1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Driver/Driver.h" 10 #include "InputInfo.h" 11 #include "ToolChains/AMDGPU.h" 12 #include "ToolChains/AVR.h" 13 #include "ToolChains/Ananas.h" 14 #include "ToolChains/BareMetal.h" 15 #include "ToolChains/Clang.h" 16 #include "ToolChains/CloudABI.h" 17 #include "ToolChains/Contiki.h" 18 #include "ToolChains/CrossWindows.h" 19 #include "ToolChains/Cuda.h" 20 #include "ToolChains/Darwin.h" 21 #include "ToolChains/DragonFly.h" 22 #include "ToolChains/FreeBSD.h" 23 #include "ToolChains/Fuchsia.h" 24 #include "ToolChains/Gnu.h" 25 #include "ToolChains/HIP.h" 26 #include "ToolChains/Haiku.h" 27 #include "ToolChains/Hexagon.h" 28 #include "ToolChains/Hurd.h" 29 #include "ToolChains/Lanai.h" 30 #include "ToolChains/Linux.h" 31 #include "ToolChains/MSP430.h" 32 #include "ToolChains/MSVC.h" 33 #include "ToolChains/MinGW.h" 34 #include "ToolChains/Minix.h" 35 #include "ToolChains/MipsLinux.h" 36 #include "ToolChains/Myriad.h" 37 #include "ToolChains/NaCl.h" 38 #include "ToolChains/NetBSD.h" 39 #include "ToolChains/OpenBSD.h" 40 #include "ToolChains/PS4CPU.h" 41 #include "ToolChains/PPCLinux.h" 42 #include "ToolChains/RISCVToolchain.h" 43 #include "ToolChains/Solaris.h" 44 #include "ToolChains/TCE.h" 45 #include "ToolChains/WebAssembly.h" 46 #include "ToolChains/XCore.h" 47 #include "clang/Basic/Version.h" 48 #include "clang/Config/config.h" 49 #include "clang/Driver/Action.h" 50 #include "clang/Driver/Compilation.h" 51 #include "clang/Driver/DriverDiagnostic.h" 52 #include "clang/Driver/Job.h" 53 #include "clang/Driver/Options.h" 54 #include "clang/Driver/SanitizerArgs.h" 55 #include "clang/Driver/Tool.h" 56 #include "clang/Driver/ToolChain.h" 57 #include "llvm/ADT/ArrayRef.h" 58 #include "llvm/ADT/STLExtras.h" 59 #include "llvm/ADT/SmallSet.h" 60 #include "llvm/ADT/StringExtras.h" 61 #include "llvm/ADT/StringSet.h" 62 #include "llvm/ADT/StringSwitch.h" 63 #include "llvm/Config/llvm-config.h" 64 #include "llvm/Option/Arg.h" 65 #include "llvm/Option/ArgList.h" 66 #include "llvm/Option/OptSpecifier.h" 67 #include "llvm/Option/OptTable.h" 68 #include "llvm/Option/Option.h" 69 #include "llvm/Support/CommandLine.h" 70 #include "llvm/Support/ErrorHandling.h" 71 #include "llvm/Support/FileSystem.h" 72 #include "llvm/Support/FormatVariadic.h" 73 #include "llvm/Support/Path.h" 74 #include "llvm/Support/PrettyStackTrace.h" 75 #include "llvm/Support/Process.h" 76 #include "llvm/Support/Program.h" 77 #include "llvm/Support/StringSaver.h" 78 #include "llvm/Support/TargetRegistry.h" 79 #include "llvm/Support/VirtualFileSystem.h" 80 #include "llvm/Support/raw_ostream.h" 81 #include <map> 82 #include <memory> 83 #include <utility> 84 #if LLVM_ON_UNIX 85 #include <unistd.h> // getpid 86 #include <sysexits.h> // EX_IOERR 87 #endif 88 89 using namespace clang::driver; 90 using namespace clang; 91 using namespace llvm::opt; 92 93 // static 94 std::string Driver::GetResourcesPath(StringRef BinaryPath, 95 StringRef CustomResourceDir) { 96 // Since the resource directory is embedded in the module hash, it's important 97 // that all places that need it call this function, so that they get the 98 // exact same string ("a/../b/" and "b/" get different hashes, for example). 99 100 // Dir is bin/ or lib/, depending on where BinaryPath is. 101 std::string Dir = llvm::sys::path::parent_path(BinaryPath); 102 103 SmallString<128> P(Dir); 104 if (CustomResourceDir != "") { 105 llvm::sys::path::append(P, CustomResourceDir); 106 } else { 107 // On Windows, libclang.dll is in bin/. 108 // On non-Windows, libclang.so/.dylib is in lib/. 109 // With a static-library build of libclang, LibClangPath will contain the 110 // path of the embedding binary, which for LLVM binaries will be in bin/. 111 // ../lib gets us to lib/ in both cases. 112 P = llvm::sys::path::parent_path(Dir); 113 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang", 114 CLANG_VERSION_STRING); 115 } 116 117 return P.str(); 118 } 119 120 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, 121 DiagnosticsEngine &Diags, 122 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 123 : Opts(createDriverOptTable()), Diags(Diags), VFS(std::move(VFS)), 124 Mode(GCCMode), SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), 125 LTOMode(LTOK_None), ClangExecutable(ClangExecutable), 126 SysRoot(DEFAULT_SYSROOT), DriverTitle("clang LLVM compiler"), 127 CCPrintOptionsFilename(nullptr), CCPrintHeadersFilename(nullptr), 128 CCLogDiagnosticsFilename(nullptr), CCCPrintBindings(false), 129 CCPrintOptions(false), CCPrintHeaders(false), CCLogDiagnostics(false), 130 CCGenDiagnostics(false), TargetTriple(TargetTriple), 131 CCCGenericGCCName(""), Saver(Alloc), CheckInputsExist(true), 132 GenReproducer(false), SuppressMissingInputWarning(false) { 133 134 // Provide a sane fallback if no VFS is specified. 135 if (!this->VFS) 136 this->VFS = llvm::vfs::getRealFileSystem(); 137 138 Name = llvm::sys::path::filename(ClangExecutable); 139 Dir = llvm::sys::path::parent_path(ClangExecutable); 140 InstalledDir = Dir; // Provide a sensible default installed dir. 141 142 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) 143 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; 144 #endif 145 #if defined(CLANG_CONFIG_FILE_USER_DIR) 146 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; 147 #endif 148 149 // Compute the path to the resource directory. 150 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); 151 } 152 153 void Driver::ParseDriverMode(StringRef ProgramName, 154 ArrayRef<const char *> Args) { 155 if (ClangNameParts.isEmpty()) 156 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); 157 setDriverModeFromOption(ClangNameParts.DriverMode); 158 159 for (const char *ArgPtr : Args) { 160 // Ignore nullptrs, they are the response file's EOL markers. 161 if (ArgPtr == nullptr) 162 continue; 163 const StringRef Arg = ArgPtr; 164 setDriverModeFromOption(Arg); 165 } 166 } 167 168 void Driver::setDriverModeFromOption(StringRef Opt) { 169 const std::string OptName = 170 getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); 171 if (!Opt.startswith(OptName)) 172 return; 173 StringRef Value = Opt.drop_front(OptName.size()); 174 175 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) 176 .Case("gcc", GCCMode) 177 .Case("g++", GXXMode) 178 .Case("cpp", CPPMode) 179 .Case("cl", CLMode) 180 .Default(None)) 181 Mode = *M; 182 else 183 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; 184 } 185 186 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, 187 bool IsClCompatMode, 188 bool &ContainsError) { 189 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); 190 ContainsError = false; 191 192 unsigned IncludedFlagsBitmask; 193 unsigned ExcludedFlagsBitmask; 194 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 195 getIncludeExcludeOptionFlagMasks(IsClCompatMode); 196 197 unsigned MissingArgIndex, MissingArgCount; 198 InputArgList Args = 199 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, 200 IncludedFlagsBitmask, ExcludedFlagsBitmask); 201 202 // Check for missing argument error. 203 if (MissingArgCount) { 204 Diag(diag::err_drv_missing_argument) 205 << Args.getArgString(MissingArgIndex) << MissingArgCount; 206 ContainsError |= 207 Diags.getDiagnosticLevel(diag::err_drv_missing_argument, 208 SourceLocation()) > DiagnosticsEngine::Warning; 209 } 210 211 // Check for unsupported options. 212 for (const Arg *A : Args) { 213 if (A->getOption().hasFlag(options::Unsupported)) { 214 unsigned DiagID; 215 auto ArgString = A->getAsString(Args); 216 std::string Nearest; 217 if (getOpts().findNearest( 218 ArgString, Nearest, IncludedFlagsBitmask, 219 ExcludedFlagsBitmask | options::Unsupported) > 1) { 220 DiagID = diag::err_drv_unsupported_opt; 221 Diag(DiagID) << ArgString; 222 } else { 223 DiagID = diag::err_drv_unsupported_opt_with_suggestion; 224 Diag(DiagID) << ArgString << Nearest; 225 } 226 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 227 DiagnosticsEngine::Warning; 228 continue; 229 } 230 231 // Warn about -mcpu= without an argument. 232 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { 233 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); 234 ContainsError |= Diags.getDiagnosticLevel( 235 diag::warn_drv_empty_joined_argument, 236 SourceLocation()) > DiagnosticsEngine::Warning; 237 } 238 } 239 240 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { 241 unsigned DiagID; 242 auto ArgString = A->getAsString(Args); 243 std::string Nearest; 244 if (getOpts().findNearest( 245 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { 246 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl 247 : diag::err_drv_unknown_argument; 248 Diags.Report(DiagID) << ArgString; 249 } else { 250 DiagID = IsCLMode() 251 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion 252 : diag::err_drv_unknown_argument_with_suggestion; 253 Diags.Report(DiagID) << ArgString << Nearest; 254 } 255 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 256 DiagnosticsEngine::Warning; 257 } 258 259 return Args; 260 } 261 262 // Determine which compilation mode we are in. We look for options which 263 // affect the phase, starting with the earliest phases, and record which 264 // option we used to determine the final phase. 265 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, 266 Arg **FinalPhaseArg) const { 267 Arg *PhaseArg = nullptr; 268 phases::ID FinalPhase; 269 270 // -{E,EP,P,M,MM} only run the preprocessor. 271 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || 272 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || 273 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || 274 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { 275 FinalPhase = phases::Preprocess; 276 277 // --precompile only runs up to precompilation. 278 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { 279 FinalPhase = phases::Precompile; 280 281 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. 282 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || 283 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || 284 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || 285 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || 286 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || 287 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || 288 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || 289 (PhaseArg = DAL.getLastArg(options::OPT_emit_iterface_stubs)) || 290 (PhaseArg = DAL.getLastArg(options::OPT__analyze, 291 options::OPT__analyze_auto)) || 292 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { 293 FinalPhase = phases::Compile; 294 295 // -S only runs up to the backend. 296 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { 297 FinalPhase = phases::Backend; 298 299 // -c compilation only runs up to the assembler. 300 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { 301 FinalPhase = phases::Assemble; 302 303 // Otherwise do everything. 304 } else 305 FinalPhase = phases::Link; 306 307 if (FinalPhaseArg) 308 *FinalPhaseArg = PhaseArg; 309 310 return FinalPhase; 311 } 312 313 static Arg *MakeInputArg(DerivedArgList &Args, OptTable &Opts, 314 StringRef Value, bool Claim = true) { 315 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, 316 Args.getBaseArgs().MakeIndex(Value), Value.data()); 317 Args.AddSynthesizedArg(A); 318 if (Claim) 319 A->claim(); 320 return A; 321 } 322 323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { 324 DerivedArgList *DAL = new DerivedArgList(Args); 325 326 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); 327 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); 328 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); 329 for (Arg *A : Args) { 330 // Unfortunately, we have to parse some forwarding options (-Xassembler, 331 // -Xlinker, -Xpreprocessor) because we either integrate their functionality 332 // (assembler and preprocessor), or bypass a previous driver ('collect2'). 333 334 // Rewrite linker options, to replace --no-demangle with a custom internal 335 // option. 336 if ((A->getOption().matches(options::OPT_Wl_COMMA) || 337 A->getOption().matches(options::OPT_Xlinker)) && 338 A->containsValue("--no-demangle")) { 339 // Add the rewritten no-demangle argument. 340 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_Xlinker__no_demangle)); 341 342 // Add the remaining values as Xlinker arguments. 343 for (StringRef Val : A->getValues()) 344 if (Val != "--no-demangle") 345 DAL->AddSeparateArg(A, Opts->getOption(options::OPT_Xlinker), Val); 346 347 continue; 348 } 349 350 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by 351 // some build systems. We don't try to be complete here because we don't 352 // care to encourage this usage model. 353 if (A->getOption().matches(options::OPT_Wp_COMMA) && 354 (A->getValue(0) == StringRef("-MD") || 355 A->getValue(0) == StringRef("-MMD"))) { 356 // Rewrite to -MD/-MMD along with -MF. 357 if (A->getValue(0) == StringRef("-MD")) 358 DAL->AddFlagArg(A, Opts->getOption(options::OPT_MD)); 359 else 360 DAL->AddFlagArg(A, Opts->getOption(options::OPT_MMD)); 361 if (A->getNumValues() == 2) 362 DAL->AddSeparateArg(A, Opts->getOption(options::OPT_MF), 363 A->getValue(1)); 364 continue; 365 } 366 367 // Rewrite reserved library names. 368 if (A->getOption().matches(options::OPT_l)) { 369 StringRef Value = A->getValue(); 370 371 // Rewrite unless -nostdlib is present. 372 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && 373 Value == "stdc++") { 374 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_stdcxx)); 375 continue; 376 } 377 378 // Rewrite unconditionally. 379 if (Value == "cc_kext") { 380 DAL->AddFlagArg(A, Opts->getOption(options::OPT_Z_reserved_lib_cckext)); 381 continue; 382 } 383 } 384 385 // Pick up inputs via the -- option. 386 if (A->getOption().matches(options::OPT__DASH_DASH)) { 387 A->claim(); 388 for (StringRef Val : A->getValues()) 389 DAL->append(MakeInputArg(*DAL, *Opts, Val, false)); 390 continue; 391 } 392 393 DAL->append(A); 394 } 395 396 // Enforce -static if -miamcu is present. 397 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) 398 DAL->AddFlagArg(0, Opts->getOption(options::OPT_static)); 399 400 // Add a default value of -mlinker-version=, if one was given and the user 401 // didn't specify one. 402 #if defined(HOST_LINK_VERSION) 403 if (!Args.hasArg(options::OPT_mlinker_version_EQ) && 404 strlen(HOST_LINK_VERSION) > 0) { 405 DAL->AddJoinedArg(0, Opts->getOption(options::OPT_mlinker_version_EQ), 406 HOST_LINK_VERSION); 407 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); 408 } 409 #endif 410 411 return DAL; 412 } 413 414 /// Compute target triple from args. 415 /// 416 /// This routine provides the logic to compute a target triple from various 417 /// args passed to the driver and the default triple string. 418 static llvm::Triple computeTargetTriple(const Driver &D, 419 StringRef TargetTriple, 420 const ArgList &Args, 421 StringRef DarwinArchName = "") { 422 // FIXME: Already done in Compilation *Driver::BuildCompilation 423 if (const Arg *A = Args.getLastArg(options::OPT_target)) 424 TargetTriple = A->getValue(); 425 426 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 427 428 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made 429 // -gnu* only, and we can not change this, so we have to detect that case as 430 // being the Hurd OS. 431 if (TargetTriple.find("-unknown-gnu") != StringRef::npos || 432 TargetTriple.find("-pc-gnu") != StringRef::npos) 433 Target.setOSName("hurd"); 434 435 // Handle Apple-specific options available here. 436 if (Target.isOSBinFormatMachO()) { 437 // If an explicit Darwin arch name is given, that trumps all. 438 if (!DarwinArchName.empty()) { 439 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); 440 return Target; 441 } 442 443 // Handle the Darwin '-arch' flag. 444 if (Arg *A = Args.getLastArg(options::OPT_arch)) { 445 StringRef ArchName = A->getValue(); 446 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); 447 } 448 } 449 450 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and 451 // '-mbig-endian'/'-EB'. 452 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, 453 options::OPT_mbig_endian)) { 454 if (A->getOption().matches(options::OPT_mlittle_endian)) { 455 llvm::Triple LE = Target.getLittleEndianArchVariant(); 456 if (LE.getArch() != llvm::Triple::UnknownArch) 457 Target = std::move(LE); 458 } else { 459 llvm::Triple BE = Target.getBigEndianArchVariant(); 460 if (BE.getArch() != llvm::Triple::UnknownArch) 461 Target = std::move(BE); 462 } 463 } 464 465 // Skip further flag support on OSes which don't support '-m32' or '-m64'. 466 if (Target.getArch() == llvm::Triple::tce || 467 Target.getOS() == llvm::Triple::Minix) 468 return Target; 469 470 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. 471 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, 472 options::OPT_m32, options::OPT_m16); 473 if (A) { 474 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 475 476 if (A->getOption().matches(options::OPT_m64)) { 477 AT = Target.get64BitArchVariant().getArch(); 478 if (Target.getEnvironment() == llvm::Triple::GNUX32) 479 Target.setEnvironment(llvm::Triple::GNU); 480 } else if (A->getOption().matches(options::OPT_mx32) && 481 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { 482 AT = llvm::Triple::x86_64; 483 Target.setEnvironment(llvm::Triple::GNUX32); 484 } else if (A->getOption().matches(options::OPT_m32)) { 485 AT = Target.get32BitArchVariant().getArch(); 486 if (Target.getEnvironment() == llvm::Triple::GNUX32) 487 Target.setEnvironment(llvm::Triple::GNU); 488 } else if (A->getOption().matches(options::OPT_m16) && 489 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { 490 AT = llvm::Triple::x86; 491 Target.setEnvironment(llvm::Triple::CODE16); 492 } 493 494 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 495 Target.setArch(AT); 496 } 497 498 // Handle -miamcu flag. 499 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { 500 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) 501 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" 502 << Target.str(); 503 504 if (A && !A->getOption().matches(options::OPT_m32)) 505 D.Diag(diag::err_drv_argument_not_allowed_with) 506 << "-miamcu" << A->getBaseArg().getAsString(Args); 507 508 Target.setArch(llvm::Triple::x86); 509 Target.setArchName("i586"); 510 Target.setEnvironment(llvm::Triple::UnknownEnvironment); 511 Target.setEnvironmentName(""); 512 Target.setOS(llvm::Triple::ELFIAMCU); 513 Target.setVendor(llvm::Triple::UnknownVendor); 514 Target.setVendorName("intel"); 515 } 516 517 // If target is MIPS adjust the target triple 518 // accordingly to provided ABI name. 519 A = Args.getLastArg(options::OPT_mabi_EQ); 520 if (A && Target.isMIPS()) { 521 StringRef ABIName = A->getValue(); 522 if (ABIName == "32") { 523 Target = Target.get32BitArchVariant(); 524 if (Target.getEnvironment() == llvm::Triple::GNUABI64 || 525 Target.getEnvironment() == llvm::Triple::GNUABIN32) 526 Target.setEnvironment(llvm::Triple::GNU); 527 } else if (ABIName == "n32") { 528 Target = Target.get64BitArchVariant(); 529 if (Target.getEnvironment() == llvm::Triple::GNU || 530 Target.getEnvironment() == llvm::Triple::GNUABI64) 531 Target.setEnvironment(llvm::Triple::GNUABIN32); 532 } else if (ABIName == "64") { 533 Target = Target.get64BitArchVariant(); 534 if (Target.getEnvironment() == llvm::Triple::GNU || 535 Target.getEnvironment() == llvm::Triple::GNUABIN32) 536 Target.setEnvironment(llvm::Triple::GNUABI64); 537 } 538 } 539 540 return Target; 541 } 542 543 // Parse the LTO options and record the type of LTO compilation 544 // based on which -f(no-)?lto(=.*)? option occurs last. 545 void Driver::setLTOMode(const llvm::opt::ArgList &Args) { 546 LTOMode = LTOK_None; 547 if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, 548 options::OPT_fno_lto, false)) 549 return; 550 551 StringRef LTOName("full"); 552 553 const Arg *A = Args.getLastArg(options::OPT_flto_EQ); 554 if (A) 555 LTOName = A->getValue(); 556 557 LTOMode = llvm::StringSwitch<LTOKind>(LTOName) 558 .Case("full", LTOK_Full) 559 .Case("thin", LTOK_Thin) 560 .Default(LTOK_Unknown); 561 562 if (LTOMode == LTOK_Unknown) { 563 assert(A); 564 Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() 565 << A->getValue(); 566 } 567 } 568 569 /// Compute the desired OpenMP runtime from the flags provided. 570 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { 571 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); 572 573 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); 574 if (A) 575 RuntimeName = A->getValue(); 576 577 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) 578 .Case("libomp", OMPRT_OMP) 579 .Case("libgomp", OMPRT_GOMP) 580 .Case("libiomp5", OMPRT_IOMP5) 581 .Default(OMPRT_Unknown); 582 583 if (RT == OMPRT_Unknown) { 584 if (A) 585 Diag(diag::err_drv_unsupported_option_argument) 586 << A->getOption().getName() << A->getValue(); 587 else 588 // FIXME: We could use a nicer diagnostic here. 589 Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; 590 } 591 592 return RT; 593 } 594 595 void Driver::CreateOffloadingDeviceToolChains(Compilation &C, 596 InputList &Inputs) { 597 598 // 599 // CUDA/HIP 600 // 601 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA 602 // or HIP type. However, mixed CUDA/HIP compilation is not supported. 603 bool IsCuda = 604 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 605 return types::isCuda(I.first); 606 }); 607 bool IsHIP = 608 llvm::any_of(Inputs, 609 [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 610 return types::isHIP(I.first); 611 }) || 612 C.getInputArgs().hasArg(options::OPT_hip_link); 613 if (IsCuda && IsHIP) { 614 Diag(clang::diag::err_drv_mix_cuda_hip); 615 return; 616 } 617 if (IsCuda) { 618 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 619 const llvm::Triple &HostTriple = HostTC->getTriple(); 620 StringRef DeviceTripleStr; 621 auto OFK = Action::OFK_Cuda; 622 DeviceTripleStr = 623 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; 624 llvm::Triple CudaTriple(DeviceTripleStr); 625 // Use the CUDA and host triples as the key into the ToolChains map, 626 // because the device toolchain we create depends on both. 627 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; 628 if (!CudaTC) { 629 CudaTC = llvm::make_unique<toolchains::CudaToolChain>( 630 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); 631 } 632 C.addOffloadDeviceToolChain(CudaTC.get(), OFK); 633 } else if (IsHIP) { 634 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 635 const llvm::Triple &HostTriple = HostTC->getTriple(); 636 StringRef DeviceTripleStr; 637 auto OFK = Action::OFK_HIP; 638 DeviceTripleStr = "amdgcn-amd-amdhsa"; 639 llvm::Triple HIPTriple(DeviceTripleStr); 640 // Use the HIP and host triples as the key into the ToolChains map, 641 // because the device toolchain we create depends on both. 642 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; 643 if (!HIPTC) { 644 HIPTC = llvm::make_unique<toolchains::HIPToolChain>( 645 *this, HIPTriple, *HostTC, C.getInputArgs()); 646 } 647 C.addOffloadDeviceToolChain(HIPTC.get(), OFK); 648 } 649 650 // 651 // OpenMP 652 // 653 // We need to generate an OpenMP toolchain if the user specified targets with 654 // the -fopenmp-targets option. 655 if (Arg *OpenMPTargets = 656 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 657 if (OpenMPTargets->getNumValues()) { 658 // We expect that -fopenmp-targets is always used in conjunction with the 659 // option -fopenmp specifying a valid runtime with offloading support, 660 // i.e. libomp or libiomp. 661 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( 662 options::OPT_fopenmp, options::OPT_fopenmp_EQ, 663 options::OPT_fno_openmp, false); 664 if (HasValidOpenMPRuntime) { 665 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); 666 HasValidOpenMPRuntime = 667 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; 668 } 669 670 if (HasValidOpenMPRuntime) { 671 llvm::StringMap<const char *> FoundNormalizedTriples; 672 for (const char *Val : OpenMPTargets->getValues()) { 673 llvm::Triple TT(Val); 674 std::string NormalizedName = TT.normalize(); 675 676 // Make sure we don't have a duplicate triple. 677 auto Duplicate = FoundNormalizedTriples.find(NormalizedName); 678 if (Duplicate != FoundNormalizedTriples.end()) { 679 Diag(clang::diag::warn_drv_omp_offload_target_duplicate) 680 << Val << Duplicate->second; 681 continue; 682 } 683 684 // Store the current triple so that we can check for duplicates in the 685 // following iterations. 686 FoundNormalizedTriples[NormalizedName] = Val; 687 688 // If the specified target is invalid, emit a diagnostic. 689 if (TT.getArch() == llvm::Triple::UnknownArch) 690 Diag(clang::diag::err_drv_invalid_omp_target) << Val; 691 else { 692 const ToolChain *TC; 693 // CUDA toolchains have to be selected differently. They pair host 694 // and device in their implementation. 695 if (TT.isNVPTX()) { 696 const ToolChain *HostTC = 697 C.getSingleOffloadToolChain<Action::OFK_Host>(); 698 assert(HostTC && "Host toolchain should be always defined."); 699 auto &CudaTC = 700 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; 701 if (!CudaTC) 702 CudaTC = llvm::make_unique<toolchains::CudaToolChain>( 703 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); 704 TC = CudaTC.get(); 705 } else 706 TC = &getToolChain(C.getInputArgs(), TT); 707 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); 708 } 709 } 710 } else 711 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 712 } else 713 Diag(clang::diag::warn_drv_empty_joined_argument) 714 << OpenMPTargets->getAsString(C.getInputArgs()); 715 } 716 717 // 718 // TODO: Add support for other offloading programming models here. 719 // 720 } 721 722 /// Looks the given directories for the specified file. 723 /// 724 /// \param[out] FilePath File path, if the file was found. 725 /// \param[in] Dirs Directories used for the search. 726 /// \param[in] FileName Name of the file to search for. 727 /// \return True if file was found. 728 /// 729 /// Looks for file specified by FileName sequentially in directories specified 730 /// by Dirs. 731 /// 732 static bool searchForFile(SmallVectorImpl<char> &FilePath, 733 ArrayRef<std::string> Dirs, 734 StringRef FileName) { 735 SmallString<128> WPath; 736 for (const StringRef &Dir : Dirs) { 737 if (Dir.empty()) 738 continue; 739 WPath.clear(); 740 llvm::sys::path::append(WPath, Dir, FileName); 741 llvm::sys::path::native(WPath); 742 if (llvm::sys::fs::is_regular_file(WPath)) { 743 FilePath = std::move(WPath); 744 return true; 745 } 746 } 747 return false; 748 } 749 750 bool Driver::readConfigFile(StringRef FileName) { 751 // Try reading the given file. 752 SmallVector<const char *, 32> NewCfgArgs; 753 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { 754 Diag(diag::err_drv_cannot_read_config_file) << FileName; 755 return true; 756 } 757 758 // Read options from config file. 759 llvm::SmallString<128> CfgFileName(FileName); 760 llvm::sys::path::native(CfgFileName); 761 ConfigFile = CfgFileName.str(); 762 bool ContainErrors; 763 CfgOptions = llvm::make_unique<InputArgList>( 764 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); 765 if (ContainErrors) { 766 CfgOptions.reset(); 767 return true; 768 } 769 770 if (CfgOptions->hasArg(options::OPT_config)) { 771 CfgOptions.reset(); 772 Diag(diag::err_drv_nested_config_file); 773 return true; 774 } 775 776 // Claim all arguments that come from a configuration file so that the driver 777 // does not warn on any that is unused. 778 for (Arg *A : *CfgOptions) 779 A->claim(); 780 return false; 781 } 782 783 bool Driver::loadConfigFile() { 784 std::string CfgFileName; 785 bool FileSpecifiedExplicitly = false; 786 787 // Process options that change search path for config files. 788 if (CLOptions) { 789 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { 790 SmallString<128> CfgDir; 791 CfgDir.append( 792 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); 793 if (!CfgDir.empty()) { 794 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 795 SystemConfigDir.clear(); 796 else 797 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 798 } 799 } 800 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { 801 SmallString<128> CfgDir; 802 CfgDir.append( 803 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); 804 if (!CfgDir.empty()) { 805 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 806 UserConfigDir.clear(); 807 else 808 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 809 } 810 } 811 } 812 813 // First try to find config file specified in command line. 814 if (CLOptions) { 815 std::vector<std::string> ConfigFiles = 816 CLOptions->getAllArgValues(options::OPT_config); 817 if (ConfigFiles.size() > 1) { 818 Diag(diag::err_drv_duplicate_config); 819 return true; 820 } 821 822 if (!ConfigFiles.empty()) { 823 CfgFileName = ConfigFiles.front(); 824 assert(!CfgFileName.empty()); 825 826 // If argument contains directory separator, treat it as a path to 827 // configuration file. 828 if (llvm::sys::path::has_parent_path(CfgFileName)) { 829 SmallString<128> CfgFilePath; 830 if (llvm::sys::path::is_relative(CfgFileName)) 831 llvm::sys::fs::current_path(CfgFilePath); 832 llvm::sys::path::append(CfgFilePath, CfgFileName); 833 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { 834 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; 835 return true; 836 } 837 return readConfigFile(CfgFilePath); 838 } 839 840 FileSpecifiedExplicitly = true; 841 } 842 } 843 844 // If config file is not specified explicitly, try to deduce configuration 845 // from executable name. For instance, an executable 'armv7l-clang' will 846 // search for config file 'armv7l-clang.cfg'. 847 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) 848 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; 849 850 if (CfgFileName.empty()) 851 return false; 852 853 // Determine architecture part of the file name, if it is present. 854 StringRef CfgFileArch = CfgFileName; 855 size_t ArchPrefixLen = CfgFileArch.find('-'); 856 if (ArchPrefixLen == StringRef::npos) 857 ArchPrefixLen = CfgFileArch.size(); 858 llvm::Triple CfgTriple; 859 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); 860 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); 861 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) 862 ArchPrefixLen = 0; 863 864 if (!StringRef(CfgFileName).endswith(".cfg")) 865 CfgFileName += ".cfg"; 866 867 // If config file starts with architecture name and command line options 868 // redefine architecture (with options like -m32 -LE etc), try finding new 869 // config file with that architecture. 870 SmallString<128> FixedConfigFile; 871 size_t FixedArchPrefixLen = 0; 872 if (ArchPrefixLen) { 873 // Get architecture name from config file name like 'i386.cfg' or 874 // 'armv7l-clang.cfg'. 875 // Check if command line options changes effective triple. 876 llvm::Triple EffectiveTriple = computeTargetTriple(*this, 877 CfgTriple.getTriple(), *CLOptions); 878 if (CfgTriple.getArch() != EffectiveTriple.getArch()) { 879 FixedConfigFile = EffectiveTriple.getArchName(); 880 FixedArchPrefixLen = FixedConfigFile.size(); 881 // Append the rest of original file name so that file name transforms 882 // like: i386-clang.cfg -> x86_64-clang.cfg. 883 if (ArchPrefixLen < CfgFileName.size()) 884 FixedConfigFile += CfgFileName.substr(ArchPrefixLen); 885 } 886 } 887 888 // Prepare list of directories where config file is searched for. 889 SmallVector<std::string, 3> CfgFileSearchDirs; 890 CfgFileSearchDirs.push_back(UserConfigDir); 891 CfgFileSearchDirs.push_back(SystemConfigDir); 892 CfgFileSearchDirs.push_back(Dir); 893 894 // Try to find config file. First try file with corrected architecture. 895 llvm::SmallString<128> CfgFilePath; 896 if (!FixedConfigFile.empty()) { 897 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 898 return readConfigFile(CfgFilePath); 899 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. 900 FixedConfigFile.resize(FixedArchPrefixLen); 901 FixedConfigFile.append(".cfg"); 902 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 903 return readConfigFile(CfgFilePath); 904 } 905 906 // Then try original file name. 907 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 908 return readConfigFile(CfgFilePath); 909 910 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. 911 if (!ClangNameParts.ModeSuffix.empty() && 912 !ClangNameParts.TargetPrefix.empty()) { 913 CfgFileName.assign(ClangNameParts.TargetPrefix); 914 CfgFileName.append(".cfg"); 915 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 916 return readConfigFile(CfgFilePath); 917 } 918 919 // Report error but only if config file was specified explicitly, by option 920 // --config. If it was deduced from executable name, it is not an error. 921 if (FileSpecifiedExplicitly) { 922 Diag(diag::err_drv_config_file_not_found) << CfgFileName; 923 for (const std::string &SearchDir : CfgFileSearchDirs) 924 if (!SearchDir.empty()) 925 Diag(diag::note_drv_config_file_searched_in) << SearchDir; 926 return true; 927 } 928 929 return false; 930 } 931 932 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { 933 llvm::PrettyStackTraceString CrashInfo("Compilation construction"); 934 935 // FIXME: Handle environment options which affect driver behavior, somewhere 936 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. 937 938 if (Optional<std::string> CompilerPathValue = 939 llvm::sys::Process::GetEnv("COMPILER_PATH")) { 940 StringRef CompilerPath = *CompilerPathValue; 941 while (!CompilerPath.empty()) { 942 std::pair<StringRef, StringRef> Split = 943 CompilerPath.split(llvm::sys::EnvPathSeparator); 944 PrefixDirs.push_back(Split.first); 945 CompilerPath = Split.second; 946 } 947 } 948 949 // We look for the driver mode option early, because the mode can affect 950 // how other options are parsed. 951 ParseDriverMode(ClangExecutable, ArgList.slice(1)); 952 953 // FIXME: What are we going to do with -V and -b? 954 955 // Arguments specified in command line. 956 bool ContainsError; 957 CLOptions = llvm::make_unique<InputArgList>( 958 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); 959 960 // Try parsing configuration file. 961 if (!ContainsError) 962 ContainsError = loadConfigFile(); 963 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); 964 965 // All arguments, from both config file and command line. 966 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) 967 : std::move(*CLOptions)); 968 969 // The args for config files or /clang: flags belong to different InputArgList 970 // objects than Args. This copies an Arg from one of those other InputArgLists 971 // to the ownership of Args. 972 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) { 973 unsigned Index = Args.MakeIndex(Opt->getSpelling()); 974 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(), 975 Index, BaseArg); 976 Copy->getValues() = Opt->getValues(); 977 if (Opt->isClaimed()) 978 Copy->claim(); 979 Args.append(Copy); 980 }; 981 982 if (HasConfigFile) 983 for (auto *Opt : *CLOptions) { 984 if (Opt->getOption().matches(options::OPT_config)) 985 continue; 986 const Arg *BaseArg = &Opt->getBaseArg(); 987 if (BaseArg == Opt) 988 BaseArg = nullptr; 989 appendOneArg(Opt, BaseArg); 990 } 991 992 // In CL mode, look for any pass-through arguments 993 if (IsCLMode() && !ContainsError) { 994 SmallVector<const char *, 16> CLModePassThroughArgList; 995 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { 996 A->claim(); 997 CLModePassThroughArgList.push_back(A->getValue()); 998 } 999 1000 if (!CLModePassThroughArgList.empty()) { 1001 // Parse any pass through args using default clang processing rather 1002 // than clang-cl processing. 1003 auto CLModePassThroughOptions = llvm::make_unique<InputArgList>( 1004 ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); 1005 1006 if (!ContainsError) 1007 for (auto *Opt : *CLModePassThroughOptions) { 1008 appendOneArg(Opt, nullptr); 1009 } 1010 } 1011 } 1012 1013 // FIXME: This stuff needs to go into the Compilation, not the driver. 1014 bool CCCPrintPhases; 1015 1016 // Silence driver warnings if requested 1017 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); 1018 1019 // -no-canonical-prefixes is used very early in main. 1020 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); 1021 1022 // Ignore -pipe. 1023 Args.ClaimAllArgs(options::OPT_pipe); 1024 1025 // Extract -ccc args. 1026 // 1027 // FIXME: We need to figure out where this behavior should live. Most of it 1028 // should be outside in the client; the parts that aren't should have proper 1029 // options, either by introducing new ones or by overloading gcc ones like -V 1030 // or -b. 1031 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); 1032 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); 1033 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) 1034 CCCGenericGCCName = A->getValue(); 1035 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, 1036 options::OPT_fno_crash_diagnostics, 1037 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); 1038 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld 1039 // and getToolChain is const. 1040 if (IsCLMode()) { 1041 // clang-cl targets MSVC-style Win32. 1042 llvm::Triple T(TargetTriple); 1043 T.setOS(llvm::Triple::Win32); 1044 T.setVendor(llvm::Triple::PC); 1045 T.setEnvironment(llvm::Triple::MSVC); 1046 T.setObjectFormat(llvm::Triple::COFF); 1047 TargetTriple = T.str(); 1048 } 1049 if (const Arg *A = Args.getLastArg(options::OPT_target)) 1050 TargetTriple = A->getValue(); 1051 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) 1052 Dir = InstalledDir = A->getValue(); 1053 for (const Arg *A : Args.filtered(options::OPT_B)) { 1054 A->claim(); 1055 PrefixDirs.push_back(A->getValue(0)); 1056 } 1057 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) 1058 SysRoot = A->getValue(); 1059 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) 1060 DyldPrefix = A->getValue(); 1061 1062 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) 1063 ResourceDir = A->getValue(); 1064 1065 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { 1066 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) 1067 .Case("cwd", SaveTempsCwd) 1068 .Case("obj", SaveTempsObj) 1069 .Default(SaveTempsCwd); 1070 } 1071 1072 setLTOMode(Args); 1073 1074 // Process -fembed-bitcode= flags. 1075 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { 1076 StringRef Name = A->getValue(); 1077 unsigned Model = llvm::StringSwitch<unsigned>(Name) 1078 .Case("off", EmbedNone) 1079 .Case("all", EmbedBitcode) 1080 .Case("bitcode", EmbedBitcode) 1081 .Case("marker", EmbedMarker) 1082 .Default(~0U); 1083 if (Model == ~0U) { 1084 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) 1085 << Name; 1086 } else 1087 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); 1088 } 1089 1090 std::unique_ptr<llvm::opt::InputArgList> UArgs = 1091 llvm::make_unique<InputArgList>(std::move(Args)); 1092 1093 // Perform the default argument translations. 1094 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); 1095 1096 // Owned by the host. 1097 const ToolChain &TC = getToolChain( 1098 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); 1099 1100 // The compilation takes ownership of Args. 1101 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, 1102 ContainsError); 1103 1104 if (!HandleImmediateArgs(*C)) 1105 return C; 1106 1107 // Construct the list of inputs. 1108 InputList Inputs; 1109 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); 1110 1111 // Populate the tool chains for the offloading devices, if any. 1112 CreateOffloadingDeviceToolChains(*C, Inputs); 1113 1114 // Construct the list of abstract actions to perform for this compilation. On 1115 // MachO targets this uses the driver-driver and universal actions. 1116 if (TC.getTriple().isOSBinFormatMachO()) 1117 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); 1118 else 1119 BuildActions(*C, C->getArgs(), Inputs, C->getActions()); 1120 1121 if (CCCPrintPhases) { 1122 PrintActions(*C); 1123 return C; 1124 } 1125 1126 BuildJobs(*C); 1127 1128 return C; 1129 } 1130 1131 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { 1132 llvm::opt::ArgStringList ASL; 1133 for (const auto *A : Args) 1134 A->render(Args, ASL); 1135 1136 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { 1137 if (I != ASL.begin()) 1138 OS << ' '; 1139 Command::printArg(OS, *I, true); 1140 } 1141 OS << '\n'; 1142 } 1143 1144 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, 1145 SmallString<128> &CrashDiagDir) { 1146 using namespace llvm::sys; 1147 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && 1148 "Only knows about .crash files on Darwin"); 1149 1150 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ 1151 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern 1152 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. 1153 path::home_directory(CrashDiagDir); 1154 if (CrashDiagDir.startswith("/var/root")) 1155 CrashDiagDir = "/"; 1156 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); 1157 int PID = 1158 #if LLVM_ON_UNIX 1159 getpid(); 1160 #else 1161 0; 1162 #endif 1163 std::error_code EC; 1164 fs::file_status FileStatus; 1165 TimePoint<> LastAccessTime; 1166 SmallString<128> CrashFilePath; 1167 // Lookup the .crash files and get the one generated by a subprocess spawned 1168 // by this driver invocation. 1169 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; 1170 File != FileEnd && !EC; File.increment(EC)) { 1171 StringRef FileName = path::filename(File->path()); 1172 if (!FileName.startswith(Name)) 1173 continue; 1174 if (fs::status(File->path(), FileStatus)) 1175 continue; 1176 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = 1177 llvm::MemoryBuffer::getFile(File->path()); 1178 if (!CrashFile) 1179 continue; 1180 // The first line should start with "Process:", otherwise this isn't a real 1181 // .crash file. 1182 StringRef Data = CrashFile.get()->getBuffer(); 1183 if (!Data.startswith("Process:")) 1184 continue; 1185 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" 1186 size_t ParentProcPos = Data.find("Parent Process:"); 1187 if (ParentProcPos == StringRef::npos) 1188 continue; 1189 size_t LineEnd = Data.find_first_of("\n", ParentProcPos); 1190 if (LineEnd == StringRef::npos) 1191 continue; 1192 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); 1193 int OpenBracket = -1, CloseBracket = -1; 1194 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { 1195 if (ParentProcess[i] == '[') 1196 OpenBracket = i; 1197 if (ParentProcess[i] == ']') 1198 CloseBracket = i; 1199 } 1200 // Extract the parent process PID from the .crash file and check whether 1201 // it matches this driver invocation pid. 1202 int CrashPID; 1203 if (OpenBracket < 0 || CloseBracket < 0 || 1204 ParentProcess.slice(OpenBracket + 1, CloseBracket) 1205 .getAsInteger(10, CrashPID) || CrashPID != PID) { 1206 continue; 1207 } 1208 1209 // Found a .crash file matching the driver pid. To avoid getting an older 1210 // and misleading crash file, continue looking for the most recent. 1211 // FIXME: the driver can dispatch multiple cc1 invocations, leading to 1212 // multiple crashes poiting to the same parent process. Since the driver 1213 // does not collect pid information for the dispatched invocation there's 1214 // currently no way to distinguish among them. 1215 const auto FileAccessTime = FileStatus.getLastModificationTime(); 1216 if (FileAccessTime > LastAccessTime) { 1217 CrashFilePath.assign(File->path()); 1218 LastAccessTime = FileAccessTime; 1219 } 1220 } 1221 1222 // If found, copy it over to the location of other reproducer files. 1223 if (!CrashFilePath.empty()) { 1224 EC = fs::copy_file(CrashFilePath, ReproCrashFilename); 1225 if (EC) 1226 return false; 1227 return true; 1228 } 1229 1230 return false; 1231 } 1232 1233 // When clang crashes, produce diagnostic information including the fully 1234 // preprocessed source file(s). Request that the developer attach the 1235 // diagnostic information to a bug report. 1236 void Driver::generateCompilationDiagnostics( 1237 Compilation &C, const Command &FailingCommand, 1238 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { 1239 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) 1240 return; 1241 1242 // Don't try to generate diagnostics for link or dsymutil jobs. 1243 if (FailingCommand.getCreator().isLinkJob() || 1244 FailingCommand.getCreator().isDsymutilJob()) 1245 return; 1246 1247 // Print the version of the compiler. 1248 PrintVersion(C, llvm::errs()); 1249 1250 Diag(clang::diag::note_drv_command_failed_diag_msg) 1251 << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the " 1252 "crash backtrace, preprocessed source, and associated run script."; 1253 1254 // Suppress driver output and emit preprocessor output to temp file. 1255 Mode = CPPMode; 1256 CCGenDiagnostics = true; 1257 1258 // Save the original job command(s). 1259 Command Cmd = FailingCommand; 1260 1261 // Keep track of whether we produce any errors while trying to produce 1262 // preprocessed sources. 1263 DiagnosticErrorTrap Trap(Diags); 1264 1265 // Suppress tool output. 1266 C.initCompilationForDiagnostics(); 1267 1268 // Construct the list of inputs. 1269 InputList Inputs; 1270 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); 1271 1272 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { 1273 bool IgnoreInput = false; 1274 1275 // Ignore input from stdin or any inputs that cannot be preprocessed. 1276 // Check type first as not all linker inputs have a value. 1277 if (types::getPreprocessedType(it->first) == types::TY_INVALID) { 1278 IgnoreInput = true; 1279 } else if (!strcmp(it->second->getValue(), "-")) { 1280 Diag(clang::diag::note_drv_command_failed_diag_msg) 1281 << "Error generating preprocessed source(s) - " 1282 "ignoring input from stdin."; 1283 IgnoreInput = true; 1284 } 1285 1286 if (IgnoreInput) { 1287 it = Inputs.erase(it); 1288 ie = Inputs.end(); 1289 } else { 1290 ++it; 1291 } 1292 } 1293 1294 if (Inputs.empty()) { 1295 Diag(clang::diag::note_drv_command_failed_diag_msg) 1296 << "Error generating preprocessed source(s) - " 1297 "no preprocessable inputs."; 1298 return; 1299 } 1300 1301 // Don't attempt to generate preprocessed files if multiple -arch options are 1302 // used, unless they're all duplicates. 1303 llvm::StringSet<> ArchNames; 1304 for (const Arg *A : C.getArgs()) { 1305 if (A->getOption().matches(options::OPT_arch)) { 1306 StringRef ArchName = A->getValue(); 1307 ArchNames.insert(ArchName); 1308 } 1309 } 1310 if (ArchNames.size() > 1) { 1311 Diag(clang::diag::note_drv_command_failed_diag_msg) 1312 << "Error generating preprocessed source(s) - cannot generate " 1313 "preprocessed source with multiple -arch options."; 1314 return; 1315 } 1316 1317 // Construct the list of abstract actions to perform for this compilation. On 1318 // Darwin OSes this uses the driver-driver and builds universal actions. 1319 const ToolChain &TC = C.getDefaultToolChain(); 1320 if (TC.getTriple().isOSBinFormatMachO()) 1321 BuildUniversalActions(C, TC, Inputs); 1322 else 1323 BuildActions(C, C.getArgs(), Inputs, C.getActions()); 1324 1325 BuildJobs(C); 1326 1327 // If there were errors building the compilation, quit now. 1328 if (Trap.hasErrorOccurred()) { 1329 Diag(clang::diag::note_drv_command_failed_diag_msg) 1330 << "Error generating preprocessed source(s)."; 1331 return; 1332 } 1333 1334 // Generate preprocessed output. 1335 SmallVector<std::pair<int, const Command *>, 4> FailingCommands; 1336 C.ExecuteJobs(C.getJobs(), FailingCommands); 1337 1338 // If any of the preprocessing commands failed, clean up and exit. 1339 if (!FailingCommands.empty()) { 1340 Diag(clang::diag::note_drv_command_failed_diag_msg) 1341 << "Error generating preprocessed source(s)."; 1342 return; 1343 } 1344 1345 const ArgStringList &TempFiles = C.getTempFiles(); 1346 if (TempFiles.empty()) { 1347 Diag(clang::diag::note_drv_command_failed_diag_msg) 1348 << "Error generating preprocessed source(s)."; 1349 return; 1350 } 1351 1352 Diag(clang::diag::note_drv_command_failed_diag_msg) 1353 << "\n********************\n\n" 1354 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" 1355 "Preprocessed source(s) and associated run script(s) are located at:"; 1356 1357 SmallString<128> VFS; 1358 SmallString<128> ReproCrashFilename; 1359 for (const char *TempFile : TempFiles) { 1360 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; 1361 if (Report) 1362 Report->TemporaryFiles.push_back(TempFile); 1363 if (ReproCrashFilename.empty()) { 1364 ReproCrashFilename = TempFile; 1365 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); 1366 } 1367 if (StringRef(TempFile).endswith(".cache")) { 1368 // In some cases (modules) we'll dump extra data to help with reproducing 1369 // the crash into a directory next to the output. 1370 VFS = llvm::sys::path::filename(TempFile); 1371 llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); 1372 } 1373 } 1374 1375 // Assume associated files are based off of the first temporary file. 1376 CrashReportInfo CrashInfo(TempFiles[0], VFS); 1377 1378 llvm::SmallString<128> Script(CrashInfo.Filename); 1379 llvm::sys::path::replace_extension(Script, "sh"); 1380 std::error_code EC; 1381 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); 1382 if (EC) { 1383 Diag(clang::diag::note_drv_command_failed_diag_msg) 1384 << "Error generating run script: " << Script << " " << EC.message(); 1385 } else { 1386 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" 1387 << "# Driver args: "; 1388 printArgList(ScriptOS, C.getInputArgs()); 1389 ScriptOS << "# Original command: "; 1390 Cmd.Print(ScriptOS, "\n", /*Quote=*/true); 1391 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); 1392 if (!AdditionalInformation.empty()) 1393 ScriptOS << "\n# Additional information: " << AdditionalInformation 1394 << "\n"; 1395 if (Report) 1396 Report->TemporaryFiles.push_back(Script.str()); 1397 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; 1398 } 1399 1400 // On darwin, provide information about the .crash diagnostic report. 1401 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { 1402 SmallString<128> CrashDiagDir; 1403 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { 1404 Diag(clang::diag::note_drv_command_failed_diag_msg) 1405 << ReproCrashFilename.str(); 1406 } else { // Suggest a directory for the user to look for .crash files. 1407 llvm::sys::path::append(CrashDiagDir, Name); 1408 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; 1409 Diag(clang::diag::note_drv_command_failed_diag_msg) 1410 << "Crash backtrace is located in"; 1411 Diag(clang::diag::note_drv_command_failed_diag_msg) 1412 << CrashDiagDir.str(); 1413 Diag(clang::diag::note_drv_command_failed_diag_msg) 1414 << "(choose the .crash file that corresponds to your crash)"; 1415 } 1416 } 1417 1418 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, 1419 options::OPT_frewrite_map_file_EQ)) 1420 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); 1421 1422 Diag(clang::diag::note_drv_command_failed_diag_msg) 1423 << "\n\n********************"; 1424 } 1425 1426 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { 1427 // Since commandLineFitsWithinSystemLimits() may underestimate system's 1428 // capacity if the tool does not support response files, there is a chance/ 1429 // that things will just work without a response file, so we silently just 1430 // skip it. 1431 if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None || 1432 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), 1433 Cmd.getArguments())) 1434 return; 1435 1436 std::string TmpName = GetTemporaryPath("response", "txt"); 1437 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); 1438 } 1439 1440 int Driver::ExecuteCompilation( 1441 Compilation &C, 1442 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { 1443 // Just print if -### was present. 1444 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 1445 C.getJobs().Print(llvm::errs(), "\n", true); 1446 return 0; 1447 } 1448 1449 // If there were errors building the compilation, quit now. 1450 if (Diags.hasErrorOccurred()) 1451 return 1; 1452 1453 // Set up response file names for each command, if necessary 1454 for (auto &Job : C.getJobs()) 1455 setUpResponseFiles(C, Job); 1456 1457 C.ExecuteJobs(C.getJobs(), FailingCommands); 1458 1459 // If the command succeeded, we are done. 1460 if (FailingCommands.empty()) 1461 return 0; 1462 1463 // Otherwise, remove result files and print extra information about abnormal 1464 // failures. 1465 int Res = 0; 1466 for (const auto &CmdPair : FailingCommands) { 1467 int CommandRes = CmdPair.first; 1468 const Command *FailingCommand = CmdPair.second; 1469 1470 // Remove result files if we're not saving temps. 1471 if (!isSaveTempsEnabled()) { 1472 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); 1473 C.CleanupFileMap(C.getResultFiles(), JA, true); 1474 1475 // Failure result files are valid unless we crashed. 1476 if (CommandRes < 0) 1477 C.CleanupFileMap(C.getFailureResultFiles(), JA, true); 1478 } 1479 1480 #if LLVM_ON_UNIX 1481 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code 1482 // for SIGPIPE. Do not print diagnostics for this case. 1483 if (CommandRes == EX_IOERR) { 1484 Res = CommandRes; 1485 continue; 1486 } 1487 #endif 1488 1489 // Print extra information about abnormal failures, if possible. 1490 // 1491 // This is ad-hoc, but we don't want to be excessively noisy. If the result 1492 // status was 1, assume the command failed normally. In particular, if it 1493 // was the compiler then assume it gave a reasonable error code. Failures 1494 // in other tools are less common, and they generally have worse 1495 // diagnostics, so always print the diagnostic there. 1496 const Tool &FailingTool = FailingCommand->getCreator(); 1497 1498 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { 1499 // FIXME: See FIXME above regarding result code interpretation. 1500 if (CommandRes < 0) 1501 Diag(clang::diag::err_drv_command_signalled) 1502 << FailingTool.getShortName(); 1503 else 1504 Diag(clang::diag::err_drv_command_failed) 1505 << FailingTool.getShortName() << CommandRes; 1506 } 1507 } 1508 return Res; 1509 } 1510 1511 void Driver::PrintHelp(bool ShowHidden) const { 1512 unsigned IncludedFlagsBitmask; 1513 unsigned ExcludedFlagsBitmask; 1514 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 1515 getIncludeExcludeOptionFlagMasks(IsCLMode()); 1516 1517 ExcludedFlagsBitmask |= options::NoDriverOption; 1518 if (!ShowHidden) 1519 ExcludedFlagsBitmask |= HelpHidden; 1520 1521 std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); 1522 getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), 1523 IncludedFlagsBitmask, ExcludedFlagsBitmask, 1524 /*ShowAllAliases=*/false); 1525 } 1526 1527 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { 1528 // FIXME: The following handlers should use a callback mechanism, we don't 1529 // know what the client would like to do. 1530 OS << getClangFullVersion() << '\n'; 1531 const ToolChain &TC = C.getDefaultToolChain(); 1532 OS << "Target: " << TC.getTripleString() << '\n'; 1533 1534 // Print the threading model. 1535 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { 1536 // Don't print if the ToolChain would have barfed on it already 1537 if (TC.isThreadModelSupported(A->getValue())) 1538 OS << "Thread model: " << A->getValue(); 1539 } else 1540 OS << "Thread model: " << TC.getThreadModel(); 1541 OS << '\n'; 1542 1543 // Print out the install directory. 1544 OS << "InstalledDir: " << InstalledDir << '\n'; 1545 1546 // If configuration file was used, print its path. 1547 if (!ConfigFile.empty()) 1548 OS << "Configuration file: " << ConfigFile << '\n'; 1549 } 1550 1551 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories 1552 /// option. 1553 static void PrintDiagnosticCategories(raw_ostream &OS) { 1554 // Skip the empty category. 1555 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; 1556 ++i) 1557 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; 1558 } 1559 1560 void Driver::HandleAutocompletions(StringRef PassedFlags) const { 1561 if (PassedFlags == "") 1562 return; 1563 // Print out all options that start with a given argument. This is used for 1564 // shell autocompletion. 1565 std::vector<std::string> SuggestedCompletions; 1566 std::vector<std::string> Flags; 1567 1568 unsigned short DisableFlags = 1569 options::NoDriverOption | options::Unsupported | options::Ignored; 1570 1571 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," 1572 // because the latter indicates that the user put space before pushing tab 1573 // which should end up in a file completion. 1574 const bool HasSpace = PassedFlags.endswith(","); 1575 1576 // Parse PassedFlags by "," as all the command-line flags are passed to this 1577 // function separated by "," 1578 StringRef TargetFlags = PassedFlags; 1579 while (TargetFlags != "") { 1580 StringRef CurFlag; 1581 std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); 1582 Flags.push_back(std::string(CurFlag)); 1583 } 1584 1585 // We want to show cc1-only options only when clang is invoked with -cc1 or 1586 // -Xclang. 1587 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) 1588 DisableFlags &= ~options::NoDriverOption; 1589 1590 StringRef Cur; 1591 Cur = Flags.at(Flags.size() - 1); 1592 StringRef Prev; 1593 if (Flags.size() >= 2) { 1594 Prev = Flags.at(Flags.size() - 2); 1595 SuggestedCompletions = Opts->suggestValueCompletions(Prev, Cur); 1596 } 1597 1598 if (SuggestedCompletions.empty()) 1599 SuggestedCompletions = Opts->suggestValueCompletions(Cur, ""); 1600 1601 // If Flags were empty, it means the user typed `clang [tab]` where we should 1602 // list all possible flags. If there was no value completion and the user 1603 // pressed tab after a space, we should fall back to a file completion. 1604 // We're printing a newline to be consistent with what we print at the end of 1605 // this function. 1606 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { 1607 llvm::outs() << '\n'; 1608 return; 1609 } 1610 1611 // When flag ends with '=' and there was no value completion, return empty 1612 // string and fall back to the file autocompletion. 1613 if (SuggestedCompletions.empty() && !Cur.endswith("=")) { 1614 // If the flag is in the form of "--autocomplete=-foo", 1615 // we were requested to print out all option names that start with "-foo". 1616 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". 1617 SuggestedCompletions = Opts->findByPrefix(Cur, DisableFlags); 1618 1619 // We have to query the -W flags manually as they're not in the OptTable. 1620 // TODO: Find a good way to add them to OptTable instead and them remove 1621 // this code. 1622 for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) 1623 if (S.startswith(Cur)) 1624 SuggestedCompletions.push_back(S); 1625 } 1626 1627 // Sort the autocomplete candidates so that shells print them out in a 1628 // deterministic order. We could sort in any way, but we chose 1629 // case-insensitive sorting for consistency with the -help option 1630 // which prints out options in the case-insensitive alphabetical order. 1631 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { 1632 if (int X = A.compare_lower(B)) 1633 return X < 0; 1634 return A.compare(B) > 0; 1635 }); 1636 1637 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; 1638 } 1639 1640 bool Driver::HandleImmediateArgs(const Compilation &C) { 1641 // The order these options are handled in gcc is all over the place, but we 1642 // don't expect inconsistencies w.r.t. that to matter in practice. 1643 1644 if (C.getArgs().hasArg(options::OPT_dumpmachine)) { 1645 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; 1646 return false; 1647 } 1648 1649 if (C.getArgs().hasArg(options::OPT_dumpversion)) { 1650 // Since -dumpversion is only implemented for pedantic GCC compatibility, we 1651 // return an answer which matches our definition of __VERSION__. 1652 llvm::outs() << CLANG_VERSION_STRING << "\n"; 1653 return false; 1654 } 1655 1656 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { 1657 PrintDiagnosticCategories(llvm::outs()); 1658 return false; 1659 } 1660 1661 if (C.getArgs().hasArg(options::OPT_help) || 1662 C.getArgs().hasArg(options::OPT__help_hidden)) { 1663 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); 1664 return false; 1665 } 1666 1667 if (C.getArgs().hasArg(options::OPT__version)) { 1668 // Follow gcc behavior and use stdout for --version and stderr for -v. 1669 PrintVersion(C, llvm::outs()); 1670 return false; 1671 } 1672 1673 if (C.getArgs().hasArg(options::OPT_v) || 1674 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || 1675 C.getArgs().hasArg(options::OPT_print_supported_cpus)) { 1676 PrintVersion(C, llvm::errs()); 1677 SuppressMissingInputWarning = true; 1678 } 1679 1680 if (C.getArgs().hasArg(options::OPT_v)) { 1681 if (!SystemConfigDir.empty()) 1682 llvm::errs() << "System configuration file directory: " 1683 << SystemConfigDir << "\n"; 1684 if (!UserConfigDir.empty()) 1685 llvm::errs() << "User configuration file directory: " 1686 << UserConfigDir << "\n"; 1687 } 1688 1689 const ToolChain &TC = C.getDefaultToolChain(); 1690 1691 if (C.getArgs().hasArg(options::OPT_v)) 1692 TC.printVerboseInfo(llvm::errs()); 1693 1694 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { 1695 llvm::outs() << ResourceDir << '\n'; 1696 return false; 1697 } 1698 1699 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { 1700 llvm::outs() << "programs: ="; 1701 bool separator = false; 1702 for (const std::string &Path : TC.getProgramPaths()) { 1703 if (separator) 1704 llvm::outs() << llvm::sys::EnvPathSeparator; 1705 llvm::outs() << Path; 1706 separator = true; 1707 } 1708 llvm::outs() << "\n"; 1709 llvm::outs() << "libraries: =" << ResourceDir; 1710 1711 StringRef sysroot = C.getSysRoot(); 1712 1713 for (const std::string &Path : TC.getFilePaths()) { 1714 // Always print a separator. ResourceDir was the first item shown. 1715 llvm::outs() << llvm::sys::EnvPathSeparator; 1716 // Interpretation of leading '=' is needed only for NetBSD. 1717 if (Path[0] == '=') 1718 llvm::outs() << sysroot << Path.substr(1); 1719 else 1720 llvm::outs() << Path; 1721 } 1722 llvm::outs() << "\n"; 1723 return false; 1724 } 1725 1726 // FIXME: The following handlers should use a callback mechanism, we don't 1727 // know what the client would like to do. 1728 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { 1729 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; 1730 return false; 1731 } 1732 1733 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { 1734 StringRef ProgName = A->getValue(); 1735 1736 // Null program name cannot have a path. 1737 if (! ProgName.empty()) 1738 llvm::outs() << GetProgramPath(ProgName, TC); 1739 1740 llvm::outs() << "\n"; 1741 return false; 1742 } 1743 1744 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { 1745 StringRef PassedFlags = A->getValue(); 1746 HandleAutocompletions(PassedFlags); 1747 return false; 1748 } 1749 1750 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { 1751 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); 1752 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1753 RegisterEffectiveTriple TripleRAII(TC, Triple); 1754 switch (RLT) { 1755 case ToolChain::RLT_CompilerRT: 1756 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; 1757 break; 1758 case ToolChain::RLT_Libgcc: 1759 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; 1760 break; 1761 } 1762 return false; 1763 } 1764 1765 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { 1766 for (const Multilib &Multilib : TC.getMultilibs()) 1767 llvm::outs() << Multilib << "\n"; 1768 return false; 1769 } 1770 1771 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { 1772 const Multilib &Multilib = TC.getMultilib(); 1773 if (Multilib.gccSuffix().empty()) 1774 llvm::outs() << ".\n"; 1775 else { 1776 StringRef Suffix(Multilib.gccSuffix()); 1777 assert(Suffix.front() == '/'); 1778 llvm::outs() << Suffix.substr(1) << "\n"; 1779 } 1780 return false; 1781 } 1782 1783 if (C.getArgs().hasArg(options::OPT_print_target_triple)) { 1784 llvm::outs() << TC.getTripleString() << "\n"; 1785 return false; 1786 } 1787 1788 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { 1789 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1790 llvm::outs() << Triple.getTriple() << "\n"; 1791 return false; 1792 } 1793 1794 return true; 1795 } 1796 1797 // Display an action graph human-readably. Action A is the "sink" node 1798 // and latest-occuring action. Traversal is in pre-order, visiting the 1799 // inputs to each action before printing the action itself. 1800 static unsigned PrintActions1(const Compilation &C, Action *A, 1801 std::map<Action *, unsigned> &Ids) { 1802 if (Ids.count(A)) // A was already visited. 1803 return Ids[A]; 1804 1805 std::string str; 1806 llvm::raw_string_ostream os(str); 1807 1808 os << Action::getClassName(A->getKind()) << ", "; 1809 if (InputAction *IA = dyn_cast<InputAction>(A)) { 1810 os << "\"" << IA->getInputArg().getValue() << "\""; 1811 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { 1812 os << '"' << BIA->getArchName() << '"' << ", {" 1813 << PrintActions1(C, *BIA->input_begin(), Ids) << "}"; 1814 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 1815 bool IsFirst = true; 1816 OA->doOnEachDependence( 1817 [&](Action *A, const ToolChain *TC, const char *BoundArch) { 1818 // E.g. for two CUDA device dependences whose bound arch is sm_20 and 1819 // sm_35 this will generate: 1820 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" 1821 // (nvptx64-nvidia-cuda:sm_35) {#ID} 1822 if (!IsFirst) 1823 os << ", "; 1824 os << '"'; 1825 if (TC) 1826 os << A->getOffloadingKindPrefix(); 1827 else 1828 os << "host"; 1829 os << " ("; 1830 os << TC->getTriple().normalize(); 1831 1832 if (BoundArch) 1833 os << ":" << BoundArch; 1834 os << ")"; 1835 os << '"'; 1836 os << " {" << PrintActions1(C, A, Ids) << "}"; 1837 IsFirst = false; 1838 }); 1839 } else { 1840 const ActionList *AL = &A->getInputs(); 1841 1842 if (AL->size()) { 1843 const char *Prefix = "{"; 1844 for (Action *PreRequisite : *AL) { 1845 os << Prefix << PrintActions1(C, PreRequisite, Ids); 1846 Prefix = ", "; 1847 } 1848 os << "}"; 1849 } else 1850 os << "{}"; 1851 } 1852 1853 // Append offload info for all options other than the offloading action 1854 // itself (e.g. (cuda-device, sm_20) or (cuda-host)). 1855 std::string offload_str; 1856 llvm::raw_string_ostream offload_os(offload_str); 1857 if (!isa<OffloadAction>(A)) { 1858 auto S = A->getOffloadingKindPrefix(); 1859 if (!S.empty()) { 1860 offload_os << ", (" << S; 1861 if (A->getOffloadingArch()) 1862 offload_os << ", " << A->getOffloadingArch(); 1863 offload_os << ")"; 1864 } 1865 } 1866 1867 unsigned Id = Ids.size(); 1868 Ids[A] = Id; 1869 llvm::errs() << Id << ": " << os.str() << ", " 1870 << types::getTypeName(A->getType()) << offload_os.str() << "\n"; 1871 1872 return Id; 1873 } 1874 1875 // Print the action graphs in a compilation C. 1876 // For example "clang -c file1.c file2.c" is composed of two subgraphs. 1877 void Driver::PrintActions(const Compilation &C) const { 1878 std::map<Action *, unsigned> Ids; 1879 for (Action *A : C.getActions()) 1880 PrintActions1(C, A, Ids); 1881 } 1882 1883 /// Check whether the given input tree contains any compilation or 1884 /// assembly actions. 1885 static bool ContainsCompileOrAssembleAction(const Action *A) { 1886 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || 1887 isa<AssembleJobAction>(A)) 1888 return true; 1889 1890 for (const Action *Input : A->inputs()) 1891 if (ContainsCompileOrAssembleAction(Input)) 1892 return true; 1893 1894 return false; 1895 } 1896 1897 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, 1898 const InputList &BAInputs) const { 1899 DerivedArgList &Args = C.getArgs(); 1900 ActionList &Actions = C.getActions(); 1901 llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); 1902 // Collect the list of architectures. Duplicates are allowed, but should only 1903 // be handled once (in the order seen). 1904 llvm::StringSet<> ArchNames; 1905 SmallVector<const char *, 4> Archs; 1906 for (Arg *A : Args) { 1907 if (A->getOption().matches(options::OPT_arch)) { 1908 // Validate the option here; we don't save the type here because its 1909 // particular spelling may participate in other driver choices. 1910 llvm::Triple::ArchType Arch = 1911 tools::darwin::getArchTypeForMachOArchName(A->getValue()); 1912 if (Arch == llvm::Triple::UnknownArch) { 1913 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); 1914 continue; 1915 } 1916 1917 A->claim(); 1918 if (ArchNames.insert(A->getValue()).second) 1919 Archs.push_back(A->getValue()); 1920 } 1921 } 1922 1923 // When there is no explicit arch for this platform, make sure we still bind 1924 // the architecture (to the default) so that -Xarch_ is handled correctly. 1925 if (!Archs.size()) 1926 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); 1927 1928 ActionList SingleActions; 1929 BuildActions(C, Args, BAInputs, SingleActions); 1930 1931 // Add in arch bindings for every top level action, as well as lipo and 1932 // dsymutil steps if needed. 1933 for (Action* Act : SingleActions) { 1934 // Make sure we can lipo this kind of output. If not (and it is an actual 1935 // output) then we disallow, since we can't create an output file with the 1936 // right name without overwriting it. We could remove this oddity by just 1937 // changing the output names to include the arch, which would also fix 1938 // -save-temps. Compatibility wins for now. 1939 1940 if (Archs.size() > 1 && !types::canLipoType(Act->getType())) 1941 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) 1942 << types::getTypeName(Act->getType()); 1943 1944 ActionList Inputs; 1945 for (unsigned i = 0, e = Archs.size(); i != e; ++i) 1946 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); 1947 1948 // Lipo if necessary, we do it this way because we need to set the arch flag 1949 // so that -Xarch_ gets overwritten. 1950 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) 1951 Actions.append(Inputs.begin(), Inputs.end()); 1952 else 1953 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); 1954 1955 // Handle debug info queries. 1956 Arg *A = Args.getLastArg(options::OPT_g_Group); 1957 if (A && !A->getOption().matches(options::OPT_g0) && 1958 !A->getOption().matches(options::OPT_gstabs) && 1959 ContainsCompileOrAssembleAction(Actions.back())) { 1960 1961 // Add a 'dsymutil' step if necessary, when debug info is enabled and we 1962 // have a compile input. We need to run 'dsymutil' ourselves in such cases 1963 // because the debug info will refer to a temporary object file which 1964 // will be removed at the end of the compilation process. 1965 if (Act->getType() == types::TY_Image) { 1966 ActionList Inputs; 1967 Inputs.push_back(Actions.back()); 1968 Actions.pop_back(); 1969 Actions.push_back( 1970 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); 1971 } 1972 1973 // Verify the debug info output. 1974 if (Args.hasArg(options::OPT_verify_debug_info)) { 1975 Action* LastAction = Actions.back(); 1976 Actions.pop_back(); 1977 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( 1978 LastAction, types::TY_Nothing)); 1979 } 1980 } 1981 } 1982 } 1983 1984 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, 1985 types::ID Ty, bool TypoCorrect) const { 1986 if (!getCheckInputsExist()) 1987 return true; 1988 1989 // stdin always exists. 1990 if (Value == "-") 1991 return true; 1992 1993 SmallString<64> Path(Value); 1994 if (Arg *WorkDir = Args.getLastArg(options::OPT_working_directory)) { 1995 if (!llvm::sys::path::is_absolute(Path)) { 1996 SmallString<64> Directory(WorkDir->getValue()); 1997 llvm::sys::path::append(Directory, Value); 1998 Path.assign(Directory); 1999 } 2000 } 2001 2002 if (getVFS().exists(Path)) 2003 return true; 2004 2005 if (IsCLMode()) { 2006 if (!llvm::sys::path::is_absolute(Twine(Path)) && 2007 llvm::sys::Process::FindInEnvPath("LIB", Value)) 2008 return true; 2009 2010 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { 2011 // Arguments to the /link flag might cause the linker to search for object 2012 // and library files in paths we don't know about. Don't error in such 2013 // cases. 2014 return true; 2015 } 2016 } 2017 2018 if (TypoCorrect) { 2019 // Check if the filename is a typo for an option flag. OptTable thinks 2020 // that all args that are not known options and that start with / are 2021 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for 2022 // the option `/diagnostics:caret` than a reference to a file in the root 2023 // directory. 2024 unsigned IncludedFlagsBitmask; 2025 unsigned ExcludedFlagsBitmask; 2026 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 2027 getIncludeExcludeOptionFlagMasks(IsCLMode()); 2028 std::string Nearest; 2029 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, 2030 ExcludedFlagsBitmask) <= 1) { 2031 Diag(clang::diag::err_drv_no_such_file_with_suggestion) 2032 << Path << Nearest; 2033 return false; 2034 } 2035 } 2036 2037 Diag(clang::diag::err_drv_no_such_file) << Path; 2038 return false; 2039 } 2040 2041 // Construct a the list of inputs and their types. 2042 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, 2043 InputList &Inputs) const { 2044 // Track the current user specified (-x) input. We also explicitly track the 2045 // argument used to set the type; we only want to claim the type when we 2046 // actually use it, so we warn about unused -x arguments. 2047 types::ID InputType = types::TY_Nothing; 2048 Arg *InputTypeArg = nullptr; 2049 2050 // The last /TC or /TP option sets the input type to C or C++ globally. 2051 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, 2052 options::OPT__SLASH_TP)) { 2053 InputTypeArg = TCTP; 2054 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) 2055 ? types::TY_C 2056 : types::TY_CXX; 2057 2058 Arg *Previous = nullptr; 2059 bool ShowNote = false; 2060 for (Arg *A : 2061 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { 2062 if (Previous) { 2063 Diag(clang::diag::warn_drv_overriding_flag_option) 2064 << Previous->getSpelling() << A->getSpelling(); 2065 ShowNote = true; 2066 } 2067 Previous = A; 2068 } 2069 if (ShowNote) 2070 Diag(clang::diag::note_drv_t_option_is_global); 2071 2072 // No driver mode exposes -x and /TC or /TP; we don't support mixing them. 2073 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); 2074 } 2075 2076 for (Arg *A : Args) { 2077 if (A->getOption().getKind() == Option::InputClass) { 2078 const char *Value = A->getValue(); 2079 types::ID Ty = types::TY_INVALID; 2080 2081 // Infer the input type if necessary. 2082 if (InputType == types::TY_Nothing) { 2083 // If there was an explicit arg for this, claim it. 2084 if (InputTypeArg) 2085 InputTypeArg->claim(); 2086 2087 // stdin must be handled specially. 2088 if (memcmp(Value, "-", 2) == 0) { 2089 // If running with -E, treat as a C input (this changes the builtin 2090 // macros, for example). This may be overridden by -ObjC below. 2091 // 2092 // Otherwise emit an error but still use a valid type to avoid 2093 // spurious errors (e.g., no inputs). 2094 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) 2095 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl 2096 : clang::diag::err_drv_unknown_stdin_type); 2097 Ty = types::TY_C; 2098 } else { 2099 // Otherwise lookup by extension. 2100 // Fallback is C if invoked as C preprocessor, C++ if invoked with 2101 // clang-cl /E, or Object otherwise. 2102 // We use a host hook here because Darwin at least has its own 2103 // idea of what .s is. 2104 if (const char *Ext = strrchr(Value, '.')) 2105 Ty = TC.LookupTypeForExtension(Ext + 1); 2106 2107 if (Ty == types::TY_INVALID) { 2108 if (CCCIsCPP()) 2109 Ty = types::TY_C; 2110 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E)) 2111 Ty = types::TY_CXX; 2112 else 2113 Ty = types::TY_Object; 2114 } 2115 2116 // If the driver is invoked as C++ compiler (like clang++ or c++) it 2117 // should autodetect some input files as C++ for g++ compatibility. 2118 if (CCCIsCXX()) { 2119 types::ID OldTy = Ty; 2120 Ty = types::lookupCXXTypeForCType(Ty); 2121 2122 if (Ty != OldTy) 2123 Diag(clang::diag::warn_drv_treating_input_as_cxx) 2124 << getTypeName(OldTy) << getTypeName(Ty); 2125 } 2126 2127 // If running with -fthinlto-index=, extensions that normally identify 2128 // native object files actually identify LLVM bitcode files. 2129 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && 2130 Ty == types::TY_Object) 2131 Ty = types::TY_LLVM_BC; 2132 } 2133 2134 // -ObjC and -ObjC++ override the default language, but only for "source 2135 // files". We just treat everything that isn't a linker input as a 2136 // source file. 2137 // 2138 // FIXME: Clean this up if we move the phase sequence into the type. 2139 if (Ty != types::TY_Object) { 2140 if (Args.hasArg(options::OPT_ObjC)) 2141 Ty = types::TY_ObjC; 2142 else if (Args.hasArg(options::OPT_ObjCXX)) 2143 Ty = types::TY_ObjCXX; 2144 } 2145 } else { 2146 assert(InputTypeArg && "InputType set w/o InputTypeArg"); 2147 if (!InputTypeArg->getOption().matches(options::OPT_x)) { 2148 // If emulating cl.exe, make sure that /TC and /TP don't affect input 2149 // object files. 2150 const char *Ext = strrchr(Value, '.'); 2151 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) 2152 Ty = types::TY_Object; 2153 } 2154 if (Ty == types::TY_INVALID) { 2155 Ty = InputType; 2156 InputTypeArg->claim(); 2157 } 2158 } 2159 2160 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) 2161 Inputs.push_back(std::make_pair(Ty, A)); 2162 2163 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { 2164 StringRef Value = A->getValue(); 2165 if (DiagnoseInputExistence(Args, Value, types::TY_C, 2166 /*TypoCorrect=*/false)) { 2167 Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue()); 2168 Inputs.push_back(std::make_pair(types::TY_C, InputArg)); 2169 } 2170 A->claim(); 2171 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { 2172 StringRef Value = A->getValue(); 2173 if (DiagnoseInputExistence(Args, Value, types::TY_CXX, 2174 /*TypoCorrect=*/false)) { 2175 Arg *InputArg = MakeInputArg(Args, *Opts, A->getValue()); 2176 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); 2177 } 2178 A->claim(); 2179 } else if (A->getOption().hasFlag(options::LinkerInput)) { 2180 // Just treat as object type, we could make a special type for this if 2181 // necessary. 2182 Inputs.push_back(std::make_pair(types::TY_Object, A)); 2183 2184 } else if (A->getOption().matches(options::OPT_x)) { 2185 InputTypeArg = A; 2186 InputType = types::lookupTypeForTypeSpecifier(A->getValue()); 2187 A->claim(); 2188 2189 // Follow gcc behavior and treat as linker input for invalid -x 2190 // options. Its not clear why we shouldn't just revert to unknown; but 2191 // this isn't very important, we might as well be bug compatible. 2192 if (!InputType) { 2193 Diag(clang::diag::err_drv_unknown_language) << A->getValue(); 2194 InputType = types::TY_Object; 2195 } 2196 } else if (A->getOption().getID() == options::OPT_U) { 2197 assert(A->getNumValues() == 1 && "The /U option has one value."); 2198 StringRef Val = A->getValue(0); 2199 if (Val.find_first_of("/\\") != StringRef::npos) { 2200 // Warn about e.g. "/Users/me/myfile.c". 2201 Diag(diag::warn_slash_u_filename) << Val; 2202 Diag(diag::note_use_dashdash); 2203 } 2204 } 2205 } 2206 if (CCCIsCPP() && Inputs.empty()) { 2207 // If called as standalone preprocessor, stdin is processed 2208 // if no other input is present. 2209 Arg *A = MakeInputArg(Args, *Opts, "-"); 2210 Inputs.push_back(std::make_pair(types::TY_C, A)); 2211 } 2212 } 2213 2214 namespace { 2215 /// Provides a convenient interface for different programming models to generate 2216 /// the required device actions. 2217 class OffloadingActionBuilder final { 2218 /// Flag used to trace errors in the builder. 2219 bool IsValid = false; 2220 2221 /// The compilation that is using this builder. 2222 Compilation &C; 2223 2224 /// Map between an input argument and the offload kinds used to process it. 2225 std::map<const Arg *, unsigned> InputArgToOffloadKindMap; 2226 2227 /// Builder interface. It doesn't build anything or keep any state. 2228 class DeviceActionBuilder { 2229 public: 2230 typedef llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PhasesTy; 2231 2232 enum ActionBuilderReturnCode { 2233 // The builder acted successfully on the current action. 2234 ABRT_Success, 2235 // The builder didn't have to act on the current action. 2236 ABRT_Inactive, 2237 // The builder was successful and requested the host action to not be 2238 // generated. 2239 ABRT_Ignore_Host, 2240 }; 2241 2242 protected: 2243 /// Compilation associated with this builder. 2244 Compilation &C; 2245 2246 /// Tool chains associated with this builder. The same programming 2247 /// model may have associated one or more tool chains. 2248 SmallVector<const ToolChain *, 2> ToolChains; 2249 2250 /// The derived arguments associated with this builder. 2251 DerivedArgList &Args; 2252 2253 /// The inputs associated with this builder. 2254 const Driver::InputList &Inputs; 2255 2256 /// The associated offload kind. 2257 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; 2258 2259 public: 2260 DeviceActionBuilder(Compilation &C, DerivedArgList &Args, 2261 const Driver::InputList &Inputs, 2262 Action::OffloadKind AssociatedOffloadKind) 2263 : C(C), Args(Args), Inputs(Inputs), 2264 AssociatedOffloadKind(AssociatedOffloadKind) {} 2265 virtual ~DeviceActionBuilder() {} 2266 2267 /// Fill up the array \a DA with all the device dependences that should be 2268 /// added to the provided host action \a HostAction. By default it is 2269 /// inactive. 2270 virtual ActionBuilderReturnCode 2271 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2272 phases::ID CurPhase, phases::ID FinalPhase, 2273 PhasesTy &Phases) { 2274 return ABRT_Inactive; 2275 } 2276 2277 /// Update the state to include the provided host action \a HostAction as a 2278 /// dependency of the current device action. By default it is inactive. 2279 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { 2280 return ABRT_Inactive; 2281 } 2282 2283 /// Append top level actions generated by the builder. Return true if errors 2284 /// were found. 2285 virtual void appendTopLevelActions(ActionList &AL) {} 2286 2287 /// Append linker actions generated by the builder. Return true if errors 2288 /// were found. 2289 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} 2290 2291 /// Initialize the builder. Return true if any initialization errors are 2292 /// found. 2293 virtual bool initialize() { return false; } 2294 2295 /// Return true if the builder can use bundling/unbundling. 2296 virtual bool canUseBundlerUnbundler() const { return false; } 2297 2298 /// Return true if this builder is valid. We have a valid builder if we have 2299 /// associated device tool chains. 2300 bool isValid() { return !ToolChains.empty(); } 2301 2302 /// Return the associated offload kind. 2303 Action::OffloadKind getAssociatedOffloadKind() { 2304 return AssociatedOffloadKind; 2305 } 2306 }; 2307 2308 /// Base class for CUDA/HIP action builder. It injects device code in 2309 /// the host backend action. 2310 class CudaActionBuilderBase : public DeviceActionBuilder { 2311 protected: 2312 /// Flags to signal if the user requested host-only or device-only 2313 /// compilation. 2314 bool CompileHostOnly = false; 2315 bool CompileDeviceOnly = false; 2316 2317 /// List of GPU architectures to use in this compilation. 2318 SmallVector<CudaArch, 4> GpuArchList; 2319 2320 /// The CUDA actions for the current input. 2321 ActionList CudaDeviceActions; 2322 2323 /// The CUDA fat binary if it was generated for the current input. 2324 Action *CudaFatBinary = nullptr; 2325 2326 /// Flag that is set to true if this builder acted on the current input. 2327 bool IsActive = false; 2328 2329 /// Flag for -fgpu-rdc. 2330 bool Relocatable = false; 2331 public: 2332 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, 2333 const Driver::InputList &Inputs, 2334 Action::OffloadKind OFKind) 2335 : DeviceActionBuilder(C, Args, Inputs, OFKind) {} 2336 2337 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2338 // While generating code for CUDA, we only depend on the host input action 2339 // to trigger the creation of all the CUDA device actions. 2340 2341 // If we are dealing with an input action, replicate it for each GPU 2342 // architecture. If we are in host-only mode we return 'success' so that 2343 // the host uses the CUDA offload kind. 2344 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2345 assert(!GpuArchList.empty() && 2346 "We should have at least one GPU architecture."); 2347 2348 // If the host input is not CUDA or HIP, we don't need to bother about 2349 // this input. 2350 if (IA->getType() != types::TY_CUDA && 2351 IA->getType() != types::TY_HIP) { 2352 // The builder will ignore this input. 2353 IsActive = false; 2354 return ABRT_Inactive; 2355 } 2356 2357 // Set the flag to true, so that the builder acts on the current input. 2358 IsActive = true; 2359 2360 if (CompileHostOnly) 2361 return ABRT_Success; 2362 2363 // Replicate inputs for each GPU architecture. 2364 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE 2365 : types::TY_CUDA_DEVICE; 2366 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2367 CudaDeviceActions.push_back( 2368 C.MakeAction<InputAction>(IA->getInputArg(), Ty)); 2369 } 2370 2371 return ABRT_Success; 2372 } 2373 2374 // If this is an unbundling action use it as is for each CUDA toolchain. 2375 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2376 2377 // If -fgpu-rdc is disabled, should not unbundle since there is no 2378 // device code to link. 2379 if (!Relocatable) 2380 return ABRT_Inactive; 2381 2382 CudaDeviceActions.clear(); 2383 auto *IA = cast<InputAction>(UA->getInputs().back()); 2384 std::string FileName = IA->getInputArg().getAsString(Args); 2385 // Check if the type of the file is the same as the action. Do not 2386 // unbundle it if it is not. Do not unbundle .so files, for example, 2387 // which are not object files. 2388 if (IA->getType() == types::TY_Object && 2389 (!llvm::sys::path::has_extension(FileName) || 2390 types::lookupTypeForExtension( 2391 llvm::sys::path::extension(FileName).drop_front()) != 2392 types::TY_Object)) 2393 return ABRT_Inactive; 2394 2395 for (auto Arch : GpuArchList) { 2396 CudaDeviceActions.push_back(UA); 2397 UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch), 2398 AssociatedOffloadKind); 2399 } 2400 return ABRT_Success; 2401 } 2402 2403 return IsActive ? ABRT_Success : ABRT_Inactive; 2404 } 2405 2406 void appendTopLevelActions(ActionList &AL) override { 2407 // Utility to append actions to the top level list. 2408 auto AddTopLevel = [&](Action *A, CudaArch BoundArch) { 2409 OffloadAction::DeviceDependences Dep; 2410 Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch), 2411 AssociatedOffloadKind); 2412 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2413 }; 2414 2415 // If we have a fat binary, add it to the list. 2416 if (CudaFatBinary) { 2417 AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN); 2418 CudaDeviceActions.clear(); 2419 CudaFatBinary = nullptr; 2420 return; 2421 } 2422 2423 if (CudaDeviceActions.empty()) 2424 return; 2425 2426 // If we have CUDA actions at this point, that's because we have a have 2427 // partial compilation, so we should have an action for each GPU 2428 // architecture. 2429 assert(CudaDeviceActions.size() == GpuArchList.size() && 2430 "Expecting one action per GPU architecture."); 2431 assert(ToolChains.size() == 1 && 2432 "Expecting to have a sing CUDA toolchain."); 2433 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 2434 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); 2435 2436 CudaDeviceActions.clear(); 2437 } 2438 2439 bool initialize() override { 2440 assert(AssociatedOffloadKind == Action::OFK_Cuda || 2441 AssociatedOffloadKind == Action::OFK_HIP); 2442 2443 // We don't need to support CUDA. 2444 if (AssociatedOffloadKind == Action::OFK_Cuda && 2445 !C.hasOffloadToolChain<Action::OFK_Cuda>()) 2446 return false; 2447 2448 // We don't need to support HIP. 2449 if (AssociatedOffloadKind == Action::OFK_HIP && 2450 !C.hasOffloadToolChain<Action::OFK_HIP>()) 2451 return false; 2452 2453 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, 2454 options::OPT_fno_gpu_rdc, /*Default=*/false); 2455 2456 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 2457 assert(HostTC && "No toolchain for host compilation."); 2458 if (HostTC->getTriple().isNVPTX() || 2459 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { 2460 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw 2461 // an error and abort pipeline construction early so we don't trip 2462 // asserts that assume device-side compilation. 2463 C.getDriver().Diag(diag::err_drv_cuda_host_arch) 2464 << HostTC->getTriple().getArchName(); 2465 return true; 2466 } 2467 2468 ToolChains.push_back( 2469 AssociatedOffloadKind == Action::OFK_Cuda 2470 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() 2471 : C.getSingleOffloadToolChain<Action::OFK_HIP>()); 2472 2473 Arg *PartialCompilationArg = Args.getLastArg( 2474 options::OPT_cuda_host_only, options::OPT_cuda_device_only, 2475 options::OPT_cuda_compile_host_device); 2476 CompileHostOnly = PartialCompilationArg && 2477 PartialCompilationArg->getOption().matches( 2478 options::OPT_cuda_host_only); 2479 CompileDeviceOnly = PartialCompilationArg && 2480 PartialCompilationArg->getOption().matches( 2481 options::OPT_cuda_device_only); 2482 2483 // Collect all cuda_gpu_arch parameters, removing duplicates. 2484 std::set<CudaArch> GpuArchs; 2485 bool Error = false; 2486 for (Arg *A : Args) { 2487 if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) || 2488 A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))) 2489 continue; 2490 A->claim(); 2491 2492 const StringRef ArchStr = A->getValue(); 2493 if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) && 2494 ArchStr == "all") { 2495 GpuArchs.clear(); 2496 continue; 2497 } 2498 CudaArch Arch = StringToCudaArch(ArchStr); 2499 if (Arch == CudaArch::UNKNOWN) { 2500 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; 2501 Error = true; 2502 } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ)) 2503 GpuArchs.insert(Arch); 2504 else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)) 2505 GpuArchs.erase(Arch); 2506 else 2507 llvm_unreachable("Unexpected option."); 2508 } 2509 2510 // Collect list of GPUs remaining in the set. 2511 for (CudaArch Arch : GpuArchs) 2512 GpuArchList.push_back(Arch); 2513 2514 // Default to sm_20 which is the lowest common denominator for 2515 // supported GPUs. sm_20 code should work correctly, if 2516 // suboptimally, on all newer GPUs. 2517 if (GpuArchList.empty()) 2518 GpuArchList.push_back(CudaArch::SM_20); 2519 2520 return Error; 2521 } 2522 }; 2523 2524 /// \brief CUDA action builder. It injects device code in the host backend 2525 /// action. 2526 class CudaActionBuilder final : public CudaActionBuilderBase { 2527 public: 2528 CudaActionBuilder(Compilation &C, DerivedArgList &Args, 2529 const Driver::InputList &Inputs) 2530 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {} 2531 2532 ActionBuilderReturnCode 2533 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2534 phases::ID CurPhase, phases::ID FinalPhase, 2535 PhasesTy &Phases) override { 2536 if (!IsActive) 2537 return ABRT_Inactive; 2538 2539 // If we don't have more CUDA actions, we don't have any dependences to 2540 // create for the host. 2541 if (CudaDeviceActions.empty()) 2542 return ABRT_Success; 2543 2544 assert(CudaDeviceActions.size() == GpuArchList.size() && 2545 "Expecting one action per GPU architecture."); 2546 assert(!CompileHostOnly && 2547 "Not expecting CUDA actions in host-only compilation."); 2548 2549 // If we are generating code for the device or we are in a backend phase, 2550 // we attempt to generate the fat binary. We compile each arch to ptx and 2551 // assemble to cubin, then feed the cubin *and* the ptx into a device 2552 // "link" action, which uses fatbinary to combine these cubins into one 2553 // fatbin. The fatbin is then an input to the host action if not in 2554 // device-only mode. 2555 if (CompileDeviceOnly || CurPhase == phases::Backend) { 2556 ActionList DeviceActions; 2557 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2558 // Produce the device action from the current phase up to the assemble 2559 // phase. 2560 for (auto Ph : Phases) { 2561 // Skip the phases that were already dealt with. 2562 if (Ph < CurPhase) 2563 continue; 2564 // We have to be consistent with the host final phase. 2565 if (Ph > FinalPhase) 2566 break; 2567 2568 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( 2569 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); 2570 2571 if (Ph == phases::Assemble) 2572 break; 2573 } 2574 2575 // If we didn't reach the assemble phase, we can't generate the fat 2576 // binary. We don't need to generate the fat binary if we are not in 2577 // device-only mode. 2578 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || 2579 CompileDeviceOnly) 2580 continue; 2581 2582 Action *AssembleAction = CudaDeviceActions[I]; 2583 assert(AssembleAction->getType() == types::TY_Object); 2584 assert(AssembleAction->getInputs().size() == 1); 2585 2586 Action *BackendAction = AssembleAction->getInputs()[0]; 2587 assert(BackendAction->getType() == types::TY_PP_Asm); 2588 2589 for (auto &A : {AssembleAction, BackendAction}) { 2590 OffloadAction::DeviceDependences DDep; 2591 DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]), 2592 Action::OFK_Cuda); 2593 DeviceActions.push_back( 2594 C.MakeAction<OffloadAction>(DDep, A->getType())); 2595 } 2596 } 2597 2598 // We generate the fat binary if we have device input actions. 2599 if (!DeviceActions.empty()) { 2600 CudaFatBinary = 2601 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); 2602 2603 if (!CompileDeviceOnly) { 2604 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2605 Action::OFK_Cuda); 2606 // Clear the fat binary, it is already a dependence to an host 2607 // action. 2608 CudaFatBinary = nullptr; 2609 } 2610 2611 // Remove the CUDA actions as they are already connected to an host 2612 // action or fat binary. 2613 CudaDeviceActions.clear(); 2614 } 2615 2616 // We avoid creating host action in device-only mode. 2617 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2618 } else if (CurPhase > phases::Backend) { 2619 // If we are past the backend phase and still have a device action, we 2620 // don't have to do anything as this action is already a device 2621 // top-level action. 2622 return ABRT_Success; 2623 } 2624 2625 assert(CurPhase < phases::Backend && "Generating single CUDA " 2626 "instructions should only occur " 2627 "before the backend phase!"); 2628 2629 // By default, we produce an action for each device arch. 2630 for (Action *&A : CudaDeviceActions) 2631 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2632 2633 return ABRT_Success; 2634 } 2635 }; 2636 /// \brief HIP action builder. It injects device code in the host backend 2637 /// action. 2638 class HIPActionBuilder final : public CudaActionBuilderBase { 2639 /// The linker inputs obtained for each device arch. 2640 SmallVector<ActionList, 8> DeviceLinkerInputs; 2641 2642 public: 2643 HIPActionBuilder(Compilation &C, DerivedArgList &Args, 2644 const Driver::InputList &Inputs) 2645 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {} 2646 2647 bool canUseBundlerUnbundler() const override { return true; } 2648 2649 ActionBuilderReturnCode 2650 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2651 phases::ID CurPhase, phases::ID FinalPhase, 2652 PhasesTy &Phases) override { 2653 // amdgcn does not support linking of object files, therefore we skip 2654 // backend and assemble phases to output LLVM IR. Except for generating 2655 // non-relocatable device coee, where we generate fat binary for device 2656 // code and pass to host in Backend phase. 2657 if (CudaDeviceActions.empty() || 2658 (CurPhase == phases::Backend && Relocatable) || 2659 CurPhase == phases::Assemble) 2660 return ABRT_Success; 2661 2662 assert(((CurPhase == phases::Link && Relocatable) || 2663 CudaDeviceActions.size() == GpuArchList.size()) && 2664 "Expecting one action per GPU architecture."); 2665 assert(!CompileHostOnly && 2666 "Not expecting CUDA actions in host-only compilation."); 2667 2668 if (!Relocatable && CurPhase == phases::Backend) { 2669 // If we are in backend phase, we attempt to generate the fat binary. 2670 // We compile each arch to IR and use a link action to generate code 2671 // object containing ISA. Then we use a special "link" action to create 2672 // a fat binary containing all the code objects for different GPU's. 2673 // The fat binary is then an input to the host action. 2674 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2675 // Create a link action to link device IR with device library 2676 // and generate ISA. 2677 ActionList AL; 2678 AL.push_back(CudaDeviceActions[I]); 2679 CudaDeviceActions[I] = 2680 C.MakeAction<LinkJobAction>(AL, types::TY_Image); 2681 2682 // OffloadingActionBuilder propagates device arch until an offload 2683 // action. Since the next action for creating fatbin does 2684 // not have device arch, whereas the above link action and its input 2685 // have device arch, an offload action is needed to stop the null 2686 // device arch of the next action being propagated to the above link 2687 // action. 2688 OffloadAction::DeviceDependences DDep; 2689 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), 2690 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2691 CudaDeviceActions[I] = C.MakeAction<OffloadAction>( 2692 DDep, CudaDeviceActions[I]->getType()); 2693 } 2694 // Create HIP fat binary with a special "link" action. 2695 CudaFatBinary = 2696 C.MakeAction<LinkJobAction>(CudaDeviceActions, 2697 types::TY_HIP_FATBIN); 2698 2699 if (!CompileDeviceOnly) { 2700 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2701 AssociatedOffloadKind); 2702 // Clear the fat binary, it is already a dependence to an host 2703 // action. 2704 CudaFatBinary = nullptr; 2705 } 2706 2707 // Remove the CUDA actions as they are already connected to an host 2708 // action or fat binary. 2709 CudaDeviceActions.clear(); 2710 2711 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2712 } else if (CurPhase == phases::Link) { 2713 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. 2714 // This happens to each device action originated from each input file. 2715 // Later on, device actions in DeviceLinkerInputs are used to create 2716 // device link actions in appendLinkDependences and the created device 2717 // link actions are passed to the offload action as device dependence. 2718 DeviceLinkerInputs.resize(CudaDeviceActions.size()); 2719 auto LI = DeviceLinkerInputs.begin(); 2720 for (auto *A : CudaDeviceActions) { 2721 LI->push_back(A); 2722 ++LI; 2723 } 2724 2725 // We will pass the device action as a host dependence, so we don't 2726 // need to do anything else with them. 2727 CudaDeviceActions.clear(); 2728 return ABRT_Success; 2729 } 2730 2731 // By default, we produce an action for each device arch. 2732 for (Action *&A : CudaDeviceActions) 2733 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, 2734 AssociatedOffloadKind); 2735 2736 return ABRT_Success; 2737 } 2738 2739 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { 2740 // Append a new link action for each device. 2741 unsigned I = 0; 2742 for (auto &LI : DeviceLinkerInputs) { 2743 auto *DeviceLinkAction = 2744 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2745 DA.add(*DeviceLinkAction, *ToolChains[0], 2746 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2747 ++I; 2748 } 2749 } 2750 }; 2751 2752 /// OpenMP action builder. The host bitcode is passed to the device frontend 2753 /// and all the device linked images are passed to the host link phase. 2754 class OpenMPActionBuilder final : public DeviceActionBuilder { 2755 /// The OpenMP actions for the current input. 2756 ActionList OpenMPDeviceActions; 2757 2758 /// The linker inputs obtained for each toolchain. 2759 SmallVector<ActionList, 8> DeviceLinkerInputs; 2760 2761 public: 2762 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, 2763 const Driver::InputList &Inputs) 2764 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} 2765 2766 ActionBuilderReturnCode 2767 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2768 phases::ID CurPhase, phases::ID FinalPhase, 2769 PhasesTy &Phases) override { 2770 if (OpenMPDeviceActions.empty()) 2771 return ABRT_Inactive; 2772 2773 // We should always have an action for each input. 2774 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2775 "Number of OpenMP actions and toolchains do not match."); 2776 2777 // The host only depends on device action in the linking phase, when all 2778 // the device images have to be embedded in the host image. 2779 if (CurPhase == phases::Link) { 2780 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2781 "Toolchains and linker inputs sizes do not match."); 2782 auto LI = DeviceLinkerInputs.begin(); 2783 for (auto *A : OpenMPDeviceActions) { 2784 LI->push_back(A); 2785 ++LI; 2786 } 2787 2788 // We passed the device action as a host dependence, so we don't need to 2789 // do anything else with them. 2790 OpenMPDeviceActions.clear(); 2791 return ABRT_Success; 2792 } 2793 2794 // By default, we produce an action for each device arch. 2795 for (Action *&A : OpenMPDeviceActions) 2796 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2797 2798 return ABRT_Success; 2799 } 2800 2801 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2802 2803 // If this is an input action replicate it for each OpenMP toolchain. 2804 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2805 OpenMPDeviceActions.clear(); 2806 for (unsigned I = 0; I < ToolChains.size(); ++I) 2807 OpenMPDeviceActions.push_back( 2808 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType())); 2809 return ABRT_Success; 2810 } 2811 2812 // If this is an unbundling action use it as is for each OpenMP toolchain. 2813 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2814 OpenMPDeviceActions.clear(); 2815 auto *IA = cast<InputAction>(UA->getInputs().back()); 2816 std::string FileName = IA->getInputArg().getAsString(Args); 2817 // Check if the type of the file is the same as the action. Do not 2818 // unbundle it if it is not. Do not unbundle .so files, for example, 2819 // which are not object files. 2820 if (IA->getType() == types::TY_Object && 2821 (!llvm::sys::path::has_extension(FileName) || 2822 types::lookupTypeForExtension( 2823 llvm::sys::path::extension(FileName).drop_front()) != 2824 types::TY_Object)) 2825 return ABRT_Inactive; 2826 for (unsigned I = 0; I < ToolChains.size(); ++I) { 2827 OpenMPDeviceActions.push_back(UA); 2828 UA->registerDependentActionInfo( 2829 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); 2830 } 2831 return ABRT_Success; 2832 } 2833 2834 // When generating code for OpenMP we use the host compile phase result as 2835 // a dependence to the device compile phase so that it can learn what 2836 // declarations should be emitted. However, this is not the only use for 2837 // the host action, so we prevent it from being collapsed. 2838 if (isa<CompileJobAction>(HostAction)) { 2839 HostAction->setCannotBeCollapsedWithNextDependentAction(); 2840 assert(ToolChains.size() == OpenMPDeviceActions.size() && 2841 "Toolchains and device action sizes do not match."); 2842 OffloadAction::HostDependence HDep( 2843 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 2844 /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2845 auto TC = ToolChains.begin(); 2846 for (Action *&A : OpenMPDeviceActions) { 2847 assert(isa<CompileJobAction>(A)); 2848 OffloadAction::DeviceDependences DDep; 2849 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2850 A = C.MakeAction<OffloadAction>(HDep, DDep); 2851 ++TC; 2852 } 2853 } 2854 return ABRT_Success; 2855 } 2856 2857 void appendTopLevelActions(ActionList &AL) override { 2858 if (OpenMPDeviceActions.empty()) 2859 return; 2860 2861 // We should always have an action for each input. 2862 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2863 "Number of OpenMP actions and toolchains do not match."); 2864 2865 // Append all device actions followed by the proper offload action. 2866 auto TI = ToolChains.begin(); 2867 for (auto *A : OpenMPDeviceActions) { 2868 OffloadAction::DeviceDependences Dep; 2869 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2870 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2871 ++TI; 2872 } 2873 // We no longer need the action stored in this builder. 2874 OpenMPDeviceActions.clear(); 2875 } 2876 2877 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { 2878 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2879 "Toolchains and linker inputs sizes do not match."); 2880 2881 // Append a new link action for each device. 2882 auto TC = ToolChains.begin(); 2883 for (auto &LI : DeviceLinkerInputs) { 2884 auto *DeviceLinkAction = 2885 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2886 DA.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, 2887 Action::OFK_OpenMP); 2888 ++TC; 2889 } 2890 } 2891 2892 bool initialize() override { 2893 // Get the OpenMP toolchains. If we don't get any, the action builder will 2894 // know there is nothing to do related to OpenMP offloading. 2895 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>(); 2896 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; 2897 ++TI) 2898 ToolChains.push_back(TI->second); 2899 2900 DeviceLinkerInputs.resize(ToolChains.size()); 2901 return false; 2902 } 2903 2904 bool canUseBundlerUnbundler() const override { 2905 // OpenMP should use bundled files whenever possible. 2906 return true; 2907 } 2908 }; 2909 2910 /// 2911 /// TODO: Add the implementation for other specialized builders here. 2912 /// 2913 2914 /// Specialized builders being used by this offloading action builder. 2915 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; 2916 2917 /// Flag set to true if all valid builders allow file bundling/unbundling. 2918 bool CanUseBundler; 2919 2920 public: 2921 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, 2922 const Driver::InputList &Inputs) 2923 : C(C) { 2924 // Create a specialized builder for each device toolchain. 2925 2926 IsValid = true; 2927 2928 // Create a specialized builder for CUDA. 2929 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); 2930 2931 // Create a specialized builder for HIP. 2932 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); 2933 2934 // Create a specialized builder for OpenMP. 2935 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); 2936 2937 // 2938 // TODO: Build other specialized builders here. 2939 // 2940 2941 // Initialize all the builders, keeping track of errors. If all valid 2942 // builders agree that we can use bundling, set the flag to true. 2943 unsigned ValidBuilders = 0u; 2944 unsigned ValidBuildersSupportingBundling = 0u; 2945 for (auto *SB : SpecializedBuilders) { 2946 IsValid = IsValid && !SB->initialize(); 2947 2948 // Update the counters if the builder is valid. 2949 if (SB->isValid()) { 2950 ++ValidBuilders; 2951 if (SB->canUseBundlerUnbundler()) 2952 ++ValidBuildersSupportingBundling; 2953 } 2954 } 2955 CanUseBundler = 2956 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; 2957 } 2958 2959 ~OffloadingActionBuilder() { 2960 for (auto *SB : SpecializedBuilders) 2961 delete SB; 2962 } 2963 2964 /// Generate an action that adds device dependences (if any) to a host action. 2965 /// If no device dependence actions exist, just return the host action \a 2966 /// HostAction. If an error is found or if no builder requires the host action 2967 /// to be generated, return nullptr. 2968 Action * 2969 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, 2970 phases::ID CurPhase, phases::ID FinalPhase, 2971 DeviceActionBuilder::PhasesTy &Phases) { 2972 if (!IsValid) 2973 return nullptr; 2974 2975 if (SpecializedBuilders.empty()) 2976 return HostAction; 2977 2978 assert(HostAction && "Invalid host action!"); 2979 2980 OffloadAction::DeviceDependences DDeps; 2981 // Check if all the programming models agree we should not emit the host 2982 // action. Also, keep track of the offloading kinds employed. 2983 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 2984 unsigned InactiveBuilders = 0u; 2985 unsigned IgnoringBuilders = 0u; 2986 for (auto *SB : SpecializedBuilders) { 2987 if (!SB->isValid()) { 2988 ++InactiveBuilders; 2989 continue; 2990 } 2991 2992 auto RetCode = 2993 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); 2994 2995 // If the builder explicitly says the host action should be ignored, 2996 // we need to increment the variable that tracks the builders that request 2997 // the host object to be ignored. 2998 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) 2999 ++IgnoringBuilders; 3000 3001 // Unless the builder was inactive for this action, we have to record the 3002 // offload kind because the host will have to use it. 3003 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3004 OffloadKind |= SB->getAssociatedOffloadKind(); 3005 } 3006 3007 // If all builders agree that the host object should be ignored, just return 3008 // nullptr. 3009 if (IgnoringBuilders && 3010 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) 3011 return nullptr; 3012 3013 if (DDeps.getActions().empty()) 3014 return HostAction; 3015 3016 // We have dependences we need to bundle together. We use an offload action 3017 // for that. 3018 OffloadAction::HostDependence HDep( 3019 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3020 /*BoundArch=*/nullptr, DDeps); 3021 return C.MakeAction<OffloadAction>(HDep, DDeps); 3022 } 3023 3024 /// Generate an action that adds a host dependence to a device action. The 3025 /// results will be kept in this action builder. Return true if an error was 3026 /// found. 3027 bool addHostDependenceToDeviceActions(Action *&HostAction, 3028 const Arg *InputArg) { 3029 if (!IsValid) 3030 return true; 3031 3032 // If we are supporting bundling/unbundling and the current action is an 3033 // input action of non-source file, we replace the host action by the 3034 // unbundling action. The bundler tool has the logic to detect if an input 3035 // is a bundle or not and if the input is not a bundle it assumes it is a 3036 // host file. Therefore it is safe to create an unbundling action even if 3037 // the input is not a bundle. 3038 if (CanUseBundler && isa<InputAction>(HostAction) && 3039 InputArg->getOption().getKind() == llvm::opt::Option::InputClass && 3040 !types::isSrcFile(HostAction->getType())) { 3041 auto UnbundlingHostAction = 3042 C.MakeAction<OffloadUnbundlingJobAction>(HostAction); 3043 UnbundlingHostAction->registerDependentActionInfo( 3044 C.getSingleOffloadToolChain<Action::OFK_Host>(), 3045 /*BoundArch=*/StringRef(), Action::OFK_Host); 3046 HostAction = UnbundlingHostAction; 3047 } 3048 3049 assert(HostAction && "Invalid host action!"); 3050 3051 // Register the offload kinds that are used. 3052 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3053 for (auto *SB : SpecializedBuilders) { 3054 if (!SB->isValid()) 3055 continue; 3056 3057 auto RetCode = SB->addDeviceDepences(HostAction); 3058 3059 // Host dependences for device actions are not compatible with that same 3060 // action being ignored. 3061 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && 3062 "Host dependence not expected to be ignored.!"); 3063 3064 // Unless the builder was inactive for this action, we have to record the 3065 // offload kind because the host will have to use it. 3066 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3067 OffloadKind |= SB->getAssociatedOffloadKind(); 3068 } 3069 3070 // Do not use unbundler if the Host does not depend on device action. 3071 if (OffloadKind == Action::OFK_None && CanUseBundler) 3072 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) 3073 HostAction = UA->getInputs().back(); 3074 3075 return false; 3076 } 3077 3078 /// Add the offloading top level actions to the provided action list. This 3079 /// function can replace the host action by a bundling action if the 3080 /// programming models allow it. 3081 bool appendTopLevelActions(ActionList &AL, Action *HostAction, 3082 const Arg *InputArg) { 3083 // Get the device actions to be appended. 3084 ActionList OffloadAL; 3085 for (auto *SB : SpecializedBuilders) { 3086 if (!SB->isValid()) 3087 continue; 3088 SB->appendTopLevelActions(OffloadAL); 3089 } 3090 3091 // If we can use the bundler, replace the host action by the bundling one in 3092 // the resulting list. Otherwise, just append the device actions. For 3093 // device only compilation, HostAction is a null pointer, therefore only do 3094 // this when HostAction is not a null pointer. 3095 if (CanUseBundler && HostAction && !OffloadAL.empty()) { 3096 // Add the host action to the list in order to create the bundling action. 3097 OffloadAL.push_back(HostAction); 3098 3099 // We expect that the host action was just appended to the action list 3100 // before this method was called. 3101 assert(HostAction == AL.back() && "Host action not in the list??"); 3102 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); 3103 AL.back() = HostAction; 3104 } else 3105 AL.append(OffloadAL.begin(), OffloadAL.end()); 3106 3107 // Propagate to the current host action (if any) the offload information 3108 // associated with the current input. 3109 if (HostAction) 3110 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], 3111 /*BoundArch=*/nullptr); 3112 return false; 3113 } 3114 3115 /// Processes the host linker action. This currently consists of replacing it 3116 /// with an offload action if there are device link objects and propagate to 3117 /// the host action all the offload kinds used in the current compilation. The 3118 /// resulting action is returned. 3119 Action *processHostLinkAction(Action *HostAction) { 3120 // Add all the dependences from the device linking actions. 3121 OffloadAction::DeviceDependences DDeps; 3122 for (auto *SB : SpecializedBuilders) { 3123 if (!SB->isValid()) 3124 continue; 3125 3126 SB->appendLinkDependences(DDeps); 3127 } 3128 3129 // Calculate all the offload kinds used in the current compilation. 3130 unsigned ActiveOffloadKinds = 0u; 3131 for (auto &I : InputArgToOffloadKindMap) 3132 ActiveOffloadKinds |= I.second; 3133 3134 // If we don't have device dependencies, we don't have to create an offload 3135 // action. 3136 if (DDeps.getActions().empty()) { 3137 // Propagate all the active kinds to host action. Given that it is a link 3138 // action it is assumed to depend on all actions generated so far. 3139 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, 3140 /*BoundArch=*/nullptr); 3141 return HostAction; 3142 } 3143 3144 // Create the offload action with all dependences. When an offload action 3145 // is created the kinds are propagated to the host action, so we don't have 3146 // to do that explicitly here. 3147 OffloadAction::HostDependence HDep( 3148 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3149 /*BoundArch*/ nullptr, ActiveOffloadKinds); 3150 return C.MakeAction<OffloadAction>(HDep, DDeps); 3151 } 3152 }; 3153 } // anonymous namespace. 3154 3155 void Driver::BuildActions(Compilation &C, DerivedArgList &Args, 3156 const InputList &Inputs, ActionList &Actions) const { 3157 llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); 3158 3159 if (!SuppressMissingInputWarning && Inputs.empty()) { 3160 Diag(clang::diag::err_drv_no_input_files); 3161 return; 3162 } 3163 3164 Arg *FinalPhaseArg; 3165 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); 3166 3167 if (FinalPhase == phases::Link) { 3168 if (Args.hasArg(options::OPT_emit_llvm)) 3169 Diag(clang::diag::err_drv_emit_llvm_link); 3170 if (IsCLMode() && LTOMode != LTOK_None && 3171 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) 3172 Diag(clang::diag::err_drv_lto_without_lld); 3173 } 3174 3175 // Reject -Z* at the top level, these options should never have been exposed 3176 // by gcc. 3177 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) 3178 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); 3179 3180 // Diagnose misuse of /Fo. 3181 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { 3182 StringRef V = A->getValue(); 3183 if (Inputs.size() > 1 && !V.empty() && 3184 !llvm::sys::path::is_separator(V.back())) { 3185 // Check whether /Fo tries to name an output file for multiple inputs. 3186 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3187 << A->getSpelling() << V; 3188 Args.eraseArg(options::OPT__SLASH_Fo); 3189 } 3190 } 3191 3192 // Diagnose misuse of /Fa. 3193 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { 3194 StringRef V = A->getValue(); 3195 if (Inputs.size() > 1 && !V.empty() && 3196 !llvm::sys::path::is_separator(V.back())) { 3197 // Check whether /Fa tries to name an asm file for multiple inputs. 3198 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3199 << A->getSpelling() << V; 3200 Args.eraseArg(options::OPT__SLASH_Fa); 3201 } 3202 } 3203 3204 // Diagnose misuse of /o. 3205 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { 3206 if (A->getValue()[0] == '\0') { 3207 // It has to have a value. 3208 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; 3209 Args.eraseArg(options::OPT__SLASH_o); 3210 } 3211 } 3212 3213 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. 3214 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); 3215 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); 3216 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { 3217 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); 3218 Args.eraseArg(options::OPT__SLASH_Yc); 3219 Args.eraseArg(options::OPT__SLASH_Yu); 3220 YcArg = YuArg = nullptr; 3221 } 3222 if (YcArg && Inputs.size() > 1) { 3223 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); 3224 Args.eraseArg(options::OPT__SLASH_Yc); 3225 YcArg = nullptr; 3226 } 3227 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { 3228 // If only preprocessing or /Y- is used, all pch handling is disabled. 3229 // Rather than check for it everywhere, just remove clang-cl pch-related 3230 // flags here. 3231 Args.eraseArg(options::OPT__SLASH_Fp); 3232 Args.eraseArg(options::OPT__SLASH_Yc); 3233 Args.eraseArg(options::OPT__SLASH_Yu); 3234 YcArg = YuArg = nullptr; 3235 } 3236 3237 // Builder to be used to build offloading actions. 3238 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); 3239 3240 // Construct the actions to perform. 3241 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr; 3242 ActionList LinkerInputs; 3243 3244 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 3245 for (auto &I : Inputs) { 3246 types::ID InputType = I.first; 3247 const Arg *InputArg = I.second; 3248 3249 PL.clear(); 3250 types::getCompilationPhases(InputType, PL); 3251 3252 // If the first step comes after the final phase we are doing as part of 3253 // this compilation, warn the user about it. 3254 phases::ID InitialPhase = PL[0]; 3255 if (InitialPhase > FinalPhase) { 3256 if (InputArg->isClaimed()) 3257 continue; 3258 3259 // Claim here to avoid the more general unused warning. 3260 InputArg->claim(); 3261 3262 // Suppress all unused style warnings with -Qunused-arguments 3263 if (Args.hasArg(options::OPT_Qunused_arguments)) 3264 continue; 3265 3266 // Special case when final phase determined by binary name, rather than 3267 // by a command-line argument with a corresponding Arg. 3268 if (CCCIsCPP()) 3269 Diag(clang::diag::warn_drv_input_file_unused_by_cpp) 3270 << InputArg->getAsString(Args) << getPhaseName(InitialPhase); 3271 // Special case '-E' warning on a previously preprocessed file to make 3272 // more sense. 3273 else if (InitialPhase == phases::Compile && 3274 FinalPhase == phases::Preprocess && 3275 getPreprocessedType(InputType) == types::TY_INVALID) 3276 Diag(clang::diag::warn_drv_preprocessed_input_file_unused) 3277 << InputArg->getAsString(Args) << !!FinalPhaseArg 3278 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3279 else 3280 Diag(clang::diag::warn_drv_input_file_unused) 3281 << InputArg->getAsString(Args) << getPhaseName(InitialPhase) 3282 << !!FinalPhaseArg 3283 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3284 continue; 3285 } 3286 3287 if (YcArg) { 3288 // Add a separate precompile phase for the compile phase. 3289 if (FinalPhase >= phases::Compile) { 3290 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); 3291 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL; 3292 types::getCompilationPhases(HeaderType, PCHPL); 3293 // Build the pipeline for the pch file. 3294 Action *ClangClPch = 3295 C.MakeAction<InputAction>(*InputArg, HeaderType); 3296 for (phases::ID Phase : PCHPL) 3297 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); 3298 assert(ClangClPch); 3299 Actions.push_back(ClangClPch); 3300 // The driver currently exits after the first failed command. This 3301 // relies on that behavior, to make sure if the pch generation fails, 3302 // the main compilation won't run. 3303 // FIXME: If the main compilation fails, the PCH generation should 3304 // probably not be considered successful either. 3305 } 3306 } 3307 3308 // Build the pipeline for this file. 3309 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3310 3311 // Use the current host action in any of the offloading actions, if 3312 // required. 3313 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3314 break; 3315 3316 for (SmallVectorImpl<phases::ID>::iterator i = PL.begin(), e = PL.end(); 3317 i != e; ++i) { 3318 phases::ID Phase = *i; 3319 3320 // We are done if this step is past what the user requested. 3321 if (Phase > FinalPhase) 3322 break; 3323 3324 // Add any offload action the host action depends on. 3325 Current = OffloadBuilder.addDeviceDependencesToHostAction( 3326 Current, InputArg, Phase, FinalPhase, PL); 3327 if (!Current) 3328 break; 3329 3330 // Queue linker inputs. 3331 if (Phase == phases::Link) { 3332 assert((i + 1) == e && "linking must be final compilation step."); 3333 LinkerInputs.push_back(Current); 3334 Current = nullptr; 3335 break; 3336 } 3337 3338 // Each precompiled header file after a module file action is a module 3339 // header of that same module file, rather than being compiled to a 3340 // separate PCH. 3341 if (Phase == phases::Precompile && HeaderModuleAction && 3342 getPrecompiledType(InputType) == types::TY_PCH) { 3343 HeaderModuleAction->addModuleHeaderInput(Current); 3344 Current = nullptr; 3345 break; 3346 } 3347 3348 // FIXME: Should we include any prior module file outputs as inputs of 3349 // later actions in the same command line? 3350 3351 // Otherwise construct the appropriate action. 3352 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); 3353 3354 // We didn't create a new action, so we will just move to the next phase. 3355 if (NewCurrent == Current) 3356 continue; 3357 3358 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent)) 3359 HeaderModuleAction = HMA; 3360 3361 Current = NewCurrent; 3362 3363 // Use the current host action in any of the offloading actions, if 3364 // required. 3365 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3366 break; 3367 3368 if (Current->getType() == types::TY_Nothing) 3369 break; 3370 } 3371 3372 // If we ended with something, add to the output list. 3373 if (Current) 3374 Actions.push_back(Current); 3375 3376 // Add any top level actions generated for offloading. 3377 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); 3378 } 3379 3380 // Add a link action if necessary. 3381 if (!LinkerInputs.empty()) { 3382 Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); 3383 LA = OffloadBuilder.processHostLinkAction(LA); 3384 Actions.push_back(LA); 3385 } 3386 3387 // If we are linking, claim any options which are obviously only used for 3388 // compilation. 3389 if (FinalPhase == phases::Link && PL.size() == 1) { 3390 Args.ClaimAllArgs(options::OPT_CompileOnly_Group); 3391 Args.ClaimAllArgs(options::OPT_cl_compile_Group); 3392 } 3393 3394 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom 3395 // Compile phase that prints out supported cpu models and quits. 3396 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) { 3397 // Use the -mcpu=? flag as the dummy input to cc1. 3398 Actions.clear(); 3399 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C); 3400 Actions.push_back( 3401 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing)); 3402 for (auto &I : Inputs) 3403 I.second->claim(); 3404 } 3405 3406 // Claim ignored clang-cl options. 3407 Args.ClaimAllArgs(options::OPT_cl_ignored_Group); 3408 3409 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed 3410 // to non-CUDA compilations and should not trigger warnings there. 3411 Args.ClaimAllArgs(options::OPT_cuda_host_only); 3412 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); 3413 } 3414 3415 Action *Driver::ConstructPhaseAction( 3416 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, 3417 Action::OffloadKind TargetDeviceOffloadKind) const { 3418 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); 3419 3420 // Some types skip the assembler phase (e.g., llvm-bc), but we can't 3421 // encode this in the steps because the intermediate type depends on 3422 // arguments. Just special case here. 3423 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) 3424 return Input; 3425 3426 // Build the appropriate action. 3427 switch (Phase) { 3428 case phases::Link: 3429 llvm_unreachable("link action invalid here."); 3430 case phases::Preprocess: { 3431 types::ID OutputTy; 3432 // -{M, MM} alter the output type. 3433 if (Args.hasArg(options::OPT_M, options::OPT_MM)) { 3434 OutputTy = types::TY_Dependencies; 3435 } else { 3436 OutputTy = Input->getType(); 3437 if (!Args.hasFlag(options::OPT_frewrite_includes, 3438 options::OPT_fno_rewrite_includes, false) && 3439 !Args.hasFlag(options::OPT_frewrite_imports, 3440 options::OPT_fno_rewrite_imports, false) && 3441 !CCGenDiagnostics) 3442 OutputTy = types::getPreprocessedType(OutputTy); 3443 assert(OutputTy != types::TY_INVALID && 3444 "Cannot preprocess this input type!"); 3445 } 3446 return C.MakeAction<PreprocessJobAction>(Input, OutputTy); 3447 } 3448 case phases::Precompile: { 3449 types::ID OutputTy = getPrecompiledType(Input->getType()); 3450 assert(OutputTy != types::TY_INVALID && 3451 "Cannot precompile this input type!"); 3452 3453 // If we're given a module name, precompile header file inputs as a 3454 // module, not as a precompiled header. 3455 const char *ModName = nullptr; 3456 if (OutputTy == types::TY_PCH) { 3457 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) 3458 ModName = A->getValue(); 3459 if (ModName) 3460 OutputTy = types::TY_ModuleFile; 3461 } 3462 3463 if (Args.hasArg(options::OPT_fsyntax_only)) { 3464 // Syntax checks should not emit a PCH file 3465 OutputTy = types::TY_Nothing; 3466 } 3467 3468 if (ModName) 3469 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy, 3470 ModName); 3471 return C.MakeAction<PrecompileJobAction>(Input, OutputTy); 3472 } 3473 case phases::Compile: { 3474 if (Args.hasArg(options::OPT_fsyntax_only)) 3475 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); 3476 if (Args.hasArg(options::OPT_rewrite_objc)) 3477 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); 3478 if (Args.hasArg(options::OPT_rewrite_legacy_objc)) 3479 return C.MakeAction<CompileJobAction>(Input, 3480 types::TY_RewrittenLegacyObjC); 3481 if (Args.hasArg(options::OPT__analyze, options::OPT__analyze_auto)) 3482 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); 3483 if (Args.hasArg(options::OPT__migrate)) 3484 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); 3485 if (Args.hasArg(options::OPT_emit_ast)) 3486 return C.MakeAction<CompileJobAction>(Input, types::TY_AST); 3487 if (Args.hasArg(options::OPT_module_file_info)) 3488 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); 3489 if (Args.hasArg(options::OPT_verify_pch)) 3490 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); 3491 if (Args.hasArg(options::OPT_emit_iterface_stubs)) 3492 return C.MakeAction<CompileJobAction>(Input, types::TY_IFS); 3493 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); 3494 } 3495 case phases::Backend: { 3496 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { 3497 types::ID Output = 3498 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; 3499 return C.MakeAction<BackendJobAction>(Input, Output); 3500 } 3501 if (Args.hasArg(options::OPT_emit_llvm)) { 3502 types::ID Output = 3503 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; 3504 return C.MakeAction<BackendJobAction>(Input, Output); 3505 } 3506 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); 3507 } 3508 case phases::Assemble: 3509 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); 3510 } 3511 3512 llvm_unreachable("invalid phase in ConstructPhaseAction"); 3513 } 3514 3515 void Driver::BuildJobs(Compilation &C) const { 3516 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3517 3518 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 3519 3520 // It is an error to provide a -o option if we are making multiple output 3521 // files. 3522 if (FinalOutput) { 3523 unsigned NumOutputs = 0; 3524 for (const Action *A : C.getActions()) 3525 if (A->getType() != types::TY_Nothing) 3526 ++NumOutputs; 3527 3528 if (NumOutputs > 1) { 3529 Diag(clang::diag::err_drv_output_argument_with_multiple_files); 3530 FinalOutput = nullptr; 3531 } 3532 } 3533 3534 // Collect the list of architectures. 3535 llvm::StringSet<> ArchNames; 3536 if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO()) 3537 for (const Arg *A : C.getArgs()) 3538 if (A->getOption().matches(options::OPT_arch)) 3539 ArchNames.insert(A->getValue()); 3540 3541 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. 3542 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults; 3543 for (Action *A : C.getActions()) { 3544 // If we are linking an image for multiple archs then the linker wants 3545 // -arch_multiple and -final_output <final image name>. Unfortunately, this 3546 // doesn't fit in cleanly because we have to pass this information down. 3547 // 3548 // FIXME: This is a hack; find a cleaner way to integrate this into the 3549 // process. 3550 const char *LinkingOutput = nullptr; 3551 if (isa<LipoJobAction>(A)) { 3552 if (FinalOutput) 3553 LinkingOutput = FinalOutput->getValue(); 3554 else 3555 LinkingOutput = getDefaultImageName(); 3556 } 3557 3558 BuildJobsForAction(C, A, &C.getDefaultToolChain(), 3559 /*BoundArch*/ StringRef(), 3560 /*AtTopLevel*/ true, 3561 /*MultipleArchs*/ ArchNames.size() > 1, 3562 /*LinkingOutput*/ LinkingOutput, CachedResults, 3563 /*TargetDeviceOffloadKind*/ Action::OFK_None); 3564 } 3565 3566 // If the user passed -Qunused-arguments or there were errors, don't warn 3567 // about any unused arguments. 3568 if (Diags.hasErrorOccurred() || 3569 C.getArgs().hasArg(options::OPT_Qunused_arguments)) 3570 return; 3571 3572 // Claim -### here. 3573 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); 3574 3575 // Claim --driver-mode, --rsp-quoting, it was handled earlier. 3576 (void)C.getArgs().hasArg(options::OPT_driver_mode); 3577 (void)C.getArgs().hasArg(options::OPT_rsp_quoting); 3578 3579 for (Arg *A : C.getArgs()) { 3580 // FIXME: It would be nice to be able to send the argument to the 3581 // DiagnosticsEngine, so that extra values, position, and so on could be 3582 // printed. 3583 if (!A->isClaimed()) { 3584 if (A->getOption().hasFlag(options::NoArgumentUnused)) 3585 continue; 3586 3587 // Suppress the warning automatically if this is just a flag, and it is an 3588 // instance of an argument we already claimed. 3589 const Option &Opt = A->getOption(); 3590 if (Opt.getKind() == Option::FlagClass) { 3591 bool DuplicateClaimed = false; 3592 3593 for (const Arg *AA : C.getArgs().filtered(&Opt)) { 3594 if (AA->isClaimed()) { 3595 DuplicateClaimed = true; 3596 break; 3597 } 3598 } 3599 3600 if (DuplicateClaimed) 3601 continue; 3602 } 3603 3604 // In clang-cl, don't mention unknown arguments here since they have 3605 // already been warned about. 3606 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) 3607 Diag(clang::diag::warn_drv_unused_argument) 3608 << A->getAsString(C.getArgs()); 3609 } 3610 } 3611 } 3612 3613 namespace { 3614 /// Utility class to control the collapse of dependent actions and select the 3615 /// tools accordingly. 3616 class ToolSelector final { 3617 /// The tool chain this selector refers to. 3618 const ToolChain &TC; 3619 3620 /// The compilation this selector refers to. 3621 const Compilation &C; 3622 3623 /// The base action this selector refers to. 3624 const JobAction *BaseAction; 3625 3626 /// Set to true if the current toolchain refers to host actions. 3627 bool IsHostSelector; 3628 3629 /// Set to true if save-temps and embed-bitcode functionalities are active. 3630 bool SaveTemps; 3631 bool EmbedBitcode; 3632 3633 /// Get previous dependent action or null if that does not exist. If 3634 /// \a CanBeCollapsed is false, that action must be legal to collapse or 3635 /// null will be returned. 3636 const JobAction *getPrevDependentAction(const ActionList &Inputs, 3637 ActionList &SavedOffloadAction, 3638 bool CanBeCollapsed = true) { 3639 // An option can be collapsed only if it has a single input. 3640 if (Inputs.size() != 1) 3641 return nullptr; 3642 3643 Action *CurAction = *Inputs.begin(); 3644 if (CanBeCollapsed && 3645 !CurAction->isCollapsingWithNextDependentActionLegal()) 3646 return nullptr; 3647 3648 // If the input action is an offload action. Look through it and save any 3649 // offload action that can be dropped in the event of a collapse. 3650 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { 3651 // If the dependent action is a device action, we will attempt to collapse 3652 // only with other device actions. Otherwise, we would do the same but 3653 // with host actions only. 3654 if (!IsHostSelector) { 3655 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { 3656 CurAction = 3657 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); 3658 if (CanBeCollapsed && 3659 !CurAction->isCollapsingWithNextDependentActionLegal()) 3660 return nullptr; 3661 SavedOffloadAction.push_back(OA); 3662 return dyn_cast<JobAction>(CurAction); 3663 } 3664 } else if (OA->hasHostDependence()) { 3665 CurAction = OA->getHostDependence(); 3666 if (CanBeCollapsed && 3667 !CurAction->isCollapsingWithNextDependentActionLegal()) 3668 return nullptr; 3669 SavedOffloadAction.push_back(OA); 3670 return dyn_cast<JobAction>(CurAction); 3671 } 3672 return nullptr; 3673 } 3674 3675 return dyn_cast<JobAction>(CurAction); 3676 } 3677 3678 /// Return true if an assemble action can be collapsed. 3679 bool canCollapseAssembleAction() const { 3680 return TC.useIntegratedAs() && !SaveTemps && 3681 !C.getArgs().hasArg(options::OPT_via_file_asm) && 3682 !C.getArgs().hasArg(options::OPT__SLASH_FA) && 3683 !C.getArgs().hasArg(options::OPT__SLASH_Fa); 3684 } 3685 3686 /// Return true if a preprocessor action can be collapsed. 3687 bool canCollapsePreprocessorAction() const { 3688 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && 3689 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && 3690 !C.getArgs().hasArg(options::OPT_rewrite_objc); 3691 } 3692 3693 /// Struct that relates an action with the offload actions that would be 3694 /// collapsed with it. 3695 struct JobActionInfo final { 3696 /// The action this info refers to. 3697 const JobAction *JA = nullptr; 3698 /// The offload actions we need to take care off if this action is 3699 /// collapsed. 3700 ActionList SavedOffloadAction; 3701 }; 3702 3703 /// Append collapsed offload actions from the give nnumber of elements in the 3704 /// action info array. 3705 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, 3706 ArrayRef<JobActionInfo> &ActionInfo, 3707 unsigned ElementNum) { 3708 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); 3709 for (unsigned I = 0; I < ElementNum; ++I) 3710 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), 3711 ActionInfo[I].SavedOffloadAction.end()); 3712 } 3713 3714 /// Functions that attempt to perform the combining. They detect if that is 3715 /// legal, and if so they update the inputs \a Inputs and the offload action 3716 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with 3717 /// the combined action is returned. If the combining is not legal or if the 3718 /// tool does not exist, null is returned. 3719 /// Currently three kinds of collapsing are supported: 3720 /// - Assemble + Backend + Compile; 3721 /// - Assemble + Backend ; 3722 /// - Backend + Compile. 3723 const Tool * 3724 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3725 ActionList &Inputs, 3726 ActionList &CollapsedOffloadAction) { 3727 if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) 3728 return nullptr; 3729 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3730 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3731 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); 3732 if (!AJ || !BJ || !CJ) 3733 return nullptr; 3734 3735 // Get compiler tool. 3736 const Tool *T = TC.SelectTool(*CJ); 3737 if (!T) 3738 return nullptr; 3739 3740 // When using -fembed-bitcode, it is required to have the same tool (clang) 3741 // for both CompilerJA and BackendJA. Otherwise, combine two stages. 3742 if (EmbedBitcode) { 3743 const Tool *BT = TC.SelectTool(*BJ); 3744 if (BT == T) 3745 return nullptr; 3746 } 3747 3748 if (!T->hasIntegratedAssembler()) 3749 return nullptr; 3750 3751 Inputs = CJ->getInputs(); 3752 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3753 /*NumElements=*/3); 3754 return T; 3755 } 3756 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, 3757 ActionList &Inputs, 3758 ActionList &CollapsedOffloadAction) { 3759 if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) 3760 return nullptr; 3761 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3762 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3763 if (!AJ || !BJ) 3764 return nullptr; 3765 3766 // Retrieve the compile job, backend action must always be preceded by one. 3767 ActionList CompileJobOffloadActions; 3768 auto *CJ = getPrevDependentAction(BJ->getInputs(), CompileJobOffloadActions, 3769 /*CanBeCollapsed=*/false); 3770 if (!AJ || !BJ || !CJ) 3771 return nullptr; 3772 3773 assert(isa<CompileJobAction>(CJ) && 3774 "Expecting compile job preceding backend job."); 3775 3776 // Get compiler tool. 3777 const Tool *T = TC.SelectTool(*CJ); 3778 if (!T) 3779 return nullptr; 3780 3781 if (!T->hasIntegratedAssembler()) 3782 return nullptr; 3783 3784 Inputs = BJ->getInputs(); 3785 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3786 /*NumElements=*/2); 3787 return T; 3788 } 3789 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3790 ActionList &Inputs, 3791 ActionList &CollapsedOffloadAction) { 3792 if (ActionInfo.size() < 2) 3793 return nullptr; 3794 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); 3795 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); 3796 if (!BJ || !CJ) 3797 return nullptr; 3798 3799 // Check if the initial input (to the compile job or its predessor if one 3800 // exists) is LLVM bitcode. In that case, no preprocessor step is required 3801 // and we can still collapse the compile and backend jobs when we have 3802 // -save-temps. I.e. there is no need for a separate compile job just to 3803 // emit unoptimized bitcode. 3804 bool InputIsBitcode = true; 3805 for (size_t i = 1; i < ActionInfo.size(); i++) 3806 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && 3807 ActionInfo[i].JA->getType() != types::TY_LTO_BC) { 3808 InputIsBitcode = false; 3809 break; 3810 } 3811 if (!InputIsBitcode && !canCollapsePreprocessorAction()) 3812 return nullptr; 3813 3814 // Get compiler tool. 3815 const Tool *T = TC.SelectTool(*CJ); 3816 if (!T) 3817 return nullptr; 3818 3819 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) 3820 return nullptr; 3821 3822 Inputs = CJ->getInputs(); 3823 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3824 /*NumElements=*/2); 3825 return T; 3826 } 3827 3828 /// Updates the inputs if the obtained tool supports combining with 3829 /// preprocessor action, and the current input is indeed a preprocessor 3830 /// action. If combining results in the collapse of offloading actions, those 3831 /// are appended to \a CollapsedOffloadAction. 3832 void combineWithPreprocessor(const Tool *T, ActionList &Inputs, 3833 ActionList &CollapsedOffloadAction) { 3834 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) 3835 return; 3836 3837 // Attempt to get a preprocessor action dependence. 3838 ActionList PreprocessJobOffloadActions; 3839 ActionList NewInputs; 3840 for (Action *A : Inputs) { 3841 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); 3842 if (!PJ || !isa<PreprocessJobAction>(PJ)) { 3843 NewInputs.push_back(A); 3844 continue; 3845 } 3846 3847 // This is legal to combine. Append any offload action we found and add the 3848 // current input to preprocessor inputs. 3849 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), 3850 PreprocessJobOffloadActions.end()); 3851 NewInputs.append(PJ->input_begin(), PJ->input_end()); 3852 } 3853 Inputs = NewInputs; 3854 } 3855 3856 public: 3857 ToolSelector(const JobAction *BaseAction, const ToolChain &TC, 3858 const Compilation &C, bool SaveTemps, bool EmbedBitcode) 3859 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), 3860 EmbedBitcode(EmbedBitcode) { 3861 assert(BaseAction && "Invalid base action."); 3862 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; 3863 } 3864 3865 /// Check if a chain of actions can be combined and return the tool that can 3866 /// handle the combination of actions. The pointer to the current inputs \a 3867 /// Inputs and the list of offload actions \a CollapsedOffloadActions 3868 /// connected to collapsed actions are updated accordingly. The latter enables 3869 /// the caller of the selector to process them afterwards instead of just 3870 /// dropping them. If no suitable tool is found, null will be returned. 3871 const Tool *getTool(ActionList &Inputs, 3872 ActionList &CollapsedOffloadAction) { 3873 // 3874 // Get the largest chain of actions that we could combine. 3875 // 3876 3877 SmallVector<JobActionInfo, 5> ActionChain(1); 3878 ActionChain.back().JA = BaseAction; 3879 while (ActionChain.back().JA) { 3880 const Action *CurAction = ActionChain.back().JA; 3881 3882 // Grow the chain by one element. 3883 ActionChain.resize(ActionChain.size() + 1); 3884 JobActionInfo &AI = ActionChain.back(); 3885 3886 // Attempt to fill it with the 3887 AI.JA = 3888 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); 3889 } 3890 3891 // Pop the last action info as it could not be filled. 3892 ActionChain.pop_back(); 3893 3894 // 3895 // Attempt to combine actions. If all combining attempts failed, just return 3896 // the tool of the provided action. At the end we attempt to combine the 3897 // action with any preprocessor action it may depend on. 3898 // 3899 3900 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, 3901 CollapsedOffloadAction); 3902 if (!T) 3903 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); 3904 if (!T) 3905 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); 3906 if (!T) { 3907 Inputs = BaseAction->getInputs(); 3908 T = TC.SelectTool(*BaseAction); 3909 } 3910 3911 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); 3912 return T; 3913 } 3914 }; 3915 } 3916 3917 /// Return a string that uniquely identifies the result of a job. The bound arch 3918 /// is not necessarily represented in the toolchain's triple -- for example, 3919 /// armv7 and armv7s both map to the same triple -- so we need both in our map. 3920 /// Also, we need to add the offloading device kind, as the same tool chain can 3921 /// be used for host and device for some programming models, e.g. OpenMP. 3922 static std::string GetTriplePlusArchString(const ToolChain *TC, 3923 StringRef BoundArch, 3924 Action::OffloadKind OffloadKind) { 3925 std::string TriplePlusArch = TC->getTriple().normalize(); 3926 if (!BoundArch.empty()) { 3927 TriplePlusArch += "-"; 3928 TriplePlusArch += BoundArch; 3929 } 3930 TriplePlusArch += "-"; 3931 TriplePlusArch += Action::GetOffloadKindName(OffloadKind); 3932 return TriplePlusArch; 3933 } 3934 3935 InputInfo Driver::BuildJobsForAction( 3936 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 3937 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 3938 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 3939 Action::OffloadKind TargetDeviceOffloadKind) const { 3940 std::pair<const Action *, std::string> ActionTC = { 3941 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 3942 auto CachedResult = CachedResults.find(ActionTC); 3943 if (CachedResult != CachedResults.end()) { 3944 return CachedResult->second; 3945 } 3946 InputInfo Result = BuildJobsForActionNoCache( 3947 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, 3948 CachedResults, TargetDeviceOffloadKind); 3949 CachedResults[ActionTC] = Result; 3950 return Result; 3951 } 3952 3953 InputInfo Driver::BuildJobsForActionNoCache( 3954 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 3955 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 3956 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 3957 Action::OffloadKind TargetDeviceOffloadKind) const { 3958 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3959 3960 InputInfoList OffloadDependencesInputInfo; 3961 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; 3962 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 3963 // The 'Darwin' toolchain is initialized only when its arguments are 3964 // computed. Get the default arguments for OFK_None to ensure that 3965 // initialization is performed before processing the offload action. 3966 // FIXME: Remove when darwin's toolchain is initialized during construction. 3967 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); 3968 3969 // The offload action is expected to be used in four different situations. 3970 // 3971 // a) Set a toolchain/architecture/kind for a host action: 3972 // Host Action 1 -> OffloadAction -> Host Action 2 3973 // 3974 // b) Set a toolchain/architecture/kind for a device action; 3975 // Device Action 1 -> OffloadAction -> Device Action 2 3976 // 3977 // c) Specify a device dependence to a host action; 3978 // Device Action 1 _ 3979 // \ 3980 // Host Action 1 ---> OffloadAction -> Host Action 2 3981 // 3982 // d) Specify a host dependence to a device action. 3983 // Host Action 1 _ 3984 // \ 3985 // Device Action 1 ---> OffloadAction -> Device Action 2 3986 // 3987 // For a) and b), we just return the job generated for the dependence. For 3988 // c) and d) we override the current action with the host/device dependence 3989 // if the current toolchain is host/device and set the offload dependences 3990 // info with the jobs obtained from the device/host dependence(s). 3991 3992 // If there is a single device option, just generate the job for it. 3993 if (OA->hasSingleDeviceDependence()) { 3994 InputInfo DevA; 3995 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, 3996 const char *DepBoundArch) { 3997 DevA = 3998 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, 3999 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, 4000 CachedResults, DepA->getOffloadingDeviceKind()); 4001 }); 4002 return DevA; 4003 } 4004 4005 // If 'Action 2' is host, we generate jobs for the device dependences and 4006 // override the current action with the host dependence. Otherwise, we 4007 // generate the host dependences and override the action with the device 4008 // dependence. The dependences can't therefore be a top-level action. 4009 OA->doOnEachDependence( 4010 /*IsHostDependence=*/BuildingForOffloadDevice, 4011 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4012 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4013 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, 4014 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, 4015 DepA->getOffloadingDeviceKind())); 4016 }); 4017 4018 A = BuildingForOffloadDevice 4019 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) 4020 : OA->getHostDependence(); 4021 } 4022 4023 if (const InputAction *IA = dyn_cast<InputAction>(A)) { 4024 // FIXME: It would be nice to not claim this here; maybe the old scheme of 4025 // just using Args was better? 4026 const Arg &Input = IA->getInputArg(); 4027 Input.claim(); 4028 if (Input.getOption().matches(options::OPT_INPUT)) { 4029 const char *Name = Input.getValue(); 4030 return InputInfo(A, Name, /* _BaseInput = */ Name); 4031 } 4032 return InputInfo(A, &Input, /* _BaseInput = */ ""); 4033 } 4034 4035 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { 4036 const ToolChain *TC; 4037 StringRef ArchName = BAA->getArchName(); 4038 4039 if (!ArchName.empty()) 4040 TC = &getToolChain(C.getArgs(), 4041 computeTargetTriple(*this, TargetTriple, 4042 C.getArgs(), ArchName)); 4043 else 4044 TC = &C.getDefaultToolChain(); 4045 4046 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, 4047 MultipleArchs, LinkingOutput, CachedResults, 4048 TargetDeviceOffloadKind); 4049 } 4050 4051 4052 ActionList Inputs = A->getInputs(); 4053 4054 const JobAction *JA = cast<JobAction>(A); 4055 ActionList CollapsedOffloadActions; 4056 4057 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), 4058 embedBitcodeInObject() && !isUsingLTO()); 4059 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); 4060 4061 if (!T) 4062 return InputInfo(); 4063 4064 // If we've collapsed action list that contained OffloadAction we 4065 // need to build jobs for host/device-side inputs it may have held. 4066 for (const auto *OA : CollapsedOffloadActions) 4067 cast<OffloadAction>(OA)->doOnEachDependence( 4068 /*IsHostDependence=*/BuildingForOffloadDevice, 4069 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4070 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4071 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, 4072 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, 4073 DepA->getOffloadingDeviceKind())); 4074 }); 4075 4076 // Only use pipes when there is exactly one input. 4077 InputInfoList InputInfos; 4078 for (const Action *Input : Inputs) { 4079 // Treat dsymutil and verify sub-jobs as being at the top-level too, they 4080 // shouldn't get temporary output names. 4081 // FIXME: Clean this up. 4082 bool SubJobAtTopLevel = 4083 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); 4084 InputInfos.push_back(BuildJobsForAction( 4085 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, 4086 CachedResults, A->getOffloadingDeviceKind())); 4087 } 4088 4089 // Always use the first input as the base input. 4090 const char *BaseInput = InputInfos[0].getBaseInput(); 4091 4092 // ... except dsymutil actions, which use their actual input as the base 4093 // input. 4094 if (JA->getType() == types::TY_dSYM) 4095 BaseInput = InputInfos[0].getFilename(); 4096 4097 // ... and in header module compilations, which use the module name. 4098 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA)) 4099 BaseInput = ModuleJA->getModuleName(); 4100 4101 // Append outputs of offload device jobs to the input list 4102 if (!OffloadDependencesInputInfo.empty()) 4103 InputInfos.append(OffloadDependencesInputInfo.begin(), 4104 OffloadDependencesInputInfo.end()); 4105 4106 // Set the effective triple of the toolchain for the duration of this job. 4107 llvm::Triple EffectiveTriple; 4108 const ToolChain &ToolTC = T->getToolChain(); 4109 const ArgList &Args = 4110 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); 4111 if (InputInfos.size() != 1) { 4112 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); 4113 } else { 4114 // Pass along the input type if it can be unambiguously determined. 4115 EffectiveTriple = llvm::Triple( 4116 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); 4117 } 4118 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); 4119 4120 // Determine the place to write output to, if any. 4121 InputInfo Result; 4122 InputInfoList UnbundlingResults; 4123 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { 4124 // If we have an unbundling job, we need to create results for all the 4125 // outputs. We also update the results cache so that other actions using 4126 // this unbundling action can get the right results. 4127 for (auto &UI : UA->getDependentActionsInfo()) { 4128 assert(UI.DependentOffloadKind != Action::OFK_None && 4129 "Unbundling with no offloading??"); 4130 4131 // Unbundling actions are never at the top level. When we generate the 4132 // offloading prefix, we also do that for the host file because the 4133 // unbundling action does not change the type of the output which can 4134 // cause a overwrite. 4135 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4136 UI.DependentOffloadKind, 4137 UI.DependentToolChain->getTriple().normalize(), 4138 /*CreatePrefixForHost=*/true); 4139 auto CurI = InputInfo( 4140 UA, 4141 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, 4142 /*AtTopLevel=*/false, 4143 MultipleArchs || 4144 UI.DependentOffloadKind == Action::OFK_HIP, 4145 OffloadingPrefix), 4146 BaseInput); 4147 // Save the unbundling result. 4148 UnbundlingResults.push_back(CurI); 4149 4150 // Get the unique string identifier for this dependence and cache the 4151 // result. 4152 StringRef Arch; 4153 if (TargetDeviceOffloadKind == Action::OFK_HIP) { 4154 if (UI.DependentOffloadKind == Action::OFK_Host) 4155 Arch = StringRef(); 4156 else 4157 Arch = UI.DependentBoundArch; 4158 } else 4159 Arch = BoundArch; 4160 4161 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, 4162 UI.DependentOffloadKind)}] = 4163 CurI; 4164 } 4165 4166 // Now that we have all the results generated, select the one that should be 4167 // returned for the current depending action. 4168 std::pair<const Action *, std::string> ActionTC = { 4169 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4170 assert(CachedResults.find(ActionTC) != CachedResults.end() && 4171 "Result does not exist??"); 4172 Result = CachedResults[ActionTC]; 4173 } else if (JA->getType() == types::TY_Nothing) 4174 Result = InputInfo(A, BaseInput); 4175 else { 4176 // We only have to generate a prefix for the host if this is not a top-level 4177 // action. 4178 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4179 A->getOffloadingDeviceKind(), TC->getTriple().normalize(), 4180 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && 4181 !AtTopLevel); 4182 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, 4183 AtTopLevel, MultipleArchs, 4184 OffloadingPrefix), 4185 BaseInput); 4186 } 4187 4188 if (CCCPrintBindings && !CCGenDiagnostics) { 4189 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' 4190 << " - \"" << T->getName() << "\", inputs: ["; 4191 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { 4192 llvm::errs() << InputInfos[i].getAsString(); 4193 if (i + 1 != e) 4194 llvm::errs() << ", "; 4195 } 4196 if (UnbundlingResults.empty()) 4197 llvm::errs() << "], output: " << Result.getAsString() << "\n"; 4198 else { 4199 llvm::errs() << "], outputs: ["; 4200 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { 4201 llvm::errs() << UnbundlingResults[i].getAsString(); 4202 if (i + 1 != e) 4203 llvm::errs() << ", "; 4204 } 4205 llvm::errs() << "] \n"; 4206 } 4207 } else { 4208 if (UnbundlingResults.empty()) 4209 T->ConstructJob( 4210 C, *JA, Result, InputInfos, 4211 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4212 LinkingOutput); 4213 else 4214 T->ConstructJobMultipleOutputs( 4215 C, *JA, UnbundlingResults, InputInfos, 4216 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4217 LinkingOutput); 4218 } 4219 return Result; 4220 } 4221 4222 const char *Driver::getDefaultImageName() const { 4223 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 4224 return Target.isOSWindows() ? "a.exe" : "a.out"; 4225 } 4226 4227 /// Create output filename based on ArgValue, which could either be a 4228 /// full filename, filename without extension, or a directory. If ArgValue 4229 /// does not provide a filename, then use BaseName, and use the extension 4230 /// suitable for FileType. 4231 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, 4232 StringRef BaseName, 4233 types::ID FileType) { 4234 SmallString<128> Filename = ArgValue; 4235 4236 if (ArgValue.empty()) { 4237 // If the argument is empty, output to BaseName in the current dir. 4238 Filename = BaseName; 4239 } else if (llvm::sys::path::is_separator(Filename.back())) { 4240 // If the argument is a directory, output to BaseName in that dir. 4241 llvm::sys::path::append(Filename, BaseName); 4242 } 4243 4244 if (!llvm::sys::path::has_extension(ArgValue)) { 4245 // If the argument didn't provide an extension, then set it. 4246 const char *Extension = types::getTypeTempSuffix(FileType, true); 4247 4248 if (FileType == types::TY_Image && 4249 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { 4250 // The output file is a dll. 4251 Extension = "dll"; 4252 } 4253 4254 llvm::sys::path::replace_extension(Filename, Extension); 4255 } 4256 4257 return Args.MakeArgString(Filename.c_str()); 4258 } 4259 4260 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, 4261 const char *BaseInput, 4262 StringRef BoundArch, bool AtTopLevel, 4263 bool MultipleArchs, 4264 StringRef OffloadingPrefix) const { 4265 llvm::PrettyStackTraceString CrashInfo("Computing output path"); 4266 // Output to a user requested destination? 4267 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { 4268 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4269 return C.addResultFile(FinalOutput->getValue(), &JA); 4270 } 4271 4272 // For /P, preprocess to file named after BaseInput. 4273 if (C.getArgs().hasArg(options::OPT__SLASH_P)) { 4274 assert(AtTopLevel && isa<PreprocessJobAction>(JA)); 4275 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4276 StringRef NameArg; 4277 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) 4278 NameArg = A->getValue(); 4279 return C.addResultFile( 4280 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), 4281 &JA); 4282 } 4283 4284 // Default to writing to stdout? 4285 if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA)) 4286 return "-"; 4287 4288 // Is this the assembly listing for /FA? 4289 if (JA.getType() == types::TY_PP_Asm && 4290 (C.getArgs().hasArg(options::OPT__SLASH_FA) || 4291 C.getArgs().hasArg(options::OPT__SLASH_Fa))) { 4292 // Use /Fa and the input filename to determine the asm file name. 4293 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4294 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); 4295 return C.addResultFile( 4296 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), 4297 &JA); 4298 } 4299 4300 // Output to a temporary file? 4301 if ((!AtTopLevel && !isSaveTempsEnabled() && 4302 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || 4303 CCGenDiagnostics) { 4304 StringRef Name = llvm::sys::path::filename(BaseInput); 4305 std::pair<StringRef, StringRef> Split = Name.split('.'); 4306 SmallString<128> TmpName; 4307 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4308 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); 4309 if (CCGenDiagnostics && A) { 4310 SmallString<128> CrashDirectory(A->getValue()); 4311 if (!getVFS().exists(CrashDirectory)) 4312 llvm::sys::fs::create_directories(CrashDirectory); 4313 llvm::sys::path::append(CrashDirectory, Split.first); 4314 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%"; 4315 std::error_code EC = llvm::sys::fs::createUniqueFile( 4316 CrashDirectory + Middle + Suffix, TmpName); 4317 if (EC) { 4318 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4319 return ""; 4320 } 4321 } else { 4322 TmpName = GetTemporaryPath(Split.first, Suffix); 4323 } 4324 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4325 } 4326 4327 SmallString<128> BasePath(BaseInput); 4328 StringRef BaseName; 4329 4330 // Dsymutil actions should use the full path. 4331 if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) 4332 BaseName = BasePath; 4333 else 4334 BaseName = llvm::sys::path::filename(BasePath); 4335 4336 // Determine what the derived output name should be. 4337 const char *NamedOutput; 4338 4339 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && 4340 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { 4341 // The /Fo or /o flag decides the object filename. 4342 StringRef Val = 4343 C.getArgs() 4344 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) 4345 ->getValue(); 4346 NamedOutput = 4347 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 4348 } else if (JA.getType() == types::TY_Image && 4349 C.getArgs().hasArg(options::OPT__SLASH_Fe, 4350 options::OPT__SLASH_o)) { 4351 // The /Fe or /o flag names the linked file. 4352 StringRef Val = 4353 C.getArgs() 4354 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) 4355 ->getValue(); 4356 NamedOutput = 4357 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); 4358 } else if (JA.getType() == types::TY_Image) { 4359 if (IsCLMode()) { 4360 // clang-cl uses BaseName for the executable name. 4361 NamedOutput = 4362 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); 4363 } else { 4364 SmallString<128> Output(getDefaultImageName()); 4365 Output += OffloadingPrefix; 4366 if (MultipleArchs && !BoundArch.empty()) { 4367 Output += "-"; 4368 Output.append(BoundArch); 4369 } 4370 NamedOutput = C.getArgs().MakeArgString(Output.c_str()); 4371 } 4372 } else if (JA.getType() == types::TY_PCH && IsCLMode()) { 4373 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); 4374 } else { 4375 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4376 assert(Suffix && "All types used for output should have a suffix."); 4377 4378 std::string::size_type End = std::string::npos; 4379 if (!types::appendSuffixForType(JA.getType())) 4380 End = BaseName.rfind('.'); 4381 SmallString<128> Suffixed(BaseName.substr(0, End)); 4382 Suffixed += OffloadingPrefix; 4383 if (MultipleArchs && !BoundArch.empty()) { 4384 Suffixed += "-"; 4385 Suffixed.append(BoundArch); 4386 } 4387 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for 4388 // the unoptimized bitcode so that it does not get overwritten by the ".bc" 4389 // optimized bitcode output. 4390 if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) && 4391 JA.getType() == types::TY_LLVM_BC) 4392 Suffixed += ".tmp"; 4393 Suffixed += '.'; 4394 Suffixed += Suffix; 4395 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); 4396 } 4397 4398 // Prepend object file path if -save-temps=obj 4399 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && 4400 JA.getType() != types::TY_PCH) { 4401 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 4402 SmallString<128> TempPath(FinalOutput->getValue()); 4403 llvm::sys::path::remove_filename(TempPath); 4404 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); 4405 llvm::sys::path::append(TempPath, OutputFileName); 4406 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); 4407 } 4408 4409 // If we're saving temps and the temp file conflicts with the input file, 4410 // then avoid overwriting input file. 4411 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { 4412 bool SameFile = false; 4413 SmallString<256> Result; 4414 llvm::sys::fs::current_path(Result); 4415 llvm::sys::path::append(Result, BaseName); 4416 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); 4417 // Must share the same path to conflict. 4418 if (SameFile) { 4419 StringRef Name = llvm::sys::path::filename(BaseInput); 4420 std::pair<StringRef, StringRef> Split = Name.split('.'); 4421 std::string TmpName = GetTemporaryPath( 4422 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); 4423 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4424 } 4425 } 4426 4427 // As an annoying special case, PCH generation doesn't strip the pathname. 4428 if (JA.getType() == types::TY_PCH && !IsCLMode()) { 4429 llvm::sys::path::remove_filename(BasePath); 4430 if (BasePath.empty()) 4431 BasePath = NamedOutput; 4432 else 4433 llvm::sys::path::append(BasePath, NamedOutput); 4434 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); 4435 } else { 4436 return C.addResultFile(NamedOutput, &JA); 4437 } 4438 } 4439 4440 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { 4441 // Search for Name in a list of paths. 4442 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P) 4443 -> llvm::Optional<std::string> { 4444 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4445 // attempting to use this prefix when looking for file paths. 4446 for (const auto &Dir : P) { 4447 if (Dir.empty()) 4448 continue; 4449 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 4450 llvm::sys::path::append(P, Name); 4451 if (llvm::sys::fs::exists(Twine(P))) 4452 return P.str().str(); 4453 } 4454 return None; 4455 }; 4456 4457 if (auto P = SearchPaths(PrefixDirs)) 4458 return *P; 4459 4460 SmallString<128> R(ResourceDir); 4461 llvm::sys::path::append(R, Name); 4462 if (llvm::sys::fs::exists(Twine(R))) 4463 return R.str(); 4464 4465 SmallString<128> P(TC.getCompilerRTPath()); 4466 llvm::sys::path::append(P, Name); 4467 if (llvm::sys::fs::exists(Twine(P))) 4468 return P.str(); 4469 4470 SmallString<128> D(Dir); 4471 llvm::sys::path::append(D, "..", Name); 4472 if (llvm::sys::fs::exists(Twine(D))) 4473 return D.str(); 4474 4475 if (auto P = SearchPaths(TC.getLibraryPaths())) 4476 return *P; 4477 4478 if (auto P = SearchPaths(TC.getFilePaths())) 4479 return *P; 4480 4481 return Name; 4482 } 4483 4484 void Driver::generatePrefixedToolNames( 4485 StringRef Tool, const ToolChain &TC, 4486 SmallVectorImpl<std::string> &Names) const { 4487 // FIXME: Needs a better variable than TargetTriple 4488 Names.emplace_back((TargetTriple + "-" + Tool).str()); 4489 Names.emplace_back(Tool); 4490 4491 // Allow the discovery of tools prefixed with LLVM's default target triple. 4492 std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); 4493 if (DefaultTargetTriple != TargetTriple) 4494 Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); 4495 } 4496 4497 static bool ScanDirForExecutable(SmallString<128> &Dir, 4498 ArrayRef<std::string> Names) { 4499 for (const auto &Name : Names) { 4500 llvm::sys::path::append(Dir, Name); 4501 if (llvm::sys::fs::can_execute(Twine(Dir))) 4502 return true; 4503 llvm::sys::path::remove_filename(Dir); 4504 } 4505 return false; 4506 } 4507 4508 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { 4509 SmallVector<std::string, 2> TargetSpecificExecutables; 4510 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); 4511 4512 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4513 // attempting to use this prefix when looking for program paths. 4514 for (const auto &PrefixDir : PrefixDirs) { 4515 if (llvm::sys::fs::is_directory(PrefixDir)) { 4516 SmallString<128> P(PrefixDir); 4517 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4518 return P.str(); 4519 } else { 4520 SmallString<128> P((PrefixDir + Name).str()); 4521 if (llvm::sys::fs::can_execute(Twine(P))) 4522 return P.str(); 4523 } 4524 } 4525 4526 const ToolChain::path_list &List = TC.getProgramPaths(); 4527 for (const auto &Path : List) { 4528 SmallString<128> P(Path); 4529 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4530 return P.str(); 4531 } 4532 4533 // If all else failed, search the path. 4534 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) 4535 if (llvm::ErrorOr<std::string> P = 4536 llvm::sys::findProgramByName(TargetSpecificExecutable)) 4537 return *P; 4538 4539 return Name; 4540 } 4541 4542 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { 4543 SmallString<128> Path; 4544 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); 4545 if (EC) { 4546 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4547 return ""; 4548 } 4549 4550 return Path.str(); 4551 } 4552 4553 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { 4554 SmallString<128> Path; 4555 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); 4556 if (EC) { 4557 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4558 return ""; 4559 } 4560 4561 return Path.str(); 4562 } 4563 4564 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { 4565 SmallString<128> Output; 4566 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { 4567 // FIXME: If anybody needs it, implement this obscure rule: 4568 // "If you specify a directory without a file name, the default file name 4569 // is VCx0.pch., where x is the major version of Visual C++ in use." 4570 Output = FpArg->getValue(); 4571 4572 // "If you do not specify an extension as part of the path name, an 4573 // extension of .pch is assumed. " 4574 if (!llvm::sys::path::has_extension(Output)) 4575 Output += ".pch"; 4576 } else { 4577 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) 4578 Output = YcArg->getValue(); 4579 if (Output.empty()) 4580 Output = BaseName; 4581 llvm::sys::path::replace_extension(Output, ".pch"); 4582 } 4583 return Output.str(); 4584 } 4585 4586 const ToolChain &Driver::getToolChain(const ArgList &Args, 4587 const llvm::Triple &Target) const { 4588 4589 auto &TC = ToolChains[Target.str()]; 4590 if (!TC) { 4591 switch (Target.getOS()) { 4592 case llvm::Triple::Haiku: 4593 TC = llvm::make_unique<toolchains::Haiku>(*this, Target, Args); 4594 break; 4595 case llvm::Triple::Ananas: 4596 TC = llvm::make_unique<toolchains::Ananas>(*this, Target, Args); 4597 break; 4598 case llvm::Triple::CloudABI: 4599 TC = llvm::make_unique<toolchains::CloudABI>(*this, Target, Args); 4600 break; 4601 case llvm::Triple::Darwin: 4602 case llvm::Triple::MacOSX: 4603 case llvm::Triple::IOS: 4604 case llvm::Triple::TvOS: 4605 case llvm::Triple::WatchOS: 4606 TC = llvm::make_unique<toolchains::DarwinClang>(*this, Target, Args); 4607 break; 4608 case llvm::Triple::DragonFly: 4609 TC = llvm::make_unique<toolchains::DragonFly>(*this, Target, Args); 4610 break; 4611 case llvm::Triple::OpenBSD: 4612 TC = llvm::make_unique<toolchains::OpenBSD>(*this, Target, Args); 4613 break; 4614 case llvm::Triple::NetBSD: 4615 TC = llvm::make_unique<toolchains::NetBSD>(*this, Target, Args); 4616 break; 4617 case llvm::Triple::FreeBSD: 4618 TC = llvm::make_unique<toolchains::FreeBSD>(*this, Target, Args); 4619 break; 4620 case llvm::Triple::Minix: 4621 TC = llvm::make_unique<toolchains::Minix>(*this, Target, Args); 4622 break; 4623 case llvm::Triple::Linux: 4624 case llvm::Triple::ELFIAMCU: 4625 if (Target.getArch() == llvm::Triple::hexagon) 4626 TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target, 4627 Args); 4628 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && 4629 !Target.hasEnvironment()) 4630 TC = llvm::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, 4631 Args); 4632 else if (Target.getArch() == llvm::Triple::ppc || 4633 Target.getArch() == llvm::Triple::ppc64 || 4634 Target.getArch() == llvm::Triple::ppc64le) 4635 TC = llvm::make_unique<toolchains::PPCLinuxToolChain>(*this, Target, 4636 Args); 4637 else 4638 TC = llvm::make_unique<toolchains::Linux>(*this, Target, Args); 4639 break; 4640 case llvm::Triple::NaCl: 4641 TC = llvm::make_unique<toolchains::NaClToolChain>(*this, Target, Args); 4642 break; 4643 case llvm::Triple::Fuchsia: 4644 TC = llvm::make_unique<toolchains::Fuchsia>(*this, Target, Args); 4645 break; 4646 case llvm::Triple::Solaris: 4647 TC = llvm::make_unique<toolchains::Solaris>(*this, Target, Args); 4648 break; 4649 case llvm::Triple::AMDHSA: 4650 case llvm::Triple::AMDPAL: 4651 case llvm::Triple::Mesa3D: 4652 TC = llvm::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); 4653 break; 4654 case llvm::Triple::Win32: 4655 switch (Target.getEnvironment()) { 4656 default: 4657 if (Target.isOSBinFormatELF()) 4658 TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4659 else if (Target.isOSBinFormatMachO()) 4660 TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args); 4661 else 4662 TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4663 break; 4664 case llvm::Triple::GNU: 4665 TC = llvm::make_unique<toolchains::MinGW>(*this, Target, Args); 4666 break; 4667 case llvm::Triple::Itanium: 4668 TC = llvm::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, 4669 Args); 4670 break; 4671 case llvm::Triple::MSVC: 4672 case llvm::Triple::UnknownEnvironment: 4673 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) 4674 .startswith_lower("bfd")) 4675 TC = llvm::make_unique<toolchains::CrossWindowsToolChain>( 4676 *this, Target, Args); 4677 else 4678 TC = 4679 llvm::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); 4680 break; 4681 } 4682 break; 4683 case llvm::Triple::PS4: 4684 TC = llvm::make_unique<toolchains::PS4CPU>(*this, Target, Args); 4685 break; 4686 case llvm::Triple::Contiki: 4687 TC = llvm::make_unique<toolchains::Contiki>(*this, Target, Args); 4688 break; 4689 case llvm::Triple::Hurd: 4690 TC = llvm::make_unique<toolchains::Hurd>(*this, Target, Args); 4691 break; 4692 default: 4693 // Of these targets, Hexagon is the only one that might have 4694 // an OS of Linux, in which case it got handled above already. 4695 switch (Target.getArch()) { 4696 case llvm::Triple::tce: 4697 TC = llvm::make_unique<toolchains::TCEToolChain>(*this, Target, Args); 4698 break; 4699 case llvm::Triple::tcele: 4700 TC = llvm::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); 4701 break; 4702 case llvm::Triple::hexagon: 4703 TC = llvm::make_unique<toolchains::HexagonToolChain>(*this, Target, 4704 Args); 4705 break; 4706 case llvm::Triple::lanai: 4707 TC = llvm::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); 4708 break; 4709 case llvm::Triple::xcore: 4710 TC = llvm::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); 4711 break; 4712 case llvm::Triple::wasm32: 4713 case llvm::Triple::wasm64: 4714 TC = llvm::make_unique<toolchains::WebAssembly>(*this, Target, Args); 4715 break; 4716 case llvm::Triple::avr: 4717 TC = llvm::make_unique<toolchains::AVRToolChain>(*this, Target, Args); 4718 break; 4719 case llvm::Triple::msp430: 4720 TC = 4721 llvm::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args); 4722 break; 4723 case llvm::Triple::riscv32: 4724 case llvm::Triple::riscv64: 4725 TC = llvm::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); 4726 break; 4727 default: 4728 if (Target.getVendor() == llvm::Triple::Myriad) 4729 TC = llvm::make_unique<toolchains::MyriadToolChain>(*this, Target, 4730 Args); 4731 else if (toolchains::BareMetal::handlesTarget(Target)) 4732 TC = llvm::make_unique<toolchains::BareMetal>(*this, Target, Args); 4733 else if (Target.isOSBinFormatELF()) 4734 TC = llvm::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4735 else if (Target.isOSBinFormatMachO()) 4736 TC = llvm::make_unique<toolchains::MachO>(*this, Target, Args); 4737 else 4738 TC = llvm::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4739 } 4740 } 4741 } 4742 4743 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA 4744 // compiles always need two toolchains, the CUDA toolchain and the host 4745 // toolchain. So the only valid way to create a CUDA toolchain is via 4746 // CreateOffloadingDeviceToolChains. 4747 4748 return *TC; 4749 } 4750 4751 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { 4752 // Say "no" if there is not exactly one input of a type clang understands. 4753 if (JA.size() != 1 || 4754 !types::isAcceptedByClang((*JA.input_begin())->getType())) 4755 return false; 4756 4757 // And say "no" if this is not a kind of action clang understands. 4758 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 4759 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 4760 return false; 4761 4762 return true; 4763 } 4764 4765 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the 4766 /// grouped values as integers. Numbers which are not provided are set to 0. 4767 /// 4768 /// \return True if the entire string was parsed (9.2), or all groups were 4769 /// parsed (10.3.5extrastuff). 4770 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, 4771 unsigned &Micro, bool &HadExtra) { 4772 HadExtra = false; 4773 4774 Major = Minor = Micro = 0; 4775 if (Str.empty()) 4776 return false; 4777 4778 if (Str.consumeInteger(10, Major)) 4779 return false; 4780 if (Str.empty()) 4781 return true; 4782 if (Str[0] != '.') 4783 return false; 4784 4785 Str = Str.drop_front(1); 4786 4787 if (Str.consumeInteger(10, Minor)) 4788 return false; 4789 if (Str.empty()) 4790 return true; 4791 if (Str[0] != '.') 4792 return false; 4793 Str = Str.drop_front(1); 4794 4795 if (Str.consumeInteger(10, Micro)) 4796 return false; 4797 if (!Str.empty()) 4798 HadExtra = true; 4799 return true; 4800 } 4801 4802 /// Parse digits from a string \p Str and fulfill \p Digits with 4803 /// the parsed numbers. This method assumes that the max number of 4804 /// digits to look for is equal to Digits.size(). 4805 /// 4806 /// \return True if the entire string was parsed and there are 4807 /// no extra characters remaining at the end. 4808 bool Driver::GetReleaseVersion(StringRef Str, 4809 MutableArrayRef<unsigned> Digits) { 4810 if (Str.empty()) 4811 return false; 4812 4813 unsigned CurDigit = 0; 4814 while (CurDigit < Digits.size()) { 4815 unsigned Digit; 4816 if (Str.consumeInteger(10, Digit)) 4817 return false; 4818 Digits[CurDigit] = Digit; 4819 if (Str.empty()) 4820 return true; 4821 if (Str[0] != '.') 4822 return false; 4823 Str = Str.drop_front(1); 4824 CurDigit++; 4825 } 4826 4827 // More digits than requested, bail out... 4828 return false; 4829 } 4830 4831 std::pair<unsigned, unsigned> 4832 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const { 4833 unsigned IncludedFlagsBitmask = 0; 4834 unsigned ExcludedFlagsBitmask = options::NoDriverOption; 4835 4836 if (IsClCompatMode) { 4837 // Include CL and Core options. 4838 IncludedFlagsBitmask |= options::CLOption; 4839 IncludedFlagsBitmask |= options::CoreOption; 4840 } else { 4841 ExcludedFlagsBitmask |= options::CLOption; 4842 } 4843 4844 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); 4845 } 4846 4847 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { 4848 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); 4849 } 4850