1 //===--- Macros.h - Format C++ code -----------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 /// 9 /// \file 10 /// This file contains the main building blocks of macro support in 11 /// clang-format. 12 /// 13 /// In order to not violate the requirement that clang-format can format files 14 /// in isolation, clang-format's macro support uses expansions users provide 15 /// as part of clang-format's style configuration. 16 /// 17 /// Macro definitions are of the form "MACRO(p1, p2)=p1 + p2", but only support 18 /// one level of expansion (\see MacroExpander for a full description of what 19 /// is supported). 20 /// 21 /// As part of parsing, clang-format uses the MacroExpander to expand the 22 /// spelled token streams into expanded token streams when it encounters a 23 /// macro call. The UnwrappedLineParser continues to parse UnwrappedLines 24 /// from the expanded token stream. 25 /// After the expanded unwrapped lines are parsed, the MacroCallReconstructor 26 /// matches the spelled token stream into unwrapped lines that best resemble the 27 /// structure of the expanded unwrapped lines. These reconstructed unwrapped 28 /// lines are aliasing the tokens in the expanded token stream, so that token 29 /// annotations will be reused when formatting the spelled macro calls. 30 /// 31 /// When formatting, clang-format annotates and formats the expanded unwrapped 32 /// lines first, determining the token types. Next, it formats the spelled 33 /// unwrapped lines, keeping the token types fixed, while allowing other 34 /// formatting decisions to change. 35 /// 36 //===----------------------------------------------------------------------===// 37 38 #ifndef CLANG_LIB_FORMAT_MACROS_H 39 #define CLANG_LIB_FORMAT_MACROS_H 40 41 #include <list> 42 43 #include "FormatToken.h" 44 #include "llvm/ADT/DenseMap.h" 45 46 namespace clang { 47 namespace format { 48 49 struct UnwrappedLine; 50 struct UnwrappedLineNode; 51 52 /// Takes a set of macro definitions as strings and allows expanding calls to 53 /// those macros. 54 /// 55 /// For example: 56 /// Definition: A(x, y)=x + y 57 /// Call : A(int a = 1, 2) 58 /// Expansion : int a = 1 + 2 59 /// 60 /// Expansion does not check arity of the definition. 61 /// If fewer arguments than expected are provided, the remaining parameters 62 /// are considered empty: 63 /// Call : A(a) 64 /// Expansion: a + 65 /// If more arguments than expected are provided, they will be discarded. 66 /// 67 /// The expander does not support: 68 /// - recursive expansion 69 /// - stringification 70 /// - concatenation 71 /// - variadic macros 72 /// 73 /// Furthermore, only a single expansion of each macro argument is supported, 74 /// so that we cannot get conflicting formatting decisions from different 75 /// expansions. 76 /// Definition: A(x)=x+x 77 /// Call : A(id) 78 /// Expansion : id+x 79 /// 80 class MacroExpander { 81 public: 82 using ArgsList = ArrayRef<SmallVector<FormatToken *, 8>>; 83 84 /// Construct a macro expander from a set of macro definitions. 85 /// Macro definitions must be encoded as UTF-8. 86 /// 87 /// Each entry in \p Macros must conform to the following simple 88 /// macro-definition language: 89 /// <definition> ::= <id> <expansion> | <id> "(" <params> ")" <expansion> 90 /// <params> ::= <id-list> | "" 91 /// <id-list> ::= <id> | <id> "," <params> 92 /// <expansion> ::= "=" <tail> | <eof> 93 /// <tail> ::= <tok> <tail> | <eof> 94 /// 95 /// Macros that cannot be parsed will be silently discarded. 96 /// 97 MacroExpander(const std::vector<std::string> &Macros, 98 SourceManager &SourceMgr, const FormatStyle &Style, 99 llvm::SpecificBumpPtrAllocator<FormatToken> &Allocator, 100 IdentifierTable &IdentTable); 101 ~MacroExpander(); 102 103 /// Returns whether any macro \p Name is defined, regardless of overloads. 104 bool defined(StringRef Name) const; 105 106 /// Returns whetherh there is an object-like overload, i.e. where the macro 107 /// has no arguments and should not consume subsequent parentheses. 108 bool objectLike(StringRef Name) const; 109 110 /// Returns whether macro \p Name provides an overload with the given arity. 111 bool hasArity(StringRef Name, unsigned Arity) const; 112 113 /// Returns the expanded stream of format tokens for \p ID, where 114 /// each element in \p Args is a positional argument to the macro call. 115 /// If \p Args is not set, the object-like overload is used. 116 /// If \p Args is set, the overload with the arity equal to \c Args.size() is 117 /// used. 118 SmallVector<FormatToken *, 8> 119 expand(FormatToken *ID, std::optional<ArgsList> OptionalArgs) const; 120 121 private: 122 struct Definition; 123 class DefinitionParser; 124 125 void parseDefinition(const std::string &Macro); 126 127 SourceManager &SourceMgr; 128 const FormatStyle &Style; 129 llvm::SpecificBumpPtrAllocator<FormatToken> &Allocator; 130 IdentifierTable &IdentTable; 131 SmallVector<std::unique_ptr<llvm::MemoryBuffer>> Buffers; 132 llvm::StringMap<llvm::DenseMap<int, Definition>> FunctionLike; 133 llvm::StringMap<Definition> ObjectLike; 134 }; 135 136 /// Converts a sequence of UnwrappedLines containing expanded macros into a 137 /// single UnwrappedLine containing the macro calls. This UnwrappedLine may be 138 /// broken into child lines, in a way that best conveys the structure of the 139 /// expanded code. 140 /// 141 /// In the simplest case, a spelled UnwrappedLine contains one macro, and after 142 /// expanding it we have one expanded UnwrappedLine. In general, macro 143 /// expansions can span UnwrappedLines, and multiple macros can contribute 144 /// tokens to the same line. We keep consuming expanded lines until: 145 /// * all expansions that started have finished (we're not chopping any macros 146 /// in half) 147 /// * *and* we've reached the end of a *spelled* unwrapped line. 148 /// 149 /// A single UnwrappedLine represents this chunk of code. 150 /// 151 /// After this point, the state of the spelled/expanded stream is "in sync" 152 /// (both at the start of an UnwrappedLine, with no macros open), so the 153 /// Reconstructor can be thrown away and parsing can continue. 154 /// 155 /// Given a mapping from the macro name identifier token in the macro call 156 /// to the tokens of the macro call, for example: 157 /// CLASSA -> CLASSA({public: void x();}) 158 /// 159 /// When getting the formatted lines of the expansion via the \c addLine method 160 /// (each '->' specifies a call to \c addLine ): 161 /// -> class A { 162 /// -> public: 163 /// -> void x(); 164 /// -> }; 165 /// 166 /// Creates the tree of unwrapped lines containing the macro call tokens so that 167 /// the macro call tokens fit the semantic structure of the expanded formatted 168 /// lines: 169 /// -> CLASSA({ 170 /// -> public: 171 /// -> void x(); 172 /// -> }) 173 class MacroCallReconstructor { 174 public: 175 /// Create an Reconstructor whose resulting \p UnwrappedLine will start at 176 /// \p Level, using the map from name identifier token to the corresponding 177 /// tokens of the spelled macro call. 178 MacroCallReconstructor( 179 unsigned Level, 180 const llvm::DenseMap<FormatToken *, std::unique_ptr<UnwrappedLine>> 181 &ActiveExpansions); 182 183 /// For the given \p Line, match all occurences of tokens expanded from a 184 /// macro to unwrapped lines in the spelled macro call so that the resulting 185 /// tree of unwrapped lines best resembles the structure of unwrapped lines 186 /// passed in via \c addLine. 187 void addLine(const UnwrappedLine &Line); 188 189 /// Check whether at the current state there is no open macro expansion 190 /// that needs to be processed to finish an macro call. 191 /// Only when \c finished() is true, \c takeResult() can be called to retrieve 192 /// the resulting \c UnwrappedLine. 193 /// If there are multiple subsequent macro calls within an unwrapped line in 194 /// the spelled token stream, the calling code may also continue to call 195 /// \c addLine() when \c finished() is true. 196 bool finished() const { return ActiveExpansions.empty(); } 197 198 /// Retrieve the formatted \c UnwrappedLine containing the orginal 199 /// macro calls, formatted according to the expanded token stream received 200 /// via \c addLine(). 201 /// Generally, this line tries to have the same structure as the expanded, 202 /// formatted unwrapped lines handed in via \c addLine(), with the exception 203 /// that for multiple top-level lines, each subsequent line will be the 204 /// child of the last token in its predecessor. This representation is chosen 205 /// because it is a precondition to the formatter that we get what looks like 206 /// a single statement in a single \c UnwrappedLine (i.e. matching parens). 207 /// 208 /// If a token in a macro argument is a child of a token in the expansion, 209 /// the parent will be the corresponding token in the macro call. 210 /// For example: 211 /// #define C(a, b) class C { a b 212 /// C(int x;, int y;) 213 /// would expand to 214 /// class C { int x; int y; 215 /// where in a formatted line "int x;" and "int y;" would both be new separate 216 /// lines. 217 /// 218 /// In the result, "int x;" will be a child of the opening parenthesis in "C(" 219 /// and "int y;" will be a child of the "," token: 220 /// C ( 221 /// \- int x; 222 /// , 223 /// \- int y; 224 /// ) 225 UnwrappedLine takeResult() &&; 226 227 private: 228 void add(FormatToken *Token, FormatToken *ExpandedParent, bool First, 229 unsigned Level); 230 void prepareParent(FormatToken *ExpandedParent, bool First, unsigned Level); 231 FormatToken *getParentInResult(FormatToken *Parent); 232 void reconstruct(FormatToken *Token); 233 void startReconstruction(FormatToken *Token); 234 bool reconstructActiveCallUntil(FormatToken *Token); 235 void endReconstruction(FormatToken *Token); 236 bool processNextReconstructed(); 237 void finalize(); 238 239 struct ReconstructedLine; 240 241 void appendToken(FormatToken *Token, ReconstructedLine *L = nullptr); 242 UnwrappedLine createUnwrappedLine(const ReconstructedLine &Line, int Level); 243 void debug(const ReconstructedLine &Line, int Level); 244 ReconstructedLine &parentLine(); 245 ReconstructedLine *currentLine(); 246 void debugParentMap() const; 247 248 #ifndef NDEBUG 249 enum ReconstructorState { 250 Start, // No macro expansion was found in the input yet. 251 InProgress, // During a macro reconstruction. 252 Finalized, // Past macro reconstruction, the result is finalized. 253 }; 254 ReconstructorState State = Start; 255 #endif 256 257 // Node in which we build up the resulting unwrapped line; this type is 258 // analogous to UnwrappedLineNode. 259 struct LineNode { 260 LineNode() = default; 261 LineNode(FormatToken *Tok) : Tok(Tok) {} 262 FormatToken *Tok = nullptr; 263 SmallVector<std::unique_ptr<ReconstructedLine>> Children; 264 }; 265 266 // Line in which we build up the resulting unwrapped line. 267 // FIXME: Investigate changing UnwrappedLine to a pointer type and using it 268 // instead of rolling our own type. 269 struct ReconstructedLine { 270 explicit ReconstructedLine(unsigned Level) : Level(Level) {} 271 unsigned Level; 272 SmallVector<std::unique_ptr<LineNode>> Tokens; 273 }; 274 275 // The line in which we collect the resulting reconstructed output. 276 // To reduce special cases in the algorithm, the first level of the line 277 // contains a single null token that has the reconstructed incoming 278 // lines as children. 279 // In the end, we stich the lines together so that each subsequent line 280 // is a child of the last token of the previous line. This is necessary 281 // in order to format the overall expression as a single logical line - 282 // if we created separate lines, we'd format them with their own top-level 283 // indent depending on the semantic structure, which is not desired. 284 ReconstructedLine Result; 285 286 // Stack of currently "open" lines, where each line's predecessor's last 287 // token is the parent token for that line. 288 SmallVector<ReconstructedLine *> ActiveReconstructedLines; 289 290 // Maps from the expanded token to the token that takes its place in the 291 // reconstructed token stream in terms of parent-child relationships. 292 // Note that it might take multiple steps to arrive at the correct 293 // parent in the output. 294 // Given: #define C(a, b) []() { a; b; } 295 // And a call: C(f(), g()) 296 // The structure in the incoming formatted unwrapped line will be: 297 // []() { 298 // |- f(); 299 // \- g(); 300 // } 301 // with f and g being children of the opening brace. 302 // In the reconstructed call: 303 // C(f(), g()) 304 // \- f() 305 // \- g() 306 // We want f to be a child of the opening parenthesis and g to be a child 307 // of the comma token in the macro call. 308 // Thus, we map 309 // { -> ( 310 // and add 311 // ( -> , 312 // once we're past the comma in the reconstruction. 313 llvm::DenseMap<FormatToken *, FormatToken *> 314 SpelledParentToReconstructedParent; 315 316 // Keeps track of a single expansion while we're reconstructing tokens it 317 // generated. 318 struct Expansion { 319 // The identifier token of the macro call. 320 FormatToken *ID; 321 // Our current position in the reconstruction. 322 std::list<UnwrappedLineNode>::iterator SpelledI; 323 // The end of the reconstructed token sequence. 324 std::list<UnwrappedLineNode>::iterator SpelledE; 325 }; 326 327 // Stack of macro calls for which we're in the middle of an expansion. 328 SmallVector<Expansion> ActiveExpansions; 329 330 struct MacroCallState { 331 MacroCallState(ReconstructedLine *Line, FormatToken *ParentLastToken, 332 FormatToken *MacroCallLParen); 333 334 ReconstructedLine *Line; 335 336 // The last token in the parent line or expansion, or nullptr if the macro 337 // expansion is on a top-level line. 338 // 339 // For example, in the macro call: 340 // auto f = []() { ID(1); }; 341 // The MacroCallState for ID will have '{' as ParentLastToken. 342 // 343 // In the macro call: 344 // ID(ID(void f())); 345 // The MacroCallState of the outer ID will have nullptr as ParentLastToken, 346 // while the MacroCallState for the inner ID will have the '(' of the outer 347 // ID as ParentLastToken. 348 // 349 // In the macro call: 350 // ID2(a, ID(b)); 351 // The MacroCallState of ID will have ',' as ParentLastToken. 352 FormatToken *ParentLastToken; 353 354 // The l_paren of this MacroCallState's macro call. 355 FormatToken *MacroCallLParen; 356 }; 357 358 // Keeps track of the lines into which the opening brace/parenthesis & 359 // argument separating commas for each level in the macro call go in order to 360 // put the corresponding closing brace/parenthesis into the same line in the 361 // output and keep track of which parents in the expanded token stream map to 362 // which tokens in the reconstructed stream. 363 // When an opening brace/parenthesis has children, we want the structure of 364 // the output line to be: 365 // |- MACRO 366 // |- ( 367 // | \- <argument> 368 // |- , 369 // | \- <argument> 370 // \- ) 371 SmallVector<MacroCallState> MacroCallStructure; 372 373 // Maps from identifier of the macro call to an unwrapped line containing 374 // all tokens of the macro call. 375 const llvm::DenseMap<FormatToken *, std::unique_ptr<UnwrappedLine>> 376 &IdToReconstructed; 377 }; 378 379 } // namespace format 380 } // namespace clang 381 382 #endif 383