1 //===--- Cuda.cpp - Cuda Tool and ToolChain Implementations -----*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "Cuda.h" 10 #include "CommonArgs.h" 11 #include "clang/Basic/Cuda.h" 12 #include "clang/Config/config.h" 13 #include "clang/Driver/Compilation.h" 14 #include "clang/Driver/Distro.h" 15 #include "clang/Driver/Driver.h" 16 #include "clang/Driver/DriverDiagnostic.h" 17 #include "clang/Driver/InputInfo.h" 18 #include "clang/Driver/Options.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/Option/ArgList.h" 21 #include "llvm/Support/FileSystem.h" 22 #include "llvm/Support/FormatAdapters.h" 23 #include "llvm/Support/FormatVariadic.h" 24 #include "llvm/Support/Path.h" 25 #include "llvm/Support/Process.h" 26 #include "llvm/Support/Program.h" 27 #include "llvm/Support/VirtualFileSystem.h" 28 #include "llvm/TargetParser/Host.h" 29 #include "llvm/TargetParser/TargetParser.h" 30 #include <system_error> 31 32 using namespace clang::driver; 33 using namespace clang::driver::toolchains; 34 using namespace clang::driver::tools; 35 using namespace clang; 36 using namespace llvm::opt; 37 38 namespace { 39 40 CudaVersion getCudaVersion(uint32_t raw_version) { 41 if (raw_version < 7050) 42 return CudaVersion::CUDA_70; 43 if (raw_version < 8000) 44 return CudaVersion::CUDA_75; 45 if (raw_version < 9000) 46 return CudaVersion::CUDA_80; 47 if (raw_version < 9010) 48 return CudaVersion::CUDA_90; 49 if (raw_version < 9020) 50 return CudaVersion::CUDA_91; 51 if (raw_version < 10000) 52 return CudaVersion::CUDA_92; 53 if (raw_version < 10010) 54 return CudaVersion::CUDA_100; 55 if (raw_version < 10020) 56 return CudaVersion::CUDA_101; 57 if (raw_version < 11000) 58 return CudaVersion::CUDA_102; 59 if (raw_version < 11010) 60 return CudaVersion::CUDA_110; 61 if (raw_version < 11020) 62 return CudaVersion::CUDA_111; 63 if (raw_version < 11030) 64 return CudaVersion::CUDA_112; 65 if (raw_version < 11040) 66 return CudaVersion::CUDA_113; 67 if (raw_version < 11050) 68 return CudaVersion::CUDA_114; 69 if (raw_version < 11060) 70 return CudaVersion::CUDA_115; 71 if (raw_version < 11070) 72 return CudaVersion::CUDA_116; 73 if (raw_version < 11080) 74 return CudaVersion::CUDA_117; 75 if (raw_version < 11090) 76 return CudaVersion::CUDA_118; 77 if (raw_version < 12010) 78 return CudaVersion::CUDA_120; 79 if (raw_version < 12020) 80 return CudaVersion::CUDA_121; 81 return CudaVersion::NEW; 82 } 83 84 CudaVersion parseCudaHFile(llvm::StringRef Input) { 85 // Helper lambda which skips the words if the line starts with them or returns 86 // std::nullopt otherwise. 87 auto StartsWithWords = 88 [](llvm::StringRef Line, 89 const SmallVector<StringRef, 3> words) -> std::optional<StringRef> { 90 for (StringRef word : words) { 91 if (!Line.consume_front(word)) 92 return {}; 93 Line = Line.ltrim(); 94 } 95 return Line; 96 }; 97 98 Input = Input.ltrim(); 99 while (!Input.empty()) { 100 if (auto Line = 101 StartsWithWords(Input.ltrim(), {"#", "define", "CUDA_VERSION"})) { 102 uint32_t RawVersion; 103 Line->consumeInteger(10, RawVersion); 104 return getCudaVersion(RawVersion); 105 } 106 // Find next non-empty line. 107 Input = Input.drop_front(Input.find_first_of("\n\r")).ltrim(); 108 } 109 return CudaVersion::UNKNOWN; 110 } 111 } // namespace 112 113 void CudaInstallationDetector::WarnIfUnsupportedVersion() { 114 if (Version > CudaVersion::PARTIALLY_SUPPORTED) { 115 std::string VersionString = CudaVersionToString(Version); 116 if (!VersionString.empty()) 117 VersionString.insert(0, " "); 118 D.Diag(diag::warn_drv_new_cuda_version) 119 << VersionString 120 << (CudaVersion::PARTIALLY_SUPPORTED != CudaVersion::FULLY_SUPPORTED) 121 << CudaVersionToString(CudaVersion::PARTIALLY_SUPPORTED); 122 } else if (Version > CudaVersion::FULLY_SUPPORTED) 123 D.Diag(diag::warn_drv_partially_supported_cuda_version) 124 << CudaVersionToString(Version); 125 } 126 127 CudaInstallationDetector::CudaInstallationDetector( 128 const Driver &D, const llvm::Triple &HostTriple, 129 const llvm::opt::ArgList &Args) 130 : D(D) { 131 struct Candidate { 132 std::string Path; 133 bool StrictChecking; 134 135 Candidate(std::string Path, bool StrictChecking = false) 136 : Path(Path), StrictChecking(StrictChecking) {} 137 }; 138 SmallVector<Candidate, 4> Candidates; 139 140 // In decreasing order so we prefer newer versions to older versions. 141 std::initializer_list<const char *> Versions = {"8.0", "7.5", "7.0"}; 142 auto &FS = D.getVFS(); 143 144 if (Args.hasArg(clang::driver::options::OPT_cuda_path_EQ)) { 145 Candidates.emplace_back( 146 Args.getLastArgValue(clang::driver::options::OPT_cuda_path_EQ).str()); 147 } else if (HostTriple.isOSWindows()) { 148 for (const char *Ver : Versions) 149 Candidates.emplace_back( 150 D.SysRoot + "/Program Files/NVIDIA GPU Computing Toolkit/CUDA/v" + 151 Ver); 152 } else { 153 if (!Args.hasArg(clang::driver::options::OPT_cuda_path_ignore_env)) { 154 // Try to find ptxas binary. If the executable is located in a directory 155 // called 'bin/', its parent directory might be a good guess for a valid 156 // CUDA installation. 157 // However, some distributions might installs 'ptxas' to /usr/bin. In that 158 // case the candidate would be '/usr' which passes the following checks 159 // because '/usr/include' exists as well. To avoid this case, we always 160 // check for the directory potentially containing files for libdevice, 161 // even if the user passes -nocudalib. 162 if (llvm::ErrorOr<std::string> ptxas = 163 llvm::sys::findProgramByName("ptxas")) { 164 SmallString<256> ptxasAbsolutePath; 165 llvm::sys::fs::real_path(*ptxas, ptxasAbsolutePath); 166 167 StringRef ptxasDir = llvm::sys::path::parent_path(ptxasAbsolutePath); 168 if (llvm::sys::path::filename(ptxasDir) == "bin") 169 Candidates.emplace_back( 170 std::string(llvm::sys::path::parent_path(ptxasDir)), 171 /*StrictChecking=*/true); 172 } 173 } 174 175 Candidates.emplace_back(D.SysRoot + "/usr/local/cuda"); 176 for (const char *Ver : Versions) 177 Candidates.emplace_back(D.SysRoot + "/usr/local/cuda-" + Ver); 178 179 Distro Dist(FS, llvm::Triple(llvm::sys::getProcessTriple())); 180 if (Dist.IsDebian() || Dist.IsUbuntu()) 181 // Special case for Debian to have nvidia-cuda-toolkit work 182 // out of the box. More info on http://bugs.debian.org/882505 183 Candidates.emplace_back(D.SysRoot + "/usr/lib/cuda"); 184 } 185 186 bool NoCudaLib = Args.hasArg(options::OPT_nogpulib); 187 188 for (const auto &Candidate : Candidates) { 189 InstallPath = Candidate.Path; 190 if (InstallPath.empty() || !FS.exists(InstallPath)) 191 continue; 192 193 BinPath = InstallPath + "/bin"; 194 IncludePath = InstallPath + "/include"; 195 LibDevicePath = InstallPath + "/nvvm/libdevice"; 196 197 if (!(FS.exists(IncludePath) && FS.exists(BinPath))) 198 continue; 199 bool CheckLibDevice = (!NoCudaLib || Candidate.StrictChecking); 200 if (CheckLibDevice && !FS.exists(LibDevicePath)) 201 continue; 202 203 Version = CudaVersion::UNKNOWN; 204 if (auto CudaHFile = FS.getBufferForFile(InstallPath + "/include/cuda.h")) 205 Version = parseCudaHFile((*CudaHFile)->getBuffer()); 206 // As the last resort, make an educated guess between CUDA-7.0, which had 207 // old-style libdevice bitcode, and an unknown recent CUDA version. 208 if (Version == CudaVersion::UNKNOWN) { 209 Version = FS.exists(LibDevicePath + "/libdevice.10.bc") 210 ? CudaVersion::NEW 211 : CudaVersion::CUDA_70; 212 } 213 214 if (Version >= CudaVersion::CUDA_90) { 215 // CUDA-9+ uses single libdevice file for all GPU variants. 216 std::string FilePath = LibDevicePath + "/libdevice.10.bc"; 217 if (FS.exists(FilePath)) { 218 for (int Arch = (int)CudaArch::SM_30, E = (int)CudaArch::LAST; Arch < E; 219 ++Arch) { 220 CudaArch GpuArch = static_cast<CudaArch>(Arch); 221 if (!IsNVIDIAGpuArch(GpuArch)) 222 continue; 223 std::string GpuArchName(CudaArchToString(GpuArch)); 224 LibDeviceMap[GpuArchName] = FilePath; 225 } 226 } 227 } else { 228 std::error_code EC; 229 for (llvm::vfs::directory_iterator LI = FS.dir_begin(LibDevicePath, EC), 230 LE; 231 !EC && LI != LE; LI = LI.increment(EC)) { 232 StringRef FilePath = LI->path(); 233 StringRef FileName = llvm::sys::path::filename(FilePath); 234 // Process all bitcode filenames that look like 235 // libdevice.compute_XX.YY.bc 236 const StringRef LibDeviceName = "libdevice."; 237 if (!(FileName.startswith(LibDeviceName) && FileName.endswith(".bc"))) 238 continue; 239 StringRef GpuArch = FileName.slice( 240 LibDeviceName.size(), FileName.find('.', LibDeviceName.size())); 241 LibDeviceMap[GpuArch] = FilePath.str(); 242 // Insert map entries for specific devices with this compute 243 // capability. NVCC's choice of the libdevice library version is 244 // rather peculiar and depends on the CUDA version. 245 if (GpuArch == "compute_20") { 246 LibDeviceMap["sm_20"] = std::string(FilePath); 247 LibDeviceMap["sm_21"] = std::string(FilePath); 248 LibDeviceMap["sm_32"] = std::string(FilePath); 249 } else if (GpuArch == "compute_30") { 250 LibDeviceMap["sm_30"] = std::string(FilePath); 251 if (Version < CudaVersion::CUDA_80) { 252 LibDeviceMap["sm_50"] = std::string(FilePath); 253 LibDeviceMap["sm_52"] = std::string(FilePath); 254 LibDeviceMap["sm_53"] = std::string(FilePath); 255 } 256 LibDeviceMap["sm_60"] = std::string(FilePath); 257 LibDeviceMap["sm_61"] = std::string(FilePath); 258 LibDeviceMap["sm_62"] = std::string(FilePath); 259 } else if (GpuArch == "compute_35") { 260 LibDeviceMap["sm_35"] = std::string(FilePath); 261 LibDeviceMap["sm_37"] = std::string(FilePath); 262 } else if (GpuArch == "compute_50") { 263 if (Version >= CudaVersion::CUDA_80) { 264 LibDeviceMap["sm_50"] = std::string(FilePath); 265 LibDeviceMap["sm_52"] = std::string(FilePath); 266 LibDeviceMap["sm_53"] = std::string(FilePath); 267 } 268 } 269 } 270 } 271 272 // Check that we have found at least one libdevice that we can link in if 273 // -nocudalib hasn't been specified. 274 if (LibDeviceMap.empty() && !NoCudaLib) 275 continue; 276 277 IsValid = true; 278 break; 279 } 280 } 281 282 void CudaInstallationDetector::AddCudaIncludeArgs( 283 const ArgList &DriverArgs, ArgStringList &CC1Args) const { 284 if (!DriverArgs.hasArg(options::OPT_nobuiltininc)) { 285 // Add cuda_wrappers/* to our system include path. This lets us wrap 286 // standard library headers. 287 SmallString<128> P(D.ResourceDir); 288 llvm::sys::path::append(P, "include"); 289 llvm::sys::path::append(P, "cuda_wrappers"); 290 CC1Args.push_back("-internal-isystem"); 291 CC1Args.push_back(DriverArgs.MakeArgString(P)); 292 } 293 294 if (DriverArgs.hasArg(options::OPT_nogpuinc)) 295 return; 296 297 if (!isValid()) { 298 D.Diag(diag::err_drv_no_cuda_installation); 299 return; 300 } 301 302 CC1Args.push_back("-include"); 303 CC1Args.push_back("__clang_cuda_runtime_wrapper.h"); 304 } 305 306 void CudaInstallationDetector::CheckCudaVersionSupportsArch( 307 CudaArch Arch) const { 308 if (Arch == CudaArch::UNKNOWN || Version == CudaVersion::UNKNOWN || 309 ArchsWithBadVersion[(int)Arch]) 310 return; 311 312 auto MinVersion = MinVersionForCudaArch(Arch); 313 auto MaxVersion = MaxVersionForCudaArch(Arch); 314 if (Version < MinVersion || Version > MaxVersion) { 315 ArchsWithBadVersion[(int)Arch] = true; 316 D.Diag(diag::err_drv_cuda_version_unsupported) 317 << CudaArchToString(Arch) << CudaVersionToString(MinVersion) 318 << CudaVersionToString(MaxVersion) << InstallPath 319 << CudaVersionToString(Version); 320 } 321 } 322 323 void CudaInstallationDetector::print(raw_ostream &OS) const { 324 if (isValid()) 325 OS << "Found CUDA installation: " << InstallPath << ", version " 326 << CudaVersionToString(Version) << "\n"; 327 } 328 329 namespace { 330 /// Debug info level for the NVPTX devices. We may need to emit different debug 331 /// info level for the host and for the device itselfi. This type controls 332 /// emission of the debug info for the devices. It either prohibits disable info 333 /// emission completely, or emits debug directives only, or emits same debug 334 /// info as for the host. 335 enum DeviceDebugInfoLevel { 336 DisableDebugInfo, /// Do not emit debug info for the devices. 337 DebugDirectivesOnly, /// Emit only debug directives. 338 EmitSameDebugInfoAsHost, /// Use the same debug info level just like for the 339 /// host. 340 }; 341 } // anonymous namespace 342 343 /// Define debug info level for the NVPTX devices. If the debug info for both 344 /// the host and device are disabled (-g0/-ggdb0 or no debug options at all). If 345 /// only debug directives are requested for the both host and device 346 /// (-gline-directvies-only), or the debug info only for the device is disabled 347 /// (optimization is on and --cuda-noopt-device-debug was not specified), the 348 /// debug directves only must be emitted for the device. Otherwise, use the same 349 /// debug info level just like for the host (with the limitations of only 350 /// supported DWARF2 standard). 351 static DeviceDebugInfoLevel mustEmitDebugInfo(const ArgList &Args) { 352 const Arg *A = Args.getLastArg(options::OPT_O_Group); 353 bool IsDebugEnabled = !A || A->getOption().matches(options::OPT_O0) || 354 Args.hasFlag(options::OPT_cuda_noopt_device_debug, 355 options::OPT_no_cuda_noopt_device_debug, 356 /*Default=*/false); 357 if (const Arg *A = Args.getLastArg(options::OPT_g_Group)) { 358 const Option &Opt = A->getOption(); 359 if (Opt.matches(options::OPT_gN_Group)) { 360 if (Opt.matches(options::OPT_g0) || Opt.matches(options::OPT_ggdb0)) 361 return DisableDebugInfo; 362 if (Opt.matches(options::OPT_gline_directives_only)) 363 return DebugDirectivesOnly; 364 } 365 return IsDebugEnabled ? EmitSameDebugInfoAsHost : DebugDirectivesOnly; 366 } 367 return willEmitRemarks(Args) ? DebugDirectivesOnly : DisableDebugInfo; 368 } 369 370 void NVPTX::Assembler::ConstructJob(Compilation &C, const JobAction &JA, 371 const InputInfo &Output, 372 const InputInfoList &Inputs, 373 const ArgList &Args, 374 const char *LinkingOutput) const { 375 const auto &TC = 376 static_cast<const toolchains::NVPTXToolChain &>(getToolChain()); 377 assert(TC.getTriple().isNVPTX() && "Wrong platform"); 378 379 StringRef GPUArchName; 380 // If this is a CUDA action we need to extract the device architecture 381 // from the Job's associated architecture, otherwise use the -march=arch 382 // option. This option may come from -Xopenmp-target flag or the default 383 // value. 384 if (JA.isDeviceOffloading(Action::OFK_Cuda)) { 385 GPUArchName = JA.getOffloadingArch(); 386 } else { 387 GPUArchName = Args.getLastArgValue(options::OPT_march_EQ); 388 assert(!GPUArchName.empty() && "Must have an architecture passed in."); 389 } 390 391 // Obtain architecture from the action. 392 CudaArch gpu_arch = StringToCudaArch(GPUArchName); 393 assert(gpu_arch != CudaArch::UNKNOWN && 394 "Device action expected to have an architecture."); 395 396 // Check that our installation's ptxas supports gpu_arch. 397 if (!Args.hasArg(options::OPT_no_cuda_version_check)) { 398 TC.CudaInstallation.CheckCudaVersionSupportsArch(gpu_arch); 399 } 400 401 ArgStringList CmdArgs; 402 CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-m64" : "-m32"); 403 DeviceDebugInfoLevel DIKind = mustEmitDebugInfo(Args); 404 if (DIKind == EmitSameDebugInfoAsHost) { 405 // ptxas does not accept -g option if optimization is enabled, so 406 // we ignore the compiler's -O* options if we want debug info. 407 CmdArgs.push_back("-g"); 408 CmdArgs.push_back("--dont-merge-basicblocks"); 409 CmdArgs.push_back("--return-at-end"); 410 } else if (Arg *A = Args.getLastArg(options::OPT_O_Group)) { 411 // Map the -O we received to -O{0,1,2,3}. 412 // 413 // TODO: Perhaps we should map host -O2 to ptxas -O3. -O3 is ptxas's 414 // default, so it may correspond more closely to the spirit of clang -O2. 415 416 // -O3 seems like the least-bad option when -Osomething is specified to 417 // clang but it isn't handled below. 418 StringRef OOpt = "3"; 419 if (A->getOption().matches(options::OPT_O4) || 420 A->getOption().matches(options::OPT_Ofast)) 421 OOpt = "3"; 422 else if (A->getOption().matches(options::OPT_O0)) 423 OOpt = "0"; 424 else if (A->getOption().matches(options::OPT_O)) { 425 // -Os, -Oz, and -O(anything else) map to -O2, for lack of better options. 426 OOpt = llvm::StringSwitch<const char *>(A->getValue()) 427 .Case("1", "1") 428 .Case("2", "2") 429 .Case("3", "3") 430 .Case("s", "2") 431 .Case("z", "2") 432 .Default("2"); 433 } 434 CmdArgs.push_back(Args.MakeArgString(llvm::Twine("-O") + OOpt)); 435 } else { 436 // If no -O was passed, pass -O0 to ptxas -- no opt flag should correspond 437 // to no optimizations, but ptxas's default is -O3. 438 CmdArgs.push_back("-O0"); 439 } 440 if (DIKind == DebugDirectivesOnly) 441 CmdArgs.push_back("-lineinfo"); 442 443 // Pass -v to ptxas if it was passed to the driver. 444 if (Args.hasArg(options::OPT_v)) 445 CmdArgs.push_back("-v"); 446 447 CmdArgs.push_back("--gpu-name"); 448 CmdArgs.push_back(Args.MakeArgString(CudaArchToString(gpu_arch))); 449 CmdArgs.push_back("--output-file"); 450 std::string OutputFileName = TC.getInputFilename(Output); 451 452 // If we are invoking `nvlink` internally we need to output a `.cubin` file. 453 // FIXME: This should hopefully be removed if NVIDIA updates their tooling. 454 if (!C.getInputArgs().getLastArg(options::OPT_c)) { 455 SmallString<256> Filename(Output.getFilename()); 456 llvm::sys::path::replace_extension(Filename, "cubin"); 457 OutputFileName = Filename.str(); 458 } 459 if (Output.isFilename() && OutputFileName != Output.getFilename()) 460 C.addTempFile(Args.MakeArgString(OutputFileName)); 461 462 CmdArgs.push_back(Args.MakeArgString(OutputFileName)); 463 for (const auto &II : Inputs) 464 CmdArgs.push_back(Args.MakeArgString(II.getFilename())); 465 466 for (const auto &A : Args.getAllArgValues(options::OPT_Xcuda_ptxas)) 467 CmdArgs.push_back(Args.MakeArgString(A)); 468 469 bool Relocatable; 470 if (JA.isOffloading(Action::OFK_OpenMP)) 471 // In OpenMP we need to generate relocatable code. 472 Relocatable = Args.hasFlag(options::OPT_fopenmp_relocatable_target, 473 options::OPT_fnoopenmp_relocatable_target, 474 /*Default=*/true); 475 else if (JA.isOffloading(Action::OFK_Cuda)) 476 // In CUDA we generate relocatable code by default. 477 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, 478 /*Default=*/false); 479 else 480 // Otherwise, we are compiling directly and should create linkable output. 481 Relocatable = true; 482 483 if (Relocatable) 484 CmdArgs.push_back("-c"); 485 486 const char *Exec; 487 if (Arg *A = Args.getLastArg(options::OPT_ptxas_path_EQ)) 488 Exec = A->getValue(); 489 else 490 Exec = Args.MakeArgString(TC.GetProgramPath("ptxas")); 491 C.addCommand(std::make_unique<Command>( 492 JA, *this, 493 ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, 494 "--options-file"}, 495 Exec, CmdArgs, Inputs, Output)); 496 } 497 498 static bool shouldIncludePTX(const ArgList &Args, const char *gpu_arch) { 499 bool includePTX = true; 500 for (Arg *A : Args) { 501 if (!(A->getOption().matches(options::OPT_cuda_include_ptx_EQ) || 502 A->getOption().matches(options::OPT_no_cuda_include_ptx_EQ))) 503 continue; 504 A->claim(); 505 const StringRef ArchStr = A->getValue(); 506 if (ArchStr == "all" || ArchStr == gpu_arch) { 507 includePTX = A->getOption().matches(options::OPT_cuda_include_ptx_EQ); 508 continue; 509 } 510 } 511 return includePTX; 512 } 513 514 // All inputs to this linker must be from CudaDeviceActions, as we need to look 515 // at the Inputs' Actions in order to figure out which GPU architecture they 516 // correspond to. 517 void NVPTX::FatBinary::ConstructJob(Compilation &C, const JobAction &JA, 518 const InputInfo &Output, 519 const InputInfoList &Inputs, 520 const ArgList &Args, 521 const char *LinkingOutput) const { 522 const auto &TC = 523 static_cast<const toolchains::CudaToolChain &>(getToolChain()); 524 assert(TC.getTriple().isNVPTX() && "Wrong platform"); 525 526 ArgStringList CmdArgs; 527 if (TC.CudaInstallation.version() <= CudaVersion::CUDA_100) 528 CmdArgs.push_back("--cuda"); 529 CmdArgs.push_back(TC.getTriple().isArch64Bit() ? "-64" : "-32"); 530 CmdArgs.push_back(Args.MakeArgString("--create")); 531 CmdArgs.push_back(Args.MakeArgString(Output.getFilename())); 532 if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost) 533 CmdArgs.push_back("-g"); 534 535 for (const auto &II : Inputs) { 536 auto *A = II.getAction(); 537 assert(A->getInputs().size() == 1 && 538 "Device offload action is expected to have a single input"); 539 const char *gpu_arch_str = A->getOffloadingArch(); 540 assert(gpu_arch_str && 541 "Device action expected to have associated a GPU architecture!"); 542 CudaArch gpu_arch = StringToCudaArch(gpu_arch_str); 543 544 if (II.getType() == types::TY_PP_Asm && 545 !shouldIncludePTX(Args, gpu_arch_str)) 546 continue; 547 // We need to pass an Arch of the form "sm_XX" for cubin files and 548 // "compute_XX" for ptx. 549 const char *Arch = (II.getType() == types::TY_PP_Asm) 550 ? CudaArchToVirtualArchString(gpu_arch) 551 : gpu_arch_str; 552 CmdArgs.push_back( 553 Args.MakeArgString(llvm::Twine("--image=profile=") + Arch + 554 ",file=" + getToolChain().getInputFilename(II))); 555 } 556 557 for (const auto &A : Args.getAllArgValues(options::OPT_Xcuda_fatbinary)) 558 CmdArgs.push_back(Args.MakeArgString(A)); 559 560 const char *Exec = Args.MakeArgString(TC.GetProgramPath("fatbinary")); 561 C.addCommand(std::make_unique<Command>( 562 JA, *this, 563 ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, 564 "--options-file"}, 565 Exec, CmdArgs, Inputs, Output)); 566 } 567 568 void NVPTX::Linker::ConstructJob(Compilation &C, const JobAction &JA, 569 const InputInfo &Output, 570 const InputInfoList &Inputs, 571 const ArgList &Args, 572 const char *LinkingOutput) const { 573 const auto &TC = 574 static_cast<const toolchains::NVPTXToolChain &>(getToolChain()); 575 assert(TC.getTriple().isNVPTX() && "Wrong platform"); 576 577 ArgStringList CmdArgs; 578 if (Output.isFilename()) { 579 CmdArgs.push_back("-o"); 580 CmdArgs.push_back(Output.getFilename()); 581 } else { 582 assert(Output.isNothing() && "Invalid output."); 583 } 584 585 if (mustEmitDebugInfo(Args) == EmitSameDebugInfoAsHost) 586 CmdArgs.push_back("-g"); 587 588 if (Args.hasArg(options::OPT_v)) 589 CmdArgs.push_back("-v"); 590 591 StringRef GPUArch = Args.getLastArgValue(options::OPT_march_EQ); 592 assert(!GPUArch.empty() && "At least one GPU Arch required for nvlink."); 593 594 CmdArgs.push_back("-arch"); 595 CmdArgs.push_back(Args.MakeArgString(GPUArch)); 596 597 // Add paths specified in LIBRARY_PATH environment variable as -L options. 598 addDirectoryList(Args, CmdArgs, "-L", "LIBRARY_PATH"); 599 600 // Add paths for the default clang library path. 601 SmallString<256> DefaultLibPath = 602 llvm::sys::path::parent_path(TC.getDriver().Dir); 603 llvm::sys::path::append(DefaultLibPath, CLANG_INSTALL_LIBDIR_BASENAME); 604 CmdArgs.push_back(Args.MakeArgString(Twine("-L") + DefaultLibPath)); 605 606 for (const auto &II : Inputs) { 607 if (II.getType() == types::TY_LLVM_IR || II.getType() == types::TY_LTO_IR || 608 II.getType() == types::TY_LTO_BC || II.getType() == types::TY_LLVM_BC) { 609 C.getDriver().Diag(diag::err_drv_no_linker_llvm_support) 610 << getToolChain().getTripleString(); 611 continue; 612 } 613 614 // Currently, we only pass the input files to the linker, we do not pass 615 // any libraries that may be valid only for the host. 616 if (!II.isFilename()) 617 continue; 618 619 // The 'nvlink' application performs RDC-mode linking when given a '.o' 620 // file and device linking when given a '.cubin' file. We always want to 621 // perform device linking, so just rename any '.o' files. 622 // FIXME: This should hopefully be removed if NVIDIA updates their tooling. 623 auto InputFile = getToolChain().getInputFilename(II); 624 if (llvm::sys::path::extension(InputFile) != ".cubin") { 625 // If there are no actions above this one then this is direct input and we 626 // can copy it. Otherwise the input is internal so a `.cubin` file should 627 // exist. 628 if (II.getAction() && II.getAction()->getInputs().size() == 0) { 629 const char *CubinF = 630 Args.MakeArgString(getToolChain().getDriver().GetTemporaryPath( 631 llvm::sys::path::stem(InputFile), "cubin")); 632 if (std::error_code EC = 633 llvm::sys::fs::copy_file(InputFile, C.addTempFile(CubinF))) 634 continue; 635 636 CmdArgs.push_back(CubinF); 637 } else { 638 SmallString<256> Filename(InputFile); 639 llvm::sys::path::replace_extension(Filename, "cubin"); 640 CmdArgs.push_back(Args.MakeArgString(Filename)); 641 } 642 } else { 643 CmdArgs.push_back(Args.MakeArgString(InputFile)); 644 } 645 } 646 647 C.addCommand(std::make_unique<Command>( 648 JA, *this, 649 ResponseFileSupport{ResponseFileSupport::RF_Full, llvm::sys::WEM_UTF8, 650 "--options-file"}, 651 Args.MakeArgString(getToolChain().GetProgramPath("nvlink")), CmdArgs, 652 Inputs, Output)); 653 } 654 655 void NVPTX::getNVPTXTargetFeatures(const Driver &D, const llvm::Triple &Triple, 656 const llvm::opt::ArgList &Args, 657 std::vector<StringRef> &Features) { 658 if (Args.hasArg(options::OPT_cuda_feature_EQ)) { 659 StringRef PtxFeature = 660 Args.getLastArgValue(options::OPT_cuda_feature_EQ, "+ptx42"); 661 Features.push_back(Args.MakeArgString(PtxFeature)); 662 return; 663 } 664 CudaInstallationDetector CudaInstallation(D, Triple, Args); 665 666 // New CUDA versions often introduce new instructions that are only supported 667 // by new PTX version, so we need to raise PTX level to enable them in NVPTX 668 // back-end. 669 const char *PtxFeature = nullptr; 670 switch (CudaInstallation.version()) { 671 #define CASE_CUDA_VERSION(CUDA_VER, PTX_VER) \ 672 case CudaVersion::CUDA_##CUDA_VER: \ 673 PtxFeature = "+ptx" #PTX_VER; \ 674 break; 675 CASE_CUDA_VERSION(121, 81); 676 CASE_CUDA_VERSION(120, 80); 677 CASE_CUDA_VERSION(118, 78); 678 CASE_CUDA_VERSION(117, 77); 679 CASE_CUDA_VERSION(116, 76); 680 CASE_CUDA_VERSION(115, 75); 681 CASE_CUDA_VERSION(114, 74); 682 CASE_CUDA_VERSION(113, 73); 683 CASE_CUDA_VERSION(112, 72); 684 CASE_CUDA_VERSION(111, 71); 685 CASE_CUDA_VERSION(110, 70); 686 CASE_CUDA_VERSION(102, 65); 687 CASE_CUDA_VERSION(101, 64); 688 CASE_CUDA_VERSION(100, 63); 689 CASE_CUDA_VERSION(92, 61); 690 CASE_CUDA_VERSION(91, 61); 691 CASE_CUDA_VERSION(90, 60); 692 #undef CASE_CUDA_VERSION 693 default: 694 PtxFeature = "+ptx42"; 695 } 696 Features.push_back(PtxFeature); 697 } 698 699 /// NVPTX toolchain. Our assembler is ptxas, and our linker is nvlink. This 700 /// operates as a stand-alone version of the NVPTX tools without the host 701 /// toolchain. 702 NVPTXToolChain::NVPTXToolChain(const Driver &D, const llvm::Triple &Triple, 703 const llvm::Triple &HostTriple, 704 const ArgList &Args, bool Freestanding = false) 705 : ToolChain(D, Triple, Args), CudaInstallation(D, HostTriple, Args), 706 Freestanding(Freestanding) { 707 if (CudaInstallation.isValid()) 708 getProgramPaths().push_back(std::string(CudaInstallation.getBinPath())); 709 // Lookup binaries into the driver directory, this is used to 710 // discover the 'nvptx-arch' executable. 711 getProgramPaths().push_back(getDriver().Dir); 712 } 713 714 /// We only need the host triple to locate the CUDA binary utilities, use the 715 /// system's default triple if not provided. 716 NVPTXToolChain::NVPTXToolChain(const Driver &D, const llvm::Triple &Triple, 717 const ArgList &Args) 718 : NVPTXToolChain(D, Triple, llvm::Triple(LLVM_HOST_TRIPLE), Args, 719 /*Freestanding=*/true) {} 720 721 llvm::opt::DerivedArgList * 722 NVPTXToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, 723 StringRef BoundArch, 724 Action::OffloadKind DeviceOffloadKind) const { 725 DerivedArgList *DAL = 726 ToolChain::TranslateArgs(Args, BoundArch, DeviceOffloadKind); 727 if (!DAL) 728 DAL = new DerivedArgList(Args.getBaseArgs()); 729 730 const OptTable &Opts = getDriver().getOpts(); 731 732 for (Arg *A : Args) 733 if (!llvm::is_contained(*DAL, A)) 734 DAL->append(A); 735 736 if (!DAL->hasArg(options::OPT_march_EQ)) 737 DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), 738 CudaArchToString(CudaArch::CudaDefault)); 739 740 return DAL; 741 } 742 743 void NVPTXToolChain::addClangTargetOptions( 744 const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, 745 Action::OffloadKind DeviceOffloadingKind) const { 746 // If we are compiling with a standalone NVPTX toolchain we want to try to 747 // mimic a standard environment as much as possible. So we enable lowering 748 // ctor / dtor functions to global symbols that can be registered. 749 if (Freestanding) 750 CC1Args.append({"-mllvm", "--nvptx-lower-global-ctor-dtor"}); 751 } 752 753 bool NVPTXToolChain::supportsDebugInfoOption(const llvm::opt::Arg *A) const { 754 const Option &O = A->getOption(); 755 return (O.matches(options::OPT_gN_Group) && 756 !O.matches(options::OPT_gmodules)) || 757 O.matches(options::OPT_g_Flag) || 758 O.matches(options::OPT_ggdbN_Group) || O.matches(options::OPT_ggdb) || 759 O.matches(options::OPT_gdwarf) || O.matches(options::OPT_gdwarf_2) || 760 O.matches(options::OPT_gdwarf_3) || O.matches(options::OPT_gdwarf_4) || 761 O.matches(options::OPT_gdwarf_5) || 762 O.matches(options::OPT_gcolumn_info); 763 } 764 765 void NVPTXToolChain::adjustDebugInfoKind( 766 llvm::codegenoptions::DebugInfoKind &DebugInfoKind, 767 const ArgList &Args) const { 768 switch (mustEmitDebugInfo(Args)) { 769 case DisableDebugInfo: 770 DebugInfoKind = llvm::codegenoptions::NoDebugInfo; 771 break; 772 case DebugDirectivesOnly: 773 DebugInfoKind = llvm::codegenoptions::DebugDirectivesOnly; 774 break; 775 case EmitSameDebugInfoAsHost: 776 // Use same debug info level as the host. 777 break; 778 } 779 } 780 781 /// CUDA toolchain. Our assembler is ptxas, and our "linker" is fatbinary, 782 /// which isn't properly a linker but nonetheless performs the step of stitching 783 /// together object files from the assembler into a single blob. 784 785 CudaToolChain::CudaToolChain(const Driver &D, const llvm::Triple &Triple, 786 const ToolChain &HostTC, const ArgList &Args) 787 : NVPTXToolChain(D, Triple, HostTC.getTriple(), Args), HostTC(HostTC) {} 788 789 void CudaToolChain::addClangTargetOptions( 790 const llvm::opt::ArgList &DriverArgs, llvm::opt::ArgStringList &CC1Args, 791 Action::OffloadKind DeviceOffloadingKind) const { 792 HostTC.addClangTargetOptions(DriverArgs, CC1Args, DeviceOffloadingKind); 793 794 StringRef GpuArch = DriverArgs.getLastArgValue(options::OPT_march_EQ); 795 assert(!GpuArch.empty() && "Must have an explicit GPU arch."); 796 assert((DeviceOffloadingKind == Action::OFK_OpenMP || 797 DeviceOffloadingKind == Action::OFK_Cuda) && 798 "Only OpenMP or CUDA offloading kinds are supported for NVIDIA GPUs."); 799 800 if (DeviceOffloadingKind == Action::OFK_Cuda) { 801 CC1Args.append( 802 {"-fcuda-is-device", "-mllvm", "-enable-memcpyopt-without-libcalls"}); 803 804 if (DriverArgs.hasFlag(options::OPT_fcuda_approx_transcendentals, 805 options::OPT_fno_cuda_approx_transcendentals, false)) 806 CC1Args.push_back("-fcuda-approx-transcendentals"); 807 808 // Unsized function arguments used for variadics were introduced in CUDA-9.0 809 // We still do not support generating code that actually uses variadic 810 // arguments yet, but we do need to allow parsing them as recent CUDA 811 // headers rely on that. https://github.com/llvm/llvm-project/issues/58410 812 if (CudaInstallation.version() >= CudaVersion::CUDA_90) 813 CC1Args.push_back("-fcuda-allow-variadic-functions"); 814 } 815 816 if (DriverArgs.hasArg(options::OPT_nogpulib)) 817 return; 818 819 if (DeviceOffloadingKind == Action::OFK_OpenMP && 820 DriverArgs.hasArg(options::OPT_S)) 821 return; 822 823 std::string LibDeviceFile = CudaInstallation.getLibDeviceFile(GpuArch); 824 if (LibDeviceFile.empty()) { 825 getDriver().Diag(diag::err_drv_no_cuda_libdevice) << GpuArch; 826 return; 827 } 828 829 CC1Args.push_back("-mlink-builtin-bitcode"); 830 CC1Args.push_back(DriverArgs.MakeArgString(LibDeviceFile)); 831 832 clang::CudaVersion CudaInstallationVersion = CudaInstallation.version(); 833 834 if (DriverArgs.hasFlag(options::OPT_fcuda_short_ptr, 835 options::OPT_fno_cuda_short_ptr, false)) 836 CC1Args.append({"-mllvm", "--nvptx-short-ptr"}); 837 838 if (CudaInstallationVersion >= CudaVersion::UNKNOWN) 839 CC1Args.push_back( 840 DriverArgs.MakeArgString(Twine("-target-sdk-version=") + 841 CudaVersionToString(CudaInstallationVersion))); 842 843 if (DeviceOffloadingKind == Action::OFK_OpenMP) { 844 if (CudaInstallationVersion < CudaVersion::CUDA_92) { 845 getDriver().Diag( 846 diag::err_drv_omp_offload_target_cuda_version_not_support) 847 << CudaVersionToString(CudaInstallationVersion); 848 return; 849 } 850 851 // Link the bitcode library late if we're using device LTO. 852 if (getDriver().isUsingLTO(/* IsOffload */ true)) 853 return; 854 855 addOpenMPDeviceRTL(getDriver(), DriverArgs, CC1Args, GpuArch.str(), 856 getTriple()); 857 } 858 } 859 860 llvm::DenormalMode CudaToolChain::getDefaultDenormalModeForType( 861 const llvm::opt::ArgList &DriverArgs, const JobAction &JA, 862 const llvm::fltSemantics *FPType) const { 863 if (JA.getOffloadingDeviceKind() == Action::OFK_Cuda) { 864 if (FPType && FPType == &llvm::APFloat::IEEEsingle() && 865 DriverArgs.hasFlag(options::OPT_fgpu_flush_denormals_to_zero, 866 options::OPT_fno_gpu_flush_denormals_to_zero, false)) 867 return llvm::DenormalMode::getPreserveSign(); 868 } 869 870 assert(JA.getOffloadingDeviceKind() != Action::OFK_Host); 871 return llvm::DenormalMode::getIEEE(); 872 } 873 874 void CudaToolChain::AddCudaIncludeArgs(const ArgList &DriverArgs, 875 ArgStringList &CC1Args) const { 876 // Check our CUDA version if we're going to include the CUDA headers. 877 if (!DriverArgs.hasArg(options::OPT_nogpuinc) && 878 !DriverArgs.hasArg(options::OPT_no_cuda_version_check)) { 879 StringRef Arch = DriverArgs.getLastArgValue(options::OPT_march_EQ); 880 assert(!Arch.empty() && "Must have an explicit GPU arch."); 881 CudaInstallation.CheckCudaVersionSupportsArch(StringToCudaArch(Arch)); 882 } 883 CudaInstallation.AddCudaIncludeArgs(DriverArgs, CC1Args); 884 } 885 886 std::string CudaToolChain::getInputFilename(const InputInfo &Input) const { 887 // Only object files are changed, for example assembly files keep their .s 888 // extensions. If the user requested device-only compilation don't change it. 889 if (Input.getType() != types::TY_Object || getDriver().offloadDeviceOnly()) 890 return ToolChain::getInputFilename(Input); 891 892 // Replace extension for object files with cubin because nvlink relies on 893 // these particular file names. 894 SmallString<256> Filename(ToolChain::getInputFilename(Input)); 895 llvm::sys::path::replace_extension(Filename, "cubin"); 896 return std::string(Filename.str()); 897 } 898 899 llvm::opt::DerivedArgList * 900 CudaToolChain::TranslateArgs(const llvm::opt::DerivedArgList &Args, 901 StringRef BoundArch, 902 Action::OffloadKind DeviceOffloadKind) const { 903 DerivedArgList *DAL = 904 HostTC.TranslateArgs(Args, BoundArch, DeviceOffloadKind); 905 if (!DAL) 906 DAL = new DerivedArgList(Args.getBaseArgs()); 907 908 const OptTable &Opts = getDriver().getOpts(); 909 910 // For OpenMP device offloading, append derived arguments. Make sure 911 // flags are not duplicated. 912 // Also append the compute capability. 913 if (DeviceOffloadKind == Action::OFK_OpenMP) { 914 for (Arg *A : Args) 915 if (!llvm::is_contained(*DAL, A)) 916 DAL->append(A); 917 918 if (!DAL->hasArg(options::OPT_march_EQ)) { 919 StringRef Arch = BoundArch; 920 if (Arch.empty()) { 921 auto ArchsOrErr = getSystemGPUArchs(Args); 922 if (!ArchsOrErr) { 923 std::string ErrMsg = 924 llvm::formatv("{0}", llvm::fmt_consume(ArchsOrErr.takeError())); 925 getDriver().Diag(diag::err_drv_undetermined_gpu_arch) 926 << llvm::Triple::getArchTypeName(getArch()) << ErrMsg << "-march"; 927 Arch = CudaArchToString(CudaArch::CudaDefault); 928 } else { 929 Arch = Args.MakeArgString(ArchsOrErr->front()); 930 } 931 } 932 DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), Arch); 933 } 934 935 return DAL; 936 } 937 938 for (Arg *A : Args) { 939 DAL->append(A); 940 } 941 942 if (!BoundArch.empty()) { 943 DAL->eraseArg(options::OPT_march_EQ); 944 DAL->AddJoinedArg(nullptr, Opts.getOption(options::OPT_march_EQ), 945 BoundArch); 946 } 947 return DAL; 948 } 949 950 Expected<SmallVector<std::string>> 951 CudaToolChain::getSystemGPUArchs(const ArgList &Args) const { 952 // Detect NVIDIA GPUs availible on the system. 953 std::string Program; 954 if (Arg *A = Args.getLastArg(options::OPT_nvptx_arch_tool_EQ)) 955 Program = A->getValue(); 956 else 957 Program = GetProgramPath("nvptx-arch"); 958 959 auto StdoutOrErr = executeToolChainProgram(Program); 960 if (!StdoutOrErr) 961 return StdoutOrErr.takeError(); 962 963 SmallVector<std::string, 1> GPUArchs; 964 for (StringRef Arch : llvm::split((*StdoutOrErr)->getBuffer(), "\n")) 965 if (!Arch.empty()) 966 GPUArchs.push_back(Arch.str()); 967 968 if (GPUArchs.empty()) 969 return llvm::createStringError(std::error_code(), 970 "No NVIDIA GPU detected in the system"); 971 972 return std::move(GPUArchs); 973 } 974 975 Tool *NVPTXToolChain::buildAssembler() const { 976 return new tools::NVPTX::Assembler(*this); 977 } 978 979 Tool *NVPTXToolChain::buildLinker() const { 980 return new tools::NVPTX::Linker(*this); 981 } 982 983 Tool *CudaToolChain::buildAssembler() const { 984 return new tools::NVPTX::Assembler(*this); 985 } 986 987 Tool *CudaToolChain::buildLinker() const { 988 return new tools::NVPTX::FatBinary(*this); 989 } 990 991 void CudaToolChain::addClangWarningOptions(ArgStringList &CC1Args) const { 992 HostTC.addClangWarningOptions(CC1Args); 993 } 994 995 ToolChain::CXXStdlibType 996 CudaToolChain::GetCXXStdlibType(const ArgList &Args) const { 997 return HostTC.GetCXXStdlibType(Args); 998 } 999 1000 void CudaToolChain::AddClangSystemIncludeArgs(const ArgList &DriverArgs, 1001 ArgStringList &CC1Args) const { 1002 HostTC.AddClangSystemIncludeArgs(DriverArgs, CC1Args); 1003 1004 if (!DriverArgs.hasArg(options::OPT_nogpuinc) && CudaInstallation.isValid()) 1005 CC1Args.append( 1006 {"-internal-isystem", 1007 DriverArgs.MakeArgString(CudaInstallation.getIncludePath())}); 1008 } 1009 1010 void CudaToolChain::AddClangCXXStdlibIncludeArgs(const ArgList &Args, 1011 ArgStringList &CC1Args) const { 1012 HostTC.AddClangCXXStdlibIncludeArgs(Args, CC1Args); 1013 } 1014 1015 void CudaToolChain::AddIAMCUIncludeArgs(const ArgList &Args, 1016 ArgStringList &CC1Args) const { 1017 HostTC.AddIAMCUIncludeArgs(Args, CC1Args); 1018 } 1019 1020 SanitizerMask CudaToolChain::getSupportedSanitizers() const { 1021 // The CudaToolChain only supports sanitizers in the sense that it allows 1022 // sanitizer arguments on the command line if they are supported by the host 1023 // toolchain. The CudaToolChain will actually ignore any command line 1024 // arguments for any of these "supported" sanitizers. That means that no 1025 // sanitization of device code is actually supported at this time. 1026 // 1027 // This behavior is necessary because the host and device toolchains 1028 // invocations often share the command line, so the device toolchain must 1029 // tolerate flags meant only for the host toolchain. 1030 return HostTC.getSupportedSanitizers(); 1031 } 1032 1033 VersionTuple CudaToolChain::computeMSVCVersion(const Driver *D, 1034 const ArgList &Args) const { 1035 return HostTC.computeMSVCVersion(D, Args); 1036 } 1037