1 /*===--- __clang_cuda_intrinsics.h - Device-side CUDA intrinsic wrappers ---=== 2 * 3 * Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 * See https://llvm.org/LICENSE.txt for license information. 5 * SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 * 7 *===-----------------------------------------------------------------------=== 8 */ 9 #ifndef __CLANG_CUDA_INTRINSICS_H__ 10 #define __CLANG_CUDA_INTRINSICS_H__ 11 #ifndef __CUDA__ 12 #error "This file is for CUDA compilation only." 13 #endif 14 15 // sm_30 intrinsics: __shfl_{up,down,xor}. 16 17 #define __SM_30_INTRINSICS_H__ 18 #define __SM_30_INTRINSICS_HPP__ 19 20 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 21 22 #pragma push_macro("__MAKE_SHUFFLES") 23 #define __MAKE_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, __Mask, \ 24 __Type) \ 25 inline __device__ int __FnName(int __val, __Type __offset, \ 26 int __width = warpSize) { \ 27 return __IntIntrinsic(__val, __offset, \ 28 ((warpSize - __width) << 8) | (__Mask)); \ 29 } \ 30 inline __device__ float __FnName(float __val, __Type __offset, \ 31 int __width = warpSize) { \ 32 return __FloatIntrinsic(__val, __offset, \ 33 ((warpSize - __width) << 8) | (__Mask)); \ 34 } \ 35 inline __device__ unsigned int __FnName(unsigned int __val, __Type __offset, \ 36 int __width = warpSize) { \ 37 return static_cast<unsigned int>( \ 38 ::__FnName(static_cast<int>(__val), __offset, __width)); \ 39 } \ 40 inline __device__ long long __FnName(long long __val, __Type __offset, \ 41 int __width = warpSize) { \ 42 struct __Bits { \ 43 int __a, __b; \ 44 }; \ 45 _Static_assert(sizeof(__val) == sizeof(__Bits)); \ 46 _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \ 47 __Bits __tmp; \ 48 memcpy(&__tmp, &__val, sizeof(__val)); \ 49 __tmp.__a = ::__FnName(__tmp.__a, __offset, __width); \ 50 __tmp.__b = ::__FnName(__tmp.__b, __offset, __width); \ 51 long long __ret; \ 52 memcpy(&__ret, &__tmp, sizeof(__tmp)); \ 53 return __ret; \ 54 } \ 55 inline __device__ long __FnName(long __val, __Type __offset, \ 56 int __width = warpSize) { \ 57 _Static_assert(sizeof(long) == sizeof(long long) || \ 58 sizeof(long) == sizeof(int)); \ 59 if (sizeof(long) == sizeof(long long)) { \ 60 return static_cast<long>( \ 61 ::__FnName(static_cast<long long>(__val), __offset, __width)); \ 62 } else if (sizeof(long) == sizeof(int)) { \ 63 return static_cast<long>( \ 64 ::__FnName(static_cast<int>(__val), __offset, __width)); \ 65 } \ 66 } \ 67 inline __device__ unsigned long __FnName( \ 68 unsigned long __val, __Type __offset, int __width = warpSize) { \ 69 return static_cast<unsigned long>( \ 70 ::__FnName(static_cast<long>(__val), __offset, __width)); \ 71 } \ 72 inline __device__ unsigned long long __FnName( \ 73 unsigned long long __val, __Type __offset, int __width = warpSize) { \ 74 return static_cast<unsigned long long>( \ 75 ::__FnName(static_cast<long long>(__val), __offset, __width)); \ 76 } \ 77 inline __device__ double __FnName(double __val, __Type __offset, \ 78 int __width = warpSize) { \ 79 long long __tmp; \ 80 _Static_assert(sizeof(__tmp) == sizeof(__val)); \ 81 memcpy(&__tmp, &__val, sizeof(__val)); \ 82 __tmp = ::__FnName(__tmp, __offset, __width); \ 83 double __ret; \ 84 memcpy(&__ret, &__tmp, sizeof(__ret)); \ 85 return __ret; \ 86 } 87 88 __MAKE_SHUFFLES(__shfl, __nvvm_shfl_idx_i32, __nvvm_shfl_idx_f32, 0x1f, int); 89 // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >= 90 // maxLane. 91 __MAKE_SHUFFLES(__shfl_up, __nvvm_shfl_up_i32, __nvvm_shfl_up_f32, 0, 92 unsigned int); 93 __MAKE_SHUFFLES(__shfl_down, __nvvm_shfl_down_i32, __nvvm_shfl_down_f32, 0x1f, 94 unsigned int); 95 __MAKE_SHUFFLES(__shfl_xor, __nvvm_shfl_bfly_i32, __nvvm_shfl_bfly_f32, 0x1f, 96 int); 97 #pragma pop_macro("__MAKE_SHUFFLES") 98 99 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 100 101 #if CUDA_VERSION >= 9000 102 #if (!defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300) 103 // __shfl_sync_* variants available in CUDA-9 104 #pragma push_macro("__MAKE_SYNC_SHUFFLES") 105 #define __MAKE_SYNC_SHUFFLES(__FnName, __IntIntrinsic, __FloatIntrinsic, \ 106 __Mask, __Type) \ 107 inline __device__ int __FnName(unsigned int __mask, int __val, \ 108 __Type __offset, int __width = warpSize) { \ 109 return __IntIntrinsic(__mask, __val, __offset, \ 110 ((warpSize - __width) << 8) | (__Mask)); \ 111 } \ 112 inline __device__ float __FnName(unsigned int __mask, float __val, \ 113 __Type __offset, int __width = warpSize) { \ 114 return __FloatIntrinsic(__mask, __val, __offset, \ 115 ((warpSize - __width) << 8) | (__Mask)); \ 116 } \ 117 inline __device__ unsigned int __FnName(unsigned int __mask, \ 118 unsigned int __val, __Type __offset, \ 119 int __width = warpSize) { \ 120 return static_cast<unsigned int>( \ 121 ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \ 122 } \ 123 inline __device__ long long __FnName(unsigned int __mask, long long __val, \ 124 __Type __offset, \ 125 int __width = warpSize) { \ 126 struct __Bits { \ 127 int __a, __b; \ 128 }; \ 129 _Static_assert(sizeof(__val) == sizeof(__Bits)); \ 130 _Static_assert(sizeof(__Bits) == 2 * sizeof(int)); \ 131 __Bits __tmp; \ 132 memcpy(&__tmp, &__val, sizeof(__val)); \ 133 __tmp.__a = ::__FnName(__mask, __tmp.__a, __offset, __width); \ 134 __tmp.__b = ::__FnName(__mask, __tmp.__b, __offset, __width); \ 135 long long __ret; \ 136 memcpy(&__ret, &__tmp, sizeof(__tmp)); \ 137 return __ret; \ 138 } \ 139 inline __device__ unsigned long long __FnName( \ 140 unsigned int __mask, unsigned long long __val, __Type __offset, \ 141 int __width = warpSize) { \ 142 return static_cast<unsigned long long>( \ 143 ::__FnName(__mask, static_cast<long long>(__val), __offset, __width)); \ 144 } \ 145 inline __device__ long __FnName(unsigned int __mask, long __val, \ 146 __Type __offset, int __width = warpSize) { \ 147 _Static_assert(sizeof(long) == sizeof(long long) || \ 148 sizeof(long) == sizeof(int)); \ 149 if (sizeof(long) == sizeof(long long)) { \ 150 return static_cast<long>(::__FnName( \ 151 __mask, static_cast<long long>(__val), __offset, __width)); \ 152 } else if (sizeof(long) == sizeof(int)) { \ 153 return static_cast<long>( \ 154 ::__FnName(__mask, static_cast<int>(__val), __offset, __width)); \ 155 } \ 156 } \ 157 inline __device__ unsigned long __FnName( \ 158 unsigned int __mask, unsigned long __val, __Type __offset, \ 159 int __width = warpSize) { \ 160 return static_cast<unsigned long>( \ 161 ::__FnName(__mask, static_cast<long>(__val), __offset, __width)); \ 162 } \ 163 inline __device__ double __FnName(unsigned int __mask, double __val, \ 164 __Type __offset, int __width = warpSize) { \ 165 long long __tmp; \ 166 _Static_assert(sizeof(__tmp) == sizeof(__val)); \ 167 memcpy(&__tmp, &__val, sizeof(__val)); \ 168 __tmp = ::__FnName(__mask, __tmp, __offset, __width); \ 169 double __ret; \ 170 memcpy(&__ret, &__tmp, sizeof(__ret)); \ 171 return __ret; \ 172 } 173 __MAKE_SYNC_SHUFFLES(__shfl_sync, __nvvm_shfl_sync_idx_i32, 174 __nvvm_shfl_sync_idx_f32, 0x1f, int); 175 // We use 0 rather than 31 as our mask, because shfl.up applies to lanes >= 176 // maxLane. 177 __MAKE_SYNC_SHUFFLES(__shfl_up_sync, __nvvm_shfl_sync_up_i32, 178 __nvvm_shfl_sync_up_f32, 0, unsigned int); 179 __MAKE_SYNC_SHUFFLES(__shfl_down_sync, __nvvm_shfl_sync_down_i32, 180 __nvvm_shfl_sync_down_f32, 0x1f, unsigned int); 181 __MAKE_SYNC_SHUFFLES(__shfl_xor_sync, __nvvm_shfl_sync_bfly_i32, 182 __nvvm_shfl_sync_bfly_f32, 0x1f, int); 183 #pragma pop_macro("__MAKE_SYNC_SHUFFLES") 184 185 inline __device__ void __syncwarp(unsigned int mask = 0xffffffff) { 186 return __nvvm_bar_warp_sync(mask); 187 } 188 189 inline __device__ void __barrier_sync(unsigned int id) { 190 __nvvm_barrier_sync(id); 191 } 192 193 inline __device__ void __barrier_sync_count(unsigned int id, 194 unsigned int count) { 195 __nvvm_barrier_sync_cnt(id, count); 196 } 197 198 inline __device__ int __all_sync(unsigned int mask, int pred) { 199 return __nvvm_vote_all_sync(mask, pred); 200 } 201 202 inline __device__ int __any_sync(unsigned int mask, int pred) { 203 return __nvvm_vote_any_sync(mask, pred); 204 } 205 206 inline __device__ int __uni_sync(unsigned int mask, int pred) { 207 return __nvvm_vote_uni_sync(mask, pred); 208 } 209 210 inline __device__ unsigned int __ballot_sync(unsigned int mask, int pred) { 211 return __nvvm_vote_ballot_sync(mask, pred); 212 } 213 214 inline __device__ unsigned int __activemask() { 215 #if CUDA_VERSION < 9020 216 return __nvvm_vote_ballot(1); 217 #else 218 unsigned int mask; 219 asm volatile("activemask.b32 %0;" : "=r"(mask)); 220 return mask; 221 #endif 222 } 223 224 inline __device__ unsigned int __fns(unsigned mask, unsigned base, int offset) { 225 return __nvvm_fns(mask, base, offset); 226 } 227 228 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 300 229 230 // Define __match* builtins CUDA-9 headers expect to see. 231 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700 232 inline __device__ unsigned int __match32_any_sync(unsigned int mask, 233 unsigned int value) { 234 return __nvvm_match_any_sync_i32(mask, value); 235 } 236 237 inline __device__ unsigned int 238 __match64_any_sync(unsigned int mask, unsigned long long value) { 239 return __nvvm_match_any_sync_i64(mask, value); 240 } 241 242 inline __device__ unsigned int 243 __match32_all_sync(unsigned int mask, unsigned int value, int *pred) { 244 return __nvvm_match_all_sync_i32p(mask, value, pred); 245 } 246 247 inline __device__ unsigned int 248 __match64_all_sync(unsigned int mask, unsigned long long value, int *pred) { 249 return __nvvm_match_all_sync_i64p(mask, value, pred); 250 } 251 #include "crt/sm_70_rt.hpp" 252 253 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 700 254 #endif // __CUDA_VERSION >= 9000 255 256 // sm_32 intrinsics: __ldg and __funnelshift_{l,lc,r,rc}. 257 258 // Prevent the vanilla sm_32 intrinsics header from being included. 259 #define __SM_32_INTRINSICS_H__ 260 #define __SM_32_INTRINSICS_HPP__ 261 262 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320 263 264 inline __device__ char __ldg(const char *ptr) { return __nvvm_ldg_c(ptr); } 265 inline __device__ short __ldg(const short *ptr) { return __nvvm_ldg_s(ptr); } 266 inline __device__ int __ldg(const int *ptr) { return __nvvm_ldg_i(ptr); } 267 inline __device__ long __ldg(const long *ptr) { return __nvvm_ldg_l(ptr); } 268 inline __device__ long long __ldg(const long long *ptr) { 269 return __nvvm_ldg_ll(ptr); 270 } 271 inline __device__ unsigned char __ldg(const unsigned char *ptr) { 272 return __nvvm_ldg_uc(ptr); 273 } 274 inline __device__ signed char __ldg(const signed char *ptr) { 275 return __nvvm_ldg_uc((const unsigned char *)ptr); 276 } 277 inline __device__ unsigned short __ldg(const unsigned short *ptr) { 278 return __nvvm_ldg_us(ptr); 279 } 280 inline __device__ unsigned int __ldg(const unsigned int *ptr) { 281 return __nvvm_ldg_ui(ptr); 282 } 283 inline __device__ unsigned long __ldg(const unsigned long *ptr) { 284 return __nvvm_ldg_ul(ptr); 285 } 286 inline __device__ unsigned long long __ldg(const unsigned long long *ptr) { 287 return __nvvm_ldg_ull(ptr); 288 } 289 inline __device__ float __ldg(const float *ptr) { return __nvvm_ldg_f(ptr); } 290 inline __device__ double __ldg(const double *ptr) { return __nvvm_ldg_d(ptr); } 291 292 inline __device__ char2 __ldg(const char2 *ptr) { 293 typedef char c2 __attribute__((ext_vector_type(2))); 294 // We can assume that ptr is aligned at least to char2's alignment, but the 295 // load will assume that ptr is aligned to char2's alignment. This is only 296 // safe if alignof(c2) <= alignof(char2). 297 c2 rv = __nvvm_ldg_c2(reinterpret_cast<const c2 *>(ptr)); 298 char2 ret; 299 ret.x = rv[0]; 300 ret.y = rv[1]; 301 return ret; 302 } 303 inline __device__ char4 __ldg(const char4 *ptr) { 304 typedef char c4 __attribute__((ext_vector_type(4))); 305 c4 rv = __nvvm_ldg_c4(reinterpret_cast<const c4 *>(ptr)); 306 char4 ret; 307 ret.x = rv[0]; 308 ret.y = rv[1]; 309 ret.z = rv[2]; 310 ret.w = rv[3]; 311 return ret; 312 } 313 inline __device__ short2 __ldg(const short2 *ptr) { 314 typedef short s2 __attribute__((ext_vector_type(2))); 315 s2 rv = __nvvm_ldg_s2(reinterpret_cast<const s2 *>(ptr)); 316 short2 ret; 317 ret.x = rv[0]; 318 ret.y = rv[1]; 319 return ret; 320 } 321 inline __device__ short4 __ldg(const short4 *ptr) { 322 typedef short s4 __attribute__((ext_vector_type(4))); 323 s4 rv = __nvvm_ldg_s4(reinterpret_cast<const s4 *>(ptr)); 324 short4 ret; 325 ret.x = rv[0]; 326 ret.y = rv[1]; 327 ret.z = rv[2]; 328 ret.w = rv[3]; 329 return ret; 330 } 331 inline __device__ int2 __ldg(const int2 *ptr) { 332 typedef int i2 __attribute__((ext_vector_type(2))); 333 i2 rv = __nvvm_ldg_i2(reinterpret_cast<const i2 *>(ptr)); 334 int2 ret; 335 ret.x = rv[0]; 336 ret.y = rv[1]; 337 return ret; 338 } 339 inline __device__ int4 __ldg(const int4 *ptr) { 340 typedef int i4 __attribute__((ext_vector_type(4))); 341 i4 rv = __nvvm_ldg_i4(reinterpret_cast<const i4 *>(ptr)); 342 int4 ret; 343 ret.x = rv[0]; 344 ret.y = rv[1]; 345 ret.z = rv[2]; 346 ret.w = rv[3]; 347 return ret; 348 } 349 inline __device__ longlong2 __ldg(const longlong2 *ptr) { 350 typedef long long ll2 __attribute__((ext_vector_type(2))); 351 ll2 rv = __nvvm_ldg_ll2(reinterpret_cast<const ll2 *>(ptr)); 352 longlong2 ret; 353 ret.x = rv[0]; 354 ret.y = rv[1]; 355 return ret; 356 } 357 358 inline __device__ uchar2 __ldg(const uchar2 *ptr) { 359 typedef unsigned char uc2 __attribute__((ext_vector_type(2))); 360 uc2 rv = __nvvm_ldg_uc2(reinterpret_cast<const uc2 *>(ptr)); 361 uchar2 ret; 362 ret.x = rv[0]; 363 ret.y = rv[1]; 364 return ret; 365 } 366 inline __device__ uchar4 __ldg(const uchar4 *ptr) { 367 typedef unsigned char uc4 __attribute__((ext_vector_type(4))); 368 uc4 rv = __nvvm_ldg_uc4(reinterpret_cast<const uc4 *>(ptr)); 369 uchar4 ret; 370 ret.x = rv[0]; 371 ret.y = rv[1]; 372 ret.z = rv[2]; 373 ret.w = rv[3]; 374 return ret; 375 } 376 inline __device__ ushort2 __ldg(const ushort2 *ptr) { 377 typedef unsigned short us2 __attribute__((ext_vector_type(2))); 378 us2 rv = __nvvm_ldg_us2(reinterpret_cast<const us2 *>(ptr)); 379 ushort2 ret; 380 ret.x = rv[0]; 381 ret.y = rv[1]; 382 return ret; 383 } 384 inline __device__ ushort4 __ldg(const ushort4 *ptr) { 385 typedef unsigned short us4 __attribute__((ext_vector_type(4))); 386 us4 rv = __nvvm_ldg_us4(reinterpret_cast<const us4 *>(ptr)); 387 ushort4 ret; 388 ret.x = rv[0]; 389 ret.y = rv[1]; 390 ret.z = rv[2]; 391 ret.w = rv[3]; 392 return ret; 393 } 394 inline __device__ uint2 __ldg(const uint2 *ptr) { 395 typedef unsigned int ui2 __attribute__((ext_vector_type(2))); 396 ui2 rv = __nvvm_ldg_ui2(reinterpret_cast<const ui2 *>(ptr)); 397 uint2 ret; 398 ret.x = rv[0]; 399 ret.y = rv[1]; 400 return ret; 401 } 402 inline __device__ uint4 __ldg(const uint4 *ptr) { 403 typedef unsigned int ui4 __attribute__((ext_vector_type(4))); 404 ui4 rv = __nvvm_ldg_ui4(reinterpret_cast<const ui4 *>(ptr)); 405 uint4 ret; 406 ret.x = rv[0]; 407 ret.y = rv[1]; 408 ret.z = rv[2]; 409 ret.w = rv[3]; 410 return ret; 411 } 412 inline __device__ ulonglong2 __ldg(const ulonglong2 *ptr) { 413 typedef unsigned long long ull2 __attribute__((ext_vector_type(2))); 414 ull2 rv = __nvvm_ldg_ull2(reinterpret_cast<const ull2 *>(ptr)); 415 ulonglong2 ret; 416 ret.x = rv[0]; 417 ret.y = rv[1]; 418 return ret; 419 } 420 421 inline __device__ float2 __ldg(const float2 *ptr) { 422 typedef float f2 __attribute__((ext_vector_type(2))); 423 f2 rv = __nvvm_ldg_f2(reinterpret_cast<const f2 *>(ptr)); 424 float2 ret; 425 ret.x = rv[0]; 426 ret.y = rv[1]; 427 return ret; 428 } 429 inline __device__ float4 __ldg(const float4 *ptr) { 430 typedef float f4 __attribute__((ext_vector_type(4))); 431 f4 rv = __nvvm_ldg_f4(reinterpret_cast<const f4 *>(ptr)); 432 float4 ret; 433 ret.x = rv[0]; 434 ret.y = rv[1]; 435 ret.z = rv[2]; 436 ret.w = rv[3]; 437 return ret; 438 } 439 inline __device__ double2 __ldg(const double2 *ptr) { 440 typedef double d2 __attribute__((ext_vector_type(2))); 441 d2 rv = __nvvm_ldg_d2(reinterpret_cast<const d2 *>(ptr)); 442 double2 ret; 443 ret.x = rv[0]; 444 ret.y = rv[1]; 445 return ret; 446 } 447 448 // TODO: Implement these as intrinsics, so the backend can work its magic on 449 // these. Alternatively, we could implement these as plain C and try to get 450 // llvm to recognize the relevant patterns. 451 inline __device__ unsigned __funnelshift_l(unsigned low32, unsigned high32, 452 unsigned shiftWidth) { 453 unsigned result; 454 asm("shf.l.wrap.b32 %0, %1, %2, %3;" 455 : "=r"(result) 456 : "r"(low32), "r"(high32), "r"(shiftWidth)); 457 return result; 458 } 459 inline __device__ unsigned __funnelshift_lc(unsigned low32, unsigned high32, 460 unsigned shiftWidth) { 461 unsigned result; 462 asm("shf.l.clamp.b32 %0, %1, %2, %3;" 463 : "=r"(result) 464 : "r"(low32), "r"(high32), "r"(shiftWidth)); 465 return result; 466 } 467 inline __device__ unsigned __funnelshift_r(unsigned low32, unsigned high32, 468 unsigned shiftWidth) { 469 unsigned result; 470 asm("shf.r.wrap.b32 %0, %1, %2, %3;" 471 : "=r"(result) 472 : "r"(low32), "r"(high32), "r"(shiftWidth)); 473 return result; 474 } 475 inline __device__ unsigned __funnelshift_rc(unsigned low32, unsigned high32, 476 unsigned shiftWidth) { 477 unsigned ret; 478 asm("shf.r.clamp.b32 %0, %1, %2, %3;" 479 : "=r"(ret) 480 : "r"(low32), "r"(high32), "r"(shiftWidth)); 481 return ret; 482 } 483 484 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 320 485 486 #if CUDA_VERSION >= 11000 487 extern "C" { 488 __device__ inline size_t __nv_cvta_generic_to_global_impl(const void *__ptr) { 489 return (size_t)(void __attribute__((address_space(1))) *)__ptr; 490 } 491 __device__ inline size_t __nv_cvta_generic_to_shared_impl(const void *__ptr) { 492 return (size_t)(void __attribute__((address_space(3))) *)__ptr; 493 } 494 __device__ inline size_t __nv_cvta_generic_to_constant_impl(const void *__ptr) { 495 return (size_t)(void __attribute__((address_space(4))) *)__ptr; 496 } 497 __device__ inline size_t __nv_cvta_generic_to_local_impl(const void *__ptr) { 498 return (size_t)(void __attribute__((address_space(5))) *)__ptr; 499 } 500 __device__ inline void *__nv_cvta_global_to_generic_impl(size_t __ptr) { 501 return (void *)(void __attribute__((address_space(1))) *)__ptr; 502 } 503 __device__ inline void *__nv_cvta_shared_to_generic_impl(size_t __ptr) { 504 return (void *)(void __attribute__((address_space(3))) *)__ptr; 505 } 506 __device__ inline void *__nv_cvta_constant_to_generic_impl(size_t __ptr) { 507 return (void *)(void __attribute__((address_space(4))) *)__ptr; 508 } 509 __device__ inline void *__nv_cvta_local_to_generic_impl(size_t __ptr) { 510 return (void *)(void __attribute__((address_space(5))) *)__ptr; 511 } 512 __device__ inline cuuint32_t __nvvm_get_smem_pointer(void *__ptr) { 513 return __nv_cvta_generic_to_shared_impl(__ptr); 514 } 515 } // extern "C" 516 517 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800 518 __device__ inline unsigned __reduce_add_sync(unsigned __mask, 519 unsigned __value) { 520 return __nvvm_redux_sync_add(__mask, __value); 521 } 522 __device__ inline unsigned __reduce_min_sync(unsigned __mask, 523 unsigned __value) { 524 return __nvvm_redux_sync_umin(__mask, __value); 525 } 526 __device__ inline unsigned __reduce_max_sync(unsigned __mask, 527 unsigned __value) { 528 return __nvvm_redux_sync_umax(__mask, __value); 529 } 530 __device__ inline int __reduce_min_sync(unsigned __mask, int __value) { 531 return __nvvm_redux_sync_min(__mask, __value); 532 } 533 __device__ inline int __reduce_max_sync(unsigned __mask, int __value) { 534 return __nvvm_redux_sync_max(__mask, __value); 535 } 536 __device__ inline unsigned __reduce_or_sync(unsigned __mask, unsigned __value) { 537 return __nvvm_redux_sync_or(__mask, __value); 538 } 539 __device__ inline unsigned __reduce_and_sync(unsigned __mask, 540 unsigned __value) { 541 return __nvvm_redux_sync_and(__mask, __value); 542 } 543 __device__ inline unsigned __reduce_xor_sync(unsigned __mask, 544 unsigned __value) { 545 return __nvvm_redux_sync_xor(__mask, __value); 546 } 547 548 __device__ inline void __nv_memcpy_async_shared_global_4(void *__dst, 549 const void *__src, 550 unsigned __src_size) { 551 __nvvm_cp_async_ca_shared_global_4( 552 (void __attribute__((address_space(3))) *)__dst, 553 (const void __attribute__((address_space(1))) *)__src, __src_size); 554 } 555 __device__ inline void __nv_memcpy_async_shared_global_8(void *__dst, 556 const void *__src, 557 unsigned __src_size) { 558 __nvvm_cp_async_ca_shared_global_8( 559 (void __attribute__((address_space(3))) *)__dst, 560 (const void __attribute__((address_space(1))) *)__src, __src_size); 561 } 562 __device__ inline void __nv_memcpy_async_shared_global_16(void *__dst, 563 const void *__src, 564 unsigned __src_size) { 565 __nvvm_cp_async_ca_shared_global_16( 566 (void __attribute__((address_space(3))) *)__dst, 567 (const void __attribute__((address_space(1))) *)__src, __src_size); 568 } 569 570 __device__ inline void * 571 __nv_associate_access_property(const void *__ptr, unsigned long long __prop) { 572 // TODO: it appears to provide compiler with some sort of a hint. We do not 573 // know what exactly it is supposed to do. However, CUDA headers suggest that 574 // just passing through __ptr should not affect correctness. They do so on 575 // pre-sm80 GPUs where this builtin is not available. 576 return (void*)__ptr; 577 } 578 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 800 579 580 #if !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900 581 __device__ inline unsigned __isCtaShared(const void *ptr) { 582 return __isShared(ptr); 583 } 584 585 __device__ inline unsigned __isClusterShared(const void *__ptr) { 586 return __nvvm_isspacep_shared_cluster(__ptr); 587 } 588 589 __device__ inline void *__cluster_map_shared_rank(const void *__ptr, 590 unsigned __rank) { 591 return __nvvm_mapa((void *)__ptr, __rank); 592 } 593 594 __device__ inline unsigned __cluster_query_shared_rank(const void *__ptr) { 595 return __nvvm_getctarank((void *)__ptr); 596 } 597 598 __device__ inline uint2 599 __cluster_map_shared_multicast(const void *__ptr, 600 unsigned int __cluster_cta_mask) { 601 return make_uint2((unsigned)__cvta_generic_to_shared(__ptr), 602 __cluster_cta_mask); 603 } 604 605 __device__ inline unsigned __clusterDimIsSpecified() { 606 return __nvvm_is_explicit_cluster(); 607 } 608 609 __device__ inline dim3 __clusterDim() { 610 return dim3(__nvvm_read_ptx_sreg_cluster_nctaid_x(), 611 __nvvm_read_ptx_sreg_cluster_nctaid_y(), 612 __nvvm_read_ptx_sreg_cluster_nctaid_z()); 613 } 614 615 __device__ inline dim3 __clusterRelativeBlockIdx() { 616 return dim3(__nvvm_read_ptx_sreg_cluster_ctaid_x(), 617 __nvvm_read_ptx_sreg_cluster_ctaid_y(), 618 __nvvm_read_ptx_sreg_cluster_ctaid_z()); 619 } 620 621 __device__ inline dim3 __clusterGridDimInClusters() { 622 return dim3(__nvvm_read_ptx_sreg_nclusterid_x(), 623 __nvvm_read_ptx_sreg_nclusterid_y(), 624 __nvvm_read_ptx_sreg_nclusterid_z()); 625 } 626 627 __device__ inline dim3 __clusterIdx() { 628 return dim3(__nvvm_read_ptx_sreg_clusterid_x(), 629 __nvvm_read_ptx_sreg_clusterid_y(), 630 __nvvm_read_ptx_sreg_clusterid_z()); 631 } 632 633 __device__ inline unsigned __clusterRelativeBlockRank() { 634 return __nvvm_read_ptx_sreg_cluster_ctarank(); 635 } 636 637 __device__ inline unsigned __clusterSizeInBlocks() { 638 return __nvvm_read_ptx_sreg_cluster_nctarank(); 639 } 640 641 __device__ inline void __cluster_barrier_arrive() { 642 __nvvm_barrier_cluster_arrive(); 643 } 644 645 __device__ inline void __cluster_barrier_arrive_relaxed() { 646 __nvvm_barrier_cluster_arrive_relaxed(); 647 } 648 649 __device__ inline void __cluster_barrier_wait() { 650 __nvvm_barrier_cluster_wait(); 651 } 652 653 __device__ inline void __threadfence_cluster() { __nvvm_fence_sc_cluster(); } 654 655 __device__ inline float2 atomicAdd(float2 *__ptr, float2 __val) { 656 float2 __ret; 657 __asm__("atom.add.v2.f32 {%0, %1}, [%2], {%3, %4};" 658 : "=f"(__ret.x), "=f"(__ret.y) 659 : "l"(__ptr), "f"(__val.x), "f"(__val.y)); 660 return __ret; 661 } 662 663 __device__ inline float2 atomicAdd_block(float2 *__ptr, float2 __val) { 664 float2 __ret; 665 __asm__("atom.cta.add.v2.f32 {%0, %1}, [%2], {%3, %4};" 666 : "=f"(__ret.x), "=f"(__ret.y) 667 : "l"(__ptr), "f"(__val.x), "f"(__val.y)); 668 return __ret; 669 } 670 671 __device__ inline float2 atomicAdd_system(float2 *__ptr, float2 __val) { 672 float2 __ret; 673 __asm__("atom.sys.add.v2.f32 {%0, %1}, [%2], {%3, %4};" 674 : "=f"(__ret.x), "=f"(__ret.y) 675 : "l"(__ptr), "f"(__val.x), "f"(__val.y)); 676 return __ret; 677 } 678 679 __device__ inline float4 atomicAdd(float4 *__ptr, float4 __val) { 680 float4 __ret; 681 __asm__("atom.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};" 682 : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w) 683 : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w)); 684 return __ret; 685 } 686 687 __device__ inline float4 atomicAdd_block(float4 *__ptr, float4 __val) { 688 float4 __ret; 689 __asm__( 690 "atom.cta.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};" 691 : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w) 692 : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w)); 693 return __ret; 694 } 695 696 __device__ inline float4 atomicAdd_system(float4 *__ptr, float4 __val) { 697 float4 __ret; 698 __asm__( 699 "atom.sys.add.v4.f32 {%0, %1, %2, %3}, [%4], {%5, %6, %7, %8};" 700 : "=f"(__ret.x), "=f"(__ret.y), "=f"(__ret.z), "=f"(__ret.w) 701 : "l"(__ptr), "f"(__val.x), "f"(__val.y), "f"(__val.z), "f"(__val.w) 702 :); 703 return __ret; 704 } 705 706 #endif // !defined(__CUDA_ARCH__) || __CUDA_ARCH__ >= 900 707 #endif // CUDA_VERSION >= 11000 708 709 #endif // defined(__CLANG_CUDA_INTRINSICS_H__) 710