1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Driver/Driver.h" 10 #include "InputInfo.h" 11 #include "ToolChains/AIX.h" 12 #include "ToolChains/AMDGPU.h" 13 #include "ToolChains/AVR.h" 14 #include "ToolChains/Ananas.h" 15 #include "ToolChains/BareMetal.h" 16 #include "ToolChains/Clang.h" 17 #include "ToolChains/CloudABI.h" 18 #include "ToolChains/Contiki.h" 19 #include "ToolChains/CrossWindows.h" 20 #include "ToolChains/Cuda.h" 21 #include "ToolChains/Darwin.h" 22 #include "ToolChains/DragonFly.h" 23 #include "ToolChains/FreeBSD.h" 24 #include "ToolChains/Fuchsia.h" 25 #include "ToolChains/Gnu.h" 26 #include "ToolChains/HIP.h" 27 #include "ToolChains/Haiku.h" 28 #include "ToolChains/Hexagon.h" 29 #include "ToolChains/Hurd.h" 30 #include "ToolChains/Lanai.h" 31 #include "ToolChains/Linux.h" 32 #include "ToolChains/MSP430.h" 33 #include "ToolChains/MSVC.h" 34 #include "ToolChains/MinGW.h" 35 #include "ToolChains/Minix.h" 36 #include "ToolChains/MipsLinux.h" 37 #include "ToolChains/Myriad.h" 38 #include "ToolChains/NaCl.h" 39 #include "ToolChains/NetBSD.h" 40 #include "ToolChains/OpenBSD.h" 41 #include "ToolChains/PS4CPU.h" 42 #include "ToolChains/PPCLinux.h" 43 #include "ToolChains/RISCVToolchain.h" 44 #include "ToolChains/Solaris.h" 45 #include "ToolChains/TCE.h" 46 #include "ToolChains/WebAssembly.h" 47 #include "ToolChains/XCore.h" 48 #include "clang/Basic/Version.h" 49 #include "clang/Config/config.h" 50 #include "clang/Driver/Action.h" 51 #include "clang/Driver/Compilation.h" 52 #include "clang/Driver/DriverDiagnostic.h" 53 #include "clang/Driver/Job.h" 54 #include "clang/Driver/Options.h" 55 #include "clang/Driver/SanitizerArgs.h" 56 #include "clang/Driver/Tool.h" 57 #include "clang/Driver/ToolChain.h" 58 #include "llvm/ADT/ArrayRef.h" 59 #include "llvm/ADT/STLExtras.h" 60 #include "llvm/ADT/SmallSet.h" 61 #include "llvm/ADT/StringExtras.h" 62 #include "llvm/ADT/StringSet.h" 63 #include "llvm/ADT/StringSwitch.h" 64 #include "llvm/Config/llvm-config.h" 65 #include "llvm/Option/Arg.h" 66 #include "llvm/Option/ArgList.h" 67 #include "llvm/Option/OptSpecifier.h" 68 #include "llvm/Option/OptTable.h" 69 #include "llvm/Option/Option.h" 70 #include "llvm/Support/CommandLine.h" 71 #include "llvm/Support/ErrorHandling.h" 72 #include "llvm/Support/FileSystem.h" 73 #include "llvm/Support/FormatVariadic.h" 74 #include "llvm/Support/Path.h" 75 #include "llvm/Support/PrettyStackTrace.h" 76 #include "llvm/Support/Process.h" 77 #include "llvm/Support/Program.h" 78 #include "llvm/Support/StringSaver.h" 79 #include "llvm/Support/TargetRegistry.h" 80 #include "llvm/Support/VirtualFileSystem.h" 81 #include "llvm/Support/raw_ostream.h" 82 #include <map> 83 #include <memory> 84 #include <utility> 85 #if LLVM_ON_UNIX 86 #include <unistd.h> // getpid 87 #include <sysexits.h> // EX_IOERR 88 #endif 89 90 using namespace clang::driver; 91 using namespace clang; 92 using namespace llvm::opt; 93 94 // static 95 std::string Driver::GetResourcesPath(StringRef BinaryPath, 96 StringRef CustomResourceDir) { 97 // Since the resource directory is embedded in the module hash, it's important 98 // that all places that need it call this function, so that they get the 99 // exact same string ("a/../b/" and "b/" get different hashes, for example). 100 101 // Dir is bin/ or lib/, depending on where BinaryPath is. 102 std::string Dir = llvm::sys::path::parent_path(BinaryPath); 103 104 SmallString<128> P(Dir); 105 if (CustomResourceDir != "") { 106 llvm::sys::path::append(P, CustomResourceDir); 107 } else { 108 // On Windows, libclang.dll is in bin/. 109 // On non-Windows, libclang.so/.dylib is in lib/. 110 // With a static-library build of libclang, LibClangPath will contain the 111 // path of the embedding binary, which for LLVM binaries will be in bin/. 112 // ../lib gets us to lib/ in both cases. 113 P = llvm::sys::path::parent_path(Dir); 114 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang", 115 CLANG_VERSION_STRING); 116 } 117 118 return P.str(); 119 } 120 121 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, 122 DiagnosticsEngine &Diags, 123 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 124 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode), 125 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None), 126 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT), 127 DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr), 128 CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr), 129 CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false), 130 CCLogDiagnostics(false), CCGenDiagnostics(false), 131 TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc), 132 CheckInputsExist(true), GenReproducer(false), 133 SuppressMissingInputWarning(false) { 134 135 // Provide a sane fallback if no VFS is specified. 136 if (!this->VFS) 137 this->VFS = llvm::vfs::getRealFileSystem(); 138 139 Name = llvm::sys::path::filename(ClangExecutable); 140 Dir = llvm::sys::path::parent_path(ClangExecutable); 141 InstalledDir = Dir; // Provide a sensible default installed dir. 142 143 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) 144 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; 145 #endif 146 #if defined(CLANG_CONFIG_FILE_USER_DIR) 147 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; 148 #endif 149 150 // Compute the path to the resource directory. 151 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); 152 } 153 154 void Driver::ParseDriverMode(StringRef ProgramName, 155 ArrayRef<const char *> Args) { 156 if (ClangNameParts.isEmpty()) 157 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); 158 setDriverModeFromOption(ClangNameParts.DriverMode); 159 160 for (const char *ArgPtr : Args) { 161 // Ignore nullptrs, they are the response file's EOL markers. 162 if (ArgPtr == nullptr) 163 continue; 164 const StringRef Arg = ArgPtr; 165 setDriverModeFromOption(Arg); 166 } 167 } 168 169 void Driver::setDriverModeFromOption(StringRef Opt) { 170 const std::string OptName = 171 getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); 172 if (!Opt.startswith(OptName)) 173 return; 174 StringRef Value = Opt.drop_front(OptName.size()); 175 176 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) 177 .Case("gcc", GCCMode) 178 .Case("g++", GXXMode) 179 .Case("cpp", CPPMode) 180 .Case("cl", CLMode) 181 .Case("flang", FlangMode) 182 .Default(None)) 183 Mode = *M; 184 else 185 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; 186 } 187 188 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, 189 bool IsClCompatMode, 190 bool &ContainsError) { 191 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); 192 ContainsError = false; 193 194 unsigned IncludedFlagsBitmask; 195 unsigned ExcludedFlagsBitmask; 196 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 197 getIncludeExcludeOptionFlagMasks(IsClCompatMode); 198 199 unsigned MissingArgIndex, MissingArgCount; 200 InputArgList Args = 201 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, 202 IncludedFlagsBitmask, ExcludedFlagsBitmask); 203 204 // Check for missing argument error. 205 if (MissingArgCount) { 206 Diag(diag::err_drv_missing_argument) 207 << Args.getArgString(MissingArgIndex) << MissingArgCount; 208 ContainsError |= 209 Diags.getDiagnosticLevel(diag::err_drv_missing_argument, 210 SourceLocation()) > DiagnosticsEngine::Warning; 211 } 212 213 // Check for unsupported options. 214 for (const Arg *A : Args) { 215 if (A->getOption().hasFlag(options::Unsupported)) { 216 unsigned DiagID; 217 auto ArgString = A->getAsString(Args); 218 std::string Nearest; 219 if (getOpts().findNearest( 220 ArgString, Nearest, IncludedFlagsBitmask, 221 ExcludedFlagsBitmask | options::Unsupported) > 1) { 222 DiagID = diag::err_drv_unsupported_opt; 223 Diag(DiagID) << ArgString; 224 } else { 225 DiagID = diag::err_drv_unsupported_opt_with_suggestion; 226 Diag(DiagID) << ArgString << Nearest; 227 } 228 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 229 DiagnosticsEngine::Warning; 230 continue; 231 } 232 233 // Warn about -mcpu= without an argument. 234 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { 235 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); 236 ContainsError |= Diags.getDiagnosticLevel( 237 diag::warn_drv_empty_joined_argument, 238 SourceLocation()) > DiagnosticsEngine::Warning; 239 } 240 } 241 242 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { 243 unsigned DiagID; 244 auto ArgString = A->getAsString(Args); 245 std::string Nearest; 246 if (getOpts().findNearest( 247 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { 248 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl 249 : diag::err_drv_unknown_argument; 250 Diags.Report(DiagID) << ArgString; 251 } else { 252 DiagID = IsCLMode() 253 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion 254 : diag::err_drv_unknown_argument_with_suggestion; 255 Diags.Report(DiagID) << ArgString << Nearest; 256 } 257 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 258 DiagnosticsEngine::Warning; 259 } 260 261 return Args; 262 } 263 264 // Determine which compilation mode we are in. We look for options which 265 // affect the phase, starting with the earliest phases, and record which 266 // option we used to determine the final phase. 267 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, 268 Arg **FinalPhaseArg) const { 269 Arg *PhaseArg = nullptr; 270 phases::ID FinalPhase; 271 272 // -{E,EP,P,M,MM} only run the preprocessor. 273 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || 274 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || 275 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || 276 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { 277 FinalPhase = phases::Preprocess; 278 279 // --precompile only runs up to precompilation. 280 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { 281 FinalPhase = phases::Precompile; 282 283 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. 284 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || 285 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || 286 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || 287 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || 288 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || 289 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || 290 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || 291 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) || 292 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { 293 FinalPhase = phases::Compile; 294 295 // -S only runs up to the backend. 296 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { 297 FinalPhase = phases::Backend; 298 299 // -c compilation only runs up to the assembler. 300 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { 301 FinalPhase = phases::Assemble; 302 303 // Otherwise do everything. 304 } else 305 FinalPhase = phases::Link; 306 307 if (FinalPhaseArg) 308 *FinalPhaseArg = PhaseArg; 309 310 return FinalPhase; 311 } 312 313 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts, 314 StringRef Value, bool Claim = true) { 315 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, 316 Args.getBaseArgs().MakeIndex(Value), Value.data()); 317 Args.AddSynthesizedArg(A); 318 if (Claim) 319 A->claim(); 320 return A; 321 } 322 323 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { 324 const llvm::opt::OptTable &Opts = getOpts(); 325 DerivedArgList *DAL = new DerivedArgList(Args); 326 327 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); 328 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); 329 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); 330 for (Arg *A : Args) { 331 // Unfortunately, we have to parse some forwarding options (-Xassembler, 332 // -Xlinker, -Xpreprocessor) because we either integrate their functionality 333 // (assembler and preprocessor), or bypass a previous driver ('collect2'). 334 335 // Rewrite linker options, to replace --no-demangle with a custom internal 336 // option. 337 if ((A->getOption().matches(options::OPT_Wl_COMMA) || 338 A->getOption().matches(options::OPT_Xlinker)) && 339 A->containsValue("--no-demangle")) { 340 // Add the rewritten no-demangle argument. 341 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle)); 342 343 // Add the remaining values as Xlinker arguments. 344 for (StringRef Val : A->getValues()) 345 if (Val != "--no-demangle") 346 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val); 347 348 continue; 349 } 350 351 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by 352 // some build systems. We don't try to be complete here because we don't 353 // care to encourage this usage model. 354 if (A->getOption().matches(options::OPT_Wp_COMMA) && 355 (A->getValue(0) == StringRef("-MD") || 356 A->getValue(0) == StringRef("-MMD"))) { 357 // Rewrite to -MD/-MMD along with -MF. 358 if (A->getValue(0) == StringRef("-MD")) 359 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD)); 360 else 361 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD)); 362 if (A->getNumValues() == 2) 363 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1)); 364 continue; 365 } 366 367 // Rewrite reserved library names. 368 if (A->getOption().matches(options::OPT_l)) { 369 StringRef Value = A->getValue(); 370 371 // Rewrite unless -nostdlib is present. 372 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && 373 Value == "stdc++") { 374 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx)); 375 continue; 376 } 377 378 // Rewrite unconditionally. 379 if (Value == "cc_kext") { 380 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext)); 381 continue; 382 } 383 } 384 385 // Pick up inputs via the -- option. 386 if (A->getOption().matches(options::OPT__DASH_DASH)) { 387 A->claim(); 388 for (StringRef Val : A->getValues()) 389 DAL->append(MakeInputArg(*DAL, Opts, Val, false)); 390 continue; 391 } 392 393 DAL->append(A); 394 } 395 396 // Enforce -static if -miamcu is present. 397 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) 398 DAL->AddFlagArg(0, Opts.getOption(options::OPT_static)); 399 400 // Add a default value of -mlinker-version=, if one was given and the user 401 // didn't specify one. 402 #if defined(HOST_LINK_VERSION) 403 if (!Args.hasArg(options::OPT_mlinker_version_EQ) && 404 strlen(HOST_LINK_VERSION) > 0) { 405 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ), 406 HOST_LINK_VERSION); 407 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); 408 } 409 #endif 410 411 return DAL; 412 } 413 414 /// Compute target triple from args. 415 /// 416 /// This routine provides the logic to compute a target triple from various 417 /// args passed to the driver and the default triple string. 418 static llvm::Triple computeTargetTriple(const Driver &D, 419 StringRef TargetTriple, 420 const ArgList &Args, 421 StringRef DarwinArchName = "") { 422 // FIXME: Already done in Compilation *Driver::BuildCompilation 423 if (const Arg *A = Args.getLastArg(options::OPT_target)) 424 TargetTriple = A->getValue(); 425 426 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 427 428 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made 429 // -gnu* only, and we can not change this, so we have to detect that case as 430 // being the Hurd OS. 431 if (TargetTriple.find("-unknown-gnu") != StringRef::npos || 432 TargetTriple.find("-pc-gnu") != StringRef::npos) 433 Target.setOSName("hurd"); 434 435 // Handle Apple-specific options available here. 436 if (Target.isOSBinFormatMachO()) { 437 // If an explicit Darwin arch name is given, that trumps all. 438 if (!DarwinArchName.empty()) { 439 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); 440 return Target; 441 } 442 443 // Handle the Darwin '-arch' flag. 444 if (Arg *A = Args.getLastArg(options::OPT_arch)) { 445 StringRef ArchName = A->getValue(); 446 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); 447 } 448 } 449 450 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and 451 // '-mbig-endian'/'-EB'. 452 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, 453 options::OPT_mbig_endian)) { 454 if (A->getOption().matches(options::OPT_mlittle_endian)) { 455 llvm::Triple LE = Target.getLittleEndianArchVariant(); 456 if (LE.getArch() != llvm::Triple::UnknownArch) 457 Target = std::move(LE); 458 } else { 459 llvm::Triple BE = Target.getBigEndianArchVariant(); 460 if (BE.getArch() != llvm::Triple::UnknownArch) 461 Target = std::move(BE); 462 } 463 } 464 465 // Skip further flag support on OSes which don't support '-m32' or '-m64'. 466 if (Target.getArch() == llvm::Triple::tce || 467 Target.getOS() == llvm::Triple::Minix) 468 return Target; 469 470 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. 471 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, 472 options::OPT_m32, options::OPT_m16); 473 if (A) { 474 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 475 476 if (A->getOption().matches(options::OPT_m64)) { 477 AT = Target.get64BitArchVariant().getArch(); 478 if (Target.getEnvironment() == llvm::Triple::GNUX32) 479 Target.setEnvironment(llvm::Triple::GNU); 480 } else if (A->getOption().matches(options::OPT_mx32) && 481 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { 482 AT = llvm::Triple::x86_64; 483 Target.setEnvironment(llvm::Triple::GNUX32); 484 } else if (A->getOption().matches(options::OPT_m32)) { 485 AT = Target.get32BitArchVariant().getArch(); 486 if (Target.getEnvironment() == llvm::Triple::GNUX32) 487 Target.setEnvironment(llvm::Triple::GNU); 488 } else if (A->getOption().matches(options::OPT_m16) && 489 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { 490 AT = llvm::Triple::x86; 491 Target.setEnvironment(llvm::Triple::CODE16); 492 } 493 494 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 495 Target.setArch(AT); 496 } 497 498 // Handle -miamcu flag. 499 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { 500 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) 501 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" 502 << Target.str(); 503 504 if (A && !A->getOption().matches(options::OPT_m32)) 505 D.Diag(diag::err_drv_argument_not_allowed_with) 506 << "-miamcu" << A->getBaseArg().getAsString(Args); 507 508 Target.setArch(llvm::Triple::x86); 509 Target.setArchName("i586"); 510 Target.setEnvironment(llvm::Triple::UnknownEnvironment); 511 Target.setEnvironmentName(""); 512 Target.setOS(llvm::Triple::ELFIAMCU); 513 Target.setVendor(llvm::Triple::UnknownVendor); 514 Target.setVendorName("intel"); 515 } 516 517 // If target is MIPS adjust the target triple 518 // accordingly to provided ABI name. 519 A = Args.getLastArg(options::OPT_mabi_EQ); 520 if (A && Target.isMIPS()) { 521 StringRef ABIName = A->getValue(); 522 if (ABIName == "32") { 523 Target = Target.get32BitArchVariant(); 524 if (Target.getEnvironment() == llvm::Triple::GNUABI64 || 525 Target.getEnvironment() == llvm::Triple::GNUABIN32) 526 Target.setEnvironment(llvm::Triple::GNU); 527 } else if (ABIName == "n32") { 528 Target = Target.get64BitArchVariant(); 529 if (Target.getEnvironment() == llvm::Triple::GNU || 530 Target.getEnvironment() == llvm::Triple::GNUABI64) 531 Target.setEnvironment(llvm::Triple::GNUABIN32); 532 } else if (ABIName == "64") { 533 Target = Target.get64BitArchVariant(); 534 if (Target.getEnvironment() == llvm::Triple::GNU || 535 Target.getEnvironment() == llvm::Triple::GNUABIN32) 536 Target.setEnvironment(llvm::Triple::GNUABI64); 537 } 538 } 539 540 // If target is RISC-V adjust the target triple according to 541 // provided architecture name 542 A = Args.getLastArg(options::OPT_march_EQ); 543 if (A && Target.isRISCV()) { 544 StringRef ArchName = A->getValue(); 545 if (ArchName.startswith_lower("rv32")) 546 Target.setArch(llvm::Triple::riscv32); 547 else if (ArchName.startswith_lower("rv64")) 548 Target.setArch(llvm::Triple::riscv64); 549 } 550 551 return Target; 552 } 553 554 // Parse the LTO options and record the type of LTO compilation 555 // based on which -f(no-)?lto(=.*)? option occurs last. 556 void Driver::setLTOMode(const llvm::opt::ArgList &Args) { 557 LTOMode = LTOK_None; 558 if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, 559 options::OPT_fno_lto, false)) 560 return; 561 562 StringRef LTOName("full"); 563 564 const Arg *A = Args.getLastArg(options::OPT_flto_EQ); 565 if (A) 566 LTOName = A->getValue(); 567 568 LTOMode = llvm::StringSwitch<LTOKind>(LTOName) 569 .Case("full", LTOK_Full) 570 .Case("thin", LTOK_Thin) 571 .Default(LTOK_Unknown); 572 573 if (LTOMode == LTOK_Unknown) { 574 assert(A); 575 Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() 576 << A->getValue(); 577 } 578 } 579 580 /// Compute the desired OpenMP runtime from the flags provided. 581 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { 582 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); 583 584 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); 585 if (A) 586 RuntimeName = A->getValue(); 587 588 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) 589 .Case("libomp", OMPRT_OMP) 590 .Case("libgomp", OMPRT_GOMP) 591 .Case("libiomp5", OMPRT_IOMP5) 592 .Default(OMPRT_Unknown); 593 594 if (RT == OMPRT_Unknown) { 595 if (A) 596 Diag(diag::err_drv_unsupported_option_argument) 597 << A->getOption().getName() << A->getValue(); 598 else 599 // FIXME: We could use a nicer diagnostic here. 600 Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; 601 } 602 603 return RT; 604 } 605 606 void Driver::CreateOffloadingDeviceToolChains(Compilation &C, 607 InputList &Inputs) { 608 609 // 610 // CUDA/HIP 611 // 612 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA 613 // or HIP type. However, mixed CUDA/HIP compilation is not supported. 614 bool IsCuda = 615 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 616 return types::isCuda(I.first); 617 }); 618 bool IsHIP = 619 llvm::any_of(Inputs, 620 [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 621 return types::isHIP(I.first); 622 }) || 623 C.getInputArgs().hasArg(options::OPT_hip_link); 624 if (IsCuda && IsHIP) { 625 Diag(clang::diag::err_drv_mix_cuda_hip); 626 return; 627 } 628 if (IsCuda) { 629 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 630 const llvm::Triple &HostTriple = HostTC->getTriple(); 631 StringRef DeviceTripleStr; 632 auto OFK = Action::OFK_Cuda; 633 DeviceTripleStr = 634 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; 635 llvm::Triple CudaTriple(DeviceTripleStr); 636 // Use the CUDA and host triples as the key into the ToolChains map, 637 // because the device toolchain we create depends on both. 638 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; 639 if (!CudaTC) { 640 CudaTC = std::make_unique<toolchains::CudaToolChain>( 641 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); 642 } 643 C.addOffloadDeviceToolChain(CudaTC.get(), OFK); 644 } else if (IsHIP) { 645 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 646 const llvm::Triple &HostTriple = HostTC->getTriple(); 647 StringRef DeviceTripleStr; 648 auto OFK = Action::OFK_HIP; 649 DeviceTripleStr = "amdgcn-amd-amdhsa"; 650 llvm::Triple HIPTriple(DeviceTripleStr); 651 // Use the HIP and host triples as the key into the ToolChains map, 652 // because the device toolchain we create depends on both. 653 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; 654 if (!HIPTC) { 655 HIPTC = std::make_unique<toolchains::HIPToolChain>( 656 *this, HIPTriple, *HostTC, C.getInputArgs()); 657 } 658 C.addOffloadDeviceToolChain(HIPTC.get(), OFK); 659 } 660 661 // 662 // OpenMP 663 // 664 // We need to generate an OpenMP toolchain if the user specified targets with 665 // the -fopenmp-targets option. 666 if (Arg *OpenMPTargets = 667 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 668 if (OpenMPTargets->getNumValues()) { 669 // We expect that -fopenmp-targets is always used in conjunction with the 670 // option -fopenmp specifying a valid runtime with offloading support, 671 // i.e. libomp or libiomp. 672 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( 673 options::OPT_fopenmp, options::OPT_fopenmp_EQ, 674 options::OPT_fno_openmp, false); 675 if (HasValidOpenMPRuntime) { 676 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); 677 HasValidOpenMPRuntime = 678 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; 679 } 680 681 if (HasValidOpenMPRuntime) { 682 llvm::StringMap<const char *> FoundNormalizedTriples; 683 for (const char *Val : OpenMPTargets->getValues()) { 684 llvm::Triple TT(Val); 685 std::string NormalizedName = TT.normalize(); 686 687 // Make sure we don't have a duplicate triple. 688 auto Duplicate = FoundNormalizedTriples.find(NormalizedName); 689 if (Duplicate != FoundNormalizedTriples.end()) { 690 Diag(clang::diag::warn_drv_omp_offload_target_duplicate) 691 << Val << Duplicate->second; 692 continue; 693 } 694 695 // Store the current triple so that we can check for duplicates in the 696 // following iterations. 697 FoundNormalizedTriples[NormalizedName] = Val; 698 699 // If the specified target is invalid, emit a diagnostic. 700 if (TT.getArch() == llvm::Triple::UnknownArch) 701 Diag(clang::diag::err_drv_invalid_omp_target) << Val; 702 else { 703 const ToolChain *TC; 704 // CUDA toolchains have to be selected differently. They pair host 705 // and device in their implementation. 706 if (TT.isNVPTX()) { 707 const ToolChain *HostTC = 708 C.getSingleOffloadToolChain<Action::OFK_Host>(); 709 assert(HostTC && "Host toolchain should be always defined."); 710 auto &CudaTC = 711 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; 712 if (!CudaTC) 713 CudaTC = std::make_unique<toolchains::CudaToolChain>( 714 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); 715 TC = CudaTC.get(); 716 } else 717 TC = &getToolChain(C.getInputArgs(), TT); 718 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); 719 } 720 } 721 } else 722 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 723 } else 724 Diag(clang::diag::warn_drv_empty_joined_argument) 725 << OpenMPTargets->getAsString(C.getInputArgs()); 726 } 727 728 // 729 // TODO: Add support for other offloading programming models here. 730 // 731 } 732 733 /// Looks the given directories for the specified file. 734 /// 735 /// \param[out] FilePath File path, if the file was found. 736 /// \param[in] Dirs Directories used for the search. 737 /// \param[in] FileName Name of the file to search for. 738 /// \return True if file was found. 739 /// 740 /// Looks for file specified by FileName sequentially in directories specified 741 /// by Dirs. 742 /// 743 static bool searchForFile(SmallVectorImpl<char> &FilePath, 744 ArrayRef<std::string> Dirs, 745 StringRef FileName) { 746 SmallString<128> WPath; 747 for (const std::string &Dir : Dirs) { 748 if (Dir.empty()) 749 continue; 750 WPath.clear(); 751 llvm::sys::path::append(WPath, Dir, FileName); 752 llvm::sys::path::native(WPath); 753 if (llvm::sys::fs::is_regular_file(WPath)) { 754 FilePath = std::move(WPath); 755 return true; 756 } 757 } 758 return false; 759 } 760 761 bool Driver::readConfigFile(StringRef FileName) { 762 // Try reading the given file. 763 SmallVector<const char *, 32> NewCfgArgs; 764 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { 765 Diag(diag::err_drv_cannot_read_config_file) << FileName; 766 return true; 767 } 768 769 // Read options from config file. 770 llvm::SmallString<128> CfgFileName(FileName); 771 llvm::sys::path::native(CfgFileName); 772 ConfigFile = CfgFileName.str(); 773 bool ContainErrors; 774 CfgOptions = std::make_unique<InputArgList>( 775 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); 776 if (ContainErrors) { 777 CfgOptions.reset(); 778 return true; 779 } 780 781 if (CfgOptions->hasArg(options::OPT_config)) { 782 CfgOptions.reset(); 783 Diag(diag::err_drv_nested_config_file); 784 return true; 785 } 786 787 // Claim all arguments that come from a configuration file so that the driver 788 // does not warn on any that is unused. 789 for (Arg *A : *CfgOptions) 790 A->claim(); 791 return false; 792 } 793 794 bool Driver::loadConfigFile() { 795 std::string CfgFileName; 796 bool FileSpecifiedExplicitly = false; 797 798 // Process options that change search path for config files. 799 if (CLOptions) { 800 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { 801 SmallString<128> CfgDir; 802 CfgDir.append( 803 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); 804 if (!CfgDir.empty()) { 805 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 806 SystemConfigDir.clear(); 807 else 808 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 809 } 810 } 811 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { 812 SmallString<128> CfgDir; 813 CfgDir.append( 814 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); 815 if (!CfgDir.empty()) { 816 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 817 UserConfigDir.clear(); 818 else 819 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 820 } 821 } 822 } 823 824 // First try to find config file specified in command line. 825 if (CLOptions) { 826 std::vector<std::string> ConfigFiles = 827 CLOptions->getAllArgValues(options::OPT_config); 828 if (ConfigFiles.size() > 1) { 829 Diag(diag::err_drv_duplicate_config); 830 return true; 831 } 832 833 if (!ConfigFiles.empty()) { 834 CfgFileName = ConfigFiles.front(); 835 assert(!CfgFileName.empty()); 836 837 // If argument contains directory separator, treat it as a path to 838 // configuration file. 839 if (llvm::sys::path::has_parent_path(CfgFileName)) { 840 SmallString<128> CfgFilePath; 841 if (llvm::sys::path::is_relative(CfgFileName)) 842 llvm::sys::fs::current_path(CfgFilePath); 843 llvm::sys::path::append(CfgFilePath, CfgFileName); 844 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { 845 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; 846 return true; 847 } 848 return readConfigFile(CfgFilePath); 849 } 850 851 FileSpecifiedExplicitly = true; 852 } 853 } 854 855 // If config file is not specified explicitly, try to deduce configuration 856 // from executable name. For instance, an executable 'armv7l-clang' will 857 // search for config file 'armv7l-clang.cfg'. 858 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) 859 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; 860 861 if (CfgFileName.empty()) 862 return false; 863 864 // Determine architecture part of the file name, if it is present. 865 StringRef CfgFileArch = CfgFileName; 866 size_t ArchPrefixLen = CfgFileArch.find('-'); 867 if (ArchPrefixLen == StringRef::npos) 868 ArchPrefixLen = CfgFileArch.size(); 869 llvm::Triple CfgTriple; 870 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); 871 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); 872 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) 873 ArchPrefixLen = 0; 874 875 if (!StringRef(CfgFileName).endswith(".cfg")) 876 CfgFileName += ".cfg"; 877 878 // If config file starts with architecture name and command line options 879 // redefine architecture (with options like -m32 -LE etc), try finding new 880 // config file with that architecture. 881 SmallString<128> FixedConfigFile; 882 size_t FixedArchPrefixLen = 0; 883 if (ArchPrefixLen) { 884 // Get architecture name from config file name like 'i386.cfg' or 885 // 'armv7l-clang.cfg'. 886 // Check if command line options changes effective triple. 887 llvm::Triple EffectiveTriple = computeTargetTriple(*this, 888 CfgTriple.getTriple(), *CLOptions); 889 if (CfgTriple.getArch() != EffectiveTriple.getArch()) { 890 FixedConfigFile = EffectiveTriple.getArchName(); 891 FixedArchPrefixLen = FixedConfigFile.size(); 892 // Append the rest of original file name so that file name transforms 893 // like: i386-clang.cfg -> x86_64-clang.cfg. 894 if (ArchPrefixLen < CfgFileName.size()) 895 FixedConfigFile += CfgFileName.substr(ArchPrefixLen); 896 } 897 } 898 899 // Prepare list of directories where config file is searched for. 900 SmallVector<std::string, 3> CfgFileSearchDirs; 901 CfgFileSearchDirs.push_back(UserConfigDir); 902 CfgFileSearchDirs.push_back(SystemConfigDir); 903 CfgFileSearchDirs.push_back(Dir); 904 905 // Try to find config file. First try file with corrected architecture. 906 llvm::SmallString<128> CfgFilePath; 907 if (!FixedConfigFile.empty()) { 908 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 909 return readConfigFile(CfgFilePath); 910 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. 911 FixedConfigFile.resize(FixedArchPrefixLen); 912 FixedConfigFile.append(".cfg"); 913 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 914 return readConfigFile(CfgFilePath); 915 } 916 917 // Then try original file name. 918 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 919 return readConfigFile(CfgFilePath); 920 921 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. 922 if (!ClangNameParts.ModeSuffix.empty() && 923 !ClangNameParts.TargetPrefix.empty()) { 924 CfgFileName.assign(ClangNameParts.TargetPrefix); 925 CfgFileName.append(".cfg"); 926 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 927 return readConfigFile(CfgFilePath); 928 } 929 930 // Report error but only if config file was specified explicitly, by option 931 // --config. If it was deduced from executable name, it is not an error. 932 if (FileSpecifiedExplicitly) { 933 Diag(diag::err_drv_config_file_not_found) << CfgFileName; 934 for (const std::string &SearchDir : CfgFileSearchDirs) 935 if (!SearchDir.empty()) 936 Diag(diag::note_drv_config_file_searched_in) << SearchDir; 937 return true; 938 } 939 940 return false; 941 } 942 943 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { 944 llvm::PrettyStackTraceString CrashInfo("Compilation construction"); 945 946 // FIXME: Handle environment options which affect driver behavior, somewhere 947 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. 948 949 if (Optional<std::string> CompilerPathValue = 950 llvm::sys::Process::GetEnv("COMPILER_PATH")) { 951 StringRef CompilerPath = *CompilerPathValue; 952 while (!CompilerPath.empty()) { 953 std::pair<StringRef, StringRef> Split = 954 CompilerPath.split(llvm::sys::EnvPathSeparator); 955 PrefixDirs.push_back(Split.first); 956 CompilerPath = Split.second; 957 } 958 } 959 960 // We look for the driver mode option early, because the mode can affect 961 // how other options are parsed. 962 ParseDriverMode(ClangExecutable, ArgList.slice(1)); 963 964 // FIXME: What are we going to do with -V and -b? 965 966 // Arguments specified in command line. 967 bool ContainsError; 968 CLOptions = std::make_unique<InputArgList>( 969 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); 970 971 // Try parsing configuration file. 972 if (!ContainsError) 973 ContainsError = loadConfigFile(); 974 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); 975 976 // All arguments, from both config file and command line. 977 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) 978 : std::move(*CLOptions)); 979 980 // The args for config files or /clang: flags belong to different InputArgList 981 // objects than Args. This copies an Arg from one of those other InputArgLists 982 // to the ownership of Args. 983 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) { 984 unsigned Index = Args.MakeIndex(Opt->getSpelling()); 985 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(), 986 Index, BaseArg); 987 Copy->getValues() = Opt->getValues(); 988 if (Opt->isClaimed()) 989 Copy->claim(); 990 Args.append(Copy); 991 }; 992 993 if (HasConfigFile) 994 for (auto *Opt : *CLOptions) { 995 if (Opt->getOption().matches(options::OPT_config)) 996 continue; 997 const Arg *BaseArg = &Opt->getBaseArg(); 998 if (BaseArg == Opt) 999 BaseArg = nullptr; 1000 appendOneArg(Opt, BaseArg); 1001 } 1002 1003 // In CL mode, look for any pass-through arguments 1004 if (IsCLMode() && !ContainsError) { 1005 SmallVector<const char *, 16> CLModePassThroughArgList; 1006 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { 1007 A->claim(); 1008 CLModePassThroughArgList.push_back(A->getValue()); 1009 } 1010 1011 if (!CLModePassThroughArgList.empty()) { 1012 // Parse any pass through args using default clang processing rather 1013 // than clang-cl processing. 1014 auto CLModePassThroughOptions = std::make_unique<InputArgList>( 1015 ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); 1016 1017 if (!ContainsError) 1018 for (auto *Opt : *CLModePassThroughOptions) { 1019 appendOneArg(Opt, nullptr); 1020 } 1021 } 1022 } 1023 1024 // Check for working directory option before accessing any files 1025 if (Arg *WD = Args.getLastArg(options::OPT_working_directory)) 1026 if (VFS->setCurrentWorkingDirectory(WD->getValue())) 1027 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue(); 1028 1029 // FIXME: This stuff needs to go into the Compilation, not the driver. 1030 bool CCCPrintPhases; 1031 1032 // Silence driver warnings if requested 1033 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); 1034 1035 // -no-canonical-prefixes is used very early in main. 1036 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); 1037 1038 // f(no-)integated-cc1 is also used very early in main. 1039 Args.ClaimAllArgs(options::OPT_fintegrated_cc1); 1040 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1); 1041 1042 // Ignore -pipe. 1043 Args.ClaimAllArgs(options::OPT_pipe); 1044 1045 // Extract -ccc args. 1046 // 1047 // FIXME: We need to figure out where this behavior should live. Most of it 1048 // should be outside in the client; the parts that aren't should have proper 1049 // options, either by introducing new ones or by overloading gcc ones like -V 1050 // or -b. 1051 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); 1052 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); 1053 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) 1054 CCCGenericGCCName = A->getValue(); 1055 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, 1056 options::OPT_fno_crash_diagnostics, 1057 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); 1058 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld 1059 // and getToolChain is const. 1060 if (IsCLMode()) { 1061 // clang-cl targets MSVC-style Win32. 1062 llvm::Triple T(TargetTriple); 1063 T.setOS(llvm::Triple::Win32); 1064 T.setVendor(llvm::Triple::PC); 1065 T.setEnvironment(llvm::Triple::MSVC); 1066 T.setObjectFormat(llvm::Triple::COFF); 1067 TargetTriple = T.str(); 1068 } 1069 if (const Arg *A = Args.getLastArg(options::OPT_target)) 1070 TargetTriple = A->getValue(); 1071 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) 1072 Dir = InstalledDir = A->getValue(); 1073 for (const Arg *A : Args.filtered(options::OPT_B)) { 1074 A->claim(); 1075 PrefixDirs.push_back(A->getValue(0)); 1076 } 1077 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) 1078 SysRoot = A->getValue(); 1079 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) 1080 DyldPrefix = A->getValue(); 1081 1082 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) 1083 ResourceDir = A->getValue(); 1084 1085 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { 1086 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) 1087 .Case("cwd", SaveTempsCwd) 1088 .Case("obj", SaveTempsObj) 1089 .Default(SaveTempsCwd); 1090 } 1091 1092 setLTOMode(Args); 1093 1094 // Process -fembed-bitcode= flags. 1095 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { 1096 StringRef Name = A->getValue(); 1097 unsigned Model = llvm::StringSwitch<unsigned>(Name) 1098 .Case("off", EmbedNone) 1099 .Case("all", EmbedBitcode) 1100 .Case("bitcode", EmbedBitcode) 1101 .Case("marker", EmbedMarker) 1102 .Default(~0U); 1103 if (Model == ~0U) { 1104 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) 1105 << Name; 1106 } else 1107 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); 1108 } 1109 1110 std::unique_ptr<llvm::opt::InputArgList> UArgs = 1111 std::make_unique<InputArgList>(std::move(Args)); 1112 1113 // Perform the default argument translations. 1114 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); 1115 1116 // Owned by the host. 1117 const ToolChain &TC = getToolChain( 1118 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); 1119 1120 // The compilation takes ownership of Args. 1121 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, 1122 ContainsError); 1123 1124 if (!HandleImmediateArgs(*C)) 1125 return C; 1126 1127 // Construct the list of inputs. 1128 InputList Inputs; 1129 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); 1130 1131 // Populate the tool chains for the offloading devices, if any. 1132 CreateOffloadingDeviceToolChains(*C, Inputs); 1133 1134 // Construct the list of abstract actions to perform for this compilation. On 1135 // MachO targets this uses the driver-driver and universal actions. 1136 if (TC.getTriple().isOSBinFormatMachO()) 1137 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); 1138 else 1139 BuildActions(*C, C->getArgs(), Inputs, C->getActions()); 1140 1141 if (CCCPrintPhases) { 1142 PrintActions(*C); 1143 return C; 1144 } 1145 1146 BuildJobs(*C); 1147 1148 return C; 1149 } 1150 1151 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { 1152 llvm::opt::ArgStringList ASL; 1153 for (const auto *A : Args) 1154 A->render(Args, ASL); 1155 1156 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { 1157 if (I != ASL.begin()) 1158 OS << ' '; 1159 Command::printArg(OS, *I, true); 1160 } 1161 OS << '\n'; 1162 } 1163 1164 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, 1165 SmallString<128> &CrashDiagDir) { 1166 using namespace llvm::sys; 1167 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && 1168 "Only knows about .crash files on Darwin"); 1169 1170 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ 1171 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern 1172 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. 1173 path::home_directory(CrashDiagDir); 1174 if (CrashDiagDir.startswith("/var/root")) 1175 CrashDiagDir = "/"; 1176 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); 1177 int PID = 1178 #if LLVM_ON_UNIX 1179 getpid(); 1180 #else 1181 0; 1182 #endif 1183 std::error_code EC; 1184 fs::file_status FileStatus; 1185 TimePoint<> LastAccessTime; 1186 SmallString<128> CrashFilePath; 1187 // Lookup the .crash files and get the one generated by a subprocess spawned 1188 // by this driver invocation. 1189 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; 1190 File != FileEnd && !EC; File.increment(EC)) { 1191 StringRef FileName = path::filename(File->path()); 1192 if (!FileName.startswith(Name)) 1193 continue; 1194 if (fs::status(File->path(), FileStatus)) 1195 continue; 1196 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = 1197 llvm::MemoryBuffer::getFile(File->path()); 1198 if (!CrashFile) 1199 continue; 1200 // The first line should start with "Process:", otherwise this isn't a real 1201 // .crash file. 1202 StringRef Data = CrashFile.get()->getBuffer(); 1203 if (!Data.startswith("Process:")) 1204 continue; 1205 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" 1206 size_t ParentProcPos = Data.find("Parent Process:"); 1207 if (ParentProcPos == StringRef::npos) 1208 continue; 1209 size_t LineEnd = Data.find_first_of("\n", ParentProcPos); 1210 if (LineEnd == StringRef::npos) 1211 continue; 1212 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); 1213 int OpenBracket = -1, CloseBracket = -1; 1214 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { 1215 if (ParentProcess[i] == '[') 1216 OpenBracket = i; 1217 if (ParentProcess[i] == ']') 1218 CloseBracket = i; 1219 } 1220 // Extract the parent process PID from the .crash file and check whether 1221 // it matches this driver invocation pid. 1222 int CrashPID; 1223 if (OpenBracket < 0 || CloseBracket < 0 || 1224 ParentProcess.slice(OpenBracket + 1, CloseBracket) 1225 .getAsInteger(10, CrashPID) || CrashPID != PID) { 1226 continue; 1227 } 1228 1229 // Found a .crash file matching the driver pid. To avoid getting an older 1230 // and misleading crash file, continue looking for the most recent. 1231 // FIXME: the driver can dispatch multiple cc1 invocations, leading to 1232 // multiple crashes poiting to the same parent process. Since the driver 1233 // does not collect pid information for the dispatched invocation there's 1234 // currently no way to distinguish among them. 1235 const auto FileAccessTime = FileStatus.getLastModificationTime(); 1236 if (FileAccessTime > LastAccessTime) { 1237 CrashFilePath.assign(File->path()); 1238 LastAccessTime = FileAccessTime; 1239 } 1240 } 1241 1242 // If found, copy it over to the location of other reproducer files. 1243 if (!CrashFilePath.empty()) { 1244 EC = fs::copy_file(CrashFilePath, ReproCrashFilename); 1245 if (EC) 1246 return false; 1247 return true; 1248 } 1249 1250 return false; 1251 } 1252 1253 // When clang crashes, produce diagnostic information including the fully 1254 // preprocessed source file(s). Request that the developer attach the 1255 // diagnostic information to a bug report. 1256 void Driver::generateCompilationDiagnostics( 1257 Compilation &C, const Command &FailingCommand, 1258 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { 1259 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) 1260 return; 1261 1262 // Don't try to generate diagnostics for link or dsymutil jobs. 1263 if (FailingCommand.getCreator().isLinkJob() || 1264 FailingCommand.getCreator().isDsymutilJob()) 1265 return; 1266 1267 // Print the version of the compiler. 1268 PrintVersion(C, llvm::errs()); 1269 1270 Diag(clang::diag::note_drv_command_failed_diag_msg) 1271 << "PLEASE submit a bug report to " BUG_REPORT_URL " and include the " 1272 "crash backtrace, preprocessed source, and associated run script."; 1273 1274 // Suppress driver output and emit preprocessor output to temp file. 1275 Mode = CPPMode; 1276 CCGenDiagnostics = true; 1277 1278 // Save the original job command(s). 1279 Command Cmd = FailingCommand; 1280 1281 // Keep track of whether we produce any errors while trying to produce 1282 // preprocessed sources. 1283 DiagnosticErrorTrap Trap(Diags); 1284 1285 // Suppress tool output. 1286 C.initCompilationForDiagnostics(); 1287 1288 // Construct the list of inputs. 1289 InputList Inputs; 1290 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); 1291 1292 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { 1293 bool IgnoreInput = false; 1294 1295 // Ignore input from stdin or any inputs that cannot be preprocessed. 1296 // Check type first as not all linker inputs have a value. 1297 if (types::getPreprocessedType(it->first) == types::TY_INVALID) { 1298 IgnoreInput = true; 1299 } else if (!strcmp(it->second->getValue(), "-")) { 1300 Diag(clang::diag::note_drv_command_failed_diag_msg) 1301 << "Error generating preprocessed source(s) - " 1302 "ignoring input from stdin."; 1303 IgnoreInput = true; 1304 } 1305 1306 if (IgnoreInput) { 1307 it = Inputs.erase(it); 1308 ie = Inputs.end(); 1309 } else { 1310 ++it; 1311 } 1312 } 1313 1314 if (Inputs.empty()) { 1315 Diag(clang::diag::note_drv_command_failed_diag_msg) 1316 << "Error generating preprocessed source(s) - " 1317 "no preprocessable inputs."; 1318 return; 1319 } 1320 1321 // Don't attempt to generate preprocessed files if multiple -arch options are 1322 // used, unless they're all duplicates. 1323 llvm::StringSet<> ArchNames; 1324 for (const Arg *A : C.getArgs()) { 1325 if (A->getOption().matches(options::OPT_arch)) { 1326 StringRef ArchName = A->getValue(); 1327 ArchNames.insert(ArchName); 1328 } 1329 } 1330 if (ArchNames.size() > 1) { 1331 Diag(clang::diag::note_drv_command_failed_diag_msg) 1332 << "Error generating preprocessed source(s) - cannot generate " 1333 "preprocessed source with multiple -arch options."; 1334 return; 1335 } 1336 1337 // Construct the list of abstract actions to perform for this compilation. On 1338 // Darwin OSes this uses the driver-driver and builds universal actions. 1339 const ToolChain &TC = C.getDefaultToolChain(); 1340 if (TC.getTriple().isOSBinFormatMachO()) 1341 BuildUniversalActions(C, TC, Inputs); 1342 else 1343 BuildActions(C, C.getArgs(), Inputs, C.getActions()); 1344 1345 BuildJobs(C); 1346 1347 // If there were errors building the compilation, quit now. 1348 if (Trap.hasErrorOccurred()) { 1349 Diag(clang::diag::note_drv_command_failed_diag_msg) 1350 << "Error generating preprocessed source(s)."; 1351 return; 1352 } 1353 1354 // Generate preprocessed output. 1355 SmallVector<std::pair<int, const Command *>, 4> FailingCommands; 1356 C.ExecuteJobs(C.getJobs(), FailingCommands); 1357 1358 // If any of the preprocessing commands failed, clean up and exit. 1359 if (!FailingCommands.empty()) { 1360 Diag(clang::diag::note_drv_command_failed_diag_msg) 1361 << "Error generating preprocessed source(s)."; 1362 return; 1363 } 1364 1365 const ArgStringList &TempFiles = C.getTempFiles(); 1366 if (TempFiles.empty()) { 1367 Diag(clang::diag::note_drv_command_failed_diag_msg) 1368 << "Error generating preprocessed source(s)."; 1369 return; 1370 } 1371 1372 Diag(clang::diag::note_drv_command_failed_diag_msg) 1373 << "\n********************\n\n" 1374 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" 1375 "Preprocessed source(s) and associated run script(s) are located at:"; 1376 1377 SmallString<128> VFS; 1378 SmallString<128> ReproCrashFilename; 1379 for (const char *TempFile : TempFiles) { 1380 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; 1381 if (Report) 1382 Report->TemporaryFiles.push_back(TempFile); 1383 if (ReproCrashFilename.empty()) { 1384 ReproCrashFilename = TempFile; 1385 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); 1386 } 1387 if (StringRef(TempFile).endswith(".cache")) { 1388 // In some cases (modules) we'll dump extra data to help with reproducing 1389 // the crash into a directory next to the output. 1390 VFS = llvm::sys::path::filename(TempFile); 1391 llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); 1392 } 1393 } 1394 1395 // Assume associated files are based off of the first temporary file. 1396 CrashReportInfo CrashInfo(TempFiles[0], VFS); 1397 1398 llvm::SmallString<128> Script(CrashInfo.Filename); 1399 llvm::sys::path::replace_extension(Script, "sh"); 1400 std::error_code EC; 1401 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); 1402 if (EC) { 1403 Diag(clang::diag::note_drv_command_failed_diag_msg) 1404 << "Error generating run script: " << Script << " " << EC.message(); 1405 } else { 1406 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" 1407 << "# Driver args: "; 1408 printArgList(ScriptOS, C.getInputArgs()); 1409 ScriptOS << "# Original command: "; 1410 Cmd.Print(ScriptOS, "\n", /*Quote=*/true); 1411 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); 1412 if (!AdditionalInformation.empty()) 1413 ScriptOS << "\n# Additional information: " << AdditionalInformation 1414 << "\n"; 1415 if (Report) 1416 Report->TemporaryFiles.push_back(Script.str()); 1417 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; 1418 } 1419 1420 // On darwin, provide information about the .crash diagnostic report. 1421 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { 1422 SmallString<128> CrashDiagDir; 1423 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { 1424 Diag(clang::diag::note_drv_command_failed_diag_msg) 1425 << ReproCrashFilename.str(); 1426 } else { // Suggest a directory for the user to look for .crash files. 1427 llvm::sys::path::append(CrashDiagDir, Name); 1428 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; 1429 Diag(clang::diag::note_drv_command_failed_diag_msg) 1430 << "Crash backtrace is located in"; 1431 Diag(clang::diag::note_drv_command_failed_diag_msg) 1432 << CrashDiagDir.str(); 1433 Diag(clang::diag::note_drv_command_failed_diag_msg) 1434 << "(choose the .crash file that corresponds to your crash)"; 1435 } 1436 } 1437 1438 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, 1439 options::OPT_frewrite_map_file_EQ)) 1440 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); 1441 1442 Diag(clang::diag::note_drv_command_failed_diag_msg) 1443 << "\n\n********************"; 1444 } 1445 1446 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { 1447 // Since commandLineFitsWithinSystemLimits() may underestimate system's 1448 // capacity if the tool does not support response files, there is a chance/ 1449 // that things will just work without a response file, so we silently just 1450 // skip it. 1451 if (Cmd.getCreator().getResponseFilesSupport() == Tool::RF_None || 1452 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), 1453 Cmd.getArguments())) 1454 return; 1455 1456 std::string TmpName = GetTemporaryPath("response", "txt"); 1457 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); 1458 } 1459 1460 int Driver::ExecuteCompilation( 1461 Compilation &C, 1462 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { 1463 // Just print if -### was present. 1464 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 1465 C.getJobs().Print(llvm::errs(), "\n", true); 1466 return 0; 1467 } 1468 1469 // If there were errors building the compilation, quit now. 1470 if (Diags.hasErrorOccurred()) 1471 return 1; 1472 1473 // Set up response file names for each command, if necessary 1474 for (auto &Job : C.getJobs()) 1475 setUpResponseFiles(C, Job); 1476 1477 C.ExecuteJobs(C.getJobs(), FailingCommands); 1478 1479 // If the command succeeded, we are done. 1480 if (FailingCommands.empty()) 1481 return 0; 1482 1483 // Otherwise, remove result files and print extra information about abnormal 1484 // failures. 1485 int Res = 0; 1486 for (const auto &CmdPair : FailingCommands) { 1487 int CommandRes = CmdPair.first; 1488 const Command *FailingCommand = CmdPair.second; 1489 1490 // Remove result files if we're not saving temps. 1491 if (!isSaveTempsEnabled()) { 1492 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); 1493 C.CleanupFileMap(C.getResultFiles(), JA, true); 1494 1495 // Failure result files are valid unless we crashed. 1496 if (CommandRes < 0) 1497 C.CleanupFileMap(C.getFailureResultFiles(), JA, true); 1498 } 1499 1500 #if LLVM_ON_UNIX 1501 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code 1502 // for SIGPIPE. Do not print diagnostics for this case. 1503 if (CommandRes == EX_IOERR) { 1504 Res = CommandRes; 1505 continue; 1506 } 1507 #endif 1508 1509 // Print extra information about abnormal failures, if possible. 1510 // 1511 // This is ad-hoc, but we don't want to be excessively noisy. If the result 1512 // status was 1, assume the command failed normally. In particular, if it 1513 // was the compiler then assume it gave a reasonable error code. Failures 1514 // in other tools are less common, and they generally have worse 1515 // diagnostics, so always print the diagnostic there. 1516 const Tool &FailingTool = FailingCommand->getCreator(); 1517 1518 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { 1519 // FIXME: See FIXME above regarding result code interpretation. 1520 if (CommandRes < 0) 1521 Diag(clang::diag::err_drv_command_signalled) 1522 << FailingTool.getShortName(); 1523 else 1524 Diag(clang::diag::err_drv_command_failed) 1525 << FailingTool.getShortName() << CommandRes; 1526 } 1527 } 1528 return Res; 1529 } 1530 1531 void Driver::PrintHelp(bool ShowHidden) const { 1532 unsigned IncludedFlagsBitmask; 1533 unsigned ExcludedFlagsBitmask; 1534 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 1535 getIncludeExcludeOptionFlagMasks(IsCLMode()); 1536 1537 ExcludedFlagsBitmask |= options::NoDriverOption; 1538 if (!ShowHidden) 1539 ExcludedFlagsBitmask |= HelpHidden; 1540 1541 std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); 1542 getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), 1543 IncludedFlagsBitmask, ExcludedFlagsBitmask, 1544 /*ShowAllAliases=*/false); 1545 } 1546 1547 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { 1548 // FIXME: The following handlers should use a callback mechanism, we don't 1549 // know what the client would like to do. 1550 OS << getClangFullVersion() << '\n'; 1551 const ToolChain &TC = C.getDefaultToolChain(); 1552 OS << "Target: " << TC.getTripleString() << '\n'; 1553 1554 // Print the threading model. 1555 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { 1556 // Don't print if the ToolChain would have barfed on it already 1557 if (TC.isThreadModelSupported(A->getValue())) 1558 OS << "Thread model: " << A->getValue(); 1559 } else 1560 OS << "Thread model: " << TC.getThreadModel(); 1561 OS << '\n'; 1562 1563 // Print out the install directory. 1564 OS << "InstalledDir: " << InstalledDir << '\n'; 1565 1566 // If configuration file was used, print its path. 1567 if (!ConfigFile.empty()) 1568 OS << "Configuration file: " << ConfigFile << '\n'; 1569 } 1570 1571 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories 1572 /// option. 1573 static void PrintDiagnosticCategories(raw_ostream &OS) { 1574 // Skip the empty category. 1575 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; 1576 ++i) 1577 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; 1578 } 1579 1580 void Driver::HandleAutocompletions(StringRef PassedFlags) const { 1581 if (PassedFlags == "") 1582 return; 1583 // Print out all options that start with a given argument. This is used for 1584 // shell autocompletion. 1585 std::vector<std::string> SuggestedCompletions; 1586 std::vector<std::string> Flags; 1587 1588 unsigned short DisableFlags = 1589 options::NoDriverOption | options::Unsupported | options::Ignored; 1590 1591 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," 1592 // because the latter indicates that the user put space before pushing tab 1593 // which should end up in a file completion. 1594 const bool HasSpace = PassedFlags.endswith(","); 1595 1596 // Parse PassedFlags by "," as all the command-line flags are passed to this 1597 // function separated by "," 1598 StringRef TargetFlags = PassedFlags; 1599 while (TargetFlags != "") { 1600 StringRef CurFlag; 1601 std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); 1602 Flags.push_back(std::string(CurFlag)); 1603 } 1604 1605 // We want to show cc1-only options only when clang is invoked with -cc1 or 1606 // -Xclang. 1607 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) 1608 DisableFlags &= ~options::NoDriverOption; 1609 1610 const llvm::opt::OptTable &Opts = getOpts(); 1611 StringRef Cur; 1612 Cur = Flags.at(Flags.size() - 1); 1613 StringRef Prev; 1614 if (Flags.size() >= 2) { 1615 Prev = Flags.at(Flags.size() - 2); 1616 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur); 1617 } 1618 1619 if (SuggestedCompletions.empty()) 1620 SuggestedCompletions = Opts.suggestValueCompletions(Cur, ""); 1621 1622 // If Flags were empty, it means the user typed `clang [tab]` where we should 1623 // list all possible flags. If there was no value completion and the user 1624 // pressed tab after a space, we should fall back to a file completion. 1625 // We're printing a newline to be consistent with what we print at the end of 1626 // this function. 1627 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { 1628 llvm::outs() << '\n'; 1629 return; 1630 } 1631 1632 // When flag ends with '=' and there was no value completion, return empty 1633 // string and fall back to the file autocompletion. 1634 if (SuggestedCompletions.empty() && !Cur.endswith("=")) { 1635 // If the flag is in the form of "--autocomplete=-foo", 1636 // we were requested to print out all option names that start with "-foo". 1637 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". 1638 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags); 1639 1640 // We have to query the -W flags manually as they're not in the OptTable. 1641 // TODO: Find a good way to add them to OptTable instead and them remove 1642 // this code. 1643 for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) 1644 if (S.startswith(Cur)) 1645 SuggestedCompletions.push_back(S); 1646 } 1647 1648 // Sort the autocomplete candidates so that shells print them out in a 1649 // deterministic order. We could sort in any way, but we chose 1650 // case-insensitive sorting for consistency with the -help option 1651 // which prints out options in the case-insensitive alphabetical order. 1652 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { 1653 if (int X = A.compare_lower(B)) 1654 return X < 0; 1655 return A.compare(B) > 0; 1656 }); 1657 1658 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; 1659 } 1660 1661 bool Driver::HandleImmediateArgs(const Compilation &C) { 1662 // The order these options are handled in gcc is all over the place, but we 1663 // don't expect inconsistencies w.r.t. that to matter in practice. 1664 1665 if (C.getArgs().hasArg(options::OPT_dumpmachine)) { 1666 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; 1667 return false; 1668 } 1669 1670 if (C.getArgs().hasArg(options::OPT_dumpversion)) { 1671 // Since -dumpversion is only implemented for pedantic GCC compatibility, we 1672 // return an answer which matches our definition of __VERSION__. 1673 llvm::outs() << CLANG_VERSION_STRING << "\n"; 1674 return false; 1675 } 1676 1677 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { 1678 PrintDiagnosticCategories(llvm::outs()); 1679 return false; 1680 } 1681 1682 if (C.getArgs().hasArg(options::OPT_help) || 1683 C.getArgs().hasArg(options::OPT__help_hidden)) { 1684 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); 1685 return false; 1686 } 1687 1688 if (C.getArgs().hasArg(options::OPT__version)) { 1689 // Follow gcc behavior and use stdout for --version and stderr for -v. 1690 PrintVersion(C, llvm::outs()); 1691 return false; 1692 } 1693 1694 if (C.getArgs().hasArg(options::OPT_v) || 1695 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || 1696 C.getArgs().hasArg(options::OPT_print_supported_cpus)) { 1697 PrintVersion(C, llvm::errs()); 1698 SuppressMissingInputWarning = true; 1699 } 1700 1701 if (C.getArgs().hasArg(options::OPT_v)) { 1702 if (!SystemConfigDir.empty()) 1703 llvm::errs() << "System configuration file directory: " 1704 << SystemConfigDir << "\n"; 1705 if (!UserConfigDir.empty()) 1706 llvm::errs() << "User configuration file directory: " 1707 << UserConfigDir << "\n"; 1708 } 1709 1710 const ToolChain &TC = C.getDefaultToolChain(); 1711 1712 if (C.getArgs().hasArg(options::OPT_v)) 1713 TC.printVerboseInfo(llvm::errs()); 1714 1715 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { 1716 llvm::outs() << ResourceDir << '\n'; 1717 return false; 1718 } 1719 1720 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { 1721 llvm::outs() << "programs: ="; 1722 bool separator = false; 1723 for (const std::string &Path : TC.getProgramPaths()) { 1724 if (separator) 1725 llvm::outs() << llvm::sys::EnvPathSeparator; 1726 llvm::outs() << Path; 1727 separator = true; 1728 } 1729 llvm::outs() << "\n"; 1730 llvm::outs() << "libraries: =" << ResourceDir; 1731 1732 StringRef sysroot = C.getSysRoot(); 1733 1734 for (const std::string &Path : TC.getFilePaths()) { 1735 // Always print a separator. ResourceDir was the first item shown. 1736 llvm::outs() << llvm::sys::EnvPathSeparator; 1737 // Interpretation of leading '=' is needed only for NetBSD. 1738 if (Path[0] == '=') 1739 llvm::outs() << sysroot << Path.substr(1); 1740 else 1741 llvm::outs() << Path; 1742 } 1743 llvm::outs() << "\n"; 1744 return false; 1745 } 1746 1747 // FIXME: The following handlers should use a callback mechanism, we don't 1748 // know what the client would like to do. 1749 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { 1750 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; 1751 return false; 1752 } 1753 1754 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { 1755 StringRef ProgName = A->getValue(); 1756 1757 // Null program name cannot have a path. 1758 if (! ProgName.empty()) 1759 llvm::outs() << GetProgramPath(ProgName, TC); 1760 1761 llvm::outs() << "\n"; 1762 return false; 1763 } 1764 1765 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { 1766 StringRef PassedFlags = A->getValue(); 1767 HandleAutocompletions(PassedFlags); 1768 return false; 1769 } 1770 1771 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { 1772 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); 1773 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1774 RegisterEffectiveTriple TripleRAII(TC, Triple); 1775 switch (RLT) { 1776 case ToolChain::RLT_CompilerRT: 1777 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; 1778 break; 1779 case ToolChain::RLT_Libgcc: 1780 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; 1781 break; 1782 } 1783 return false; 1784 } 1785 1786 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { 1787 for (const Multilib &Multilib : TC.getMultilibs()) 1788 llvm::outs() << Multilib << "\n"; 1789 return false; 1790 } 1791 1792 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { 1793 const Multilib &Multilib = TC.getMultilib(); 1794 if (Multilib.gccSuffix().empty()) 1795 llvm::outs() << ".\n"; 1796 else { 1797 StringRef Suffix(Multilib.gccSuffix()); 1798 assert(Suffix.front() == '/'); 1799 llvm::outs() << Suffix.substr(1) << "\n"; 1800 } 1801 return false; 1802 } 1803 1804 if (C.getArgs().hasArg(options::OPT_print_target_triple)) { 1805 llvm::outs() << TC.getTripleString() << "\n"; 1806 return false; 1807 } 1808 1809 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { 1810 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1811 llvm::outs() << Triple.getTriple() << "\n"; 1812 return false; 1813 } 1814 1815 return true; 1816 } 1817 1818 enum { 1819 TopLevelAction = 0, 1820 HeadSibAction = 1, 1821 OtherSibAction = 2, 1822 }; 1823 1824 // Display an action graph human-readably. Action A is the "sink" node 1825 // and latest-occuring action. Traversal is in pre-order, visiting the 1826 // inputs to each action before printing the action itself. 1827 static unsigned PrintActions1(const Compilation &C, Action *A, 1828 std::map<Action *, unsigned> &Ids, 1829 Twine Indent = {}, int Kind = TopLevelAction) { 1830 if (Ids.count(A)) // A was already visited. 1831 return Ids[A]; 1832 1833 std::string str; 1834 llvm::raw_string_ostream os(str); 1835 1836 auto getSibIndent = [](int K) -> Twine { 1837 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : ""; 1838 }; 1839 1840 Twine SibIndent = Indent + getSibIndent(Kind); 1841 int SibKind = HeadSibAction; 1842 os << Action::getClassName(A->getKind()) << ", "; 1843 if (InputAction *IA = dyn_cast<InputAction>(A)) { 1844 os << "\"" << IA->getInputArg().getValue() << "\""; 1845 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { 1846 os << '"' << BIA->getArchName() << '"' << ", {" 1847 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}"; 1848 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 1849 bool IsFirst = true; 1850 OA->doOnEachDependence( 1851 [&](Action *A, const ToolChain *TC, const char *BoundArch) { 1852 // E.g. for two CUDA device dependences whose bound arch is sm_20 and 1853 // sm_35 this will generate: 1854 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" 1855 // (nvptx64-nvidia-cuda:sm_35) {#ID} 1856 if (!IsFirst) 1857 os << ", "; 1858 os << '"'; 1859 if (TC) 1860 os << A->getOffloadingKindPrefix(); 1861 else 1862 os << "host"; 1863 os << " ("; 1864 os << TC->getTriple().normalize(); 1865 1866 if (BoundArch) 1867 os << ":" << BoundArch; 1868 os << ")"; 1869 os << '"'; 1870 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}"; 1871 IsFirst = false; 1872 SibKind = OtherSibAction; 1873 }); 1874 } else { 1875 const ActionList *AL = &A->getInputs(); 1876 1877 if (AL->size()) { 1878 const char *Prefix = "{"; 1879 for (Action *PreRequisite : *AL) { 1880 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind); 1881 Prefix = ", "; 1882 SibKind = OtherSibAction; 1883 } 1884 os << "}"; 1885 } else 1886 os << "{}"; 1887 } 1888 1889 // Append offload info for all options other than the offloading action 1890 // itself (e.g. (cuda-device, sm_20) or (cuda-host)). 1891 std::string offload_str; 1892 llvm::raw_string_ostream offload_os(offload_str); 1893 if (!isa<OffloadAction>(A)) { 1894 auto S = A->getOffloadingKindPrefix(); 1895 if (!S.empty()) { 1896 offload_os << ", (" << S; 1897 if (A->getOffloadingArch()) 1898 offload_os << ", " << A->getOffloadingArch(); 1899 offload_os << ")"; 1900 } 1901 } 1902 1903 auto getSelfIndent = [](int K) -> Twine { 1904 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : ""; 1905 }; 1906 1907 unsigned Id = Ids.size(); 1908 Ids[A] = Id; 1909 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", " 1910 << types::getTypeName(A->getType()) << offload_os.str() << "\n"; 1911 1912 return Id; 1913 } 1914 1915 // Print the action graphs in a compilation C. 1916 // For example "clang -c file1.c file2.c" is composed of two subgraphs. 1917 void Driver::PrintActions(const Compilation &C) const { 1918 std::map<Action *, unsigned> Ids; 1919 for (Action *A : C.getActions()) 1920 PrintActions1(C, A, Ids); 1921 } 1922 1923 /// Check whether the given input tree contains any compilation or 1924 /// assembly actions. 1925 static bool ContainsCompileOrAssembleAction(const Action *A) { 1926 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || 1927 isa<AssembleJobAction>(A)) 1928 return true; 1929 1930 for (const Action *Input : A->inputs()) 1931 if (ContainsCompileOrAssembleAction(Input)) 1932 return true; 1933 1934 return false; 1935 } 1936 1937 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, 1938 const InputList &BAInputs) const { 1939 DerivedArgList &Args = C.getArgs(); 1940 ActionList &Actions = C.getActions(); 1941 llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); 1942 // Collect the list of architectures. Duplicates are allowed, but should only 1943 // be handled once (in the order seen). 1944 llvm::StringSet<> ArchNames; 1945 SmallVector<const char *, 4> Archs; 1946 for (Arg *A : Args) { 1947 if (A->getOption().matches(options::OPT_arch)) { 1948 // Validate the option here; we don't save the type here because its 1949 // particular spelling may participate in other driver choices. 1950 llvm::Triple::ArchType Arch = 1951 tools::darwin::getArchTypeForMachOArchName(A->getValue()); 1952 if (Arch == llvm::Triple::UnknownArch) { 1953 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); 1954 continue; 1955 } 1956 1957 A->claim(); 1958 if (ArchNames.insert(A->getValue()).second) 1959 Archs.push_back(A->getValue()); 1960 } 1961 } 1962 1963 // When there is no explicit arch for this platform, make sure we still bind 1964 // the architecture (to the default) so that -Xarch_ is handled correctly. 1965 if (!Archs.size()) 1966 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); 1967 1968 ActionList SingleActions; 1969 BuildActions(C, Args, BAInputs, SingleActions); 1970 1971 // Add in arch bindings for every top level action, as well as lipo and 1972 // dsymutil steps if needed. 1973 for (Action* Act : SingleActions) { 1974 // Make sure we can lipo this kind of output. If not (and it is an actual 1975 // output) then we disallow, since we can't create an output file with the 1976 // right name without overwriting it. We could remove this oddity by just 1977 // changing the output names to include the arch, which would also fix 1978 // -save-temps. Compatibility wins for now. 1979 1980 if (Archs.size() > 1 && !types::canLipoType(Act->getType())) 1981 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) 1982 << types::getTypeName(Act->getType()); 1983 1984 ActionList Inputs; 1985 for (unsigned i = 0, e = Archs.size(); i != e; ++i) 1986 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); 1987 1988 // Lipo if necessary, we do it this way because we need to set the arch flag 1989 // so that -Xarch_ gets overwritten. 1990 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) 1991 Actions.append(Inputs.begin(), Inputs.end()); 1992 else 1993 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); 1994 1995 // Handle debug info queries. 1996 Arg *A = Args.getLastArg(options::OPT_g_Group); 1997 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) && 1998 !A->getOption().matches(options::OPT_gstabs); 1999 if ((enablesDebugInfo || willEmitRemarks(Args)) && 2000 ContainsCompileOrAssembleAction(Actions.back())) { 2001 2002 // Add a 'dsymutil' step if necessary, when debug info is enabled and we 2003 // have a compile input. We need to run 'dsymutil' ourselves in such cases 2004 // because the debug info will refer to a temporary object file which 2005 // will be removed at the end of the compilation process. 2006 if (Act->getType() == types::TY_Image) { 2007 ActionList Inputs; 2008 Inputs.push_back(Actions.back()); 2009 Actions.pop_back(); 2010 Actions.push_back( 2011 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); 2012 } 2013 2014 // Verify the debug info output. 2015 if (Args.hasArg(options::OPT_verify_debug_info)) { 2016 Action* LastAction = Actions.back(); 2017 Actions.pop_back(); 2018 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( 2019 LastAction, types::TY_Nothing)); 2020 } 2021 } 2022 } 2023 } 2024 2025 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, 2026 types::ID Ty, bool TypoCorrect) const { 2027 if (!getCheckInputsExist()) 2028 return true; 2029 2030 // stdin always exists. 2031 if (Value == "-") 2032 return true; 2033 2034 if (getVFS().exists(Value)) 2035 return true; 2036 2037 if (IsCLMode()) { 2038 if (!llvm::sys::path::is_absolute(Twine(Value)) && 2039 llvm::sys::Process::FindInEnvPath("LIB", Value)) 2040 return true; 2041 2042 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { 2043 // Arguments to the /link flag might cause the linker to search for object 2044 // and library files in paths we don't know about. Don't error in such 2045 // cases. 2046 return true; 2047 } 2048 } 2049 2050 if (TypoCorrect) { 2051 // Check if the filename is a typo for an option flag. OptTable thinks 2052 // that all args that are not known options and that start with / are 2053 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for 2054 // the option `/diagnostics:caret` than a reference to a file in the root 2055 // directory. 2056 unsigned IncludedFlagsBitmask; 2057 unsigned ExcludedFlagsBitmask; 2058 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 2059 getIncludeExcludeOptionFlagMasks(IsCLMode()); 2060 std::string Nearest; 2061 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, 2062 ExcludedFlagsBitmask) <= 1) { 2063 Diag(clang::diag::err_drv_no_such_file_with_suggestion) 2064 << Value << Nearest; 2065 return false; 2066 } 2067 } 2068 2069 Diag(clang::diag::err_drv_no_such_file) << Value; 2070 return false; 2071 } 2072 2073 // Construct a the list of inputs and their types. 2074 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, 2075 InputList &Inputs) const { 2076 const llvm::opt::OptTable &Opts = getOpts(); 2077 // Track the current user specified (-x) input. We also explicitly track the 2078 // argument used to set the type; we only want to claim the type when we 2079 // actually use it, so we warn about unused -x arguments. 2080 types::ID InputType = types::TY_Nothing; 2081 Arg *InputTypeArg = nullptr; 2082 2083 // The last /TC or /TP option sets the input type to C or C++ globally. 2084 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, 2085 options::OPT__SLASH_TP)) { 2086 InputTypeArg = TCTP; 2087 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) 2088 ? types::TY_C 2089 : types::TY_CXX; 2090 2091 Arg *Previous = nullptr; 2092 bool ShowNote = false; 2093 for (Arg *A : 2094 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { 2095 if (Previous) { 2096 Diag(clang::diag::warn_drv_overriding_flag_option) 2097 << Previous->getSpelling() << A->getSpelling(); 2098 ShowNote = true; 2099 } 2100 Previous = A; 2101 } 2102 if (ShowNote) 2103 Diag(clang::diag::note_drv_t_option_is_global); 2104 2105 // No driver mode exposes -x and /TC or /TP; we don't support mixing them. 2106 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); 2107 } 2108 2109 for (Arg *A : Args) { 2110 if (A->getOption().getKind() == Option::InputClass) { 2111 const char *Value = A->getValue(); 2112 types::ID Ty = types::TY_INVALID; 2113 2114 // Infer the input type if necessary. 2115 if (InputType == types::TY_Nothing) { 2116 // If there was an explicit arg for this, claim it. 2117 if (InputTypeArg) 2118 InputTypeArg->claim(); 2119 2120 // stdin must be handled specially. 2121 if (memcmp(Value, "-", 2) == 0) { 2122 // If running with -E, treat as a C input (this changes the builtin 2123 // macros, for example). This may be overridden by -ObjC below. 2124 // 2125 // Otherwise emit an error but still use a valid type to avoid 2126 // spurious errors (e.g., no inputs). 2127 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) 2128 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl 2129 : clang::diag::err_drv_unknown_stdin_type); 2130 Ty = types::TY_C; 2131 } else { 2132 // Otherwise lookup by extension. 2133 // Fallback is C if invoked as C preprocessor, C++ if invoked with 2134 // clang-cl /E, or Object otherwise. 2135 // We use a host hook here because Darwin at least has its own 2136 // idea of what .s is. 2137 if (const char *Ext = strrchr(Value, '.')) 2138 Ty = TC.LookupTypeForExtension(Ext + 1); 2139 2140 if (Ty == types::TY_INVALID) { 2141 if (CCCIsCPP()) 2142 Ty = types::TY_C; 2143 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E)) 2144 Ty = types::TY_CXX; 2145 else 2146 Ty = types::TY_Object; 2147 } 2148 2149 // If the driver is invoked as C++ compiler (like clang++ or c++) it 2150 // should autodetect some input files as C++ for g++ compatibility. 2151 if (CCCIsCXX()) { 2152 types::ID OldTy = Ty; 2153 Ty = types::lookupCXXTypeForCType(Ty); 2154 2155 if (Ty != OldTy) 2156 Diag(clang::diag::warn_drv_treating_input_as_cxx) 2157 << getTypeName(OldTy) << getTypeName(Ty); 2158 } 2159 2160 // If running with -fthinlto-index=, extensions that normally identify 2161 // native object files actually identify LLVM bitcode files. 2162 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && 2163 Ty == types::TY_Object) 2164 Ty = types::TY_LLVM_BC; 2165 } 2166 2167 // -ObjC and -ObjC++ override the default language, but only for "source 2168 // files". We just treat everything that isn't a linker input as a 2169 // source file. 2170 // 2171 // FIXME: Clean this up if we move the phase sequence into the type. 2172 if (Ty != types::TY_Object) { 2173 if (Args.hasArg(options::OPT_ObjC)) 2174 Ty = types::TY_ObjC; 2175 else if (Args.hasArg(options::OPT_ObjCXX)) 2176 Ty = types::TY_ObjCXX; 2177 } 2178 } else { 2179 assert(InputTypeArg && "InputType set w/o InputTypeArg"); 2180 if (!InputTypeArg->getOption().matches(options::OPT_x)) { 2181 // If emulating cl.exe, make sure that /TC and /TP don't affect input 2182 // object files. 2183 const char *Ext = strrchr(Value, '.'); 2184 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) 2185 Ty = types::TY_Object; 2186 } 2187 if (Ty == types::TY_INVALID) { 2188 Ty = InputType; 2189 InputTypeArg->claim(); 2190 } 2191 } 2192 2193 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) 2194 Inputs.push_back(std::make_pair(Ty, A)); 2195 2196 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { 2197 StringRef Value = A->getValue(); 2198 if (DiagnoseInputExistence(Args, Value, types::TY_C, 2199 /*TypoCorrect=*/false)) { 2200 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2201 Inputs.push_back(std::make_pair(types::TY_C, InputArg)); 2202 } 2203 A->claim(); 2204 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { 2205 StringRef Value = A->getValue(); 2206 if (DiagnoseInputExistence(Args, Value, types::TY_CXX, 2207 /*TypoCorrect=*/false)) { 2208 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2209 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); 2210 } 2211 A->claim(); 2212 } else if (A->getOption().hasFlag(options::LinkerInput)) { 2213 // Just treat as object type, we could make a special type for this if 2214 // necessary. 2215 Inputs.push_back(std::make_pair(types::TY_Object, A)); 2216 2217 } else if (A->getOption().matches(options::OPT_x)) { 2218 InputTypeArg = A; 2219 InputType = types::lookupTypeForTypeSpecifier(A->getValue()); 2220 A->claim(); 2221 2222 // Follow gcc behavior and treat as linker input for invalid -x 2223 // options. Its not clear why we shouldn't just revert to unknown; but 2224 // this isn't very important, we might as well be bug compatible. 2225 if (!InputType) { 2226 Diag(clang::diag::err_drv_unknown_language) << A->getValue(); 2227 InputType = types::TY_Object; 2228 } 2229 } else if (A->getOption().getID() == options::OPT_U) { 2230 assert(A->getNumValues() == 1 && "The /U option has one value."); 2231 StringRef Val = A->getValue(0); 2232 if (Val.find_first_of("/\\") != StringRef::npos) { 2233 // Warn about e.g. "/Users/me/myfile.c". 2234 Diag(diag::warn_slash_u_filename) << Val; 2235 Diag(diag::note_use_dashdash); 2236 } 2237 } 2238 } 2239 if (CCCIsCPP() && Inputs.empty()) { 2240 // If called as standalone preprocessor, stdin is processed 2241 // if no other input is present. 2242 Arg *A = MakeInputArg(Args, Opts, "-"); 2243 Inputs.push_back(std::make_pair(types::TY_C, A)); 2244 } 2245 } 2246 2247 namespace { 2248 /// Provides a convenient interface for different programming models to generate 2249 /// the required device actions. 2250 class OffloadingActionBuilder final { 2251 /// Flag used to trace errors in the builder. 2252 bool IsValid = false; 2253 2254 /// The compilation that is using this builder. 2255 Compilation &C; 2256 2257 /// Map between an input argument and the offload kinds used to process it. 2258 std::map<const Arg *, unsigned> InputArgToOffloadKindMap; 2259 2260 /// Builder interface. It doesn't build anything or keep any state. 2261 class DeviceActionBuilder { 2262 public: 2263 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy; 2264 2265 enum ActionBuilderReturnCode { 2266 // The builder acted successfully on the current action. 2267 ABRT_Success, 2268 // The builder didn't have to act on the current action. 2269 ABRT_Inactive, 2270 // The builder was successful and requested the host action to not be 2271 // generated. 2272 ABRT_Ignore_Host, 2273 }; 2274 2275 protected: 2276 /// Compilation associated with this builder. 2277 Compilation &C; 2278 2279 /// Tool chains associated with this builder. The same programming 2280 /// model may have associated one or more tool chains. 2281 SmallVector<const ToolChain *, 2> ToolChains; 2282 2283 /// The derived arguments associated with this builder. 2284 DerivedArgList &Args; 2285 2286 /// The inputs associated with this builder. 2287 const Driver::InputList &Inputs; 2288 2289 /// The associated offload kind. 2290 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; 2291 2292 public: 2293 DeviceActionBuilder(Compilation &C, DerivedArgList &Args, 2294 const Driver::InputList &Inputs, 2295 Action::OffloadKind AssociatedOffloadKind) 2296 : C(C), Args(Args), Inputs(Inputs), 2297 AssociatedOffloadKind(AssociatedOffloadKind) {} 2298 virtual ~DeviceActionBuilder() {} 2299 2300 /// Fill up the array \a DA with all the device dependences that should be 2301 /// added to the provided host action \a HostAction. By default it is 2302 /// inactive. 2303 virtual ActionBuilderReturnCode 2304 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2305 phases::ID CurPhase, phases::ID FinalPhase, 2306 PhasesTy &Phases) { 2307 return ABRT_Inactive; 2308 } 2309 2310 /// Update the state to include the provided host action \a HostAction as a 2311 /// dependency of the current device action. By default it is inactive. 2312 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { 2313 return ABRT_Inactive; 2314 } 2315 2316 /// Append top level actions generated by the builder. 2317 virtual void appendTopLevelActions(ActionList &AL) {} 2318 2319 /// Append linker actions generated by the builder. 2320 virtual void appendLinkActions(ActionList &AL) {} 2321 2322 /// Append linker actions generated by the builder. 2323 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} 2324 2325 /// Initialize the builder. Return true if any initialization errors are 2326 /// found. 2327 virtual bool initialize() { return false; } 2328 2329 /// Return true if the builder can use bundling/unbundling. 2330 virtual bool canUseBundlerUnbundler() const { return false; } 2331 2332 /// Return true if this builder is valid. We have a valid builder if we have 2333 /// associated device tool chains. 2334 bool isValid() { return !ToolChains.empty(); } 2335 2336 /// Return the associated offload kind. 2337 Action::OffloadKind getAssociatedOffloadKind() { 2338 return AssociatedOffloadKind; 2339 } 2340 }; 2341 2342 /// Base class for CUDA/HIP action builder. It injects device code in 2343 /// the host backend action. 2344 class CudaActionBuilderBase : public DeviceActionBuilder { 2345 protected: 2346 /// Flags to signal if the user requested host-only or device-only 2347 /// compilation. 2348 bool CompileHostOnly = false; 2349 bool CompileDeviceOnly = false; 2350 bool EmitLLVM = false; 2351 bool EmitAsm = false; 2352 2353 /// List of GPU architectures to use in this compilation. 2354 SmallVector<CudaArch, 4> GpuArchList; 2355 2356 /// The CUDA actions for the current input. 2357 ActionList CudaDeviceActions; 2358 2359 /// The CUDA fat binary if it was generated for the current input. 2360 Action *CudaFatBinary = nullptr; 2361 2362 /// Flag that is set to true if this builder acted on the current input. 2363 bool IsActive = false; 2364 2365 /// Flag for -fgpu-rdc. 2366 bool Relocatable = false; 2367 2368 /// Default GPU architecture if there's no one specified. 2369 CudaArch DefaultCudaArch = CudaArch::UNKNOWN; 2370 2371 public: 2372 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, 2373 const Driver::InputList &Inputs, 2374 Action::OffloadKind OFKind) 2375 : DeviceActionBuilder(C, Args, Inputs, OFKind) {} 2376 2377 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2378 // While generating code for CUDA, we only depend on the host input action 2379 // to trigger the creation of all the CUDA device actions. 2380 2381 // If we are dealing with an input action, replicate it for each GPU 2382 // architecture. If we are in host-only mode we return 'success' so that 2383 // the host uses the CUDA offload kind. 2384 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2385 assert(!GpuArchList.empty() && 2386 "We should have at least one GPU architecture."); 2387 2388 // If the host input is not CUDA or HIP, we don't need to bother about 2389 // this input. 2390 if (IA->getType() != types::TY_CUDA && 2391 IA->getType() != types::TY_HIP) { 2392 // The builder will ignore this input. 2393 IsActive = false; 2394 return ABRT_Inactive; 2395 } 2396 2397 // Set the flag to true, so that the builder acts on the current input. 2398 IsActive = true; 2399 2400 if (CompileHostOnly) 2401 return ABRT_Success; 2402 2403 // Replicate inputs for each GPU architecture. 2404 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE 2405 : types::TY_CUDA_DEVICE; 2406 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2407 CudaDeviceActions.push_back( 2408 C.MakeAction<InputAction>(IA->getInputArg(), Ty)); 2409 } 2410 2411 return ABRT_Success; 2412 } 2413 2414 // If this is an unbundling action use it as is for each CUDA toolchain. 2415 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2416 2417 // If -fgpu-rdc is disabled, should not unbundle since there is no 2418 // device code to link. 2419 if (!Relocatable) 2420 return ABRT_Inactive; 2421 2422 CudaDeviceActions.clear(); 2423 auto *IA = cast<InputAction>(UA->getInputs().back()); 2424 std::string FileName = IA->getInputArg().getAsString(Args); 2425 // Check if the type of the file is the same as the action. Do not 2426 // unbundle it if it is not. Do not unbundle .so files, for example, 2427 // which are not object files. 2428 if (IA->getType() == types::TY_Object && 2429 (!llvm::sys::path::has_extension(FileName) || 2430 types::lookupTypeForExtension( 2431 llvm::sys::path::extension(FileName).drop_front()) != 2432 types::TY_Object)) 2433 return ABRT_Inactive; 2434 2435 for (auto Arch : GpuArchList) { 2436 CudaDeviceActions.push_back(UA); 2437 UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch), 2438 AssociatedOffloadKind); 2439 } 2440 return ABRT_Success; 2441 } 2442 2443 return IsActive ? ABRT_Success : ABRT_Inactive; 2444 } 2445 2446 void appendTopLevelActions(ActionList &AL) override { 2447 // Utility to append actions to the top level list. 2448 auto AddTopLevel = [&](Action *A, CudaArch BoundArch) { 2449 OffloadAction::DeviceDependences Dep; 2450 Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch), 2451 AssociatedOffloadKind); 2452 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2453 }; 2454 2455 // If we have a fat binary, add it to the list. 2456 if (CudaFatBinary) { 2457 AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN); 2458 CudaDeviceActions.clear(); 2459 CudaFatBinary = nullptr; 2460 return; 2461 } 2462 2463 if (CudaDeviceActions.empty()) 2464 return; 2465 2466 // If we have CUDA actions at this point, that's because we have a have 2467 // partial compilation, so we should have an action for each GPU 2468 // architecture. 2469 assert(CudaDeviceActions.size() == GpuArchList.size() && 2470 "Expecting one action per GPU architecture."); 2471 assert(ToolChains.size() == 1 && 2472 "Expecting to have a sing CUDA toolchain."); 2473 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 2474 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); 2475 2476 CudaDeviceActions.clear(); 2477 } 2478 2479 bool initialize() override { 2480 assert(AssociatedOffloadKind == Action::OFK_Cuda || 2481 AssociatedOffloadKind == Action::OFK_HIP); 2482 2483 // We don't need to support CUDA. 2484 if (AssociatedOffloadKind == Action::OFK_Cuda && 2485 !C.hasOffloadToolChain<Action::OFK_Cuda>()) 2486 return false; 2487 2488 // We don't need to support HIP. 2489 if (AssociatedOffloadKind == Action::OFK_HIP && 2490 !C.hasOffloadToolChain<Action::OFK_HIP>()) 2491 return false; 2492 2493 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, 2494 options::OPT_fno_gpu_rdc, /*Default=*/false); 2495 2496 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 2497 assert(HostTC && "No toolchain for host compilation."); 2498 if (HostTC->getTriple().isNVPTX() || 2499 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { 2500 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw 2501 // an error and abort pipeline construction early so we don't trip 2502 // asserts that assume device-side compilation. 2503 C.getDriver().Diag(diag::err_drv_cuda_host_arch) 2504 << HostTC->getTriple().getArchName(); 2505 return true; 2506 } 2507 2508 ToolChains.push_back( 2509 AssociatedOffloadKind == Action::OFK_Cuda 2510 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() 2511 : C.getSingleOffloadToolChain<Action::OFK_HIP>()); 2512 2513 Arg *PartialCompilationArg = Args.getLastArg( 2514 options::OPT_cuda_host_only, options::OPT_cuda_device_only, 2515 options::OPT_cuda_compile_host_device); 2516 CompileHostOnly = PartialCompilationArg && 2517 PartialCompilationArg->getOption().matches( 2518 options::OPT_cuda_host_only); 2519 CompileDeviceOnly = PartialCompilationArg && 2520 PartialCompilationArg->getOption().matches( 2521 options::OPT_cuda_device_only); 2522 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm); 2523 EmitAsm = Args.getLastArg(options::OPT_S); 2524 2525 // Collect all cuda_gpu_arch parameters, removing duplicates. 2526 std::set<CudaArch> GpuArchs; 2527 bool Error = false; 2528 for (Arg *A : Args) { 2529 if (!(A->getOption().matches(options::OPT_cuda_gpu_arch_EQ) || 2530 A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ))) 2531 continue; 2532 A->claim(); 2533 2534 const StringRef ArchStr = A->getValue(); 2535 if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ) && 2536 ArchStr == "all") { 2537 GpuArchs.clear(); 2538 continue; 2539 } 2540 CudaArch Arch = StringToCudaArch(ArchStr); 2541 if (Arch == CudaArch::UNKNOWN) { 2542 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; 2543 Error = true; 2544 } else if (A->getOption().matches(options::OPT_cuda_gpu_arch_EQ)) 2545 GpuArchs.insert(Arch); 2546 else if (A->getOption().matches(options::OPT_no_cuda_gpu_arch_EQ)) 2547 GpuArchs.erase(Arch); 2548 else 2549 llvm_unreachable("Unexpected option."); 2550 } 2551 2552 // Collect list of GPUs remaining in the set. 2553 for (CudaArch Arch : GpuArchs) 2554 GpuArchList.push_back(Arch); 2555 2556 // Default to sm_20 which is the lowest common denominator for 2557 // supported GPUs. sm_20 code should work correctly, if 2558 // suboptimally, on all newer GPUs. 2559 if (GpuArchList.empty()) 2560 GpuArchList.push_back(DefaultCudaArch); 2561 2562 return Error; 2563 } 2564 }; 2565 2566 /// \brief CUDA action builder. It injects device code in the host backend 2567 /// action. 2568 class CudaActionBuilder final : public CudaActionBuilderBase { 2569 public: 2570 CudaActionBuilder(Compilation &C, DerivedArgList &Args, 2571 const Driver::InputList &Inputs) 2572 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) { 2573 DefaultCudaArch = CudaArch::SM_20; 2574 } 2575 2576 ActionBuilderReturnCode 2577 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2578 phases::ID CurPhase, phases::ID FinalPhase, 2579 PhasesTy &Phases) override { 2580 if (!IsActive) 2581 return ABRT_Inactive; 2582 2583 // If we don't have more CUDA actions, we don't have any dependences to 2584 // create for the host. 2585 if (CudaDeviceActions.empty()) 2586 return ABRT_Success; 2587 2588 assert(CudaDeviceActions.size() == GpuArchList.size() && 2589 "Expecting one action per GPU architecture."); 2590 assert(!CompileHostOnly && 2591 "Not expecting CUDA actions in host-only compilation."); 2592 2593 // If we are generating code for the device or we are in a backend phase, 2594 // we attempt to generate the fat binary. We compile each arch to ptx and 2595 // assemble to cubin, then feed the cubin *and* the ptx into a device 2596 // "link" action, which uses fatbinary to combine these cubins into one 2597 // fatbin. The fatbin is then an input to the host action if not in 2598 // device-only mode. 2599 if (CompileDeviceOnly || CurPhase == phases::Backend) { 2600 ActionList DeviceActions; 2601 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2602 // Produce the device action from the current phase up to the assemble 2603 // phase. 2604 for (auto Ph : Phases) { 2605 // Skip the phases that were already dealt with. 2606 if (Ph < CurPhase) 2607 continue; 2608 // We have to be consistent with the host final phase. 2609 if (Ph > FinalPhase) 2610 break; 2611 2612 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( 2613 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); 2614 2615 if (Ph == phases::Assemble) 2616 break; 2617 } 2618 2619 // If we didn't reach the assemble phase, we can't generate the fat 2620 // binary. We don't need to generate the fat binary if we are not in 2621 // device-only mode. 2622 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || 2623 CompileDeviceOnly) 2624 continue; 2625 2626 Action *AssembleAction = CudaDeviceActions[I]; 2627 assert(AssembleAction->getType() == types::TY_Object); 2628 assert(AssembleAction->getInputs().size() == 1); 2629 2630 Action *BackendAction = AssembleAction->getInputs()[0]; 2631 assert(BackendAction->getType() == types::TY_PP_Asm); 2632 2633 for (auto &A : {AssembleAction, BackendAction}) { 2634 OffloadAction::DeviceDependences DDep; 2635 DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]), 2636 Action::OFK_Cuda); 2637 DeviceActions.push_back( 2638 C.MakeAction<OffloadAction>(DDep, A->getType())); 2639 } 2640 } 2641 2642 // We generate the fat binary if we have device input actions. 2643 if (!DeviceActions.empty()) { 2644 CudaFatBinary = 2645 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); 2646 2647 if (!CompileDeviceOnly) { 2648 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2649 Action::OFK_Cuda); 2650 // Clear the fat binary, it is already a dependence to an host 2651 // action. 2652 CudaFatBinary = nullptr; 2653 } 2654 2655 // Remove the CUDA actions as they are already connected to an host 2656 // action or fat binary. 2657 CudaDeviceActions.clear(); 2658 } 2659 2660 // We avoid creating host action in device-only mode. 2661 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2662 } else if (CurPhase > phases::Backend) { 2663 // If we are past the backend phase and still have a device action, we 2664 // don't have to do anything as this action is already a device 2665 // top-level action. 2666 return ABRT_Success; 2667 } 2668 2669 assert(CurPhase < phases::Backend && "Generating single CUDA " 2670 "instructions should only occur " 2671 "before the backend phase!"); 2672 2673 // By default, we produce an action for each device arch. 2674 for (Action *&A : CudaDeviceActions) 2675 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2676 2677 return ABRT_Success; 2678 } 2679 }; 2680 /// \brief HIP action builder. It injects device code in the host backend 2681 /// action. 2682 class HIPActionBuilder final : public CudaActionBuilderBase { 2683 /// The linker inputs obtained for each device arch. 2684 SmallVector<ActionList, 8> DeviceLinkerInputs; 2685 2686 public: 2687 HIPActionBuilder(Compilation &C, DerivedArgList &Args, 2688 const Driver::InputList &Inputs) 2689 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) { 2690 DefaultCudaArch = CudaArch::GFX803; 2691 } 2692 2693 bool canUseBundlerUnbundler() const override { return true; } 2694 2695 ActionBuilderReturnCode 2696 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2697 phases::ID CurPhase, phases::ID FinalPhase, 2698 PhasesTy &Phases) override { 2699 // amdgcn does not support linking of object files, therefore we skip 2700 // backend and assemble phases to output LLVM IR. Except for generating 2701 // non-relocatable device coee, where we generate fat binary for device 2702 // code and pass to host in Backend phase. 2703 if (CudaDeviceActions.empty() || 2704 (CurPhase == phases::Backend && Relocatable) || 2705 CurPhase == phases::Assemble) 2706 return ABRT_Success; 2707 2708 assert(((CurPhase == phases::Link && Relocatable) || 2709 CudaDeviceActions.size() == GpuArchList.size()) && 2710 "Expecting one action per GPU architecture."); 2711 assert(!CompileHostOnly && 2712 "Not expecting CUDA actions in host-only compilation."); 2713 2714 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM && 2715 !EmitAsm) { 2716 // If we are in backend phase, we attempt to generate the fat binary. 2717 // We compile each arch to IR and use a link action to generate code 2718 // object containing ISA. Then we use a special "link" action to create 2719 // a fat binary containing all the code objects for different GPU's. 2720 // The fat binary is then an input to the host action. 2721 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2722 // Create a link action to link device IR with device library 2723 // and generate ISA. 2724 ActionList AL; 2725 AL.push_back(CudaDeviceActions[I]); 2726 CudaDeviceActions[I] = 2727 C.MakeAction<LinkJobAction>(AL, types::TY_Image); 2728 2729 // OffloadingActionBuilder propagates device arch until an offload 2730 // action. Since the next action for creating fatbin does 2731 // not have device arch, whereas the above link action and its input 2732 // have device arch, an offload action is needed to stop the null 2733 // device arch of the next action being propagated to the above link 2734 // action. 2735 OffloadAction::DeviceDependences DDep; 2736 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), 2737 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2738 CudaDeviceActions[I] = C.MakeAction<OffloadAction>( 2739 DDep, CudaDeviceActions[I]->getType()); 2740 } 2741 // Create HIP fat binary with a special "link" action. 2742 CudaFatBinary = 2743 C.MakeAction<LinkJobAction>(CudaDeviceActions, 2744 types::TY_HIP_FATBIN); 2745 2746 if (!CompileDeviceOnly) { 2747 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2748 AssociatedOffloadKind); 2749 // Clear the fat binary, it is already a dependence to an host 2750 // action. 2751 CudaFatBinary = nullptr; 2752 } 2753 2754 // Remove the CUDA actions as they are already connected to an host 2755 // action or fat binary. 2756 CudaDeviceActions.clear(); 2757 2758 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2759 } else if (CurPhase == phases::Link) { 2760 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. 2761 // This happens to each device action originated from each input file. 2762 // Later on, device actions in DeviceLinkerInputs are used to create 2763 // device link actions in appendLinkDependences and the created device 2764 // link actions are passed to the offload action as device dependence. 2765 DeviceLinkerInputs.resize(CudaDeviceActions.size()); 2766 auto LI = DeviceLinkerInputs.begin(); 2767 for (auto *A : CudaDeviceActions) { 2768 LI->push_back(A); 2769 ++LI; 2770 } 2771 2772 // We will pass the device action as a host dependence, so we don't 2773 // need to do anything else with them. 2774 CudaDeviceActions.clear(); 2775 return ABRT_Success; 2776 } 2777 2778 // By default, we produce an action for each device arch. 2779 for (Action *&A : CudaDeviceActions) 2780 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, 2781 AssociatedOffloadKind); 2782 2783 return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host 2784 : ABRT_Success; 2785 } 2786 2787 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override { 2788 // Append a new link action for each device. 2789 unsigned I = 0; 2790 for (auto &LI : DeviceLinkerInputs) { 2791 auto *DeviceLinkAction = 2792 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2793 DA.add(*DeviceLinkAction, *ToolChains[0], 2794 CudaArchToString(GpuArchList[I]), AssociatedOffloadKind); 2795 ++I; 2796 } 2797 } 2798 }; 2799 2800 /// OpenMP action builder. The host bitcode is passed to the device frontend 2801 /// and all the device linked images are passed to the host link phase. 2802 class OpenMPActionBuilder final : public DeviceActionBuilder { 2803 /// The OpenMP actions for the current input. 2804 ActionList OpenMPDeviceActions; 2805 2806 /// The linker inputs obtained for each toolchain. 2807 SmallVector<ActionList, 8> DeviceLinkerInputs; 2808 2809 public: 2810 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, 2811 const Driver::InputList &Inputs) 2812 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} 2813 2814 ActionBuilderReturnCode 2815 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2816 phases::ID CurPhase, phases::ID FinalPhase, 2817 PhasesTy &Phases) override { 2818 if (OpenMPDeviceActions.empty()) 2819 return ABRT_Inactive; 2820 2821 // We should always have an action for each input. 2822 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2823 "Number of OpenMP actions and toolchains do not match."); 2824 2825 // The host only depends on device action in the linking phase, when all 2826 // the device images have to be embedded in the host image. 2827 if (CurPhase == phases::Link) { 2828 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2829 "Toolchains and linker inputs sizes do not match."); 2830 auto LI = DeviceLinkerInputs.begin(); 2831 for (auto *A : OpenMPDeviceActions) { 2832 LI->push_back(A); 2833 ++LI; 2834 } 2835 2836 // We passed the device action as a host dependence, so we don't need to 2837 // do anything else with them. 2838 OpenMPDeviceActions.clear(); 2839 return ABRT_Success; 2840 } 2841 2842 // By default, we produce an action for each device arch. 2843 for (Action *&A : OpenMPDeviceActions) 2844 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2845 2846 return ABRT_Success; 2847 } 2848 2849 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2850 2851 // If this is an input action replicate it for each OpenMP toolchain. 2852 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2853 OpenMPDeviceActions.clear(); 2854 for (unsigned I = 0; I < ToolChains.size(); ++I) 2855 OpenMPDeviceActions.push_back( 2856 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType())); 2857 return ABRT_Success; 2858 } 2859 2860 // If this is an unbundling action use it as is for each OpenMP toolchain. 2861 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2862 OpenMPDeviceActions.clear(); 2863 auto *IA = cast<InputAction>(UA->getInputs().back()); 2864 std::string FileName = IA->getInputArg().getAsString(Args); 2865 // Check if the type of the file is the same as the action. Do not 2866 // unbundle it if it is not. Do not unbundle .so files, for example, 2867 // which are not object files. 2868 if (IA->getType() == types::TY_Object && 2869 (!llvm::sys::path::has_extension(FileName) || 2870 types::lookupTypeForExtension( 2871 llvm::sys::path::extension(FileName).drop_front()) != 2872 types::TY_Object)) 2873 return ABRT_Inactive; 2874 for (unsigned I = 0; I < ToolChains.size(); ++I) { 2875 OpenMPDeviceActions.push_back(UA); 2876 UA->registerDependentActionInfo( 2877 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); 2878 } 2879 return ABRT_Success; 2880 } 2881 2882 // When generating code for OpenMP we use the host compile phase result as 2883 // a dependence to the device compile phase so that it can learn what 2884 // declarations should be emitted. However, this is not the only use for 2885 // the host action, so we prevent it from being collapsed. 2886 if (isa<CompileJobAction>(HostAction)) { 2887 HostAction->setCannotBeCollapsedWithNextDependentAction(); 2888 assert(ToolChains.size() == OpenMPDeviceActions.size() && 2889 "Toolchains and device action sizes do not match."); 2890 OffloadAction::HostDependence HDep( 2891 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 2892 /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2893 auto TC = ToolChains.begin(); 2894 for (Action *&A : OpenMPDeviceActions) { 2895 assert(isa<CompileJobAction>(A)); 2896 OffloadAction::DeviceDependences DDep; 2897 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2898 A = C.MakeAction<OffloadAction>(HDep, DDep); 2899 ++TC; 2900 } 2901 } 2902 return ABRT_Success; 2903 } 2904 2905 void appendTopLevelActions(ActionList &AL) override { 2906 if (OpenMPDeviceActions.empty()) 2907 return; 2908 2909 // We should always have an action for each input. 2910 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2911 "Number of OpenMP actions and toolchains do not match."); 2912 2913 // Append all device actions followed by the proper offload action. 2914 auto TI = ToolChains.begin(); 2915 for (auto *A : OpenMPDeviceActions) { 2916 OffloadAction::DeviceDependences Dep; 2917 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 2918 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2919 ++TI; 2920 } 2921 // We no longer need the action stored in this builder. 2922 OpenMPDeviceActions.clear(); 2923 } 2924 2925 void appendLinkActions(ActionList &AL) override { 2926 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2927 "Toolchains and linker inputs sizes do not match."); 2928 2929 // Append a new link action for each device. 2930 auto TC = ToolChains.begin(); 2931 for (auto &LI : DeviceLinkerInputs) { 2932 auto *DeviceLinkAction = 2933 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2934 OffloadAction::DeviceDependences DeviceLinkDeps; 2935 DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, 2936 Action::OFK_OpenMP); 2937 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps, 2938 DeviceLinkAction->getType())); 2939 ++TC; 2940 } 2941 DeviceLinkerInputs.clear(); 2942 } 2943 2944 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} 2945 2946 bool initialize() override { 2947 // Get the OpenMP toolchains. If we don't get any, the action builder will 2948 // know there is nothing to do related to OpenMP offloading. 2949 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>(); 2950 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; 2951 ++TI) 2952 ToolChains.push_back(TI->second); 2953 2954 DeviceLinkerInputs.resize(ToolChains.size()); 2955 return false; 2956 } 2957 2958 bool canUseBundlerUnbundler() const override { 2959 // OpenMP should use bundled files whenever possible. 2960 return true; 2961 } 2962 }; 2963 2964 /// 2965 /// TODO: Add the implementation for other specialized builders here. 2966 /// 2967 2968 /// Specialized builders being used by this offloading action builder. 2969 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; 2970 2971 /// Flag set to true if all valid builders allow file bundling/unbundling. 2972 bool CanUseBundler; 2973 2974 public: 2975 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, 2976 const Driver::InputList &Inputs) 2977 : C(C) { 2978 // Create a specialized builder for each device toolchain. 2979 2980 IsValid = true; 2981 2982 // Create a specialized builder for CUDA. 2983 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); 2984 2985 // Create a specialized builder for HIP. 2986 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); 2987 2988 // Create a specialized builder for OpenMP. 2989 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); 2990 2991 // 2992 // TODO: Build other specialized builders here. 2993 // 2994 2995 // Initialize all the builders, keeping track of errors. If all valid 2996 // builders agree that we can use bundling, set the flag to true. 2997 unsigned ValidBuilders = 0u; 2998 unsigned ValidBuildersSupportingBundling = 0u; 2999 for (auto *SB : SpecializedBuilders) { 3000 IsValid = IsValid && !SB->initialize(); 3001 3002 // Update the counters if the builder is valid. 3003 if (SB->isValid()) { 3004 ++ValidBuilders; 3005 if (SB->canUseBundlerUnbundler()) 3006 ++ValidBuildersSupportingBundling; 3007 } 3008 } 3009 CanUseBundler = 3010 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; 3011 } 3012 3013 ~OffloadingActionBuilder() { 3014 for (auto *SB : SpecializedBuilders) 3015 delete SB; 3016 } 3017 3018 /// Generate an action that adds device dependences (if any) to a host action. 3019 /// If no device dependence actions exist, just return the host action \a 3020 /// HostAction. If an error is found or if no builder requires the host action 3021 /// to be generated, return nullptr. 3022 Action * 3023 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, 3024 phases::ID CurPhase, phases::ID FinalPhase, 3025 DeviceActionBuilder::PhasesTy &Phases) { 3026 if (!IsValid) 3027 return nullptr; 3028 3029 if (SpecializedBuilders.empty()) 3030 return HostAction; 3031 3032 assert(HostAction && "Invalid host action!"); 3033 3034 OffloadAction::DeviceDependences DDeps; 3035 // Check if all the programming models agree we should not emit the host 3036 // action. Also, keep track of the offloading kinds employed. 3037 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3038 unsigned InactiveBuilders = 0u; 3039 unsigned IgnoringBuilders = 0u; 3040 for (auto *SB : SpecializedBuilders) { 3041 if (!SB->isValid()) { 3042 ++InactiveBuilders; 3043 continue; 3044 } 3045 3046 auto RetCode = 3047 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); 3048 3049 // If the builder explicitly says the host action should be ignored, 3050 // we need to increment the variable that tracks the builders that request 3051 // the host object to be ignored. 3052 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) 3053 ++IgnoringBuilders; 3054 3055 // Unless the builder was inactive for this action, we have to record the 3056 // offload kind because the host will have to use it. 3057 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3058 OffloadKind |= SB->getAssociatedOffloadKind(); 3059 } 3060 3061 // If all builders agree that the host object should be ignored, just return 3062 // nullptr. 3063 if (IgnoringBuilders && 3064 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) 3065 return nullptr; 3066 3067 if (DDeps.getActions().empty()) 3068 return HostAction; 3069 3070 // We have dependences we need to bundle together. We use an offload action 3071 // for that. 3072 OffloadAction::HostDependence HDep( 3073 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3074 /*BoundArch=*/nullptr, DDeps); 3075 return C.MakeAction<OffloadAction>(HDep, DDeps); 3076 } 3077 3078 /// Generate an action that adds a host dependence to a device action. The 3079 /// results will be kept in this action builder. Return true if an error was 3080 /// found. 3081 bool addHostDependenceToDeviceActions(Action *&HostAction, 3082 const Arg *InputArg) { 3083 if (!IsValid) 3084 return true; 3085 3086 // If we are supporting bundling/unbundling and the current action is an 3087 // input action of non-source file, we replace the host action by the 3088 // unbundling action. The bundler tool has the logic to detect if an input 3089 // is a bundle or not and if the input is not a bundle it assumes it is a 3090 // host file. Therefore it is safe to create an unbundling action even if 3091 // the input is not a bundle. 3092 if (CanUseBundler && isa<InputAction>(HostAction) && 3093 InputArg->getOption().getKind() == llvm::opt::Option::InputClass && 3094 !types::isSrcFile(HostAction->getType())) { 3095 auto UnbundlingHostAction = 3096 C.MakeAction<OffloadUnbundlingJobAction>(HostAction); 3097 UnbundlingHostAction->registerDependentActionInfo( 3098 C.getSingleOffloadToolChain<Action::OFK_Host>(), 3099 /*BoundArch=*/StringRef(), Action::OFK_Host); 3100 HostAction = UnbundlingHostAction; 3101 } 3102 3103 assert(HostAction && "Invalid host action!"); 3104 3105 // Register the offload kinds that are used. 3106 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3107 for (auto *SB : SpecializedBuilders) { 3108 if (!SB->isValid()) 3109 continue; 3110 3111 auto RetCode = SB->addDeviceDepences(HostAction); 3112 3113 // Host dependences for device actions are not compatible with that same 3114 // action being ignored. 3115 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && 3116 "Host dependence not expected to be ignored.!"); 3117 3118 // Unless the builder was inactive for this action, we have to record the 3119 // offload kind because the host will have to use it. 3120 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3121 OffloadKind |= SB->getAssociatedOffloadKind(); 3122 } 3123 3124 // Do not use unbundler if the Host does not depend on device action. 3125 if (OffloadKind == Action::OFK_None && CanUseBundler) 3126 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) 3127 HostAction = UA->getInputs().back(); 3128 3129 return false; 3130 } 3131 3132 /// Add the offloading top level actions to the provided action list. This 3133 /// function can replace the host action by a bundling action if the 3134 /// programming models allow it. 3135 bool appendTopLevelActions(ActionList &AL, Action *HostAction, 3136 const Arg *InputArg) { 3137 // Get the device actions to be appended. 3138 ActionList OffloadAL; 3139 for (auto *SB : SpecializedBuilders) { 3140 if (!SB->isValid()) 3141 continue; 3142 SB->appendTopLevelActions(OffloadAL); 3143 } 3144 3145 // If we can use the bundler, replace the host action by the bundling one in 3146 // the resulting list. Otherwise, just append the device actions. For 3147 // device only compilation, HostAction is a null pointer, therefore only do 3148 // this when HostAction is not a null pointer. 3149 if (CanUseBundler && HostAction && 3150 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) { 3151 // Add the host action to the list in order to create the bundling action. 3152 OffloadAL.push_back(HostAction); 3153 3154 // We expect that the host action was just appended to the action list 3155 // before this method was called. 3156 assert(HostAction == AL.back() && "Host action not in the list??"); 3157 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); 3158 AL.back() = HostAction; 3159 } else 3160 AL.append(OffloadAL.begin(), OffloadAL.end()); 3161 3162 // Propagate to the current host action (if any) the offload information 3163 // associated with the current input. 3164 if (HostAction) 3165 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], 3166 /*BoundArch=*/nullptr); 3167 return false; 3168 } 3169 3170 Action* makeHostLinkAction() { 3171 // Build a list of device linking actions. 3172 ActionList DeviceAL; 3173 for (DeviceActionBuilder *SB : SpecializedBuilders) { 3174 if (!SB->isValid()) 3175 continue; 3176 SB->appendLinkActions(DeviceAL); 3177 } 3178 3179 if (DeviceAL.empty()) 3180 return nullptr; 3181 3182 // Create wrapper bitcode from the result of device link actions and compile 3183 // it to an object which will be added to the host link command. 3184 auto *BC = C.MakeAction<OffloadWrapperJobAction>(DeviceAL, types::TY_LLVM_BC); 3185 auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm); 3186 return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object); 3187 } 3188 3189 /// Processes the host linker action. This currently consists of replacing it 3190 /// with an offload action if there are device link objects and propagate to 3191 /// the host action all the offload kinds used in the current compilation. The 3192 /// resulting action is returned. 3193 Action *processHostLinkAction(Action *HostAction) { 3194 // Add all the dependences from the device linking actions. 3195 OffloadAction::DeviceDependences DDeps; 3196 for (auto *SB : SpecializedBuilders) { 3197 if (!SB->isValid()) 3198 continue; 3199 3200 SB->appendLinkDependences(DDeps); 3201 } 3202 3203 // Calculate all the offload kinds used in the current compilation. 3204 unsigned ActiveOffloadKinds = 0u; 3205 for (auto &I : InputArgToOffloadKindMap) 3206 ActiveOffloadKinds |= I.second; 3207 3208 // If we don't have device dependencies, we don't have to create an offload 3209 // action. 3210 if (DDeps.getActions().empty()) { 3211 // Propagate all the active kinds to host action. Given that it is a link 3212 // action it is assumed to depend on all actions generated so far. 3213 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, 3214 /*BoundArch=*/nullptr); 3215 return HostAction; 3216 } 3217 3218 // Create the offload action with all dependences. When an offload action 3219 // is created the kinds are propagated to the host action, so we don't have 3220 // to do that explicitly here. 3221 OffloadAction::HostDependence HDep( 3222 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3223 /*BoundArch*/ nullptr, ActiveOffloadKinds); 3224 return C.MakeAction<OffloadAction>(HDep, DDeps); 3225 } 3226 }; 3227 } // anonymous namespace. 3228 3229 void Driver::handleArguments(Compilation &C, DerivedArgList &Args, 3230 const InputList &Inputs, 3231 ActionList &Actions) const { 3232 3233 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. 3234 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); 3235 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); 3236 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { 3237 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); 3238 Args.eraseArg(options::OPT__SLASH_Yc); 3239 Args.eraseArg(options::OPT__SLASH_Yu); 3240 YcArg = YuArg = nullptr; 3241 } 3242 if (YcArg && Inputs.size() > 1) { 3243 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); 3244 Args.eraseArg(options::OPT__SLASH_Yc); 3245 YcArg = nullptr; 3246 } 3247 3248 Arg *FinalPhaseArg; 3249 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); 3250 3251 if (FinalPhase == phases::Link) { 3252 if (Args.hasArg(options::OPT_emit_llvm)) 3253 Diag(clang::diag::err_drv_emit_llvm_link); 3254 if (IsCLMode() && LTOMode != LTOK_None && 3255 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) 3256 Diag(clang::diag::err_drv_lto_without_lld); 3257 } 3258 3259 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { 3260 // If only preprocessing or /Y- is used, all pch handling is disabled. 3261 // Rather than check for it everywhere, just remove clang-cl pch-related 3262 // flags here. 3263 Args.eraseArg(options::OPT__SLASH_Fp); 3264 Args.eraseArg(options::OPT__SLASH_Yc); 3265 Args.eraseArg(options::OPT__SLASH_Yu); 3266 YcArg = YuArg = nullptr; 3267 } 3268 3269 unsigned LastPLSize = 0; 3270 for (auto &I : Inputs) { 3271 types::ID InputType = I.first; 3272 const Arg *InputArg = I.second; 3273 3274 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 3275 types::getCompilationPhases(InputType, PL); 3276 LastPLSize = PL.size(); 3277 3278 // If the first step comes after the final phase we are doing as part of 3279 // this compilation, warn the user about it. 3280 phases::ID InitialPhase = PL[0]; 3281 if (InitialPhase > FinalPhase) { 3282 if (InputArg->isClaimed()) 3283 continue; 3284 3285 // Claim here to avoid the more general unused warning. 3286 InputArg->claim(); 3287 3288 // Suppress all unused style warnings with -Qunused-arguments 3289 if (Args.hasArg(options::OPT_Qunused_arguments)) 3290 continue; 3291 3292 // Special case when final phase determined by binary name, rather than 3293 // by a command-line argument with a corresponding Arg. 3294 if (CCCIsCPP()) 3295 Diag(clang::diag::warn_drv_input_file_unused_by_cpp) 3296 << InputArg->getAsString(Args) << getPhaseName(InitialPhase); 3297 // Special case '-E' warning on a previously preprocessed file to make 3298 // more sense. 3299 else if (InitialPhase == phases::Compile && 3300 (Args.getLastArg(options::OPT__SLASH_EP, 3301 options::OPT__SLASH_P) || 3302 Args.getLastArg(options::OPT_E) || 3303 Args.getLastArg(options::OPT_M, options::OPT_MM)) && 3304 getPreprocessedType(InputType) == types::TY_INVALID) 3305 Diag(clang::diag::warn_drv_preprocessed_input_file_unused) 3306 << InputArg->getAsString(Args) << !!FinalPhaseArg 3307 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3308 else 3309 Diag(clang::diag::warn_drv_input_file_unused) 3310 << InputArg->getAsString(Args) << getPhaseName(InitialPhase) 3311 << !!FinalPhaseArg 3312 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3313 continue; 3314 } 3315 3316 if (YcArg) { 3317 // Add a separate precompile phase for the compile phase. 3318 if (FinalPhase >= phases::Compile) { 3319 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); 3320 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PCHPL; 3321 types::getCompilationPhases(HeaderType, PCHPL); 3322 // Build the pipeline for the pch file. 3323 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType); 3324 for (phases::ID Phase : PCHPL) 3325 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); 3326 assert(ClangClPch); 3327 Actions.push_back(ClangClPch); 3328 // The driver currently exits after the first failed command. This 3329 // relies on that behavior, to make sure if the pch generation fails, 3330 // the main compilation won't run. 3331 // FIXME: If the main compilation fails, the PCH generation should 3332 // probably not be considered successful either. 3333 } 3334 } 3335 } 3336 3337 // If we are linking, claim any options which are obviously only used for 3338 // compilation. 3339 // FIXME: Understand why the last Phase List length is used here. 3340 if (FinalPhase == phases::Link && LastPLSize == 1) { 3341 Args.ClaimAllArgs(options::OPT_CompileOnly_Group); 3342 Args.ClaimAllArgs(options::OPT_cl_compile_Group); 3343 } 3344 } 3345 3346 void Driver::BuildActions(Compilation &C, DerivedArgList &Args, 3347 const InputList &Inputs, ActionList &Actions) const { 3348 llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); 3349 3350 if (!SuppressMissingInputWarning && Inputs.empty()) { 3351 Diag(clang::diag::err_drv_no_input_files); 3352 return; 3353 } 3354 3355 // Reject -Z* at the top level, these options should never have been exposed 3356 // by gcc. 3357 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) 3358 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); 3359 3360 // Diagnose misuse of /Fo. 3361 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { 3362 StringRef V = A->getValue(); 3363 if (Inputs.size() > 1 && !V.empty() && 3364 !llvm::sys::path::is_separator(V.back())) { 3365 // Check whether /Fo tries to name an output file for multiple inputs. 3366 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3367 << A->getSpelling() << V; 3368 Args.eraseArg(options::OPT__SLASH_Fo); 3369 } 3370 } 3371 3372 // Diagnose misuse of /Fa. 3373 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { 3374 StringRef V = A->getValue(); 3375 if (Inputs.size() > 1 && !V.empty() && 3376 !llvm::sys::path::is_separator(V.back())) { 3377 // Check whether /Fa tries to name an asm file for multiple inputs. 3378 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3379 << A->getSpelling() << V; 3380 Args.eraseArg(options::OPT__SLASH_Fa); 3381 } 3382 } 3383 3384 // Diagnose misuse of /o. 3385 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { 3386 if (A->getValue()[0] == '\0') { 3387 // It has to have a value. 3388 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; 3389 Args.eraseArg(options::OPT__SLASH_o); 3390 } 3391 } 3392 3393 handleArguments(C, Args, Inputs, Actions); 3394 3395 // Builder to be used to build offloading actions. 3396 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); 3397 3398 // Construct the actions to perform. 3399 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr; 3400 ActionList LinkerInputs; 3401 ActionList MergerInputs; 3402 3403 for (auto &I : Inputs) { 3404 types::ID InputType = I.first; 3405 const Arg *InputArg = I.second; 3406 3407 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PL; 3408 types::getCompilationPhases(*this, Args, InputType, PL); 3409 if (PL.empty()) 3410 continue; 3411 3412 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> FullPL; 3413 types::getCompilationPhases(InputType, FullPL); 3414 3415 // Build the pipeline for this file. 3416 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3417 3418 // Use the current host action in any of the offloading actions, if 3419 // required. 3420 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3421 break; 3422 3423 for (phases::ID Phase : PL) { 3424 3425 // Add any offload action the host action depends on. 3426 Current = OffloadBuilder.addDeviceDependencesToHostAction( 3427 Current, InputArg, Phase, PL.back(), FullPL); 3428 if (!Current) 3429 break; 3430 3431 // Queue linker inputs. 3432 if (Phase == phases::Link) { 3433 assert(Phase == PL.back() && "linking must be final compilation step."); 3434 LinkerInputs.push_back(Current); 3435 Current = nullptr; 3436 break; 3437 } 3438 3439 // TODO: Consider removing this because the merged may not end up being 3440 // the final Phase in the pipeline. Perhaps the merged could just merge 3441 // and then pass an artifact of some sort to the Link Phase. 3442 // Queue merger inputs. 3443 if (Phase == phases::IfsMerge) { 3444 assert(Phase == PL.back() && "merging must be final compilation step."); 3445 MergerInputs.push_back(Current); 3446 Current = nullptr; 3447 break; 3448 } 3449 3450 // Each precompiled header file after a module file action is a module 3451 // header of that same module file, rather than being compiled to a 3452 // separate PCH. 3453 if (Phase == phases::Precompile && HeaderModuleAction && 3454 getPrecompiledType(InputType) == types::TY_PCH) { 3455 HeaderModuleAction->addModuleHeaderInput(Current); 3456 Current = nullptr; 3457 break; 3458 } 3459 3460 // FIXME: Should we include any prior module file outputs as inputs of 3461 // later actions in the same command line? 3462 3463 // Otherwise construct the appropriate action. 3464 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); 3465 3466 // We didn't create a new action, so we will just move to the next phase. 3467 if (NewCurrent == Current) 3468 continue; 3469 3470 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent)) 3471 HeaderModuleAction = HMA; 3472 3473 Current = NewCurrent; 3474 3475 // Use the current host action in any of the offloading actions, if 3476 // required. 3477 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3478 break; 3479 3480 if (Current->getType() == types::TY_Nothing) 3481 break; 3482 } 3483 3484 // If we ended with something, add to the output list. 3485 if (Current) 3486 Actions.push_back(Current); 3487 3488 // Add any top level actions generated for offloading. 3489 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); 3490 } 3491 3492 // Add a link action if necessary. 3493 if (!LinkerInputs.empty()) { 3494 if (Action *Wrapper = OffloadBuilder.makeHostLinkAction()) 3495 LinkerInputs.push_back(Wrapper); 3496 Action *LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); 3497 LA = OffloadBuilder.processHostLinkAction(LA); 3498 Actions.push_back(LA); 3499 } 3500 3501 // Add an interface stubs merge action if necessary. 3502 if (!MergerInputs.empty()) 3503 Actions.push_back( 3504 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); 3505 3506 if (Args.hasArg(options::OPT_emit_interface_stubs)) { 3507 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> PhaseList; 3508 if (Args.hasArg(options::OPT_c)) { 3509 llvm::SmallVector<phases::ID, phases::MaxNumberOfPhases> CompilePhaseList; 3510 types::getCompilationPhases(types::TY_IFS_CPP, CompilePhaseList); 3511 llvm::copy_if(CompilePhaseList, std::back_inserter(PhaseList), 3512 [&](phases::ID Phase) { return Phase <= phases::Compile; }); 3513 } else { 3514 types::getCompilationPhases(types::TY_IFS_CPP, PhaseList); 3515 } 3516 3517 ActionList MergerInputs; 3518 3519 for (auto &I : Inputs) { 3520 types::ID InputType = I.first; 3521 const Arg *InputArg = I.second; 3522 3523 // Currently clang and the llvm assembler do not support generating symbol 3524 // stubs from assembly, so we skip the input on asm files. For ifs files 3525 // we rely on the normal pipeline setup in the pipeline setup code above. 3526 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm || 3527 InputType == types::TY_Asm) 3528 continue; 3529 3530 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3531 3532 for (auto Phase : PhaseList) { 3533 switch (Phase) { 3534 default: 3535 llvm_unreachable( 3536 "IFS Pipeline can only consist of Compile followed by IfsMerge."); 3537 case phases::Compile: { 3538 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs 3539 // files where the .o file is located. The compile action can not 3540 // handle this. 3541 if (InputType == types::TY_Object) 3542 break; 3543 3544 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP); 3545 break; 3546 } 3547 case phases::IfsMerge: { 3548 assert(Phase == PhaseList.back() && 3549 "merging must be final compilation step."); 3550 MergerInputs.push_back(Current); 3551 Current = nullptr; 3552 break; 3553 } 3554 } 3555 } 3556 3557 // If we ended with something, add to the output list. 3558 if (Current) 3559 Actions.push_back(Current); 3560 } 3561 3562 // Add an interface stubs merge action if necessary. 3563 if (!MergerInputs.empty()) 3564 Actions.push_back( 3565 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); 3566 } 3567 3568 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom 3569 // Compile phase that prints out supported cpu models and quits. 3570 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) { 3571 // Use the -mcpu=? flag as the dummy input to cc1. 3572 Actions.clear(); 3573 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C); 3574 Actions.push_back( 3575 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing)); 3576 for (auto &I : Inputs) 3577 I.second->claim(); 3578 } 3579 3580 // Claim ignored clang-cl options. 3581 Args.ClaimAllArgs(options::OPT_cl_ignored_Group); 3582 3583 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed 3584 // to non-CUDA compilations and should not trigger warnings there. 3585 Args.ClaimAllArgs(options::OPT_cuda_host_only); 3586 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); 3587 } 3588 3589 Action *Driver::ConstructPhaseAction( 3590 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, 3591 Action::OffloadKind TargetDeviceOffloadKind) const { 3592 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); 3593 3594 // Some types skip the assembler phase (e.g., llvm-bc), but we can't 3595 // encode this in the steps because the intermediate type depends on 3596 // arguments. Just special case here. 3597 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) 3598 return Input; 3599 3600 // Build the appropriate action. 3601 switch (Phase) { 3602 case phases::Link: 3603 llvm_unreachable("link action invalid here."); 3604 case phases::IfsMerge: 3605 llvm_unreachable("ifsmerge action invalid here."); 3606 case phases::Preprocess: { 3607 types::ID OutputTy; 3608 // -M and -MM specify the dependency file name by altering the output type, 3609 // -if -MD and -MMD are not specified. 3610 if (Args.hasArg(options::OPT_M, options::OPT_MM) && 3611 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) { 3612 OutputTy = types::TY_Dependencies; 3613 } else { 3614 OutputTy = Input->getType(); 3615 if (!Args.hasFlag(options::OPT_frewrite_includes, 3616 options::OPT_fno_rewrite_includes, false) && 3617 !Args.hasFlag(options::OPT_frewrite_imports, 3618 options::OPT_fno_rewrite_imports, false) && 3619 !CCGenDiagnostics) 3620 OutputTy = types::getPreprocessedType(OutputTy); 3621 assert(OutputTy != types::TY_INVALID && 3622 "Cannot preprocess this input type!"); 3623 } 3624 return C.MakeAction<PreprocessJobAction>(Input, OutputTy); 3625 } 3626 case phases::Precompile: { 3627 types::ID OutputTy = getPrecompiledType(Input->getType()); 3628 assert(OutputTy != types::TY_INVALID && 3629 "Cannot precompile this input type!"); 3630 3631 // If we're given a module name, precompile header file inputs as a 3632 // module, not as a precompiled header. 3633 const char *ModName = nullptr; 3634 if (OutputTy == types::TY_PCH) { 3635 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) 3636 ModName = A->getValue(); 3637 if (ModName) 3638 OutputTy = types::TY_ModuleFile; 3639 } 3640 3641 if (Args.hasArg(options::OPT_fsyntax_only)) { 3642 // Syntax checks should not emit a PCH file 3643 OutputTy = types::TY_Nothing; 3644 } 3645 3646 if (ModName) 3647 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy, 3648 ModName); 3649 return C.MakeAction<PrecompileJobAction>(Input, OutputTy); 3650 } 3651 case phases::Compile: { 3652 if (Args.hasArg(options::OPT_fsyntax_only)) 3653 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); 3654 if (Args.hasArg(options::OPT_rewrite_objc)) 3655 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); 3656 if (Args.hasArg(options::OPT_rewrite_legacy_objc)) 3657 return C.MakeAction<CompileJobAction>(Input, 3658 types::TY_RewrittenLegacyObjC); 3659 if (Args.hasArg(options::OPT__analyze)) 3660 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); 3661 if (Args.hasArg(options::OPT__migrate)) 3662 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); 3663 if (Args.hasArg(options::OPT_emit_ast)) 3664 return C.MakeAction<CompileJobAction>(Input, types::TY_AST); 3665 if (Args.hasArg(options::OPT_module_file_info)) 3666 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); 3667 if (Args.hasArg(options::OPT_verify_pch)) 3668 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); 3669 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); 3670 } 3671 case phases::Backend: { 3672 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { 3673 types::ID Output = 3674 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; 3675 return C.MakeAction<BackendJobAction>(Input, Output); 3676 } 3677 if (Args.hasArg(options::OPT_emit_llvm)) { 3678 types::ID Output = 3679 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; 3680 return C.MakeAction<BackendJobAction>(Input, Output); 3681 } 3682 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); 3683 } 3684 case phases::Assemble: 3685 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); 3686 } 3687 3688 llvm_unreachable("invalid phase in ConstructPhaseAction"); 3689 } 3690 3691 void Driver::BuildJobs(Compilation &C) const { 3692 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3693 3694 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 3695 3696 // It is an error to provide a -o option if we are making multiple output 3697 // files. There are exceptions: 3698 // 3699 // IfsMergeJob: when generating interface stubs enabled we want to be able to 3700 // generate the stub file at the same time that we generate the real 3701 // library/a.out. So when a .o, .so, etc are the output, with clang interface 3702 // stubs there will also be a .ifs and .ifso at the same location. 3703 // 3704 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled 3705 // and -c is passed, we still want to be able to generate a .ifs file while 3706 // we are also generating .o files. So we allow more than one output file in 3707 // this case as well. 3708 // 3709 if (FinalOutput) { 3710 unsigned NumOutputs = 0; 3711 unsigned NumIfsOutputs = 0; 3712 for (const Action *A : C.getActions()) 3713 if (A->getType() != types::TY_Nothing && 3714 !(A->getKind() == Action::IfsMergeJobClass || 3715 (A->getType() == clang::driver::types::TY_IFS_CPP && 3716 A->getKind() == clang::driver::Action::CompileJobClass && 3717 0 == NumIfsOutputs++) || 3718 (A->getKind() == Action::BindArchClass && A->getInputs().size() && 3719 A->getInputs().front()->getKind() == Action::IfsMergeJobClass))) 3720 ++NumOutputs; 3721 3722 if (NumOutputs > 1) { 3723 Diag(clang::diag::err_drv_output_argument_with_multiple_files); 3724 FinalOutput = nullptr; 3725 } 3726 } 3727 3728 // Collect the list of architectures. 3729 llvm::StringSet<> ArchNames; 3730 if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO()) 3731 for (const Arg *A : C.getArgs()) 3732 if (A->getOption().matches(options::OPT_arch)) 3733 ArchNames.insert(A->getValue()); 3734 3735 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. 3736 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults; 3737 for (Action *A : C.getActions()) { 3738 // If we are linking an image for multiple archs then the linker wants 3739 // -arch_multiple and -final_output <final image name>. Unfortunately, this 3740 // doesn't fit in cleanly because we have to pass this information down. 3741 // 3742 // FIXME: This is a hack; find a cleaner way to integrate this into the 3743 // process. 3744 const char *LinkingOutput = nullptr; 3745 if (isa<LipoJobAction>(A)) { 3746 if (FinalOutput) 3747 LinkingOutput = FinalOutput->getValue(); 3748 else 3749 LinkingOutput = getDefaultImageName(); 3750 } 3751 3752 BuildJobsForAction(C, A, &C.getDefaultToolChain(), 3753 /*BoundArch*/ StringRef(), 3754 /*AtTopLevel*/ true, 3755 /*MultipleArchs*/ ArchNames.size() > 1, 3756 /*LinkingOutput*/ LinkingOutput, CachedResults, 3757 /*TargetDeviceOffloadKind*/ Action::OFK_None); 3758 } 3759 3760 // If we have more than one job, then disable integrated-cc1 for now. 3761 if (C.getJobs().size() > 1) 3762 for (auto &J : C.getJobs()) 3763 J.InProcess = false; 3764 3765 // If the user passed -Qunused-arguments or there were errors, don't warn 3766 // about any unused arguments. 3767 if (Diags.hasErrorOccurred() || 3768 C.getArgs().hasArg(options::OPT_Qunused_arguments)) 3769 return; 3770 3771 // Claim -### here. 3772 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); 3773 3774 // Claim --driver-mode, --rsp-quoting, it was handled earlier. 3775 (void)C.getArgs().hasArg(options::OPT_driver_mode); 3776 (void)C.getArgs().hasArg(options::OPT_rsp_quoting); 3777 3778 for (Arg *A : C.getArgs()) { 3779 // FIXME: It would be nice to be able to send the argument to the 3780 // DiagnosticsEngine, so that extra values, position, and so on could be 3781 // printed. 3782 if (!A->isClaimed()) { 3783 if (A->getOption().hasFlag(options::NoArgumentUnused)) 3784 continue; 3785 3786 // Suppress the warning automatically if this is just a flag, and it is an 3787 // instance of an argument we already claimed. 3788 const Option &Opt = A->getOption(); 3789 if (Opt.getKind() == Option::FlagClass) { 3790 bool DuplicateClaimed = false; 3791 3792 for (const Arg *AA : C.getArgs().filtered(&Opt)) { 3793 if (AA->isClaimed()) { 3794 DuplicateClaimed = true; 3795 break; 3796 } 3797 } 3798 3799 if (DuplicateClaimed) 3800 continue; 3801 } 3802 3803 // In clang-cl, don't mention unknown arguments here since they have 3804 // already been warned about. 3805 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) 3806 Diag(clang::diag::warn_drv_unused_argument) 3807 << A->getAsString(C.getArgs()); 3808 } 3809 } 3810 } 3811 3812 namespace { 3813 /// Utility class to control the collapse of dependent actions and select the 3814 /// tools accordingly. 3815 class ToolSelector final { 3816 /// The tool chain this selector refers to. 3817 const ToolChain &TC; 3818 3819 /// The compilation this selector refers to. 3820 const Compilation &C; 3821 3822 /// The base action this selector refers to. 3823 const JobAction *BaseAction; 3824 3825 /// Set to true if the current toolchain refers to host actions. 3826 bool IsHostSelector; 3827 3828 /// Set to true if save-temps and embed-bitcode functionalities are active. 3829 bool SaveTemps; 3830 bool EmbedBitcode; 3831 3832 /// Get previous dependent action or null if that does not exist. If 3833 /// \a CanBeCollapsed is false, that action must be legal to collapse or 3834 /// null will be returned. 3835 const JobAction *getPrevDependentAction(const ActionList &Inputs, 3836 ActionList &SavedOffloadAction, 3837 bool CanBeCollapsed = true) { 3838 // An option can be collapsed only if it has a single input. 3839 if (Inputs.size() != 1) 3840 return nullptr; 3841 3842 Action *CurAction = *Inputs.begin(); 3843 if (CanBeCollapsed && 3844 !CurAction->isCollapsingWithNextDependentActionLegal()) 3845 return nullptr; 3846 3847 // If the input action is an offload action. Look through it and save any 3848 // offload action that can be dropped in the event of a collapse. 3849 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { 3850 // If the dependent action is a device action, we will attempt to collapse 3851 // only with other device actions. Otherwise, we would do the same but 3852 // with host actions only. 3853 if (!IsHostSelector) { 3854 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { 3855 CurAction = 3856 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); 3857 if (CanBeCollapsed && 3858 !CurAction->isCollapsingWithNextDependentActionLegal()) 3859 return nullptr; 3860 SavedOffloadAction.push_back(OA); 3861 return dyn_cast<JobAction>(CurAction); 3862 } 3863 } else if (OA->hasHostDependence()) { 3864 CurAction = OA->getHostDependence(); 3865 if (CanBeCollapsed && 3866 !CurAction->isCollapsingWithNextDependentActionLegal()) 3867 return nullptr; 3868 SavedOffloadAction.push_back(OA); 3869 return dyn_cast<JobAction>(CurAction); 3870 } 3871 return nullptr; 3872 } 3873 3874 return dyn_cast<JobAction>(CurAction); 3875 } 3876 3877 /// Return true if an assemble action can be collapsed. 3878 bool canCollapseAssembleAction() const { 3879 return TC.useIntegratedAs() && !SaveTemps && 3880 !C.getArgs().hasArg(options::OPT_via_file_asm) && 3881 !C.getArgs().hasArg(options::OPT__SLASH_FA) && 3882 !C.getArgs().hasArg(options::OPT__SLASH_Fa); 3883 } 3884 3885 /// Return true if a preprocessor action can be collapsed. 3886 bool canCollapsePreprocessorAction() const { 3887 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && 3888 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && 3889 !C.getArgs().hasArg(options::OPT_rewrite_objc); 3890 } 3891 3892 /// Struct that relates an action with the offload actions that would be 3893 /// collapsed with it. 3894 struct JobActionInfo final { 3895 /// The action this info refers to. 3896 const JobAction *JA = nullptr; 3897 /// The offload actions we need to take care off if this action is 3898 /// collapsed. 3899 ActionList SavedOffloadAction; 3900 }; 3901 3902 /// Append collapsed offload actions from the give nnumber of elements in the 3903 /// action info array. 3904 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, 3905 ArrayRef<JobActionInfo> &ActionInfo, 3906 unsigned ElementNum) { 3907 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); 3908 for (unsigned I = 0; I < ElementNum; ++I) 3909 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), 3910 ActionInfo[I].SavedOffloadAction.end()); 3911 } 3912 3913 /// Functions that attempt to perform the combining. They detect if that is 3914 /// legal, and if so they update the inputs \a Inputs and the offload action 3915 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with 3916 /// the combined action is returned. If the combining is not legal or if the 3917 /// tool does not exist, null is returned. 3918 /// Currently three kinds of collapsing are supported: 3919 /// - Assemble + Backend + Compile; 3920 /// - Assemble + Backend ; 3921 /// - Backend + Compile. 3922 const Tool * 3923 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3924 ActionList &Inputs, 3925 ActionList &CollapsedOffloadAction) { 3926 if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) 3927 return nullptr; 3928 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3929 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3930 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); 3931 if (!AJ || !BJ || !CJ) 3932 return nullptr; 3933 3934 // Get compiler tool. 3935 const Tool *T = TC.SelectTool(*CJ); 3936 if (!T) 3937 return nullptr; 3938 3939 // When using -fembed-bitcode, it is required to have the same tool (clang) 3940 // for both CompilerJA and BackendJA. Otherwise, combine two stages. 3941 if (EmbedBitcode) { 3942 const Tool *BT = TC.SelectTool(*BJ); 3943 if (BT == T) 3944 return nullptr; 3945 } 3946 3947 if (!T->hasIntegratedAssembler()) 3948 return nullptr; 3949 3950 Inputs = CJ->getInputs(); 3951 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3952 /*NumElements=*/3); 3953 return T; 3954 } 3955 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, 3956 ActionList &Inputs, 3957 ActionList &CollapsedOffloadAction) { 3958 if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) 3959 return nullptr; 3960 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 3961 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 3962 if (!AJ || !BJ) 3963 return nullptr; 3964 3965 // Get backend tool. 3966 const Tool *T = TC.SelectTool(*BJ); 3967 if (!T) 3968 return nullptr; 3969 3970 if (!T->hasIntegratedAssembler()) 3971 return nullptr; 3972 3973 Inputs = BJ->getInputs(); 3974 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 3975 /*NumElements=*/2); 3976 return T; 3977 } 3978 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 3979 ActionList &Inputs, 3980 ActionList &CollapsedOffloadAction) { 3981 if (ActionInfo.size() < 2) 3982 return nullptr; 3983 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); 3984 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); 3985 if (!BJ || !CJ) 3986 return nullptr; 3987 3988 // Check if the initial input (to the compile job or its predessor if one 3989 // exists) is LLVM bitcode. In that case, no preprocessor step is required 3990 // and we can still collapse the compile and backend jobs when we have 3991 // -save-temps. I.e. there is no need for a separate compile job just to 3992 // emit unoptimized bitcode. 3993 bool InputIsBitcode = true; 3994 for (size_t i = 1; i < ActionInfo.size(); i++) 3995 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && 3996 ActionInfo[i].JA->getType() != types::TY_LTO_BC) { 3997 InputIsBitcode = false; 3998 break; 3999 } 4000 if (!InputIsBitcode && !canCollapsePreprocessorAction()) 4001 return nullptr; 4002 4003 // Get compiler tool. 4004 const Tool *T = TC.SelectTool(*CJ); 4005 if (!T) 4006 return nullptr; 4007 4008 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) 4009 return nullptr; 4010 4011 Inputs = CJ->getInputs(); 4012 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 4013 /*NumElements=*/2); 4014 return T; 4015 } 4016 4017 /// Updates the inputs if the obtained tool supports combining with 4018 /// preprocessor action, and the current input is indeed a preprocessor 4019 /// action. If combining results in the collapse of offloading actions, those 4020 /// are appended to \a CollapsedOffloadAction. 4021 void combineWithPreprocessor(const Tool *T, ActionList &Inputs, 4022 ActionList &CollapsedOffloadAction) { 4023 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) 4024 return; 4025 4026 // Attempt to get a preprocessor action dependence. 4027 ActionList PreprocessJobOffloadActions; 4028 ActionList NewInputs; 4029 for (Action *A : Inputs) { 4030 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); 4031 if (!PJ || !isa<PreprocessJobAction>(PJ)) { 4032 NewInputs.push_back(A); 4033 continue; 4034 } 4035 4036 // This is legal to combine. Append any offload action we found and add the 4037 // current input to preprocessor inputs. 4038 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), 4039 PreprocessJobOffloadActions.end()); 4040 NewInputs.append(PJ->input_begin(), PJ->input_end()); 4041 } 4042 Inputs = NewInputs; 4043 } 4044 4045 public: 4046 ToolSelector(const JobAction *BaseAction, const ToolChain &TC, 4047 const Compilation &C, bool SaveTemps, bool EmbedBitcode) 4048 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), 4049 EmbedBitcode(EmbedBitcode) { 4050 assert(BaseAction && "Invalid base action."); 4051 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; 4052 } 4053 4054 /// Check if a chain of actions can be combined and return the tool that can 4055 /// handle the combination of actions. The pointer to the current inputs \a 4056 /// Inputs and the list of offload actions \a CollapsedOffloadActions 4057 /// connected to collapsed actions are updated accordingly. The latter enables 4058 /// the caller of the selector to process them afterwards instead of just 4059 /// dropping them. If no suitable tool is found, null will be returned. 4060 const Tool *getTool(ActionList &Inputs, 4061 ActionList &CollapsedOffloadAction) { 4062 // 4063 // Get the largest chain of actions that we could combine. 4064 // 4065 4066 SmallVector<JobActionInfo, 5> ActionChain(1); 4067 ActionChain.back().JA = BaseAction; 4068 while (ActionChain.back().JA) { 4069 const Action *CurAction = ActionChain.back().JA; 4070 4071 // Grow the chain by one element. 4072 ActionChain.resize(ActionChain.size() + 1); 4073 JobActionInfo &AI = ActionChain.back(); 4074 4075 // Attempt to fill it with the 4076 AI.JA = 4077 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); 4078 } 4079 4080 // Pop the last action info as it could not be filled. 4081 ActionChain.pop_back(); 4082 4083 // 4084 // Attempt to combine actions. If all combining attempts failed, just return 4085 // the tool of the provided action. At the end we attempt to combine the 4086 // action with any preprocessor action it may depend on. 4087 // 4088 4089 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, 4090 CollapsedOffloadAction); 4091 if (!T) 4092 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); 4093 if (!T) 4094 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); 4095 if (!T) { 4096 Inputs = BaseAction->getInputs(); 4097 T = TC.SelectTool(*BaseAction); 4098 } 4099 4100 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); 4101 return T; 4102 } 4103 }; 4104 } 4105 4106 /// Return a string that uniquely identifies the result of a job. The bound arch 4107 /// is not necessarily represented in the toolchain's triple -- for example, 4108 /// armv7 and armv7s both map to the same triple -- so we need both in our map. 4109 /// Also, we need to add the offloading device kind, as the same tool chain can 4110 /// be used for host and device for some programming models, e.g. OpenMP. 4111 static std::string GetTriplePlusArchString(const ToolChain *TC, 4112 StringRef BoundArch, 4113 Action::OffloadKind OffloadKind) { 4114 std::string TriplePlusArch = TC->getTriple().normalize(); 4115 if (!BoundArch.empty()) { 4116 TriplePlusArch += "-"; 4117 TriplePlusArch += BoundArch; 4118 } 4119 TriplePlusArch += "-"; 4120 TriplePlusArch += Action::GetOffloadKindName(OffloadKind); 4121 return TriplePlusArch; 4122 } 4123 4124 InputInfo Driver::BuildJobsForAction( 4125 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 4126 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 4127 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 4128 Action::OffloadKind TargetDeviceOffloadKind) const { 4129 std::pair<const Action *, std::string> ActionTC = { 4130 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4131 auto CachedResult = CachedResults.find(ActionTC); 4132 if (CachedResult != CachedResults.end()) { 4133 return CachedResult->second; 4134 } 4135 InputInfo Result = BuildJobsForActionNoCache( 4136 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, 4137 CachedResults, TargetDeviceOffloadKind); 4138 CachedResults[ActionTC] = Result; 4139 return Result; 4140 } 4141 4142 InputInfo Driver::BuildJobsForActionNoCache( 4143 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 4144 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 4145 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 4146 Action::OffloadKind TargetDeviceOffloadKind) const { 4147 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 4148 4149 InputInfoList OffloadDependencesInputInfo; 4150 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; 4151 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 4152 // The 'Darwin' toolchain is initialized only when its arguments are 4153 // computed. Get the default arguments for OFK_None to ensure that 4154 // initialization is performed before processing the offload action. 4155 // FIXME: Remove when darwin's toolchain is initialized during construction. 4156 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); 4157 4158 // The offload action is expected to be used in four different situations. 4159 // 4160 // a) Set a toolchain/architecture/kind for a host action: 4161 // Host Action 1 -> OffloadAction -> Host Action 2 4162 // 4163 // b) Set a toolchain/architecture/kind for a device action; 4164 // Device Action 1 -> OffloadAction -> Device Action 2 4165 // 4166 // c) Specify a device dependence to a host action; 4167 // Device Action 1 _ 4168 // \ 4169 // Host Action 1 ---> OffloadAction -> Host Action 2 4170 // 4171 // d) Specify a host dependence to a device action. 4172 // Host Action 1 _ 4173 // \ 4174 // Device Action 1 ---> OffloadAction -> Device Action 2 4175 // 4176 // For a) and b), we just return the job generated for the dependence. For 4177 // c) and d) we override the current action with the host/device dependence 4178 // if the current toolchain is host/device and set the offload dependences 4179 // info with the jobs obtained from the device/host dependence(s). 4180 4181 // If there is a single device option, just generate the job for it. 4182 if (OA->hasSingleDeviceDependence()) { 4183 InputInfo DevA; 4184 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, 4185 const char *DepBoundArch) { 4186 DevA = 4187 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, 4188 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, 4189 CachedResults, DepA->getOffloadingDeviceKind()); 4190 }); 4191 return DevA; 4192 } 4193 4194 // If 'Action 2' is host, we generate jobs for the device dependences and 4195 // override the current action with the host dependence. Otherwise, we 4196 // generate the host dependences and override the action with the device 4197 // dependence. The dependences can't therefore be a top-level action. 4198 OA->doOnEachDependence( 4199 /*IsHostDependence=*/BuildingForOffloadDevice, 4200 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4201 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4202 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, 4203 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, 4204 DepA->getOffloadingDeviceKind())); 4205 }); 4206 4207 A = BuildingForOffloadDevice 4208 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) 4209 : OA->getHostDependence(); 4210 } 4211 4212 if (const InputAction *IA = dyn_cast<InputAction>(A)) { 4213 // FIXME: It would be nice to not claim this here; maybe the old scheme of 4214 // just using Args was better? 4215 const Arg &Input = IA->getInputArg(); 4216 Input.claim(); 4217 if (Input.getOption().matches(options::OPT_INPUT)) { 4218 const char *Name = Input.getValue(); 4219 return InputInfo(A, Name, /* _BaseInput = */ Name); 4220 } 4221 return InputInfo(A, &Input, /* _BaseInput = */ ""); 4222 } 4223 4224 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { 4225 const ToolChain *TC; 4226 StringRef ArchName = BAA->getArchName(); 4227 4228 if (!ArchName.empty()) 4229 TC = &getToolChain(C.getArgs(), 4230 computeTargetTriple(*this, TargetTriple, 4231 C.getArgs(), ArchName)); 4232 else 4233 TC = &C.getDefaultToolChain(); 4234 4235 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, 4236 MultipleArchs, LinkingOutput, CachedResults, 4237 TargetDeviceOffloadKind); 4238 } 4239 4240 4241 ActionList Inputs = A->getInputs(); 4242 4243 const JobAction *JA = cast<JobAction>(A); 4244 ActionList CollapsedOffloadActions; 4245 4246 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), 4247 embedBitcodeInObject() && !isUsingLTO()); 4248 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); 4249 4250 if (!T) 4251 return InputInfo(); 4252 4253 // If we've collapsed action list that contained OffloadAction we 4254 // need to build jobs for host/device-side inputs it may have held. 4255 for (const auto *OA : CollapsedOffloadActions) 4256 cast<OffloadAction>(OA)->doOnEachDependence( 4257 /*IsHostDependence=*/BuildingForOffloadDevice, 4258 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4259 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4260 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, 4261 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, 4262 DepA->getOffloadingDeviceKind())); 4263 }); 4264 4265 // Only use pipes when there is exactly one input. 4266 InputInfoList InputInfos; 4267 for (const Action *Input : Inputs) { 4268 // Treat dsymutil and verify sub-jobs as being at the top-level too, they 4269 // shouldn't get temporary output names. 4270 // FIXME: Clean this up. 4271 bool SubJobAtTopLevel = 4272 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); 4273 InputInfos.push_back(BuildJobsForAction( 4274 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, 4275 CachedResults, A->getOffloadingDeviceKind())); 4276 } 4277 4278 // Always use the first input as the base input. 4279 const char *BaseInput = InputInfos[0].getBaseInput(); 4280 4281 // ... except dsymutil actions, which use their actual input as the base 4282 // input. 4283 if (JA->getType() == types::TY_dSYM) 4284 BaseInput = InputInfos[0].getFilename(); 4285 4286 // ... and in header module compilations, which use the module name. 4287 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA)) 4288 BaseInput = ModuleJA->getModuleName(); 4289 4290 // Append outputs of offload device jobs to the input list 4291 if (!OffloadDependencesInputInfo.empty()) 4292 InputInfos.append(OffloadDependencesInputInfo.begin(), 4293 OffloadDependencesInputInfo.end()); 4294 4295 // Set the effective triple of the toolchain for the duration of this job. 4296 llvm::Triple EffectiveTriple; 4297 const ToolChain &ToolTC = T->getToolChain(); 4298 const ArgList &Args = 4299 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); 4300 if (InputInfos.size() != 1) { 4301 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); 4302 } else { 4303 // Pass along the input type if it can be unambiguously determined. 4304 EffectiveTriple = llvm::Triple( 4305 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); 4306 } 4307 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); 4308 4309 // Determine the place to write output to, if any. 4310 InputInfo Result; 4311 InputInfoList UnbundlingResults; 4312 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { 4313 // If we have an unbundling job, we need to create results for all the 4314 // outputs. We also update the results cache so that other actions using 4315 // this unbundling action can get the right results. 4316 for (auto &UI : UA->getDependentActionsInfo()) { 4317 assert(UI.DependentOffloadKind != Action::OFK_None && 4318 "Unbundling with no offloading??"); 4319 4320 // Unbundling actions are never at the top level. When we generate the 4321 // offloading prefix, we also do that for the host file because the 4322 // unbundling action does not change the type of the output which can 4323 // cause a overwrite. 4324 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4325 UI.DependentOffloadKind, 4326 UI.DependentToolChain->getTriple().normalize(), 4327 /*CreatePrefixForHost=*/true); 4328 auto CurI = InputInfo( 4329 UA, 4330 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, 4331 /*AtTopLevel=*/false, 4332 MultipleArchs || 4333 UI.DependentOffloadKind == Action::OFK_HIP, 4334 OffloadingPrefix), 4335 BaseInput); 4336 // Save the unbundling result. 4337 UnbundlingResults.push_back(CurI); 4338 4339 // Get the unique string identifier for this dependence and cache the 4340 // result. 4341 StringRef Arch; 4342 if (TargetDeviceOffloadKind == Action::OFK_HIP) { 4343 if (UI.DependentOffloadKind == Action::OFK_Host) 4344 Arch = StringRef(); 4345 else 4346 Arch = UI.DependentBoundArch; 4347 } else 4348 Arch = BoundArch; 4349 4350 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, 4351 UI.DependentOffloadKind)}] = 4352 CurI; 4353 } 4354 4355 // Now that we have all the results generated, select the one that should be 4356 // returned for the current depending action. 4357 std::pair<const Action *, std::string> ActionTC = { 4358 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4359 assert(CachedResults.find(ActionTC) != CachedResults.end() && 4360 "Result does not exist??"); 4361 Result = CachedResults[ActionTC]; 4362 } else if (JA->getType() == types::TY_Nothing) 4363 Result = InputInfo(A, BaseInput); 4364 else { 4365 // We only have to generate a prefix for the host if this is not a top-level 4366 // action. 4367 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4368 A->getOffloadingDeviceKind(), TC->getTriple().normalize(), 4369 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && 4370 !AtTopLevel); 4371 if (isa<OffloadWrapperJobAction>(JA)) { 4372 OffloadingPrefix += "-wrapper"; 4373 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4374 BaseInput = FinalOutput->getValue(); 4375 else 4376 BaseInput = getDefaultImageName(); 4377 } 4378 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, 4379 AtTopLevel, MultipleArchs, 4380 OffloadingPrefix), 4381 BaseInput); 4382 } 4383 4384 if (CCCPrintBindings && !CCGenDiagnostics) { 4385 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' 4386 << " - \"" << T->getName() << "\", inputs: ["; 4387 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { 4388 llvm::errs() << InputInfos[i].getAsString(); 4389 if (i + 1 != e) 4390 llvm::errs() << ", "; 4391 } 4392 if (UnbundlingResults.empty()) 4393 llvm::errs() << "], output: " << Result.getAsString() << "\n"; 4394 else { 4395 llvm::errs() << "], outputs: ["; 4396 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { 4397 llvm::errs() << UnbundlingResults[i].getAsString(); 4398 if (i + 1 != e) 4399 llvm::errs() << ", "; 4400 } 4401 llvm::errs() << "] \n"; 4402 } 4403 } else { 4404 if (UnbundlingResults.empty()) 4405 T->ConstructJob( 4406 C, *JA, Result, InputInfos, 4407 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4408 LinkingOutput); 4409 else 4410 T->ConstructJobMultipleOutputs( 4411 C, *JA, UnbundlingResults, InputInfos, 4412 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4413 LinkingOutput); 4414 } 4415 return Result; 4416 } 4417 4418 const char *Driver::getDefaultImageName() const { 4419 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 4420 return Target.isOSWindows() ? "a.exe" : "a.out"; 4421 } 4422 4423 /// Create output filename based on ArgValue, which could either be a 4424 /// full filename, filename without extension, or a directory. If ArgValue 4425 /// does not provide a filename, then use BaseName, and use the extension 4426 /// suitable for FileType. 4427 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, 4428 StringRef BaseName, 4429 types::ID FileType) { 4430 SmallString<128> Filename = ArgValue; 4431 4432 if (ArgValue.empty()) { 4433 // If the argument is empty, output to BaseName in the current dir. 4434 Filename = BaseName; 4435 } else if (llvm::sys::path::is_separator(Filename.back())) { 4436 // If the argument is a directory, output to BaseName in that dir. 4437 llvm::sys::path::append(Filename, BaseName); 4438 } 4439 4440 if (!llvm::sys::path::has_extension(ArgValue)) { 4441 // If the argument didn't provide an extension, then set it. 4442 const char *Extension = types::getTypeTempSuffix(FileType, true); 4443 4444 if (FileType == types::TY_Image && 4445 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { 4446 // The output file is a dll. 4447 Extension = "dll"; 4448 } 4449 4450 llvm::sys::path::replace_extension(Filename, Extension); 4451 } 4452 4453 return Args.MakeArgString(Filename.c_str()); 4454 } 4455 4456 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, 4457 const char *BaseInput, 4458 StringRef BoundArch, bool AtTopLevel, 4459 bool MultipleArchs, 4460 StringRef OffloadingPrefix) const { 4461 llvm::PrettyStackTraceString CrashInfo("Computing output path"); 4462 // Output to a user requested destination? 4463 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { 4464 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4465 return C.addResultFile(FinalOutput->getValue(), &JA); 4466 } 4467 4468 // For /P, preprocess to file named after BaseInput. 4469 if (C.getArgs().hasArg(options::OPT__SLASH_P)) { 4470 assert(AtTopLevel && isa<PreprocessJobAction>(JA)); 4471 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4472 StringRef NameArg; 4473 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) 4474 NameArg = A->getValue(); 4475 return C.addResultFile( 4476 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), 4477 &JA); 4478 } 4479 4480 // Default to writing to stdout? 4481 if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA)) 4482 return "-"; 4483 4484 // Is this the assembly listing for /FA? 4485 if (JA.getType() == types::TY_PP_Asm && 4486 (C.getArgs().hasArg(options::OPT__SLASH_FA) || 4487 C.getArgs().hasArg(options::OPT__SLASH_Fa))) { 4488 // Use /Fa and the input filename to determine the asm file name. 4489 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4490 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); 4491 return C.addResultFile( 4492 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), 4493 &JA); 4494 } 4495 4496 // Output to a temporary file? 4497 if ((!AtTopLevel && !isSaveTempsEnabled() && 4498 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || 4499 CCGenDiagnostics) { 4500 StringRef Name = llvm::sys::path::filename(BaseInput); 4501 std::pair<StringRef, StringRef> Split = Name.split('.'); 4502 SmallString<128> TmpName; 4503 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4504 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); 4505 if (CCGenDiagnostics && A) { 4506 SmallString<128> CrashDirectory(A->getValue()); 4507 if (!getVFS().exists(CrashDirectory)) 4508 llvm::sys::fs::create_directories(CrashDirectory); 4509 llvm::sys::path::append(CrashDirectory, Split.first); 4510 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%"; 4511 std::error_code EC = llvm::sys::fs::createUniqueFile( 4512 CrashDirectory + Middle + Suffix, TmpName); 4513 if (EC) { 4514 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4515 return ""; 4516 } 4517 } else { 4518 TmpName = GetTemporaryPath(Split.first, Suffix); 4519 } 4520 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4521 } 4522 4523 SmallString<128> BasePath(BaseInput); 4524 StringRef BaseName; 4525 4526 // Dsymutil actions should use the full path. 4527 if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) 4528 BaseName = BasePath; 4529 else 4530 BaseName = llvm::sys::path::filename(BasePath); 4531 4532 // Determine what the derived output name should be. 4533 const char *NamedOutput; 4534 4535 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && 4536 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { 4537 // The /Fo or /o flag decides the object filename. 4538 StringRef Val = 4539 C.getArgs() 4540 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) 4541 ->getValue(); 4542 NamedOutput = 4543 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 4544 } else if (JA.getType() == types::TY_Image && 4545 C.getArgs().hasArg(options::OPT__SLASH_Fe, 4546 options::OPT__SLASH_o)) { 4547 // The /Fe or /o flag names the linked file. 4548 StringRef Val = 4549 C.getArgs() 4550 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) 4551 ->getValue(); 4552 NamedOutput = 4553 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); 4554 } else if (JA.getType() == types::TY_Image) { 4555 if (IsCLMode()) { 4556 // clang-cl uses BaseName for the executable name. 4557 NamedOutput = 4558 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); 4559 } else { 4560 SmallString<128> Output(getDefaultImageName()); 4561 // HIP image for device compilation with -fno-gpu-rdc is per compilation 4562 // unit. 4563 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP && 4564 !C.getArgs().hasFlag(options::OPT_fgpu_rdc, 4565 options::OPT_fno_gpu_rdc, false); 4566 if (IsHIPNoRDC) { 4567 Output = BaseName; 4568 llvm::sys::path::replace_extension(Output, ""); 4569 } 4570 Output += OffloadingPrefix; 4571 if (MultipleArchs && !BoundArch.empty()) { 4572 Output += "-"; 4573 Output.append(BoundArch); 4574 } 4575 if (IsHIPNoRDC) 4576 Output += ".out"; 4577 NamedOutput = C.getArgs().MakeArgString(Output.c_str()); 4578 } 4579 } else if (JA.getType() == types::TY_PCH && IsCLMode()) { 4580 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); 4581 } else { 4582 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4583 assert(Suffix && "All types used for output should have a suffix."); 4584 4585 std::string::size_type End = std::string::npos; 4586 if (!types::appendSuffixForType(JA.getType())) 4587 End = BaseName.rfind('.'); 4588 SmallString<128> Suffixed(BaseName.substr(0, End)); 4589 Suffixed += OffloadingPrefix; 4590 if (MultipleArchs && !BoundArch.empty()) { 4591 Suffixed += "-"; 4592 Suffixed.append(BoundArch); 4593 } 4594 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for 4595 // the unoptimized bitcode so that it does not get overwritten by the ".bc" 4596 // optimized bitcode output. 4597 if (!AtTopLevel && C.getArgs().hasArg(options::OPT_emit_llvm) && 4598 JA.getType() == types::TY_LLVM_BC) 4599 Suffixed += ".tmp"; 4600 Suffixed += '.'; 4601 Suffixed += Suffix; 4602 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); 4603 } 4604 4605 // Prepend object file path if -save-temps=obj 4606 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && 4607 JA.getType() != types::TY_PCH) { 4608 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 4609 SmallString<128> TempPath(FinalOutput->getValue()); 4610 llvm::sys::path::remove_filename(TempPath); 4611 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); 4612 llvm::sys::path::append(TempPath, OutputFileName); 4613 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); 4614 } 4615 4616 // If we're saving temps and the temp file conflicts with the input file, 4617 // then avoid overwriting input file. 4618 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { 4619 bool SameFile = false; 4620 SmallString<256> Result; 4621 llvm::sys::fs::current_path(Result); 4622 llvm::sys::path::append(Result, BaseName); 4623 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); 4624 // Must share the same path to conflict. 4625 if (SameFile) { 4626 StringRef Name = llvm::sys::path::filename(BaseInput); 4627 std::pair<StringRef, StringRef> Split = Name.split('.'); 4628 std::string TmpName = GetTemporaryPath( 4629 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); 4630 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4631 } 4632 } 4633 4634 // As an annoying special case, PCH generation doesn't strip the pathname. 4635 if (JA.getType() == types::TY_PCH && !IsCLMode()) { 4636 llvm::sys::path::remove_filename(BasePath); 4637 if (BasePath.empty()) 4638 BasePath = NamedOutput; 4639 else 4640 llvm::sys::path::append(BasePath, NamedOutput); 4641 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); 4642 } else { 4643 return C.addResultFile(NamedOutput, &JA); 4644 } 4645 } 4646 4647 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { 4648 // Search for Name in a list of paths. 4649 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P) 4650 -> llvm::Optional<std::string> { 4651 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4652 // attempting to use this prefix when looking for file paths. 4653 for (const auto &Dir : P) { 4654 if (Dir.empty()) 4655 continue; 4656 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 4657 llvm::sys::path::append(P, Name); 4658 if (llvm::sys::fs::exists(Twine(P))) 4659 return P.str().str(); 4660 } 4661 return None; 4662 }; 4663 4664 if (auto P = SearchPaths(PrefixDirs)) 4665 return *P; 4666 4667 SmallString<128> R(ResourceDir); 4668 llvm::sys::path::append(R, Name); 4669 if (llvm::sys::fs::exists(Twine(R))) 4670 return R.str(); 4671 4672 SmallString<128> P(TC.getCompilerRTPath()); 4673 llvm::sys::path::append(P, Name); 4674 if (llvm::sys::fs::exists(Twine(P))) 4675 return P.str(); 4676 4677 SmallString<128> D(Dir); 4678 llvm::sys::path::append(D, "..", Name); 4679 if (llvm::sys::fs::exists(Twine(D))) 4680 return D.str(); 4681 4682 if (auto P = SearchPaths(TC.getLibraryPaths())) 4683 return *P; 4684 4685 if (auto P = SearchPaths(TC.getFilePaths())) 4686 return *P; 4687 4688 return Name; 4689 } 4690 4691 void Driver::generatePrefixedToolNames( 4692 StringRef Tool, const ToolChain &TC, 4693 SmallVectorImpl<std::string> &Names) const { 4694 // FIXME: Needs a better variable than TargetTriple 4695 Names.emplace_back((TargetTriple + "-" + Tool).str()); 4696 Names.emplace_back(Tool); 4697 4698 // Allow the discovery of tools prefixed with LLVM's default target triple. 4699 std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); 4700 if (DefaultTargetTriple != TargetTriple) 4701 Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); 4702 } 4703 4704 static bool ScanDirForExecutable(SmallString<128> &Dir, 4705 ArrayRef<std::string> Names) { 4706 for (const auto &Name : Names) { 4707 llvm::sys::path::append(Dir, Name); 4708 if (llvm::sys::fs::can_execute(Twine(Dir))) 4709 return true; 4710 llvm::sys::path::remove_filename(Dir); 4711 } 4712 return false; 4713 } 4714 4715 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { 4716 SmallVector<std::string, 2> TargetSpecificExecutables; 4717 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); 4718 4719 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4720 // attempting to use this prefix when looking for program paths. 4721 for (const auto &PrefixDir : PrefixDirs) { 4722 if (llvm::sys::fs::is_directory(PrefixDir)) { 4723 SmallString<128> P(PrefixDir); 4724 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4725 return P.str(); 4726 } else { 4727 SmallString<128> P((PrefixDir + Name).str()); 4728 if (llvm::sys::fs::can_execute(Twine(P))) 4729 return P.str(); 4730 } 4731 } 4732 4733 const ToolChain::path_list &List = TC.getProgramPaths(); 4734 for (const auto &Path : List) { 4735 SmallString<128> P(Path); 4736 if (ScanDirForExecutable(P, TargetSpecificExecutables)) 4737 return P.str(); 4738 } 4739 4740 // If all else failed, search the path. 4741 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) 4742 if (llvm::ErrorOr<std::string> P = 4743 llvm::sys::findProgramByName(TargetSpecificExecutable)) 4744 return *P; 4745 4746 return Name; 4747 } 4748 4749 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { 4750 SmallString<128> Path; 4751 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); 4752 if (EC) { 4753 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4754 return ""; 4755 } 4756 4757 return Path.str(); 4758 } 4759 4760 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { 4761 SmallString<128> Path; 4762 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); 4763 if (EC) { 4764 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4765 return ""; 4766 } 4767 4768 return Path.str(); 4769 } 4770 4771 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { 4772 SmallString<128> Output; 4773 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { 4774 // FIXME: If anybody needs it, implement this obscure rule: 4775 // "If you specify a directory without a file name, the default file name 4776 // is VCx0.pch., where x is the major version of Visual C++ in use." 4777 Output = FpArg->getValue(); 4778 4779 // "If you do not specify an extension as part of the path name, an 4780 // extension of .pch is assumed. " 4781 if (!llvm::sys::path::has_extension(Output)) 4782 Output += ".pch"; 4783 } else { 4784 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) 4785 Output = YcArg->getValue(); 4786 if (Output.empty()) 4787 Output = BaseName; 4788 llvm::sys::path::replace_extension(Output, ".pch"); 4789 } 4790 return Output.str(); 4791 } 4792 4793 const ToolChain &Driver::getToolChain(const ArgList &Args, 4794 const llvm::Triple &Target) const { 4795 4796 auto &TC = ToolChains[Target.str()]; 4797 if (!TC) { 4798 switch (Target.getOS()) { 4799 case llvm::Triple::AIX: 4800 TC = std::make_unique<toolchains::AIX>(*this, Target, Args); 4801 break; 4802 case llvm::Triple::Haiku: 4803 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args); 4804 break; 4805 case llvm::Triple::Ananas: 4806 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args); 4807 break; 4808 case llvm::Triple::CloudABI: 4809 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args); 4810 break; 4811 case llvm::Triple::Darwin: 4812 case llvm::Triple::MacOSX: 4813 case llvm::Triple::IOS: 4814 case llvm::Triple::TvOS: 4815 case llvm::Triple::WatchOS: 4816 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args); 4817 break; 4818 case llvm::Triple::DragonFly: 4819 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args); 4820 break; 4821 case llvm::Triple::OpenBSD: 4822 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args); 4823 break; 4824 case llvm::Triple::NetBSD: 4825 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args); 4826 break; 4827 case llvm::Triple::FreeBSD: 4828 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args); 4829 break; 4830 case llvm::Triple::Minix: 4831 TC = std::make_unique<toolchains::Minix>(*this, Target, Args); 4832 break; 4833 case llvm::Triple::Linux: 4834 case llvm::Triple::ELFIAMCU: 4835 if (Target.getArch() == llvm::Triple::hexagon) 4836 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 4837 Args); 4838 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && 4839 !Target.hasEnvironment()) 4840 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, 4841 Args); 4842 else if (Target.getArch() == llvm::Triple::ppc || 4843 Target.getArch() == llvm::Triple::ppc64 || 4844 Target.getArch() == llvm::Triple::ppc64le) 4845 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target, 4846 Args); 4847 else 4848 TC = std::make_unique<toolchains::Linux>(*this, Target, Args); 4849 break; 4850 case llvm::Triple::NaCl: 4851 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args); 4852 break; 4853 case llvm::Triple::Fuchsia: 4854 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args); 4855 break; 4856 case llvm::Triple::Solaris: 4857 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args); 4858 break; 4859 case llvm::Triple::AMDHSA: 4860 case llvm::Triple::AMDPAL: 4861 case llvm::Triple::Mesa3D: 4862 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); 4863 break; 4864 case llvm::Triple::Win32: 4865 switch (Target.getEnvironment()) { 4866 default: 4867 if (Target.isOSBinFormatELF()) 4868 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4869 else if (Target.isOSBinFormatMachO()) 4870 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 4871 else 4872 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4873 break; 4874 case llvm::Triple::GNU: 4875 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args); 4876 break; 4877 case llvm::Triple::Itanium: 4878 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, 4879 Args); 4880 break; 4881 case llvm::Triple::MSVC: 4882 case llvm::Triple::UnknownEnvironment: 4883 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) 4884 .startswith_lower("bfd")) 4885 TC = std::make_unique<toolchains::CrossWindowsToolChain>( 4886 *this, Target, Args); 4887 else 4888 TC = 4889 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); 4890 break; 4891 } 4892 break; 4893 case llvm::Triple::PS4: 4894 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args); 4895 break; 4896 case llvm::Triple::Contiki: 4897 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args); 4898 break; 4899 case llvm::Triple::Hurd: 4900 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args); 4901 break; 4902 default: 4903 // Of these targets, Hexagon is the only one that might have 4904 // an OS of Linux, in which case it got handled above already. 4905 switch (Target.getArch()) { 4906 case llvm::Triple::tce: 4907 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args); 4908 break; 4909 case llvm::Triple::tcele: 4910 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); 4911 break; 4912 case llvm::Triple::hexagon: 4913 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 4914 Args); 4915 break; 4916 case llvm::Triple::lanai: 4917 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); 4918 break; 4919 case llvm::Triple::xcore: 4920 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); 4921 break; 4922 case llvm::Triple::wasm32: 4923 case llvm::Triple::wasm64: 4924 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args); 4925 break; 4926 case llvm::Triple::avr: 4927 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args); 4928 break; 4929 case llvm::Triple::msp430: 4930 TC = 4931 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args); 4932 break; 4933 case llvm::Triple::riscv32: 4934 case llvm::Triple::riscv64: 4935 TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); 4936 break; 4937 default: 4938 if (Target.getVendor() == llvm::Triple::Myriad) 4939 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target, 4940 Args); 4941 else if (toolchains::BareMetal::handlesTarget(Target)) 4942 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); 4943 else if (Target.isOSBinFormatELF()) 4944 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 4945 else if (Target.isOSBinFormatMachO()) 4946 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 4947 else 4948 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 4949 } 4950 } 4951 } 4952 4953 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA 4954 // compiles always need two toolchains, the CUDA toolchain and the host 4955 // toolchain. So the only valid way to create a CUDA toolchain is via 4956 // CreateOffloadingDeviceToolChains. 4957 4958 return *TC; 4959 } 4960 4961 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { 4962 // Say "no" if there is not exactly one input of a type clang understands. 4963 if (JA.size() != 1 || 4964 !types::isAcceptedByClang((*JA.input_begin())->getType())) 4965 return false; 4966 4967 // And say "no" if this is not a kind of action clang understands. 4968 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 4969 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 4970 return false; 4971 4972 return true; 4973 } 4974 4975 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const { 4976 // Say "no" if there is not exactly one input of a type flang understands. 4977 if (JA.size() != 1 || 4978 !types::isFortran((*JA.input_begin())->getType())) 4979 return false; 4980 4981 // And say "no" if this is not a kind of action flang understands. 4982 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 4983 return false; 4984 4985 return true; 4986 } 4987 4988 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the 4989 /// grouped values as integers. Numbers which are not provided are set to 0. 4990 /// 4991 /// \return True if the entire string was parsed (9.2), or all groups were 4992 /// parsed (10.3.5extrastuff). 4993 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, 4994 unsigned &Micro, bool &HadExtra) { 4995 HadExtra = false; 4996 4997 Major = Minor = Micro = 0; 4998 if (Str.empty()) 4999 return false; 5000 5001 if (Str.consumeInteger(10, Major)) 5002 return false; 5003 if (Str.empty()) 5004 return true; 5005 if (Str[0] != '.') 5006 return false; 5007 5008 Str = Str.drop_front(1); 5009 5010 if (Str.consumeInteger(10, Minor)) 5011 return false; 5012 if (Str.empty()) 5013 return true; 5014 if (Str[0] != '.') 5015 return false; 5016 Str = Str.drop_front(1); 5017 5018 if (Str.consumeInteger(10, Micro)) 5019 return false; 5020 if (!Str.empty()) 5021 HadExtra = true; 5022 return true; 5023 } 5024 5025 /// Parse digits from a string \p Str and fulfill \p Digits with 5026 /// the parsed numbers. This method assumes that the max number of 5027 /// digits to look for is equal to Digits.size(). 5028 /// 5029 /// \return True if the entire string was parsed and there are 5030 /// no extra characters remaining at the end. 5031 bool Driver::GetReleaseVersion(StringRef Str, 5032 MutableArrayRef<unsigned> Digits) { 5033 if (Str.empty()) 5034 return false; 5035 5036 unsigned CurDigit = 0; 5037 while (CurDigit < Digits.size()) { 5038 unsigned Digit; 5039 if (Str.consumeInteger(10, Digit)) 5040 return false; 5041 Digits[CurDigit] = Digit; 5042 if (Str.empty()) 5043 return true; 5044 if (Str[0] != '.') 5045 return false; 5046 Str = Str.drop_front(1); 5047 CurDigit++; 5048 } 5049 5050 // More digits than requested, bail out... 5051 return false; 5052 } 5053 5054 std::pair<unsigned, unsigned> 5055 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const { 5056 unsigned IncludedFlagsBitmask = 0; 5057 unsigned ExcludedFlagsBitmask = options::NoDriverOption; 5058 5059 if (IsClCompatMode) { 5060 // Include CL and Core options. 5061 IncludedFlagsBitmask |= options::CLOption; 5062 IncludedFlagsBitmask |= options::CoreOption; 5063 } else { 5064 ExcludedFlagsBitmask |= options::CLOption; 5065 } 5066 5067 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); 5068 } 5069 5070 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { 5071 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); 5072 } 5073 5074 bool clang::driver::willEmitRemarks(const ArgList &Args) { 5075 // -fsave-optimization-record enables it. 5076 if (Args.hasFlag(options::OPT_fsave_optimization_record, 5077 options::OPT_fno_save_optimization_record, false)) 5078 return true; 5079 5080 // -fsave-optimization-record=<format> enables it as well. 5081 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ, 5082 options::OPT_fno_save_optimization_record, false)) 5083 return true; 5084 5085 // -foptimization-record-file alone enables it too. 5086 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ, 5087 options::OPT_fno_save_optimization_record, false)) 5088 return true; 5089 5090 // -foptimization-record-passes alone enables it too. 5091 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ, 5092 options::OPT_fno_save_optimization_record, false)) 5093 return true; 5094 return false; 5095 } 5096