1 //===--- CompilerInstance.cpp ---------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Frontend/CompilerInstance.h" 10 #include "clang/AST/ASTConsumer.h" 11 #include "clang/AST/ASTContext.h" 12 #include "clang/AST/Decl.h" 13 #include "clang/Basic/CharInfo.h" 14 #include "clang/Basic/Diagnostic.h" 15 #include "clang/Basic/DiagnosticOptions.h" 16 #include "clang/Basic/FileManager.h" 17 #include "clang/Basic/LangStandard.h" 18 #include "clang/Basic/SourceManager.h" 19 #include "clang/Basic/Stack.h" 20 #include "clang/Basic/TargetInfo.h" 21 #include "clang/Basic/Version.h" 22 #include "clang/Config/config.h" 23 #include "clang/Frontend/ChainedDiagnosticConsumer.h" 24 #include "clang/Frontend/FrontendAction.h" 25 #include "clang/Frontend/FrontendActions.h" 26 #include "clang/Frontend/FrontendDiagnostic.h" 27 #include "clang/Frontend/FrontendPluginRegistry.h" 28 #include "clang/Frontend/LogDiagnosticPrinter.h" 29 #include "clang/Frontend/SARIFDiagnosticPrinter.h" 30 #include "clang/Frontend/SerializedDiagnosticPrinter.h" 31 #include "clang/Frontend/TextDiagnosticPrinter.h" 32 #include "clang/Frontend/Utils.h" 33 #include "clang/Frontend/VerifyDiagnosticConsumer.h" 34 #include "clang/Lex/HeaderSearch.h" 35 #include "clang/Lex/Preprocessor.h" 36 #include "clang/Lex/PreprocessorOptions.h" 37 #include "clang/Sema/CodeCompleteConsumer.h" 38 #include "clang/Sema/Sema.h" 39 #include "clang/Serialization/ASTReader.h" 40 #include "clang/Serialization/GlobalModuleIndex.h" 41 #include "clang/Serialization/InMemoryModuleCache.h" 42 #include "llvm/ADT/STLExtras.h" 43 #include "llvm/ADT/ScopeExit.h" 44 #include "llvm/ADT/Statistic.h" 45 #include "llvm/Config/llvm-config.h" 46 #include "llvm/Support/BuryPointer.h" 47 #include "llvm/Support/CrashRecoveryContext.h" 48 #include "llvm/Support/Errc.h" 49 #include "llvm/Support/FileSystem.h" 50 #include "llvm/Support/LockFileManager.h" 51 #include "llvm/Support/MemoryBuffer.h" 52 #include "llvm/Support/Path.h" 53 #include "llvm/Support/Program.h" 54 #include "llvm/Support/Signals.h" 55 #include "llvm/Support/TimeProfiler.h" 56 #include "llvm/Support/Timer.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/TargetParser/Host.h" 59 #include <optional> 60 #include <time.h> 61 #include <utility> 62 63 using namespace clang; 64 65 CompilerInstance::CompilerInstance( 66 std::shared_ptr<PCHContainerOperations> PCHContainerOps, 67 InMemoryModuleCache *SharedModuleCache) 68 : ModuleLoader(/* BuildingModule = */ SharedModuleCache), 69 Invocation(new CompilerInvocation()), 70 ModuleCache(SharedModuleCache ? SharedModuleCache 71 : new InMemoryModuleCache), 72 ThePCHContainerOperations(std::move(PCHContainerOps)) {} 73 74 CompilerInstance::~CompilerInstance() { 75 assert(OutputFiles.empty() && "Still output files in flight?"); 76 } 77 78 void CompilerInstance::setInvocation( 79 std::shared_ptr<CompilerInvocation> Value) { 80 Invocation = std::move(Value); 81 } 82 83 bool CompilerInstance::shouldBuildGlobalModuleIndex() const { 84 return (BuildGlobalModuleIndex || 85 (TheASTReader && TheASTReader->isGlobalIndexUnavailable() && 86 getFrontendOpts().GenerateGlobalModuleIndex)) && 87 !DisableGeneratingGlobalModuleIndex; 88 } 89 90 void CompilerInstance::setDiagnostics(DiagnosticsEngine *Value) { 91 Diagnostics = Value; 92 } 93 94 void CompilerInstance::setVerboseOutputStream(raw_ostream &Value) { 95 OwnedVerboseOutputStream.reset(); 96 VerboseOutputStream = &Value; 97 } 98 99 void CompilerInstance::setVerboseOutputStream(std::unique_ptr<raw_ostream> Value) { 100 OwnedVerboseOutputStream.swap(Value); 101 VerboseOutputStream = OwnedVerboseOutputStream.get(); 102 } 103 104 void CompilerInstance::setTarget(TargetInfo *Value) { Target = Value; } 105 void CompilerInstance::setAuxTarget(TargetInfo *Value) { AuxTarget = Value; } 106 107 bool CompilerInstance::createTarget() { 108 // Create the target instance. 109 setTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), 110 getInvocation().TargetOpts)); 111 if (!hasTarget()) 112 return false; 113 114 // Check whether AuxTarget exists, if not, then create TargetInfo for the 115 // other side of CUDA/OpenMP/SYCL compilation. 116 if (!getAuxTarget() && 117 (getLangOpts().CUDA || getLangOpts().OpenMPIsTargetDevice || 118 getLangOpts().SYCLIsDevice) && 119 !getFrontendOpts().AuxTriple.empty()) { 120 auto TO = std::make_shared<TargetOptions>(); 121 TO->Triple = llvm::Triple::normalize(getFrontendOpts().AuxTriple); 122 if (getFrontendOpts().AuxTargetCPU) 123 TO->CPU = *getFrontendOpts().AuxTargetCPU; 124 if (getFrontendOpts().AuxTargetFeatures) 125 TO->FeaturesAsWritten = *getFrontendOpts().AuxTargetFeatures; 126 TO->HostTriple = getTarget().getTriple().str(); 127 setAuxTarget(TargetInfo::CreateTargetInfo(getDiagnostics(), TO)); 128 } 129 130 if (!getTarget().hasStrictFP() && !getLangOpts().ExpStrictFP) { 131 if (getLangOpts().RoundingMath) { 132 getDiagnostics().Report(diag::warn_fe_backend_unsupported_fp_rounding); 133 getLangOpts().RoundingMath = false; 134 } 135 auto FPExc = getLangOpts().getFPExceptionMode(); 136 if (FPExc != LangOptions::FPE_Default && FPExc != LangOptions::FPE_Ignore) { 137 getDiagnostics().Report(diag::warn_fe_backend_unsupported_fp_exceptions); 138 getLangOpts().setFPExceptionMode(LangOptions::FPE_Ignore); 139 } 140 // FIXME: can we disable FEnvAccess? 141 } 142 143 // We should do it here because target knows nothing about 144 // language options when it's being created. 145 if (getLangOpts().OpenCL && 146 !getTarget().validateOpenCLTarget(getLangOpts(), getDiagnostics())) 147 return false; 148 149 // Inform the target of the language options. 150 // FIXME: We shouldn't need to do this, the target should be immutable once 151 // created. This complexity should be lifted elsewhere. 152 getTarget().adjust(getDiagnostics(), getLangOpts()); 153 154 if (auto *Aux = getAuxTarget()) 155 getTarget().setAuxTarget(Aux); 156 157 return true; 158 } 159 160 llvm::vfs::FileSystem &CompilerInstance::getVirtualFileSystem() const { 161 return getFileManager().getVirtualFileSystem(); 162 } 163 164 void CompilerInstance::setFileManager(FileManager *Value) { 165 FileMgr = Value; 166 } 167 168 void CompilerInstance::setSourceManager(SourceManager *Value) { 169 SourceMgr = Value; 170 } 171 172 void CompilerInstance::setPreprocessor(std::shared_ptr<Preprocessor> Value) { 173 PP = std::move(Value); 174 } 175 176 void CompilerInstance::setASTContext(ASTContext *Value) { 177 Context = Value; 178 179 if (Context && Consumer) 180 getASTConsumer().Initialize(getASTContext()); 181 } 182 183 void CompilerInstance::setSema(Sema *S) { 184 TheSema.reset(S); 185 } 186 187 void CompilerInstance::setASTConsumer(std::unique_ptr<ASTConsumer> Value) { 188 Consumer = std::move(Value); 189 190 if (Context && Consumer) 191 getASTConsumer().Initialize(getASTContext()); 192 } 193 194 void CompilerInstance::setCodeCompletionConsumer(CodeCompleteConsumer *Value) { 195 CompletionConsumer.reset(Value); 196 } 197 198 std::unique_ptr<Sema> CompilerInstance::takeSema() { 199 return std::move(TheSema); 200 } 201 202 IntrusiveRefCntPtr<ASTReader> CompilerInstance::getASTReader() const { 203 return TheASTReader; 204 } 205 void CompilerInstance::setASTReader(IntrusiveRefCntPtr<ASTReader> Reader) { 206 assert(ModuleCache.get() == &Reader->getModuleManager().getModuleCache() && 207 "Expected ASTReader to use the same PCM cache"); 208 TheASTReader = std::move(Reader); 209 } 210 211 std::shared_ptr<ModuleDependencyCollector> 212 CompilerInstance::getModuleDepCollector() const { 213 return ModuleDepCollector; 214 } 215 216 void CompilerInstance::setModuleDepCollector( 217 std::shared_ptr<ModuleDependencyCollector> Collector) { 218 ModuleDepCollector = std::move(Collector); 219 } 220 221 static void collectHeaderMaps(const HeaderSearch &HS, 222 std::shared_ptr<ModuleDependencyCollector> MDC) { 223 SmallVector<std::string, 4> HeaderMapFileNames; 224 HS.getHeaderMapFileNames(HeaderMapFileNames); 225 for (auto &Name : HeaderMapFileNames) 226 MDC->addFile(Name); 227 } 228 229 static void collectIncludePCH(CompilerInstance &CI, 230 std::shared_ptr<ModuleDependencyCollector> MDC) { 231 const PreprocessorOptions &PPOpts = CI.getPreprocessorOpts(); 232 if (PPOpts.ImplicitPCHInclude.empty()) 233 return; 234 235 StringRef PCHInclude = PPOpts.ImplicitPCHInclude; 236 FileManager &FileMgr = CI.getFileManager(); 237 auto PCHDir = FileMgr.getOptionalDirectoryRef(PCHInclude); 238 if (!PCHDir) { 239 MDC->addFile(PCHInclude); 240 return; 241 } 242 243 std::error_code EC; 244 SmallString<128> DirNative; 245 llvm::sys::path::native(PCHDir->getName(), DirNative); 246 llvm::vfs::FileSystem &FS = FileMgr.getVirtualFileSystem(); 247 SimpleASTReaderListener Validator(CI.getPreprocessor()); 248 for (llvm::vfs::directory_iterator Dir = FS.dir_begin(DirNative, EC), DirEnd; 249 Dir != DirEnd && !EC; Dir.increment(EC)) { 250 // Check whether this is an AST file. ASTReader::isAcceptableASTFile is not 251 // used here since we're not interested in validating the PCH at this time, 252 // but only to check whether this is a file containing an AST. 253 if (!ASTReader::readASTFileControlBlock( 254 Dir->path(), FileMgr, CI.getModuleCache(), 255 CI.getPCHContainerReader(), 256 /*FindModuleFileExtensions=*/false, Validator, 257 /*ValidateDiagnosticOptions=*/false)) 258 MDC->addFile(Dir->path()); 259 } 260 } 261 262 static void collectVFSEntries(CompilerInstance &CI, 263 std::shared_ptr<ModuleDependencyCollector> MDC) { 264 if (CI.getHeaderSearchOpts().VFSOverlayFiles.empty()) 265 return; 266 267 // Collect all VFS found. 268 SmallVector<llvm::vfs::YAMLVFSEntry, 16> VFSEntries; 269 for (const std::string &VFSFile : CI.getHeaderSearchOpts().VFSOverlayFiles) { 270 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Buffer = 271 llvm::MemoryBuffer::getFile(VFSFile); 272 if (!Buffer) 273 return; 274 llvm::vfs::collectVFSFromYAML(std::move(Buffer.get()), 275 /*DiagHandler*/ nullptr, VFSFile, VFSEntries); 276 } 277 278 for (auto &E : VFSEntries) 279 MDC->addFile(E.VPath, E.RPath); 280 } 281 282 // Diagnostics 283 static void SetUpDiagnosticLog(DiagnosticOptions *DiagOpts, 284 const CodeGenOptions *CodeGenOpts, 285 DiagnosticsEngine &Diags) { 286 std::error_code EC; 287 std::unique_ptr<raw_ostream> StreamOwner; 288 raw_ostream *OS = &llvm::errs(); 289 if (DiagOpts->DiagnosticLogFile != "-") { 290 // Create the output stream. 291 auto FileOS = std::make_unique<llvm::raw_fd_ostream>( 292 DiagOpts->DiagnosticLogFile, EC, 293 llvm::sys::fs::OF_Append | llvm::sys::fs::OF_TextWithCRLF); 294 if (EC) { 295 Diags.Report(diag::warn_fe_cc_log_diagnostics_failure) 296 << DiagOpts->DiagnosticLogFile << EC.message(); 297 } else { 298 FileOS->SetUnbuffered(); 299 OS = FileOS.get(); 300 StreamOwner = std::move(FileOS); 301 } 302 } 303 304 // Chain in the diagnostic client which will log the diagnostics. 305 auto Logger = std::make_unique<LogDiagnosticPrinter>(*OS, DiagOpts, 306 std::move(StreamOwner)); 307 if (CodeGenOpts) 308 Logger->setDwarfDebugFlags(CodeGenOpts->DwarfDebugFlags); 309 if (Diags.ownsClient()) { 310 Diags.setClient( 311 new ChainedDiagnosticConsumer(Diags.takeClient(), std::move(Logger))); 312 } else { 313 Diags.setClient( 314 new ChainedDiagnosticConsumer(Diags.getClient(), std::move(Logger))); 315 } 316 } 317 318 static void SetupSerializedDiagnostics(DiagnosticOptions *DiagOpts, 319 DiagnosticsEngine &Diags, 320 StringRef OutputFile) { 321 auto SerializedConsumer = 322 clang::serialized_diags::create(OutputFile, DiagOpts); 323 324 if (Diags.ownsClient()) { 325 Diags.setClient(new ChainedDiagnosticConsumer( 326 Diags.takeClient(), std::move(SerializedConsumer))); 327 } else { 328 Diags.setClient(new ChainedDiagnosticConsumer( 329 Diags.getClient(), std::move(SerializedConsumer))); 330 } 331 } 332 333 void CompilerInstance::createDiagnostics(DiagnosticConsumer *Client, 334 bool ShouldOwnClient) { 335 Diagnostics = createDiagnostics(&getDiagnosticOpts(), Client, 336 ShouldOwnClient, &getCodeGenOpts()); 337 } 338 339 IntrusiveRefCntPtr<DiagnosticsEngine> 340 CompilerInstance::createDiagnostics(DiagnosticOptions *Opts, 341 DiagnosticConsumer *Client, 342 bool ShouldOwnClient, 343 const CodeGenOptions *CodeGenOpts) { 344 IntrusiveRefCntPtr<DiagnosticIDs> DiagID(new DiagnosticIDs()); 345 IntrusiveRefCntPtr<DiagnosticsEngine> 346 Diags(new DiagnosticsEngine(DiagID, Opts)); 347 348 // Create the diagnostic client for reporting errors or for 349 // implementing -verify. 350 if (Client) { 351 Diags->setClient(Client, ShouldOwnClient); 352 } else if (Opts->getFormat() == DiagnosticOptions::SARIF) { 353 Diags->setClient(new SARIFDiagnosticPrinter(llvm::errs(), Opts)); 354 } else 355 Diags->setClient(new TextDiagnosticPrinter(llvm::errs(), Opts)); 356 357 // Chain in -verify checker, if requested. 358 if (Opts->VerifyDiagnostics) 359 Diags->setClient(new VerifyDiagnosticConsumer(*Diags)); 360 361 // Chain in -diagnostic-log-file dumper, if requested. 362 if (!Opts->DiagnosticLogFile.empty()) 363 SetUpDiagnosticLog(Opts, CodeGenOpts, *Diags); 364 365 if (!Opts->DiagnosticSerializationFile.empty()) 366 SetupSerializedDiagnostics(Opts, *Diags, 367 Opts->DiagnosticSerializationFile); 368 369 // Configure our handling of diagnostics. 370 ProcessWarningOptions(*Diags, *Opts); 371 372 return Diags; 373 } 374 375 // File Manager 376 377 FileManager *CompilerInstance::createFileManager( 378 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) { 379 if (!VFS) 380 VFS = FileMgr ? &FileMgr->getVirtualFileSystem() 381 : createVFSFromCompilerInvocation(getInvocation(), 382 getDiagnostics()); 383 assert(VFS && "FileManager has no VFS?"); 384 FileMgr = new FileManager(getFileSystemOpts(), std::move(VFS)); 385 return FileMgr.get(); 386 } 387 388 // Source Manager 389 390 void CompilerInstance::createSourceManager(FileManager &FileMgr) { 391 SourceMgr = new SourceManager(getDiagnostics(), FileMgr); 392 } 393 394 // Initialize the remapping of files to alternative contents, e.g., 395 // those specified through other files. 396 static void InitializeFileRemapping(DiagnosticsEngine &Diags, 397 SourceManager &SourceMgr, 398 FileManager &FileMgr, 399 const PreprocessorOptions &InitOpts) { 400 // Remap files in the source manager (with buffers). 401 for (const auto &RB : InitOpts.RemappedFileBuffers) { 402 // Create the file entry for the file that we're mapping from. 403 FileEntryRef FromFile = 404 FileMgr.getVirtualFileRef(RB.first, RB.second->getBufferSize(), 0); 405 406 // Override the contents of the "from" file with the contents of the 407 // "to" file. If the caller owns the buffers, then pass a MemoryBufferRef; 408 // otherwise, pass as a std::unique_ptr<MemoryBuffer> to transfer ownership 409 // to the SourceManager. 410 if (InitOpts.RetainRemappedFileBuffers) 411 SourceMgr.overrideFileContents(FromFile, RB.second->getMemBufferRef()); 412 else 413 SourceMgr.overrideFileContents( 414 FromFile, std::unique_ptr<llvm::MemoryBuffer>(RB.second)); 415 } 416 417 // Remap files in the source manager (with other files). 418 for (const auto &RF : InitOpts.RemappedFiles) { 419 // Find the file that we're mapping to. 420 OptionalFileEntryRef ToFile = FileMgr.getOptionalFileRef(RF.second); 421 if (!ToFile) { 422 Diags.Report(diag::err_fe_remap_missing_to_file) << RF.first << RF.second; 423 continue; 424 } 425 426 // Create the file entry for the file that we're mapping from. 427 const FileEntry *FromFile = 428 FileMgr.getVirtualFile(RF.first, ToFile->getSize(), 0); 429 if (!FromFile) { 430 Diags.Report(diag::err_fe_remap_missing_from_file) << RF.first; 431 continue; 432 } 433 434 // Override the contents of the "from" file with the contents of 435 // the "to" file. 436 SourceMgr.overrideFileContents(FromFile, *ToFile); 437 } 438 439 SourceMgr.setOverridenFilesKeepOriginalName( 440 InitOpts.RemappedFilesKeepOriginalName); 441 } 442 443 // Preprocessor 444 445 void CompilerInstance::createPreprocessor(TranslationUnitKind TUKind) { 446 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 447 448 // The AST reader holds a reference to the old preprocessor (if any). 449 TheASTReader.reset(); 450 451 // Create the Preprocessor. 452 HeaderSearch *HeaderInfo = 453 new HeaderSearch(getHeaderSearchOptsPtr(), getSourceManager(), 454 getDiagnostics(), getLangOpts(), &getTarget()); 455 PP = std::make_shared<Preprocessor>(Invocation->getPreprocessorOptsPtr(), 456 getDiagnostics(), getLangOpts(), 457 getSourceManager(), *HeaderInfo, *this, 458 /*IdentifierInfoLookup=*/nullptr, 459 /*OwnsHeaderSearch=*/true, TUKind); 460 getTarget().adjust(getDiagnostics(), getLangOpts()); 461 PP->Initialize(getTarget(), getAuxTarget()); 462 463 if (PPOpts.DetailedRecord) 464 PP->createPreprocessingRecord(); 465 466 // Apply remappings to the source manager. 467 InitializeFileRemapping(PP->getDiagnostics(), PP->getSourceManager(), 468 PP->getFileManager(), PPOpts); 469 470 // Predefine macros and configure the preprocessor. 471 InitializePreprocessor(*PP, PPOpts, getPCHContainerReader(), 472 getFrontendOpts(), getCodeGenOpts()); 473 474 // Initialize the header search object. In CUDA compilations, we use the aux 475 // triple (the host triple) to initialize our header search, since we need to 476 // find the host headers in order to compile the CUDA code. 477 const llvm::Triple *HeaderSearchTriple = &PP->getTargetInfo().getTriple(); 478 if (PP->getTargetInfo().getTriple().getOS() == llvm::Triple::CUDA && 479 PP->getAuxTargetInfo()) 480 HeaderSearchTriple = &PP->getAuxTargetInfo()->getTriple(); 481 482 ApplyHeaderSearchOptions(PP->getHeaderSearchInfo(), getHeaderSearchOpts(), 483 PP->getLangOpts(), *HeaderSearchTriple); 484 485 PP->setPreprocessedOutput(getPreprocessorOutputOpts().ShowCPP); 486 487 if (PP->getLangOpts().Modules && PP->getLangOpts().ImplicitModules) { 488 std::string ModuleHash = getInvocation().getModuleHash(); 489 PP->getHeaderSearchInfo().setModuleHash(ModuleHash); 490 PP->getHeaderSearchInfo().setModuleCachePath( 491 getSpecificModuleCachePath(ModuleHash)); 492 } 493 494 // Handle generating dependencies, if requested. 495 const DependencyOutputOptions &DepOpts = getDependencyOutputOpts(); 496 if (!DepOpts.OutputFile.empty()) 497 addDependencyCollector(std::make_shared<DependencyFileGenerator>(DepOpts)); 498 if (!DepOpts.DOTOutputFile.empty()) 499 AttachDependencyGraphGen(*PP, DepOpts.DOTOutputFile, 500 getHeaderSearchOpts().Sysroot); 501 502 // If we don't have a collector, but we are collecting module dependencies, 503 // then we're the top level compiler instance and need to create one. 504 if (!ModuleDepCollector && !DepOpts.ModuleDependencyOutputDir.empty()) { 505 ModuleDepCollector = std::make_shared<ModuleDependencyCollector>( 506 DepOpts.ModuleDependencyOutputDir); 507 } 508 509 // If there is a module dep collector, register with other dep collectors 510 // and also (a) collect header maps and (b) TODO: input vfs overlay files. 511 if (ModuleDepCollector) { 512 addDependencyCollector(ModuleDepCollector); 513 collectHeaderMaps(PP->getHeaderSearchInfo(), ModuleDepCollector); 514 collectIncludePCH(*this, ModuleDepCollector); 515 collectVFSEntries(*this, ModuleDepCollector); 516 } 517 518 for (auto &Listener : DependencyCollectors) 519 Listener->attachToPreprocessor(*PP); 520 521 // Handle generating header include information, if requested. 522 if (DepOpts.ShowHeaderIncludes) 523 AttachHeaderIncludeGen(*PP, DepOpts); 524 if (!DepOpts.HeaderIncludeOutputFile.empty()) { 525 StringRef OutputPath = DepOpts.HeaderIncludeOutputFile; 526 if (OutputPath == "-") 527 OutputPath = ""; 528 AttachHeaderIncludeGen(*PP, DepOpts, 529 /*ShowAllHeaders=*/true, OutputPath, 530 /*ShowDepth=*/false); 531 } 532 533 if (DepOpts.ShowIncludesDest != ShowIncludesDestination::None) { 534 AttachHeaderIncludeGen(*PP, DepOpts, 535 /*ShowAllHeaders=*/true, /*OutputPath=*/"", 536 /*ShowDepth=*/true, /*MSStyle=*/true); 537 } 538 } 539 540 std::string CompilerInstance::getSpecificModuleCachePath(StringRef ModuleHash) { 541 // Set up the module path, including the hash for the module-creation options. 542 SmallString<256> SpecificModuleCache(getHeaderSearchOpts().ModuleCachePath); 543 if (!SpecificModuleCache.empty() && !getHeaderSearchOpts().DisableModuleHash) 544 llvm::sys::path::append(SpecificModuleCache, ModuleHash); 545 return std::string(SpecificModuleCache); 546 } 547 548 // ASTContext 549 550 void CompilerInstance::createASTContext() { 551 Preprocessor &PP = getPreprocessor(); 552 auto *Context = new ASTContext(getLangOpts(), PP.getSourceManager(), 553 PP.getIdentifierTable(), PP.getSelectorTable(), 554 PP.getBuiltinInfo(), PP.TUKind); 555 Context->InitBuiltinTypes(getTarget(), getAuxTarget()); 556 setASTContext(Context); 557 } 558 559 // ExternalASTSource 560 561 namespace { 562 // Helper to recursively read the module names for all modules we're adding. 563 // We mark these as known and redirect any attempt to load that module to 564 // the files we were handed. 565 struct ReadModuleNames : ASTReaderListener { 566 Preprocessor &PP; 567 llvm::SmallVector<std::string, 8> LoadedModules; 568 569 ReadModuleNames(Preprocessor &PP) : PP(PP) {} 570 571 void ReadModuleName(StringRef ModuleName) override { 572 // Keep the module name as a string for now. It's not safe to create a new 573 // IdentifierInfo from an ASTReader callback. 574 LoadedModules.push_back(ModuleName.str()); 575 } 576 577 void registerAll() { 578 ModuleMap &MM = PP.getHeaderSearchInfo().getModuleMap(); 579 for (const std::string &LoadedModule : LoadedModules) 580 MM.cacheModuleLoad(*PP.getIdentifierInfo(LoadedModule), 581 MM.findModule(LoadedModule)); 582 LoadedModules.clear(); 583 } 584 585 void markAllUnavailable() { 586 for (const std::string &LoadedModule : LoadedModules) { 587 if (Module *M = PP.getHeaderSearchInfo().getModuleMap().findModule( 588 LoadedModule)) { 589 M->HasIncompatibleModuleFile = true; 590 591 // Mark module as available if the only reason it was unavailable 592 // was missing headers. 593 SmallVector<Module *, 2> Stack; 594 Stack.push_back(M); 595 while (!Stack.empty()) { 596 Module *Current = Stack.pop_back_val(); 597 if (Current->IsUnimportable) continue; 598 Current->IsAvailable = true; 599 auto SubmodulesRange = Current->submodules(); 600 Stack.insert(Stack.end(), SubmodulesRange.begin(), 601 SubmodulesRange.end()); 602 } 603 } 604 } 605 LoadedModules.clear(); 606 } 607 }; 608 } // namespace 609 610 void CompilerInstance::createPCHExternalASTSource( 611 StringRef Path, DisableValidationForModuleKind DisableValidation, 612 bool AllowPCHWithCompilerErrors, void *DeserializationListener, 613 bool OwnDeserializationListener) { 614 bool Preamble = getPreprocessorOpts().PrecompiledPreambleBytes.first != 0; 615 TheASTReader = createPCHExternalASTSource( 616 Path, getHeaderSearchOpts().Sysroot, DisableValidation, 617 AllowPCHWithCompilerErrors, getPreprocessor(), getModuleCache(), 618 getASTContext(), getPCHContainerReader(), 619 getFrontendOpts().ModuleFileExtensions, DependencyCollectors, 620 DeserializationListener, OwnDeserializationListener, Preamble, 621 getFrontendOpts().UseGlobalModuleIndex); 622 } 623 624 IntrusiveRefCntPtr<ASTReader> CompilerInstance::createPCHExternalASTSource( 625 StringRef Path, StringRef Sysroot, 626 DisableValidationForModuleKind DisableValidation, 627 bool AllowPCHWithCompilerErrors, Preprocessor &PP, 628 InMemoryModuleCache &ModuleCache, ASTContext &Context, 629 const PCHContainerReader &PCHContainerRdr, 630 ArrayRef<std::shared_ptr<ModuleFileExtension>> Extensions, 631 ArrayRef<std::shared_ptr<DependencyCollector>> DependencyCollectors, 632 void *DeserializationListener, bool OwnDeserializationListener, 633 bool Preamble, bool UseGlobalModuleIndex) { 634 HeaderSearchOptions &HSOpts = PP.getHeaderSearchInfo().getHeaderSearchOpts(); 635 636 IntrusiveRefCntPtr<ASTReader> Reader(new ASTReader( 637 PP, ModuleCache, &Context, PCHContainerRdr, Extensions, 638 Sysroot.empty() ? "" : Sysroot.data(), DisableValidation, 639 AllowPCHWithCompilerErrors, /*AllowConfigurationMismatch*/ false, 640 HSOpts.ModulesValidateSystemHeaders, HSOpts.ValidateASTInputFilesContent, 641 UseGlobalModuleIndex)); 642 643 // We need the external source to be set up before we read the AST, because 644 // eagerly-deserialized declarations may use it. 645 Context.setExternalSource(Reader.get()); 646 647 Reader->setDeserializationListener( 648 static_cast<ASTDeserializationListener *>(DeserializationListener), 649 /*TakeOwnership=*/OwnDeserializationListener); 650 651 for (auto &Listener : DependencyCollectors) 652 Listener->attachToASTReader(*Reader); 653 654 auto Listener = std::make_unique<ReadModuleNames>(PP); 655 auto &ListenerRef = *Listener; 656 ASTReader::ListenerScope ReadModuleNamesListener(*Reader, 657 std::move(Listener)); 658 659 switch (Reader->ReadAST(Path, 660 Preamble ? serialization::MK_Preamble 661 : serialization::MK_PCH, 662 SourceLocation(), 663 ASTReader::ARR_None)) { 664 case ASTReader::Success: 665 // Set the predefines buffer as suggested by the PCH reader. Typically, the 666 // predefines buffer will be empty. 667 PP.setPredefines(Reader->getSuggestedPredefines()); 668 ListenerRef.registerAll(); 669 return Reader; 670 671 case ASTReader::Failure: 672 // Unrecoverable failure: don't even try to process the input file. 673 break; 674 675 case ASTReader::Missing: 676 case ASTReader::OutOfDate: 677 case ASTReader::VersionMismatch: 678 case ASTReader::ConfigurationMismatch: 679 case ASTReader::HadErrors: 680 // No suitable PCH file could be found. Return an error. 681 break; 682 } 683 684 ListenerRef.markAllUnavailable(); 685 Context.setExternalSource(nullptr); 686 return nullptr; 687 } 688 689 // Code Completion 690 691 static bool EnableCodeCompletion(Preprocessor &PP, 692 StringRef Filename, 693 unsigned Line, 694 unsigned Column) { 695 // Tell the source manager to chop off the given file at a specific 696 // line and column. 697 auto Entry = PP.getFileManager().getOptionalFileRef(Filename); 698 if (!Entry) { 699 PP.getDiagnostics().Report(diag::err_fe_invalid_code_complete_file) 700 << Filename; 701 return true; 702 } 703 704 // Truncate the named file at the given line/column. 705 PP.SetCodeCompletionPoint(*Entry, Line, Column); 706 return false; 707 } 708 709 void CompilerInstance::createCodeCompletionConsumer() { 710 const ParsedSourceLocation &Loc = getFrontendOpts().CodeCompletionAt; 711 if (!CompletionConsumer) { 712 setCodeCompletionConsumer(createCodeCompletionConsumer( 713 getPreprocessor(), Loc.FileName, Loc.Line, Loc.Column, 714 getFrontendOpts().CodeCompleteOpts, llvm::outs())); 715 return; 716 } else if (EnableCodeCompletion(getPreprocessor(), Loc.FileName, 717 Loc.Line, Loc.Column)) { 718 setCodeCompletionConsumer(nullptr); 719 return; 720 } 721 } 722 723 void CompilerInstance::createFrontendTimer() { 724 FrontendTimerGroup.reset( 725 new llvm::TimerGroup("frontend", "Clang front-end time report")); 726 FrontendTimer.reset( 727 new llvm::Timer("frontend", "Clang front-end timer", 728 *FrontendTimerGroup)); 729 } 730 731 CodeCompleteConsumer * 732 CompilerInstance::createCodeCompletionConsumer(Preprocessor &PP, 733 StringRef Filename, 734 unsigned Line, 735 unsigned Column, 736 const CodeCompleteOptions &Opts, 737 raw_ostream &OS) { 738 if (EnableCodeCompletion(PP, Filename, Line, Column)) 739 return nullptr; 740 741 // Set up the creation routine for code-completion. 742 return new PrintingCodeCompleteConsumer(Opts, OS); 743 } 744 745 void CompilerInstance::createSema(TranslationUnitKind TUKind, 746 CodeCompleteConsumer *CompletionConsumer) { 747 TheSema.reset(new Sema(getPreprocessor(), getASTContext(), getASTConsumer(), 748 TUKind, CompletionConsumer)); 749 750 // Set up API notes. 751 TheSema->APINotes.setSwiftVersion(getAPINotesOpts().SwiftVersion); 752 753 // Attach the external sema source if there is any. 754 if (ExternalSemaSrc) { 755 TheSema->addExternalSource(ExternalSemaSrc.get()); 756 ExternalSemaSrc->InitializeSema(*TheSema); 757 } 758 759 // If we're building a module and are supposed to load API notes, 760 // notify the API notes manager. 761 if (auto *currentModule = getPreprocessor().getCurrentModule()) { 762 (void)TheSema->APINotes.loadCurrentModuleAPINotes( 763 currentModule, getLangOpts().APINotesModules, 764 getAPINotesOpts().ModuleSearchPaths); 765 } 766 } 767 768 // Output Files 769 770 void CompilerInstance::clearOutputFiles(bool EraseFiles) { 771 // The ASTConsumer can own streams that write to the output files. 772 assert(!hasASTConsumer() && "ASTConsumer should be reset"); 773 // Ignore errors that occur when trying to discard the temp file. 774 for (OutputFile &OF : OutputFiles) { 775 if (EraseFiles) { 776 if (OF.File) 777 consumeError(OF.File->discard()); 778 if (!OF.Filename.empty()) 779 llvm::sys::fs::remove(OF.Filename); 780 continue; 781 } 782 783 if (!OF.File) 784 continue; 785 786 if (OF.File->TmpName.empty()) { 787 consumeError(OF.File->discard()); 788 continue; 789 } 790 791 llvm::Error E = OF.File->keep(OF.Filename); 792 if (!E) 793 continue; 794 795 getDiagnostics().Report(diag::err_unable_to_rename_temp) 796 << OF.File->TmpName << OF.Filename << std::move(E); 797 798 llvm::sys::fs::remove(OF.File->TmpName); 799 } 800 OutputFiles.clear(); 801 if (DeleteBuiltModules) { 802 for (auto &Module : BuiltModules) 803 llvm::sys::fs::remove(Module.second); 804 BuiltModules.clear(); 805 } 806 } 807 808 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createDefaultOutputFile( 809 bool Binary, StringRef InFile, StringRef Extension, bool RemoveFileOnSignal, 810 bool CreateMissingDirectories, bool ForceUseTemporary) { 811 StringRef OutputPath = getFrontendOpts().OutputFile; 812 std::optional<SmallString<128>> PathStorage; 813 if (OutputPath.empty()) { 814 if (InFile == "-" || Extension.empty()) { 815 OutputPath = "-"; 816 } else { 817 PathStorage.emplace(InFile); 818 llvm::sys::path::replace_extension(*PathStorage, Extension); 819 OutputPath = *PathStorage; 820 } 821 } 822 823 return createOutputFile(OutputPath, Binary, RemoveFileOnSignal, 824 getFrontendOpts().UseTemporary || ForceUseTemporary, 825 CreateMissingDirectories); 826 } 827 828 std::unique_ptr<raw_pwrite_stream> CompilerInstance::createNullOutputFile() { 829 return std::make_unique<llvm::raw_null_ostream>(); 830 } 831 832 std::unique_ptr<raw_pwrite_stream> 833 CompilerInstance::createOutputFile(StringRef OutputPath, bool Binary, 834 bool RemoveFileOnSignal, bool UseTemporary, 835 bool CreateMissingDirectories) { 836 Expected<std::unique_ptr<raw_pwrite_stream>> OS = 837 createOutputFileImpl(OutputPath, Binary, RemoveFileOnSignal, UseTemporary, 838 CreateMissingDirectories); 839 if (OS) 840 return std::move(*OS); 841 getDiagnostics().Report(diag::err_fe_unable_to_open_output) 842 << OutputPath << errorToErrorCode(OS.takeError()).message(); 843 return nullptr; 844 } 845 846 Expected<std::unique_ptr<llvm::raw_pwrite_stream>> 847 CompilerInstance::createOutputFileImpl(StringRef OutputPath, bool Binary, 848 bool RemoveFileOnSignal, 849 bool UseTemporary, 850 bool CreateMissingDirectories) { 851 assert((!CreateMissingDirectories || UseTemporary) && 852 "CreateMissingDirectories is only allowed when using temporary files"); 853 854 // If '-working-directory' was passed, the output filename should be 855 // relative to that. 856 std::optional<SmallString<128>> AbsPath; 857 if (OutputPath != "-" && !llvm::sys::path::is_absolute(OutputPath)) { 858 assert(hasFileManager() && 859 "File Manager is required to fix up relative path.\n"); 860 861 AbsPath.emplace(OutputPath); 862 FileMgr->FixupRelativePath(*AbsPath); 863 OutputPath = *AbsPath; 864 } 865 866 std::unique_ptr<llvm::raw_fd_ostream> OS; 867 std::optional<StringRef> OSFile; 868 869 if (UseTemporary) { 870 if (OutputPath == "-") 871 UseTemporary = false; 872 else { 873 llvm::sys::fs::file_status Status; 874 llvm::sys::fs::status(OutputPath, Status); 875 if (llvm::sys::fs::exists(Status)) { 876 // Fail early if we can't write to the final destination. 877 if (!llvm::sys::fs::can_write(OutputPath)) 878 return llvm::errorCodeToError( 879 make_error_code(llvm::errc::operation_not_permitted)); 880 881 // Don't use a temporary if the output is a special file. This handles 882 // things like '-o /dev/null' 883 if (!llvm::sys::fs::is_regular_file(Status)) 884 UseTemporary = false; 885 } 886 } 887 } 888 889 std::optional<llvm::sys::fs::TempFile> Temp; 890 if (UseTemporary) { 891 // Create a temporary file. 892 // Insert -%%%%%%%% before the extension (if any), and because some tools 893 // (noticeable, clang's own GlobalModuleIndex.cpp) glob for build 894 // artifacts, also append .tmp. 895 StringRef OutputExtension = llvm::sys::path::extension(OutputPath); 896 SmallString<128> TempPath = 897 StringRef(OutputPath).drop_back(OutputExtension.size()); 898 TempPath += "-%%%%%%%%"; 899 TempPath += OutputExtension; 900 TempPath += ".tmp"; 901 llvm::sys::fs::OpenFlags BinaryFlags = 902 Binary ? llvm::sys::fs::OF_None : llvm::sys::fs::OF_Text; 903 Expected<llvm::sys::fs::TempFile> ExpectedFile = 904 llvm::sys::fs::TempFile::create( 905 TempPath, llvm::sys::fs::all_read | llvm::sys::fs::all_write, 906 BinaryFlags); 907 908 llvm::Error E = handleErrors( 909 ExpectedFile.takeError(), [&](const llvm::ECError &E) -> llvm::Error { 910 std::error_code EC = E.convertToErrorCode(); 911 if (CreateMissingDirectories && 912 EC == llvm::errc::no_such_file_or_directory) { 913 StringRef Parent = llvm::sys::path::parent_path(OutputPath); 914 EC = llvm::sys::fs::create_directories(Parent); 915 if (!EC) { 916 ExpectedFile = llvm::sys::fs::TempFile::create( 917 TempPath, llvm::sys::fs::all_read | llvm::sys::fs::all_write, 918 BinaryFlags); 919 if (!ExpectedFile) 920 return llvm::errorCodeToError( 921 llvm::errc::no_such_file_or_directory); 922 } 923 } 924 return llvm::errorCodeToError(EC); 925 }); 926 927 if (E) { 928 consumeError(std::move(E)); 929 } else { 930 Temp = std::move(ExpectedFile.get()); 931 OS.reset(new llvm::raw_fd_ostream(Temp->FD, /*shouldClose=*/false)); 932 OSFile = Temp->TmpName; 933 } 934 // If we failed to create the temporary, fallback to writing to the file 935 // directly. This handles the corner case where we cannot write to the 936 // directory, but can write to the file. 937 } 938 939 if (!OS) { 940 OSFile = OutputPath; 941 std::error_code EC; 942 OS.reset(new llvm::raw_fd_ostream( 943 *OSFile, EC, 944 (Binary ? llvm::sys::fs::OF_None : llvm::sys::fs::OF_TextWithCRLF))); 945 if (EC) 946 return llvm::errorCodeToError(EC); 947 } 948 949 // Add the output file -- but don't try to remove "-", since this means we are 950 // using stdin. 951 OutputFiles.emplace_back(((OutputPath != "-") ? OutputPath : "").str(), 952 std::move(Temp)); 953 954 if (!Binary || OS->supportsSeeking()) 955 return std::move(OS); 956 957 return std::make_unique<llvm::buffer_unique_ostream>(std::move(OS)); 958 } 959 960 // Initialization Utilities 961 962 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input){ 963 return InitializeSourceManager(Input, getDiagnostics(), getFileManager(), 964 getSourceManager()); 965 } 966 967 // static 968 bool CompilerInstance::InitializeSourceManager(const FrontendInputFile &Input, 969 DiagnosticsEngine &Diags, 970 FileManager &FileMgr, 971 SourceManager &SourceMgr) { 972 SrcMgr::CharacteristicKind Kind = 973 Input.getKind().getFormat() == InputKind::ModuleMap 974 ? Input.isSystem() ? SrcMgr::C_System_ModuleMap 975 : SrcMgr::C_User_ModuleMap 976 : Input.isSystem() ? SrcMgr::C_System : SrcMgr::C_User; 977 978 if (Input.isBuffer()) { 979 SourceMgr.setMainFileID(SourceMgr.createFileID(Input.getBuffer(), Kind)); 980 assert(SourceMgr.getMainFileID().isValid() && 981 "Couldn't establish MainFileID!"); 982 return true; 983 } 984 985 StringRef InputFile = Input.getFile(); 986 987 // Figure out where to get and map in the main file. 988 auto FileOrErr = InputFile == "-" 989 ? FileMgr.getSTDIN() 990 : FileMgr.getFileRef(InputFile, /*OpenFile=*/true); 991 if (!FileOrErr) { 992 auto EC = llvm::errorToErrorCode(FileOrErr.takeError()); 993 if (InputFile != "-") 994 Diags.Report(diag::err_fe_error_reading) << InputFile << EC.message(); 995 else 996 Diags.Report(diag::err_fe_error_reading_stdin) << EC.message(); 997 return false; 998 } 999 1000 SourceMgr.setMainFileID( 1001 SourceMgr.createFileID(*FileOrErr, SourceLocation(), Kind)); 1002 1003 assert(SourceMgr.getMainFileID().isValid() && 1004 "Couldn't establish MainFileID!"); 1005 return true; 1006 } 1007 1008 // High-Level Operations 1009 1010 bool CompilerInstance::ExecuteAction(FrontendAction &Act) { 1011 assert(hasDiagnostics() && "Diagnostics engine is not initialized!"); 1012 assert(!getFrontendOpts().ShowHelp && "Client must handle '-help'!"); 1013 assert(!getFrontendOpts().ShowVersion && "Client must handle '-version'!"); 1014 1015 // Mark this point as the bottom of the stack if we don't have somewhere 1016 // better. We generally expect frontend actions to be invoked with (nearly) 1017 // DesiredStackSpace available. 1018 noteBottomOfStack(); 1019 1020 auto FinishDiagnosticClient = llvm::make_scope_exit([&]() { 1021 // Notify the diagnostic client that all files were processed. 1022 getDiagnosticClient().finish(); 1023 }); 1024 1025 raw_ostream &OS = getVerboseOutputStream(); 1026 1027 if (!Act.PrepareToExecute(*this)) 1028 return false; 1029 1030 if (!createTarget()) 1031 return false; 1032 1033 // rewriter project will change target built-in bool type from its default. 1034 if (getFrontendOpts().ProgramAction == frontend::RewriteObjC) 1035 getTarget().noSignedCharForObjCBool(); 1036 1037 // Validate/process some options. 1038 if (getHeaderSearchOpts().Verbose) 1039 OS << "clang -cc1 version " CLANG_VERSION_STRING << " based upon LLVM " 1040 << LLVM_VERSION_STRING << " default target " 1041 << llvm::sys::getDefaultTargetTriple() << "\n"; 1042 1043 if (getCodeGenOpts().TimePasses) 1044 createFrontendTimer(); 1045 1046 if (getFrontendOpts().ShowStats || !getFrontendOpts().StatsFile.empty()) 1047 llvm::EnableStatistics(false); 1048 1049 // Sort vectors containing toc data and no toc data variables to facilitate 1050 // binary search later. 1051 llvm::sort(getCodeGenOpts().TocDataVarsUserSpecified); 1052 llvm::sort(getCodeGenOpts().NoTocDataVars); 1053 1054 for (const FrontendInputFile &FIF : getFrontendOpts().Inputs) { 1055 // Reset the ID tables if we are reusing the SourceManager and parsing 1056 // regular files. 1057 if (hasSourceManager() && !Act.isModelParsingAction()) 1058 getSourceManager().clearIDTables(); 1059 1060 if (Act.BeginSourceFile(*this, FIF)) { 1061 if (llvm::Error Err = Act.Execute()) { 1062 consumeError(std::move(Err)); // FIXME this drops errors on the floor. 1063 } 1064 Act.EndSourceFile(); 1065 } 1066 } 1067 1068 printDiagnosticStats(); 1069 1070 if (getFrontendOpts().ShowStats) { 1071 if (hasFileManager()) { 1072 getFileManager().PrintStats(); 1073 OS << '\n'; 1074 } 1075 llvm::PrintStatistics(OS); 1076 } 1077 StringRef StatsFile = getFrontendOpts().StatsFile; 1078 if (!StatsFile.empty()) { 1079 llvm::sys::fs::OpenFlags FileFlags = llvm::sys::fs::OF_TextWithCRLF; 1080 if (getFrontendOpts().AppendStats) 1081 FileFlags |= llvm::sys::fs::OF_Append; 1082 std::error_code EC; 1083 auto StatS = 1084 std::make_unique<llvm::raw_fd_ostream>(StatsFile, EC, FileFlags); 1085 if (EC) { 1086 getDiagnostics().Report(diag::warn_fe_unable_to_open_stats_file) 1087 << StatsFile << EC.message(); 1088 } else { 1089 llvm::PrintStatisticsJSON(*StatS); 1090 } 1091 } 1092 1093 return !getDiagnostics().getClient()->getNumErrors(); 1094 } 1095 1096 void CompilerInstance::printDiagnosticStats() { 1097 if (!getDiagnosticOpts().ShowCarets) 1098 return; 1099 1100 raw_ostream &OS = getVerboseOutputStream(); 1101 1102 // We can have multiple diagnostics sharing one diagnostic client. 1103 // Get the total number of warnings/errors from the client. 1104 unsigned NumWarnings = getDiagnostics().getClient()->getNumWarnings(); 1105 unsigned NumErrors = getDiagnostics().getClient()->getNumErrors(); 1106 1107 if (NumWarnings) 1108 OS << NumWarnings << " warning" << (NumWarnings == 1 ? "" : "s"); 1109 if (NumWarnings && NumErrors) 1110 OS << " and "; 1111 if (NumErrors) 1112 OS << NumErrors << " error" << (NumErrors == 1 ? "" : "s"); 1113 if (NumWarnings || NumErrors) { 1114 OS << " generated"; 1115 if (getLangOpts().CUDA) { 1116 if (!getLangOpts().CUDAIsDevice) { 1117 OS << " when compiling for host"; 1118 } else { 1119 OS << " when compiling for " << getTargetOpts().CPU; 1120 } 1121 } 1122 OS << ".\n"; 1123 } 1124 } 1125 1126 void CompilerInstance::LoadRequestedPlugins() { 1127 // Load any requested plugins. 1128 for (const std::string &Path : getFrontendOpts().Plugins) { 1129 std::string Error; 1130 if (llvm::sys::DynamicLibrary::LoadLibraryPermanently(Path.c_str(), &Error)) 1131 getDiagnostics().Report(diag::err_fe_unable_to_load_plugin) 1132 << Path << Error; 1133 } 1134 1135 // Check if any of the loaded plugins replaces the main AST action 1136 for (const FrontendPluginRegistry::entry &Plugin : 1137 FrontendPluginRegistry::entries()) { 1138 std::unique_ptr<PluginASTAction> P(Plugin.instantiate()); 1139 if (P->getActionType() == PluginASTAction::ReplaceAction) { 1140 getFrontendOpts().ProgramAction = clang::frontend::PluginAction; 1141 getFrontendOpts().ActionName = Plugin.getName().str(); 1142 break; 1143 } 1144 } 1145 } 1146 1147 /// Determine the appropriate source input kind based on language 1148 /// options. 1149 static Language getLanguageFromOptions(const LangOptions &LangOpts) { 1150 if (LangOpts.OpenCL) 1151 return Language::OpenCL; 1152 if (LangOpts.CUDA) 1153 return Language::CUDA; 1154 if (LangOpts.ObjC) 1155 return LangOpts.CPlusPlus ? Language::ObjCXX : Language::ObjC; 1156 return LangOpts.CPlusPlus ? Language::CXX : Language::C; 1157 } 1158 1159 /// Compile a module file for the given module, using the options 1160 /// provided by the importing compiler instance. Returns true if the module 1161 /// was built without errors. 1162 static bool 1163 compileModuleImpl(CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1164 StringRef ModuleName, FrontendInputFile Input, 1165 StringRef OriginalModuleMapFile, StringRef ModuleFileName, 1166 llvm::function_ref<void(CompilerInstance &)> PreBuildStep = 1167 [](CompilerInstance &) {}, 1168 llvm::function_ref<void(CompilerInstance &)> PostBuildStep = 1169 [](CompilerInstance &) {}) { 1170 llvm::TimeTraceScope TimeScope("Module Compile", ModuleName); 1171 1172 // Never compile a module that's already finalized - this would cause the 1173 // existing module to be freed, causing crashes if it is later referenced 1174 if (ImportingInstance.getModuleCache().isPCMFinal(ModuleFileName)) { 1175 ImportingInstance.getDiagnostics().Report( 1176 ImportLoc, diag::err_module_rebuild_finalized) 1177 << ModuleName; 1178 return false; 1179 } 1180 1181 // Construct a compiler invocation for creating this module. 1182 auto Invocation = 1183 std::make_shared<CompilerInvocation>(ImportingInstance.getInvocation()); 1184 1185 PreprocessorOptions &PPOpts = Invocation->getPreprocessorOpts(); 1186 1187 // For any options that aren't intended to affect how a module is built, 1188 // reset them to their default values. 1189 Invocation->resetNonModularOptions(); 1190 1191 // Remove any macro definitions that are explicitly ignored by the module. 1192 // They aren't supposed to affect how the module is built anyway. 1193 HeaderSearchOptions &HSOpts = Invocation->getHeaderSearchOpts(); 1194 llvm::erase_if(PPOpts.Macros, 1195 [&HSOpts](const std::pair<std::string, bool> &def) { 1196 StringRef MacroDef = def.first; 1197 return HSOpts.ModulesIgnoreMacros.contains( 1198 llvm::CachedHashString(MacroDef.split('=').first)); 1199 }); 1200 1201 // If the original compiler invocation had -fmodule-name, pass it through. 1202 Invocation->getLangOpts().ModuleName = 1203 ImportingInstance.getInvocation().getLangOpts().ModuleName; 1204 1205 // Note the name of the module we're building. 1206 Invocation->getLangOpts().CurrentModule = std::string(ModuleName); 1207 1208 // If there is a module map file, build the module using the module map. 1209 // Set up the inputs/outputs so that we build the module from its umbrella 1210 // header. 1211 FrontendOptions &FrontendOpts = Invocation->getFrontendOpts(); 1212 FrontendOpts.OutputFile = ModuleFileName.str(); 1213 FrontendOpts.DisableFree = false; 1214 FrontendOpts.GenerateGlobalModuleIndex = false; 1215 FrontendOpts.BuildingImplicitModule = true; 1216 FrontendOpts.OriginalModuleMap = std::string(OriginalModuleMapFile); 1217 // Force implicitly-built modules to hash the content of the module file. 1218 HSOpts.ModulesHashContent = true; 1219 FrontendOpts.Inputs = {Input}; 1220 1221 // Don't free the remapped file buffers; they are owned by our caller. 1222 PPOpts.RetainRemappedFileBuffers = true; 1223 1224 DiagnosticOptions &DiagOpts = Invocation->getDiagnosticOpts(); 1225 1226 DiagOpts.VerifyDiagnostics = 0; 1227 assert(ImportingInstance.getInvocation().getModuleHash() == 1228 Invocation->getModuleHash() && "Module hash mismatch!"); 1229 1230 // Construct a compiler instance that will be used to actually create the 1231 // module. Since we're sharing an in-memory module cache, 1232 // CompilerInstance::CompilerInstance is responsible for finalizing the 1233 // buffers to prevent use-after-frees. 1234 CompilerInstance Instance(ImportingInstance.getPCHContainerOperations(), 1235 &ImportingInstance.getModuleCache()); 1236 auto &Inv = *Invocation; 1237 Instance.setInvocation(std::move(Invocation)); 1238 1239 Instance.createDiagnostics(new ForwardingDiagnosticConsumer( 1240 ImportingInstance.getDiagnosticClient()), 1241 /*ShouldOwnClient=*/true); 1242 1243 if (llvm::is_contained(DiagOpts.SystemHeaderWarningsModules, ModuleName)) 1244 Instance.getDiagnostics().setSuppressSystemWarnings(false); 1245 1246 if (FrontendOpts.ModulesShareFileManager) { 1247 Instance.setFileManager(&ImportingInstance.getFileManager()); 1248 } else { 1249 Instance.createFileManager(&ImportingInstance.getVirtualFileSystem()); 1250 } 1251 Instance.createSourceManager(Instance.getFileManager()); 1252 SourceManager &SourceMgr = Instance.getSourceManager(); 1253 1254 // Note that this module is part of the module build stack, so that we 1255 // can detect cycles in the module graph. 1256 SourceMgr.setModuleBuildStack( 1257 ImportingInstance.getSourceManager().getModuleBuildStack()); 1258 SourceMgr.pushModuleBuildStack(ModuleName, 1259 FullSourceLoc(ImportLoc, ImportingInstance.getSourceManager())); 1260 1261 // Make sure that the failed-module structure has been allocated in 1262 // the importing instance, and propagate the pointer to the newly-created 1263 // instance. 1264 if (!ImportingInstance.hasFailedModulesSet()) 1265 ImportingInstance.createFailedModulesSet(); 1266 Instance.setFailedModulesSet(ImportingInstance.getFailedModulesSetPtr()); 1267 1268 // If we're collecting module dependencies, we need to share a collector 1269 // between all of the module CompilerInstances. Other than that, we don't 1270 // want to produce any dependency output from the module build. 1271 Instance.setModuleDepCollector(ImportingInstance.getModuleDepCollector()); 1272 Inv.getDependencyOutputOpts() = DependencyOutputOptions(); 1273 1274 ImportingInstance.getDiagnostics().Report(ImportLoc, 1275 diag::remark_module_build) 1276 << ModuleName << ModuleFileName; 1277 1278 PreBuildStep(Instance); 1279 1280 // Execute the action to actually build the module in-place. Use a separate 1281 // thread so that we get a stack large enough. 1282 bool Crashed = !llvm::CrashRecoveryContext().RunSafelyOnThread( 1283 [&]() { 1284 GenerateModuleFromModuleMapAction Action; 1285 Instance.ExecuteAction(Action); 1286 }, 1287 DesiredStackSize); 1288 1289 PostBuildStep(Instance); 1290 1291 ImportingInstance.getDiagnostics().Report(ImportLoc, 1292 diag::remark_module_build_done) 1293 << ModuleName; 1294 1295 // Propagate the statistics to the parent FileManager. 1296 if (!FrontendOpts.ModulesShareFileManager) 1297 ImportingInstance.getFileManager().AddStats(Instance.getFileManager()); 1298 1299 if (Crashed) { 1300 // Clear the ASTConsumer if it hasn't been already, in case it owns streams 1301 // that must be closed before clearing output files. 1302 Instance.setSema(nullptr); 1303 Instance.setASTConsumer(nullptr); 1304 1305 // Delete any remaining temporary files related to Instance. 1306 Instance.clearOutputFiles(/*EraseFiles=*/true); 1307 } 1308 1309 // If \p AllowPCMWithCompilerErrors is set return 'success' even if errors 1310 // occurred. 1311 return !Instance.getDiagnostics().hasErrorOccurred() || 1312 Instance.getFrontendOpts().AllowPCMWithCompilerErrors; 1313 } 1314 1315 static OptionalFileEntryRef getPublicModuleMap(FileEntryRef File, 1316 FileManager &FileMgr) { 1317 StringRef Filename = llvm::sys::path::filename(File.getName()); 1318 SmallString<128> PublicFilename(File.getDir().getName()); 1319 if (Filename == "module_private.map") 1320 llvm::sys::path::append(PublicFilename, "module.map"); 1321 else if (Filename == "module.private.modulemap") 1322 llvm::sys::path::append(PublicFilename, "module.modulemap"); 1323 else 1324 return std::nullopt; 1325 return FileMgr.getOptionalFileRef(PublicFilename); 1326 } 1327 1328 /// Compile a module file for the given module in a separate compiler instance, 1329 /// using the options provided by the importing compiler instance. Returns true 1330 /// if the module was built without errors. 1331 static bool compileModule(CompilerInstance &ImportingInstance, 1332 SourceLocation ImportLoc, Module *Module, 1333 StringRef ModuleFileName) { 1334 InputKind IK(getLanguageFromOptions(ImportingInstance.getLangOpts()), 1335 InputKind::ModuleMap); 1336 1337 // Get or create the module map that we'll use to build this module. 1338 ModuleMap &ModMap 1339 = ImportingInstance.getPreprocessor().getHeaderSearchInfo().getModuleMap(); 1340 SourceManager &SourceMgr = ImportingInstance.getSourceManager(); 1341 bool Result; 1342 if (FileID ModuleMapFID = ModMap.getContainingModuleMapFileID(Module); 1343 ModuleMapFID.isValid()) { 1344 // We want to use the top-level module map. If we don't, the compiling 1345 // instance may think the containing module map is a top-level one, while 1346 // the importing instance knows it's included from a parent module map via 1347 // the extern directive. This mismatch could bite us later. 1348 SourceLocation Loc = SourceMgr.getIncludeLoc(ModuleMapFID); 1349 while (Loc.isValid() && isModuleMap(SourceMgr.getFileCharacteristic(Loc))) { 1350 ModuleMapFID = SourceMgr.getFileID(Loc); 1351 Loc = SourceMgr.getIncludeLoc(ModuleMapFID); 1352 } 1353 1354 OptionalFileEntryRef ModuleMapFile = 1355 SourceMgr.getFileEntryRefForID(ModuleMapFID); 1356 assert(ModuleMapFile && "Top-level module map with no FileID"); 1357 1358 // Canonicalize compilation to start with the public module map. This is 1359 // vital for submodules declarations in the private module maps to be 1360 // correctly parsed when depending on a top level module in the public one. 1361 if (OptionalFileEntryRef PublicMMFile = getPublicModuleMap( 1362 *ModuleMapFile, ImportingInstance.getFileManager())) 1363 ModuleMapFile = PublicMMFile; 1364 1365 StringRef ModuleMapFilePath = ModuleMapFile->getNameAsRequested(); 1366 1367 // Use the module map where this module resides. 1368 Result = compileModuleImpl( 1369 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1370 FrontendInputFile(ModuleMapFilePath, IK, +Module->IsSystem), 1371 ModMap.getModuleMapFileForUniquing(Module)->getName(), ModuleFileName); 1372 } else { 1373 // FIXME: We only need to fake up an input file here as a way of 1374 // transporting the module's directory to the module map parser. We should 1375 // be able to do that more directly, and parse from a memory buffer without 1376 // inventing this file. 1377 SmallString<128> FakeModuleMapFile(Module->Directory->getName()); 1378 llvm::sys::path::append(FakeModuleMapFile, "__inferred_module.map"); 1379 1380 std::string InferredModuleMapContent; 1381 llvm::raw_string_ostream OS(InferredModuleMapContent); 1382 Module->print(OS); 1383 OS.flush(); 1384 1385 Result = compileModuleImpl( 1386 ImportingInstance, ImportLoc, Module->getTopLevelModuleName(), 1387 FrontendInputFile(FakeModuleMapFile, IK, +Module->IsSystem), 1388 ModMap.getModuleMapFileForUniquing(Module)->getName(), 1389 ModuleFileName, 1390 [&](CompilerInstance &Instance) { 1391 std::unique_ptr<llvm::MemoryBuffer> ModuleMapBuffer = 1392 llvm::MemoryBuffer::getMemBuffer(InferredModuleMapContent); 1393 FileEntryRef ModuleMapFile = Instance.getFileManager().getVirtualFileRef( 1394 FakeModuleMapFile, InferredModuleMapContent.size(), 0); 1395 Instance.getSourceManager().overrideFileContents( 1396 ModuleMapFile, std::move(ModuleMapBuffer)); 1397 }); 1398 } 1399 1400 // We've rebuilt a module. If we're allowed to generate or update the global 1401 // module index, record that fact in the importing compiler instance. 1402 if (ImportingInstance.getFrontendOpts().GenerateGlobalModuleIndex) { 1403 ImportingInstance.setBuildGlobalModuleIndex(true); 1404 } 1405 1406 return Result; 1407 } 1408 1409 /// Read the AST right after compiling the module. 1410 static bool readASTAfterCompileModule(CompilerInstance &ImportingInstance, 1411 SourceLocation ImportLoc, 1412 SourceLocation ModuleNameLoc, 1413 Module *Module, StringRef ModuleFileName, 1414 bool *OutOfDate) { 1415 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1416 1417 unsigned ModuleLoadCapabilities = ASTReader::ARR_Missing; 1418 if (OutOfDate) 1419 ModuleLoadCapabilities |= ASTReader::ARR_OutOfDate; 1420 1421 // Try to read the module file, now that we've compiled it. 1422 ASTReader::ASTReadResult ReadResult = 1423 ImportingInstance.getASTReader()->ReadAST( 1424 ModuleFileName, serialization::MK_ImplicitModule, ImportLoc, 1425 ModuleLoadCapabilities); 1426 if (ReadResult == ASTReader::Success) 1427 return true; 1428 1429 // The caller wants to handle out-of-date failures. 1430 if (OutOfDate && ReadResult == ASTReader::OutOfDate) { 1431 *OutOfDate = true; 1432 return false; 1433 } 1434 1435 // The ASTReader didn't diagnose the error, so conservatively report it. 1436 if (ReadResult == ASTReader::Missing || !Diags.hasErrorOccurred()) 1437 Diags.Report(ModuleNameLoc, diag::err_module_not_built) 1438 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1439 1440 return false; 1441 } 1442 1443 /// Compile a module in a separate compiler instance and read the AST, 1444 /// returning true if the module compiles without errors. 1445 static bool compileModuleAndReadASTImpl(CompilerInstance &ImportingInstance, 1446 SourceLocation ImportLoc, 1447 SourceLocation ModuleNameLoc, 1448 Module *Module, 1449 StringRef ModuleFileName) { 1450 if (!compileModule(ImportingInstance, ModuleNameLoc, Module, 1451 ModuleFileName)) { 1452 ImportingInstance.getDiagnostics().Report(ModuleNameLoc, 1453 diag::err_module_not_built) 1454 << Module->Name << SourceRange(ImportLoc, ModuleNameLoc); 1455 return false; 1456 } 1457 1458 return readASTAfterCompileModule(ImportingInstance, ImportLoc, ModuleNameLoc, 1459 Module, ModuleFileName, 1460 /*OutOfDate=*/nullptr); 1461 } 1462 1463 /// Compile a module in a separate compiler instance and read the AST, 1464 /// returning true if the module compiles without errors, using a lock manager 1465 /// to avoid building the same module in multiple compiler instances. 1466 /// 1467 /// Uses a lock file manager and exponential backoff to reduce the chances that 1468 /// multiple instances will compete to create the same module. On timeout, 1469 /// deletes the lock file in order to avoid deadlock from crashing processes or 1470 /// bugs in the lock file manager. 1471 static bool compileModuleAndReadASTBehindLock( 1472 CompilerInstance &ImportingInstance, SourceLocation ImportLoc, 1473 SourceLocation ModuleNameLoc, Module *Module, StringRef ModuleFileName) { 1474 DiagnosticsEngine &Diags = ImportingInstance.getDiagnostics(); 1475 1476 Diags.Report(ModuleNameLoc, diag::remark_module_lock) 1477 << ModuleFileName << Module->Name; 1478 1479 // FIXME: have LockFileManager return an error_code so that we can 1480 // avoid the mkdir when the directory already exists. 1481 StringRef Dir = llvm::sys::path::parent_path(ModuleFileName); 1482 llvm::sys::fs::create_directories(Dir); 1483 1484 while (true) { 1485 llvm::LockFileManager Locked(ModuleFileName); 1486 switch (Locked) { 1487 case llvm::LockFileManager::LFS_Error: 1488 // ModuleCache takes care of correctness and locks are only necessary for 1489 // performance. Fallback to building the module in case of any lock 1490 // related errors. 1491 Diags.Report(ModuleNameLoc, diag::remark_module_lock_failure) 1492 << Module->Name << Locked.getErrorMessage(); 1493 // Clear out any potential leftover. 1494 Locked.unsafeRemoveLockFile(); 1495 [[fallthrough]]; 1496 case llvm::LockFileManager::LFS_Owned: 1497 // We're responsible for building the module ourselves. 1498 return compileModuleAndReadASTImpl(ImportingInstance, ImportLoc, 1499 ModuleNameLoc, Module, ModuleFileName); 1500 1501 case llvm::LockFileManager::LFS_Shared: 1502 break; // The interesting case. 1503 } 1504 1505 // Someone else is responsible for building the module. Wait for them to 1506 // finish. 1507 switch (Locked.waitForUnlock()) { 1508 case llvm::LockFileManager::Res_Success: 1509 break; // The interesting case. 1510 case llvm::LockFileManager::Res_OwnerDied: 1511 continue; // try again to get the lock. 1512 case llvm::LockFileManager::Res_Timeout: 1513 // Since ModuleCache takes care of correctness, we try waiting for 1514 // another process to complete the build so clang does not do it done 1515 // twice. If case of timeout, build it ourselves. 1516 Diags.Report(ModuleNameLoc, diag::remark_module_lock_timeout) 1517 << Module->Name; 1518 // Clear the lock file so that future invocations can make progress. 1519 Locked.unsafeRemoveLockFile(); 1520 continue; 1521 } 1522 1523 // Read the module that was just written by someone else. 1524 bool OutOfDate = false; 1525 if (readASTAfterCompileModule(ImportingInstance, ImportLoc, ModuleNameLoc, 1526 Module, ModuleFileName, &OutOfDate)) 1527 return true; 1528 if (!OutOfDate) 1529 return false; 1530 1531 // The module may be out of date in the presence of file system races, 1532 // or if one of its imports depends on header search paths that are not 1533 // consistent with this ImportingInstance. Try again... 1534 } 1535 } 1536 1537 /// Compile a module in a separate compiler instance and read the AST, 1538 /// returning true if the module compiles without errors, potentially using a 1539 /// lock manager to avoid building the same module in multiple compiler 1540 /// instances. 1541 static bool compileModuleAndReadAST(CompilerInstance &ImportingInstance, 1542 SourceLocation ImportLoc, 1543 SourceLocation ModuleNameLoc, 1544 Module *Module, StringRef ModuleFileName) { 1545 return ImportingInstance.getInvocation() 1546 .getFrontendOpts() 1547 .BuildingImplicitModuleUsesLock 1548 ? compileModuleAndReadASTBehindLock(ImportingInstance, ImportLoc, 1549 ModuleNameLoc, Module, 1550 ModuleFileName) 1551 : compileModuleAndReadASTImpl(ImportingInstance, ImportLoc, 1552 ModuleNameLoc, Module, 1553 ModuleFileName); 1554 } 1555 1556 /// Diagnose differences between the current definition of the given 1557 /// configuration macro and the definition provided on the command line. 1558 static void checkConfigMacro(Preprocessor &PP, StringRef ConfigMacro, 1559 Module *Mod, SourceLocation ImportLoc) { 1560 IdentifierInfo *Id = PP.getIdentifierInfo(ConfigMacro); 1561 SourceManager &SourceMgr = PP.getSourceManager(); 1562 1563 // If this identifier has never had a macro definition, then it could 1564 // not have changed. 1565 if (!Id->hadMacroDefinition()) 1566 return; 1567 auto *LatestLocalMD = PP.getLocalMacroDirectiveHistory(Id); 1568 1569 // Find the macro definition from the command line. 1570 MacroInfo *CmdLineDefinition = nullptr; 1571 for (auto *MD = LatestLocalMD; MD; MD = MD->getPrevious()) { 1572 // We only care about the predefines buffer. 1573 FileID FID = SourceMgr.getFileID(MD->getLocation()); 1574 if (FID.isInvalid() || FID != PP.getPredefinesFileID()) 1575 continue; 1576 if (auto *DMD = dyn_cast<DefMacroDirective>(MD)) 1577 CmdLineDefinition = DMD->getMacroInfo(); 1578 break; 1579 } 1580 1581 auto *CurrentDefinition = PP.getMacroInfo(Id); 1582 if (CurrentDefinition == CmdLineDefinition) { 1583 // Macro matches. Nothing to do. 1584 } else if (!CurrentDefinition) { 1585 // This macro was defined on the command line, then #undef'd later. 1586 // Complain. 1587 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1588 << true << ConfigMacro << Mod->getFullModuleName(); 1589 auto LatestDef = LatestLocalMD->getDefinition(); 1590 assert(LatestDef.isUndefined() && 1591 "predefined macro went away with no #undef?"); 1592 PP.Diag(LatestDef.getUndefLocation(), diag::note_module_def_undef_here) 1593 << true; 1594 return; 1595 } else if (!CmdLineDefinition) { 1596 // There was no definition for this macro in the predefines buffer, 1597 // but there was a local definition. Complain. 1598 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1599 << false << ConfigMacro << Mod->getFullModuleName(); 1600 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1601 diag::note_module_def_undef_here) 1602 << false; 1603 } else if (!CurrentDefinition->isIdenticalTo(*CmdLineDefinition, PP, 1604 /*Syntactically=*/true)) { 1605 // The macro definitions differ. 1606 PP.Diag(ImportLoc, diag::warn_module_config_macro_undef) 1607 << false << ConfigMacro << Mod->getFullModuleName(); 1608 PP.Diag(CurrentDefinition->getDefinitionLoc(), 1609 diag::note_module_def_undef_here) 1610 << false; 1611 } 1612 } 1613 1614 static void checkConfigMacros(Preprocessor &PP, Module *M, 1615 SourceLocation ImportLoc) { 1616 clang::Module *TopModule = M->getTopLevelModule(); 1617 for (const StringRef ConMacro : TopModule->ConfigMacros) { 1618 checkConfigMacro(PP, ConMacro, M, ImportLoc); 1619 } 1620 } 1621 1622 /// Write a new timestamp file with the given path. 1623 static void writeTimestampFile(StringRef TimestampFile) { 1624 std::error_code EC; 1625 llvm::raw_fd_ostream Out(TimestampFile.str(), EC, llvm::sys::fs::OF_None); 1626 } 1627 1628 /// Prune the module cache of modules that haven't been accessed in 1629 /// a long time. 1630 static void pruneModuleCache(const HeaderSearchOptions &HSOpts) { 1631 llvm::sys::fs::file_status StatBuf; 1632 llvm::SmallString<128> TimestampFile; 1633 TimestampFile = HSOpts.ModuleCachePath; 1634 assert(!TimestampFile.empty()); 1635 llvm::sys::path::append(TimestampFile, "modules.timestamp"); 1636 1637 // Try to stat() the timestamp file. 1638 if (std::error_code EC = llvm::sys::fs::status(TimestampFile, StatBuf)) { 1639 // If the timestamp file wasn't there, create one now. 1640 if (EC == std::errc::no_such_file_or_directory) { 1641 writeTimestampFile(TimestampFile); 1642 } 1643 return; 1644 } 1645 1646 // Check whether the time stamp is older than our pruning interval. 1647 // If not, do nothing. 1648 time_t TimeStampModTime = 1649 llvm::sys::toTimeT(StatBuf.getLastModificationTime()); 1650 time_t CurrentTime = time(nullptr); 1651 if (CurrentTime - TimeStampModTime <= time_t(HSOpts.ModuleCachePruneInterval)) 1652 return; 1653 1654 // Write a new timestamp file so that nobody else attempts to prune. 1655 // There is a benign race condition here, if two Clang instances happen to 1656 // notice at the same time that the timestamp is out-of-date. 1657 writeTimestampFile(TimestampFile); 1658 1659 // Walk the entire module cache, looking for unused module files and module 1660 // indices. 1661 std::error_code EC; 1662 SmallString<128> ModuleCachePathNative; 1663 llvm::sys::path::native(HSOpts.ModuleCachePath, ModuleCachePathNative); 1664 for (llvm::sys::fs::directory_iterator Dir(ModuleCachePathNative, EC), DirEnd; 1665 Dir != DirEnd && !EC; Dir.increment(EC)) { 1666 // If we don't have a directory, there's nothing to look into. 1667 if (!llvm::sys::fs::is_directory(Dir->path())) 1668 continue; 1669 1670 // Walk all of the files within this directory. 1671 for (llvm::sys::fs::directory_iterator File(Dir->path(), EC), FileEnd; 1672 File != FileEnd && !EC; File.increment(EC)) { 1673 // We only care about module and global module index files. 1674 StringRef Extension = llvm::sys::path::extension(File->path()); 1675 if (Extension != ".pcm" && Extension != ".timestamp" && 1676 llvm::sys::path::filename(File->path()) != "modules.idx") 1677 continue; 1678 1679 // Look at this file. If we can't stat it, there's nothing interesting 1680 // there. 1681 if (llvm::sys::fs::status(File->path(), StatBuf)) 1682 continue; 1683 1684 // If the file has been used recently enough, leave it there. 1685 time_t FileAccessTime = llvm::sys::toTimeT(StatBuf.getLastAccessedTime()); 1686 if (CurrentTime - FileAccessTime <= 1687 time_t(HSOpts.ModuleCachePruneAfter)) { 1688 continue; 1689 } 1690 1691 // Remove the file. 1692 llvm::sys::fs::remove(File->path()); 1693 1694 // Remove the timestamp file. 1695 std::string TimpestampFilename = File->path() + ".timestamp"; 1696 llvm::sys::fs::remove(TimpestampFilename); 1697 } 1698 1699 // If we removed all of the files in the directory, remove the directory 1700 // itself. 1701 if (llvm::sys::fs::directory_iterator(Dir->path(), EC) == 1702 llvm::sys::fs::directory_iterator() && !EC) 1703 llvm::sys::fs::remove(Dir->path()); 1704 } 1705 } 1706 1707 void CompilerInstance::createASTReader() { 1708 if (TheASTReader) 1709 return; 1710 1711 if (!hasASTContext()) 1712 createASTContext(); 1713 1714 // If we're implicitly building modules but not currently recursively 1715 // building a module, check whether we need to prune the module cache. 1716 if (getSourceManager().getModuleBuildStack().empty() && 1717 !getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty() && 1718 getHeaderSearchOpts().ModuleCachePruneInterval > 0 && 1719 getHeaderSearchOpts().ModuleCachePruneAfter > 0) { 1720 pruneModuleCache(getHeaderSearchOpts()); 1721 } 1722 1723 HeaderSearchOptions &HSOpts = getHeaderSearchOpts(); 1724 std::string Sysroot = HSOpts.Sysroot; 1725 const PreprocessorOptions &PPOpts = getPreprocessorOpts(); 1726 const FrontendOptions &FEOpts = getFrontendOpts(); 1727 std::unique_ptr<llvm::Timer> ReadTimer; 1728 1729 if (FrontendTimerGroup) 1730 ReadTimer = std::make_unique<llvm::Timer>("reading_modules", 1731 "Reading modules", 1732 *FrontendTimerGroup); 1733 TheASTReader = new ASTReader( 1734 getPreprocessor(), getModuleCache(), &getASTContext(), 1735 getPCHContainerReader(), getFrontendOpts().ModuleFileExtensions, 1736 Sysroot.empty() ? "" : Sysroot.c_str(), 1737 PPOpts.DisablePCHOrModuleValidation, 1738 /*AllowASTWithCompilerErrors=*/FEOpts.AllowPCMWithCompilerErrors, 1739 /*AllowConfigurationMismatch=*/false, HSOpts.ModulesValidateSystemHeaders, 1740 HSOpts.ValidateASTInputFilesContent, 1741 getFrontendOpts().UseGlobalModuleIndex, std::move(ReadTimer)); 1742 if (hasASTConsumer()) { 1743 TheASTReader->setDeserializationListener( 1744 getASTConsumer().GetASTDeserializationListener()); 1745 getASTContext().setASTMutationListener( 1746 getASTConsumer().GetASTMutationListener()); 1747 } 1748 getASTContext().setExternalSource(TheASTReader); 1749 if (hasSema()) 1750 TheASTReader->InitializeSema(getSema()); 1751 if (hasASTConsumer()) 1752 TheASTReader->StartTranslationUnit(&getASTConsumer()); 1753 1754 for (auto &Listener : DependencyCollectors) 1755 Listener->attachToASTReader(*TheASTReader); 1756 } 1757 1758 bool CompilerInstance::loadModuleFile( 1759 StringRef FileName, serialization::ModuleFile *&LoadedModuleFile) { 1760 llvm::Timer Timer; 1761 if (FrontendTimerGroup) 1762 Timer.init("preloading." + FileName.str(), "Preloading " + FileName.str(), 1763 *FrontendTimerGroup); 1764 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1765 1766 // If we don't already have an ASTReader, create one now. 1767 if (!TheASTReader) 1768 createASTReader(); 1769 1770 // If -Wmodule-file-config-mismatch is mapped as an error or worse, allow the 1771 // ASTReader to diagnose it, since it can produce better errors that we can. 1772 bool ConfigMismatchIsRecoverable = 1773 getDiagnostics().getDiagnosticLevel(diag::warn_module_config_mismatch, 1774 SourceLocation()) 1775 <= DiagnosticsEngine::Warning; 1776 1777 auto Listener = std::make_unique<ReadModuleNames>(*PP); 1778 auto &ListenerRef = *Listener; 1779 ASTReader::ListenerScope ReadModuleNamesListener(*TheASTReader, 1780 std::move(Listener)); 1781 1782 // Try to load the module file. 1783 switch (TheASTReader->ReadAST( 1784 FileName, serialization::MK_ExplicitModule, SourceLocation(), 1785 ConfigMismatchIsRecoverable ? ASTReader::ARR_ConfigurationMismatch : 0, 1786 &LoadedModuleFile)) { 1787 case ASTReader::Success: 1788 // We successfully loaded the module file; remember the set of provided 1789 // modules so that we don't try to load implicit modules for them. 1790 ListenerRef.registerAll(); 1791 return true; 1792 1793 case ASTReader::ConfigurationMismatch: 1794 // Ignore unusable module files. 1795 getDiagnostics().Report(SourceLocation(), diag::warn_module_config_mismatch) 1796 << FileName; 1797 // All modules provided by any files we tried and failed to load are now 1798 // unavailable; includes of those modules should now be handled textually. 1799 ListenerRef.markAllUnavailable(); 1800 return true; 1801 1802 default: 1803 return false; 1804 } 1805 } 1806 1807 namespace { 1808 enum ModuleSource { 1809 MS_ModuleNotFound, 1810 MS_ModuleCache, 1811 MS_PrebuiltModulePath, 1812 MS_ModuleBuildPragma 1813 }; 1814 } // end namespace 1815 1816 /// Select a source for loading the named module and compute the filename to 1817 /// load it from. 1818 static ModuleSource selectModuleSource( 1819 Module *M, StringRef ModuleName, std::string &ModuleFilename, 1820 const std::map<std::string, std::string, std::less<>> &BuiltModules, 1821 HeaderSearch &HS) { 1822 assert(ModuleFilename.empty() && "Already has a module source?"); 1823 1824 // Check to see if the module has been built as part of this compilation 1825 // via a module build pragma. 1826 auto BuiltModuleIt = BuiltModules.find(ModuleName); 1827 if (BuiltModuleIt != BuiltModules.end()) { 1828 ModuleFilename = BuiltModuleIt->second; 1829 return MS_ModuleBuildPragma; 1830 } 1831 1832 // Try to load the module from the prebuilt module path. 1833 const HeaderSearchOptions &HSOpts = HS.getHeaderSearchOpts(); 1834 if (!HSOpts.PrebuiltModuleFiles.empty() || 1835 !HSOpts.PrebuiltModulePaths.empty()) { 1836 ModuleFilename = HS.getPrebuiltModuleFileName(ModuleName); 1837 if (HSOpts.EnablePrebuiltImplicitModules && ModuleFilename.empty()) 1838 ModuleFilename = HS.getPrebuiltImplicitModuleFileName(M); 1839 if (!ModuleFilename.empty()) 1840 return MS_PrebuiltModulePath; 1841 } 1842 1843 // Try to load the module from the module cache. 1844 if (M) { 1845 ModuleFilename = HS.getCachedModuleFileName(M); 1846 return MS_ModuleCache; 1847 } 1848 1849 return MS_ModuleNotFound; 1850 } 1851 1852 ModuleLoadResult CompilerInstance::findOrCompileModuleAndReadAST( 1853 StringRef ModuleName, SourceLocation ImportLoc, 1854 SourceLocation ModuleNameLoc, bool IsInclusionDirective) { 1855 // Search for a module with the given name. 1856 HeaderSearch &HS = PP->getHeaderSearchInfo(); 1857 Module *M = 1858 HS.lookupModule(ModuleName, ImportLoc, true, !IsInclusionDirective); 1859 1860 // Check for any configuration macros that have changed. This is done 1861 // immediately before potentially building a module in case this module 1862 // depends on having one of its configuration macros defined to successfully 1863 // build. If this is not done the user will never see the warning. 1864 if (M) 1865 checkConfigMacros(getPreprocessor(), M, ImportLoc); 1866 1867 // Select the source and filename for loading the named module. 1868 std::string ModuleFilename; 1869 ModuleSource Source = 1870 selectModuleSource(M, ModuleName, ModuleFilename, BuiltModules, HS); 1871 if (Source == MS_ModuleNotFound) { 1872 // We can't find a module, error out here. 1873 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_found) 1874 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1875 return nullptr; 1876 } 1877 if (ModuleFilename.empty()) { 1878 if (M && M->HasIncompatibleModuleFile) { 1879 // We tried and failed to load a module file for this module. Fall 1880 // back to textual inclusion for its headers. 1881 return ModuleLoadResult::ConfigMismatch; 1882 } 1883 1884 getDiagnostics().Report(ModuleNameLoc, diag::err_module_build_disabled) 1885 << ModuleName; 1886 return nullptr; 1887 } 1888 1889 // Create an ASTReader on demand. 1890 if (!getASTReader()) 1891 createASTReader(); 1892 1893 // Time how long it takes to load the module. 1894 llvm::Timer Timer; 1895 if (FrontendTimerGroup) 1896 Timer.init("loading." + ModuleFilename, "Loading " + ModuleFilename, 1897 *FrontendTimerGroup); 1898 llvm::TimeRegion TimeLoading(FrontendTimerGroup ? &Timer : nullptr); 1899 llvm::TimeTraceScope TimeScope("Module Load", ModuleName); 1900 1901 // Try to load the module file. If we are not trying to load from the 1902 // module cache, we don't know how to rebuild modules. 1903 unsigned ARRFlags = Source == MS_ModuleCache 1904 ? ASTReader::ARR_OutOfDate | ASTReader::ARR_Missing | 1905 ASTReader::ARR_TreatModuleWithErrorsAsOutOfDate 1906 : Source == MS_PrebuiltModulePath 1907 ? 0 1908 : ASTReader::ARR_ConfigurationMismatch; 1909 switch (getASTReader()->ReadAST(ModuleFilename, 1910 Source == MS_PrebuiltModulePath 1911 ? serialization::MK_PrebuiltModule 1912 : Source == MS_ModuleBuildPragma 1913 ? serialization::MK_ExplicitModule 1914 : serialization::MK_ImplicitModule, 1915 ImportLoc, ARRFlags)) { 1916 case ASTReader::Success: { 1917 if (M) 1918 return M; 1919 assert(Source != MS_ModuleCache && 1920 "missing module, but file loaded from cache"); 1921 1922 // A prebuilt module is indexed as a ModuleFile; the Module does not exist 1923 // until the first call to ReadAST. Look it up now. 1924 M = HS.lookupModule(ModuleName, ImportLoc, true, !IsInclusionDirective); 1925 1926 // Check whether M refers to the file in the prebuilt module path. 1927 if (M && M->getASTFile()) 1928 if (auto ModuleFile = FileMgr->getFile(ModuleFilename)) 1929 if (*ModuleFile == M->getASTFile()) 1930 return M; 1931 1932 getDiagnostics().Report(ModuleNameLoc, diag::err_module_prebuilt) 1933 << ModuleName; 1934 return ModuleLoadResult(); 1935 } 1936 1937 case ASTReader::OutOfDate: 1938 case ASTReader::Missing: 1939 // The most interesting case. 1940 break; 1941 1942 case ASTReader::ConfigurationMismatch: 1943 if (Source == MS_PrebuiltModulePath) 1944 // FIXME: We shouldn't be setting HadFatalFailure below if we only 1945 // produce a warning here! 1946 getDiagnostics().Report(SourceLocation(), 1947 diag::warn_module_config_mismatch) 1948 << ModuleFilename; 1949 // Fall through to error out. 1950 [[fallthrough]]; 1951 case ASTReader::VersionMismatch: 1952 case ASTReader::HadErrors: 1953 ModuleLoader::HadFatalFailure = true; 1954 // FIXME: The ASTReader will already have complained, but can we shoehorn 1955 // that diagnostic information into a more useful form? 1956 return ModuleLoadResult(); 1957 1958 case ASTReader::Failure: 1959 ModuleLoader::HadFatalFailure = true; 1960 return ModuleLoadResult(); 1961 } 1962 1963 // ReadAST returned Missing or OutOfDate. 1964 if (Source != MS_ModuleCache) { 1965 // We don't know the desired configuration for this module and don't 1966 // necessarily even have a module map. Since ReadAST already produces 1967 // diagnostics for these two cases, we simply error out here. 1968 return ModuleLoadResult(); 1969 } 1970 1971 // The module file is missing or out-of-date. Build it. 1972 assert(M && "missing module, but trying to compile for cache"); 1973 1974 // Check whether there is a cycle in the module graph. 1975 ModuleBuildStack ModPath = getSourceManager().getModuleBuildStack(); 1976 ModuleBuildStack::iterator Pos = ModPath.begin(), PosEnd = ModPath.end(); 1977 for (; Pos != PosEnd; ++Pos) { 1978 if (Pos->first == ModuleName) 1979 break; 1980 } 1981 1982 if (Pos != PosEnd) { 1983 SmallString<256> CyclePath; 1984 for (; Pos != PosEnd; ++Pos) { 1985 CyclePath += Pos->first; 1986 CyclePath += " -> "; 1987 } 1988 CyclePath += ModuleName; 1989 1990 getDiagnostics().Report(ModuleNameLoc, diag::err_module_cycle) 1991 << ModuleName << CyclePath; 1992 return nullptr; 1993 } 1994 1995 // Check whether we have already attempted to build this module (but failed). 1996 if (FailedModules && FailedModules->hasAlreadyFailed(ModuleName)) { 1997 getDiagnostics().Report(ModuleNameLoc, diag::err_module_not_built) 1998 << ModuleName << SourceRange(ImportLoc, ModuleNameLoc); 1999 return nullptr; 2000 } 2001 2002 // Try to compile and then read the AST. 2003 if (!compileModuleAndReadAST(*this, ImportLoc, ModuleNameLoc, M, 2004 ModuleFilename)) { 2005 assert(getDiagnostics().hasErrorOccurred() && 2006 "undiagnosed error in compileModuleAndReadAST"); 2007 if (FailedModules) 2008 FailedModules->addFailed(ModuleName); 2009 return nullptr; 2010 } 2011 2012 // Okay, we've rebuilt and now loaded the module. 2013 return M; 2014 } 2015 2016 ModuleLoadResult 2017 CompilerInstance::loadModule(SourceLocation ImportLoc, 2018 ModuleIdPath Path, 2019 Module::NameVisibilityKind Visibility, 2020 bool IsInclusionDirective) { 2021 // Determine what file we're searching from. 2022 StringRef ModuleName = Path[0].first->getName(); 2023 SourceLocation ModuleNameLoc = Path[0].second; 2024 2025 // If we've already handled this import, just return the cached result. 2026 // This one-element cache is important to eliminate redundant diagnostics 2027 // when both the preprocessor and parser see the same import declaration. 2028 if (ImportLoc.isValid() && LastModuleImportLoc == ImportLoc) { 2029 // Make the named module visible. 2030 if (LastModuleImportResult && ModuleName != getLangOpts().CurrentModule) 2031 TheASTReader->makeModuleVisible(LastModuleImportResult, Visibility, 2032 ImportLoc); 2033 return LastModuleImportResult; 2034 } 2035 2036 // If we don't already have information on this module, load the module now. 2037 Module *Module = nullptr; 2038 ModuleMap &MM = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 2039 if (auto MaybeModule = MM.getCachedModuleLoad(*Path[0].first)) { 2040 // Use the cached result, which may be nullptr. 2041 Module = *MaybeModule; 2042 // Config macros are already checked before building a module, but they need 2043 // to be checked at each import location in case any of the config macros 2044 // have a new value at the current `ImportLoc`. 2045 if (Module) 2046 checkConfigMacros(getPreprocessor(), Module, ImportLoc); 2047 } else if (ModuleName == getLangOpts().CurrentModule) { 2048 // This is the module we're building. 2049 Module = PP->getHeaderSearchInfo().lookupModule( 2050 ModuleName, ImportLoc, /*AllowSearch*/ true, 2051 /*AllowExtraModuleMapSearch*/ !IsInclusionDirective); 2052 2053 // Config macros do not need to be checked here for two reasons. 2054 // * This will always be textual inclusion, and thus the config macros 2055 // actually do impact the content of the header. 2056 // * `Preprocessor::HandleHeaderIncludeOrImport` will never call this 2057 // function as the `#include` or `#import` is textual. 2058 2059 MM.cacheModuleLoad(*Path[0].first, Module); 2060 } else { 2061 ModuleLoadResult Result = findOrCompileModuleAndReadAST( 2062 ModuleName, ImportLoc, ModuleNameLoc, IsInclusionDirective); 2063 if (!Result.isNormal()) 2064 return Result; 2065 if (!Result) 2066 DisableGeneratingGlobalModuleIndex = true; 2067 Module = Result; 2068 MM.cacheModuleLoad(*Path[0].first, Module); 2069 } 2070 2071 // If we never found the module, fail. Otherwise, verify the module and link 2072 // it up. 2073 if (!Module) 2074 return ModuleLoadResult(); 2075 2076 // Verify that the rest of the module path actually corresponds to 2077 // a submodule. 2078 bool MapPrivateSubModToTopLevel = false; 2079 for (unsigned I = 1, N = Path.size(); I != N; ++I) { 2080 StringRef Name = Path[I].first->getName(); 2081 clang::Module *Sub = Module->findSubmodule(Name); 2082 2083 // If the user is requesting Foo.Private and it doesn't exist, try to 2084 // match Foo_Private and emit a warning asking for the user to write 2085 // @import Foo_Private instead. FIXME: remove this when existing clients 2086 // migrate off of Foo.Private syntax. 2087 if (!Sub && Name == "Private" && Module == Module->getTopLevelModule()) { 2088 SmallString<128> PrivateModule(Module->Name); 2089 PrivateModule.append("_Private"); 2090 2091 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> PrivPath; 2092 auto &II = PP->getIdentifierTable().get( 2093 PrivateModule, PP->getIdentifierInfo(Module->Name)->getTokenID()); 2094 PrivPath.push_back(std::make_pair(&II, Path[0].second)); 2095 2096 std::string FileName; 2097 // If there is a modulemap module or prebuilt module, load it. 2098 if (PP->getHeaderSearchInfo().lookupModule(PrivateModule, ImportLoc, true, 2099 !IsInclusionDirective) || 2100 selectModuleSource(nullptr, PrivateModule, FileName, BuiltModules, 2101 PP->getHeaderSearchInfo()) != MS_ModuleNotFound) 2102 Sub = loadModule(ImportLoc, PrivPath, Visibility, IsInclusionDirective); 2103 if (Sub) { 2104 MapPrivateSubModToTopLevel = true; 2105 PP->markClangModuleAsAffecting(Module); 2106 if (!getDiagnostics().isIgnored( 2107 diag::warn_no_priv_submodule_use_toplevel, ImportLoc)) { 2108 getDiagnostics().Report(Path[I].second, 2109 diag::warn_no_priv_submodule_use_toplevel) 2110 << Path[I].first << Module->getFullModuleName() << PrivateModule 2111 << SourceRange(Path[0].second, Path[I].second) 2112 << FixItHint::CreateReplacement(SourceRange(Path[0].second), 2113 PrivateModule); 2114 getDiagnostics().Report(Sub->DefinitionLoc, 2115 diag::note_private_top_level_defined); 2116 } 2117 } 2118 } 2119 2120 if (!Sub) { 2121 // Attempt to perform typo correction to find a module name that works. 2122 SmallVector<StringRef, 2> Best; 2123 unsigned BestEditDistance = (std::numeric_limits<unsigned>::max)(); 2124 2125 for (class Module *SubModule : Module->submodules()) { 2126 unsigned ED = 2127 Name.edit_distance(SubModule->Name, 2128 /*AllowReplacements=*/true, BestEditDistance); 2129 if (ED <= BestEditDistance) { 2130 if (ED < BestEditDistance) { 2131 Best.clear(); 2132 BestEditDistance = ED; 2133 } 2134 2135 Best.push_back(SubModule->Name); 2136 } 2137 } 2138 2139 // If there was a clear winner, user it. 2140 if (Best.size() == 1) { 2141 getDiagnostics().Report(Path[I].second, diag::err_no_submodule_suggest) 2142 << Path[I].first << Module->getFullModuleName() << Best[0] 2143 << SourceRange(Path[0].second, Path[I - 1].second) 2144 << FixItHint::CreateReplacement(SourceRange(Path[I].second), 2145 Best[0]); 2146 2147 Sub = Module->findSubmodule(Best[0]); 2148 } 2149 } 2150 2151 if (!Sub) { 2152 // No submodule by this name. Complain, and don't look for further 2153 // submodules. 2154 getDiagnostics().Report(Path[I].second, diag::err_no_submodule) 2155 << Path[I].first << Module->getFullModuleName() 2156 << SourceRange(Path[0].second, Path[I - 1].second); 2157 break; 2158 } 2159 2160 Module = Sub; 2161 } 2162 2163 // Make the named module visible, if it's not already part of the module 2164 // we are parsing. 2165 if (ModuleName != getLangOpts().CurrentModule) { 2166 if (!Module->IsFromModuleFile && !MapPrivateSubModToTopLevel) { 2167 // We have an umbrella header or directory that doesn't actually include 2168 // all of the headers within the directory it covers. Complain about 2169 // this missing submodule and recover by forgetting that we ever saw 2170 // this submodule. 2171 // FIXME: Should we detect this at module load time? It seems fairly 2172 // expensive (and rare). 2173 getDiagnostics().Report(ImportLoc, diag::warn_missing_submodule) 2174 << Module->getFullModuleName() 2175 << SourceRange(Path.front().second, Path.back().second); 2176 2177 return ModuleLoadResult(Module, ModuleLoadResult::MissingExpected); 2178 } 2179 2180 // Check whether this module is available. 2181 if (Preprocessor::checkModuleIsAvailable(getLangOpts(), getTarget(), 2182 *Module, getDiagnostics())) { 2183 getDiagnostics().Report(ImportLoc, diag::note_module_import_here) 2184 << SourceRange(Path.front().second, Path.back().second); 2185 LastModuleImportLoc = ImportLoc; 2186 LastModuleImportResult = ModuleLoadResult(); 2187 return ModuleLoadResult(); 2188 } 2189 2190 TheASTReader->makeModuleVisible(Module, Visibility, ImportLoc); 2191 } 2192 2193 // Resolve any remaining module using export_as for this one. 2194 getPreprocessor() 2195 .getHeaderSearchInfo() 2196 .getModuleMap() 2197 .resolveLinkAsDependencies(Module->getTopLevelModule()); 2198 2199 LastModuleImportLoc = ImportLoc; 2200 LastModuleImportResult = ModuleLoadResult(Module); 2201 return LastModuleImportResult; 2202 } 2203 2204 void CompilerInstance::createModuleFromSource(SourceLocation ImportLoc, 2205 StringRef ModuleName, 2206 StringRef Source) { 2207 // Avoid creating filenames with special characters. 2208 SmallString<128> CleanModuleName(ModuleName); 2209 for (auto &C : CleanModuleName) 2210 if (!isAlphanumeric(C)) 2211 C = '_'; 2212 2213 // FIXME: Using a randomized filename here means that our intermediate .pcm 2214 // output is nondeterministic (as .pcm files refer to each other by name). 2215 // Can this affect the output in any way? 2216 SmallString<128> ModuleFileName; 2217 if (std::error_code EC = llvm::sys::fs::createTemporaryFile( 2218 CleanModuleName, "pcm", ModuleFileName)) { 2219 getDiagnostics().Report(ImportLoc, diag::err_fe_unable_to_open_output) 2220 << ModuleFileName << EC.message(); 2221 return; 2222 } 2223 std::string ModuleMapFileName = (CleanModuleName + ".map").str(); 2224 2225 FrontendInputFile Input( 2226 ModuleMapFileName, 2227 InputKind(getLanguageFromOptions(Invocation->getLangOpts()), 2228 InputKind::ModuleMap, /*Preprocessed*/true)); 2229 2230 std::string NullTerminatedSource(Source.str()); 2231 2232 auto PreBuildStep = [&](CompilerInstance &Other) { 2233 // Create a virtual file containing our desired source. 2234 // FIXME: We shouldn't need to do this. 2235 FileEntryRef ModuleMapFile = Other.getFileManager().getVirtualFileRef( 2236 ModuleMapFileName, NullTerminatedSource.size(), 0); 2237 Other.getSourceManager().overrideFileContents( 2238 ModuleMapFile, llvm::MemoryBuffer::getMemBuffer(NullTerminatedSource)); 2239 2240 Other.BuiltModules = std::move(BuiltModules); 2241 Other.DeleteBuiltModules = false; 2242 }; 2243 2244 auto PostBuildStep = [this](CompilerInstance &Other) { 2245 BuiltModules = std::move(Other.BuiltModules); 2246 }; 2247 2248 // Build the module, inheriting any modules that we've built locally. 2249 if (compileModuleImpl(*this, ImportLoc, ModuleName, Input, StringRef(), 2250 ModuleFileName, PreBuildStep, PostBuildStep)) { 2251 BuiltModules[std::string(ModuleName)] = std::string(ModuleFileName); 2252 llvm::sys::RemoveFileOnSignal(ModuleFileName); 2253 } 2254 } 2255 2256 void CompilerInstance::makeModuleVisible(Module *Mod, 2257 Module::NameVisibilityKind Visibility, 2258 SourceLocation ImportLoc) { 2259 if (!TheASTReader) 2260 createASTReader(); 2261 if (!TheASTReader) 2262 return; 2263 2264 TheASTReader->makeModuleVisible(Mod, Visibility, ImportLoc); 2265 } 2266 2267 GlobalModuleIndex *CompilerInstance::loadGlobalModuleIndex( 2268 SourceLocation TriggerLoc) { 2269 if (getPreprocessor().getHeaderSearchInfo().getModuleCachePath().empty()) 2270 return nullptr; 2271 if (!TheASTReader) 2272 createASTReader(); 2273 // Can't do anything if we don't have the module manager. 2274 if (!TheASTReader) 2275 return nullptr; 2276 // Get an existing global index. This loads it if not already 2277 // loaded. 2278 TheASTReader->loadGlobalIndex(); 2279 GlobalModuleIndex *GlobalIndex = TheASTReader->getGlobalIndex(); 2280 // If the global index doesn't exist, create it. 2281 if (!GlobalIndex && shouldBuildGlobalModuleIndex() && hasFileManager() && 2282 hasPreprocessor()) { 2283 llvm::sys::fs::create_directories( 2284 getPreprocessor().getHeaderSearchInfo().getModuleCachePath()); 2285 if (llvm::Error Err = GlobalModuleIndex::writeIndex( 2286 getFileManager(), getPCHContainerReader(), 2287 getPreprocessor().getHeaderSearchInfo().getModuleCachePath())) { 2288 // FIXME this drops the error on the floor. This code is only used for 2289 // typo correction and drops more than just this one source of errors 2290 // (such as the directory creation failure above). It should handle the 2291 // error. 2292 consumeError(std::move(Err)); 2293 return nullptr; 2294 } 2295 TheASTReader->resetForReload(); 2296 TheASTReader->loadGlobalIndex(); 2297 GlobalIndex = TheASTReader->getGlobalIndex(); 2298 } 2299 // For finding modules needing to be imported for fixit messages, 2300 // we need to make the global index cover all modules, so we do that here. 2301 if (!HaveFullGlobalModuleIndex && GlobalIndex && !buildingModule()) { 2302 ModuleMap &MMap = getPreprocessor().getHeaderSearchInfo().getModuleMap(); 2303 bool RecreateIndex = false; 2304 for (ModuleMap::module_iterator I = MMap.module_begin(), 2305 E = MMap.module_end(); I != E; ++I) { 2306 Module *TheModule = I->second; 2307 OptionalFileEntryRef Entry = TheModule->getASTFile(); 2308 if (!Entry) { 2309 SmallVector<std::pair<IdentifierInfo *, SourceLocation>, 2> Path; 2310 Path.push_back(std::make_pair( 2311 getPreprocessor().getIdentifierInfo(TheModule->Name), TriggerLoc)); 2312 std::reverse(Path.begin(), Path.end()); 2313 // Load a module as hidden. This also adds it to the global index. 2314 loadModule(TheModule->DefinitionLoc, Path, Module::Hidden, false); 2315 RecreateIndex = true; 2316 } 2317 } 2318 if (RecreateIndex) { 2319 if (llvm::Error Err = GlobalModuleIndex::writeIndex( 2320 getFileManager(), getPCHContainerReader(), 2321 getPreprocessor().getHeaderSearchInfo().getModuleCachePath())) { 2322 // FIXME As above, this drops the error on the floor. 2323 consumeError(std::move(Err)); 2324 return nullptr; 2325 } 2326 TheASTReader->resetForReload(); 2327 TheASTReader->loadGlobalIndex(); 2328 GlobalIndex = TheASTReader->getGlobalIndex(); 2329 } 2330 HaveFullGlobalModuleIndex = true; 2331 } 2332 return GlobalIndex; 2333 } 2334 2335 // Check global module index for missing imports. 2336 bool 2337 CompilerInstance::lookupMissingImports(StringRef Name, 2338 SourceLocation TriggerLoc) { 2339 // Look for the symbol in non-imported modules, but only if an error 2340 // actually occurred. 2341 if (!buildingModule()) { 2342 // Load global module index, or retrieve a previously loaded one. 2343 GlobalModuleIndex *GlobalIndex = loadGlobalModuleIndex( 2344 TriggerLoc); 2345 2346 // Only if we have a global index. 2347 if (GlobalIndex) { 2348 GlobalModuleIndex::HitSet FoundModules; 2349 2350 // Find the modules that reference the identifier. 2351 // Note that this only finds top-level modules. 2352 // We'll let diagnoseTypo find the actual declaration module. 2353 if (GlobalIndex->lookupIdentifier(Name, FoundModules)) 2354 return true; 2355 } 2356 } 2357 2358 return false; 2359 } 2360 void CompilerInstance::resetAndLeakSema() { llvm::BuryPointer(takeSema()); } 2361 2362 void CompilerInstance::setExternalSemaSource( 2363 IntrusiveRefCntPtr<ExternalSemaSource> ESS) { 2364 ExternalSemaSrc = std::move(ESS); 2365 } 2366