xref: /freebsd/contrib/llvm-project/clang/lib/Headers/__clang_hip_math.h (revision f5f40dd63bc7acbb5312b26ac1ea1103c12352a6)
1 /*===---- __clang_hip_math.h - Device-side HIP math support ----------------===
2  *
3  * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4  * See https://llvm.org/LICENSE.txt for license information.
5  * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6  *
7  *===-----------------------------------------------------------------------===
8  */
9 #ifndef __CLANG_HIP_MATH_H__
10 #define __CLANG_HIP_MATH_H__
11 
12 #if !defined(__HIP__) && !defined(__OPENMP_AMDGCN__)
13 #error "This file is for HIP and OpenMP AMDGCN device compilation only."
14 #endif
15 
16 #if !defined(__HIPCC_RTC__)
17 #include <limits.h>
18 #include <stdint.h>
19 #ifdef __OPENMP_AMDGCN__
20 #include <omp.h>
21 #endif
22 #endif // !defined(__HIPCC_RTC__)
23 
24 #pragma push_macro("__DEVICE__")
25 
26 #ifdef __OPENMP_AMDGCN__
27 #define __DEVICE__ static inline __attribute__((always_inline, nothrow))
28 #else
29 #define __DEVICE__ static __device__ inline __attribute__((always_inline))
30 #endif
31 
32 // Device library provides fast low precision and slow full-recision
33 // implementations for some functions. Which one gets selected depends on
34 // __CLANG_GPU_APPROX_TRANSCENDENTALS__ which gets defined by clang if
35 // -ffast-math or -fgpu-approx-transcendentals are in effect.
36 #pragma push_macro("__FAST_OR_SLOW")
37 #if defined(__CLANG_GPU_APPROX_TRANSCENDENTALS__)
38 #define __FAST_OR_SLOW(fast, slow) fast
39 #else
40 #define __FAST_OR_SLOW(fast, slow) slow
41 #endif
42 
43 // A few functions return bool type starting only in C++11.
44 #pragma push_macro("__RETURN_TYPE")
45 #ifdef __OPENMP_AMDGCN__
46 #define __RETURN_TYPE int
47 #else
48 #if defined(__cplusplus)
49 #define __RETURN_TYPE bool
50 #else
51 #define __RETURN_TYPE int
52 #endif
53 #endif // __OPENMP_AMDGCN__
54 
55 #if defined (__cplusplus) && __cplusplus < 201103L
56 // emulate static_assert on type sizes
57 template<bool>
58 struct __compare_result{};
59 template<>
60 struct __compare_result<true> {
61   static const __device__ bool valid;
62 };
63 
64 __DEVICE__
65 void __suppress_unused_warning(bool b){};
66 template <unsigned int S, unsigned int T>
67 __DEVICE__ void __static_assert_equal_size() {
68   __suppress_unused_warning(__compare_result<S == T>::valid);
69 }
70 
71 #define __static_assert_type_size_equal(A, B) \
72   __static_assert_equal_size<A,B>()
73 
74 #else
75 #define __static_assert_type_size_equal(A,B) \
76   static_assert((A) == (B), "")
77 
78 #endif
79 
80 __DEVICE__
81 uint64_t __make_mantissa_base8(const char *__tagp __attribute__((nonnull))) {
82   uint64_t __r = 0;
83   while (*__tagp != '\0') {
84     char __tmp = *__tagp;
85 
86     if (__tmp >= '0' && __tmp <= '7')
87       __r = (__r * 8u) + __tmp - '0';
88     else
89       return 0;
90 
91     ++__tagp;
92   }
93 
94   return __r;
95 }
96 
97 __DEVICE__
98 uint64_t __make_mantissa_base10(const char *__tagp __attribute__((nonnull))) {
99   uint64_t __r = 0;
100   while (*__tagp != '\0') {
101     char __tmp = *__tagp;
102 
103     if (__tmp >= '0' && __tmp <= '9')
104       __r = (__r * 10u) + __tmp - '0';
105     else
106       return 0;
107 
108     ++__tagp;
109   }
110 
111   return __r;
112 }
113 
114 __DEVICE__
115 uint64_t __make_mantissa_base16(const char *__tagp __attribute__((nonnull))) {
116   uint64_t __r = 0;
117   while (*__tagp != '\0') {
118     char __tmp = *__tagp;
119 
120     if (__tmp >= '0' && __tmp <= '9')
121       __r = (__r * 16u) + __tmp - '0';
122     else if (__tmp >= 'a' && __tmp <= 'f')
123       __r = (__r * 16u) + __tmp - 'a' + 10;
124     else if (__tmp >= 'A' && __tmp <= 'F')
125       __r = (__r * 16u) + __tmp - 'A' + 10;
126     else
127       return 0;
128 
129     ++__tagp;
130   }
131 
132   return __r;
133 }
134 
135 __DEVICE__
136 uint64_t __make_mantissa(const char *__tagp __attribute__((nonnull))) {
137   if (*__tagp == '0') {
138     ++__tagp;
139 
140     if (*__tagp == 'x' || *__tagp == 'X')
141       return __make_mantissa_base16(__tagp);
142     else
143       return __make_mantissa_base8(__tagp);
144   }
145 
146   return __make_mantissa_base10(__tagp);
147 }
148 
149 // BEGIN FLOAT
150 
151 // BEGIN INTRINSICS
152 
153 __DEVICE__
154 float __cosf(float __x) { return __ocml_native_cos_f32(__x); }
155 
156 __DEVICE__
157 float __exp10f(float __x) {
158   const float __log2_10 = 0x1.a934f0p+1f;
159   return __builtin_amdgcn_exp2f(__log2_10 * __x);
160 }
161 
162 __DEVICE__
163 float __expf(float __x) {
164   const float __log2_e = 0x1.715476p+0;
165   return __builtin_amdgcn_exp2f(__log2_e * __x);
166 }
167 
168 #if defined OCML_BASIC_ROUNDED_OPERATIONS
169 __DEVICE__
170 float __fadd_rd(float __x, float __y) { return __ocml_add_rtn_f32(__x, __y); }
171 __DEVICE__
172 float __fadd_rn(float __x, float __y) { return __ocml_add_rte_f32(__x, __y); }
173 __DEVICE__
174 float __fadd_ru(float __x, float __y) { return __ocml_add_rtp_f32(__x, __y); }
175 __DEVICE__
176 float __fadd_rz(float __x, float __y) { return __ocml_add_rtz_f32(__x, __y); }
177 #else
178 __DEVICE__
179 float __fadd_rn(float __x, float __y) { return __x + __y; }
180 #endif
181 
182 #if defined OCML_BASIC_ROUNDED_OPERATIONS
183 __DEVICE__
184 float __fdiv_rd(float __x, float __y) { return __ocml_div_rtn_f32(__x, __y); }
185 __DEVICE__
186 float __fdiv_rn(float __x, float __y) { return __ocml_div_rte_f32(__x, __y); }
187 __DEVICE__
188 float __fdiv_ru(float __x, float __y) { return __ocml_div_rtp_f32(__x, __y); }
189 __DEVICE__
190 float __fdiv_rz(float __x, float __y) { return __ocml_div_rtz_f32(__x, __y); }
191 #else
192 __DEVICE__
193 float __fdiv_rn(float __x, float __y) { return __x / __y; }
194 #endif
195 
196 __DEVICE__
197 float __fdividef(float __x, float __y) { return __x / __y; }
198 
199 #if defined OCML_BASIC_ROUNDED_OPERATIONS
200 __DEVICE__
201 float __fmaf_rd(float __x, float __y, float __z) {
202   return __ocml_fma_rtn_f32(__x, __y, __z);
203 }
204 __DEVICE__
205 float __fmaf_rn(float __x, float __y, float __z) {
206   return __ocml_fma_rte_f32(__x, __y, __z);
207 }
208 __DEVICE__
209 float __fmaf_ru(float __x, float __y, float __z) {
210   return __ocml_fma_rtp_f32(__x, __y, __z);
211 }
212 __DEVICE__
213 float __fmaf_rz(float __x, float __y, float __z) {
214   return __ocml_fma_rtz_f32(__x, __y, __z);
215 }
216 #else
217 __DEVICE__
218 float __fmaf_rn(float __x, float __y, float __z) {
219   return __builtin_fmaf(__x, __y, __z);
220 }
221 #endif
222 
223 #if defined OCML_BASIC_ROUNDED_OPERATIONS
224 __DEVICE__
225 float __fmul_rd(float __x, float __y) { return __ocml_mul_rtn_f32(__x, __y); }
226 __DEVICE__
227 float __fmul_rn(float __x, float __y) { return __ocml_mul_rte_f32(__x, __y); }
228 __DEVICE__
229 float __fmul_ru(float __x, float __y) { return __ocml_mul_rtp_f32(__x, __y); }
230 __DEVICE__
231 float __fmul_rz(float __x, float __y) { return __ocml_mul_rtz_f32(__x, __y); }
232 #else
233 __DEVICE__
234 float __fmul_rn(float __x, float __y) { return __x * __y; }
235 #endif
236 
237 #if defined OCML_BASIC_ROUNDED_OPERATIONS
238 __DEVICE__
239 float __frcp_rd(float __x) { return __ocml_div_rtn_f32(1.0f, __x); }
240 __DEVICE__
241 float __frcp_rn(float __x) { return __ocml_div_rte_f32(1.0f, __x); }
242 __DEVICE__
243 float __frcp_ru(float __x) { return __ocml_div_rtp_f32(1.0f, __x); }
244 __DEVICE__
245 float __frcp_rz(float __x) { return __ocml_div_rtz_f32(1.0f, __x); }
246 #else
247 __DEVICE__
248 float __frcp_rn(float __x) { return 1.0f / __x; }
249 #endif
250 
251 __DEVICE__
252 float __frsqrt_rn(float __x) { return __builtin_amdgcn_rsqf(__x); }
253 
254 #if defined OCML_BASIC_ROUNDED_OPERATIONS
255 __DEVICE__
256 float __fsqrt_rd(float __x) { return __ocml_sqrt_rtn_f32(__x); }
257 __DEVICE__
258 float __fsqrt_rn(float __x) { return __ocml_sqrt_rte_f32(__x); }
259 __DEVICE__
260 float __fsqrt_ru(float __x) { return __ocml_sqrt_rtp_f32(__x); }
261 __DEVICE__
262 float __fsqrt_rz(float __x) { return __ocml_sqrt_rtz_f32(__x); }
263 #else
264 __DEVICE__
265 float __fsqrt_rn(float __x) { return __ocml_native_sqrt_f32(__x); }
266 #endif
267 
268 #if defined OCML_BASIC_ROUNDED_OPERATIONS
269 __DEVICE__
270 float __fsub_rd(float __x, float __y) { return __ocml_sub_rtn_f32(__x, __y); }
271 __DEVICE__
272 float __fsub_rn(float __x, float __y) { return __ocml_sub_rte_f32(__x, __y); }
273 __DEVICE__
274 float __fsub_ru(float __x, float __y) { return __ocml_sub_rtp_f32(__x, __y); }
275 __DEVICE__
276 float __fsub_rz(float __x, float __y) { return __ocml_sub_rtz_f32(__x, __y); }
277 #else
278 __DEVICE__
279 float __fsub_rn(float __x, float __y) { return __x - __y; }
280 #endif
281 
282 __DEVICE__
283 float __log10f(float __x) { return __builtin_log10f(__x); }
284 
285 __DEVICE__
286 float __log2f(float __x) { return __builtin_amdgcn_logf(__x); }
287 
288 __DEVICE__
289 float __logf(float __x) { return __builtin_logf(__x); }
290 
291 __DEVICE__
292 float __powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
293 
294 __DEVICE__
295 float __saturatef(float __x) { return (__x < 0) ? 0 : ((__x > 1) ? 1 : __x); }
296 
297 __DEVICE__
298 void __sincosf(float __x, float *__sinptr, float *__cosptr) {
299   *__sinptr = __ocml_native_sin_f32(__x);
300   *__cosptr = __ocml_native_cos_f32(__x);
301 }
302 
303 __DEVICE__
304 float __sinf(float __x) { return __ocml_native_sin_f32(__x); }
305 
306 __DEVICE__
307 float __tanf(float __x) {
308   return __sinf(__x) * __builtin_amdgcn_rcpf(__cosf(__x));
309 }
310 // END INTRINSICS
311 
312 #if defined(__cplusplus)
313 __DEVICE__
314 int abs(int __x) {
315   return __builtin_abs(__x);
316 }
317 __DEVICE__
318 long labs(long __x) {
319   return __builtin_labs(__x);
320 }
321 __DEVICE__
322 long long llabs(long long __x) {
323   return __builtin_llabs(__x);
324 }
325 #endif
326 
327 __DEVICE__
328 float acosf(float __x) { return __ocml_acos_f32(__x); }
329 
330 __DEVICE__
331 float acoshf(float __x) { return __ocml_acosh_f32(__x); }
332 
333 __DEVICE__
334 float asinf(float __x) { return __ocml_asin_f32(__x); }
335 
336 __DEVICE__
337 float asinhf(float __x) { return __ocml_asinh_f32(__x); }
338 
339 __DEVICE__
340 float atan2f(float __x, float __y) { return __ocml_atan2_f32(__x, __y); }
341 
342 __DEVICE__
343 float atanf(float __x) { return __ocml_atan_f32(__x); }
344 
345 __DEVICE__
346 float atanhf(float __x) { return __ocml_atanh_f32(__x); }
347 
348 __DEVICE__
349 float cbrtf(float __x) { return __ocml_cbrt_f32(__x); }
350 
351 __DEVICE__
352 float ceilf(float __x) { return __builtin_ceilf(__x); }
353 
354 __DEVICE__
355 float copysignf(float __x, float __y) { return __builtin_copysignf(__x, __y); }
356 
357 __DEVICE__
358 float cosf(float __x) { return __FAST_OR_SLOW(__cosf, __ocml_cos_f32)(__x); }
359 
360 __DEVICE__
361 float coshf(float __x) { return __ocml_cosh_f32(__x); }
362 
363 __DEVICE__
364 float cospif(float __x) { return __ocml_cospi_f32(__x); }
365 
366 __DEVICE__
367 float cyl_bessel_i0f(float __x) { return __ocml_i0_f32(__x); }
368 
369 __DEVICE__
370 float cyl_bessel_i1f(float __x) { return __ocml_i1_f32(__x); }
371 
372 __DEVICE__
373 float erfcf(float __x) { return __ocml_erfc_f32(__x); }
374 
375 __DEVICE__
376 float erfcinvf(float __x) { return __ocml_erfcinv_f32(__x); }
377 
378 __DEVICE__
379 float erfcxf(float __x) { return __ocml_erfcx_f32(__x); }
380 
381 __DEVICE__
382 float erff(float __x) { return __ocml_erf_f32(__x); }
383 
384 __DEVICE__
385 float erfinvf(float __x) { return __ocml_erfinv_f32(__x); }
386 
387 __DEVICE__
388 float exp10f(float __x) { return __ocml_exp10_f32(__x); }
389 
390 __DEVICE__
391 float exp2f(float __x) { return __builtin_exp2f(__x); }
392 
393 __DEVICE__
394 float expf(float __x) { return __builtin_expf(__x); }
395 
396 __DEVICE__
397 float expm1f(float __x) { return __ocml_expm1_f32(__x); }
398 
399 __DEVICE__
400 float fabsf(float __x) { return __builtin_fabsf(__x); }
401 
402 __DEVICE__
403 float fdimf(float __x, float __y) { return __ocml_fdim_f32(__x, __y); }
404 
405 __DEVICE__
406 float fdividef(float __x, float __y) { return __x / __y; }
407 
408 __DEVICE__
409 float floorf(float __x) { return __builtin_floorf(__x); }
410 
411 __DEVICE__
412 float fmaf(float __x, float __y, float __z) {
413   return __builtin_fmaf(__x, __y, __z);
414 }
415 
416 __DEVICE__
417 float fmaxf(float __x, float __y) { return __builtin_fmaxf(__x, __y); }
418 
419 __DEVICE__
420 float fminf(float __x, float __y) { return __builtin_fminf(__x, __y); }
421 
422 __DEVICE__
423 float fmodf(float __x, float __y) { return __ocml_fmod_f32(__x, __y); }
424 
425 __DEVICE__
426 float frexpf(float __x, int *__nptr) {
427   return __builtin_frexpf(__x, __nptr);
428 }
429 
430 __DEVICE__
431 float hypotf(float __x, float __y) { return __ocml_hypot_f32(__x, __y); }
432 
433 __DEVICE__
434 int ilogbf(float __x) { return __ocml_ilogb_f32(__x); }
435 
436 __DEVICE__
437 __RETURN_TYPE __finitef(float __x) { return __builtin_isfinite(__x); }
438 
439 __DEVICE__
440 __RETURN_TYPE __isinff(float __x) { return __builtin_isinf(__x); }
441 
442 __DEVICE__
443 __RETURN_TYPE __isnanf(float __x) { return __builtin_isnan(__x); }
444 
445 __DEVICE__
446 float j0f(float __x) { return __ocml_j0_f32(__x); }
447 
448 __DEVICE__
449 float j1f(float __x) { return __ocml_j1_f32(__x); }
450 
451 __DEVICE__
452 float jnf(int __n, float __x) { // TODO: we could use Ahmes multiplication
453                                 // and the Miller & Brown algorithm
454   //       for linear recurrences to get O(log n) steps, but it's unclear if
455   //       it'd be beneficial in this case.
456   if (__n == 0)
457     return j0f(__x);
458   if (__n == 1)
459     return j1f(__x);
460 
461   float __x0 = j0f(__x);
462   float __x1 = j1f(__x);
463   for (int __i = 1; __i < __n; ++__i) {
464     float __x2 = (2 * __i) / __x * __x1 - __x0;
465     __x0 = __x1;
466     __x1 = __x2;
467   }
468 
469   return __x1;
470 }
471 
472 __DEVICE__
473 float ldexpf(float __x, int __e) { return __builtin_amdgcn_ldexpf(__x, __e); }
474 
475 __DEVICE__
476 float lgammaf(float __x) { return __ocml_lgamma_f32(__x); }
477 
478 __DEVICE__
479 long long int llrintf(float __x) { return __builtin_rintf(__x); }
480 
481 __DEVICE__
482 long long int llroundf(float __x) { return __builtin_roundf(__x); }
483 
484 __DEVICE__
485 float log10f(float __x) { return __builtin_log10f(__x); }
486 
487 __DEVICE__
488 float log1pf(float __x) { return __ocml_log1p_f32(__x); }
489 
490 __DEVICE__
491 float log2f(float __x) { return __FAST_OR_SLOW(__log2f, __ocml_log2_f32)(__x); }
492 
493 __DEVICE__
494 float logbf(float __x) { return __ocml_logb_f32(__x); }
495 
496 __DEVICE__
497 float logf(float __x) { return __FAST_OR_SLOW(__logf, __ocml_log_f32)(__x); }
498 
499 __DEVICE__
500 long int lrintf(float __x) { return __builtin_rintf(__x); }
501 
502 __DEVICE__
503 long int lroundf(float __x) { return __builtin_roundf(__x); }
504 
505 __DEVICE__
506 float modff(float __x, float *__iptr) {
507   float __tmp;
508 #ifdef __OPENMP_AMDGCN__
509 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
510 #endif
511   float __r =
512       __ocml_modf_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
513   *__iptr = __tmp;
514   return __r;
515 }
516 
517 __DEVICE__
518 float nanf(const char *__tagp __attribute__((nonnull))) {
519   union {
520     float val;
521     struct ieee_float {
522       unsigned int mantissa : 22;
523       unsigned int quiet : 1;
524       unsigned int exponent : 8;
525       unsigned int sign : 1;
526     } bits;
527   } __tmp;
528   __static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits));
529 
530   __tmp.bits.sign = 0u;
531   __tmp.bits.exponent = ~0u;
532   __tmp.bits.quiet = 1u;
533   __tmp.bits.mantissa = __make_mantissa(__tagp);
534 
535   return __tmp.val;
536 }
537 
538 __DEVICE__
539 float nearbyintf(float __x) { return __builtin_nearbyintf(__x); }
540 
541 __DEVICE__
542 float nextafterf(float __x, float __y) {
543   return __ocml_nextafter_f32(__x, __y);
544 }
545 
546 __DEVICE__
547 float norm3df(float __x, float __y, float __z) {
548   return __ocml_len3_f32(__x, __y, __z);
549 }
550 
551 __DEVICE__
552 float norm4df(float __x, float __y, float __z, float __w) {
553   return __ocml_len4_f32(__x, __y, __z, __w);
554 }
555 
556 __DEVICE__
557 float normcdff(float __x) { return __ocml_ncdf_f32(__x); }
558 
559 __DEVICE__
560 float normcdfinvf(float __x) { return __ocml_ncdfinv_f32(__x); }
561 
562 __DEVICE__
563 float normf(int __dim,
564             const float *__a) { // TODO: placeholder until OCML adds support.
565   float __r = 0;
566   while (__dim--) {
567     __r += __a[0] * __a[0];
568     ++__a;
569   }
570 
571   return __builtin_sqrtf(__r);
572 }
573 
574 __DEVICE__
575 float powf(float __x, float __y) { return __ocml_pow_f32(__x, __y); }
576 
577 __DEVICE__
578 float powif(float __x, int __y) { return __ocml_pown_f32(__x, __y); }
579 
580 __DEVICE__
581 float rcbrtf(float __x) { return __ocml_rcbrt_f32(__x); }
582 
583 __DEVICE__
584 float remainderf(float __x, float __y) {
585   return __ocml_remainder_f32(__x, __y);
586 }
587 
588 __DEVICE__
589 float remquof(float __x, float __y, int *__quo) {
590   int __tmp;
591 #ifdef __OPENMP_AMDGCN__
592 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
593 #endif
594   float __r = __ocml_remquo_f32(
595       __x, __y, (__attribute__((address_space(5))) int *)&__tmp);
596   *__quo = __tmp;
597 
598   return __r;
599 }
600 
601 __DEVICE__
602 float rhypotf(float __x, float __y) { return __ocml_rhypot_f32(__x, __y); }
603 
604 __DEVICE__
605 float rintf(float __x) { return __builtin_rintf(__x); }
606 
607 __DEVICE__
608 float rnorm3df(float __x, float __y, float __z) {
609   return __ocml_rlen3_f32(__x, __y, __z);
610 }
611 
612 __DEVICE__
613 float rnorm4df(float __x, float __y, float __z, float __w) {
614   return __ocml_rlen4_f32(__x, __y, __z, __w);
615 }
616 
617 __DEVICE__
618 float rnormf(int __dim,
619              const float *__a) { // TODO: placeholder until OCML adds support.
620   float __r = 0;
621   while (__dim--) {
622     __r += __a[0] * __a[0];
623     ++__a;
624   }
625 
626   return __ocml_rsqrt_f32(__r);
627 }
628 
629 __DEVICE__
630 float roundf(float __x) { return __builtin_roundf(__x); }
631 
632 __DEVICE__
633 float rsqrtf(float __x) { return __ocml_rsqrt_f32(__x); }
634 
635 __DEVICE__
636 float scalblnf(float __x, long int __n) {
637   return (__n < INT_MAX) ? __builtin_amdgcn_ldexpf(__x, __n)
638                          : __ocml_scalb_f32(__x, __n);
639 }
640 
641 __DEVICE__
642 float scalbnf(float __x, int __n) { return __builtin_amdgcn_ldexpf(__x, __n); }
643 
644 __DEVICE__
645 __RETURN_TYPE __signbitf(float __x) { return __builtin_signbitf(__x); }
646 
647 __DEVICE__
648 void sincosf(float __x, float *__sinptr, float *__cosptr) {
649   float __tmp;
650 #ifdef __OPENMP_AMDGCN__
651 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
652 #endif
653 #ifdef __CLANG_CUDA_APPROX_TRANSCENDENTALS__
654   __sincosf(__x, __sinptr, __cosptr);
655 #else
656   *__sinptr =
657       __ocml_sincos_f32(__x, (__attribute__((address_space(5))) float *)&__tmp);
658   *__cosptr = __tmp;
659 #endif
660 }
661 
662 __DEVICE__
663 void sincospif(float __x, float *__sinptr, float *__cosptr) {
664   float __tmp;
665 #ifdef __OPENMP_AMDGCN__
666 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
667 #endif
668   *__sinptr = __ocml_sincospi_f32(
669       __x, (__attribute__((address_space(5))) float *)&__tmp);
670   *__cosptr = __tmp;
671 }
672 
673 __DEVICE__
674 float sinf(float __x) { return __FAST_OR_SLOW(__sinf, __ocml_sin_f32)(__x); }
675 
676 __DEVICE__
677 float sinhf(float __x) { return __ocml_sinh_f32(__x); }
678 
679 __DEVICE__
680 float sinpif(float __x) { return __ocml_sinpi_f32(__x); }
681 
682 __DEVICE__
683 float sqrtf(float __x) { return __builtin_sqrtf(__x); }
684 
685 __DEVICE__
686 float tanf(float __x) { return __ocml_tan_f32(__x); }
687 
688 __DEVICE__
689 float tanhf(float __x) { return __ocml_tanh_f32(__x); }
690 
691 __DEVICE__
692 float tgammaf(float __x) { return __ocml_tgamma_f32(__x); }
693 
694 __DEVICE__
695 float truncf(float __x) { return __builtin_truncf(__x); }
696 
697 __DEVICE__
698 float y0f(float __x) { return __ocml_y0_f32(__x); }
699 
700 __DEVICE__
701 float y1f(float __x) { return __ocml_y1_f32(__x); }
702 
703 __DEVICE__
704 float ynf(int __n, float __x) { // TODO: we could use Ahmes multiplication
705                                 // and the Miller & Brown algorithm
706   //       for linear recurrences to get O(log n) steps, but it's unclear if
707   //       it'd be beneficial in this case. Placeholder until OCML adds
708   //       support.
709   if (__n == 0)
710     return y0f(__x);
711   if (__n == 1)
712     return y1f(__x);
713 
714   float __x0 = y0f(__x);
715   float __x1 = y1f(__x);
716   for (int __i = 1; __i < __n; ++__i) {
717     float __x2 = (2 * __i) / __x * __x1 - __x0;
718     __x0 = __x1;
719     __x1 = __x2;
720   }
721 
722   return __x1;
723 }
724 
725 
726 // END FLOAT
727 
728 // BEGIN DOUBLE
729 __DEVICE__
730 double acos(double __x) { return __ocml_acos_f64(__x); }
731 
732 __DEVICE__
733 double acosh(double __x) { return __ocml_acosh_f64(__x); }
734 
735 __DEVICE__
736 double asin(double __x) { return __ocml_asin_f64(__x); }
737 
738 __DEVICE__
739 double asinh(double __x) { return __ocml_asinh_f64(__x); }
740 
741 __DEVICE__
742 double atan(double __x) { return __ocml_atan_f64(__x); }
743 
744 __DEVICE__
745 double atan2(double __x, double __y) { return __ocml_atan2_f64(__x, __y); }
746 
747 __DEVICE__
748 double atanh(double __x) { return __ocml_atanh_f64(__x); }
749 
750 __DEVICE__
751 double cbrt(double __x) { return __ocml_cbrt_f64(__x); }
752 
753 __DEVICE__
754 double ceil(double __x) { return __builtin_ceil(__x); }
755 
756 __DEVICE__
757 double copysign(double __x, double __y) {
758   return __builtin_copysign(__x, __y);
759 }
760 
761 __DEVICE__
762 double cos(double __x) { return __ocml_cos_f64(__x); }
763 
764 __DEVICE__
765 double cosh(double __x) { return __ocml_cosh_f64(__x); }
766 
767 __DEVICE__
768 double cospi(double __x) { return __ocml_cospi_f64(__x); }
769 
770 __DEVICE__
771 double cyl_bessel_i0(double __x) { return __ocml_i0_f64(__x); }
772 
773 __DEVICE__
774 double cyl_bessel_i1(double __x) { return __ocml_i1_f64(__x); }
775 
776 __DEVICE__
777 double erf(double __x) { return __ocml_erf_f64(__x); }
778 
779 __DEVICE__
780 double erfc(double __x) { return __ocml_erfc_f64(__x); }
781 
782 __DEVICE__
783 double erfcinv(double __x) { return __ocml_erfcinv_f64(__x); }
784 
785 __DEVICE__
786 double erfcx(double __x) { return __ocml_erfcx_f64(__x); }
787 
788 __DEVICE__
789 double erfinv(double __x) { return __ocml_erfinv_f64(__x); }
790 
791 __DEVICE__
792 double exp(double __x) { return __ocml_exp_f64(__x); }
793 
794 __DEVICE__
795 double exp10(double __x) { return __ocml_exp10_f64(__x); }
796 
797 __DEVICE__
798 double exp2(double __x) { return __ocml_exp2_f64(__x); }
799 
800 __DEVICE__
801 double expm1(double __x) { return __ocml_expm1_f64(__x); }
802 
803 __DEVICE__
804 double fabs(double __x) { return __builtin_fabs(__x); }
805 
806 __DEVICE__
807 double fdim(double __x, double __y) { return __ocml_fdim_f64(__x, __y); }
808 
809 __DEVICE__
810 double floor(double __x) { return __builtin_floor(__x); }
811 
812 __DEVICE__
813 double fma(double __x, double __y, double __z) {
814   return __builtin_fma(__x, __y, __z);
815 }
816 
817 __DEVICE__
818 double fmax(double __x, double __y) { return __builtin_fmax(__x, __y); }
819 
820 __DEVICE__
821 double fmin(double __x, double __y) { return __builtin_fmin(__x, __y); }
822 
823 __DEVICE__
824 double fmod(double __x, double __y) { return __ocml_fmod_f64(__x, __y); }
825 
826 __DEVICE__
827 double frexp(double __x, int *__nptr) {
828   return __builtin_frexp(__x, __nptr);
829 }
830 
831 __DEVICE__
832 double hypot(double __x, double __y) { return __ocml_hypot_f64(__x, __y); }
833 
834 __DEVICE__
835 int ilogb(double __x) { return __ocml_ilogb_f64(__x); }
836 
837 __DEVICE__
838 __RETURN_TYPE __finite(double __x) { return __builtin_isfinite(__x); }
839 
840 __DEVICE__
841 __RETURN_TYPE __isinf(double __x) { return __builtin_isinf(__x); }
842 
843 __DEVICE__
844 __RETURN_TYPE __isnan(double __x) { return __builtin_isnan(__x); }
845 
846 __DEVICE__
847 double j0(double __x) { return __ocml_j0_f64(__x); }
848 
849 __DEVICE__
850 double j1(double __x) { return __ocml_j1_f64(__x); }
851 
852 __DEVICE__
853 double jn(int __n, double __x) { // TODO: we could use Ahmes multiplication
854                                  // and the Miller & Brown algorithm
855   //       for linear recurrences to get O(log n) steps, but it's unclear if
856   //       it'd be beneficial in this case. Placeholder until OCML adds
857   //       support.
858   if (__n == 0)
859     return j0(__x);
860   if (__n == 1)
861     return j1(__x);
862 
863   double __x0 = j0(__x);
864   double __x1 = j1(__x);
865   for (int __i = 1; __i < __n; ++__i) {
866     double __x2 = (2 * __i) / __x * __x1 - __x0;
867     __x0 = __x1;
868     __x1 = __x2;
869   }
870   return __x1;
871 }
872 
873 __DEVICE__
874 double ldexp(double __x, int __e) { return __builtin_amdgcn_ldexp(__x, __e); }
875 
876 __DEVICE__
877 double lgamma(double __x) { return __ocml_lgamma_f64(__x); }
878 
879 __DEVICE__
880 long long int llrint(double __x) { return __builtin_rint(__x); }
881 
882 __DEVICE__
883 long long int llround(double __x) { return __builtin_round(__x); }
884 
885 __DEVICE__
886 double log(double __x) { return __ocml_log_f64(__x); }
887 
888 __DEVICE__
889 double log10(double __x) { return __ocml_log10_f64(__x); }
890 
891 __DEVICE__
892 double log1p(double __x) { return __ocml_log1p_f64(__x); }
893 
894 __DEVICE__
895 double log2(double __x) { return __ocml_log2_f64(__x); }
896 
897 __DEVICE__
898 double logb(double __x) { return __ocml_logb_f64(__x); }
899 
900 __DEVICE__
901 long int lrint(double __x) { return __builtin_rint(__x); }
902 
903 __DEVICE__
904 long int lround(double __x) { return __builtin_round(__x); }
905 
906 __DEVICE__
907 double modf(double __x, double *__iptr) {
908   double __tmp;
909 #ifdef __OPENMP_AMDGCN__
910 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
911 #endif
912   double __r =
913       __ocml_modf_f64(__x, (__attribute__((address_space(5))) double *)&__tmp);
914   *__iptr = __tmp;
915 
916   return __r;
917 }
918 
919 __DEVICE__
920 double nan(const char *__tagp) {
921 #if !_WIN32
922   union {
923     double val;
924     struct ieee_double {
925       uint64_t mantissa : 51;
926       uint32_t quiet : 1;
927       uint32_t exponent : 11;
928       uint32_t sign : 1;
929     } bits;
930   } __tmp;
931   __static_assert_type_size_equal(sizeof(__tmp.val), sizeof(__tmp.bits));
932 
933   __tmp.bits.sign = 0u;
934   __tmp.bits.exponent = ~0u;
935   __tmp.bits.quiet = 1u;
936   __tmp.bits.mantissa = __make_mantissa(__tagp);
937 
938   return __tmp.val;
939 #else
940   __static_assert_type_size_equal(sizeof(uint64_t), sizeof(double));
941   uint64_t __val = __make_mantissa(__tagp);
942   __val |= 0xFFF << 51;
943   return *reinterpret_cast<double *>(&__val);
944 #endif
945 }
946 
947 __DEVICE__
948 double nearbyint(double __x) { return __builtin_nearbyint(__x); }
949 
950 __DEVICE__
951 double nextafter(double __x, double __y) {
952   return __ocml_nextafter_f64(__x, __y);
953 }
954 
955 __DEVICE__
956 double norm(int __dim,
957             const double *__a) { // TODO: placeholder until OCML adds support.
958   double __r = 0;
959   while (__dim--) {
960     __r += __a[0] * __a[0];
961     ++__a;
962   }
963 
964   return __builtin_sqrt(__r);
965 }
966 
967 __DEVICE__
968 double norm3d(double __x, double __y, double __z) {
969   return __ocml_len3_f64(__x, __y, __z);
970 }
971 
972 __DEVICE__
973 double norm4d(double __x, double __y, double __z, double __w) {
974   return __ocml_len4_f64(__x, __y, __z, __w);
975 }
976 
977 __DEVICE__
978 double normcdf(double __x) { return __ocml_ncdf_f64(__x); }
979 
980 __DEVICE__
981 double normcdfinv(double __x) { return __ocml_ncdfinv_f64(__x); }
982 
983 __DEVICE__
984 double pow(double __x, double __y) { return __ocml_pow_f64(__x, __y); }
985 
986 __DEVICE__
987 double powi(double __x, int __y) { return __ocml_pown_f64(__x, __y); }
988 
989 __DEVICE__
990 double rcbrt(double __x) { return __ocml_rcbrt_f64(__x); }
991 
992 __DEVICE__
993 double remainder(double __x, double __y) {
994   return __ocml_remainder_f64(__x, __y);
995 }
996 
997 __DEVICE__
998 double remquo(double __x, double __y, int *__quo) {
999   int __tmp;
1000 #ifdef __OPENMP_AMDGCN__
1001 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
1002 #endif
1003   double __r = __ocml_remquo_f64(
1004       __x, __y, (__attribute__((address_space(5))) int *)&__tmp);
1005   *__quo = __tmp;
1006 
1007   return __r;
1008 }
1009 
1010 __DEVICE__
1011 double rhypot(double __x, double __y) { return __ocml_rhypot_f64(__x, __y); }
1012 
1013 __DEVICE__
1014 double rint(double __x) { return __builtin_rint(__x); }
1015 
1016 __DEVICE__
1017 double rnorm(int __dim,
1018              const double *__a) { // TODO: placeholder until OCML adds support.
1019   double __r = 0;
1020   while (__dim--) {
1021     __r += __a[0] * __a[0];
1022     ++__a;
1023   }
1024 
1025   return __ocml_rsqrt_f64(__r);
1026 }
1027 
1028 __DEVICE__
1029 double rnorm3d(double __x, double __y, double __z) {
1030   return __ocml_rlen3_f64(__x, __y, __z);
1031 }
1032 
1033 __DEVICE__
1034 double rnorm4d(double __x, double __y, double __z, double __w) {
1035   return __ocml_rlen4_f64(__x, __y, __z, __w);
1036 }
1037 
1038 __DEVICE__
1039 double round(double __x) { return __builtin_round(__x); }
1040 
1041 __DEVICE__
1042 double rsqrt(double __x) { return __ocml_rsqrt_f64(__x); }
1043 
1044 __DEVICE__
1045 double scalbln(double __x, long int __n) {
1046   return (__n < INT_MAX) ? __builtin_amdgcn_ldexp(__x, __n)
1047                          : __ocml_scalb_f64(__x, __n);
1048 }
1049 __DEVICE__
1050 double scalbn(double __x, int __n) { return __builtin_amdgcn_ldexp(__x, __n); }
1051 
1052 __DEVICE__
1053 __RETURN_TYPE __signbit(double __x) { return __builtin_signbit(__x); }
1054 
1055 __DEVICE__
1056 double sin(double __x) { return __ocml_sin_f64(__x); }
1057 
1058 __DEVICE__
1059 void sincos(double __x, double *__sinptr, double *__cosptr) {
1060   double __tmp;
1061 #ifdef __OPENMP_AMDGCN__
1062 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
1063 #endif
1064   *__sinptr = __ocml_sincos_f64(
1065       __x, (__attribute__((address_space(5))) double *)&__tmp);
1066   *__cosptr = __tmp;
1067 }
1068 
1069 __DEVICE__
1070 void sincospi(double __x, double *__sinptr, double *__cosptr) {
1071   double __tmp;
1072 #ifdef __OPENMP_AMDGCN__
1073 #pragma omp allocate(__tmp) allocator(omp_thread_mem_alloc)
1074 #endif
1075   *__sinptr = __ocml_sincospi_f64(
1076       __x, (__attribute__((address_space(5))) double *)&__tmp);
1077   *__cosptr = __tmp;
1078 }
1079 
1080 __DEVICE__
1081 double sinh(double __x) { return __ocml_sinh_f64(__x); }
1082 
1083 __DEVICE__
1084 double sinpi(double __x) { return __ocml_sinpi_f64(__x); }
1085 
1086 __DEVICE__
1087 double sqrt(double __x) { return __builtin_sqrt(__x); }
1088 
1089 __DEVICE__
1090 double tan(double __x) { return __ocml_tan_f64(__x); }
1091 
1092 __DEVICE__
1093 double tanh(double __x) { return __ocml_tanh_f64(__x); }
1094 
1095 __DEVICE__
1096 double tgamma(double __x) { return __ocml_tgamma_f64(__x); }
1097 
1098 __DEVICE__
1099 double trunc(double __x) { return __builtin_trunc(__x); }
1100 
1101 __DEVICE__
1102 double y0(double __x) { return __ocml_y0_f64(__x); }
1103 
1104 __DEVICE__
1105 double y1(double __x) { return __ocml_y1_f64(__x); }
1106 
1107 __DEVICE__
1108 double yn(int __n, double __x) { // TODO: we could use Ahmes multiplication
1109                                  // and the Miller & Brown algorithm
1110   //       for linear recurrences to get O(log n) steps, but it's unclear if
1111   //       it'd be beneficial in this case. Placeholder until OCML adds
1112   //       support.
1113   if (__n == 0)
1114     return y0(__x);
1115   if (__n == 1)
1116     return y1(__x);
1117 
1118   double __x0 = y0(__x);
1119   double __x1 = y1(__x);
1120   for (int __i = 1; __i < __n; ++__i) {
1121     double __x2 = (2 * __i) / __x * __x1 - __x0;
1122     __x0 = __x1;
1123     __x1 = __x2;
1124   }
1125 
1126   return __x1;
1127 }
1128 
1129 // BEGIN INTRINSICS
1130 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1131 __DEVICE__
1132 double __dadd_rd(double __x, double __y) {
1133   return __ocml_add_rtn_f64(__x, __y);
1134 }
1135 __DEVICE__
1136 double __dadd_rn(double __x, double __y) {
1137   return __ocml_add_rte_f64(__x, __y);
1138 }
1139 __DEVICE__
1140 double __dadd_ru(double __x, double __y) {
1141   return __ocml_add_rtp_f64(__x, __y);
1142 }
1143 __DEVICE__
1144 double __dadd_rz(double __x, double __y) {
1145   return __ocml_add_rtz_f64(__x, __y);
1146 }
1147 #else
1148 __DEVICE__
1149 double __dadd_rn(double __x, double __y) { return __x + __y; }
1150 #endif
1151 
1152 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1153 __DEVICE__
1154 double __ddiv_rd(double __x, double __y) {
1155   return __ocml_div_rtn_f64(__x, __y);
1156 }
1157 __DEVICE__
1158 double __ddiv_rn(double __x, double __y) {
1159   return __ocml_div_rte_f64(__x, __y);
1160 }
1161 __DEVICE__
1162 double __ddiv_ru(double __x, double __y) {
1163   return __ocml_div_rtp_f64(__x, __y);
1164 }
1165 __DEVICE__
1166 double __ddiv_rz(double __x, double __y) {
1167   return __ocml_div_rtz_f64(__x, __y);
1168 }
1169 #else
1170 __DEVICE__
1171 double __ddiv_rn(double __x, double __y) { return __x / __y; }
1172 #endif
1173 
1174 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1175 __DEVICE__
1176 double __dmul_rd(double __x, double __y) {
1177   return __ocml_mul_rtn_f64(__x, __y);
1178 }
1179 __DEVICE__
1180 double __dmul_rn(double __x, double __y) {
1181   return __ocml_mul_rte_f64(__x, __y);
1182 }
1183 __DEVICE__
1184 double __dmul_ru(double __x, double __y) {
1185   return __ocml_mul_rtp_f64(__x, __y);
1186 }
1187 __DEVICE__
1188 double __dmul_rz(double __x, double __y) {
1189   return __ocml_mul_rtz_f64(__x, __y);
1190 }
1191 #else
1192 __DEVICE__
1193 double __dmul_rn(double __x, double __y) { return __x * __y; }
1194 #endif
1195 
1196 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1197 __DEVICE__
1198 double __drcp_rd(double __x) { return __ocml_div_rtn_f64(1.0, __x); }
1199 __DEVICE__
1200 double __drcp_rn(double __x) { return __ocml_div_rte_f64(1.0, __x); }
1201 __DEVICE__
1202 double __drcp_ru(double __x) { return __ocml_div_rtp_f64(1.0, __x); }
1203 __DEVICE__
1204 double __drcp_rz(double __x) { return __ocml_div_rtz_f64(1.0, __x); }
1205 #else
1206 __DEVICE__
1207 double __drcp_rn(double __x) { return 1.0 / __x; }
1208 #endif
1209 
1210 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1211 __DEVICE__
1212 double __dsqrt_rd(double __x) { return __ocml_sqrt_rtn_f64(__x); }
1213 __DEVICE__
1214 double __dsqrt_rn(double __x) { return __ocml_sqrt_rte_f64(__x); }
1215 __DEVICE__
1216 double __dsqrt_ru(double __x) { return __ocml_sqrt_rtp_f64(__x); }
1217 __DEVICE__
1218 double __dsqrt_rz(double __x) { return __ocml_sqrt_rtz_f64(__x); }
1219 #else
1220 __DEVICE__
1221 double __dsqrt_rn(double __x) { return __builtin_sqrt(__x); }
1222 #endif
1223 
1224 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1225 __DEVICE__
1226 double __dsub_rd(double __x, double __y) {
1227   return __ocml_sub_rtn_f64(__x, __y);
1228 }
1229 __DEVICE__
1230 double __dsub_rn(double __x, double __y) {
1231   return __ocml_sub_rte_f64(__x, __y);
1232 }
1233 __DEVICE__
1234 double __dsub_ru(double __x, double __y) {
1235   return __ocml_sub_rtp_f64(__x, __y);
1236 }
1237 __DEVICE__
1238 double __dsub_rz(double __x, double __y) {
1239   return __ocml_sub_rtz_f64(__x, __y);
1240 }
1241 #else
1242 __DEVICE__
1243 double __dsub_rn(double __x, double __y) { return __x - __y; }
1244 #endif
1245 
1246 #if defined OCML_BASIC_ROUNDED_OPERATIONS
1247 __DEVICE__
1248 double __fma_rd(double __x, double __y, double __z) {
1249   return __ocml_fma_rtn_f64(__x, __y, __z);
1250 }
1251 __DEVICE__
1252 double __fma_rn(double __x, double __y, double __z) {
1253   return __ocml_fma_rte_f64(__x, __y, __z);
1254 }
1255 __DEVICE__
1256 double __fma_ru(double __x, double __y, double __z) {
1257   return __ocml_fma_rtp_f64(__x, __y, __z);
1258 }
1259 __DEVICE__
1260 double __fma_rz(double __x, double __y, double __z) {
1261   return __ocml_fma_rtz_f64(__x, __y, __z);
1262 }
1263 #else
1264 __DEVICE__
1265 double __fma_rn(double __x, double __y, double __z) {
1266   return __builtin_fma(__x, __y, __z);
1267 }
1268 #endif
1269 // END INTRINSICS
1270 // END DOUBLE
1271 
1272 // C only macros
1273 #if !defined(__cplusplus) && __STDC_VERSION__ >= 201112L
1274 #define isfinite(__x) _Generic((__x), float : __finitef, double : __finite)(__x)
1275 #define isinf(__x) _Generic((__x), float : __isinff, double : __isinf)(__x)
1276 #define isnan(__x) _Generic((__x), float : __isnanf, double : __isnan)(__x)
1277 #define signbit(__x)                                                           \
1278   _Generic((__x), float : __signbitf, double : __signbit)(__x)
1279 #endif // !defined(__cplusplus) && __STDC_VERSION__ >= 201112L
1280 
1281 #if defined(__cplusplus)
1282 template <class T> __DEVICE__ T min(T __arg1, T __arg2) {
1283   return (__arg1 < __arg2) ? __arg1 : __arg2;
1284 }
1285 
1286 template <class T> __DEVICE__ T max(T __arg1, T __arg2) {
1287   return (__arg1 > __arg2) ? __arg1 : __arg2;
1288 }
1289 
1290 __DEVICE__ int min(int __arg1, int __arg2) {
1291   return (__arg1 < __arg2) ? __arg1 : __arg2;
1292 }
1293 __DEVICE__ int max(int __arg1, int __arg2) {
1294   return (__arg1 > __arg2) ? __arg1 : __arg2;
1295 }
1296 
1297 __DEVICE__
1298 float max(float __x, float __y) { return __builtin_fmaxf(__x, __y); }
1299 
1300 __DEVICE__
1301 double max(double __x, double __y) { return __builtin_fmax(__x, __y); }
1302 
1303 __DEVICE__
1304 float min(float __x, float __y) { return __builtin_fminf(__x, __y); }
1305 
1306 __DEVICE__
1307 double min(double __x, double __y) { return __builtin_fmin(__x, __y); }
1308 
1309 #if !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__)
1310 __host__ inline static int min(int __arg1, int __arg2) {
1311   return __arg1 < __arg2 ? __arg1 : __arg2;
1312 }
1313 
1314 __host__ inline static int max(int __arg1, int __arg2) {
1315   return __arg1 > __arg2 ? __arg1 : __arg2;
1316 }
1317 #endif // !defined(__HIPCC_RTC__) && !defined(__OPENMP_AMDGCN__)
1318 #endif
1319 
1320 #pragma pop_macro("__DEVICE__")
1321 #pragma pop_macro("__RETURN_TYPE")
1322 #pragma pop_macro("__FAST_OR_SLOW")
1323 
1324 #endif // __CLANG_HIP_MATH_H__
1325