the moved and duplicated
2374 ///    values.
2375 static __inline __m256 __DEFAULT_FN_ATTRS
2376 _mm256_moveldup_ps(__m256 __a)
2377 {
2378   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 0, 2, 2, 4, 4, 6, 6);
2379 }
2380 
2381 /// Moves and duplicates double-precision floating point values from a
2382 ///    256-bit vector of [4 x double] to double-precision values in a 256-bit
2383 ///    vector of [4 x double].
2384 ///
2385 /// \headerfile <x86intrin.h>
2386 ///
2387 /// This intrinsic corresponds to the <c> VMOVDDUP </c> instruction.
2388 ///
2389 /// \param __a
2390 ///    A 256-bit vector of [4 x double]. \n
2391 ///    Bits [63:0] of \a __a are written to bits [127:64] and [63:0] of the
2392 ///    return value. \n
2393 ///    Bits [191:128] of \a __a are written to bits [255:192] and [191:128] of
2394 ///    the return value.
2395 /// \returns A 256-bit vector of [4 x double] containing the moved and
2396 ///    duplicated values.
2397 static __inline __m256d __DEFAULT_FN_ATTRS
2398 _mm256_movedup_pd(__m256d __a)
2399 {
2400   return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 0, 2, 2);
2401 }
2402 
2403 /* Unpack and Interleave */
2404 /// Unpacks the odd-indexed vector elements from two 256-bit vectors of
2405 ///    [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2406 ///
2407 /// \headerfile <x86intrin.h>
2408 ///
2409 /// This intrinsic corresponds to the <c> VUNPCKHPD </c> instruction.
2410 ///
2411 /// \param __a
2412 ///    A 256-bit floating-point vector of [4 x double]. \n
2413 ///    Bits [127:64] are written to bits [63:0] of the return value. \n
2414 ///    Bits [255:192] are written to bits [191:128] of the return value. \n
2415 /// \param __b
2416 ///    A 256-bit floating-point vector of [4 x double]. \n
2417 ///    Bits [127:64] are written to bits [127:64] of the return value. \n
2418 ///    Bits [255:192] are written to bits [255:192] of the return value. \n
2419 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2420 static __inline __m256d __DEFAULT_FN_ATTRS
2421 _mm256_unpackhi_pd(__m256d __a, __m256d __b)
2422 {
2423   return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 1, 5, 1+2, 5+2);
2424 }
2425 
2426 /// Unpacks the even-indexed vector elements from two 256-bit vectors of
2427 ///    [4 x double] and interleaves them into a 256-bit vector of [4 x double].
2428 ///
2429 /// \headerfile <x86intrin.h>
2430 ///
2431 /// This intrinsic corresponds to the <c> VUNPCKLPD </c> instruction.
2432 ///
2433 /// \param __a
2434 ///    A 256-bit floating-point vector of [4 x double]. \n
2435 ///    Bits [63:0] are written to bits [63:0] of the return value. \n
2436 ///    Bits [191:128] are written to bits [191:128] of the return value.
2437 /// \param __b
2438 ///    A 256-bit floating-point vector of [4 x double]. \n
2439 ///    Bits [63:0] are written to bits [127:64] of the return value. \n
2440 ///    Bits [191:128] are written to bits [255:192] of the return value. \n
2441 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
2442 static __inline __m256d __DEFAULT_FN_ATTRS
2443 _mm256_unpacklo_pd(__m256d __a, __m256d __b)
2444 {
2445   return __builtin_shufflevector((__v4df)__a, (__v4df)__b, 0, 4, 0+2, 4+2);
2446 }
2447 
2448 /// Unpacks the 32-bit vector elements 2, 3, 6 and 7 from each of the
2449 ///    two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2450 ///    vector of [8 x float].
2451 ///
2452 /// \headerfile <x86intrin.h>
2453 ///
2454 /// This intrinsic corresponds to the <c> VUNPCKHPS </c> instruction.
2455 ///
2456 /// \param __a
2457 ///    A 256-bit vector of [8 x float]. \n
2458 ///    Bits [95:64] are written to bits [31:0] of the return value. \n
2459 ///    Bits [127:96] are written to bits [95:64] of the return value. \n
2460 ///    Bits [223:192] are written to bits [159:128] of the return value. \n
2461 ///    Bits [255:224] are written to bits [223:192] of the return value.
2462 /// \param __b
2463 ///    A 256-bit vector of [8 x float]. \n
2464 ///    Bits [95:64] are written to bits [63:32] of the return value. \n
2465 ///    Bits [127:96] are written to bits [127:96] of the return value. \n
2466 ///    Bits [223:192] are written to bits [191:160] of the return value. \n
2467 ///    Bits [255:224] are written to bits [255:224] of the return value.
2468 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2469 static __inline __m256 __DEFAULT_FN_ATTRS
2470 _mm256_unpackhi_ps(__m256 __a, __m256 __b)
2471 {
2472   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 2, 10, 2+1, 10+1, 6, 14, 6+1, 14+1);
2473 }
2474 
2475 /// Unpacks the 32-bit vector elements 0, 1, 4 and 5 from each of the
2476 ///    two 256-bit vectors of [8 x float] and interleaves them into a 256-bit
2477 ///    vector of [8 x float].
2478 ///
2479 /// \headerfile <x86intrin.h>
2480 ///
2481 /// This intrinsic corresponds to the <c> VUNPCKLPS </c> instruction.
2482 ///
2483 /// \param __a
2484 ///    A 256-bit vector of [8 x float]. \n
2485 ///    Bits [31:0] are written to bits [31:0] of the return value. \n
2486 ///    Bits [63:32] are written to bits [95:64] of the return value. \n
2487 ///    Bits [159:128] are written to bits [159:128] of the return value. \n
2488 ///    Bits [191:160] are written to bits [223:192] of the return value.
2489 /// \param __b
2490 ///    A 256-bit vector of [8 x float]. \n
2491 ///    Bits [31:0] are written to bits [63:32] of the return value. \n
2492 ///    Bits [63:32] are written to bits [127:96] of the return value. \n
2493 ///    Bits [159:128] are written to bits [191:160] of the return value. \n
2494 ///    Bits [191:160] are written to bits [255:224] of the return value.
2495 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
2496 static __inline __m256 __DEFAULT_FN_ATTRS
2497 _mm256_unpacklo_ps(__m256 __a, __m256 __b)
2498 {
2499   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__b, 0, 8, 0+1, 8+1, 4, 12, 4+1, 12+1);
2500 }
2501 
2502 /* Bit Test */
2503 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2504 ///    element-by-element comparison of the double-precision element in the
2505 ///    first source vector and the corresponding element in the second source
2506 ///    vector.
2507 ///
2508 ///    The EFLAGS register is updated as follows: \n
2509 ///    If there is at least one pair of double-precision elements where the
2510 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2511 ///    ZF flag is set to 1. \n
2512 ///    If there is at least one pair of double-precision elements where the
2513 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2514 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2515 ///    This intrinsic returns the value of the ZF flag.
2516 ///
2517 /// \headerfile <x86intrin.h>
2518 ///
2519 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2520 ///
2521 /// \param __a
2522 ///    A 128-bit vector of [2 x double].
2523 /// \param __b
2524 ///    A 128-bit vector of [2 x double].
2525 /// \returns the ZF flag in the EFLAGS register.
2526 static __inline int __DEFAULT_FN_ATTRS128
2527 _mm_testz_pd(__m128d __a, __m128d __b)
2528 {
2529   return __builtin_ia32_vtestzpd((__v2df)__a, (__v2df)__b);
2530 }
2531 
2532 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2533 ///    element-by-element comparison of the double-precision element in the
2534 ///    first source vector and the corresponding element in the second source
2535 ///    vector.
2536 ///
2537 ///    The EFLAGS register is updated as follows: \n
2538 ///    If there is at least one pair of double-precision elements where the
2539 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2540 ///    ZF flag is set to 1. \n
2541 ///    If there is at least one pair of double-precision elements where the
2542 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2543 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2544 ///    This intrinsic returns the value of the CF flag.
2545 ///
2546 /// \headerfile <x86intrin.h>
2547 ///
2548 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2549 ///
2550 /// \param __a
2551 ///    A 128-bit vector of [2 x double].
2552 /// \param __b
2553 ///    A 128-bit vector of [2 x double].
2554 /// \returns the CF flag in the EFLAGS register.
2555 static __inline int __DEFAULT_FN_ATTRS128
2556 _mm_testc_pd(__m128d __a, __m128d __b)
2557 {
2558   return __builtin_ia32_vtestcpd((__v2df)__a, (__v2df)__b);
2559 }
2560 
2561 /// Given two 128-bit floating-point vectors of [2 x double], perform an
2562 ///    element-by-element comparison of the double-precision element in the
2563 ///    first source vector and the corresponding element in the second source
2564 ///    vector.
2565 ///
2566 ///    The EFLAGS register is updated as follows: \n
2567 ///    If there is at least one pair of double-precision elements where the
2568 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2569 ///    ZF flag is set to 1. \n
2570 ///    If there is at least one pair of double-precision elements where the
2571 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2572 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2573 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2574 ///    otherwise it returns 0.
2575 ///
2576 /// \headerfile <x86intrin.h>
2577 ///
2578 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2579 ///
2580 /// \param __a
2581 ///    A 128-bit vector of [2 x double].
2582 /// \param __b
2583 ///    A 128-bit vector of [2 x double].
2584 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2585 static __inline int __DEFAULT_FN_ATTRS128
2586 _mm_testnzc_pd(__m128d __a, __m128d __b)
2587 {
2588   return __builtin_ia32_vtestnzcpd((__v2df)__a, (__v2df)__b);
2589 }
2590 
2591 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2592 ///    element-by-element comparison of the single-precision element in the
2593 ///    first source vector and the corresponding element in the second source
2594 ///    vector.
2595 ///
2596 ///    The EFLAGS register is updated as follows: \n
2597 ///    If there is at least one pair of single-precision elements where the
2598 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2599 ///    ZF flag is set to 1. \n
2600 ///    If there is at least one pair of single-precision elements where the
2601 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2602 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2603 ///    This intrinsic returns the value of the ZF flag.
2604 ///
2605 /// \headerfile <x86intrin.h>
2606 ///
2607 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2608 ///
2609 /// \param __a
2610 ///    A 128-bit vector of [4 x float].
2611 /// \param __b
2612 ///    A 128-bit vector of [4 x float].
2613 /// \returns the ZF flag.
2614 static __inline int __DEFAULT_FN_ATTRS128
2615 _mm_testz_ps(__m128 __a, __m128 __b)
2616 {
2617   return __builtin_ia32_vtestzps((__v4sf)__a, (__v4sf)__b);
2618 }
2619 
2620 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2621 ///    element-by-element comparison of the single-precision element in the
2622 ///    first source vector and the corresponding element in the second source
2623 ///    vector.
2624 ///
2625 ///    The EFLAGS register is updated as follows: \n
2626 ///    If there is at least one pair of single-precision elements where the
2627 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2628 ///    ZF flag is set to 1. \n
2629 ///    If there is at least one pair of single-precision elements where the
2630 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2631 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2632 ///    This intrinsic returns the value of the CF flag.
2633 ///
2634 /// \headerfile <x86intrin.h>
2635 ///
2636 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2637 ///
2638 /// \param __a
2639 ///    A 128-bit vector of [4 x float].
2640 /// \param __b
2641 ///    A 128-bit vector of [4 x float].
2642 /// \returns the CF flag.
2643 static __inline int __DEFAULT_FN_ATTRS128
2644 _mm_testc_ps(__m128 __a, __m128 __b)
2645 {
2646   return __builtin_ia32_vtestcps((__v4sf)__a, (__v4sf)__b);
2647 }
2648 
2649 /// Given two 128-bit floating-point vectors of [4 x float], perform an
2650 ///    element-by-element comparison of the single-precision element in the
2651 ///    first source vector and the corresponding element in the second source
2652 ///    vector.
2653 ///
2654 ///    The EFLAGS register is updated as follows: \n
2655 ///    If there is at least one pair of single-precision elements where the
2656 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2657 ///    ZF flag is set to 1. \n
2658 ///    If there is at least one pair of single-precision elements where the
2659 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2660 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2661 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2662 ///    otherwise it returns 0.
2663 ///
2664 /// \headerfile <x86intrin.h>
2665 ///
2666 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2667 ///
2668 /// \param __a
2669 ///    A 128-bit vector of [4 x float].
2670 /// \param __b
2671 ///    A 128-bit vector of [4 x float].
2672 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2673 static __inline int __DEFAULT_FN_ATTRS128
2674 _mm_testnzc_ps(__m128 __a, __m128 __b)
2675 {
2676   return __builtin_ia32_vtestnzcps((__v4sf)__a, (__v4sf)__b);
2677 }
2678 
2679 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2680 ///    element-by-element comparison of the double-precision elements in the
2681 ///    first source vector and the corresponding elements in the second source
2682 ///    vector.
2683 ///
2684 ///    The EFLAGS register is updated as follows: \n
2685 ///    If there is at least one pair of double-precision elements where the
2686 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2687 ///    ZF flag is set to 1. \n
2688 ///    If there is at least one pair of double-precision elements where the
2689 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2690 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2691 ///    This intrinsic returns the value of the ZF flag.
2692 ///
2693 /// \headerfile <x86intrin.h>
2694 ///
2695 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2696 ///
2697 /// \param __a
2698 ///    A 256-bit vector of [4 x double].
2699 /// \param __b
2700 ///    A 256-bit vector of [4 x double].
2701 /// \returns the ZF flag.
2702 static __inline int __DEFAULT_FN_ATTRS
2703 _mm256_testz_pd(__m256d __a, __m256d __b)
2704 {
2705   return __builtin_ia32_vtestzpd256((__v4df)__a, (__v4df)__b);
2706 }
2707 
2708 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2709 ///    element-by-element comparison of the double-precision elements in the
2710 ///    first source vector and the corresponding elements in the second source
2711 ///    vector.
2712 ///
2713 ///    The EFLAGS register is updated as follows: \n
2714 ///    If there is at least one pair of double-precision elements where the
2715 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2716 ///    ZF flag is set to 1. \n
2717 ///    If there is at least one pair of double-precision elements where the
2718 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2719 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2720 ///    This intrinsic returns the value of the CF flag.
2721 ///
2722 /// \headerfile <x86intrin.h>
2723 ///
2724 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2725 ///
2726 /// \param __a
2727 ///    A 256-bit vector of [4 x double].
2728 /// \param __b
2729 ///    A 256-bit vector of [4 x double].
2730 /// \returns the CF flag.
2731 static __inline int __DEFAULT_FN_ATTRS
2732 _mm256_testc_pd(__m256d __a, __m256d __b)
2733 {
2734   return __builtin_ia32_vtestcpd256((__v4df)__a, (__v4df)__b);
2735 }
2736 
2737 /// Given two 256-bit floating-point vectors of [4 x double], perform an
2738 ///    element-by-element comparison of the double-precision elements in the
2739 ///    first source vector and the corresponding elements in the second source
2740 ///    vector.
2741 ///
2742 ///    The EFLAGS register is updated as follows: \n
2743 ///    If there is at least one pair of double-precision elements where the
2744 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2745 ///    ZF flag is set to 1. \n
2746 ///    If there is at least one pair of double-precision elements where the
2747 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2748 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2749 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2750 ///    otherwise it returns 0.
2751 ///
2752 /// \headerfile <x86intrin.h>
2753 ///
2754 /// This intrinsic corresponds to the <c> VTESTPD </c> instruction.
2755 ///
2756 /// \param __a
2757 ///    A 256-bit vector of [4 x double].
2758 /// \param __b
2759 ///    A 256-bit vector of [4 x double].
2760 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2761 static __inline int __DEFAULT_FN_ATTRS
2762 _mm256_testnzc_pd(__m256d __a, __m256d __b)
2763 {
2764   return __builtin_ia32_vtestnzcpd256((__v4df)__a, (__v4df)__b);
2765 }
2766 
2767 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2768 ///    element-by-element comparison of the single-precision element in the
2769 ///    first source vector and the corresponding element in the second source
2770 ///    vector.
2771 ///
2772 ///    The EFLAGS register is updated as follows: \n
2773 ///    If there is at least one pair of single-precision elements where the
2774 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2775 ///    ZF flag is set to 1. \n
2776 ///    If there is at least one pair of single-precision elements where the
2777 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2778 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2779 ///    This intrinsic returns the value of the ZF flag.
2780 ///
2781 /// \headerfile <x86intrin.h>
2782 ///
2783 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2784 ///
2785 /// \param __a
2786 ///    A 256-bit vector of [8 x float].
2787 /// \param __b
2788 ///    A 256-bit vector of [8 x float].
2789 /// \returns the ZF flag.
2790 static __inline int __DEFAULT_FN_ATTRS
2791 _mm256_testz_ps(__m256 __a, __m256 __b)
2792 {
2793   return __builtin_ia32_vtestzps256((__v8sf)__a, (__v8sf)__b);
2794 }
2795 
2796 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2797 ///    element-by-element comparison of the single-precision element in the
2798 ///    first source vector and the corresponding element in the second source
2799 ///    vector.
2800 ///
2801 ///    The EFLAGS register is updated as follows: \n
2802 ///    If there is at least one pair of single-precision elements where the
2803 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2804 ///    ZF flag is set to 1. \n
2805 ///    If there is at least one pair of single-precision elements where the
2806 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2807 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2808 ///    This intrinsic returns the value of the CF flag.
2809 ///
2810 /// \headerfile <x86intrin.h>
2811 ///
2812 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2813 ///
2814 /// \param __a
2815 ///    A 256-bit vector of [8 x float].
2816 /// \param __b
2817 ///    A 256-bit vector of [8 x float].
2818 /// \returns the CF flag.
2819 static __inline int __DEFAULT_FN_ATTRS
2820 _mm256_testc_ps(__m256 __a, __m256 __b)
2821 {
2822   return __builtin_ia32_vtestcps256((__v8sf)__a, (__v8sf)__b);
2823 }
2824 
2825 /// Given two 256-bit floating-point vectors of [8 x float], perform an
2826 ///    element-by-element comparison of the single-precision elements in the
2827 ///    first source vector and the corresponding elements in the second source
2828 ///    vector.
2829 ///
2830 ///    The EFLAGS register is updated as follows: \n
2831 ///    If there is at least one pair of single-precision elements where the
2832 ///    sign-bits of both elements are 1, the ZF flag is set to 0. Otherwise the
2833 ///    ZF flag is set to 1. \n
2834 ///    If there is at least one pair of single-precision elements where the
2835 ///    sign-bit of the first element is 0 and the sign-bit of the second element
2836 ///    is 1, the CF flag is set to 0. Otherwise the CF flag is set to 1. \n
2837 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2838 ///    otherwise it returns 0.
2839 ///
2840 /// \headerfile <x86intrin.h>
2841 ///
2842 /// This intrinsic corresponds to the <c> VTESTPS </c> instruction.
2843 ///
2844 /// \param __a
2845 ///    A 256-bit vector of [8 x float].
2846 /// \param __b
2847 ///    A 256-bit vector of [8 x float].
2848 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2849 static __inline int __DEFAULT_FN_ATTRS
2850 _mm256_testnzc_ps(__m256 __a, __m256 __b)
2851 {
2852   return __builtin_ia32_vtestnzcps256((__v8sf)__a, (__v8sf)__b);
2853 }
2854 
2855 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2856 ///    of the two source vectors.
2857 ///
2858 ///    The EFLAGS register is updated as follows: \n
2859 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2860 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2861 ///    If there is at least one pair of bits where the bit from the first source
2862 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2863 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2864 ///    This intrinsic returns the value of the ZF flag.
2865 ///
2866 /// \headerfile <x86intrin.h>
2867 ///
2868 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2869 ///
2870 /// \param __a
2871 ///    A 256-bit integer vector.
2872 /// \param __b
2873 ///    A 256-bit integer vector.
2874 /// \returns the ZF flag.
2875 static __inline int __DEFAULT_FN_ATTRS
2876 _mm256_testz_si256(__m256i __a, __m256i __b)
2877 {
2878   return __builtin_ia32_ptestz256((__v4di)__a, (__v4di)__b);
2879 }
2880 
2881 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2882 ///    of the two source vectors.
2883 ///
2884 ///    The EFLAGS register is updated as follows: \n
2885 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2886 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2887 ///    If there is at least one pair of bits where the bit from the first source
2888 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2889 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2890 ///    This intrinsic returns the value of the CF flag.
2891 ///
2892 /// \headerfile <x86intrin.h>
2893 ///
2894 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2895 ///
2896 /// \param __a
2897 ///    A 256-bit integer vector.
2898 /// \param __b
2899 ///    A 256-bit integer vector.
2900 /// \returns the CF flag.
2901 static __inline int __DEFAULT_FN_ATTRS
2902 _mm256_testc_si256(__m256i __a, __m256i __b)
2903 {
2904   return __builtin_ia32_ptestc256((__v4di)__a, (__v4di)__b);
2905 }
2906 
2907 /// Given two 256-bit integer vectors, perform a bit-by-bit comparison
2908 ///    of the two source vectors.
2909 ///
2910 ///    The EFLAGS register is updated as follows: \n
2911 ///    If there is at least one pair of bits where both bits are 1, the ZF flag
2912 ///    is set to 0. Otherwise the ZF flag is set to 1. \n
2913 ///    If there is at least one pair of bits where the bit from the first source
2914 ///    vector is 0 and the bit from the second source vector is 1, the CF flag
2915 ///    is set to 0. Otherwise the CF flag is set to 1. \n
2916 ///    This intrinsic returns 1 if both the ZF and CF flags are set to 0,
2917 ///    otherwise it returns 0.
2918 ///
2919 /// \headerfile <x86intrin.h>
2920 ///
2921 /// This intrinsic corresponds to the <c> VPTEST </c> instruction.
2922 ///
2923 /// \param __a
2924 ///    A 256-bit integer vector.
2925 /// \param __b
2926 ///    A 256-bit integer vector.
2927 /// \returns 1 if both the ZF and CF flags are set to 0, otherwise returns 0.
2928 static __inline int __DEFAULT_FN_ATTRS
2929 _mm256_testnzc_si256(__m256i __a, __m256i __b)
2930 {
2931   return __builtin_ia32_ptestnzc256((__v4di)__a, (__v4di)__b);
2932 }
2933 
2934 /* Vector extract sign mask */
2935 /// Extracts the sign bits of double-precision floating point elements
2936 ///    in a 256-bit vector of [4 x double] and writes them to the lower order
2937 ///    bits of the return value.
2938 ///
2939 /// \headerfile <x86intrin.h>
2940 ///
2941 /// This intrinsic corresponds to the <c> VMOVMSKPD </c> instruction.
2942 ///
2943 /// \param __a
2944 ///    A 256-bit vector of [4 x double] containing the double-precision
2945 ///    floating point values with sign bits to be extracted.
2946 /// \returns The sign bits from the operand, written to bits [3:0].
2947 static __inline int __DEFAULT_FN_ATTRS
2948 _mm256_movemask_pd(__m256d __a)
2949 {
2950   return __builtin_ia32_movmskpd256((__v4df)__a);
2951 }
2952 
2953 /// Extracts the sign bits of single-precision floating point elements
2954 ///    in a 256-bit vector of [8 x float] and writes them to the lower order
2955 ///    bits of the return value.
2956 ///
2957 /// \headerfile <x86intrin.h>
2958 ///
2959 /// This intrinsic corresponds to the <c> VMOVMSKPS </c> instruction.
2960 ///
2961 /// \param __a
2962 ///    A 256-bit vector of [8 x float] containing the single-precision floating
2963 ///    point values with sign bits to be extracted.
2964 /// \returns The sign bits from the operand, written to bits [7:0].
2965 static __inline int __DEFAULT_FN_ATTRS
2966 _mm256_movemask_ps(__m256 __a)
2967 {
2968   return __builtin_ia32_movmskps256((__v8sf)__a);
2969 }
2970 
2971 /* Vector __zero */
2972 /// Zeroes the contents of all XMM or YMM registers.
2973 ///
2974 /// \headerfile <x86intrin.h>
2975 ///
2976 /// This intrinsic corresponds to the <c> VZEROALL </c> instruction.
2977 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
2978 _mm256_zeroall(void)
2979 {
2980   __builtin_ia32_vzeroall();
2981 }
2982 
2983 /// Zeroes the upper 128 bits (bits 255:128) of all YMM registers.
2984 ///
2985 /// \headerfile <x86intrin.h>
2986 ///
2987 /// This intrinsic corresponds to the <c> VZEROUPPER </c> instruction.
2988 static __inline void __attribute__((__always_inline__, __nodebug__, __target__("avx")))
2989 _mm256_zeroupper(void)
2990 {
2991   __builtin_ia32_vzeroupper();
2992 }
2993 
2994 /* Vector load with broadcast */
2995 /// Loads a scalar single-precision floating point value from the
2996 ///    specified address pointed to by \a __a and broadcasts it to the elements
2997 ///    of a [4 x float] vector.
2998 ///
2999 /// \headerfile <x86intrin.h>
3000 ///
3001 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3002 ///
3003 /// \param __a
3004 ///    The single-precision floating point value to be broadcast.
3005 /// \returns A 128-bit vector of [4 x float] whose 32-bit elements are set
3006 ///    equal to the broadcast value.
3007 static __inline __m128 __DEFAULT_FN_ATTRS128
3008 _mm_broadcast_ss(float const *__a)
3009 {
3010   float __f = *__a;
3011   return __extension__ (__m128)(__v4sf){ __f, __f, __f, __f };
3012 }
3013 
3014 /// Loads a scalar double-precision floating point value from the
3015 ///    specified address pointed to by \a __a and broadcasts it to the elements
3016 ///    of a [4 x double] vector.
3017 ///
3018 /// \headerfile <x86intrin.h>
3019 ///
3020 /// This intrinsic corresponds to the <c> VBROADCASTSD </c> instruction.
3021 ///
3022 /// \param __a
3023 ///    The double-precision floating point value to be broadcast.
3024 /// \returns A 256-bit vector of [4 x double] whose 64-bit elements are set
3025 ///    equal to the broadcast value.
3026 static __inline __m256d __DEFAULT_FN_ATTRS
3027 _mm256_broadcast_sd(double const *__a)
3028 {
3029   double __d = *__a;
3030   return __extension__ (__m256d)(__v4df){ __d, __d, __d, __d };
3031 }
3032 
3033 /// Loads a scalar single-precision floating point value from the
3034 ///    specified address pointed to by \a __a and broadcasts it to the elements
3035 ///    of a [8 x float] vector.
3036 ///
3037 /// \headerfile <x86intrin.h>
3038 ///
3039 /// This intrinsic corresponds to the <c> VBROADCASTSS </c> instruction.
3040 ///
3041 /// \param __a
3042 ///    The single-precision floating point value to be broadcast.
3043 /// \returns A 256-bit vector of [8 x float] whose 32-bit elements are set
3044 ///    equal to the broadcast value.
3045 static __inline __m256 __DEFAULT_FN_ATTRS
3046 _mm256_broadcast_ss(float const *__a)
3047 {
3048   float __f = *__a;
3049   return __extension__ (__m256)(__v8sf){ __f, __f, __f, __f, __f, __f, __f, __f };
3050 }
3051 
3052 /// Loads the data from a 128-bit vector of [2 x double] from the
3053 ///    specified address pointed to by \a __a and broadcasts it to 128-bit
3054 ///    elements in a 256-bit vector of [4 x double].
3055 ///
3056 /// \headerfile <x86intrin.h>
3057 ///
3058 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3059 ///
3060 /// \param __a
3061 ///    The 128-bit vector of [2 x double] to be broadcast.
3062 /// \returns A 256-bit vector of [4 x double] whose 128-bit elements are set
3063 ///    equal to the broadcast value.
3064 static __inline __m256d __DEFAULT_FN_ATTRS
3065 _mm256_broadcast_pd(__m128d const *__a)
3066 {
3067   __m128d __b = _mm_loadu_pd((const double *)__a);
3068   return (__m256d)__builtin_shufflevector((__v2df)__b, (__v2df)__b,
3069                                           0, 1, 0, 1);
3070 }
3071 
3072 /// Loads the data from a 128-bit vector of [4 x float] from the
3073 ///    specified address pointed to by \a __a and broadcasts it to 128-bit
3074 ///    elements in a 256-bit vector of [8 x float].
3075 ///
3076 /// \headerfile <x86intrin.h>
3077 ///
3078 /// This intrinsic corresponds to the <c> VBROADCASTF128 </c> instruction.
3079 ///
3080 /// \param __a
3081 ///    The 128-bit vector of [4 x float] to be broadcast.
3082 /// \returns A 256-bit vector of [8 x float] whose 128-bit elements are set
3083 ///    equal to the broadcast value.
3084 static __inline __m256 __DEFAULT_FN_ATTRS
3085 _mm256_broadcast_ps(__m128 const *__a)
3086 {
3087   __m128 __b = _mm_loadu_ps((const float *)__a);
3088   return (__m256)__builtin_shufflevector((__v4sf)__b, (__v4sf)__b,
3089                                          0, 1, 2, 3, 0, 1, 2, 3);
3090 }
3091 
3092 /* SIMD load ops */
3093 /// Loads 4 double-precision floating point values from a 32-byte aligned
3094 ///    memory location pointed to by \a __p into a vector of [4 x double].
3095 ///
3096 /// \headerfile <x86intrin.h>
3097 ///
3098 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3099 ///
3100 /// \param __p
3101 ///    A 32-byte aligned pointer to a memory location containing
3102 ///    double-precision floating point values.
3103 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3104 static __inline __m256d __DEFAULT_FN_ATTRS
3105 _mm256_load_pd(double const *__p)
3106 {
3107   return *(const __m256d *)__p;
3108 }
3109 
3110 /// Loads 8 single-precision floating point values from a 32-byte aligned
3111 ///    memory location pointed to by \a __p into a vector of [8 x float].
3112 ///
3113 /// \headerfile <x86intrin.h>
3114 ///
3115 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3116 ///
3117 /// \param __p
3118 ///    A 32-byte aligned pointer to a memory location containing float values.
3119 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3120 static __inline __m256 __DEFAULT_FN_ATTRS
3121 _mm256_load_ps(float const *__p)
3122 {
3123   return *(const __m256 *)__p;
3124 }
3125 
3126 /// Loads 4 double-precision floating point values from an unaligned
3127 ///    memory location pointed to by \a __p into a vector of [4 x double].
3128 ///
3129 /// \headerfile <x86intrin.h>
3130 ///
3131 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3132 ///
3133 /// \param __p
3134 ///    A pointer to a memory location containing double-precision floating
3135 ///    point values.
3136 /// \returns A 256-bit vector of [4 x double] containing the moved values.
3137 static __inline __m256d __DEFAULT_FN_ATTRS
3138 _mm256_loadu_pd(double const *__p)
3139 {
3140   struct __loadu_pd {
3141     __m256d_u __v;
3142   } __attribute__((__packed__, __may_alias__));
3143   return ((const struct __loadu_pd*)__p)->__v;
3144 }
3145 
3146 /// Loads 8 single-precision floating point values from an unaligned
3147 ///    memory location pointed to by \a __p into a vector of [8 x float].
3148 ///
3149 /// \headerfile <x86intrin.h>
3150 ///
3151 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3152 ///
3153 /// \param __p
3154 ///    A pointer to a memory location containing single-precision floating
3155 ///    point values.
3156 /// \returns A 256-bit vector of [8 x float] containing the moved values.
3157 static __inline __m256 __DEFAULT_FN_ATTRS
3158 _mm256_loadu_ps(float const *__p)
3159 {
3160   struct __loadu_ps {
3161     __m256_u __v;
3162   } __attribute__((__packed__, __may_alias__));
3163   return ((const struct __loadu_ps*)__p)->__v;
3164 }
3165 
3166 /// Loads 256 bits of integer data from a 32-byte aligned memory
3167 ///    location pointed to by \a __p into elements of a 256-bit integer vector.
3168 ///
3169 /// \headerfile <x86intrin.h>
3170 ///
3171 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3172 ///
3173 /// \param __p
3174 ///    A 32-byte aligned pointer to a 256-bit integer vector containing integer
3175 ///    values.
3176 /// \returns A 256-bit integer vector containing the moved values.
3177 static __inline __m256i __DEFAULT_FN_ATTRS
3178 _mm256_load_si256(__m256i const *__p)
3179 {
3180   return *__p;
3181 }
3182 
3183 /// Loads 256 bits of integer data from an unaligned memory location
3184 ///    pointed to by \a __p into a 256-bit integer vector.
3185 ///
3186 /// \headerfile <x86intrin.h>
3187 ///
3188 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3189 ///
3190 /// \param __p
3191 ///    A pointer to a 256-bit integer vector containing integer values.
3192 /// \returns A 256-bit integer vector containing the moved values.
3193 static __inline __m256i __DEFAULT_FN_ATTRS
3194 _mm256_loadu_si256(__m256i_u const *__p)
3195 {
3196   struct __loadu_si256 {
3197     __m256i_u __v;
3198   } __attribute__((__packed__, __may_alias__));
3199   return ((const struct __loadu_si256*)__p)->__v;
3200 }
3201 
3202 /// Loads 256 bits of integer data from an unaligned memory location
3203 ///    pointed to by \a __p into a 256-bit integer vector. This intrinsic may
3204 ///    perform better than \c _mm256_loadu_si256 when the data crosses a cache
3205 ///    line boundary.
3206 ///
3207 /// \headerfile <x86intrin.h>
3208 ///
3209 /// This intrinsic corresponds to the <c> VLDDQU </c> instruction.
3210 ///
3211 /// \param __p
3212 ///    A pointer to a 256-bit integer vector containing integer values.
3213 /// \returns A 256-bit integer vector containing the moved values.
3214 static __inline __m256i __DEFAULT_FN_ATTRS
3215 _mm256_lddqu_si256(__m256i_u const *__p)
3216 {
3217   return (__m256i)__builtin_ia32_lddqu256((char const *)__p);
3218 }
3219 
3220 /* SIMD store ops */
3221 /// Stores double-precision floating point values from a 256-bit vector
3222 ///    of [4 x double] to a 32-byte aligned memory location pointed to by
3223 ///    \a __p.
3224 ///
3225 /// \headerfile <x86intrin.h>
3226 ///
3227 /// This intrinsic corresponds to the <c> VMOVAPD </c> instruction.
3228 ///
3229 /// \param __p
3230 ///    A 32-byte aligned pointer to a memory location that will receive the
3231 ///    double-precision floaing point values.
3232 /// \param __a
3233 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3234 static __inline void __DEFAULT_FN_ATTRS
3235 _mm256_store_pd(double *__p, __m256d __a)
3236 {
3237   *(__m256d *)__p = __a;
3238 }
3239 
3240 /// Stores single-precision floating point values from a 256-bit vector
3241 ///    of [8 x float] to a 32-byte aligned memory location pointed to by \a __p.
3242 ///
3243 /// \headerfile <x86intrin.h>
3244 ///
3245 /// This intrinsic corresponds to the <c> VMOVAPS </c> instruction.
3246 ///
3247 /// \param __p
3248 ///    A 32-byte aligned pointer to a memory location that will receive the
3249 ///    float values.
3250 /// \param __a
3251 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3252 static __inline void __DEFAULT_FN_ATTRS
3253 _mm256_store_ps(float *__p, __m256 __a)
3254 {
3255   *(__m256 *)__p = __a;
3256 }
3257 
3258 /// Stores double-precision floating point values from a 256-bit vector
3259 ///    of [4 x double] to an unaligned memory location pointed to by \a __p.
3260 ///
3261 /// \headerfile <x86intrin.h>
3262 ///
3263 /// This intrinsic corresponds to the <c> VMOVUPD </c> instruction.
3264 ///
3265 /// \param __p
3266 ///    A pointer to a memory location that will receive the double-precision
3267 ///    floating point values.
3268 /// \param __a
3269 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3270 static __inline void __DEFAULT_FN_ATTRS
3271 _mm256_storeu_pd(double *__p, __m256d __a)
3272 {
3273   struct __storeu_pd {
3274     __m256d_u __v;
3275   } __attribute__((__packed__, __may_alias__));
3276   ((struct __storeu_pd*)__p)->__v = __a;
3277 }
3278 
3279 /// Stores single-precision floating point values from a 256-bit vector
3280 ///    of [8 x float] to an unaligned memory location pointed to by \a __p.
3281 ///
3282 /// \headerfile <x86intrin.h>
3283 ///
3284 /// This intrinsic corresponds to the <c> VMOVUPS </c> instruction.
3285 ///
3286 /// \param __p
3287 ///    A pointer to a memory location that will receive the float values.
3288 /// \param __a
3289 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3290 static __inline void __DEFAULT_FN_ATTRS
3291 _mm256_storeu_ps(float *__p, __m256 __a)
3292 {
3293   struct __storeu_ps {
3294     __m256_u __v;
3295   } __attribute__((__packed__, __may_alias__));
3296   ((struct __storeu_ps*)__p)->__v = __a;
3297 }
3298 
3299 /// Stores integer values from a 256-bit integer vector to a 32-byte
3300 ///    aligned memory location pointed to by \a __p.
3301 ///
3302 /// \headerfile <x86intrin.h>
3303 ///
3304 /// This intrinsic corresponds to the <c> VMOVDQA </c> instruction.
3305 ///
3306 /// \param __p
3307 ///    A 32-byte aligned pointer to a memory location that will receive the
3308 ///    integer values.
3309 /// \param __a
3310 ///    A 256-bit integer vector containing the values to be moved.
3311 static __inline void __DEFAULT_FN_ATTRS
3312 _mm256_store_si256(__m256i *__p, __m256i __a)
3313 {
3314   *__p = __a;
3315 }
3316 
3317 /// Stores integer values from a 256-bit integer vector to an unaligned
3318 ///    memory location pointed to by \a __p.
3319 ///
3320 /// \headerfile <x86intrin.h>
3321 ///
3322 /// This intrinsic corresponds to the <c> VMOVDQU </c> instruction.
3323 ///
3324 /// \param __p
3325 ///    A pointer to a memory location that will receive the integer values.
3326 /// \param __a
3327 ///    A 256-bit integer vector containing the values to be moved.
3328 static __inline void __DEFAULT_FN_ATTRS
3329 _mm256_storeu_si256(__m256i_u *__p, __m256i __a)
3330 {
3331   struct __storeu_si256 {
3332     __m256i_u __v;
3333   } __attribute__((__packed__, __may_alias__));
3334   ((struct __storeu_si256*)__p)->__v = __a;
3335 }
3336 
3337 /* Conditional load ops */
3338 /// Conditionally loads double-precision floating point elements from a
3339 ///    memory location pointed to by \a __p into a 128-bit vector of
3340 ///    [2 x double], depending on the mask bits associated with each data
3341 ///    element.
3342 ///
3343 /// \headerfile <x86intrin.h>
3344 ///
3345 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3346 ///
3347 /// \param __p
3348 ///    A pointer to a memory location that contains the double-precision
3349 ///    floating point values.
3350 /// \param __m
3351 ///    A 128-bit integer vector containing the mask. The most significant bit of
3352 ///    each data element represents the mask bits. If a mask bit is zero, the
3353 ///    corresponding value in the memory location is not loaded and the
3354 ///    corresponding field in the return value is set to zero.
3355 /// \returns A 128-bit vector of [2 x double] containing the loaded values.
3356 static __inline __m128d __DEFAULT_FN_ATTRS128
3357 _mm_maskload_pd(double const *__p, __m128i __m)
3358 {
3359   return (__m128d)__builtin_ia32_maskloadpd((const __v2df *)__p, (__v2di)__m);
3360 }
3361 
3362 /// Conditionally loads double-precision floating point elements from a
3363 ///    memory location pointed to by \a __p into a 256-bit vector of
3364 ///    [4 x double], depending on the mask bits associated with each data
3365 ///    element.
3366 ///
3367 /// \headerfile <x86intrin.h>
3368 ///
3369 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3370 ///
3371 /// \param __p
3372 ///    A pointer to a memory location that contains the double-precision
3373 ///    floating point values.
3374 /// \param __m
3375 ///    A 256-bit integer vector of [4 x quadword] containing the mask. The most
3376 ///    significant bit of each quadword element represents the mask bits. If a
3377 ///    mask bit is zero, the corresponding value in the memory location is not
3378 ///    loaded and the corresponding field in the return value is set to zero.
3379 /// \returns A 256-bit vector of [4 x double] containing the loaded values.
3380 static __inline __m256d __DEFAULT_FN_ATTRS
3381 _mm256_maskload_pd(double const *__p, __m256i __m)
3382 {
3383   return (__m256d)__builtin_ia32_maskloadpd256((const __v4df *)__p,
3384                                                (__v4di)__m);
3385 }
3386 
3387 /// Conditionally loads single-precision floating point elements from a
3388 ///    memory location pointed to by \a __p into a 128-bit vector of
3389 ///    [4 x float], depending on the mask bits associated with each data
3390 ///    element.
3391 ///
3392 /// \headerfile <x86intrin.h>
3393 ///
3394 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3395 ///
3396 /// \param __p
3397 ///    A pointer to a memory location that contains the single-precision
3398 ///    floating point values.
3399 /// \param __m
3400 ///    A 128-bit integer vector containing the mask. The most significant bit of
3401 ///    each data element represents the mask bits. If a mask bit is zero, the
3402 ///    corresponding value in the memory location is not loaded and the
3403 ///    corresponding field in the return value is set to zero.
3404 /// \returns A 128-bit vector of [4 x float] containing the loaded values.
3405 static __inline __m128 __DEFAULT_FN_ATTRS128
3406 _mm_maskload_ps(float const *__p, __m128i __m)
3407 {
3408   return (__m128)__builtin_ia32_maskloadps((const __v4sf *)__p, (__v4si)__m);
3409 }
3410 
3411 /// Conditionally loads single-precision floating point elements from a
3412 ///    memory location pointed to by \a __p into a 256-bit vector of
3413 ///    [8 x float], depending on the mask bits associated with each data
3414 ///    element.
3415 ///
3416 /// \headerfile <x86intrin.h>
3417 ///
3418 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3419 ///
3420 /// \param __p
3421 ///    A pointer to a memory location that contains the single-precision
3422 ///    floating point values.
3423 /// \param __m
3424 ///    A 256-bit integer vector of [8 x dword] containing the mask. The most
3425 ///    significant bit of each dword element represents the mask bits. If a mask
3426 ///    bit is zero, the corresponding value in the memory location is not loaded
3427 ///    and the corresponding field in the return value is set to zero.
3428 /// \returns A 256-bit vector of [8 x float] containing the loaded values.
3429 static __inline __m256 __DEFAULT_FN_ATTRS
3430 _mm256_maskload_ps(float const *__p, __m256i __m)
3431 {
3432   return (__m256)__builtin_ia32_maskloadps256((const __v8sf *)__p, (__v8si)__m);
3433 }
3434 
3435 /* Conditional store ops */
3436 /// Moves single-precision floating point values from a 256-bit vector
3437 ///    of [8 x float] to a memory location pointed to by \a __p, according to
3438 ///    the specified mask.
3439 ///
3440 /// \headerfile <x86intrin.h>
3441 ///
3442 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3443 ///
3444 /// \param __p
3445 ///    A pointer to a memory location that will receive the float values.
3446 /// \param __m
3447 ///    A 256-bit integer vector of [8 x dword] containing the mask. The most
3448 ///    significant bit of each dword element in the mask vector represents the
3449 ///    mask bits. If a mask bit is zero, the corresponding value from vector
3450 ///    \a __a is not stored and the corresponding field in the memory location
3451 ///    pointed to by \a __p is not changed.
3452 /// \param __a
3453 ///    A 256-bit vector of [8 x float] containing the values to be stored.
3454 static __inline void __DEFAULT_FN_ATTRS
3455 _mm256_maskstore_ps(float *__p, __m256i __m, __m256 __a)
3456 {
3457   __builtin_ia32_maskstoreps256((__v8sf *)__p, (__v8si)__m, (__v8sf)__a);
3458 }
3459 
3460 /// Moves double-precision values from a 128-bit vector of [2 x double]
3461 ///    to a memory location pointed to by \a __p, according to the specified
3462 ///    mask.
3463 ///
3464 /// \headerfile <x86intrin.h>
3465 ///
3466 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3467 ///
3468 /// \param __p
3469 ///    A pointer to a memory location that will receive the float values.
3470 /// \param __m
3471 ///    A 128-bit integer vector containing the mask. The most significant bit of
3472 ///    each field in the mask vector represents the mask bits. If a mask bit is
3473 ///    zero, the corresponding value from vector \a __a is not stored and the
3474 ///    corresponding field in the memory location pointed to by \a __p is not
3475 ///    changed.
3476 /// \param __a
3477 ///    A 128-bit vector of [2 x double] containing the values to be stored.
3478 static __inline void __DEFAULT_FN_ATTRS128
3479 _mm_maskstore_pd(double *__p, __m128i __m, __m128d __a)
3480 {
3481   __builtin_ia32_maskstorepd((__v2df *)__p, (__v2di)__m, (__v2df)__a);
3482 }
3483 
3484 /// Moves double-precision values from a 256-bit vector of [4 x double]
3485 ///    to a memory location pointed to by \a __p, according to the specified
3486 ///    mask.
3487 ///
3488 /// \headerfile <x86intrin.h>
3489 ///
3490 /// This intrinsic corresponds to the <c> VMASKMOVPD </c> instruction.
3491 ///
3492 /// \param __p
3493 ///    A pointer to a memory location that will receive the float values.
3494 /// \param __m
3495 ///    A 256-bit integer vector of [4 x quadword] containing the mask. The most
3496 ///    significant bit of each quadword element in the mask vector represents
3497 ///    the mask bits. If a mask bit is zero, the corresponding value from vector
3498 ///    __a is not stored and the corresponding field in the memory location
3499 ///    pointed to by \a __p is not changed.
3500 /// \param __a
3501 ///    A 256-bit vector of [4 x double] containing the values to be stored.
3502 static __inline void __DEFAULT_FN_ATTRS
3503 _mm256_maskstore_pd(double *__p, __m256i __m, __m256d __a)
3504 {
3505   __builtin_ia32_maskstorepd256((__v4df *)__p, (__v4di)__m, (__v4df)__a);
3506 }
3507 
3508 /// Moves single-precision floating point values from a 128-bit vector
3509 ///    of [4 x float] to a memory location pointed to by \a __p, according to
3510 ///    the specified mask.
3511 ///
3512 /// \headerfile <x86intrin.h>
3513 ///
3514 /// This intrinsic corresponds to the <c> VMASKMOVPS </c> instruction.
3515 ///
3516 /// \param __p
3517 ///    A pointer to a memory location that will receive the float values.
3518 /// \param __m
3519 ///    A 128-bit integer vector containing the mask. The most significant bit of
3520 ///    each field in the mask vector represents the mask bits. If a mask bit is
3521 ///    zero, the corresponding value from vector __a is not stored and the
3522 ///    corresponding field in the memory location pointed to by \a __p is not
3523 ///    changed.
3524 /// \param __a
3525 ///    A 128-bit vector of [4 x float] containing the values to be stored.
3526 static __inline void __DEFAULT_FN_ATTRS128
3527 _mm_maskstore_ps(float *__p, __m128i __m, __m128 __a)
3528 {
3529   __builtin_ia32_maskstoreps((__v4sf *)__p, (__v4si)__m, (__v4sf)__a);
3530 }
3531 
3532 /* Cacheability support ops */
3533 /// Moves integer data from a 256-bit integer vector to a 32-byte
3534 ///    aligned memory location. To minimize caching, the data is flagged as
3535 ///    non-temporal (unlikely to be used again soon).
3536 ///
3537 /// \headerfile <x86intrin.h>
3538 ///
3539 /// This intrinsic corresponds to the <c> VMOVNTDQ </c> instruction.
3540 ///
3541 /// \param __a
3542 ///    A pointer to a 32-byte aligned memory location that will receive the
3543 ///    integer values.
3544 /// \param __b
3545 ///    A 256-bit integer vector containing the values to be moved.
3546 static __inline void __DEFAULT_FN_ATTRS
3547 _mm256_stream_si256(__m256i *__a, __m256i __b)
3548 {
3549   typedef __v4di __v4di_aligned __attribute__((aligned(32)));
3550   __builtin_nontemporal_store((__v4di_aligned)__b, (__v4di_aligned*)__a);
3551 }
3552 
3553 /// Moves double-precision values from a 256-bit vector of [4 x double]
3554 ///    to a 32-byte aligned memory location. To minimize caching, the data is
3555 ///    flagged as non-temporal (unlikely to be used again soon).
3556 ///
3557 /// \headerfile <x86intrin.h>
3558 ///
3559 /// This intrinsic corresponds to the <c> VMOVNTPD </c> instruction.
3560 ///
3561 /// \param __a
3562 ///    A pointer to a 32-byte aligned memory location that will receive the
3563 ///    double-precision floating-point values.
3564 /// \param __b
3565 ///    A 256-bit vector of [4 x double] containing the values to be moved.
3566 static __inline void __DEFAULT_FN_ATTRS
3567 _mm256_stream_pd(double *__a, __m256d __b)
3568 {
3569   typedef __v4df __v4df_aligned __attribute__((aligned(32)));
3570   __builtin_nontemporal_store((__v4df_aligned)__b, (__v4df_aligned*)__a);
3571 }
3572 
3573 /// Moves single-precision floating point values from a 256-bit vector
3574 ///    of [8 x float] to a 32-byte aligned memory location. To minimize
3575 ///    caching, the data is flagged as non-temporal (unlikely to be used again
3576 ///    soon).
3577 ///
3578 /// \headerfile <x86intrin.h>
3579 ///
3580 /// This intrinsic corresponds to the <c> VMOVNTPS </c> instruction.
3581 ///
3582 /// \param __p
3583 ///    A pointer to a 32-byte aligned memory location that will receive the
3584 ///    single-precision floating point values.
3585 /// \param __a
3586 ///    A 256-bit vector of [8 x float] containing the values to be moved.
3587 static __inline void __DEFAULT_FN_ATTRS
3588 _mm256_stream_ps(float *__p, __m256 __a)
3589 {
3590   typedef __v8sf __v8sf_aligned __attribute__((aligned(32)));
3591   __builtin_nontemporal_store((__v8sf_aligned)__a, (__v8sf_aligned*)__p);
3592 }
3593 
3594 /* Create vectors */
3595 /// Create a 256-bit vector of [4 x double] with undefined values.
3596 ///
3597 /// \headerfile <x86intrin.h>
3598 ///
3599 /// This intrinsic has no corresponding instruction.
3600 ///
3601 /// \returns A 256-bit vector of [4 x double] containing undefined values.
3602 static __inline__ __m256d __DEFAULT_FN_ATTRS
3603 _mm256_undefined_pd(void)
3604 {
3605   return (__m256d)__builtin_ia32_undef256();
3606 }
3607 
3608 /// Create a 256-bit vector of [8 x float] with undefined values.
3609 ///
3610 /// \headerfile <x86intrin.h>
3611 ///
3612 /// This intrinsic has no corresponding instruction.
3613 ///
3614 /// \returns A 256-bit vector of [8 x float] containing undefined values.
3615 static __inline__ __m256 __DEFAULT_FN_ATTRS
3616 _mm256_undefined_ps(void)
3617 {
3618   return (__m256)__builtin_ia32_undef256();
3619 }
3620 
3621 /// Create a 256-bit integer vector with undefined values.
3622 ///
3623 /// \headerfile <x86intrin.h>
3624 ///
3625 /// This intrinsic has no corresponding instruction.
3626 ///
3627 /// \returns A 256-bit integer vector containing undefined values.
3628 static __inline__ __m256i __DEFAULT_FN_ATTRS
3629 _mm256_undefined_si256(void)
3630 {
3631   return (__m256i)__builtin_ia32_undef256();
3632 }
3633 
3634 /// Constructs a 256-bit floating-point vector of [4 x double]
3635 ///    initialized with the specified double-precision floating-point values.
3636 ///
3637 /// \headerfile <x86intrin.h>
3638 ///
3639 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3640 ///   instruction.
3641 ///
3642 /// \param __a
3643 ///    A double-precision floating-point value used to initialize bits [255:192]
3644 ///    of the result.
3645 /// \param __b
3646 ///    A double-precision floating-point value used to initialize bits [191:128]
3647 ///    of the result.
3648 /// \param __c
3649 ///    A double-precision floating-point value used to initialize bits [127:64]
3650 ///    of the result.
3651 /// \param __d
3652 ///    A double-precision floating-point value used to initialize bits [63:0]
3653 ///    of the result.
3654 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3655 static __inline __m256d __DEFAULT_FN_ATTRS
3656 _mm256_set_pd(double __a, double __b, double __c, double __d)
3657 {
3658   return __extension__ (__m256d){ __d, __c, __b, __a };
3659 }
3660 
3661 /// Constructs a 256-bit floating-point vector of [8 x float] initialized
3662 ///    with the specified single-precision floating-point values.
3663 ///
3664 /// \headerfile <x86intrin.h>
3665 ///
3666 /// This intrinsic is a utility function and does not correspond to a specific
3667 ///   instruction.
3668 ///
3669 /// \param __a
3670 ///    A single-precision floating-point value used to initialize bits [255:224]
3671 ///    of the result.
3672 /// \param __b
3673 ///    A single-precision floating-point value used to initialize bits [223:192]
3674 ///    of the result.
3675 /// \param __c
3676 ///    A single-precision floating-point value used to initialize bits [191:160]
3677 ///    of the result.
3678 /// \param __d
3679 ///    A single-precision floating-point value used to initialize bits [159:128]
3680 ///    of the result.
3681 /// \param __e
3682 ///    A single-precision floating-point value used to initialize bits [127:96]
3683 ///    of the result.
3684 /// \param __f
3685 ///    A single-precision floating-point value used to initialize bits [95:64]
3686 ///    of the result.
3687 /// \param __g
3688 ///    A single-precision floating-point value used to initialize bits [63:32]
3689 ///    of the result.
3690 /// \param __h
3691 ///    A single-precision floating-point value used to initialize bits [31:0]
3692 ///    of the result.
3693 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3694 static __inline __m256 __DEFAULT_FN_ATTRS
3695 _mm256_set_ps(float __a, float __b, float __c, float __d,
3696               float __e, float __f, float __g, float __h)
3697 {
3698   return __extension__ (__m256){ __h, __g, __f, __e, __d, __c, __b, __a };
3699 }
3700 
3701 /// Constructs a 256-bit integer vector initialized with the specified
3702 ///    32-bit integral values.
3703 ///
3704 /// \headerfile <x86intrin.h>
3705 ///
3706 /// This intrinsic is a utility function and does not correspond to a specific
3707 ///   instruction.
3708 ///
3709 /// \param __i0
3710 ///    A 32-bit integral value used to initialize bits [255:224] of the result.
3711 /// \param __i1
3712 ///    A 32-bit integral value used to initialize bits [223:192] of the result.
3713 /// \param __i2
3714 ///    A 32-bit integral value used to initialize bits [191:160] of the result.
3715 /// \param __i3
3716 ///    A 32-bit integral value used to initialize bits [159:128] of the result.
3717 /// \param __i4
3718 ///    A 32-bit integral value used to initialize bits [127:96] of the result.
3719 /// \param __i5
3720 ///    A 32-bit integral value used to initialize bits [95:64] of the result.
3721 /// \param __i6
3722 ///    A 32-bit integral value used to initialize bits [63:32] of the result.
3723 /// \param __i7
3724 ///    A 32-bit integral value used to initialize bits [31:0] of the result.
3725 /// \returns An initialized 256-bit integer vector.
3726 static __inline __m256i __DEFAULT_FN_ATTRS
3727 _mm256_set_epi32(int __i0, int __i1, int __i2, int __i3,
3728                  int __i4, int __i5, int __i6, int __i7)
3729 {
3730   return __extension__ (__m256i)(__v8si){ __i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0 };
3731 }
3732 
3733 /// Constructs a 256-bit integer vector initialized with the specified
3734 ///    16-bit integral values.
3735 ///
3736 /// \headerfile <x86intrin.h>
3737 ///
3738 /// This intrinsic is a utility function and does not correspond to a specific
3739 ///   instruction.
3740 ///
3741 /// \param __w15
3742 ///    A 16-bit integral value used to initialize bits [255:240] of the result.
3743 /// \param __w14
3744 ///    A 16-bit integral value used to initialize bits [239:224] of the result.
3745 /// \param __w13
3746 ///    A 16-bit integral value used to initialize bits [223:208] of the result.
3747 /// \param __w12
3748 ///    A 16-bit integral value used to initialize bits [207:192] of the result.
3749 /// \param __w11
3750 ///    A 16-bit integral value used to initialize bits [191:176] of the result.
3751 /// \param __w10
3752 ///    A 16-bit integral value used to initialize bits [175:160] of the result.
3753 /// \param __w09
3754 ///    A 16-bit integral value used to initialize bits [159:144] of the result.
3755 /// \param __w08
3756 ///    A 16-bit integral value used to initialize bits [143:128] of the result.
3757 /// \param __w07
3758 ///    A 16-bit integral value used to initialize bits [127:112] of the result.
3759 /// \param __w06
3760 ///    A 16-bit integral value used to initialize bits [111:96] of the result.
3761 /// \param __w05
3762 ///    A 16-bit integral value used to initialize bits [95:80] of the result.
3763 /// \param __w04
3764 ///    A 16-bit integral value used to initialize bits [79:64] of the result.
3765 /// \param __w03
3766 ///    A 16-bit integral value used to initialize bits [63:48] of the result.
3767 /// \param __w02
3768 ///    A 16-bit integral value used to initialize bits [47:32] of the result.
3769 /// \param __w01
3770 ///    A 16-bit integral value used to initialize bits [31:16] of the result.
3771 /// \param __w00
3772 ///    A 16-bit integral value used to initialize bits [15:0] of the result.
3773 /// \returns An initialized 256-bit integer vector.
3774 static __inline __m256i __DEFAULT_FN_ATTRS
3775 _mm256_set_epi16(short __w15, short __w14, short __w13, short __w12,
3776                  short __w11, short __w10, short __w09, short __w08,
3777                  short __w07, short __w06, short __w05, short __w04,
3778                  short __w03, short __w02, short __w01, short __w00)
3779 {
3780   return __extension__ (__m256i)(__v16hi){ __w00, __w01, __w02, __w03, __w04, __w05, __w06,
3781     __w07, __w08, __w09, __w10, __w11, __w12, __w13, __w14, __w15 };
3782 }
3783 
3784 /// Constructs a 256-bit integer vector initialized with the specified
3785 ///    8-bit integral values.
3786 ///
3787 /// \headerfile <x86intrin.h>
3788 ///
3789 /// This intrinsic is a utility function and does not correspond to a specific
3790 ///   instruction.
3791 ///
3792 /// \param __b31
3793 ///    An 8-bit integral value used to initialize bits [255:248] of the result.
3794 /// \param __b30
3795 ///    An 8-bit integral value used to initialize bits [247:240] of the result.
3796 /// \param __b29
3797 ///    An 8-bit integral value used to initialize bits [239:232] of the result.
3798 /// \param __b28
3799 ///    An 8-bit integral value used to initialize bits [231:224] of the result.
3800 /// \param __b27
3801 ///    An 8-bit integral value used to initialize bits [223:216] of the result.
3802 /// \param __b26
3803 ///    An 8-bit integral value used to initialize bits [215:208] of the result.
3804 /// \param __b25
3805 ///    An 8-bit integral value used to initialize bits [207:200] of the result.
3806 /// \param __b24
3807 ///    An 8-bit integral value used to initialize bits [199:192] of the result.
3808 /// \param __b23
3809 ///    An 8-bit integral value used to initialize bits [191:184] of the result.
3810 /// \param __b22
3811 ///    An 8-bit integral value used to initialize bits [183:176] of the result.
3812 /// \param __b21
3813 ///    An 8-bit integral value used to initialize bits [175:168] of the result.
3814 /// \param __b20
3815 ///    An 8-bit integral value used to initialize bits [167:160] of the result.
3816 /// \param __b19
3817 ///    An 8-bit integral value used to initialize bits [159:152] of the result.
3818 /// \param __b18
3819 ///    An 8-bit integral value used to initialize bits [151:144] of the result.
3820 /// \param __b17
3821 ///    An 8-bit integral value used to initialize bits [143:136] of the result.
3822 /// \param __b16
3823 ///    An 8-bit integral value used to initialize bits [135:128] of the result.
3824 /// \param __b15
3825 ///    An 8-bit integral value used to initialize bits [127:120] of the result.
3826 /// \param __b14
3827 ///    An 8-bit integral value used to initialize bits [119:112] of the result.
3828 /// \param __b13
3829 ///    An 8-bit integral value used to initialize bits [111:104] of the result.
3830 /// \param __b12
3831 ///    An 8-bit integral value used to initialize bits [103:96] of the result.
3832 /// \param __b11
3833 ///    An 8-bit integral value used to initialize bits [95:88] of the result.
3834 /// \param __b10
3835 ///    An 8-bit integral value used to initialize bits [87:80] of the result.
3836 /// \param __b09
3837 ///    An 8-bit integral value used to initialize bits [79:72] of the result.
3838 /// \param __b08
3839 ///    An 8-bit integral value used to initialize bits [71:64] of the result.
3840 /// \param __b07
3841 ///    An 8-bit integral value used to initialize bits [63:56] of the result.
3842 /// \param __b06
3843 ///    An 8-bit integral value used to initialize bits [55:48] of the result.
3844 /// \param __b05
3845 ///    An 8-bit integral value used to initialize bits [47:40] of the result.
3846 /// \param __b04
3847 ///    An 8-bit integral value used to initialize bits [39:32] of the result.
3848 /// \param __b03
3849 ///    An 8-bit integral value used to initialize bits [31:24] of the result.
3850 /// \param __b02
3851 ///    An 8-bit integral value used to initialize bits [23:16] of the result.
3852 /// \param __b01
3853 ///    An 8-bit integral value used to initialize bits [15:8] of the result.
3854 /// \param __b00
3855 ///    An 8-bit integral value used to initialize bits [7:0] of the result.
3856 /// \returns An initialized 256-bit integer vector.
3857 static __inline __m256i __DEFAULT_FN_ATTRS
3858 _mm256_set_epi8(char __b31, char __b30, char __b29, char __b28,
3859                 char __b27, char __b26, char __b25, char __b24,
3860                 char __b23, char __b22, char __b21, char __b20,
3861                 char __b19, char __b18, char __b17, char __b16,
3862                 char __b15, char __b14, char __b13, char __b12,
3863                 char __b11, char __b10, char __b09, char __b08,
3864                 char __b07, char __b06, char __b05, char __b04,
3865                 char __b03, char __b02, char __b01, char __b00)
3866 {
3867   return __extension__ (__m256i)(__v32qi){
3868     __b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
3869     __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
3870     __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
3871     __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31
3872   };
3873 }
3874 
3875 /// Constructs a 256-bit integer vector initialized with the specified
3876 ///    64-bit integral values.
3877 ///
3878 /// \headerfile <x86intrin.h>
3879 ///
3880 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
3881 ///   instruction.
3882 ///
3883 /// \param __a
3884 ///    A 64-bit integral value used to initialize bits [255:192] of the result.
3885 /// \param __b
3886 ///    A 64-bit integral value used to initialize bits [191:128] of the result.
3887 /// \param __c
3888 ///    A 64-bit integral value used to initialize bits [127:64] of the result.
3889 /// \param __d
3890 ///    A 64-bit integral value used to initialize bits [63:0] of the result.
3891 /// \returns An initialized 256-bit integer vector.
3892 static __inline __m256i __DEFAULT_FN_ATTRS
3893 _mm256_set_epi64x(long long __a, long long __b, long long __c, long long __d)
3894 {
3895   return __extension__ (__m256i)(__v4di){ __d, __c, __b, __a };
3896 }
3897 
3898 /* Create vectors with elements in reverse order */
3899 /// Constructs a 256-bit floating-point vector of [4 x double],
3900 ///    initialized in reverse order with the specified double-precision
3901 ///    floating-point values.
3902 ///
3903 /// \headerfile <x86intrin.h>
3904 ///
3905 /// This intrinsic corresponds to the <c> VUNPCKLPD+VINSERTF128 </c>
3906 ///   instruction.
3907 ///
3908 /// \param __a
3909 ///    A double-precision floating-point value used to initialize bits [63:0]
3910 ///    of the result.
3911 /// \param __b
3912 ///    A double-precision floating-point value used to initialize bits [127:64]
3913 ///    of the result.
3914 /// \param __c
3915 ///    A double-precision floating-point value used to initialize bits [191:128]
3916 ///    of the result.
3917 /// \param __d
3918 ///    A double-precision floating-point value used to initialize bits [255:192]
3919 ///    of the result.
3920 /// \returns An initialized 256-bit floating-point vector of [4 x double].
3921 static __inline __m256d __DEFAULT_FN_ATTRS
3922 _mm256_setr_pd(double __a, double __b, double __c, double __d)
3923 {
3924   return _mm256_set_pd(__d, __c, __b, __a);
3925 }
3926 
3927 /// Constructs a 256-bit floating-point vector of [8 x float],
3928 ///    initialized in reverse order with the specified single-precision
3929 ///    float-point values.
3930 ///
3931 /// \headerfile <x86intrin.h>
3932 ///
3933 /// This intrinsic is a utility function and does not correspond to a specific
3934 ///   instruction.
3935 ///
3936 /// \param __a
3937 ///    A single-precision floating-point value used to initialize bits [31:0]
3938 ///    of the result.
3939 /// \param __b
3940 ///    A single-precision floating-point value used to initialize bits [63:32]
3941 ///    of the result.
3942 /// \param __c
3943 ///    A single-precision floating-point value used to initialize bits [95:64]
3944 ///    of the result.
3945 /// \param __d
3946 ///    A single-precision floating-point value used to initialize bits [127:96]
3947 ///    of the result.
3948 /// \param __e
3949 ///    A single-precision floating-point value used to initialize bits [159:128]
3950 ///    of the result.
3951 /// \param __f
3952 ///    A single-precision floating-point value used to initialize bits [191:160]
3953 ///    of the result.
3954 /// \param __g
3955 ///    A single-precision floating-point value used to initialize bits [223:192]
3956 ///    of the result.
3957 /// \param __h
3958 ///    A single-precision floating-point value used to initialize bits [255:224]
3959 ///    of the result.
3960 /// \returns An initialized 256-bit floating-point vector of [8 x float].
3961 static __inline __m256 __DEFAULT_FN_ATTRS
3962 _mm256_setr_ps(float __a, float __b, float __c, float __d,
3963                float __e, float __f, float __g, float __h)
3964 {
3965   return _mm256_set_ps(__h, __g, __f, __e, __d, __c, __b, __a);
3966 }
3967 
3968 /// Constructs a 256-bit integer vector, initialized in reverse order
3969 ///    with the specified 32-bit integral values.
3970 ///
3971 /// \headerfile <x86intrin.h>
3972 ///
3973 /// This intrinsic is a utility function and does not correspond to a specific
3974 ///   instruction.
3975 ///
3976 /// \param __i0
3977 ///    A 32-bit integral value used to initialize bits [31:0] of the result.
3978 /// \param __i1
3979 ///    A 32-bit integral value used to initialize bits [63:32] of the result.
3980 /// \param __i2
3981 ///    A 32-bit integral value used to initialize bits [95:64] of the result.
3982 /// \param __i3
3983 ///    A 32-bit integral value used to initialize bits [127:96] of the result.
3984 /// \param __i4
3985 ///    A 32-bit integral value used to initialize bits [159:128] of the result.
3986 /// \param __i5
3987 ///    A 32-bit integral value used to initialize bits [191:160] of the result.
3988 /// \param __i6
3989 ///    A 32-bit integral value used to initialize bits [223:192] of the result.
3990 /// \param __i7
3991 ///    A 32-bit integral value used to initialize bits [255:224] of the result.
3992 /// \returns An initialized 256-bit integer vector.
3993 static __inline __m256i __DEFAULT_FN_ATTRS
3994 _mm256_setr_epi32(int __i0, int __i1, int __i2, int __i3,
3995                   int __i4, int __i5, int __i6, int __i7)
3996 {
3997   return _mm256_set_epi32(__i7, __i6, __i5, __i4, __i3, __i2, __i1, __i0);
3998 }
3999 
4000 /// Constructs a 256-bit integer vector, initialized in reverse order
4001 ///    with the specified 16-bit integral values.
4002 ///
4003 /// \headerfile <x86intrin.h>
4004 ///
4005 /// This intrinsic is a utility function and does not correspond to a specific
4006 ///   instruction.
4007 ///
4008 /// \param __w15
4009 ///    A 16-bit integral value used to initialize bits [15:0] of the result.
4010 /// \param __w14
4011 ///    A 16-bit integral value used to initialize bits [31:16] of the result.
4012 /// \param __w13
4013 ///    A 16-bit integral value used to initialize bits [47:32] of the result.
4014 /// \param __w12
4015 ///    A 16-bit integral value used to initialize bits [63:48] of the result.
4016 /// \param __w11
4017 ///    A 16-bit integral value used to initialize bits [79:64] of the result.
4018 /// \param __w10
4019 ///    A 16-bit integral value used to initialize bits [95:80] of the result.
4020 /// \param __w09
4021 ///    A 16-bit integral value used to initialize bits [111:96] of the result.
4022 /// \param __w08
4023 ///    A 16-bit integral value used to initialize bits [127:112] of the result.
4024 /// \param __w07
4025 ///    A 16-bit integral value used to initialize bits [143:128] of the result.
4026 /// \param __w06
4027 ///    A 16-bit integral value used to initialize bits [159:144] of the result.
4028 /// \param __w05
4029 ///    A 16-bit integral value used to initialize bits [175:160] of the result.
4030 /// \param __w04
4031 ///    A 16-bit integral value used to initialize bits [191:176] of the result.
4032 /// \param __w03
4033 ///    A 16-bit integral value used to initialize bits [207:192] of the result.
4034 /// \param __w02
4035 ///    A 16-bit integral value used to initialize bits [223:208] of the result.
4036 /// \param __w01
4037 ///    A 16-bit integral value used to initialize bits [239:224] of the result.
4038 /// \param __w00
4039 ///    A 16-bit integral value used to initialize bits [255:240] of the result.
4040 /// \returns An initialized 256-bit integer vector.
4041 static __inline __m256i __DEFAULT_FN_ATTRS
4042 _mm256_setr_epi16(short __w15, short __w14, short __w13, short __w12,
4043        short __w11, short __w10, short __w09, short __w08,
4044        short __w07, short __w06, short __w05, short __w04,
4045        short __w03, short __w02, short __w01, short __w00)
4046 {
4047   return _mm256_set_epi16(__w00, __w01, __w02, __w03,
4048                           __w04, __w05, __w06, __w07,
4049                           __w08, __w09, __w10, __w11,
4050                           __w12, __w13, __w14, __w15);
4051 }
4052 
4053 /// Constructs a 256-bit integer vector, initialized in reverse order
4054 ///    with the specified 8-bit integral values.
4055 ///
4056 /// \headerfile <x86intrin.h>
4057 ///
4058 /// This intrinsic is a utility function and does not correspond to a specific
4059 ///   instruction.
4060 ///
4061 /// \param __b31
4062 ///    An 8-bit integral value used to initialize bits [7:0] of the result.
4063 /// \param __b30
4064 ///    An 8-bit integral value used to initialize bits [15:8] of the result.
4065 /// \param __b29
4066 ///    An 8-bit integral value used to initialize bits [23:16] of the result.
4067 /// \param __b28
4068 ///    An 8-bit integral value used to initialize bits [31:24] of the result.
4069 /// \param __b27
4070 ///    An 8-bit integral value used to initialize bits [39:32] of the result.
4071 /// \param __b26
4072 ///    An 8-bit integral value used to initialize bits [47:40] of the result.
4073 /// \param __b25
4074 ///    An 8-bit integral value used to initialize bits [55:48] of the result.
4075 /// \param __b24
4076 ///    An 8-bit integral value used to initialize bits [63:56] of the result.
4077 /// \param __b23
4078 ///    An 8-bit integral value used to initialize bits [71:64] of the result.
4079 /// \param __b22
4080 ///    An 8-bit integral value used to initialize bits [79:72] of the result.
4081 /// \param __b21
4082 ///    An 8-bit integral value used to initialize bits [87:80] of the result.
4083 /// \param __b20
4084 ///    An 8-bit integral value used to initialize bits [95:88] of the result.
4085 /// \param __b19
4086 ///    An 8-bit integral value used to initialize bits [103:96] of the result.
4087 /// \param __b18
4088 ///    An 8-bit integral value used to initialize bits [111:104] of the result.
4089 /// \param __b17
4090 ///    An 8-bit integral value used to initialize bits [119:112] of the result.
4091 /// \param __b16
4092 ///    An 8-bit integral value used to initialize bits [127:120] of the result.
4093 /// \param __b15
4094 ///    An 8-bit integral value used to initialize bits [135:128] of the result.
4095 /// \param __b14
4096 ///    An 8-bit integral value used to initialize bits [143:136] of the result.
4097 /// \param __b13
4098 ///    An 8-bit integral value used to initialize bits [151:144] of the result.
4099 /// \param __b12
4100 ///    An 8-bit integral value used to initialize bits [159:152] of the result.
4101 /// \param __b11
4102 ///    An 8-bit integral value used to initialize bits [167:160] of the result.
4103 /// \param __b10
4104 ///    An 8-bit integral value used to initialize bits [175:168] of the result.
4105 /// \param __b09
4106 ///    An 8-bit integral value used to initialize bits [183:176] of the result.
4107 /// \param __b08
4108 ///    An 8-bit integral value used to initialize bits [191:184] of the result.
4109 /// \param __b07
4110 ///    An 8-bit integral value used to initialize bits [199:192] of the result.
4111 /// \param __b06
4112 ///    An 8-bit integral value used to initialize bits [207:200] of the result.
4113 /// \param __b05
4114 ///    An 8-bit integral value used to initialize bits [215:208] of the result.
4115 /// \param __b04
4116 ///    An 8-bit integral value used to initialize bits [223:216] of the result.
4117 /// \param __b03
4118 ///    An 8-bit integral value used to initialize bits [231:224] of the result.
4119 /// \param __b02
4120 ///    An 8-bit integral value used to initialize bits [239:232] of the result.
4121 /// \param __b01
4122 ///    An 8-bit integral value used to initialize bits [247:240] of the result.
4123 /// \param __b00
4124 ///    An 8-bit integral value used to initialize bits [255:248] of the result.
4125 /// \returns An initialized 256-bit integer vector.
4126 static __inline __m256i __DEFAULT_FN_ATTRS
4127 _mm256_setr_epi8(char __b31, char __b30, char __b29, char __b28,
4128                  char __b27, char __b26, char __b25, char __b24,
4129                  char __b23, char __b22, char __b21, char __b20,
4130                  char __b19, char __b18, char __b17, char __b16,
4131                  char __b15, char __b14, char __b13, char __b12,
4132                  char __b11, char __b10, char __b09, char __b08,
4133                  char __b07, char __b06, char __b05, char __b04,
4134                  char __b03, char __b02, char __b01, char __b00)
4135 {
4136   return _mm256_set_epi8(__b00, __b01, __b02, __b03, __b04, __b05, __b06, __b07,
4137                          __b08, __b09, __b10, __b11, __b12, __b13, __b14, __b15,
4138                          __b16, __b17, __b18, __b19, __b20, __b21, __b22, __b23,
4139                          __b24, __b25, __b26, __b27, __b28, __b29, __b30, __b31);
4140 }
4141 
4142 /// Constructs a 256-bit integer vector, initialized in reverse order
4143 ///    with the specified 64-bit integral values.
4144 ///
4145 /// \headerfile <x86intrin.h>
4146 ///
4147 /// This intrinsic corresponds to the <c> VPUNPCKLQDQ+VINSERTF128 </c>
4148 ///   instruction.
4149 ///
4150 /// \param __a
4151 ///    A 64-bit integral value used to initialize bits [63:0] of the result.
4152 /// \param __b
4153 ///    A 64-bit integral value used to initialize bits [127:64] of the result.
4154 /// \param __c
4155 ///    A 64-bit integral value used to initialize bits [191:128] of the result.
4156 /// \param __d
4157 ///    A 64-bit integral value used to initialize bits [255:192] of the result.
4158 /// \returns An initialized 256-bit integer vector.
4159 static __inline __m256i __DEFAULT_FN_ATTRS
4160 _mm256_setr_epi64x(long long __a, long long __b, long long __c, long long __d)
4161 {
4162   return _mm256_set_epi64x(__d, __c, __b, __a);
4163 }
4164 
4165 /* Create vectors with repeated elements */
4166 /// Constructs a 256-bit floating-point vector of [4 x double], with each
4167 ///    of the four double-precision floating-point vector elements set to the
4168 ///    specified double-precision floating-point value.
4169 ///
4170 /// \headerfile <x86intrin.h>
4171 ///
4172 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4173 ///
4174 /// \param __w
4175 ///    A double-precision floating-point value used to initialize each vector
4176 ///    element of the result.
4177 /// \returns An initialized 256-bit floating-point vector of [4 x double].
4178 static __inline __m256d __DEFAULT_FN_ATTRS
4179 _mm256_set1_pd(double __w)
4180 {
4181   return _mm256_set_pd(__w, __w, __w, __w);
4182 }
4183 
4184 /// Constructs a 256-bit floating-point vector of [8 x float], with each
4185 ///    of the eight single-precision floating-point vector elements set to the
4186 ///    specified single-precision floating-point value.
4187 ///
4188 /// \headerfile <x86intrin.h>
4189 ///
4190 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4191 ///   instruction.
4192 ///
4193 /// \param __w
4194 ///    A single-precision floating-point value used to initialize each vector
4195 ///    element of the result.
4196 /// \returns An initialized 256-bit floating-point vector of [8 x float].
4197 static __inline __m256 __DEFAULT_FN_ATTRS
4198 _mm256_set1_ps(float __w)
4199 {
4200   return _mm256_set_ps(__w, __w, __w, __w, __w, __w, __w, __w);
4201 }
4202 
4203 /// Constructs a 256-bit integer vector of [8 x i32], with each of the
4204 ///    32-bit integral vector elements set to the specified 32-bit integral
4205 ///    value.
4206 ///
4207 /// \headerfile <x86intrin.h>
4208 ///
4209 /// This intrinsic corresponds to the <c> VPERMILPS+VINSERTF128 </c>
4210 ///   instruction.
4211 ///
4212 /// \param __i
4213 ///    A 32-bit integral value used to initialize each vector element of the
4214 ///    result.
4215 /// \returns An initialized 256-bit integer vector of [8 x i32].
4216 static __inline __m256i __DEFAULT_FN_ATTRS
4217 _mm256_set1_epi32(int __i)
4218 {
4219   return _mm256_set_epi32(__i, __i, __i, __i, __i, __i, __i, __i);
4220 }
4221 
4222 /// Constructs a 256-bit integer vector of [16 x i16], with each of the
4223 ///    16-bit integral vector elements set to the specified 16-bit integral
4224 ///    value.
4225 ///
4226 /// \headerfile <x86intrin.h>
4227 ///
4228 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4229 ///
4230 /// \param __w
4231 ///    A 16-bit integral value used to initialize each vector element of the
4232 ///    result.
4233 /// \returns An initialized 256-bit integer vector of [16 x i16].
4234 static __inline __m256i __DEFAULT_FN_ATTRS
4235 _mm256_set1_epi16(short __w)
4236 {
4237   return _mm256_set_epi16(__w, __w, __w, __w, __w, __w, __w, __w,
4238                           __w, __w, __w, __w, __w, __w, __w, __w);
4239 }
4240 
4241 /// Constructs a 256-bit integer vector of [32 x i8], with each of the
4242 ///    8-bit integral vector elements set to the specified 8-bit integral value.
4243 ///
4244 /// \headerfile <x86intrin.h>
4245 ///
4246 /// This intrinsic corresponds to the <c> VPSHUFB+VINSERTF128 </c> instruction.
4247 ///
4248 /// \param __b
4249 ///    An 8-bit integral value used to initialize each vector element of the
4250 ///    result.
4251 /// \returns An initialized 256-bit integer vector of [32 x i8].
4252 static __inline __m256i __DEFAULT_FN_ATTRS
4253 _mm256_set1_epi8(char __b)
4254 {
4255   return _mm256_set_epi8(__b, __b, __b, __b, __b, __b, __b, __b,
4256                          __b, __b, __b, __b, __b, __b, __b, __b,
4257                          __b, __b, __b, __b, __b, __b, __b, __b,
4258                          __b, __b, __b, __b, __b, __b, __b, __b);
4259 }
4260 
4261 /// Constructs a 256-bit integer vector of [4 x i64], with each of the
4262 ///    64-bit integral vector elements set to the specified 64-bit integral
4263 ///    value.
4264 ///
4265 /// \headerfile <x86intrin.h>
4266 ///
4267 /// This intrinsic corresponds to the <c> VMOVDDUP+VINSERTF128 </c> instruction.
4268 ///
4269 /// \param __q
4270 ///    A 64-bit integral value used to initialize each vector element of the
4271 ///    result.
4272 /// \returns An initialized 256-bit integer vector of [4 x i64].
4273 static __inline __m256i __DEFAULT_FN_ATTRS
4274 _mm256_set1_epi64x(long long __q)
4275 {
4276   return _mm256_set_epi64x(__q, __q, __q, __q);
4277 }
4278 
4279 /* Create __zeroed vectors */
4280 /// Constructs a 256-bit floating-point vector of [4 x double] with all
4281 ///    vector elements initialized to zero.
4282 ///
4283 /// \headerfile <x86intrin.h>
4284 ///
4285 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4286 ///
4287 /// \returns A 256-bit vector of [4 x double] with all elements set to zero.
4288 static __inline __m256d __DEFAULT_FN_ATTRS
4289 _mm256_setzero_pd(void)
4290 {
4291   return __extension__ (__m256d){ 0, 0, 0, 0 };
4292 }
4293 
4294 /// Constructs a 256-bit floating-point vector of [8 x float] with all
4295 ///    vector elements initialized to zero.
4296 ///
4297 /// \headerfile <x86intrin.h>
4298 ///
4299 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4300 ///
4301 /// \returns A 256-bit vector of [8 x float] with all elements set to zero.
4302 static __inline __m256 __DEFAULT_FN_ATTRS
4303 _mm256_setzero_ps(void)
4304 {
4305   return __extension__ (__m256){ 0, 0, 0, 0, 0, 0, 0, 0 };
4306 }
4307 
4308 /// Constructs a 256-bit integer vector initialized to zero.
4309 ///
4310 /// \headerfile <x86intrin.h>
4311 ///
4312 /// This intrinsic corresponds to the <c> VXORPS </c> instruction.
4313 ///
4314 /// \returns A 256-bit integer vector initialized to zero.
4315 static __inline __m256i __DEFAULT_FN_ATTRS
4316 _mm256_setzero_si256(void)
4317 {
4318   return __extension__ (__m256i)(__v4di){ 0, 0, 0, 0 };
4319 }
4320 
4321 /* Cast between vector types */
4322 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4323 ///    floating-point vector of [8 x float].
4324 ///
4325 /// \headerfile <x86intrin.h>
4326 ///
4327 /// This intrinsic has no corresponding instruction.
4328 ///
4329 /// \param __a
4330 ///    A 256-bit floating-point vector of [4 x double].
4331 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4332 ///    bitwise pattern as the parameter.
4333 static __inline __m256 __DEFAULT_FN_ATTRS
4334 _mm256_castpd_ps(__m256d __a)
4335 {
4336   return (__m256)__a;
4337 }
4338 
4339 /// Casts a 256-bit floating-point vector of [4 x double] into a 256-bit
4340 ///    integer vector.
4341 ///
4342 /// \headerfile <x86intrin.h>
4343 ///
4344 /// This intrinsic has no corresponding instruction.
4345 ///
4346 /// \param __a
4347 ///    A 256-bit floating-point vector of [4 x double].
4348 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4349 ///    parameter.
4350 static __inline __m256i __DEFAULT_FN_ATTRS
4351 _mm256_castpd_si256(__m256d __a)
4352 {
4353   return (__m256i)__a;
4354 }
4355 
4356 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4357 ///    floating-point vector of [4 x double].
4358 ///
4359 /// \headerfile <x86intrin.h>
4360 ///
4361 /// This intrinsic has no corresponding instruction.
4362 ///
4363 /// \param __a
4364 ///    A 256-bit floating-point vector of [8 x float].
4365 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4366 ///    bitwise pattern as the parameter.
4367 static __inline __m256d __DEFAULT_FN_ATTRS
4368 _mm256_castps_pd(__m256 __a)
4369 {
4370   return (__m256d)__a;
4371 }
4372 
4373 /// Casts a 256-bit floating-point vector of [8 x float] into a 256-bit
4374 ///    integer vector.
4375 ///
4376 /// \headerfile <x86intrin.h>
4377 ///
4378 /// This intrinsic has no corresponding instruction.
4379 ///
4380 /// \param __a
4381 ///    A 256-bit floating-point vector of [8 x float].
4382 /// \returns A 256-bit integer vector containing the same bitwise pattern as the
4383 ///    parameter.
4384 static __inline __m256i __DEFAULT_FN_ATTRS
4385 _mm256_castps_si256(__m256 __a)
4386 {
4387   return (__m256i)__a;
4388 }
4389 
4390 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4391 ///    of [8 x float].
4392 ///
4393 /// \headerfile <x86intrin.h>
4394 ///
4395 /// This intrinsic has no corresponding instruction.
4396 ///
4397 /// \param __a
4398 ///    A 256-bit integer vector.
4399 /// \returns A 256-bit floating-point vector of [8 x float] containing the same
4400 ///    bitwise pattern as the parameter.
4401 static __inline __m256 __DEFAULT_FN_ATTRS
4402 _mm256_castsi256_ps(__m256i __a)
4403 {
4404   return (__m256)__a;
4405 }
4406 
4407 /// Casts a 256-bit integer vector into a 256-bit floating-point vector
4408 ///    of [4 x double].
4409 ///
4410 /// \headerfile <x86intrin.h>
4411 ///
4412 /// This intrinsic has no corresponding instruction.
4413 ///
4414 /// \param __a
4415 ///    A 256-bit integer vector.
4416 /// \returns A 256-bit floating-point vector of [4 x double] containing the same
4417 ///    bitwise pattern as the parameter.
4418 static __inline __m256d __DEFAULT_FN_ATTRS
4419 _mm256_castsi256_pd(__m256i __a)
4420 {
4421   return (__m256d)__a;
4422 }
4423 
4424 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4425 ///    [4 x double] as a 128-bit floating-point vector of [2 x double].
4426 ///
4427 /// \headerfile <x86intrin.h>
4428 ///
4429 /// This intrinsic has no corresponding instruction.
4430 ///
4431 /// \param __a
4432 ///    A 256-bit floating-point vector of [4 x double].
4433 /// \returns A 128-bit floating-point vector of [2 x double] containing the
4434 ///    lower 128 bits of the parameter.
4435 static __inline __m128d __DEFAULT_FN_ATTRS
4436 _mm256_castpd256_pd128(__m256d __a)
4437 {
4438   return __builtin_shufflevector((__v4df)__a, (__v4df)__a, 0, 1);
4439 }
4440 
4441 /// Returns the lower 128 bits of a 256-bit floating-point vector of
4442 ///    [8 x float] as a 128-bit floating-point vector of [4 x float].
4443 ///
4444 /// \headerfile <x86intrin.h>
4445 ///
4446 /// This intrinsic has no corresponding instruction.
4447 ///
4448 /// \param __a
4449 ///    A 256-bit floating-point vector of [8 x float].
4450 /// \returns A 128-bit floating-point vector of [4 x float] containing the
4451 ///    lower 128 bits of the parameter.
4452 static __inline __m128 __DEFAULT_FN_ATTRS
4453 _mm256_castps256_ps128(__m256 __a)
4454 {
4455   return __builtin_shufflevector((__v8sf)__a, (__v8sf)__a, 0, 1, 2, 3);
4456 }
4457 
4458 /// Truncates a 256-bit integer vector into a 128-bit integer vector.
4459 ///
4460 /// \headerfile <x86intrin.h>
4461 ///
4462 /// This intrinsic has no corresponding instruction.
4463 ///
4464 /// \param __a
4465 ///    A 256-bit integer vector.
4466 /// \returns A 128-bit integer vector containing the lower 128 bits of the
4467 ///    parameter.
4468 static __inline __m128i __DEFAULT_FN_ATTRS
4469 _mm256_castsi256_si128(__m256i __a)
4470 {
4471   return __builtin_shufflevector((__v4di)__a, (__v4di)__a, 0, 1);
4472 }
4473 
4474 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4475 ///    128-bit floating-point vector of [2 x double].
4476 ///
4477 ///    The lower 128 bits contain the value of the source vector. The contents
4478 ///    of the upper 128 bits are undefined.
4479 ///
4480 /// \headerfile <x86intrin.h>
4481 ///
4482 /// This intrinsic has no corresponding instruction.
4483 ///
4484 /// \param __a
4485 ///    A 128-bit vector of [2 x double].
4486 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4487 ///    contain the value of the parameter. The contents of the upper 128 bits
4488 ///    are undefined.
4489 static __inline __m256d __DEFAULT_FN_ATTRS
4490 _mm256_castpd128_pd256(__m128d __a)
4491 {
4492   return __builtin_shufflevector((__v2df)__a, (__v2df)__a, 0, 1, -1, -1);
4493 }
4494 
4495 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4496 ///    128-bit floating-point vector of [4 x float].
4497 ///
4498 ///    The lower 128 bits contain the value of the source vector. The contents
4499 ///    of the upper 128 bits are undefined.
4500 ///
4501 /// \headerfile <x86intrin.h>
4502 ///
4503 /// This intrinsic has no corresponding instruction.
4504 ///
4505 /// \param __a
4506 ///    A 128-bit vector of [4 x float].
4507 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4508 ///    contain the value of the parameter. The contents of the upper 128 bits
4509 ///    are undefined.
4510 static __inline __m256 __DEFAULT_FN_ATTRS
4511 _mm256_castps128_ps256(__m128 __a)
4512 {
4513   return __builtin_shufflevector((__v4sf)__a, (__v4sf)__a, 0, 1, 2, 3, -1, -1, -1, -1);
4514 }
4515 
4516 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4517 ///
4518 ///    The lower 128 bits contain the value of the source vector. The contents
4519 ///    of the upper 128 bits are undefined.
4520 ///
4521 /// \headerfile <x86intrin.h>
4522 ///
4523 /// This intrinsic has no corresponding instruction.
4524 ///
4525 /// \param __a
4526 ///    A 128-bit integer vector.
4527 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4528 ///    the parameter. The contents of the upper 128 bits are undefined.
4529 static __inline __m256i __DEFAULT_FN_ATTRS
4530 _mm256_castsi128_si256(__m128i __a)
4531 {
4532   return __builtin_shufflevector((__v2di)__a, (__v2di)__a, 0, 1, -1, -1);
4533 }
4534 
4535 /// Constructs a 256-bit floating-point vector of [4 x double] from a
4536 ///    128-bit floating-point vector of [2 x double]. The lower 128 bits
4537 ///    contain the value of the source vector. The upper 128 bits are set
4538 ///    to zero.
4539 ///
4540 /// \headerfile <x86intrin.h>
4541 ///
4542 /// This intrinsic has no corresponding instruction.
4543 ///
4544 /// \param __a
4545 ///    A 128-bit vector of [2 x double].
4546 /// \returns A 256-bit floating-point vector of [4 x double]. The lower 128 bits
4547 ///    contain the value of the parameter. The upper 128 bits are set to zero.
4548 static __inline __m256d __DEFAULT_FN_ATTRS
4549 _mm256_zextpd128_pd256(__m128d __a)
4550 {
4551   return __builtin_shufflevector((__v2df)__a, (__v2df)_mm_setzero_pd(), 0, 1, 2, 3);
4552 }
4553 
4554 /// Constructs a 256-bit floating-point vector of [8 x float] from a
4555 ///    128-bit floating-point vector of [4 x float]. The lower 128 bits contain
4556 ///    the value of the source vector. The upper 128 bits are set to zero.
4557 ///
4558 /// \headerfile <x86intrin.h>
4559 ///
4560 /// This intrinsic has no corresponding instruction.
4561 ///
4562 /// \param __a
4563 ///    A 128-bit vector of [4 x float].
4564 /// \returns A 256-bit floating-point vector of [8 x float]. The lower 128 bits
4565 ///    contain the value of the parameter. The upper 128 bits are set to zero.
4566 static __inline __m256 __DEFAULT_FN_ATTRS
4567 _mm256_zextps128_ps256(__m128 __a)
4568 {
4569   return __builtin_shufflevector((__v4sf)__a, (__v4sf)_mm_setzero_ps(), 0, 1, 2, 3, 4, 5, 6, 7);
4570 }
4571 
4572 /// Constructs a 256-bit integer vector from a 128-bit integer vector.
4573 ///    The lower 128 bits contain the value of the source vector. The upper
4574 ///    128 bits are set to zero.
4575 ///
4576 /// \headerfile <x86intrin.h>
4577 ///
4578 /// This intrinsic has no corresponding instruction.
4579 ///
4580 /// \param __a
4581 ///    A 128-bit integer vector.
4582 /// \returns A 256-bit integer vector. The lower 128 bits contain the value of
4583 ///    the parameter. The upper 128 bits are set to zero.
4584 static __inline __m256i __DEFAULT_FN_ATTRS
4585 _mm256_zextsi128_si256(__m128i __a)
4586 {
4587   return __builtin_shufflevector((__v2di)__a, (__v2di)_mm_setzero_si128(), 0, 1, 2, 3);
4588 }
4589 
4590 /*
4591    Vector insert.
4592    We use macros rather than inlines because we only want to accept
4593    invocations where the immediate M is a constant expression.
4594 */
4595 /// Constructs a new 256-bit vector of [8 x float] by first duplicating
4596 ///    a 256-bit vector of [8 x float] given in the first parameter, and then
4597 ///    replacing either the upper or the lower 128 bits with the contents of a
4598 ///    128-bit vector of [4 x float] in the second parameter.
4599 ///
4600 ///    The immediate integer parameter determines between the upper or the lower
4601 ///    128 bits.
4602 ///
4603 /// \headerfile <x86intrin.h>
4604 ///
4605 /// \code
4606 /// __m256 _mm256_insertf128_ps(__m256 V1, __m128 V2, const int M);
4607 /// \endcode
4608 ///
4609 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4610 ///
4611 /// \param V1
4612 ///    A 256-bit vector of [8 x float]. This vector is copied to the result
4613 ///    first, and then either the upper or the lower 128 bits of the result will
4614 ///    be replaced by the contents of \a V2.
4615 /// \param V2
4616 ///    A 128-bit vector of [4 x float]. The contents of this parameter are
4617 ///    written to either the upper or the lower 128 bits of the result depending
4618 ///    on the value of parameter \a M.
4619 /// \param M
4620 ///    An immediate integer. The least significant bit determines how the values
4621 ///    from the two parameters are interleaved: \n
4622 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4623 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4624 ///    result. \n
4625 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4626 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4627 ///    result.
4628 /// \returns A 256-bit vector of [8 x float] containing the interleaved values.
4629 #define _mm256_insertf128_ps(V1, V2, M) \
4630   ((__m256)__builtin_ia32_vinsertf128_ps256((__v8sf)(__m256)(V1), \
4631                                             (__v4sf)(__m128)(V2), (int)(M)))
4632 
4633 /// Constructs a new 256-bit vector of [4 x double] by first duplicating
4634 ///    a 256-bit vector of [4 x double] given in the first parameter, and then
4635 ///    replacing either the upper or the lower 128 bits with the contents of a
4636 ///    128-bit vector of [2 x double] in the second parameter.
4637 ///
4638 ///    The immediate integer parameter determines between the upper or the lower
4639 ///    128 bits.
4640 ///
4641 /// \headerfile <x86intrin.h>
4642 ///
4643 /// \code
4644 /// __m256d _mm256_insertf128_pd(__m256d V1, __m128d V2, const int M);
4645 /// \endcode
4646 ///
4647 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4648 ///
4649 /// \param V1
4650 ///    A 256-bit vector of [4 x double]. This vector is copied to the result
4651 ///    first, and then either the upper or the lower 128 bits of the result will
4652 ///    be replaced by the contents of \a V2.
4653 /// \param V2
4654 ///    A 128-bit vector of [2 x double]. The contents of this parameter are
4655 ///    written to either the upper or the lower 128 bits of the result depending
4656 ///    on the value of parameter \a M.
4657 /// \param M
4658 ///    An immediate integer. The least significant bit determines how the values
4659 ///    from the two parameters are interleaved: \n
4660 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4661 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4662 ///    result. \n
4663 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4664 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4665 ///    result.
4666 /// \returns A 256-bit vector of [4 x double] containing the interleaved values.
4667 #define _mm256_insertf128_pd(V1, V2, M) \
4668   ((__m256d)__builtin_ia32_vinsertf128_pd256((__v4df)(__m256d)(V1), \
4669                                              (__v2df)(__m128d)(V2), (int)(M)))
4670 
4671 /// Constructs a new 256-bit integer vector by first duplicating a
4672 ///    256-bit integer vector given in the first parameter, and then replacing
4673 ///    either the upper or the lower 128 bits with the contents of a 128-bit
4674 ///    integer vector in the second parameter.
4675 ///
4676 ///    The immediate integer parameter determines between the upper or the lower
4677 ///    128 bits.
4678 ///
4679 /// \headerfile <x86intrin.h>
4680 ///
4681 /// \code
4682 /// __m256i _mm256_insertf128_si256(__m256i V1, __m128i V2, const int M);
4683 /// \endcode
4684 ///
4685 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4686 ///
4687 /// \param V1
4688 ///    A 256-bit integer vector. This vector is copied to the result first, and
4689 ///    then either the upper or the lower 128 bits of the result will be
4690 ///    replaced by the contents of \a V2.
4691 /// \param V2
4692 ///    A 128-bit integer vector. The contents of this parameter are written to
4693 ///    either the upper or the lower 128 bits of the result depending on the
4694 ///     value of parameter \a M.
4695 /// \param M
4696 ///    An immediate integer. The least significant bit determines how the values
4697 ///    from the two parameters are interleaved: \n
4698 ///    If bit [0] of \a M is 0, \a V2 are copied to bits [127:0] of the result,
4699 ///    and bits [255:128] of \a V1 are copied to bits [255:128] of the
4700 ///    result. \n
4701 ///    If bit [0] of \a M is 1, \a V2 are copied to bits [255:128] of the
4702 ///    result, and bits [127:0] of \a V1 are copied to bits [127:0] of the
4703 ///    result.
4704 /// \returns A 256-bit integer vector containing the interleaved values.
4705 #define _mm256_insertf128_si256(V1, V2, M) \
4706   ((__m256i)__builtin_ia32_vinsertf128_si256((__v8si)(__m256i)(V1), \
4707                                              (__v4si)(__m128i)(V2), (int)(M)))
4708 
4709 /*
4710    Vector extract.
4711    We use macros rather than inlines because we only want to accept
4712    invocations where the immediate M is a constant expression.
4713 */
4714 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4715 ///    of [8 x float], as determined by the immediate integer parameter, and
4716 ///    returns the extracted bits as a 128-bit vector of [4 x float].
4717 ///
4718 /// \headerfile <x86intrin.h>
4719 ///
4720 /// \code
4721 /// __m128 _mm256_extractf128_ps(__m256 V, const int M);
4722 /// \endcode
4723 ///
4724 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4725 ///
4726 /// \param V
4727 ///    A 256-bit vector of [8 x float].
4728 /// \param M
4729 ///    An immediate integer. The least significant bit determines which bits are
4730 ///    extracted from the first parameter: \n
4731 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4732 ///    result. \n
4733 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4734 /// \returns A 128-bit vector of [4 x float] containing the extracted bits.
4735 #define _mm256_extractf128_ps(V, M) \
4736   ((__m128)__builtin_ia32_vextractf128_ps256((__v8sf)(__m256)(V), (int)(M)))
4737 
4738 /// Extracts either the upper or the lower 128 bits from a 256-bit vector
4739 ///    of [4 x double], as determined by the immediate integer parameter, and
4740 ///    returns the extracted bits as a 128-bit vector of [2 x double].
4741 ///
4742 /// \headerfile <x86intrin.h>
4743 ///
4744 /// \code
4745 /// __m128d _mm256_extractf128_pd(__m256d V, const int M);
4746 /// \endcode
4747 ///
4748 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4749 ///
4750 /// \param V
4751 ///    A 256-bit vector of [4 x double].
4752 /// \param M
4753 ///    An immediate integer. The least significant bit determines which bits are
4754 ///    extracted from the first parameter: \n
4755 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4756 ///    result. \n
4757 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4758 /// \returns A 128-bit vector of [2 x double] containing the extracted bits.
4759 #define _mm256_extractf128_pd(V, M) \
4760   ((__m128d)__builtin_ia32_vextractf128_pd256((__v4df)(__m256d)(V), (int)(M)))
4761 
4762 /// Extracts either the upper or the lower 128 bits from a 256-bit
4763 ///    integer vector, as determined by the immediate integer parameter, and
4764 ///    returns the extracted bits as a 128-bit integer vector.
4765 ///
4766 /// \headerfile <x86intrin.h>
4767 ///
4768 /// \code
4769 /// __m128i _mm256_extractf128_si256(__m256i V, const int M);
4770 /// \endcode
4771 ///
4772 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction.
4773 ///
4774 /// \param V
4775 ///    A 256-bit integer vector.
4776 /// \param M
4777 ///    An immediate integer. The least significant bit determines which bits are
4778 ///    extracted from the first parameter:  \n
4779 ///    If bit [0] of \a M is 0, bits [127:0] of \a V are copied to the
4780 ///    result. \n
4781 ///    If bit [0] of \a M is 1, bits [255:128] of \a V are copied to the result.
4782 /// \returns A 128-bit integer vector containing the extracted bits.
4783 #define _mm256_extractf128_si256(V, M) \
4784   ((__m128i)__builtin_ia32_vextractf128_si256((__v8si)(__m256i)(V), (int)(M)))
4785 
4786 /// Constructs a 256-bit floating-point vector of [8 x float] by
4787 ///    concatenating two 128-bit floating-point vectors of [4 x float].
4788 ///
4789 /// \headerfile <x86intrin.h>
4790 ///
4791 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4792 ///
4793 /// \param __hi
4794 ///    A 128-bit floating-point vector of [4 x float] to be copied to the upper
4795 ///    128 bits of the result.
4796 /// \param __lo
4797 ///    A 128-bit floating-point vector of [4 x float] to be copied to the lower
4798 ///    128 bits of the result.
4799 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4800 ///    concatenated result.
4801 static __inline __m256 __DEFAULT_FN_ATTRS
4802 _mm256_set_m128 (__m128 __hi, __m128 __lo)
4803 {
4804   return (__m256) __builtin_shufflevector((__v4sf)__lo, (__v4sf)__hi, 0, 1, 2, 3, 4, 5, 6, 7);
4805 }
4806 
4807 /// Constructs a 256-bit floating-point vector of [4 x double] by
4808 ///    concatenating two 128-bit floating-point vectors of [2 x double].
4809 ///
4810 /// \headerfile <x86intrin.h>
4811 ///
4812 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4813 ///
4814 /// \param __hi
4815 ///    A 128-bit floating-point vector of [2 x double] to be copied to the upper
4816 ///    128 bits of the result.
4817 /// \param __lo
4818 ///    A 128-bit floating-point vector of [2 x double] to be copied to the lower
4819 ///    128 bits of the result.
4820 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4821 ///    concatenated result.
4822 static __inline __m256d __DEFAULT_FN_ATTRS
4823 _mm256_set_m128d (__m128d __hi, __m128d __lo)
4824 {
4825   return (__m256d) __builtin_shufflevector((__v2df)__lo, (__v2df)__hi, 0, 1, 2, 3);
4826 }
4827 
4828 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4829 ///    integer vectors.
4830 ///
4831 /// \headerfile <x86intrin.h>
4832 ///
4833 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4834 ///
4835 /// \param __hi
4836 ///    A 128-bit integer vector to be copied to the upper 128 bits of the
4837 ///    result.
4838 /// \param __lo
4839 ///    A 128-bit integer vector to be copied to the lower 128 bits of the
4840 ///    result.
4841 /// \returns A 256-bit integer vector containing the concatenated result.
4842 static __inline __m256i __DEFAULT_FN_ATTRS
4843 _mm256_set_m128i (__m128i __hi, __m128i __lo)
4844 {
4845   return (__m256i) __builtin_shufflevector((__v2di)__lo, (__v2di)__hi, 0, 1, 2, 3);
4846 }
4847 
4848 /// Constructs a 256-bit floating-point vector of [8 x float] by
4849 ///    concatenating two 128-bit floating-point vectors of [4 x float]. This is
4850 ///    similar to _mm256_set_m128, but the order of the input parameters is
4851 ///    swapped.
4852 ///
4853 /// \headerfile <x86intrin.h>
4854 ///
4855 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4856 ///
4857 /// \param __lo
4858 ///    A 128-bit floating-point vector of [4 x float] to be copied to the lower
4859 ///    128 bits of the result.
4860 /// \param __hi
4861 ///    A 128-bit floating-point vector of [4 x float] to be copied to the upper
4862 ///    128 bits of the result.
4863 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4864 ///    concatenated result.
4865 static __inline __m256 __DEFAULT_FN_ATTRS
4866 _mm256_setr_m128 (__m128 __lo, __m128 __hi)
4867 {
4868   return _mm256_set_m128(__hi, __lo);
4869 }
4870 
4871 /// Constructs a 256-bit floating-point vector of [4 x double] by
4872 ///    concatenating two 128-bit floating-point vectors of [2 x double]. This is
4873 ///    similar to _mm256_set_m128d, but the order of the input parameters is
4874 ///    swapped.
4875 ///
4876 /// \headerfile <x86intrin.h>
4877 ///
4878 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4879 ///
4880 /// \param __lo
4881 ///    A 128-bit floating-point vector of [2 x double] to be copied to the lower
4882 ///    128 bits of the result.
4883 /// \param __hi
4884 ///    A 128-bit floating-point vector of [2 x double] to be copied to the upper
4885 ///    128 bits of the result.
4886 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4887 ///    concatenated result.
4888 static __inline __m256d __DEFAULT_FN_ATTRS
4889 _mm256_setr_m128d (__m128d __lo, __m128d __hi)
4890 {
4891   return (__m256d)_mm256_set_m128d(__hi, __lo);
4892 }
4893 
4894 /// Constructs a 256-bit integer vector by concatenating two 128-bit
4895 ///    integer vectors. This is similar to _mm256_set_m128i, but the order of
4896 ///    the input parameters is swapped.
4897 ///
4898 /// \headerfile <x86intrin.h>
4899 ///
4900 /// This intrinsic corresponds to the <c> VINSERTF128 </c> instruction.
4901 ///
4902 /// \param __lo
4903 ///    A 128-bit integer vector to be copied to the lower 128 bits of the
4904 ///    result.
4905 /// \param __hi
4906 ///    A 128-bit integer vector to be copied to the upper 128 bits of the
4907 ///    result.
4908 /// \returns A 256-bit integer vector containing the concatenated result.
4909 static __inline __m256i __DEFAULT_FN_ATTRS
4910 _mm256_setr_m128i (__m128i __lo, __m128i __hi)
4911 {
4912   return (__m256i)_mm256_set_m128i(__hi, __lo);
4913 }
4914 
4915 /* SIMD load ops (unaligned) */
4916 /// Loads two 128-bit floating-point vectors of [4 x float] from
4917 ///    unaligned memory locations and constructs a 256-bit floating-point vector
4918 ///    of [8 x float] by concatenating the two 128-bit vectors.
4919 ///
4920 /// \headerfile <x86intrin.h>
4921 ///
4922 /// This intrinsic corresponds to load instructions followed by the
4923 ///   <c> VINSERTF128 </c> instruction.
4924 ///
4925 /// \param __addr_hi
4926 ///    A pointer to a 128-bit memory location containing 4 consecutive
4927 ///    single-precision floating-point values. These values are to be copied to
4928 ///    bits[255:128] of the result. The address of the memory location does not
4929 ///    have to be aligned.
4930 /// \param __addr_lo
4931 ///    A pointer to a 128-bit memory location containing 4 consecutive
4932 ///    single-precision floating-point values. These values are to be copied to
4933 ///    bits[127:0] of the result. The address of the memory location does not
4934 ///    have to be aligned.
4935 /// \returns A 256-bit floating-point vector of [8 x float] containing the
4936 ///    concatenated result.
4937 static __inline __m256 __DEFAULT_FN_ATTRS
4938 _mm256_loadu2_m128(float const *__addr_hi, float const *__addr_lo)
4939 {
4940   return _mm256_set_m128(_mm_loadu_ps(__addr_hi), _mm_loadu_ps(__addr_lo));
4941 }
4942 
4943 /// Loads two 128-bit floating-point vectors of [2 x double] from
4944 ///    unaligned memory locations and constructs a 256-bit floating-point vector
4945 ///    of [4 x double] by concatenating the two 128-bit vectors.
4946 ///
4947 /// \headerfile <x86intrin.h>
4948 ///
4949 /// This intrinsic corresponds to load instructions followed by the
4950 ///   <c> VINSERTF128 </c> instruction.
4951 ///
4952 /// \param __addr_hi
4953 ///    A pointer to a 128-bit memory location containing two consecutive
4954 ///    double-precision floating-point values. These values are to be copied to
4955 ///    bits[255:128] of the result. The address of the memory location does not
4956 ///    have to be aligned.
4957 /// \param __addr_lo
4958 ///    A pointer to a 128-bit memory location containing two consecutive
4959 ///    double-precision floating-point values. These values are to be copied to
4960 ///    bits[127:0] of the result. The address of the memory location does not
4961 ///    have to be aligned.
4962 /// \returns A 256-bit floating-point vector of [4 x double] containing the
4963 ///    concatenated result.
4964 static __inline __m256d __DEFAULT_FN_ATTRS
4965 _mm256_loadu2_m128d(double const *__addr_hi, double const *__addr_lo)
4966 {
4967   return _mm256_set_m128d(_mm_loadu_pd(__addr_hi), _mm_loadu_pd(__addr_lo));
4968 }
4969 
4970 /// Loads two 128-bit integer vectors from unaligned memory locations and
4971 ///    constructs a 256-bit integer vector by concatenating the two 128-bit
4972 ///    vectors.
4973 ///
4974 /// \headerfile <x86intrin.h>
4975 ///
4976 /// This intrinsic corresponds to load instructions followed by the
4977 ///   <c> VINSERTF128 </c> instruction.
4978 ///
4979 /// \param __addr_hi
4980 ///    A pointer to a 128-bit memory location containing a 128-bit integer
4981 ///    vector. This vector is to be copied to bits[255:128] of the result. The
4982 ///    address of the memory location does not have to be aligned.
4983 /// \param __addr_lo
4984 ///    A pointer to a 128-bit memory location containing a 128-bit integer
4985 ///    vector. This vector is to be copied to bits[127:0] of the result. The
4986 ///    address of the memory location does not have to be aligned.
4987 /// \returns A 256-bit integer vector containing the concatenated result.
4988 static __inline __m256i __DEFAULT_FN_ATTRS
4989 _mm256_loadu2_m128i(__m128i_u const *__addr_hi, __m128i_u const *__addr_lo)
4990 {
4991    return _mm256_set_m128i(_mm_loadu_si128(__addr_hi), _mm_loadu_si128(__addr_lo));
4992 }
4993 
4994 /* SIMD store ops (unaligned) */
4995 /// Stores the upper and lower 128 bits of a 256-bit floating-point
4996 ///    vector of [8 x float] into two different unaligned memory locations.
4997 ///
4998 /// \headerfile <x86intrin.h>
4999 ///
5000 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5001 ///   store instructions.
5002 ///
5003 /// \param __addr_hi
5004 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5005 ///    copied to this memory location. The address of this memory location does
5006 ///    not have to be aligned.
5007 /// \param __addr_lo
5008 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5009 ///    copied to this memory location. The address of this memory location does
5010 ///    not have to be aligned.
5011 /// \param __a
5012 ///    A 256-bit floating-point vector of [8 x float].
5013 static __inline void __DEFAULT_FN_ATTRS
5014 _mm256_storeu2_m128(float *__addr_hi, float *__addr_lo, __m256 __a)
5015 {
5016   __m128 __v128;
5017 
5018   __v128 = _mm256_castps256_ps128(__a);
5019   _mm_storeu_ps(__addr_lo, __v128);
5020   __v128 = _mm256_extractf128_ps(__a, 1);
5021   _mm_storeu_ps(__addr_hi, __v128);
5022 }
5023 
5024 /// Stores the upper and lower 128 bits of a 256-bit floating-point
5025 ///    vector of [4 x double] into two different unaligned memory locations.
5026 ///
5027 /// \headerfile <x86intrin.h>
5028 ///
5029 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5030 ///   store instructions.
5031 ///
5032 /// \param __addr_hi
5033 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5034 ///    copied to this memory location. The address of this memory location does
5035 ///    not have to be aligned.
5036 /// \param __addr_lo
5037 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5038 ///    copied to this memory location. The address of this memory location does
5039 ///    not have to be aligned.
5040 /// \param __a
5041 ///    A 256-bit floating-point vector of [4 x double].
5042 static __inline void __DEFAULT_FN_ATTRS
5043 _mm256_storeu2_m128d(double *__addr_hi, double *__addr_lo, __m256d __a)
5044 {
5045   __m128d __v128;
5046 
5047   __v128 = _mm256_castpd256_pd128(__a);
5048   _mm_storeu_pd(__addr_lo, __v128);
5049   __v128 = _mm256_extractf128_pd(__a, 1);
5050   _mm_storeu_pd(__addr_hi, __v128);
5051 }
5052 
5053 /// Stores the upper and lower 128 bits of a 256-bit integer vector into
5054 ///    two different unaligned memory locations.
5055 ///
5056 /// \headerfile <x86intrin.h>
5057 ///
5058 /// This intrinsic corresponds to the <c> VEXTRACTF128 </c> instruction and the
5059 ///   store instructions.
5060 ///
5061 /// \param __addr_hi
5062 ///    A pointer to a 128-bit memory location. Bits[255:128] of \a __a are to be
5063 ///    copied to this memory location. The address of this memory location does
5064 ///    not have to be aligned.
5065 /// \param __addr_lo
5066 ///    A pointer to a 128-bit memory location. Bits[127:0] of \a __a are to be
5067 ///    copied to this memory location. The address of this memory location does
5068 ///    not have to be aligned.
5069 /// \param __a
5070 ///    A 256-bit integer vector.
5071 static __inline void __DEFAULT_FN_ATTRS
5072 _mm256_storeu2_m128i(__m128i_u *__addr_hi, __m128i_u *__addr_lo, __m256i __a)
5073 {
5074   __m128i __v128;
5075 
5076   __v128 = _mm256_castsi256_si128(__a);
5077   _mm_storeu_si128(__addr_lo, __v128);
5078   __v128 = _mm256_extractf128_si256(__a, 1);
5079   _mm_storeu_si128(__addr_hi, __v128);
5080 }
5081 
5082 #undef __DEFAULT_FN_ATTRS
5083 #undef __DEFAULT_FN_ATTRS128
5084 
5085 #endif /* __AVXINTRIN_H */
5086