xref: /freebsd/contrib/llvm-project/clang/lib/Driver/Driver.cpp (revision 5b56413d04e608379c9a306373554a8e4d321bc0)
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Arch/RISCV.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/CSKYToolChain.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CrossWindows.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIPAMD.h"
26 #include "ToolChains/HIPSPV.h"
27 #include "ToolChains/HLSL.h"
28 #include "ToolChains/Haiku.h"
29 #include "ToolChains/Hexagon.h"
30 #include "ToolChains/Hurd.h"
31 #include "ToolChains/Lanai.h"
32 #include "ToolChains/Linux.h"
33 #include "ToolChains/MSP430.h"
34 #include "ToolChains/MSVC.h"
35 #include "ToolChains/MinGW.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OHOS.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PPCFreeBSD.h"
42 #include "ToolChains/PPCLinux.h"
43 #include "ToolChains/PS4CPU.h"
44 #include "ToolChains/RISCVToolchain.h"
45 #include "ToolChains/SPIRV.h"
46 #include "ToolChains/Solaris.h"
47 #include "ToolChains/TCE.h"
48 #include "ToolChains/VEToolchain.h"
49 #include "ToolChains/WebAssembly.h"
50 #include "ToolChains/XCore.h"
51 #include "ToolChains/ZOS.h"
52 #include "clang/Basic/TargetID.h"
53 #include "clang/Basic/Version.h"
54 #include "clang/Config/config.h"
55 #include "clang/Driver/Action.h"
56 #include "clang/Driver/Compilation.h"
57 #include "clang/Driver/DriverDiagnostic.h"
58 #include "clang/Driver/InputInfo.h"
59 #include "clang/Driver/Job.h"
60 #include "clang/Driver/Options.h"
61 #include "clang/Driver/Phases.h"
62 #include "clang/Driver/SanitizerArgs.h"
63 #include "clang/Driver/Tool.h"
64 #include "clang/Driver/ToolChain.h"
65 #include "clang/Driver/Types.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/StringExtras.h"
69 #include "llvm/ADT/StringRef.h"
70 #include "llvm/ADT/StringSet.h"
71 #include "llvm/ADT/StringSwitch.h"
72 #include "llvm/Config/llvm-config.h"
73 #include "llvm/MC/TargetRegistry.h"
74 #include "llvm/Option/Arg.h"
75 #include "llvm/Option/ArgList.h"
76 #include "llvm/Option/OptSpecifier.h"
77 #include "llvm/Option/OptTable.h"
78 #include "llvm/Option/Option.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/ExitCodes.h"
82 #include "llvm/Support/FileSystem.h"
83 #include "llvm/Support/FormatVariadic.h"
84 #include "llvm/Support/MD5.h"
85 #include "llvm/Support/Path.h"
86 #include "llvm/Support/PrettyStackTrace.h"
87 #include "llvm/Support/Process.h"
88 #include "llvm/Support/Program.h"
89 #include "llvm/Support/RISCVISAInfo.h"
90 #include "llvm/Support/StringSaver.h"
91 #include "llvm/Support/VirtualFileSystem.h"
92 #include "llvm/Support/raw_ostream.h"
93 #include "llvm/TargetParser/Host.h"
94 #include <cstdlib> // ::getenv
95 #include <map>
96 #include <memory>
97 #include <optional>
98 #include <set>
99 #include <utility>
100 #if LLVM_ON_UNIX
101 #include <unistd.h> // getpid
102 #endif
103 
104 using namespace clang::driver;
105 using namespace clang;
106 using namespace llvm::opt;
107 
108 static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D,
109                                                           const ArgList &Args) {
110   auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
111   // Offload compilation flow does not support multiple targets for now. We
112   // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
113   // to support multiple tool chains first.
114   switch (OffloadTargets.size()) {
115   default:
116     D.Diag(diag::err_drv_only_one_offload_target_supported);
117     return std::nullopt;
118   case 0:
119     D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
120     return std::nullopt;
121   case 1:
122     break;
123   }
124   return llvm::Triple(OffloadTargets[0]);
125 }
126 
127 static std::optional<llvm::Triple>
128 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
129                              const llvm::Triple &HostTriple) {
130   if (!Args.hasArg(options::OPT_offload_EQ)) {
131     return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
132                                                  : "nvptx-nvidia-cuda");
133   }
134   auto TT = getOffloadTargetTriple(D, Args);
135   if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
136              TT->getArch() == llvm::Triple::spirv64)) {
137     if (Args.hasArg(options::OPT_emit_llvm))
138       return TT;
139     D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
140     return std::nullopt;
141   }
142   D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
143   return std::nullopt;
144 }
145 static std::optional<llvm::Triple>
146 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
147   if (!Args.hasArg(options::OPT_offload_EQ)) {
148     return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
149   }
150   auto TT = getOffloadTargetTriple(D, Args);
151   if (!TT)
152     return std::nullopt;
153   if (TT->getArch() == llvm::Triple::amdgcn &&
154       TT->getVendor() == llvm::Triple::AMD &&
155       TT->getOS() == llvm::Triple::AMDHSA)
156     return TT;
157   if (TT->getArch() == llvm::Triple::spirv64)
158     return TT;
159   D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
160   return std::nullopt;
161 }
162 
163 // static
164 std::string Driver::GetResourcesPath(StringRef BinaryPath,
165                                      StringRef CustomResourceDir) {
166   // Since the resource directory is embedded in the module hash, it's important
167   // that all places that need it call this function, so that they get the
168   // exact same string ("a/../b/" and "b/" get different hashes, for example).
169 
170   // Dir is bin/ or lib/, depending on where BinaryPath is.
171   std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
172 
173   SmallString<128> P(Dir);
174   if (CustomResourceDir != "") {
175     llvm::sys::path::append(P, CustomResourceDir);
176   } else {
177     // On Windows, libclang.dll is in bin/.
178     // On non-Windows, libclang.so/.dylib is in lib/.
179     // With a static-library build of libclang, LibClangPath will contain the
180     // path of the embedding binary, which for LLVM binaries will be in bin/.
181     // ../lib gets us to lib/ in both cases.
182     P = llvm::sys::path::parent_path(Dir);
183     // This search path is also created in the COFF driver of lld, so any
184     // changes here also needs to happen in lld/COFF/Driver.cpp
185     llvm::sys::path::append(P, CLANG_INSTALL_LIBDIR_BASENAME, "clang",
186                             CLANG_VERSION_MAJOR_STRING);
187   }
188 
189   return std::string(P);
190 }
191 
192 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
193                DiagnosticsEngine &Diags, std::string Title,
194                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
195     : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
196       SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
197       Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None),
198       ModulesModeCXX20(false), LTOMode(LTOK_None),
199       ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
200       DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
201       CCLogDiagnostics(false), CCGenDiagnostics(false),
202       CCPrintProcessStats(false), CCPrintInternalStats(false),
203       TargetTriple(TargetTriple), Saver(Alloc), PrependArg(nullptr),
204       CheckInputsExist(true), ProbePrecompiled(true),
205       SuppressMissingInputWarning(false) {
206   // Provide a sane fallback if no VFS is specified.
207   if (!this->VFS)
208     this->VFS = llvm::vfs::getRealFileSystem();
209 
210   Name = std::string(llvm::sys::path::filename(ClangExecutable));
211   Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
212   InstalledDir = Dir; // Provide a sensible default installed dir.
213 
214   if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
215     // Prepend InstalledDir if SysRoot is relative
216     SmallString<128> P(InstalledDir);
217     llvm::sys::path::append(P, SysRoot);
218     SysRoot = std::string(P);
219   }
220 
221 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
222   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
223 #endif
224 #if defined(CLANG_CONFIG_FILE_USER_DIR)
225   {
226     SmallString<128> P;
227     llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P);
228     UserConfigDir = static_cast<std::string>(P);
229   }
230 #endif
231 
232   // Compute the path to the resource directory.
233   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
234 }
235 
236 void Driver::setDriverMode(StringRef Value) {
237   static StringRef OptName =
238       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
239   if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value)
240                    .Case("gcc", GCCMode)
241                    .Case("g++", GXXMode)
242                    .Case("cpp", CPPMode)
243                    .Case("cl", CLMode)
244                    .Case("flang", FlangMode)
245                    .Case("dxc", DXCMode)
246                    .Default(std::nullopt))
247     Mode = *M;
248   else
249     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
250 }
251 
252 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
253                                      bool UseDriverMode, bool &ContainsError) {
254   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
255   ContainsError = false;
256 
257   llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask(UseDriverMode);
258   unsigned MissingArgIndex, MissingArgCount;
259   InputArgList Args = getOpts().ParseArgs(ArgStrings, MissingArgIndex,
260                                           MissingArgCount, VisibilityMask);
261 
262   // Check for missing argument error.
263   if (MissingArgCount) {
264     Diag(diag::err_drv_missing_argument)
265         << Args.getArgString(MissingArgIndex) << MissingArgCount;
266     ContainsError |=
267         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
268                                  SourceLocation()) > DiagnosticsEngine::Warning;
269   }
270 
271   // Check for unsupported options.
272   for (const Arg *A : Args) {
273     if (A->getOption().hasFlag(options::Unsupported)) {
274       Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args);
275       ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_unsupported_opt,
276                                                 SourceLocation()) >
277                        DiagnosticsEngine::Warning;
278       continue;
279     }
280 
281     // Warn about -mcpu= without an argument.
282     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
283       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
284       ContainsError |= Diags.getDiagnosticLevel(
285                            diag::warn_drv_empty_joined_argument,
286                            SourceLocation()) > DiagnosticsEngine::Warning;
287     }
288   }
289 
290   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
291     unsigned DiagID;
292     auto ArgString = A->getAsString(Args);
293     std::string Nearest;
294     if (getOpts().findNearest(ArgString, Nearest, VisibilityMask) > 1) {
295       if (!IsCLMode() &&
296           getOpts().findExact(ArgString, Nearest,
297                               llvm::opt::Visibility(options::CC1Option))) {
298         DiagID = diag::err_drv_unknown_argument_with_suggestion;
299         Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest;
300       } else {
301         DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
302                             : diag::err_drv_unknown_argument;
303         Diags.Report(DiagID) << ArgString;
304       }
305     } else {
306       DiagID = IsCLMode()
307                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
308                    : diag::err_drv_unknown_argument_with_suggestion;
309       Diags.Report(DiagID) << ArgString << Nearest;
310     }
311     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
312                      DiagnosticsEngine::Warning;
313   }
314 
315   for (const Arg *A : Args.filtered(options::OPT_o)) {
316     if (ArgStrings[A->getIndex()] == A->getSpelling())
317       continue;
318 
319     // Warn on joined arguments that are similar to a long argument.
320     std::string ArgString = ArgStrings[A->getIndex()];
321     std::string Nearest;
322     if (getOpts().findExact("-" + ArgString, Nearest, VisibilityMask))
323       Diags.Report(diag::warn_drv_potentially_misspelled_joined_argument)
324           << A->getAsString(Args) << Nearest;
325   }
326 
327   return Args;
328 }
329 
330 // Determine which compilation mode we are in. We look for options which
331 // affect the phase, starting with the earliest phases, and record which
332 // option we used to determine the final phase.
333 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
334                                  Arg **FinalPhaseArg) const {
335   Arg *PhaseArg = nullptr;
336   phases::ID FinalPhase;
337 
338   // -{E,EP,P,M,MM} only run the preprocessor.
339   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
340       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
341       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
342       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
343       CCGenDiagnostics) {
344     FinalPhase = phases::Preprocess;
345 
346     // --precompile only runs up to precompilation.
347     // Options that cause the output of C++20 compiled module interfaces or
348     // header units have the same effect.
349   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
350              (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) ||
351              (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header,
352                                         options::OPT_fmodule_header_EQ))) {
353     FinalPhase = phases::Precompile;
354     // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
355   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
356              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
357              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
358              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
359              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
360              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
361              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
362              (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
363              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
364     FinalPhase = phases::Compile;
365 
366   // -S only runs up to the backend.
367   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
368     FinalPhase = phases::Backend;
369 
370   // -c compilation only runs up to the assembler.
371   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
372     FinalPhase = phases::Assemble;
373 
374   } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
375     FinalPhase = phases::IfsMerge;
376 
377   // Otherwise do everything.
378   } else
379     FinalPhase = phases::Link;
380 
381   if (FinalPhaseArg)
382     *FinalPhaseArg = PhaseArg;
383 
384   return FinalPhase;
385 }
386 
387 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
388                          StringRef Value, bool Claim = true) {
389   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
390                    Args.getBaseArgs().MakeIndex(Value), Value.data());
391   Args.AddSynthesizedArg(A);
392   if (Claim)
393     A->claim();
394   return A;
395 }
396 
397 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
398   const llvm::opt::OptTable &Opts = getOpts();
399   DerivedArgList *DAL = new DerivedArgList(Args);
400 
401   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
402   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
403   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
404   bool IgnoreUnused = false;
405   for (Arg *A : Args) {
406     if (IgnoreUnused)
407       A->claim();
408 
409     if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
410       IgnoreUnused = true;
411       continue;
412     }
413     if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
414       IgnoreUnused = false;
415       continue;
416     }
417 
418     // Unfortunately, we have to parse some forwarding options (-Xassembler,
419     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
420     // (assembler and preprocessor), or bypass a previous driver ('collect2').
421 
422     // Rewrite linker options, to replace --no-demangle with a custom internal
423     // option.
424     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
425          A->getOption().matches(options::OPT_Xlinker)) &&
426         A->containsValue("--no-demangle")) {
427       // Add the rewritten no-demangle argument.
428       DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
429 
430       // Add the remaining values as Xlinker arguments.
431       for (StringRef Val : A->getValues())
432         if (Val != "--no-demangle")
433           DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
434 
435       continue;
436     }
437 
438     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
439     // some build systems. We don't try to be complete here because we don't
440     // care to encourage this usage model.
441     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
442         (A->getValue(0) == StringRef("-MD") ||
443          A->getValue(0) == StringRef("-MMD"))) {
444       // Rewrite to -MD/-MMD along with -MF.
445       if (A->getValue(0) == StringRef("-MD"))
446         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
447       else
448         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
449       if (A->getNumValues() == 2)
450         DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
451       continue;
452     }
453 
454     // Rewrite reserved library names.
455     if (A->getOption().matches(options::OPT_l)) {
456       StringRef Value = A->getValue();
457 
458       // Rewrite unless -nostdlib is present.
459       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
460           Value == "stdc++") {
461         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
462         continue;
463       }
464 
465       // Rewrite unconditionally.
466       if (Value == "cc_kext") {
467         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
468         continue;
469       }
470     }
471 
472     // Pick up inputs via the -- option.
473     if (A->getOption().matches(options::OPT__DASH_DASH)) {
474       A->claim();
475       for (StringRef Val : A->getValues())
476         DAL->append(MakeInputArg(*DAL, Opts, Val, false));
477       continue;
478     }
479 
480     DAL->append(A);
481   }
482 
483   // DXC mode quits before assembly if an output object file isn't specified.
484   if (IsDXCMode() && !Args.hasArg(options::OPT_dxc_Fo))
485     DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_S));
486 
487   // Enforce -static if -miamcu is present.
488   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
489     DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
490 
491 // Add a default value of -mlinker-version=, if one was given and the user
492 // didn't specify one.
493 #if defined(HOST_LINK_VERSION)
494   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
495       strlen(HOST_LINK_VERSION) > 0) {
496     DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
497                       HOST_LINK_VERSION);
498     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
499   }
500 #endif
501 
502   return DAL;
503 }
504 
505 /// Compute target triple from args.
506 ///
507 /// This routine provides the logic to compute a target triple from various
508 /// args passed to the driver and the default triple string.
509 static llvm::Triple computeTargetTriple(const Driver &D,
510                                         StringRef TargetTriple,
511                                         const ArgList &Args,
512                                         StringRef DarwinArchName = "") {
513   // FIXME: Already done in Compilation *Driver::BuildCompilation
514   if (const Arg *A = Args.getLastArg(options::OPT_target))
515     TargetTriple = A->getValue();
516 
517   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
518 
519   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
520   // -gnu* only, and we can not change this, so we have to detect that case as
521   // being the Hurd OS.
522   if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
523     Target.setOSName("hurd");
524 
525   // Handle Apple-specific options available here.
526   if (Target.isOSBinFormatMachO()) {
527     // If an explicit Darwin arch name is given, that trumps all.
528     if (!DarwinArchName.empty()) {
529       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName,
530                                                    Args);
531       return Target;
532     }
533 
534     // Handle the Darwin '-arch' flag.
535     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
536       StringRef ArchName = A->getValue();
537       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName, Args);
538     }
539   }
540 
541   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
542   // '-mbig-endian'/'-EB'.
543   if (Arg *A = Args.getLastArgNoClaim(options::OPT_mlittle_endian,
544                                       options::OPT_mbig_endian)) {
545     llvm::Triple T = A->getOption().matches(options::OPT_mlittle_endian)
546                          ? Target.getLittleEndianArchVariant()
547                          : Target.getBigEndianArchVariant();
548     if (T.getArch() != llvm::Triple::UnknownArch) {
549       Target = std::move(T);
550       Args.claimAllArgs(options::OPT_mlittle_endian, options::OPT_mbig_endian);
551     }
552   }
553 
554   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
555   if (Target.getArch() == llvm::Triple::tce)
556     return Target;
557 
558   // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
559   if (Target.isOSAIX()) {
560     if (std::optional<std::string> ObjectModeValue =
561             llvm::sys::Process::GetEnv("OBJECT_MODE")) {
562       StringRef ObjectMode = *ObjectModeValue;
563       llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
564 
565       if (ObjectMode.equals("64")) {
566         AT = Target.get64BitArchVariant().getArch();
567       } else if (ObjectMode.equals("32")) {
568         AT = Target.get32BitArchVariant().getArch();
569       } else {
570         D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
571       }
572 
573       if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
574         Target.setArch(AT);
575     }
576   }
577 
578   // The `-maix[32|64]` flags are only valid for AIX targets.
579   if (Arg *A = Args.getLastArgNoClaim(options::OPT_maix32, options::OPT_maix64);
580       A && !Target.isOSAIX())
581     D.Diag(diag::err_drv_unsupported_opt_for_target)
582         << A->getAsString(Args) << Target.str();
583 
584   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
585   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
586                            options::OPT_m32, options::OPT_m16,
587                            options::OPT_maix32, options::OPT_maix64);
588   if (A) {
589     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
590 
591     if (A->getOption().matches(options::OPT_m64) ||
592         A->getOption().matches(options::OPT_maix64)) {
593       AT = Target.get64BitArchVariant().getArch();
594       if (Target.getEnvironment() == llvm::Triple::GNUX32)
595         Target.setEnvironment(llvm::Triple::GNU);
596       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
597         Target.setEnvironment(llvm::Triple::Musl);
598     } else if (A->getOption().matches(options::OPT_mx32) &&
599                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
600       AT = llvm::Triple::x86_64;
601       if (Target.getEnvironment() == llvm::Triple::Musl)
602         Target.setEnvironment(llvm::Triple::MuslX32);
603       else
604         Target.setEnvironment(llvm::Triple::GNUX32);
605     } else if (A->getOption().matches(options::OPT_m32) ||
606                A->getOption().matches(options::OPT_maix32)) {
607       AT = Target.get32BitArchVariant().getArch();
608       if (Target.getEnvironment() == llvm::Triple::GNUX32)
609         Target.setEnvironment(llvm::Triple::GNU);
610       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
611         Target.setEnvironment(llvm::Triple::Musl);
612     } else if (A->getOption().matches(options::OPT_m16) &&
613                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
614       AT = llvm::Triple::x86;
615       Target.setEnvironment(llvm::Triple::CODE16);
616     }
617 
618     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
619       Target.setArch(AT);
620       if (Target.isWindowsGNUEnvironment())
621         toolchains::MinGW::fixTripleArch(D, Target, Args);
622     }
623   }
624 
625   // Handle -miamcu flag.
626   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
627     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
628       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
629                                                        << Target.str();
630 
631     if (A && !A->getOption().matches(options::OPT_m32))
632       D.Diag(diag::err_drv_argument_not_allowed_with)
633           << "-miamcu" << A->getBaseArg().getAsString(Args);
634 
635     Target.setArch(llvm::Triple::x86);
636     Target.setArchName("i586");
637     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
638     Target.setEnvironmentName("");
639     Target.setOS(llvm::Triple::ELFIAMCU);
640     Target.setVendor(llvm::Triple::UnknownVendor);
641     Target.setVendorName("intel");
642   }
643 
644   // If target is MIPS adjust the target triple
645   // accordingly to provided ABI name.
646   if (Target.isMIPS()) {
647     if ((A = Args.getLastArg(options::OPT_mabi_EQ))) {
648       StringRef ABIName = A->getValue();
649       if (ABIName == "32") {
650         Target = Target.get32BitArchVariant();
651         if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
652             Target.getEnvironment() == llvm::Triple::GNUABIN32)
653           Target.setEnvironment(llvm::Triple::GNU);
654       } else if (ABIName == "n32") {
655         Target = Target.get64BitArchVariant();
656         if (Target.getEnvironment() == llvm::Triple::GNU ||
657             Target.getEnvironment() == llvm::Triple::GNUABI64)
658           Target.setEnvironment(llvm::Triple::GNUABIN32);
659       } else if (ABIName == "64") {
660         Target = Target.get64BitArchVariant();
661         if (Target.getEnvironment() == llvm::Triple::GNU ||
662             Target.getEnvironment() == llvm::Triple::GNUABIN32)
663           Target.setEnvironment(llvm::Triple::GNUABI64);
664       }
665     }
666   }
667 
668   // If target is RISC-V adjust the target triple according to
669   // provided architecture name
670   if (Target.isRISCV()) {
671     if (Args.hasArg(options::OPT_march_EQ) ||
672         Args.hasArg(options::OPT_mcpu_EQ)) {
673       StringRef ArchName = tools::riscv::getRISCVArch(Args, Target);
674       auto ISAInfo = llvm::RISCVISAInfo::parseArchString(
675           ArchName, /*EnableExperimentalExtensions=*/true);
676       if (!llvm::errorToBool(ISAInfo.takeError())) {
677         unsigned XLen = (*ISAInfo)->getXLen();
678         if (XLen == 32)
679           Target.setArch(llvm::Triple::riscv32);
680         else if (XLen == 64)
681           Target.setArch(llvm::Triple::riscv64);
682       }
683     }
684   }
685 
686   return Target;
687 }
688 
689 // Parse the LTO options and record the type of LTO compilation
690 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
691 // option occurs last.
692 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
693                                     OptSpecifier OptEq, OptSpecifier OptNeg) {
694   if (!Args.hasFlag(OptEq, OptNeg, false))
695     return LTOK_None;
696 
697   const Arg *A = Args.getLastArg(OptEq);
698   StringRef LTOName = A->getValue();
699 
700   driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
701                                 .Case("full", LTOK_Full)
702                                 .Case("thin", LTOK_Thin)
703                                 .Default(LTOK_Unknown);
704 
705   if (LTOMode == LTOK_Unknown) {
706     D.Diag(diag::err_drv_unsupported_option_argument)
707         << A->getSpelling() << A->getValue();
708     return LTOK_None;
709   }
710   return LTOMode;
711 }
712 
713 // Parse the LTO options.
714 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
715   LTOMode =
716       parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
717 
718   OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
719                                 options::OPT_fno_offload_lto);
720 
721   // Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on.
722   if (Args.hasFlag(options::OPT_fopenmp_target_jit,
723                    options::OPT_fno_openmp_target_jit, false)) {
724     if (Arg *A = Args.getLastArg(options::OPT_foffload_lto_EQ,
725                                  options::OPT_fno_offload_lto))
726       if (OffloadLTOMode != LTOK_Full)
727         Diag(diag::err_drv_incompatible_options)
728             << A->getSpelling() << "-fopenmp-target-jit";
729     OffloadLTOMode = LTOK_Full;
730   }
731 }
732 
733 /// Compute the desired OpenMP runtime from the flags provided.
734 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
735   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
736 
737   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
738   if (A)
739     RuntimeName = A->getValue();
740 
741   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
742                 .Case("libomp", OMPRT_OMP)
743                 .Case("libgomp", OMPRT_GOMP)
744                 .Case("libiomp5", OMPRT_IOMP5)
745                 .Default(OMPRT_Unknown);
746 
747   if (RT == OMPRT_Unknown) {
748     if (A)
749       Diag(diag::err_drv_unsupported_option_argument)
750           << A->getSpelling() << A->getValue();
751     else
752       // FIXME: We could use a nicer diagnostic here.
753       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
754   }
755 
756   return RT;
757 }
758 
759 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
760                                               InputList &Inputs) {
761 
762   //
763   // CUDA/HIP
764   //
765   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
766   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
767   bool IsCuda =
768       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
769         return types::isCuda(I.first);
770       });
771   bool IsHIP =
772       llvm::any_of(Inputs,
773                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
774                      return types::isHIP(I.first);
775                    }) ||
776       C.getInputArgs().hasArg(options::OPT_hip_link) ||
777       C.getInputArgs().hasArg(options::OPT_hipstdpar);
778   if (IsCuda && IsHIP) {
779     Diag(clang::diag::err_drv_mix_cuda_hip);
780     return;
781   }
782   if (IsCuda) {
783     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
784     const llvm::Triple &HostTriple = HostTC->getTriple();
785     auto OFK = Action::OFK_Cuda;
786     auto CudaTriple =
787         getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
788     if (!CudaTriple)
789       return;
790     // Use the CUDA and host triples as the key into the ToolChains map,
791     // because the device toolchain we create depends on both.
792     auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
793     if (!CudaTC) {
794       CudaTC = std::make_unique<toolchains::CudaToolChain>(
795           *this, *CudaTriple, *HostTC, C.getInputArgs());
796 
797       // Emit a warning if the detected CUDA version is too new.
798       CudaInstallationDetector &CudaInstallation =
799           static_cast<toolchains::CudaToolChain &>(*CudaTC).CudaInstallation;
800       if (CudaInstallation.isValid())
801         CudaInstallation.WarnIfUnsupportedVersion();
802     }
803     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
804   } else if (IsHIP) {
805     if (auto *OMPTargetArg =
806             C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
807       Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
808           << OMPTargetArg->getSpelling() << "HIP";
809       return;
810     }
811     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
812     auto OFK = Action::OFK_HIP;
813     auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
814     if (!HIPTriple)
815       return;
816     auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
817                                                 *HostTC, OFK);
818     assert(HIPTC && "Could not create offloading device tool chain.");
819     C.addOffloadDeviceToolChain(HIPTC, OFK);
820   }
821 
822   //
823   // OpenMP
824   //
825   // We need to generate an OpenMP toolchain if the user specified targets with
826   // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
827   bool IsOpenMPOffloading =
828       C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
829                                options::OPT_fno_openmp, false) &&
830       (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) ||
831        C.getInputArgs().hasArg(options::OPT_offload_arch_EQ));
832   if (IsOpenMPOffloading) {
833     // We expect that -fopenmp-targets is always used in conjunction with the
834     // option -fopenmp specifying a valid runtime with offloading support, i.e.
835     // libomp or libiomp.
836     OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs());
837     if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
838       Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
839       return;
840     }
841 
842     llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs;
843     llvm::StringMap<StringRef> FoundNormalizedTriples;
844     std::multiset<StringRef> OpenMPTriples;
845 
846     // If the user specified -fopenmp-targets= we create a toolchain for each
847     // valid triple. Otherwise, if only --offload-arch= was specified we instead
848     // attempt to derive the appropriate toolchains from the arguments.
849     if (Arg *OpenMPTargets =
850             C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
851       if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
852         Diag(clang::diag::warn_drv_empty_joined_argument)
853             << OpenMPTargets->getAsString(C.getInputArgs());
854         return;
855       }
856       for (StringRef T : OpenMPTargets->getValues())
857         OpenMPTriples.insert(T);
858     } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) &&
859                !IsHIP && !IsCuda) {
860       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
861       auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
862       auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(),
863                                                       HostTC->getTriple());
864 
865       // Attempt to deduce the offloading triple from the set of architectures.
866       // We can only correctly deduce NVPTX / AMDGPU triples currently. We need
867       // to temporarily create these toolchains so that we can access tools for
868       // inferring architectures.
869       llvm::DenseSet<StringRef> Archs;
870       if (NVPTXTriple) {
871         auto TempTC = std::make_unique<toolchains::CudaToolChain>(
872             *this, *NVPTXTriple, *HostTC, C.getInputArgs());
873         for (StringRef Arch : getOffloadArchs(
874                  C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
875           Archs.insert(Arch);
876       }
877       if (AMDTriple) {
878         auto TempTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
879             *this, *AMDTriple, *HostTC, C.getInputArgs());
880         for (StringRef Arch : getOffloadArchs(
881                  C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
882           Archs.insert(Arch);
883       }
884       if (!AMDTriple && !NVPTXTriple) {
885         for (StringRef Arch :
886              getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr, true))
887           Archs.insert(Arch);
888       }
889 
890       for (StringRef Arch : Archs) {
891         if (NVPTXTriple && IsNVIDIAGpuArch(StringToCudaArch(
892                                getProcessorFromTargetID(*NVPTXTriple, Arch)))) {
893           DerivedArchs[NVPTXTriple->getTriple()].insert(Arch);
894         } else if (AMDTriple &&
895                    IsAMDGpuArch(StringToCudaArch(
896                        getProcessorFromTargetID(*AMDTriple, Arch)))) {
897           DerivedArchs[AMDTriple->getTriple()].insert(Arch);
898         } else {
899           Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
900           return;
901         }
902       }
903 
904       // If the set is empty then we failed to find a native architecture.
905       if (Archs.empty()) {
906         Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch)
907             << "native";
908         return;
909       }
910 
911       for (const auto &TripleAndArchs : DerivedArchs)
912         OpenMPTriples.insert(TripleAndArchs.first());
913     }
914 
915     for (StringRef Val : OpenMPTriples) {
916       llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
917       std::string NormalizedName = TT.normalize();
918 
919       // Make sure we don't have a duplicate triple.
920       auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
921       if (Duplicate != FoundNormalizedTriples.end()) {
922         Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
923             << Val << Duplicate->second;
924         continue;
925       }
926 
927       // Store the current triple so that we can check for duplicates in the
928       // following iterations.
929       FoundNormalizedTriples[NormalizedName] = Val;
930 
931       // If the specified target is invalid, emit a diagnostic.
932       if (TT.getArch() == llvm::Triple::UnknownArch)
933         Diag(clang::diag::err_drv_invalid_omp_target) << Val;
934       else {
935         const ToolChain *TC;
936         // Device toolchains have to be selected differently. They pair host
937         // and device in their implementation.
938         if (TT.isNVPTX() || TT.isAMDGCN()) {
939           const ToolChain *HostTC =
940               C.getSingleOffloadToolChain<Action::OFK_Host>();
941           assert(HostTC && "Host toolchain should be always defined.");
942           auto &DeviceTC =
943               ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
944           if (!DeviceTC) {
945             if (TT.isNVPTX())
946               DeviceTC = std::make_unique<toolchains::CudaToolChain>(
947                   *this, TT, *HostTC, C.getInputArgs());
948             else if (TT.isAMDGCN())
949               DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
950                   *this, TT, *HostTC, C.getInputArgs());
951             else
952               assert(DeviceTC && "Device toolchain not defined.");
953           }
954 
955           TC = DeviceTC.get();
956         } else
957           TC = &getToolChain(C.getInputArgs(), TT);
958         C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
959         if (DerivedArchs.contains(TT.getTriple()))
960           KnownArchs[TC] = DerivedArchs[TT.getTriple()];
961       }
962     }
963   } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) {
964     Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
965     return;
966   }
967 
968   //
969   // TODO: Add support for other offloading programming models here.
970   //
971 }
972 
973 static void appendOneArg(InputArgList &Args, const Arg *Opt,
974                          const Arg *BaseArg) {
975   // The args for config files or /clang: flags belong to different InputArgList
976   // objects than Args. This copies an Arg from one of those other InputArgLists
977   // to the ownership of Args.
978   unsigned Index = Args.MakeIndex(Opt->getSpelling());
979   Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
980                                  Index, BaseArg);
981   Copy->getValues() = Opt->getValues();
982   if (Opt->isClaimed())
983     Copy->claim();
984   Copy->setOwnsValues(Opt->getOwnsValues());
985   Opt->setOwnsValues(false);
986   Args.append(Copy);
987 }
988 
989 bool Driver::readConfigFile(StringRef FileName,
990                             llvm::cl::ExpansionContext &ExpCtx) {
991   // Try opening the given file.
992   auto Status = getVFS().status(FileName);
993   if (!Status) {
994     Diag(diag::err_drv_cannot_open_config_file)
995         << FileName << Status.getError().message();
996     return true;
997   }
998   if (Status->getType() != llvm::sys::fs::file_type::regular_file) {
999     Diag(diag::err_drv_cannot_open_config_file)
1000         << FileName << "not a regular file";
1001     return true;
1002   }
1003 
1004   // Try reading the given file.
1005   SmallVector<const char *, 32> NewCfgArgs;
1006   if (llvm::Error Err = ExpCtx.readConfigFile(FileName, NewCfgArgs)) {
1007     Diag(diag::err_drv_cannot_read_config_file)
1008         << FileName << toString(std::move(Err));
1009     return true;
1010   }
1011 
1012   // Read options from config file.
1013   llvm::SmallString<128> CfgFileName(FileName);
1014   llvm::sys::path::native(CfgFileName);
1015   bool ContainErrors;
1016   std::unique_ptr<InputArgList> NewOptions = std::make_unique<InputArgList>(
1017       ParseArgStrings(NewCfgArgs, /*UseDriverMode=*/true, ContainErrors));
1018   if (ContainErrors)
1019     return true;
1020 
1021   // Claim all arguments that come from a configuration file so that the driver
1022   // does not warn on any that is unused.
1023   for (Arg *A : *NewOptions)
1024     A->claim();
1025 
1026   if (!CfgOptions)
1027     CfgOptions = std::move(NewOptions);
1028   else {
1029     // If this is a subsequent config file, append options to the previous one.
1030     for (auto *Opt : *NewOptions) {
1031       const Arg *BaseArg = &Opt->getBaseArg();
1032       if (BaseArg == Opt)
1033         BaseArg = nullptr;
1034       appendOneArg(*CfgOptions, Opt, BaseArg);
1035     }
1036   }
1037   ConfigFiles.push_back(std::string(CfgFileName));
1038   return false;
1039 }
1040 
1041 bool Driver::loadConfigFiles() {
1042   llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(),
1043                                     llvm::cl::tokenizeConfigFile);
1044   ExpCtx.setVFS(&getVFS());
1045 
1046   // Process options that change search path for config files.
1047   if (CLOptions) {
1048     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
1049       SmallString<128> CfgDir;
1050       CfgDir.append(
1051           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
1052       if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1053         SystemConfigDir.clear();
1054       else
1055         SystemConfigDir = static_cast<std::string>(CfgDir);
1056     }
1057     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
1058       SmallString<128> CfgDir;
1059       llvm::sys::fs::expand_tilde(
1060           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ), CfgDir);
1061       if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1062         UserConfigDir.clear();
1063       else
1064         UserConfigDir = static_cast<std::string>(CfgDir);
1065     }
1066   }
1067 
1068   // Prepare list of directories where config file is searched for.
1069   StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1070   ExpCtx.setSearchDirs(CfgFileSearchDirs);
1071 
1072   // First try to load configuration from the default files, return on error.
1073   if (loadDefaultConfigFiles(ExpCtx))
1074     return true;
1075 
1076   // Then load configuration files specified explicitly.
1077   SmallString<128> CfgFilePath;
1078   if (CLOptions) {
1079     for (auto CfgFileName : CLOptions->getAllArgValues(options::OPT_config)) {
1080       // If argument contains directory separator, treat it as a path to
1081       // configuration file.
1082       if (llvm::sys::path::has_parent_path(CfgFileName)) {
1083         CfgFilePath.assign(CfgFileName);
1084         if (llvm::sys::path::is_relative(CfgFilePath)) {
1085           if (getVFS().makeAbsolute(CfgFilePath)) {
1086             Diag(diag::err_drv_cannot_open_config_file)
1087                 << CfgFilePath << "cannot get absolute path";
1088             return true;
1089           }
1090         }
1091       } else if (!ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1092         // Report an error that the config file could not be found.
1093         Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1094         for (const StringRef &SearchDir : CfgFileSearchDirs)
1095           if (!SearchDir.empty())
1096             Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1097         return true;
1098       }
1099 
1100       // Try to read the config file, return on error.
1101       if (readConfigFile(CfgFilePath, ExpCtx))
1102         return true;
1103     }
1104   }
1105 
1106   // No error occurred.
1107   return false;
1108 }
1109 
1110 bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) {
1111   // Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty
1112   // value.
1113   if (const char *NoConfigEnv = ::getenv("CLANG_NO_DEFAULT_CONFIG")) {
1114     if (*NoConfigEnv)
1115       return false;
1116   }
1117   if (CLOptions && CLOptions->hasArg(options::OPT_no_default_config))
1118     return false;
1119 
1120   std::string RealMode = getExecutableForDriverMode(Mode);
1121   std::string Triple;
1122 
1123   // If name prefix is present, no --target= override was passed via CLOptions
1124   // and the name prefix is not a valid triple, force it for backwards
1125   // compatibility.
1126   if (!ClangNameParts.TargetPrefix.empty() &&
1127       computeTargetTriple(*this, "/invalid/", *CLOptions).str() ==
1128           "/invalid/") {
1129     llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix};
1130     if (PrefixTriple.getArch() == llvm::Triple::UnknownArch ||
1131         PrefixTriple.isOSUnknown())
1132       Triple = PrefixTriple.str();
1133   }
1134 
1135   // Otherwise, use the real triple as used by the driver.
1136   if (Triple.empty()) {
1137     llvm::Triple RealTriple =
1138         computeTargetTriple(*this, TargetTriple, *CLOptions);
1139     Triple = RealTriple.str();
1140     assert(!Triple.empty());
1141   }
1142 
1143   // Search for config files in the following order:
1144   // 1. <triple>-<mode>.cfg using real driver mode
1145   //    (e.g. i386-pc-linux-gnu-clang++.cfg).
1146   // 2. <triple>-<mode>.cfg using executable suffix
1147   //    (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++).
1148   // 3. <triple>.cfg + <mode>.cfg using real driver mode
1149   //    (e.g. i386-pc-linux-gnu.cfg + clang++.cfg).
1150   // 4. <triple>.cfg + <mode>.cfg using executable suffix
1151   //    (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++).
1152 
1153   // Try loading <triple>-<mode>.cfg, and return if we find a match.
1154   SmallString<128> CfgFilePath;
1155   std::string CfgFileName = Triple + '-' + RealMode + ".cfg";
1156   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1157     return readConfigFile(CfgFilePath, ExpCtx);
1158 
1159   bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() &&
1160                        ClangNameParts.ModeSuffix != RealMode;
1161   if (TryModeSuffix) {
1162     CfgFileName = Triple + '-' + ClangNameParts.ModeSuffix + ".cfg";
1163     if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1164       return readConfigFile(CfgFilePath, ExpCtx);
1165   }
1166 
1167   // Try loading <mode>.cfg, and return if loading failed.  If a matching file
1168   // was not found, still proceed on to try <triple>.cfg.
1169   CfgFileName = RealMode + ".cfg";
1170   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1171     if (readConfigFile(CfgFilePath, ExpCtx))
1172       return true;
1173   } else if (TryModeSuffix) {
1174     CfgFileName = ClangNameParts.ModeSuffix + ".cfg";
1175     if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath) &&
1176         readConfigFile(CfgFilePath, ExpCtx))
1177       return true;
1178   }
1179 
1180   // Try loading <triple>.cfg and return if we find a match.
1181   CfgFileName = Triple + ".cfg";
1182   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1183     return readConfigFile(CfgFilePath, ExpCtx);
1184 
1185   // If we were unable to find a config file deduced from executable name,
1186   // that is not an error.
1187   return false;
1188 }
1189 
1190 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1191   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1192 
1193   // FIXME: Handle environment options which affect driver behavior, somewhere
1194   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1195 
1196   // We look for the driver mode option early, because the mode can affect
1197   // how other options are parsed.
1198 
1199   auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1200   if (!DriverMode.empty())
1201     setDriverMode(DriverMode);
1202 
1203   // FIXME: What are we going to do with -V and -b?
1204 
1205   // Arguments specified in command line.
1206   bool ContainsError;
1207   CLOptions = std::make_unique<InputArgList>(
1208       ParseArgStrings(ArgList.slice(1), /*UseDriverMode=*/true, ContainsError));
1209 
1210   // Try parsing configuration file.
1211   if (!ContainsError)
1212     ContainsError = loadConfigFiles();
1213   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1214 
1215   // All arguments, from both config file and command line.
1216   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1217                                               : std::move(*CLOptions));
1218 
1219   if (HasConfigFile)
1220     for (auto *Opt : *CLOptions) {
1221       if (Opt->getOption().matches(options::OPT_config))
1222         continue;
1223       const Arg *BaseArg = &Opt->getBaseArg();
1224       if (BaseArg == Opt)
1225         BaseArg = nullptr;
1226       appendOneArg(Args, Opt, BaseArg);
1227     }
1228 
1229   // In CL mode, look for any pass-through arguments
1230   if (IsCLMode() && !ContainsError) {
1231     SmallVector<const char *, 16> CLModePassThroughArgList;
1232     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1233       A->claim();
1234       CLModePassThroughArgList.push_back(A->getValue());
1235     }
1236 
1237     if (!CLModePassThroughArgList.empty()) {
1238       // Parse any pass through args using default clang processing rather
1239       // than clang-cl processing.
1240       auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1241           ParseArgStrings(CLModePassThroughArgList, /*UseDriverMode=*/false,
1242                           ContainsError));
1243 
1244       if (!ContainsError)
1245         for (auto *Opt : *CLModePassThroughOptions) {
1246           appendOneArg(Args, Opt, nullptr);
1247         }
1248     }
1249   }
1250 
1251   // Check for working directory option before accessing any files
1252   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1253     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1254       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1255 
1256   // FIXME: This stuff needs to go into the Compilation, not the driver.
1257   bool CCCPrintPhases;
1258 
1259   // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1260   Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1261   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1262 
1263   // f(no-)integated-cc1 is also used very early in main.
1264   Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1265   Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1266 
1267   // Ignore -pipe.
1268   Args.ClaimAllArgs(options::OPT_pipe);
1269 
1270   // Extract -ccc args.
1271   //
1272   // FIXME: We need to figure out where this behavior should live. Most of it
1273   // should be outside in the client; the parts that aren't should have proper
1274   // options, either by introducing new ones or by overloading gcc ones like -V
1275   // or -b.
1276   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1277   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1278   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1279     CCCGenericGCCName = A->getValue();
1280 
1281   // Process -fproc-stat-report options.
1282   if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1283     CCPrintProcessStats = true;
1284     CCPrintStatReportFilename = A->getValue();
1285   }
1286   if (Args.hasArg(options::OPT_fproc_stat_report))
1287     CCPrintProcessStats = true;
1288 
1289   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1290   // and getToolChain is const.
1291   if (IsCLMode()) {
1292     // clang-cl targets MSVC-style Win32.
1293     llvm::Triple T(TargetTriple);
1294     T.setOS(llvm::Triple::Win32);
1295     T.setVendor(llvm::Triple::PC);
1296     T.setEnvironment(llvm::Triple::MSVC);
1297     T.setObjectFormat(llvm::Triple::COFF);
1298     if (Args.hasArg(options::OPT__SLASH_arm64EC))
1299       T.setArch(llvm::Triple::aarch64, llvm::Triple::AArch64SubArch_arm64ec);
1300     TargetTriple = T.str();
1301   } else if (IsDXCMode()) {
1302     // Build TargetTriple from target_profile option for clang-dxc.
1303     if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) {
1304       StringRef TargetProfile = A->getValue();
1305       if (auto Triple =
1306               toolchains::HLSLToolChain::parseTargetProfile(TargetProfile))
1307         TargetTriple = *Triple;
1308       else
1309         Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile;
1310 
1311       A->claim();
1312 
1313       if (Args.hasArg(options::OPT_spirv)) {
1314         llvm::Triple T(TargetTriple);
1315         T.setArch(llvm::Triple::spirv);
1316         T.setOS(llvm::Triple::Vulkan);
1317 
1318         // Set specific Vulkan version if applicable.
1319         if (const Arg *A = Args.getLastArg(options::OPT_fspv_target_env_EQ)) {
1320           const llvm::StringSet<> ValidValues = {"vulkan1.2", "vulkan1.3"};
1321           if (ValidValues.contains(A->getValue())) {
1322             T.setOSName(A->getValue());
1323           } else {
1324             Diag(diag::err_drv_invalid_value)
1325                 << A->getAsString(Args) << A->getValue();
1326           }
1327           A->claim();
1328         }
1329 
1330         TargetTriple = T.str();
1331       }
1332     } else {
1333       Diag(diag::err_drv_dxc_missing_target_profile);
1334     }
1335   }
1336 
1337   if (const Arg *A = Args.getLastArg(options::OPT_target))
1338     TargetTriple = A->getValue();
1339   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1340     Dir = InstalledDir = A->getValue();
1341   for (const Arg *A : Args.filtered(options::OPT_B)) {
1342     A->claim();
1343     PrefixDirs.push_back(A->getValue(0));
1344   }
1345   if (std::optional<std::string> CompilerPathValue =
1346           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1347     StringRef CompilerPath = *CompilerPathValue;
1348     while (!CompilerPath.empty()) {
1349       std::pair<StringRef, StringRef> Split =
1350           CompilerPath.split(llvm::sys::EnvPathSeparator);
1351       PrefixDirs.push_back(std::string(Split.first));
1352       CompilerPath = Split.second;
1353     }
1354   }
1355   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1356     SysRoot = A->getValue();
1357   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1358     DyldPrefix = A->getValue();
1359 
1360   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1361     ResourceDir = A->getValue();
1362 
1363   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1364     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1365                     .Case("cwd", SaveTempsCwd)
1366                     .Case("obj", SaveTempsObj)
1367                     .Default(SaveTempsCwd);
1368   }
1369 
1370   if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only,
1371                                      options::OPT_offload_device_only,
1372                                      options::OPT_offload_host_device)) {
1373     if (A->getOption().matches(options::OPT_offload_host_only))
1374       Offload = OffloadHost;
1375     else if (A->getOption().matches(options::OPT_offload_device_only))
1376       Offload = OffloadDevice;
1377     else
1378       Offload = OffloadHostDevice;
1379   }
1380 
1381   setLTOMode(Args);
1382 
1383   // Process -fembed-bitcode= flags.
1384   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1385     StringRef Name = A->getValue();
1386     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1387         .Case("off", EmbedNone)
1388         .Case("all", EmbedBitcode)
1389         .Case("bitcode", EmbedBitcode)
1390         .Case("marker", EmbedMarker)
1391         .Default(~0U);
1392     if (Model == ~0U) {
1393       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1394                                                 << Name;
1395     } else
1396       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1397   }
1398 
1399   // Remove existing compilation database so that each job can append to it.
1400   if (Arg *A = Args.getLastArg(options::OPT_MJ))
1401     llvm::sys::fs::remove(A->getValue());
1402 
1403   // Setting up the jobs for some precompile cases depends on whether we are
1404   // treating them as PCH, implicit modules or C++20 ones.
1405   // TODO: inferring the mode like this seems fragile (it meets the objective
1406   // of not requiring anything new for operation, however).
1407   const Arg *Std = Args.getLastArg(options::OPT_std_EQ);
1408   ModulesModeCXX20 =
1409       !Args.hasArg(options::OPT_fmodules) && Std &&
1410       (Std->containsValue("c++20") || Std->containsValue("c++2a") ||
1411        Std->containsValue("c++23") || Std->containsValue("c++2b") ||
1412        Std->containsValue("c++26") || Std->containsValue("c++2c") ||
1413        Std->containsValue("c++latest"));
1414 
1415   // Process -fmodule-header{=} flags.
1416   if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ,
1417                                options::OPT_fmodule_header)) {
1418     // These flags force C++20 handling of headers.
1419     ModulesModeCXX20 = true;
1420     if (A->getOption().matches(options::OPT_fmodule_header))
1421       CXX20HeaderType = HeaderMode_Default;
1422     else {
1423       StringRef ArgName = A->getValue();
1424       unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1425                           .Case("user", HeaderMode_User)
1426                           .Case("system", HeaderMode_System)
1427                           .Default(~0U);
1428       if (Kind == ~0U) {
1429         Diags.Report(diag::err_drv_invalid_value)
1430             << A->getAsString(Args) << ArgName;
1431       } else
1432         CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1433     }
1434   }
1435 
1436   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1437       std::make_unique<InputArgList>(std::move(Args));
1438 
1439   // Perform the default argument translations.
1440   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1441 
1442   // Owned by the host.
1443   const ToolChain &TC = getToolChain(
1444       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1445 
1446   if (TC.getTriple().isAndroid()) {
1447     llvm::Triple Triple = TC.getTriple();
1448     StringRef TripleVersionName = Triple.getEnvironmentVersionString();
1449 
1450     if (Triple.getEnvironmentVersion().empty() && TripleVersionName != "") {
1451       Diags.Report(diag::err_drv_triple_version_invalid)
1452           << TripleVersionName << TC.getTripleString();
1453       ContainsError = true;
1454     }
1455   }
1456 
1457   // Report warning when arm64EC option is overridden by specified target
1458   if ((TC.getTriple().getArch() != llvm::Triple::aarch64 ||
1459        TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) &&
1460       UArgs->hasArg(options::OPT__SLASH_arm64EC)) {
1461     getDiags().Report(clang::diag::warn_target_override_arm64ec)
1462         << TC.getTriple().str();
1463   }
1464 
1465   // A common user mistake is specifying a target of aarch64-none-eabi or
1466   // arm-none-elf whereas the correct names are aarch64-none-elf &
1467   // arm-none-eabi. Detect these cases and issue a warning.
1468   if (TC.getTriple().getOS() == llvm::Triple::UnknownOS &&
1469       TC.getTriple().getVendor() == llvm::Triple::UnknownVendor) {
1470     switch (TC.getTriple().getArch()) {
1471     case llvm::Triple::arm:
1472     case llvm::Triple::armeb:
1473     case llvm::Triple::thumb:
1474     case llvm::Triple::thumbeb:
1475       if (TC.getTriple().getEnvironmentName() == "elf") {
1476         Diag(diag::warn_target_unrecognized_env)
1477             << TargetTriple
1478             << (TC.getTriple().getArchName().str() + "-none-eabi");
1479       }
1480       break;
1481     case llvm::Triple::aarch64:
1482     case llvm::Triple::aarch64_be:
1483     case llvm::Triple::aarch64_32:
1484       if (TC.getTriple().getEnvironmentName().starts_with("eabi")) {
1485         Diag(diag::warn_target_unrecognized_env)
1486             << TargetTriple
1487             << (TC.getTriple().getArchName().str() + "-none-elf");
1488       }
1489       break;
1490     default:
1491       break;
1492     }
1493   }
1494 
1495   // The compilation takes ownership of Args.
1496   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1497                                    ContainsError);
1498 
1499   if (!HandleImmediateArgs(*C))
1500     return C;
1501 
1502   // Construct the list of inputs.
1503   InputList Inputs;
1504   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1505 
1506   // Populate the tool chains for the offloading devices, if any.
1507   CreateOffloadingDeviceToolChains(*C, Inputs);
1508 
1509   // Construct the list of abstract actions to perform for this compilation. On
1510   // MachO targets this uses the driver-driver and universal actions.
1511   if (TC.getTriple().isOSBinFormatMachO())
1512     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1513   else
1514     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1515 
1516   if (CCCPrintPhases) {
1517     PrintActions(*C);
1518     return C;
1519   }
1520 
1521   BuildJobs(*C);
1522 
1523   return C;
1524 }
1525 
1526 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1527   llvm::opt::ArgStringList ASL;
1528   for (const auto *A : Args) {
1529     // Use user's original spelling of flags. For example, use
1530     // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1531     // wrote the former.
1532     while (A->getAlias())
1533       A = A->getAlias();
1534     A->render(Args, ASL);
1535   }
1536 
1537   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1538     if (I != ASL.begin())
1539       OS << ' ';
1540     llvm::sys::printArg(OS, *I, true);
1541   }
1542   OS << '\n';
1543 }
1544 
1545 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1546                                     SmallString<128> &CrashDiagDir) {
1547   using namespace llvm::sys;
1548   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1549          "Only knows about .crash files on Darwin");
1550 
1551   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1552   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1553   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1554   path::home_directory(CrashDiagDir);
1555   if (CrashDiagDir.starts_with("/var/root"))
1556     CrashDiagDir = "/";
1557   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1558   int PID =
1559 #if LLVM_ON_UNIX
1560       getpid();
1561 #else
1562       0;
1563 #endif
1564   std::error_code EC;
1565   fs::file_status FileStatus;
1566   TimePoint<> LastAccessTime;
1567   SmallString<128> CrashFilePath;
1568   // Lookup the .crash files and get the one generated by a subprocess spawned
1569   // by this driver invocation.
1570   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1571        File != FileEnd && !EC; File.increment(EC)) {
1572     StringRef FileName = path::filename(File->path());
1573     if (!FileName.starts_with(Name))
1574       continue;
1575     if (fs::status(File->path(), FileStatus))
1576       continue;
1577     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1578         llvm::MemoryBuffer::getFile(File->path());
1579     if (!CrashFile)
1580       continue;
1581     // The first line should start with "Process:", otherwise this isn't a real
1582     // .crash file.
1583     StringRef Data = CrashFile.get()->getBuffer();
1584     if (!Data.starts_with("Process:"))
1585       continue;
1586     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1587     size_t ParentProcPos = Data.find("Parent Process:");
1588     if (ParentProcPos == StringRef::npos)
1589       continue;
1590     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1591     if (LineEnd == StringRef::npos)
1592       continue;
1593     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1594     int OpenBracket = -1, CloseBracket = -1;
1595     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1596       if (ParentProcess[i] == '[')
1597         OpenBracket = i;
1598       if (ParentProcess[i] == ']')
1599         CloseBracket = i;
1600     }
1601     // Extract the parent process PID from the .crash file and check whether
1602     // it matches this driver invocation pid.
1603     int CrashPID;
1604     if (OpenBracket < 0 || CloseBracket < 0 ||
1605         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1606             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1607       continue;
1608     }
1609 
1610     // Found a .crash file matching the driver pid. To avoid getting an older
1611     // and misleading crash file, continue looking for the most recent.
1612     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1613     // multiple crashes poiting to the same parent process. Since the driver
1614     // does not collect pid information for the dispatched invocation there's
1615     // currently no way to distinguish among them.
1616     const auto FileAccessTime = FileStatus.getLastModificationTime();
1617     if (FileAccessTime > LastAccessTime) {
1618       CrashFilePath.assign(File->path());
1619       LastAccessTime = FileAccessTime;
1620     }
1621   }
1622 
1623   // If found, copy it over to the location of other reproducer files.
1624   if (!CrashFilePath.empty()) {
1625     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1626     if (EC)
1627       return false;
1628     return true;
1629   }
1630 
1631   return false;
1632 }
1633 
1634 static const char BugReporMsg[] =
1635     "\n********************\n\n"
1636     "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1637     "Preprocessed source(s) and associated run script(s) are located at:";
1638 
1639 // When clang crashes, produce diagnostic information including the fully
1640 // preprocessed source file(s).  Request that the developer attach the
1641 // diagnostic information to a bug report.
1642 void Driver::generateCompilationDiagnostics(
1643     Compilation &C, const Command &FailingCommand,
1644     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1645   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1646     return;
1647 
1648   unsigned Level = 1;
1649   if (Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ)) {
1650     Level = llvm::StringSwitch<unsigned>(A->getValue())
1651                 .Case("off", 0)
1652                 .Case("compiler", 1)
1653                 .Case("all", 2)
1654                 .Default(1);
1655   }
1656   if (!Level)
1657     return;
1658 
1659   // Don't try to generate diagnostics for dsymutil jobs.
1660   if (FailingCommand.getCreator().isDsymutilJob())
1661     return;
1662 
1663   bool IsLLD = false;
1664   ArgStringList SavedTemps;
1665   if (FailingCommand.getCreator().isLinkJob()) {
1666     C.getDefaultToolChain().GetLinkerPath(&IsLLD);
1667     if (!IsLLD || Level < 2)
1668       return;
1669 
1670     // If lld crashed, we will re-run the same command with the input it used
1671     // to have. In that case we should not remove temp files in
1672     // initCompilationForDiagnostics yet. They will be added back and removed
1673     // later.
1674     SavedTemps = std::move(C.getTempFiles());
1675     assert(!C.getTempFiles().size());
1676   }
1677 
1678   // Print the version of the compiler.
1679   PrintVersion(C, llvm::errs());
1680 
1681   // Suppress driver output and emit preprocessor output to temp file.
1682   CCGenDiagnostics = true;
1683 
1684   // Save the original job command(s).
1685   Command Cmd = FailingCommand;
1686 
1687   // Keep track of whether we produce any errors while trying to produce
1688   // preprocessed sources.
1689   DiagnosticErrorTrap Trap(Diags);
1690 
1691   // Suppress tool output.
1692   C.initCompilationForDiagnostics();
1693 
1694   // If lld failed, rerun it again with --reproduce.
1695   if (IsLLD) {
1696     const char *TmpName = CreateTempFile(C, "linker-crash", "tar");
1697     Command NewLLDInvocation = Cmd;
1698     llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments();
1699     StringRef ReproduceOption =
1700         C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment()
1701             ? "/reproduce:"
1702             : "--reproduce=";
1703     ArgList.push_back(Saver.save(Twine(ReproduceOption) + TmpName).data());
1704     NewLLDInvocation.replaceArguments(std::move(ArgList));
1705 
1706     // Redirect stdout/stderr to /dev/null.
1707     NewLLDInvocation.Execute({std::nullopt, {""}, {""}}, nullptr, nullptr);
1708     Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1709     Diag(clang::diag::note_drv_command_failed_diag_msg) << TmpName;
1710     Diag(clang::diag::note_drv_command_failed_diag_msg)
1711         << "\n\n********************";
1712     if (Report)
1713       Report->TemporaryFiles.push_back(TmpName);
1714     return;
1715   }
1716 
1717   // Construct the list of inputs.
1718   InputList Inputs;
1719   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1720 
1721   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1722     bool IgnoreInput = false;
1723 
1724     // Ignore input from stdin or any inputs that cannot be preprocessed.
1725     // Check type first as not all linker inputs have a value.
1726     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1727       IgnoreInput = true;
1728     } else if (!strcmp(it->second->getValue(), "-")) {
1729       Diag(clang::diag::note_drv_command_failed_diag_msg)
1730           << "Error generating preprocessed source(s) - "
1731              "ignoring input from stdin.";
1732       IgnoreInput = true;
1733     }
1734 
1735     if (IgnoreInput) {
1736       it = Inputs.erase(it);
1737       ie = Inputs.end();
1738     } else {
1739       ++it;
1740     }
1741   }
1742 
1743   if (Inputs.empty()) {
1744     Diag(clang::diag::note_drv_command_failed_diag_msg)
1745         << "Error generating preprocessed source(s) - "
1746            "no preprocessable inputs.";
1747     return;
1748   }
1749 
1750   // Don't attempt to generate preprocessed files if multiple -arch options are
1751   // used, unless they're all duplicates.
1752   llvm::StringSet<> ArchNames;
1753   for (const Arg *A : C.getArgs()) {
1754     if (A->getOption().matches(options::OPT_arch)) {
1755       StringRef ArchName = A->getValue();
1756       ArchNames.insert(ArchName);
1757     }
1758   }
1759   if (ArchNames.size() > 1) {
1760     Diag(clang::diag::note_drv_command_failed_diag_msg)
1761         << "Error generating preprocessed source(s) - cannot generate "
1762            "preprocessed source with multiple -arch options.";
1763     return;
1764   }
1765 
1766   // Construct the list of abstract actions to perform for this compilation. On
1767   // Darwin OSes this uses the driver-driver and builds universal actions.
1768   const ToolChain &TC = C.getDefaultToolChain();
1769   if (TC.getTriple().isOSBinFormatMachO())
1770     BuildUniversalActions(C, TC, Inputs);
1771   else
1772     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1773 
1774   BuildJobs(C);
1775 
1776   // If there were errors building the compilation, quit now.
1777   if (Trap.hasErrorOccurred()) {
1778     Diag(clang::diag::note_drv_command_failed_diag_msg)
1779         << "Error generating preprocessed source(s).";
1780     return;
1781   }
1782 
1783   // Generate preprocessed output.
1784   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1785   C.ExecuteJobs(C.getJobs(), FailingCommands);
1786 
1787   // If any of the preprocessing commands failed, clean up and exit.
1788   if (!FailingCommands.empty()) {
1789     Diag(clang::diag::note_drv_command_failed_diag_msg)
1790         << "Error generating preprocessed source(s).";
1791     return;
1792   }
1793 
1794   const ArgStringList &TempFiles = C.getTempFiles();
1795   if (TempFiles.empty()) {
1796     Diag(clang::diag::note_drv_command_failed_diag_msg)
1797         << "Error generating preprocessed source(s).";
1798     return;
1799   }
1800 
1801   Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1802 
1803   SmallString<128> VFS;
1804   SmallString<128> ReproCrashFilename;
1805   for (const char *TempFile : TempFiles) {
1806     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1807     if (Report)
1808       Report->TemporaryFiles.push_back(TempFile);
1809     if (ReproCrashFilename.empty()) {
1810       ReproCrashFilename = TempFile;
1811       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1812     }
1813     if (StringRef(TempFile).ends_with(".cache")) {
1814       // In some cases (modules) we'll dump extra data to help with reproducing
1815       // the crash into a directory next to the output.
1816       VFS = llvm::sys::path::filename(TempFile);
1817       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1818     }
1819   }
1820 
1821   for (const char *TempFile : SavedTemps)
1822     C.addTempFile(TempFile);
1823 
1824   // Assume associated files are based off of the first temporary file.
1825   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1826 
1827   llvm::SmallString<128> Script(CrashInfo.Filename);
1828   llvm::sys::path::replace_extension(Script, "sh");
1829   std::error_code EC;
1830   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1831                                 llvm::sys::fs::FA_Write,
1832                                 llvm::sys::fs::OF_Text);
1833   if (EC) {
1834     Diag(clang::diag::note_drv_command_failed_diag_msg)
1835         << "Error generating run script: " << Script << " " << EC.message();
1836   } else {
1837     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1838              << "# Driver args: ";
1839     printArgList(ScriptOS, C.getInputArgs());
1840     ScriptOS << "# Original command: ";
1841     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1842     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1843     if (!AdditionalInformation.empty())
1844       ScriptOS << "\n# Additional information: " << AdditionalInformation
1845                << "\n";
1846     if (Report)
1847       Report->TemporaryFiles.push_back(std::string(Script));
1848     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1849   }
1850 
1851   // On darwin, provide information about the .crash diagnostic report.
1852   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1853     SmallString<128> CrashDiagDir;
1854     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1855       Diag(clang::diag::note_drv_command_failed_diag_msg)
1856           << ReproCrashFilename.str();
1857     } else { // Suggest a directory for the user to look for .crash files.
1858       llvm::sys::path::append(CrashDiagDir, Name);
1859       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1860       Diag(clang::diag::note_drv_command_failed_diag_msg)
1861           << "Crash backtrace is located in";
1862       Diag(clang::diag::note_drv_command_failed_diag_msg)
1863           << CrashDiagDir.str();
1864       Diag(clang::diag::note_drv_command_failed_diag_msg)
1865           << "(choose the .crash file that corresponds to your crash)";
1866     }
1867   }
1868 
1869   Diag(clang::diag::note_drv_command_failed_diag_msg)
1870       << "\n\n********************";
1871 }
1872 
1873 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1874   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1875   // capacity if the tool does not support response files, there is a chance/
1876   // that things will just work without a response file, so we silently just
1877   // skip it.
1878   if (Cmd.getResponseFileSupport().ResponseKind ==
1879           ResponseFileSupport::RF_None ||
1880       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1881                                                    Cmd.getArguments()))
1882     return;
1883 
1884   std::string TmpName = GetTemporaryPath("response", "txt");
1885   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1886 }
1887 
1888 int Driver::ExecuteCompilation(
1889     Compilation &C,
1890     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1891   if (C.getArgs().hasArg(options::OPT_fdriver_only)) {
1892     if (C.getArgs().hasArg(options::OPT_v))
1893       C.getJobs().Print(llvm::errs(), "\n", true);
1894 
1895     C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true);
1896 
1897     // If there were errors building the compilation, quit now.
1898     if (!FailingCommands.empty() || Diags.hasErrorOccurred())
1899       return 1;
1900 
1901     return 0;
1902   }
1903 
1904   // Just print if -### was present.
1905   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1906     C.getJobs().Print(llvm::errs(), "\n", true);
1907     return Diags.hasErrorOccurred() ? 1 : 0;
1908   }
1909 
1910   // If there were errors building the compilation, quit now.
1911   if (Diags.hasErrorOccurred())
1912     return 1;
1913 
1914   // Set up response file names for each command, if necessary.
1915   for (auto &Job : C.getJobs())
1916     setUpResponseFiles(C, Job);
1917 
1918   C.ExecuteJobs(C.getJobs(), FailingCommands);
1919 
1920   // If the command succeeded, we are done.
1921   if (FailingCommands.empty())
1922     return 0;
1923 
1924   // Otherwise, remove result files and print extra information about abnormal
1925   // failures.
1926   int Res = 0;
1927   for (const auto &CmdPair : FailingCommands) {
1928     int CommandRes = CmdPair.first;
1929     const Command *FailingCommand = CmdPair.second;
1930 
1931     // Remove result files if we're not saving temps.
1932     if (!isSaveTempsEnabled()) {
1933       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1934       C.CleanupFileMap(C.getResultFiles(), JA, true);
1935 
1936       // Failure result files are valid unless we crashed.
1937       if (CommandRes < 0)
1938         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1939     }
1940 
1941     // llvm/lib/Support/*/Signals.inc will exit with a special return code
1942     // for SIGPIPE. Do not print diagnostics for this case.
1943     if (CommandRes == EX_IOERR) {
1944       Res = CommandRes;
1945       continue;
1946     }
1947 
1948     // Print extra information about abnormal failures, if possible.
1949     //
1950     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1951     // status was 1, assume the command failed normally. In particular, if it
1952     // was the compiler then assume it gave a reasonable error code. Failures
1953     // in other tools are less common, and they generally have worse
1954     // diagnostics, so always print the diagnostic there.
1955     const Tool &FailingTool = FailingCommand->getCreator();
1956 
1957     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1958       // FIXME: See FIXME above regarding result code interpretation.
1959       if (CommandRes < 0)
1960         Diag(clang::diag::err_drv_command_signalled)
1961             << FailingTool.getShortName();
1962       else
1963         Diag(clang::diag::err_drv_command_failed)
1964             << FailingTool.getShortName() << CommandRes;
1965     }
1966   }
1967   return Res;
1968 }
1969 
1970 void Driver::PrintHelp(bool ShowHidden) const {
1971   llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask();
1972 
1973   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1974   getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1975                       ShowHidden, /*ShowAllAliases=*/false,
1976                       VisibilityMask);
1977 }
1978 
1979 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1980   if (IsFlangMode()) {
1981     OS << getClangToolFullVersion("flang-new") << '\n';
1982   } else {
1983     // FIXME: The following handlers should use a callback mechanism, we don't
1984     // know what the client would like to do.
1985     OS << getClangFullVersion() << '\n';
1986   }
1987   const ToolChain &TC = C.getDefaultToolChain();
1988   OS << "Target: " << TC.getTripleString() << '\n';
1989 
1990   // Print the threading model.
1991   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1992     // Don't print if the ToolChain would have barfed on it already
1993     if (TC.isThreadModelSupported(A->getValue()))
1994       OS << "Thread model: " << A->getValue();
1995   } else
1996     OS << "Thread model: " << TC.getThreadModel();
1997   OS << '\n';
1998 
1999   // Print out the install directory.
2000   OS << "InstalledDir: " << InstalledDir << '\n';
2001 
2002   // If configuration files were used, print their paths.
2003   for (auto ConfigFile : ConfigFiles)
2004     OS << "Configuration file: " << ConfigFile << '\n';
2005 }
2006 
2007 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
2008 /// option.
2009 static void PrintDiagnosticCategories(raw_ostream &OS) {
2010   // Skip the empty category.
2011   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
2012        ++i)
2013     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
2014 }
2015 
2016 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
2017   if (PassedFlags == "")
2018     return;
2019   // Print out all options that start with a given argument. This is used for
2020   // shell autocompletion.
2021   std::vector<std::string> SuggestedCompletions;
2022   std::vector<std::string> Flags;
2023 
2024   llvm::opt::Visibility VisibilityMask(options::ClangOption);
2025 
2026   // Make sure that Flang-only options don't pollute the Clang output
2027   // TODO: Make sure that Clang-only options don't pollute Flang output
2028   if (IsFlangMode())
2029     VisibilityMask = llvm::opt::Visibility(options::FlangOption);
2030 
2031   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
2032   // because the latter indicates that the user put space before pushing tab
2033   // which should end up in a file completion.
2034   const bool HasSpace = PassedFlags.ends_with(",");
2035 
2036   // Parse PassedFlags by "," as all the command-line flags are passed to this
2037   // function separated by ","
2038   StringRef TargetFlags = PassedFlags;
2039   while (TargetFlags != "") {
2040     StringRef CurFlag;
2041     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
2042     Flags.push_back(std::string(CurFlag));
2043   }
2044 
2045   // We want to show cc1-only options only when clang is invoked with -cc1 or
2046   // -Xclang.
2047   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
2048     VisibilityMask = llvm::opt::Visibility(options::CC1Option);
2049 
2050   const llvm::opt::OptTable &Opts = getOpts();
2051   StringRef Cur;
2052   Cur = Flags.at(Flags.size() - 1);
2053   StringRef Prev;
2054   if (Flags.size() >= 2) {
2055     Prev = Flags.at(Flags.size() - 2);
2056     SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
2057   }
2058 
2059   if (SuggestedCompletions.empty())
2060     SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
2061 
2062   // If Flags were empty, it means the user typed `clang [tab]` where we should
2063   // list all possible flags. If there was no value completion and the user
2064   // pressed tab after a space, we should fall back to a file completion.
2065   // We're printing a newline to be consistent with what we print at the end of
2066   // this function.
2067   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
2068     llvm::outs() << '\n';
2069     return;
2070   }
2071 
2072   // When flag ends with '=' and there was no value completion, return empty
2073   // string and fall back to the file autocompletion.
2074   if (SuggestedCompletions.empty() && !Cur.ends_with("=")) {
2075     // If the flag is in the form of "--autocomplete=-foo",
2076     // we were requested to print out all option names that start with "-foo".
2077     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
2078     SuggestedCompletions = Opts.findByPrefix(
2079         Cur, VisibilityMask,
2080         /*DisableFlags=*/options::Unsupported | options::Ignored);
2081 
2082     // We have to query the -W flags manually as they're not in the OptTable.
2083     // TODO: Find a good way to add them to OptTable instead and them remove
2084     // this code.
2085     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
2086       if (S.starts_with(Cur))
2087         SuggestedCompletions.push_back(std::string(S));
2088   }
2089 
2090   // Sort the autocomplete candidates so that shells print them out in a
2091   // deterministic order. We could sort in any way, but we chose
2092   // case-insensitive sorting for consistency with the -help option
2093   // which prints out options in the case-insensitive alphabetical order.
2094   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
2095     if (int X = A.compare_insensitive(B))
2096       return X < 0;
2097     return A.compare(B) > 0;
2098   });
2099 
2100   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
2101 }
2102 
2103 bool Driver::HandleImmediateArgs(const Compilation &C) {
2104   // The order these options are handled in gcc is all over the place, but we
2105   // don't expect inconsistencies w.r.t. that to matter in practice.
2106 
2107   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
2108     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
2109     return false;
2110   }
2111 
2112   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
2113     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
2114     // return an answer which matches our definition of __VERSION__.
2115     llvm::outs() << CLANG_VERSION_STRING << "\n";
2116     return false;
2117   }
2118 
2119   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
2120     PrintDiagnosticCategories(llvm::outs());
2121     return false;
2122   }
2123 
2124   if (C.getArgs().hasArg(options::OPT_help) ||
2125       C.getArgs().hasArg(options::OPT__help_hidden)) {
2126     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
2127     return false;
2128   }
2129 
2130   if (C.getArgs().hasArg(options::OPT__version)) {
2131     // Follow gcc behavior and use stdout for --version and stderr for -v.
2132     PrintVersion(C, llvm::outs());
2133     return false;
2134   }
2135 
2136   if (C.getArgs().hasArg(options::OPT_v) ||
2137       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
2138       C.getArgs().hasArg(options::OPT_print_supported_cpus) ||
2139       C.getArgs().hasArg(options::OPT_print_supported_extensions)) {
2140     PrintVersion(C, llvm::errs());
2141     SuppressMissingInputWarning = true;
2142   }
2143 
2144   if (C.getArgs().hasArg(options::OPT_v)) {
2145     if (!SystemConfigDir.empty())
2146       llvm::errs() << "System configuration file directory: "
2147                    << SystemConfigDir << "\n";
2148     if (!UserConfigDir.empty())
2149       llvm::errs() << "User configuration file directory: "
2150                    << UserConfigDir << "\n";
2151   }
2152 
2153   const ToolChain &TC = C.getDefaultToolChain();
2154 
2155   if (C.getArgs().hasArg(options::OPT_v))
2156     TC.printVerboseInfo(llvm::errs());
2157 
2158   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
2159     llvm::outs() << ResourceDir << '\n';
2160     return false;
2161   }
2162 
2163   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
2164     llvm::outs() << "programs: =";
2165     bool separator = false;
2166     // Print -B and COMPILER_PATH.
2167     for (const std::string &Path : PrefixDirs) {
2168       if (separator)
2169         llvm::outs() << llvm::sys::EnvPathSeparator;
2170       llvm::outs() << Path;
2171       separator = true;
2172     }
2173     for (const std::string &Path : TC.getProgramPaths()) {
2174       if (separator)
2175         llvm::outs() << llvm::sys::EnvPathSeparator;
2176       llvm::outs() << Path;
2177       separator = true;
2178     }
2179     llvm::outs() << "\n";
2180     llvm::outs() << "libraries: =" << ResourceDir;
2181 
2182     StringRef sysroot = C.getSysRoot();
2183 
2184     for (const std::string &Path : TC.getFilePaths()) {
2185       // Always print a separator. ResourceDir was the first item shown.
2186       llvm::outs() << llvm::sys::EnvPathSeparator;
2187       // Interpretation of leading '=' is needed only for NetBSD.
2188       if (Path[0] == '=')
2189         llvm::outs() << sysroot << Path.substr(1);
2190       else
2191         llvm::outs() << Path;
2192     }
2193     llvm::outs() << "\n";
2194     return false;
2195   }
2196 
2197   if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
2198     if (std::optional<std::string> RuntimePath = TC.getRuntimePath())
2199       llvm::outs() << *RuntimePath << '\n';
2200     else
2201       llvm::outs() << TC.getCompilerRTPath() << '\n';
2202     return false;
2203   }
2204 
2205   if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) {
2206     std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags();
2207     for (std::size_t I = 0; I != Flags.size(); I += 2)
2208       llvm::outs() << "  " << Flags[I] << "\n  " << Flags[I + 1] << "\n\n";
2209     return false;
2210   }
2211 
2212   // FIXME: The following handlers should use a callback mechanism, we don't
2213   // know what the client would like to do.
2214   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
2215     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
2216     return false;
2217   }
2218 
2219   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
2220     StringRef ProgName = A->getValue();
2221 
2222     // Null program name cannot have a path.
2223     if (! ProgName.empty())
2224       llvm::outs() << GetProgramPath(ProgName, TC);
2225 
2226     llvm::outs() << "\n";
2227     return false;
2228   }
2229 
2230   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
2231     StringRef PassedFlags = A->getValue();
2232     HandleAutocompletions(PassedFlags);
2233     return false;
2234   }
2235 
2236   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
2237     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
2238     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2239     RegisterEffectiveTriple TripleRAII(TC, Triple);
2240     switch (RLT) {
2241     case ToolChain::RLT_CompilerRT:
2242       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
2243       break;
2244     case ToolChain::RLT_Libgcc:
2245       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
2246       break;
2247     }
2248     return false;
2249   }
2250 
2251   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
2252     for (const Multilib &Multilib : TC.getMultilibs())
2253       llvm::outs() << Multilib << "\n";
2254     return false;
2255   }
2256 
2257   if (C.getArgs().hasArg(options::OPT_print_multi_flags)) {
2258     Multilib::flags_list ArgFlags = TC.getMultilibFlags(C.getArgs());
2259     llvm::StringSet<> ExpandedFlags = TC.getMultilibs().expandFlags(ArgFlags);
2260     std::set<llvm::StringRef> SortedFlags;
2261     for (const auto &FlagEntry : ExpandedFlags)
2262       SortedFlags.insert(FlagEntry.getKey());
2263     for (auto Flag : SortedFlags)
2264       llvm::outs() << Flag << '\n';
2265     return false;
2266   }
2267 
2268   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
2269     for (const Multilib &Multilib : TC.getSelectedMultilibs()) {
2270       if (Multilib.gccSuffix().empty())
2271         llvm::outs() << ".\n";
2272       else {
2273         StringRef Suffix(Multilib.gccSuffix());
2274         assert(Suffix.front() == '/');
2275         llvm::outs() << Suffix.substr(1) << "\n";
2276       }
2277     }
2278     return false;
2279   }
2280 
2281   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
2282     llvm::outs() << TC.getTripleString() << "\n";
2283     return false;
2284   }
2285 
2286   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
2287     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2288     llvm::outs() << Triple.getTriple() << "\n";
2289     return false;
2290   }
2291 
2292   if (C.getArgs().hasArg(options::OPT_print_targets)) {
2293     llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2294     return false;
2295   }
2296 
2297   return true;
2298 }
2299 
2300 enum {
2301   TopLevelAction = 0,
2302   HeadSibAction = 1,
2303   OtherSibAction = 2,
2304 };
2305 
2306 // Display an action graph human-readably.  Action A is the "sink" node
2307 // and latest-occuring action. Traversal is in pre-order, visiting the
2308 // inputs to each action before printing the action itself.
2309 static unsigned PrintActions1(const Compilation &C, Action *A,
2310                               std::map<Action *, unsigned> &Ids,
2311                               Twine Indent = {}, int Kind = TopLevelAction) {
2312   if (Ids.count(A)) // A was already visited.
2313     return Ids[A];
2314 
2315   std::string str;
2316   llvm::raw_string_ostream os(str);
2317 
2318   auto getSibIndent = [](int K) -> Twine {
2319     return (K == HeadSibAction) ? "   " : (K == OtherSibAction) ? "|  " : "";
2320   };
2321 
2322   Twine SibIndent = Indent + getSibIndent(Kind);
2323   int SibKind = HeadSibAction;
2324   os << Action::getClassName(A->getKind()) << ", ";
2325   if (InputAction *IA = dyn_cast<InputAction>(A)) {
2326     os << "\"" << IA->getInputArg().getValue() << "\"";
2327   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2328     os << '"' << BIA->getArchName() << '"' << ", {"
2329        << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2330   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2331     bool IsFirst = true;
2332     OA->doOnEachDependence(
2333         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2334           assert(TC && "Unknown host toolchain");
2335           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2336           // sm_35 this will generate:
2337           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2338           // (nvptx64-nvidia-cuda:sm_35) {#ID}
2339           if (!IsFirst)
2340             os << ", ";
2341           os << '"';
2342           os << A->getOffloadingKindPrefix();
2343           os << " (";
2344           os << TC->getTriple().normalize();
2345           if (BoundArch)
2346             os << ":" << BoundArch;
2347           os << ")";
2348           os << '"';
2349           os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2350           IsFirst = false;
2351           SibKind = OtherSibAction;
2352         });
2353   } else {
2354     const ActionList *AL = &A->getInputs();
2355 
2356     if (AL->size()) {
2357       const char *Prefix = "{";
2358       for (Action *PreRequisite : *AL) {
2359         os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2360         Prefix = ", ";
2361         SibKind = OtherSibAction;
2362       }
2363       os << "}";
2364     } else
2365       os << "{}";
2366   }
2367 
2368   // Append offload info for all options other than the offloading action
2369   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2370   std::string offload_str;
2371   llvm::raw_string_ostream offload_os(offload_str);
2372   if (!isa<OffloadAction>(A)) {
2373     auto S = A->getOffloadingKindPrefix();
2374     if (!S.empty()) {
2375       offload_os << ", (" << S;
2376       if (A->getOffloadingArch())
2377         offload_os << ", " << A->getOffloadingArch();
2378       offload_os << ")";
2379     }
2380   }
2381 
2382   auto getSelfIndent = [](int K) -> Twine {
2383     return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2384   };
2385 
2386   unsigned Id = Ids.size();
2387   Ids[A] = Id;
2388   llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2389                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2390 
2391   return Id;
2392 }
2393 
2394 // Print the action graphs in a compilation C.
2395 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
2396 void Driver::PrintActions(const Compilation &C) const {
2397   std::map<Action *, unsigned> Ids;
2398   for (Action *A : C.getActions())
2399     PrintActions1(C, A, Ids);
2400 }
2401 
2402 /// Check whether the given input tree contains any compilation or
2403 /// assembly actions.
2404 static bool ContainsCompileOrAssembleAction(const Action *A) {
2405   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2406       isa<AssembleJobAction>(A))
2407     return true;
2408 
2409   return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2410 }
2411 
2412 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2413                                    const InputList &BAInputs) const {
2414   DerivedArgList &Args = C.getArgs();
2415   ActionList &Actions = C.getActions();
2416   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2417   // Collect the list of architectures. Duplicates are allowed, but should only
2418   // be handled once (in the order seen).
2419   llvm::StringSet<> ArchNames;
2420   SmallVector<const char *, 4> Archs;
2421   for (Arg *A : Args) {
2422     if (A->getOption().matches(options::OPT_arch)) {
2423       // Validate the option here; we don't save the type here because its
2424       // particular spelling may participate in other driver choices.
2425       llvm::Triple::ArchType Arch =
2426           tools::darwin::getArchTypeForMachOArchName(A->getValue());
2427       if (Arch == llvm::Triple::UnknownArch) {
2428         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2429         continue;
2430       }
2431 
2432       A->claim();
2433       if (ArchNames.insert(A->getValue()).second)
2434         Archs.push_back(A->getValue());
2435     }
2436   }
2437 
2438   // When there is no explicit arch for this platform, make sure we still bind
2439   // the architecture (to the default) so that -Xarch_ is handled correctly.
2440   if (!Archs.size())
2441     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2442 
2443   ActionList SingleActions;
2444   BuildActions(C, Args, BAInputs, SingleActions);
2445 
2446   // Add in arch bindings for every top level action, as well as lipo and
2447   // dsymutil steps if needed.
2448   for (Action* Act : SingleActions) {
2449     // Make sure we can lipo this kind of output. If not (and it is an actual
2450     // output) then we disallow, since we can't create an output file with the
2451     // right name without overwriting it. We could remove this oddity by just
2452     // changing the output names to include the arch, which would also fix
2453     // -save-temps. Compatibility wins for now.
2454 
2455     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2456       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2457           << types::getTypeName(Act->getType());
2458 
2459     ActionList Inputs;
2460     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2461       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2462 
2463     // Lipo if necessary, we do it this way because we need to set the arch flag
2464     // so that -Xarch_ gets overwritten.
2465     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2466       Actions.append(Inputs.begin(), Inputs.end());
2467     else
2468       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2469 
2470     // Handle debug info queries.
2471     Arg *A = Args.getLastArg(options::OPT_g_Group);
2472     bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2473                             !A->getOption().matches(options::OPT_gstabs);
2474     if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2475         ContainsCompileOrAssembleAction(Actions.back())) {
2476 
2477       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2478       // have a compile input. We need to run 'dsymutil' ourselves in such cases
2479       // because the debug info will refer to a temporary object file which
2480       // will be removed at the end of the compilation process.
2481       if (Act->getType() == types::TY_Image) {
2482         ActionList Inputs;
2483         Inputs.push_back(Actions.back());
2484         Actions.pop_back();
2485         Actions.push_back(
2486             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2487       }
2488 
2489       // Verify the debug info output.
2490       if (Args.hasArg(options::OPT_verify_debug_info)) {
2491         Action* LastAction = Actions.back();
2492         Actions.pop_back();
2493         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2494             LastAction, types::TY_Nothing));
2495       }
2496     }
2497   }
2498 }
2499 
2500 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2501                                     types::ID Ty, bool TypoCorrect) const {
2502   if (!getCheckInputsExist())
2503     return true;
2504 
2505   // stdin always exists.
2506   if (Value == "-")
2507     return true;
2508 
2509   // If it's a header to be found in the system or user search path, then defer
2510   // complaints about its absence until those searches can be done.  When we
2511   // are definitely processing headers for C++20 header units, extend this to
2512   // allow the user to put "-fmodule-header -xc++-header vector" for example.
2513   if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2514       (ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2515     return true;
2516 
2517   if (getVFS().exists(Value))
2518     return true;
2519 
2520   if (TypoCorrect) {
2521     // Check if the filename is a typo for an option flag. OptTable thinks
2522     // that all args that are not known options and that start with / are
2523     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2524     // the option `/diagnostics:caret` than a reference to a file in the root
2525     // directory.
2526     std::string Nearest;
2527     if (getOpts().findNearest(Value, Nearest, getOptionVisibilityMask()) <= 1) {
2528       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2529           << Value << Nearest;
2530       return false;
2531     }
2532   }
2533 
2534   // In CL mode, don't error on apparently non-existent linker inputs, because
2535   // they can be influenced by linker flags the clang driver might not
2536   // understand.
2537   // Examples:
2538   // - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver
2539   //   module look for an MSVC installation in the registry. (We could ask
2540   //   the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2541   //   look in the registry might move into lld-link in the future so that
2542   //   lld-link invocations in non-MSVC shells just work too.)
2543   // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2544   //   including /libpath:, which is used to find .lib and .obj files.
2545   // So do not diagnose this on the driver level. Rely on the linker diagnosing
2546   // it. (If we don't end up invoking the linker, this means we'll emit a
2547   // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2548   // of an error.)
2549   //
2550   // Only do this skip after the typo correction step above. `/Brepo` is treated
2551   // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2552   // an error if we have a flag that's within an edit distance of 1 from a
2553   // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2554   // driver in the unlikely case they run into this.)
2555   //
2556   // Don't do this for inputs that start with a '/', else we'd pass options
2557   // like /libpath: through to the linker silently.
2558   //
2559   // Emitting an error for linker inputs can also cause incorrect diagnostics
2560   // with the gcc driver. The command
2561   //     clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2562   // will make lld look for some/dir/file.o, while we will diagnose here that
2563   // `/file.o` does not exist. However, configure scripts check if
2564   // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2565   // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2566   // in cc mode. (We can in cl mode because cl.exe itself only warns on
2567   // unknown flags.)
2568   if (IsCLMode() && Ty == types::TY_Object && !Value.starts_with("/"))
2569     return true;
2570 
2571   Diag(clang::diag::err_drv_no_such_file) << Value;
2572   return false;
2573 }
2574 
2575 // Get the C++20 Header Unit type corresponding to the input type.
2576 static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) {
2577   switch (HM) {
2578   case HeaderMode_User:
2579     return types::TY_CXXUHeader;
2580   case HeaderMode_System:
2581     return types::TY_CXXSHeader;
2582   case HeaderMode_Default:
2583     break;
2584   case HeaderMode_None:
2585     llvm_unreachable("should not be called in this case");
2586   }
2587   return types::TY_CXXHUHeader;
2588 }
2589 
2590 // Construct a the list of inputs and their types.
2591 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2592                          InputList &Inputs) const {
2593   const llvm::opt::OptTable &Opts = getOpts();
2594   // Track the current user specified (-x) input. We also explicitly track the
2595   // argument used to set the type; we only want to claim the type when we
2596   // actually use it, so we warn about unused -x arguments.
2597   types::ID InputType = types::TY_Nothing;
2598   Arg *InputTypeArg = nullptr;
2599 
2600   // The last /TC or /TP option sets the input type to C or C++ globally.
2601   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2602                                          options::OPT__SLASH_TP)) {
2603     InputTypeArg = TCTP;
2604     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2605                     ? types::TY_C
2606                     : types::TY_CXX;
2607 
2608     Arg *Previous = nullptr;
2609     bool ShowNote = false;
2610     for (Arg *A :
2611          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2612       if (Previous) {
2613         Diag(clang::diag::warn_drv_overriding_option)
2614             << Previous->getSpelling() << A->getSpelling();
2615         ShowNote = true;
2616       }
2617       Previous = A;
2618     }
2619     if (ShowNote)
2620       Diag(clang::diag::note_drv_t_option_is_global);
2621   }
2622 
2623   // CUDA/HIP and their preprocessor expansions can be accepted by CL mode.
2624   // Warn -x after last input file has no effect
2625   auto LastXArg = Args.getLastArgValue(options::OPT_x);
2626   const llvm::StringSet<> ValidXArgs = {"cuda", "hip", "cui", "hipi"};
2627   if (!IsCLMode() || ValidXArgs.contains(LastXArg)) {
2628     Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2629     Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2630     if (LastXArg && LastInputArg &&
2631         LastInputArg->getIndex() < LastXArg->getIndex())
2632       Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2633   } else {
2634     // In CL mode suggest /TC or /TP since -x doesn't make sense if passed via
2635     // /clang:.
2636     if (auto *A = Args.getLastArg(options::OPT_x))
2637       Diag(diag::err_drv_unsupported_opt_with_suggestion)
2638           << A->getAsString(Args) << "/TC' or '/TP";
2639   }
2640 
2641   for (Arg *A : Args) {
2642     if (A->getOption().getKind() == Option::InputClass) {
2643       const char *Value = A->getValue();
2644       types::ID Ty = types::TY_INVALID;
2645 
2646       // Infer the input type if necessary.
2647       if (InputType == types::TY_Nothing) {
2648         // If there was an explicit arg for this, claim it.
2649         if (InputTypeArg)
2650           InputTypeArg->claim();
2651 
2652         // stdin must be handled specially.
2653         if (memcmp(Value, "-", 2) == 0) {
2654           if (IsFlangMode()) {
2655             Ty = types::TY_Fortran;
2656           } else if (IsDXCMode()) {
2657             Ty = types::TY_HLSL;
2658           } else {
2659             // If running with -E, treat as a C input (this changes the
2660             // builtin macros, for example). This may be overridden by -ObjC
2661             // below.
2662             //
2663             // Otherwise emit an error but still use a valid type to avoid
2664             // spurious errors (e.g., no inputs).
2665             assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2666             if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2667               Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2668                               : clang::diag::err_drv_unknown_stdin_type);
2669             Ty = types::TY_C;
2670           }
2671         } else {
2672           // Otherwise lookup by extension.
2673           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2674           // clang-cl /E, or Object otherwise.
2675           // We use a host hook here because Darwin at least has its own
2676           // idea of what .s is.
2677           if (const char *Ext = strrchr(Value, '.'))
2678             Ty = TC.LookupTypeForExtension(Ext + 1);
2679 
2680           if (Ty == types::TY_INVALID) {
2681             if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2682               Ty = types::TY_CXX;
2683             else if (CCCIsCPP() || CCGenDiagnostics)
2684               Ty = types::TY_C;
2685             else
2686               Ty = types::TY_Object;
2687           }
2688 
2689           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2690           // should autodetect some input files as C++ for g++ compatibility.
2691           if (CCCIsCXX()) {
2692             types::ID OldTy = Ty;
2693             Ty = types::lookupCXXTypeForCType(Ty);
2694 
2695             // Do not complain about foo.h, when we are known to be processing
2696             // it as a C++20 header unit.
2697             if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
2698               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2699                   << getTypeName(OldTy) << getTypeName(Ty);
2700           }
2701 
2702           // If running with -fthinlto-index=, extensions that normally identify
2703           // native object files actually identify LLVM bitcode files.
2704           if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2705               Ty == types::TY_Object)
2706             Ty = types::TY_LLVM_BC;
2707         }
2708 
2709         // -ObjC and -ObjC++ override the default language, but only for "source
2710         // files". We just treat everything that isn't a linker input as a
2711         // source file.
2712         //
2713         // FIXME: Clean this up if we move the phase sequence into the type.
2714         if (Ty != types::TY_Object) {
2715           if (Args.hasArg(options::OPT_ObjC))
2716             Ty = types::TY_ObjC;
2717           else if (Args.hasArg(options::OPT_ObjCXX))
2718             Ty = types::TY_ObjCXX;
2719         }
2720 
2721         // Disambiguate headers that are meant to be header units from those
2722         // intended to be PCH.  Avoid missing '.h' cases that are counted as
2723         // C headers by default - we know we are in C++ mode and we do not
2724         // want to issue a complaint about compiling things in the wrong mode.
2725         if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
2726             hasHeaderMode())
2727           Ty = CXXHeaderUnitType(CXX20HeaderType);
2728       } else {
2729         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2730         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2731           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2732           // object files.
2733           const char *Ext = strrchr(Value, '.');
2734           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2735             Ty = types::TY_Object;
2736         }
2737         if (Ty == types::TY_INVALID) {
2738           Ty = InputType;
2739           InputTypeArg->claim();
2740         }
2741       }
2742 
2743       if ((Ty == types::TY_C || Ty == types::TY_CXX) &&
2744           Args.hasArgNoClaim(options::OPT_hipstdpar))
2745         Ty = types::TY_HIP;
2746 
2747       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2748         Inputs.push_back(std::make_pair(Ty, A));
2749 
2750     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2751       StringRef Value = A->getValue();
2752       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2753                                  /*TypoCorrect=*/false)) {
2754         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2755         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2756       }
2757       A->claim();
2758     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2759       StringRef Value = A->getValue();
2760       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2761                                  /*TypoCorrect=*/false)) {
2762         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2763         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2764       }
2765       A->claim();
2766     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2767       // Just treat as object type, we could make a special type for this if
2768       // necessary.
2769       Inputs.push_back(std::make_pair(types::TY_Object, A));
2770 
2771     } else if (A->getOption().matches(options::OPT_x)) {
2772       InputTypeArg = A;
2773       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2774       A->claim();
2775 
2776       // Follow gcc behavior and treat as linker input for invalid -x
2777       // options. Its not clear why we shouldn't just revert to unknown; but
2778       // this isn't very important, we might as well be bug compatible.
2779       if (!InputType) {
2780         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2781         InputType = types::TY_Object;
2782       }
2783 
2784       // If the user has put -fmodule-header{,=} then we treat C++ headers as
2785       // header unit inputs.  So we 'promote' -xc++-header appropriately.
2786       if (InputType == types::TY_CXXHeader && hasHeaderMode())
2787         InputType = CXXHeaderUnitType(CXX20HeaderType);
2788     } else if (A->getOption().getID() == options::OPT_U) {
2789       assert(A->getNumValues() == 1 && "The /U option has one value.");
2790       StringRef Val = A->getValue(0);
2791       if (Val.find_first_of("/\\") != StringRef::npos) {
2792         // Warn about e.g. "/Users/me/myfile.c".
2793         Diag(diag::warn_slash_u_filename) << Val;
2794         Diag(diag::note_use_dashdash);
2795       }
2796     }
2797   }
2798   if (CCCIsCPP() && Inputs.empty()) {
2799     // If called as standalone preprocessor, stdin is processed
2800     // if no other input is present.
2801     Arg *A = MakeInputArg(Args, Opts, "-");
2802     Inputs.push_back(std::make_pair(types::TY_C, A));
2803   }
2804 }
2805 
2806 namespace {
2807 /// Provides a convenient interface for different programming models to generate
2808 /// the required device actions.
2809 class OffloadingActionBuilder final {
2810   /// Flag used to trace errors in the builder.
2811   bool IsValid = false;
2812 
2813   /// The compilation that is using this builder.
2814   Compilation &C;
2815 
2816   /// Map between an input argument and the offload kinds used to process it.
2817   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2818 
2819   /// Map between a host action and its originating input argument.
2820   std::map<Action *, const Arg *> HostActionToInputArgMap;
2821 
2822   /// Builder interface. It doesn't build anything or keep any state.
2823   class DeviceActionBuilder {
2824   public:
2825     typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2826 
2827     enum ActionBuilderReturnCode {
2828       // The builder acted successfully on the current action.
2829       ABRT_Success,
2830       // The builder didn't have to act on the current action.
2831       ABRT_Inactive,
2832       // The builder was successful and requested the host action to not be
2833       // generated.
2834       ABRT_Ignore_Host,
2835     };
2836 
2837   protected:
2838     /// Compilation associated with this builder.
2839     Compilation &C;
2840 
2841     /// Tool chains associated with this builder. The same programming
2842     /// model may have associated one or more tool chains.
2843     SmallVector<const ToolChain *, 2> ToolChains;
2844 
2845     /// The derived arguments associated with this builder.
2846     DerivedArgList &Args;
2847 
2848     /// The inputs associated with this builder.
2849     const Driver::InputList &Inputs;
2850 
2851     /// The associated offload kind.
2852     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2853 
2854   public:
2855     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2856                         const Driver::InputList &Inputs,
2857                         Action::OffloadKind AssociatedOffloadKind)
2858         : C(C), Args(Args), Inputs(Inputs),
2859           AssociatedOffloadKind(AssociatedOffloadKind) {}
2860     virtual ~DeviceActionBuilder() {}
2861 
2862     /// Fill up the array \a DA with all the device dependences that should be
2863     /// added to the provided host action \a HostAction. By default it is
2864     /// inactive.
2865     virtual ActionBuilderReturnCode
2866     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2867                          phases::ID CurPhase, phases::ID FinalPhase,
2868                          PhasesTy &Phases) {
2869       return ABRT_Inactive;
2870     }
2871 
2872     /// Update the state to include the provided host action \a HostAction as a
2873     /// dependency of the current device action. By default it is inactive.
2874     virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) {
2875       return ABRT_Inactive;
2876     }
2877 
2878     /// Append top level actions generated by the builder.
2879     virtual void appendTopLevelActions(ActionList &AL) {}
2880 
2881     /// Append linker device actions generated by the builder.
2882     virtual void appendLinkDeviceActions(ActionList &AL) {}
2883 
2884     /// Append linker host action generated by the builder.
2885     virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2886 
2887     /// Append linker actions generated by the builder.
2888     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2889 
2890     /// Initialize the builder. Return true if any initialization errors are
2891     /// found.
2892     virtual bool initialize() { return false; }
2893 
2894     /// Return true if the builder can use bundling/unbundling.
2895     virtual bool canUseBundlerUnbundler() const { return false; }
2896 
2897     /// Return true if this builder is valid. We have a valid builder if we have
2898     /// associated device tool chains.
2899     bool isValid() { return !ToolChains.empty(); }
2900 
2901     /// Return the associated offload kind.
2902     Action::OffloadKind getAssociatedOffloadKind() {
2903       return AssociatedOffloadKind;
2904     }
2905   };
2906 
2907   /// Base class for CUDA/HIP action builder. It injects device code in
2908   /// the host backend action.
2909   class CudaActionBuilderBase : public DeviceActionBuilder {
2910   protected:
2911     /// Flags to signal if the user requested host-only or device-only
2912     /// compilation.
2913     bool CompileHostOnly = false;
2914     bool CompileDeviceOnly = false;
2915     bool EmitLLVM = false;
2916     bool EmitAsm = false;
2917 
2918     /// ID to identify each device compilation. For CUDA it is simply the
2919     /// GPU arch string. For HIP it is either the GPU arch string or GPU
2920     /// arch string plus feature strings delimited by a plus sign, e.g.
2921     /// gfx906+xnack.
2922     struct TargetID {
2923       /// Target ID string which is persistent throughout the compilation.
2924       const char *ID;
2925       TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
2926       TargetID(const char *ID) : ID(ID) {}
2927       operator const char *() { return ID; }
2928       operator StringRef() { return StringRef(ID); }
2929     };
2930     /// List of GPU architectures to use in this compilation.
2931     SmallVector<TargetID, 4> GpuArchList;
2932 
2933     /// The CUDA actions for the current input.
2934     ActionList CudaDeviceActions;
2935 
2936     /// The CUDA fat binary if it was generated for the current input.
2937     Action *CudaFatBinary = nullptr;
2938 
2939     /// Flag that is set to true if this builder acted on the current input.
2940     bool IsActive = false;
2941 
2942     /// Flag for -fgpu-rdc.
2943     bool Relocatable = false;
2944 
2945     /// Default GPU architecture if there's no one specified.
2946     CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2947 
2948     /// Method to generate compilation unit ID specified by option
2949     /// '-fuse-cuid='.
2950     enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2951     UseCUIDKind UseCUID = CUID_Hash;
2952 
2953     /// Compilation unit ID specified by option '-cuid='.
2954     StringRef FixedCUID;
2955 
2956   public:
2957     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2958                           const Driver::InputList &Inputs,
2959                           Action::OffloadKind OFKind)
2960         : DeviceActionBuilder(C, Args, Inputs, OFKind) {
2961 
2962       CompileDeviceOnly = C.getDriver().offloadDeviceOnly();
2963       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2964                                  options::OPT_fno_gpu_rdc, /*Default=*/false);
2965     }
2966 
2967     ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override {
2968       // While generating code for CUDA, we only depend on the host input action
2969       // to trigger the creation of all the CUDA device actions.
2970 
2971       // If we are dealing with an input action, replicate it for each GPU
2972       // architecture. If we are in host-only mode we return 'success' so that
2973       // the host uses the CUDA offload kind.
2974       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2975         assert(!GpuArchList.empty() &&
2976                "We should have at least one GPU architecture.");
2977 
2978         // If the host input is not CUDA or HIP, we don't need to bother about
2979         // this input.
2980         if (!(IA->getType() == types::TY_CUDA ||
2981               IA->getType() == types::TY_HIP ||
2982               IA->getType() == types::TY_PP_HIP)) {
2983           // The builder will ignore this input.
2984           IsActive = false;
2985           return ABRT_Inactive;
2986         }
2987 
2988         // Set the flag to true, so that the builder acts on the current input.
2989         IsActive = true;
2990 
2991         if (CompileHostOnly)
2992           return ABRT_Success;
2993 
2994         // Replicate inputs for each GPU architecture.
2995         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2996                                                  : types::TY_CUDA_DEVICE;
2997         std::string CUID = FixedCUID.str();
2998         if (CUID.empty()) {
2999           if (UseCUID == CUID_Random)
3000             CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
3001                                    /*LowerCase=*/true);
3002           else if (UseCUID == CUID_Hash) {
3003             llvm::MD5 Hasher;
3004             llvm::MD5::MD5Result Hash;
3005             SmallString<256> RealPath;
3006             llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
3007                                      /*expand_tilde=*/true);
3008             Hasher.update(RealPath);
3009             for (auto *A : Args) {
3010               if (A->getOption().matches(options::OPT_INPUT))
3011                 continue;
3012               Hasher.update(A->getAsString(Args));
3013             }
3014             Hasher.final(Hash);
3015             CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
3016           }
3017         }
3018         IA->setId(CUID);
3019 
3020         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3021           CudaDeviceActions.push_back(
3022               C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
3023         }
3024 
3025         return ABRT_Success;
3026       }
3027 
3028       // If this is an unbundling action use it as is for each CUDA toolchain.
3029       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3030 
3031         // If -fgpu-rdc is disabled, should not unbundle since there is no
3032         // device code to link.
3033         if (UA->getType() == types::TY_Object && !Relocatable)
3034           return ABRT_Inactive;
3035 
3036         CudaDeviceActions.clear();
3037         auto *IA = cast<InputAction>(UA->getInputs().back());
3038         std::string FileName = IA->getInputArg().getAsString(Args);
3039         // Check if the type of the file is the same as the action. Do not
3040         // unbundle it if it is not. Do not unbundle .so files, for example,
3041         // which are not object files. Files with extension ".lib" is classified
3042         // as TY_Object but they are actually archives, therefore should not be
3043         // unbundled here as objects. They will be handled at other places.
3044         const StringRef LibFileExt = ".lib";
3045         if (IA->getType() == types::TY_Object &&
3046             (!llvm::sys::path::has_extension(FileName) ||
3047              types::lookupTypeForExtension(
3048                  llvm::sys::path::extension(FileName).drop_front()) !=
3049                  types::TY_Object ||
3050              llvm::sys::path::extension(FileName) == LibFileExt))
3051           return ABRT_Inactive;
3052 
3053         for (auto Arch : GpuArchList) {
3054           CudaDeviceActions.push_back(UA);
3055           UA->registerDependentActionInfo(ToolChains[0], Arch,
3056                                           AssociatedOffloadKind);
3057         }
3058         IsActive = true;
3059         return ABRT_Success;
3060       }
3061 
3062       return IsActive ? ABRT_Success : ABRT_Inactive;
3063     }
3064 
3065     void appendTopLevelActions(ActionList &AL) override {
3066       // Utility to append actions to the top level list.
3067       auto AddTopLevel = [&](Action *A, TargetID TargetID) {
3068         OffloadAction::DeviceDependences Dep;
3069         Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
3070         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3071       };
3072 
3073       // If we have a fat binary, add it to the list.
3074       if (CudaFatBinary) {
3075         AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
3076         CudaDeviceActions.clear();
3077         CudaFatBinary = nullptr;
3078         return;
3079       }
3080 
3081       if (CudaDeviceActions.empty())
3082         return;
3083 
3084       // If we have CUDA actions at this point, that's because we have a have
3085       // partial compilation, so we should have an action for each GPU
3086       // architecture.
3087       assert(CudaDeviceActions.size() == GpuArchList.size() &&
3088              "Expecting one action per GPU architecture.");
3089       assert(ToolChains.size() == 1 &&
3090              "Expecting to have a single CUDA toolchain.");
3091       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
3092         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
3093 
3094       CudaDeviceActions.clear();
3095     }
3096 
3097     /// Get canonicalized offload arch option. \returns empty StringRef if the
3098     /// option is invalid.
3099     virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
3100 
3101     virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3102     getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
3103 
3104     bool initialize() override {
3105       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
3106              AssociatedOffloadKind == Action::OFK_HIP);
3107 
3108       // We don't need to support CUDA.
3109       if (AssociatedOffloadKind == Action::OFK_Cuda &&
3110           !C.hasOffloadToolChain<Action::OFK_Cuda>())
3111         return false;
3112 
3113       // We don't need to support HIP.
3114       if (AssociatedOffloadKind == Action::OFK_HIP &&
3115           !C.hasOffloadToolChain<Action::OFK_HIP>())
3116         return false;
3117 
3118       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
3119       assert(HostTC && "No toolchain for host compilation.");
3120       if (HostTC->getTriple().isNVPTX() ||
3121           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
3122         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
3123         // an error and abort pipeline construction early so we don't trip
3124         // asserts that assume device-side compilation.
3125         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
3126             << HostTC->getTriple().getArchName();
3127         return true;
3128       }
3129 
3130       ToolChains.push_back(
3131           AssociatedOffloadKind == Action::OFK_Cuda
3132               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
3133               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
3134 
3135       CompileHostOnly = C.getDriver().offloadHostOnly();
3136       EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
3137       EmitAsm = Args.getLastArg(options::OPT_S);
3138       FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
3139       if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
3140         StringRef UseCUIDStr = A->getValue();
3141         UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
3142                       .Case("hash", CUID_Hash)
3143                       .Case("random", CUID_Random)
3144                       .Case("none", CUID_None)
3145                       .Default(CUID_Invalid);
3146         if (UseCUID == CUID_Invalid) {
3147           C.getDriver().Diag(diag::err_drv_invalid_value)
3148               << A->getAsString(Args) << UseCUIDStr;
3149           C.setContainsError();
3150           return true;
3151         }
3152       }
3153 
3154       // --offload and --offload-arch options are mutually exclusive.
3155       if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
3156           Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
3157                              options::OPT_no_offload_arch_EQ)) {
3158         C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
3159                                                              << "--offload";
3160       }
3161 
3162       // Collect all offload arch parameters, removing duplicates.
3163       std::set<StringRef> GpuArchs;
3164       bool Error = false;
3165       for (Arg *A : Args) {
3166         if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
3167               A->getOption().matches(options::OPT_no_offload_arch_EQ)))
3168           continue;
3169         A->claim();
3170 
3171         for (StringRef ArchStr : llvm::split(A->getValue(), ",")) {
3172           if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
3173               ArchStr == "all") {
3174             GpuArchs.clear();
3175           } else if (ArchStr == "native") {
3176             const ToolChain &TC = *ToolChains.front();
3177             auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args);
3178             if (!GPUsOrErr) {
3179               TC.getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
3180                   << llvm::Triple::getArchTypeName(TC.getArch())
3181                   << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
3182               continue;
3183             }
3184 
3185             for (auto GPU : *GPUsOrErr) {
3186               GpuArchs.insert(Args.MakeArgString(GPU));
3187             }
3188           } else {
3189             ArchStr = getCanonicalOffloadArch(ArchStr);
3190             if (ArchStr.empty()) {
3191               Error = true;
3192             } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
3193               GpuArchs.insert(ArchStr);
3194             else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
3195               GpuArchs.erase(ArchStr);
3196             else
3197               llvm_unreachable("Unexpected option.");
3198           }
3199         }
3200       }
3201 
3202       auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
3203       if (ConflictingArchs) {
3204         C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
3205             << ConflictingArchs->first << ConflictingArchs->second;
3206         C.setContainsError();
3207         return true;
3208       }
3209 
3210       // Collect list of GPUs remaining in the set.
3211       for (auto Arch : GpuArchs)
3212         GpuArchList.push_back(Arch.data());
3213 
3214       // Default to sm_20 which is the lowest common denominator for
3215       // supported GPUs.  sm_20 code should work correctly, if
3216       // suboptimally, on all newer GPUs.
3217       if (GpuArchList.empty()) {
3218         if (ToolChains.front()->getTriple().isSPIRV())
3219           GpuArchList.push_back(CudaArch::Generic);
3220         else
3221           GpuArchList.push_back(DefaultCudaArch);
3222       }
3223 
3224       return Error;
3225     }
3226   };
3227 
3228   /// \brief CUDA action builder. It injects device code in the host backend
3229   /// action.
3230   class CudaActionBuilder final : public CudaActionBuilderBase {
3231   public:
3232     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3233                       const Driver::InputList &Inputs)
3234         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3235       DefaultCudaArch = CudaArch::SM_35;
3236     }
3237 
3238     StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3239       CudaArch Arch = StringToCudaArch(ArchStr);
3240       if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
3241         C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3242         return StringRef();
3243       }
3244       return CudaArchToString(Arch);
3245     }
3246 
3247     std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3248     getConflictOffloadArchCombination(
3249         const std::set<StringRef> &GpuArchs) override {
3250       return std::nullopt;
3251     }
3252 
3253     ActionBuilderReturnCode
3254     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3255                          phases::ID CurPhase, phases::ID FinalPhase,
3256                          PhasesTy &Phases) override {
3257       if (!IsActive)
3258         return ABRT_Inactive;
3259 
3260       // If we don't have more CUDA actions, we don't have any dependences to
3261       // create for the host.
3262       if (CudaDeviceActions.empty())
3263         return ABRT_Success;
3264 
3265       assert(CudaDeviceActions.size() == GpuArchList.size() &&
3266              "Expecting one action per GPU architecture.");
3267       assert(!CompileHostOnly &&
3268              "Not expecting CUDA actions in host-only compilation.");
3269 
3270       // If we are generating code for the device or we are in a backend phase,
3271       // we attempt to generate the fat binary. We compile each arch to ptx and
3272       // assemble to cubin, then feed the cubin *and* the ptx into a device
3273       // "link" action, which uses fatbinary to combine these cubins into one
3274       // fatbin.  The fatbin is then an input to the host action if not in
3275       // device-only mode.
3276       if (CompileDeviceOnly || CurPhase == phases::Backend) {
3277         ActionList DeviceActions;
3278         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3279           // Produce the device action from the current phase up to the assemble
3280           // phase.
3281           for (auto Ph : Phases) {
3282             // Skip the phases that were already dealt with.
3283             if (Ph < CurPhase)
3284               continue;
3285             // We have to be consistent with the host final phase.
3286             if (Ph > FinalPhase)
3287               break;
3288 
3289             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3290                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
3291 
3292             if (Ph == phases::Assemble)
3293               break;
3294           }
3295 
3296           // If we didn't reach the assemble phase, we can't generate the fat
3297           // binary. We don't need to generate the fat binary if we are not in
3298           // device-only mode.
3299           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
3300               CompileDeviceOnly)
3301             continue;
3302 
3303           Action *AssembleAction = CudaDeviceActions[I];
3304           assert(AssembleAction->getType() == types::TY_Object);
3305           assert(AssembleAction->getInputs().size() == 1);
3306 
3307           Action *BackendAction = AssembleAction->getInputs()[0];
3308           assert(BackendAction->getType() == types::TY_PP_Asm);
3309 
3310           for (auto &A : {AssembleAction, BackendAction}) {
3311             OffloadAction::DeviceDependences DDep;
3312             DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
3313             DeviceActions.push_back(
3314                 C.MakeAction<OffloadAction>(DDep, A->getType()));
3315           }
3316         }
3317 
3318         // We generate the fat binary if we have device input actions.
3319         if (!DeviceActions.empty()) {
3320           CudaFatBinary =
3321               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
3322 
3323           if (!CompileDeviceOnly) {
3324             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3325                    Action::OFK_Cuda);
3326             // Clear the fat binary, it is already a dependence to an host
3327             // action.
3328             CudaFatBinary = nullptr;
3329           }
3330 
3331           // Remove the CUDA actions as they are already connected to an host
3332           // action or fat binary.
3333           CudaDeviceActions.clear();
3334         }
3335 
3336         // We avoid creating host action in device-only mode.
3337         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3338       } else if (CurPhase > phases::Backend) {
3339         // If we are past the backend phase and still have a device action, we
3340         // don't have to do anything as this action is already a device
3341         // top-level action.
3342         return ABRT_Success;
3343       }
3344 
3345       assert(CurPhase < phases::Backend && "Generating single CUDA "
3346                                            "instructions should only occur "
3347                                            "before the backend phase!");
3348 
3349       // By default, we produce an action for each device arch.
3350       for (Action *&A : CudaDeviceActions)
3351         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3352 
3353       return ABRT_Success;
3354     }
3355   };
3356   /// \brief HIP action builder. It injects device code in the host backend
3357   /// action.
3358   class HIPActionBuilder final : public CudaActionBuilderBase {
3359     /// The linker inputs obtained for each device arch.
3360     SmallVector<ActionList, 8> DeviceLinkerInputs;
3361     // The default bundling behavior depends on the type of output, therefore
3362     // BundleOutput needs to be tri-value: None, true, or false.
3363     // Bundle code objects except --no-gpu-output is specified for device
3364     // only compilation. Bundle other type of output files only if
3365     // --gpu-bundle-output is specified for device only compilation.
3366     std::optional<bool> BundleOutput;
3367     std::optional<bool> EmitReloc;
3368 
3369   public:
3370     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3371                      const Driver::InputList &Inputs)
3372         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3373 
3374       DefaultCudaArch = CudaArch::GFX906;
3375 
3376       if (Args.hasArg(options::OPT_fhip_emit_relocatable,
3377                       options::OPT_fno_hip_emit_relocatable)) {
3378         EmitReloc = Args.hasFlag(options::OPT_fhip_emit_relocatable,
3379                                  options::OPT_fno_hip_emit_relocatable, false);
3380 
3381         if (*EmitReloc) {
3382           if (Relocatable) {
3383             C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
3384                 << "-fhip-emit-relocatable"
3385                 << "-fgpu-rdc";
3386           }
3387 
3388           if (!CompileDeviceOnly) {
3389             C.getDriver().Diag(diag::err_opt_not_valid_without_opt)
3390                 << "-fhip-emit-relocatable"
3391                 << "--cuda-device-only";
3392           }
3393         }
3394       }
3395 
3396       if (Args.hasArg(options::OPT_gpu_bundle_output,
3397                       options::OPT_no_gpu_bundle_output))
3398         BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3399                                     options::OPT_no_gpu_bundle_output, true) &&
3400                        (!EmitReloc || !*EmitReloc);
3401     }
3402 
3403     bool canUseBundlerUnbundler() const override { return true; }
3404 
3405     StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3406       llvm::StringMap<bool> Features;
3407       // getHIPOffloadTargetTriple() is known to return valid value as it has
3408       // been called successfully in the CreateOffloadingDeviceToolChains().
3409       auto ArchStr = parseTargetID(
3410           *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3411           &Features);
3412       if (!ArchStr) {
3413         C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3414         C.setContainsError();
3415         return StringRef();
3416       }
3417       auto CanId = getCanonicalTargetID(*ArchStr, Features);
3418       return Args.MakeArgStringRef(CanId);
3419     };
3420 
3421     std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3422     getConflictOffloadArchCombination(
3423         const std::set<StringRef> &GpuArchs) override {
3424       return getConflictTargetIDCombination(GpuArchs);
3425     }
3426 
3427     ActionBuilderReturnCode
3428     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3429                          phases::ID CurPhase, phases::ID FinalPhase,
3430                          PhasesTy &Phases) override {
3431       if (!IsActive)
3432         return ABRT_Inactive;
3433 
3434       // amdgcn does not support linking of object files, therefore we skip
3435       // backend and assemble phases to output LLVM IR. Except for generating
3436       // non-relocatable device code, where we generate fat binary for device
3437       // code and pass to host in Backend phase.
3438       if (CudaDeviceActions.empty())
3439         return ABRT_Success;
3440 
3441       assert(((CurPhase == phases::Link && Relocatable) ||
3442               CudaDeviceActions.size() == GpuArchList.size()) &&
3443              "Expecting one action per GPU architecture.");
3444       assert(!CompileHostOnly &&
3445              "Not expecting HIP actions in host-only compilation.");
3446 
3447       bool ShouldLink = !EmitReloc || !*EmitReloc;
3448 
3449       if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3450           !EmitAsm && ShouldLink) {
3451         // If we are in backend phase, we attempt to generate the fat binary.
3452         // We compile each arch to IR and use a link action to generate code
3453         // object containing ISA. Then we use a special "link" action to create
3454         // a fat binary containing all the code objects for different GPU's.
3455         // The fat binary is then an input to the host action.
3456         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3457           if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3458             // When LTO is enabled, skip the backend and assemble phases and
3459             // use lld to link the bitcode.
3460             ActionList AL;
3461             AL.push_back(CudaDeviceActions[I]);
3462             // Create a link action to link device IR with device library
3463             // and generate ISA.
3464             CudaDeviceActions[I] =
3465                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3466           } else {
3467             // When LTO is not enabled, we follow the conventional
3468             // compiler phases, including backend and assemble phases.
3469             ActionList AL;
3470             Action *BackendAction = nullptr;
3471             if (ToolChains.front()->getTriple().isSPIRV()) {
3472               // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3473               // (HIPSPVToolChain) runs post-link LLVM IR passes.
3474               types::ID Output = Args.hasArg(options::OPT_S)
3475                                      ? types::TY_LLVM_IR
3476                                      : types::TY_LLVM_BC;
3477               BackendAction =
3478                   C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3479             } else
3480               BackendAction = C.getDriver().ConstructPhaseAction(
3481                   C, Args, phases::Backend, CudaDeviceActions[I],
3482                   AssociatedOffloadKind);
3483             auto AssembleAction = C.getDriver().ConstructPhaseAction(
3484                 C, Args, phases::Assemble, BackendAction,
3485                 AssociatedOffloadKind);
3486             AL.push_back(AssembleAction);
3487             // Create a link action to link device IR with device library
3488             // and generate ISA.
3489             CudaDeviceActions[I] =
3490                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3491           }
3492 
3493           // OffloadingActionBuilder propagates device arch until an offload
3494           // action. Since the next action for creating fatbin does
3495           // not have device arch, whereas the above link action and its input
3496           // have device arch, an offload action is needed to stop the null
3497           // device arch of the next action being propagated to the above link
3498           // action.
3499           OffloadAction::DeviceDependences DDep;
3500           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3501                    AssociatedOffloadKind);
3502           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3503               DDep, CudaDeviceActions[I]->getType());
3504         }
3505 
3506         if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3507           // Create HIP fat binary with a special "link" action.
3508           CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3509                                                       types::TY_HIP_FATBIN);
3510 
3511           if (!CompileDeviceOnly) {
3512             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3513                    AssociatedOffloadKind);
3514             // Clear the fat binary, it is already a dependence to an host
3515             // action.
3516             CudaFatBinary = nullptr;
3517           }
3518 
3519           // Remove the CUDA actions as they are already connected to an host
3520           // action or fat binary.
3521           CudaDeviceActions.clear();
3522         }
3523 
3524         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3525       } else if (CurPhase == phases::Link) {
3526         if (!ShouldLink)
3527           return ABRT_Success;
3528         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3529         // This happens to each device action originated from each input file.
3530         // Later on, device actions in DeviceLinkerInputs are used to create
3531         // device link actions in appendLinkDependences and the created device
3532         // link actions are passed to the offload action as device dependence.
3533         DeviceLinkerInputs.resize(CudaDeviceActions.size());
3534         auto LI = DeviceLinkerInputs.begin();
3535         for (auto *A : CudaDeviceActions) {
3536           LI->push_back(A);
3537           ++LI;
3538         }
3539 
3540         // We will pass the device action as a host dependence, so we don't
3541         // need to do anything else with them.
3542         CudaDeviceActions.clear();
3543         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3544       }
3545 
3546       // By default, we produce an action for each device arch.
3547       for (Action *&A : CudaDeviceActions)
3548         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3549                                                AssociatedOffloadKind);
3550 
3551       if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput &&
3552           *BundleOutput) {
3553         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3554           OffloadAction::DeviceDependences DDep;
3555           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3556                    AssociatedOffloadKind);
3557           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3558               DDep, CudaDeviceActions[I]->getType());
3559         }
3560         CudaFatBinary =
3561             C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3562         CudaDeviceActions.clear();
3563       }
3564 
3565       return (CompileDeviceOnly &&
3566               (CurPhase == FinalPhase ||
3567                (!ShouldLink && CurPhase == phases::Assemble)))
3568                  ? ABRT_Ignore_Host
3569                  : ABRT_Success;
3570     }
3571 
3572     void appendLinkDeviceActions(ActionList &AL) override {
3573       if (DeviceLinkerInputs.size() == 0)
3574         return;
3575 
3576       assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3577              "Linker inputs and GPU arch list sizes do not match.");
3578 
3579       ActionList Actions;
3580       unsigned I = 0;
3581       // Append a new link action for each device.
3582       // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3583       for (auto &LI : DeviceLinkerInputs) {
3584 
3585         types::ID Output = Args.hasArg(options::OPT_emit_llvm)
3586                                    ? types::TY_LLVM_BC
3587                                    : types::TY_Image;
3588 
3589         auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output);
3590         // Linking all inputs for the current GPU arch.
3591         // LI contains all the inputs for the linker.
3592         OffloadAction::DeviceDependences DeviceLinkDeps;
3593         DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3594             GpuArchList[I], AssociatedOffloadKind);
3595         Actions.push_back(C.MakeAction<OffloadAction>(
3596             DeviceLinkDeps, DeviceLinkAction->getType()));
3597         ++I;
3598       }
3599       DeviceLinkerInputs.clear();
3600 
3601       // If emitting LLVM, do not generate final host/device compilation action
3602       if (Args.hasArg(options::OPT_emit_llvm)) {
3603           AL.append(Actions);
3604           return;
3605       }
3606 
3607       // Create a host object from all the device images by embedding them
3608       // in a fat binary for mixed host-device compilation. For device-only
3609       // compilation, creates a fat binary.
3610       OffloadAction::DeviceDependences DDeps;
3611       if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3612         auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3613             Actions,
3614             CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3615         DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3616                   AssociatedOffloadKind);
3617         // Offload the host object to the host linker.
3618         AL.push_back(
3619             C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3620       } else {
3621         AL.append(Actions);
3622       }
3623     }
3624 
3625     Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3626 
3627     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3628   };
3629 
3630   ///
3631   /// TODO: Add the implementation for other specialized builders here.
3632   ///
3633 
3634   /// Specialized builders being used by this offloading action builder.
3635   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3636 
3637   /// Flag set to true if all valid builders allow file bundling/unbundling.
3638   bool CanUseBundler;
3639 
3640 public:
3641   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3642                           const Driver::InputList &Inputs)
3643       : C(C) {
3644     // Create a specialized builder for each device toolchain.
3645 
3646     IsValid = true;
3647 
3648     // Create a specialized builder for CUDA.
3649     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3650 
3651     // Create a specialized builder for HIP.
3652     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3653 
3654     //
3655     // TODO: Build other specialized builders here.
3656     //
3657 
3658     // Initialize all the builders, keeping track of errors. If all valid
3659     // builders agree that we can use bundling, set the flag to true.
3660     unsigned ValidBuilders = 0u;
3661     unsigned ValidBuildersSupportingBundling = 0u;
3662     for (auto *SB : SpecializedBuilders) {
3663       IsValid = IsValid && !SB->initialize();
3664 
3665       // Update the counters if the builder is valid.
3666       if (SB->isValid()) {
3667         ++ValidBuilders;
3668         if (SB->canUseBundlerUnbundler())
3669           ++ValidBuildersSupportingBundling;
3670       }
3671     }
3672     CanUseBundler =
3673         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3674   }
3675 
3676   ~OffloadingActionBuilder() {
3677     for (auto *SB : SpecializedBuilders)
3678       delete SB;
3679   }
3680 
3681   /// Record a host action and its originating input argument.
3682   void recordHostAction(Action *HostAction, const Arg *InputArg) {
3683     assert(HostAction && "Invalid host action");
3684     assert(InputArg && "Invalid input argument");
3685     auto Loc = HostActionToInputArgMap.find(HostAction);
3686     if (Loc == HostActionToInputArgMap.end())
3687       HostActionToInputArgMap[HostAction] = InputArg;
3688     assert(HostActionToInputArgMap[HostAction] == InputArg &&
3689            "host action mapped to multiple input arguments");
3690   }
3691 
3692   /// Generate an action that adds device dependences (if any) to a host action.
3693   /// If no device dependence actions exist, just return the host action \a
3694   /// HostAction. If an error is found or if no builder requires the host action
3695   /// to be generated, return nullptr.
3696   Action *
3697   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3698                                    phases::ID CurPhase, phases::ID FinalPhase,
3699                                    DeviceActionBuilder::PhasesTy &Phases) {
3700     if (!IsValid)
3701       return nullptr;
3702 
3703     if (SpecializedBuilders.empty())
3704       return HostAction;
3705 
3706     assert(HostAction && "Invalid host action!");
3707     recordHostAction(HostAction, InputArg);
3708 
3709     OffloadAction::DeviceDependences DDeps;
3710     // Check if all the programming models agree we should not emit the host
3711     // action. Also, keep track of the offloading kinds employed.
3712     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3713     unsigned InactiveBuilders = 0u;
3714     unsigned IgnoringBuilders = 0u;
3715     for (auto *SB : SpecializedBuilders) {
3716       if (!SB->isValid()) {
3717         ++InactiveBuilders;
3718         continue;
3719       }
3720       auto RetCode =
3721           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3722 
3723       // If the builder explicitly says the host action should be ignored,
3724       // we need to increment the variable that tracks the builders that request
3725       // the host object to be ignored.
3726       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3727         ++IgnoringBuilders;
3728 
3729       // Unless the builder was inactive for this action, we have to record the
3730       // offload kind because the host will have to use it.
3731       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3732         OffloadKind |= SB->getAssociatedOffloadKind();
3733     }
3734 
3735     // If all builders agree that the host object should be ignored, just return
3736     // nullptr.
3737     if (IgnoringBuilders &&
3738         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3739       return nullptr;
3740 
3741     if (DDeps.getActions().empty())
3742       return HostAction;
3743 
3744     // We have dependences we need to bundle together. We use an offload action
3745     // for that.
3746     OffloadAction::HostDependence HDep(
3747         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3748         /*BoundArch=*/nullptr, DDeps);
3749     return C.MakeAction<OffloadAction>(HDep, DDeps);
3750   }
3751 
3752   /// Generate an action that adds a host dependence to a device action. The
3753   /// results will be kept in this action builder. Return true if an error was
3754   /// found.
3755   bool addHostDependenceToDeviceActions(Action *&HostAction,
3756                                         const Arg *InputArg) {
3757     if (!IsValid)
3758       return true;
3759 
3760     recordHostAction(HostAction, InputArg);
3761 
3762     // If we are supporting bundling/unbundling and the current action is an
3763     // input action of non-source file, we replace the host action by the
3764     // unbundling action. The bundler tool has the logic to detect if an input
3765     // is a bundle or not and if the input is not a bundle it assumes it is a
3766     // host file. Therefore it is safe to create an unbundling action even if
3767     // the input is not a bundle.
3768     if (CanUseBundler && isa<InputAction>(HostAction) &&
3769         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3770         (!types::isSrcFile(HostAction->getType()) ||
3771          HostAction->getType() == types::TY_PP_HIP)) {
3772       auto UnbundlingHostAction =
3773           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3774       UnbundlingHostAction->registerDependentActionInfo(
3775           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3776           /*BoundArch=*/StringRef(), Action::OFK_Host);
3777       HostAction = UnbundlingHostAction;
3778       recordHostAction(HostAction, InputArg);
3779     }
3780 
3781     assert(HostAction && "Invalid host action!");
3782 
3783     // Register the offload kinds that are used.
3784     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3785     for (auto *SB : SpecializedBuilders) {
3786       if (!SB->isValid())
3787         continue;
3788 
3789       auto RetCode = SB->addDeviceDependences(HostAction);
3790 
3791       // Host dependences for device actions are not compatible with that same
3792       // action being ignored.
3793       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3794              "Host dependence not expected to be ignored.!");
3795 
3796       // Unless the builder was inactive for this action, we have to record the
3797       // offload kind because the host will have to use it.
3798       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3799         OffloadKind |= SB->getAssociatedOffloadKind();
3800     }
3801 
3802     // Do not use unbundler if the Host does not depend on device action.
3803     if (OffloadKind == Action::OFK_None && CanUseBundler)
3804       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3805         HostAction = UA->getInputs().back();
3806 
3807     return false;
3808   }
3809 
3810   /// Add the offloading top level actions to the provided action list. This
3811   /// function can replace the host action by a bundling action if the
3812   /// programming models allow it.
3813   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3814                              const Arg *InputArg) {
3815     if (HostAction)
3816       recordHostAction(HostAction, InputArg);
3817 
3818     // Get the device actions to be appended.
3819     ActionList OffloadAL;
3820     for (auto *SB : SpecializedBuilders) {
3821       if (!SB->isValid())
3822         continue;
3823       SB->appendTopLevelActions(OffloadAL);
3824     }
3825 
3826     // If we can use the bundler, replace the host action by the bundling one in
3827     // the resulting list. Otherwise, just append the device actions. For
3828     // device only compilation, HostAction is a null pointer, therefore only do
3829     // this when HostAction is not a null pointer.
3830     if (CanUseBundler && HostAction &&
3831         HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3832       // Add the host action to the list in order to create the bundling action.
3833       OffloadAL.push_back(HostAction);
3834 
3835       // We expect that the host action was just appended to the action list
3836       // before this method was called.
3837       assert(HostAction == AL.back() && "Host action not in the list??");
3838       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3839       recordHostAction(HostAction, InputArg);
3840       AL.back() = HostAction;
3841     } else
3842       AL.append(OffloadAL.begin(), OffloadAL.end());
3843 
3844     // Propagate to the current host action (if any) the offload information
3845     // associated with the current input.
3846     if (HostAction)
3847       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3848                                            /*BoundArch=*/nullptr);
3849     return false;
3850   }
3851 
3852   void appendDeviceLinkActions(ActionList &AL) {
3853     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3854       if (!SB->isValid())
3855         continue;
3856       SB->appendLinkDeviceActions(AL);
3857     }
3858   }
3859 
3860   Action *makeHostLinkAction() {
3861     // Build a list of device linking actions.
3862     ActionList DeviceAL;
3863     appendDeviceLinkActions(DeviceAL);
3864     if (DeviceAL.empty())
3865       return nullptr;
3866 
3867     // Let builders add host linking actions.
3868     Action* HA = nullptr;
3869     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3870       if (!SB->isValid())
3871         continue;
3872       HA = SB->appendLinkHostActions(DeviceAL);
3873       // This created host action has no originating input argument, therefore
3874       // needs to set its offloading kind directly.
3875       if (HA)
3876         HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3877                                      /*BoundArch=*/nullptr);
3878     }
3879     return HA;
3880   }
3881 
3882   /// Processes the host linker action. This currently consists of replacing it
3883   /// with an offload action if there are device link objects and propagate to
3884   /// the host action all the offload kinds used in the current compilation. The
3885   /// resulting action is returned.
3886   Action *processHostLinkAction(Action *HostAction) {
3887     // Add all the dependences from the device linking actions.
3888     OffloadAction::DeviceDependences DDeps;
3889     for (auto *SB : SpecializedBuilders) {
3890       if (!SB->isValid())
3891         continue;
3892 
3893       SB->appendLinkDependences(DDeps);
3894     }
3895 
3896     // Calculate all the offload kinds used in the current compilation.
3897     unsigned ActiveOffloadKinds = 0u;
3898     for (auto &I : InputArgToOffloadKindMap)
3899       ActiveOffloadKinds |= I.second;
3900 
3901     // If we don't have device dependencies, we don't have to create an offload
3902     // action.
3903     if (DDeps.getActions().empty()) {
3904       // Set all the active offloading kinds to the link action. Given that it
3905       // is a link action it is assumed to depend on all actions generated so
3906       // far.
3907       HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3908                                      /*BoundArch=*/nullptr);
3909       // Propagate active offloading kinds for each input to the link action.
3910       // Each input may have different active offloading kind.
3911       for (auto *A : HostAction->inputs()) {
3912         auto ArgLoc = HostActionToInputArgMap.find(A);
3913         if (ArgLoc == HostActionToInputArgMap.end())
3914           continue;
3915         auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3916         if (OFKLoc == InputArgToOffloadKindMap.end())
3917           continue;
3918         A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3919       }
3920       return HostAction;
3921     }
3922 
3923     // Create the offload action with all dependences. When an offload action
3924     // is created the kinds are propagated to the host action, so we don't have
3925     // to do that explicitly here.
3926     OffloadAction::HostDependence HDep(
3927         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3928         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3929     return C.MakeAction<OffloadAction>(HDep, DDeps);
3930   }
3931 };
3932 } // anonymous namespace.
3933 
3934 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3935                              const InputList &Inputs,
3936                              ActionList &Actions) const {
3937 
3938   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3939   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3940   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3941   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3942     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3943     Args.eraseArg(options::OPT__SLASH_Yc);
3944     Args.eraseArg(options::OPT__SLASH_Yu);
3945     YcArg = YuArg = nullptr;
3946   }
3947   if (YcArg && Inputs.size() > 1) {
3948     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3949     Args.eraseArg(options::OPT__SLASH_Yc);
3950     YcArg = nullptr;
3951   }
3952 
3953   Arg *FinalPhaseArg;
3954   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3955 
3956   if (FinalPhase == phases::Link) {
3957     if (Args.hasArgNoClaim(options::OPT_hipstdpar)) {
3958       Args.AddFlagArg(nullptr, getOpts().getOption(options::OPT_hip_link));
3959       Args.AddFlagArg(nullptr,
3960                       getOpts().getOption(options::OPT_frtlib_add_rpath));
3961     }
3962     // Emitting LLVM while linking disabled except in HIPAMD Toolchain
3963     if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link))
3964       Diag(clang::diag::err_drv_emit_llvm_link);
3965     if (IsCLMode() && LTOMode != LTOK_None &&
3966         !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3967              .equals_insensitive("lld"))
3968       Diag(clang::diag::err_drv_lto_without_lld);
3969 
3970     // If -dumpdir is not specified, give a default prefix derived from the link
3971     // output filename. For example, `clang -g -gsplit-dwarf a.c -o x` passes
3972     // `-dumpdir x-` to cc1. If -o is unspecified, use
3973     // stem(getDefaultImageName()) (usually stem("a.out") = "a").
3974     if (!Args.hasArg(options::OPT_dumpdir)) {
3975       Arg *FinalOutput = Args.getLastArg(options::OPT_o, options::OPT__SLASH_o);
3976       Arg *Arg = Args.MakeSeparateArg(
3977           nullptr, getOpts().getOption(options::OPT_dumpdir),
3978           Args.MakeArgString(
3979               (FinalOutput ? FinalOutput->getValue()
3980                            : llvm::sys::path::stem(getDefaultImageName())) +
3981               "-"));
3982       Arg->claim();
3983       Args.append(Arg);
3984     }
3985   }
3986 
3987   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3988     // If only preprocessing or /Y- is used, all pch handling is disabled.
3989     // Rather than check for it everywhere, just remove clang-cl pch-related
3990     // flags here.
3991     Args.eraseArg(options::OPT__SLASH_Fp);
3992     Args.eraseArg(options::OPT__SLASH_Yc);
3993     Args.eraseArg(options::OPT__SLASH_Yu);
3994     YcArg = YuArg = nullptr;
3995   }
3996 
3997   unsigned LastPLSize = 0;
3998   for (auto &I : Inputs) {
3999     types::ID InputType = I.first;
4000     const Arg *InputArg = I.second;
4001 
4002     auto PL = types::getCompilationPhases(InputType);
4003     LastPLSize = PL.size();
4004 
4005     // If the first step comes after the final phase we are doing as part of
4006     // this compilation, warn the user about it.
4007     phases::ID InitialPhase = PL[0];
4008     if (InitialPhase > FinalPhase) {
4009       if (InputArg->isClaimed())
4010         continue;
4011 
4012       // Claim here to avoid the more general unused warning.
4013       InputArg->claim();
4014 
4015       // Suppress all unused style warnings with -Qunused-arguments
4016       if (Args.hasArg(options::OPT_Qunused_arguments))
4017         continue;
4018 
4019       // Special case when final phase determined by binary name, rather than
4020       // by a command-line argument with a corresponding Arg.
4021       if (CCCIsCPP())
4022         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
4023             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
4024       // Special case '-E' warning on a previously preprocessed file to make
4025       // more sense.
4026       else if (InitialPhase == phases::Compile &&
4027                (Args.getLastArg(options::OPT__SLASH_EP,
4028                                 options::OPT__SLASH_P) ||
4029                 Args.getLastArg(options::OPT_E) ||
4030                 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
4031                getPreprocessedType(InputType) == types::TY_INVALID)
4032         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
4033             << InputArg->getAsString(Args) << !!FinalPhaseArg
4034             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4035       else
4036         Diag(clang::diag::warn_drv_input_file_unused)
4037             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
4038             << !!FinalPhaseArg
4039             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4040       continue;
4041     }
4042 
4043     if (YcArg) {
4044       // Add a separate precompile phase for the compile phase.
4045       if (FinalPhase >= phases::Compile) {
4046         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
4047         // Build the pipeline for the pch file.
4048         Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
4049         for (phases::ID Phase : types::getCompilationPhases(HeaderType))
4050           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
4051         assert(ClangClPch);
4052         Actions.push_back(ClangClPch);
4053         // The driver currently exits after the first failed command.  This
4054         // relies on that behavior, to make sure if the pch generation fails,
4055         // the main compilation won't run.
4056         // FIXME: If the main compilation fails, the PCH generation should
4057         // probably not be considered successful either.
4058       }
4059     }
4060   }
4061 
4062   // If we are linking, claim any options which are obviously only used for
4063   // compilation.
4064   // FIXME: Understand why the last Phase List length is used here.
4065   if (FinalPhase == phases::Link && LastPLSize == 1) {
4066     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
4067     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
4068   }
4069 }
4070 
4071 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
4072                           const InputList &Inputs, ActionList &Actions) const {
4073   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
4074 
4075   if (!SuppressMissingInputWarning && Inputs.empty()) {
4076     Diag(clang::diag::err_drv_no_input_files);
4077     return;
4078   }
4079 
4080   // Diagnose misuse of /Fo.
4081   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
4082     StringRef V = A->getValue();
4083     if (Inputs.size() > 1 && !V.empty() &&
4084         !llvm::sys::path::is_separator(V.back())) {
4085       // Check whether /Fo tries to name an output file for multiple inputs.
4086       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4087           << A->getSpelling() << V;
4088       Args.eraseArg(options::OPT__SLASH_Fo);
4089     }
4090   }
4091 
4092   // Diagnose misuse of /Fa.
4093   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
4094     StringRef V = A->getValue();
4095     if (Inputs.size() > 1 && !V.empty() &&
4096         !llvm::sys::path::is_separator(V.back())) {
4097       // Check whether /Fa tries to name an asm file for multiple inputs.
4098       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4099           << A->getSpelling() << V;
4100       Args.eraseArg(options::OPT__SLASH_Fa);
4101     }
4102   }
4103 
4104   // Diagnose misuse of /o.
4105   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
4106     if (A->getValue()[0] == '\0') {
4107       // It has to have a value.
4108       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
4109       Args.eraseArg(options::OPT__SLASH_o);
4110     }
4111   }
4112 
4113   handleArguments(C, Args, Inputs, Actions);
4114 
4115   bool UseNewOffloadingDriver =
4116       C.isOffloadingHostKind(Action::OFK_OpenMP) ||
4117       Args.hasFlag(options::OPT_offload_new_driver,
4118                    options::OPT_no_offload_new_driver, false);
4119 
4120   // Builder to be used to build offloading actions.
4121   std::unique_ptr<OffloadingActionBuilder> OffloadBuilder =
4122       !UseNewOffloadingDriver
4123           ? std::make_unique<OffloadingActionBuilder>(C, Args, Inputs)
4124           : nullptr;
4125 
4126   // Construct the actions to perform.
4127   ExtractAPIJobAction *ExtractAPIAction = nullptr;
4128   ActionList LinkerInputs;
4129   ActionList MergerInputs;
4130 
4131   for (auto &I : Inputs) {
4132     types::ID InputType = I.first;
4133     const Arg *InputArg = I.second;
4134 
4135     auto PL = types::getCompilationPhases(*this, Args, InputType);
4136     if (PL.empty())
4137       continue;
4138 
4139     auto FullPL = types::getCompilationPhases(InputType);
4140 
4141     // Build the pipeline for this file.
4142     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4143 
4144     // Use the current host action in any of the offloading actions, if
4145     // required.
4146     if (!UseNewOffloadingDriver)
4147       if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg))
4148         break;
4149 
4150     for (phases::ID Phase : PL) {
4151 
4152       // Add any offload action the host action depends on.
4153       if (!UseNewOffloadingDriver)
4154         Current = OffloadBuilder->addDeviceDependencesToHostAction(
4155             Current, InputArg, Phase, PL.back(), FullPL);
4156       if (!Current)
4157         break;
4158 
4159       // Queue linker inputs.
4160       if (Phase == phases::Link) {
4161         assert(Phase == PL.back() && "linking must be final compilation step.");
4162         // We don't need to generate additional link commands if emitting AMD
4163         // bitcode or compiling only for the offload device
4164         if (!(C.getInputArgs().hasArg(options::OPT_hip_link) &&
4165               (C.getInputArgs().hasArg(options::OPT_emit_llvm))) &&
4166             !offloadDeviceOnly())
4167           LinkerInputs.push_back(Current);
4168         Current = nullptr;
4169         break;
4170       }
4171 
4172       // TODO: Consider removing this because the merged may not end up being
4173       // the final Phase in the pipeline. Perhaps the merged could just merge
4174       // and then pass an artifact of some sort to the Link Phase.
4175       // Queue merger inputs.
4176       if (Phase == phases::IfsMerge) {
4177         assert(Phase == PL.back() && "merging must be final compilation step.");
4178         MergerInputs.push_back(Current);
4179         Current = nullptr;
4180         break;
4181       }
4182 
4183       if (Phase == phases::Precompile && ExtractAPIAction) {
4184         ExtractAPIAction->addHeaderInput(Current);
4185         Current = nullptr;
4186         break;
4187       }
4188 
4189       // FIXME: Should we include any prior module file outputs as inputs of
4190       // later actions in the same command line?
4191 
4192       // Otherwise construct the appropriate action.
4193       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
4194 
4195       // We didn't create a new action, so we will just move to the next phase.
4196       if (NewCurrent == Current)
4197         continue;
4198 
4199       if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
4200         ExtractAPIAction = EAA;
4201 
4202       Current = NewCurrent;
4203 
4204       // Try to build the offloading actions and add the result as a dependency
4205       // to the host.
4206       if (UseNewOffloadingDriver)
4207         Current = BuildOffloadingActions(C, Args, I, Current);
4208       // Use the current host action in any of the offloading actions, if
4209       // required.
4210       else if (OffloadBuilder->addHostDependenceToDeviceActions(Current,
4211                                                                 InputArg))
4212         break;
4213 
4214       if (Current->getType() == types::TY_Nothing)
4215         break;
4216     }
4217 
4218     // If we ended with something, add to the output list.
4219     if (Current)
4220       Actions.push_back(Current);
4221 
4222     // Add any top level actions generated for offloading.
4223     if (!UseNewOffloadingDriver)
4224       OffloadBuilder->appendTopLevelActions(Actions, Current, InputArg);
4225     else if (Current)
4226       Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4227                                         /*BoundArch=*/nullptr);
4228   }
4229 
4230   // Add a link action if necessary.
4231 
4232   if (LinkerInputs.empty()) {
4233     Arg *FinalPhaseArg;
4234     if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4235       if (!UseNewOffloadingDriver)
4236         OffloadBuilder->appendDeviceLinkActions(Actions);
4237   }
4238 
4239   if (!LinkerInputs.empty()) {
4240     if (!UseNewOffloadingDriver)
4241       if (Action *Wrapper = OffloadBuilder->makeHostLinkAction())
4242         LinkerInputs.push_back(Wrapper);
4243     Action *LA;
4244     // Check if this Linker Job should emit a static library.
4245     if (ShouldEmitStaticLibrary(Args)) {
4246       LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4247     } else if (UseNewOffloadingDriver ||
4248                Args.hasArg(options::OPT_offload_link)) {
4249       LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4250       LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4251                                    /*BoundArch=*/nullptr);
4252     } else {
4253       LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4254     }
4255     if (!UseNewOffloadingDriver)
4256       LA = OffloadBuilder->processHostLinkAction(LA);
4257     Actions.push_back(LA);
4258   }
4259 
4260   // Add an interface stubs merge action if necessary.
4261   if (!MergerInputs.empty())
4262     Actions.push_back(
4263         C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4264 
4265   if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4266     auto PhaseList = types::getCompilationPhases(
4267         types::TY_IFS_CPP,
4268         Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4269 
4270     ActionList MergerInputs;
4271 
4272     for (auto &I : Inputs) {
4273       types::ID InputType = I.first;
4274       const Arg *InputArg = I.second;
4275 
4276       // Currently clang and the llvm assembler do not support generating symbol
4277       // stubs from assembly, so we skip the input on asm files. For ifs files
4278       // we rely on the normal pipeline setup in the pipeline setup code above.
4279       if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4280           InputType == types::TY_Asm)
4281         continue;
4282 
4283       Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4284 
4285       for (auto Phase : PhaseList) {
4286         switch (Phase) {
4287         default:
4288           llvm_unreachable(
4289               "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4290         case phases::Compile: {
4291           // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4292           // files where the .o file is located. The compile action can not
4293           // handle this.
4294           if (InputType == types::TY_Object)
4295             break;
4296 
4297           Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4298           break;
4299         }
4300         case phases::IfsMerge: {
4301           assert(Phase == PhaseList.back() &&
4302                  "merging must be final compilation step.");
4303           MergerInputs.push_back(Current);
4304           Current = nullptr;
4305           break;
4306         }
4307         }
4308       }
4309 
4310       // If we ended with something, add to the output list.
4311       if (Current)
4312         Actions.push_back(Current);
4313     }
4314 
4315     // Add an interface stubs merge action if necessary.
4316     if (!MergerInputs.empty())
4317       Actions.push_back(
4318           C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4319   }
4320 
4321   for (auto Opt : {options::OPT_print_supported_cpus,
4322                    options::OPT_print_supported_extensions}) {
4323     // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a
4324     // custom Compile phase that prints out supported cpu models and quits.
4325     //
4326     // If --print-supported-extensions is specified, call the helper function
4327     // RISCVMarchHelp in RISCVISAInfo.cpp that prints out supported extensions
4328     // and quits.
4329     if (Arg *A = Args.getLastArg(Opt)) {
4330       if (Opt == options::OPT_print_supported_extensions &&
4331           !C.getDefaultToolChain().getTriple().isRISCV() &&
4332           !C.getDefaultToolChain().getTriple().isAArch64() &&
4333           !C.getDefaultToolChain().getTriple().isARM()) {
4334         C.getDriver().Diag(diag::err_opt_not_valid_on_target)
4335             << "--print-supported-extensions";
4336         return;
4337       }
4338 
4339       // Use the -mcpu=? flag as the dummy input to cc1.
4340       Actions.clear();
4341       Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4342       Actions.push_back(
4343           C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4344       for (auto &I : Inputs)
4345         I.second->claim();
4346     }
4347   }
4348 
4349   // Call validator for dxil when -Vd not in Args.
4350   if (C.getDefaultToolChain().getTriple().isDXIL()) {
4351     // Only add action when needValidation.
4352     const auto &TC =
4353         static_cast<const toolchains::HLSLToolChain &>(C.getDefaultToolChain());
4354     if (TC.requiresValidation(Args)) {
4355       Action *LastAction = Actions.back();
4356       Actions.push_back(C.MakeAction<BinaryAnalyzeJobAction>(
4357           LastAction, types::TY_DX_CONTAINER));
4358     }
4359   }
4360 
4361   // Claim ignored clang-cl options.
4362   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4363 }
4364 
4365 /// Returns the canonical name for the offloading architecture when using a HIP
4366 /// or CUDA architecture.
4367 static StringRef getCanonicalArchString(Compilation &C,
4368                                         const llvm::opt::DerivedArgList &Args,
4369                                         StringRef ArchStr,
4370                                         const llvm::Triple &Triple,
4371                                         bool SuppressError = false) {
4372   // Lookup the CUDA / HIP architecture string. Only report an error if we were
4373   // expecting the triple to be only NVPTX / AMDGPU.
4374   CudaArch Arch = StringToCudaArch(getProcessorFromTargetID(Triple, ArchStr));
4375   if (!SuppressError && Triple.isNVPTX() &&
4376       (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch))) {
4377     C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4378         << "CUDA" << ArchStr;
4379     return StringRef();
4380   } else if (!SuppressError && Triple.isAMDGPU() &&
4381              (Arch == CudaArch::UNKNOWN || !IsAMDGpuArch(Arch))) {
4382     C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4383         << "HIP" << ArchStr;
4384     return StringRef();
4385   }
4386 
4387   if (IsNVIDIAGpuArch(Arch))
4388     return Args.MakeArgStringRef(CudaArchToString(Arch));
4389 
4390   if (IsAMDGpuArch(Arch)) {
4391     llvm::StringMap<bool> Features;
4392     auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs());
4393     if (!HIPTriple)
4394       return StringRef();
4395     auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features);
4396     if (!Arch) {
4397       C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr;
4398       C.setContainsError();
4399       return StringRef();
4400     }
4401     return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features));
4402   }
4403 
4404   // If the input isn't CUDA or HIP just return the architecture.
4405   return ArchStr;
4406 }
4407 
4408 /// Checks if the set offloading architectures does not conflict. Returns the
4409 /// incompatible pair if a conflict occurs.
4410 static std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
4411 getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs,
4412                                   llvm::Triple Triple) {
4413   if (!Triple.isAMDGPU())
4414     return std::nullopt;
4415 
4416   std::set<StringRef> ArchSet;
4417   llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin()));
4418   return getConflictTargetIDCombination(ArchSet);
4419 }
4420 
4421 llvm::DenseSet<StringRef>
4422 Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4423                         Action::OffloadKind Kind, const ToolChain *TC,
4424                         bool SuppressError) const {
4425   if (!TC)
4426     TC = &C.getDefaultToolChain();
4427 
4428   // --offload and --offload-arch options are mutually exclusive.
4429   if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
4430       Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
4431                          options::OPT_no_offload_arch_EQ)) {
4432     C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
4433         << "--offload"
4434         << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ)
4435                 ? "--offload-arch"
4436                 : "--no-offload-arch");
4437   }
4438 
4439   if (KnownArchs.contains(TC))
4440     return KnownArchs.lookup(TC);
4441 
4442   llvm::DenseSet<StringRef> Archs;
4443   for (auto *Arg : Args) {
4444     // Extract any '--[no-]offload-arch' arguments intended for this toolchain.
4445     std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr;
4446     if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) &&
4447         ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) {
4448       Arg->claim();
4449       unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1));
4450       ExtractedArg = getOpts().ParseOneArg(Args, Index);
4451       Arg = ExtractedArg.get();
4452     }
4453 
4454     // Add or remove the seen architectures in order of appearance. If an
4455     // invalid architecture is given we simply exit.
4456     if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) {
4457       for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4458         if (Arch == "native" || Arch.empty()) {
4459           auto GPUsOrErr = TC->getSystemGPUArchs(Args);
4460           if (!GPUsOrErr) {
4461             if (SuppressError)
4462               llvm::consumeError(GPUsOrErr.takeError());
4463             else
4464               TC->getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
4465                   << llvm::Triple::getArchTypeName(TC->getArch())
4466                   << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
4467             continue;
4468           }
4469 
4470           for (auto ArchStr : *GPUsOrErr) {
4471             Archs.insert(
4472                 getCanonicalArchString(C, Args, Args.MakeArgString(ArchStr),
4473                                        TC->getTriple(), SuppressError));
4474           }
4475         } else {
4476           StringRef ArchStr = getCanonicalArchString(
4477               C, Args, Arch, TC->getTriple(), SuppressError);
4478           if (ArchStr.empty())
4479             return Archs;
4480           Archs.insert(ArchStr);
4481         }
4482       }
4483     } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) {
4484       for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4485         if (Arch == "all") {
4486           Archs.clear();
4487         } else {
4488           StringRef ArchStr = getCanonicalArchString(
4489               C, Args, Arch, TC->getTriple(), SuppressError);
4490           if (ArchStr.empty())
4491             return Archs;
4492           Archs.erase(ArchStr);
4493         }
4494       }
4495     }
4496   }
4497 
4498   if (auto ConflictingArchs =
4499           getConflictOffloadArchCombination(Archs, TC->getTriple())) {
4500     C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
4501         << ConflictingArchs->first << ConflictingArchs->second;
4502     C.setContainsError();
4503   }
4504 
4505   // Skip filling defaults if we're just querying what is availible.
4506   if (SuppressError)
4507     return Archs;
4508 
4509   if (Archs.empty()) {
4510     if (Kind == Action::OFK_Cuda)
4511       Archs.insert(CudaArchToString(CudaArch::CudaDefault));
4512     else if (Kind == Action::OFK_HIP)
4513       Archs.insert(CudaArchToString(CudaArch::HIPDefault));
4514     else if (Kind == Action::OFK_OpenMP)
4515       Archs.insert(StringRef());
4516   } else {
4517     Args.ClaimAllArgs(options::OPT_offload_arch_EQ);
4518     Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ);
4519   }
4520 
4521   return Archs;
4522 }
4523 
4524 Action *Driver::BuildOffloadingActions(Compilation &C,
4525                                        llvm::opt::DerivedArgList &Args,
4526                                        const InputTy &Input,
4527                                        Action *HostAction) const {
4528   // Don't build offloading actions if explicitly disabled or we do not have a
4529   // valid source input and compile action to embed it in. If preprocessing only
4530   // ignore embedding.
4531   if (offloadHostOnly() || !types::isSrcFile(Input.first) ||
4532       !(isa<CompileJobAction>(HostAction) ||
4533         getFinalPhase(Args) == phases::Preprocess))
4534     return HostAction;
4535 
4536   ActionList OffloadActions;
4537   OffloadAction::DeviceDependences DDeps;
4538 
4539   const Action::OffloadKind OffloadKinds[] = {
4540       Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP};
4541 
4542   for (Action::OffloadKind Kind : OffloadKinds) {
4543     SmallVector<const ToolChain *, 2> ToolChains;
4544     ActionList DeviceActions;
4545 
4546     auto TCRange = C.getOffloadToolChains(Kind);
4547     for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4548       ToolChains.push_back(TI->second);
4549 
4550     if (ToolChains.empty())
4551       continue;
4552 
4553     types::ID InputType = Input.first;
4554     const Arg *InputArg = Input.second;
4555 
4556     // The toolchain can be active for unsupported file types.
4557     if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) ||
4558         (Kind == Action::OFK_HIP && !types::isHIP(InputType)))
4559       continue;
4560 
4561     // Get the product of all bound architectures and toolchains.
4562     SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs;
4563     for (const ToolChain *TC : ToolChains)
4564       for (StringRef Arch : getOffloadArchs(C, Args, Kind, TC))
4565         TCAndArchs.push_back(std::make_pair(TC, Arch));
4566 
4567     for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I)
4568       DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4569 
4570     if (DeviceActions.empty())
4571       return HostAction;
4572 
4573     auto PL = types::getCompilationPhases(*this, Args, InputType);
4574 
4575     for (phases::ID Phase : PL) {
4576       if (Phase == phases::Link) {
4577         assert(Phase == PL.back() && "linking must be final compilation step.");
4578         break;
4579       }
4580 
4581       auto TCAndArch = TCAndArchs.begin();
4582       for (Action *&A : DeviceActions) {
4583         if (A->getType() == types::TY_Nothing)
4584           continue;
4585 
4586         // Propagate the ToolChain so we can use it in ConstructPhaseAction.
4587         A->propagateDeviceOffloadInfo(Kind, TCAndArch->second.data(),
4588                                       TCAndArch->first);
4589         A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4590 
4591         if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) &&
4592             Kind == Action::OFK_OpenMP &&
4593             HostAction->getType() != types::TY_Nothing) {
4594           // OpenMP offloading has a dependency on the host compile action to
4595           // identify which declarations need to be emitted. This shouldn't be
4596           // collapsed with any other actions so we can use it in the device.
4597           HostAction->setCannotBeCollapsedWithNextDependentAction();
4598           OffloadAction::HostDependence HDep(
4599               *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4600               TCAndArch->second.data(), Kind);
4601           OffloadAction::DeviceDependences DDep;
4602           DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4603           A = C.MakeAction<OffloadAction>(HDep, DDep);
4604         }
4605 
4606         ++TCAndArch;
4607       }
4608     }
4609 
4610     // Compiling HIP in non-RDC mode requires linking each action individually.
4611     for (Action *&A : DeviceActions) {
4612       if ((A->getType() != types::TY_Object &&
4613            A->getType() != types::TY_LTO_BC) ||
4614           Kind != Action::OFK_HIP ||
4615           Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
4616         continue;
4617       ActionList LinkerInput = {A};
4618       A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image);
4619     }
4620 
4621     auto TCAndArch = TCAndArchs.begin();
4622     for (Action *A : DeviceActions) {
4623       DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4624       OffloadAction::DeviceDependences DDep;
4625       DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4626       OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType()));
4627       ++TCAndArch;
4628     }
4629   }
4630 
4631   if (offloadDeviceOnly())
4632     return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing);
4633 
4634   if (OffloadActions.empty())
4635     return HostAction;
4636 
4637   OffloadAction::DeviceDependences DDep;
4638   if (C.isOffloadingHostKind(Action::OFK_Cuda) &&
4639       !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) {
4640     // If we are not in RDC-mode we just emit the final CUDA fatbinary for
4641     // each translation unit without requiring any linking.
4642     Action *FatbinAction =
4643         C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN);
4644     DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
4645              nullptr, Action::OFK_Cuda);
4646   } else if (C.isOffloadingHostKind(Action::OFK_HIP) &&
4647              !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4648                            false)) {
4649     // If we are not in RDC-mode we just emit the final HIP fatbinary for each
4650     // translation unit, linking each input individually.
4651     Action *FatbinAction =
4652         C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN);
4653     DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(),
4654              nullptr, Action::OFK_HIP);
4655   } else {
4656     // Package all the offloading actions into a single output that can be
4657     // embedded in the host and linked.
4658     Action *PackagerAction =
4659         C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image);
4660     DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4661              nullptr, C.getActiveOffloadKinds());
4662   }
4663 
4664   // If we are unable to embed a single device output into the host, we need to
4665   // add each device output as a host dependency to ensure they are still built.
4666   bool SingleDeviceOutput = !llvm::any_of(OffloadActions, [](Action *A) {
4667     return A->getType() == types::TY_Nothing;
4668   }) && isa<CompileJobAction>(HostAction);
4669   OffloadAction::HostDependence HDep(
4670       *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4671       /*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps);
4672   return C.MakeAction<OffloadAction>(HDep, SingleDeviceOutput ? DDep : DDeps);
4673 }
4674 
4675 Action *Driver::ConstructPhaseAction(
4676     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4677     Action::OffloadKind TargetDeviceOffloadKind) const {
4678   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4679 
4680   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4681   // encode this in the steps because the intermediate type depends on
4682   // arguments. Just special case here.
4683   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4684     return Input;
4685 
4686   // Build the appropriate action.
4687   switch (Phase) {
4688   case phases::Link:
4689     llvm_unreachable("link action invalid here.");
4690   case phases::IfsMerge:
4691     llvm_unreachable("ifsmerge action invalid here.");
4692   case phases::Preprocess: {
4693     types::ID OutputTy;
4694     // -M and -MM specify the dependency file name by altering the output type,
4695     // -if -MD and -MMD are not specified.
4696     if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4697         !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4698       OutputTy = types::TY_Dependencies;
4699     } else {
4700       OutputTy = Input->getType();
4701       // For these cases, the preprocessor is only translating forms, the Output
4702       // still needs preprocessing.
4703       if (!Args.hasFlag(options::OPT_frewrite_includes,
4704                         options::OPT_fno_rewrite_includes, false) &&
4705           !Args.hasFlag(options::OPT_frewrite_imports,
4706                         options::OPT_fno_rewrite_imports, false) &&
4707           !Args.hasFlag(options::OPT_fdirectives_only,
4708                         options::OPT_fno_directives_only, false) &&
4709           !CCGenDiagnostics)
4710         OutputTy = types::getPreprocessedType(OutputTy);
4711       assert(OutputTy != types::TY_INVALID &&
4712              "Cannot preprocess this input type!");
4713     }
4714     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4715   }
4716   case phases::Precompile: {
4717     // API extraction should not generate an actual precompilation action.
4718     if (Args.hasArg(options::OPT_extract_api))
4719       return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4720 
4721     types::ID OutputTy = getPrecompiledType(Input->getType());
4722     assert(OutputTy != types::TY_INVALID &&
4723            "Cannot precompile this input type!");
4724 
4725     // If we're given a module name, precompile header file inputs as a
4726     // module, not as a precompiled header.
4727     const char *ModName = nullptr;
4728     if (OutputTy == types::TY_PCH) {
4729       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4730         ModName = A->getValue();
4731       if (ModName)
4732         OutputTy = types::TY_ModuleFile;
4733     }
4734 
4735     if (Args.hasArg(options::OPT_fsyntax_only)) {
4736       // Syntax checks should not emit a PCH file
4737       OutputTy = types::TY_Nothing;
4738     }
4739 
4740     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4741   }
4742   case phases::Compile: {
4743     if (Args.hasArg(options::OPT_fsyntax_only))
4744       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4745     if (Args.hasArg(options::OPT_rewrite_objc))
4746       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4747     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4748       return C.MakeAction<CompileJobAction>(Input,
4749                                             types::TY_RewrittenLegacyObjC);
4750     if (Args.hasArg(options::OPT__analyze))
4751       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4752     if (Args.hasArg(options::OPT__migrate))
4753       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4754     if (Args.hasArg(options::OPT_emit_ast))
4755       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4756     if (Args.hasArg(options::OPT_module_file_info))
4757       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4758     if (Args.hasArg(options::OPT_verify_pch))
4759       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4760     if (Args.hasArg(options::OPT_extract_api))
4761       return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4762     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4763   }
4764   case phases::Backend: {
4765     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4766       types::ID Output;
4767       if (Args.hasArg(options::OPT_ffat_lto_objects) &&
4768           !Args.hasArg(options::OPT_emit_llvm))
4769         Output = types::TY_PP_Asm;
4770       else if (Args.hasArg(options::OPT_S))
4771         Output = types::TY_LTO_IR;
4772       else
4773         Output = types::TY_LTO_BC;
4774       return C.MakeAction<BackendJobAction>(Input, Output);
4775     }
4776     if (isUsingLTO(/* IsOffload */ true) &&
4777         TargetDeviceOffloadKind != Action::OFK_None) {
4778       types::ID Output =
4779           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4780       return C.MakeAction<BackendJobAction>(Input, Output);
4781     }
4782     if (Args.hasArg(options::OPT_emit_llvm) ||
4783         (((Input->getOffloadingToolChain() &&
4784            Input->getOffloadingToolChain()->getTriple().isAMDGPU()) ||
4785           TargetDeviceOffloadKind == Action::OFK_HIP) &&
4786          (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4787                        false) ||
4788           TargetDeviceOffloadKind == Action::OFK_OpenMP))) {
4789       types::ID Output =
4790           Args.hasArg(options::OPT_S) &&
4791                   (TargetDeviceOffloadKind == Action::OFK_None ||
4792                    offloadDeviceOnly() ||
4793                    (TargetDeviceOffloadKind == Action::OFK_HIP &&
4794                     !Args.hasFlag(options::OPT_offload_new_driver,
4795                                   options::OPT_no_offload_new_driver, false)))
4796               ? types::TY_LLVM_IR
4797               : types::TY_LLVM_BC;
4798       return C.MakeAction<BackendJobAction>(Input, Output);
4799     }
4800     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4801   }
4802   case phases::Assemble:
4803     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4804   }
4805 
4806   llvm_unreachable("invalid phase in ConstructPhaseAction");
4807 }
4808 
4809 void Driver::BuildJobs(Compilation &C) const {
4810   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4811 
4812   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4813 
4814   // It is an error to provide a -o option if we are making multiple output
4815   // files. There are exceptions:
4816   //
4817   // IfsMergeJob: when generating interface stubs enabled we want to be able to
4818   // generate the stub file at the same time that we generate the real
4819   // library/a.out. So when a .o, .so, etc are the output, with clang interface
4820   // stubs there will also be a .ifs and .ifso at the same location.
4821   //
4822   // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4823   // and -c is passed, we still want to be able to generate a .ifs file while
4824   // we are also generating .o files. So we allow more than one output file in
4825   // this case as well.
4826   //
4827   // OffloadClass of type TY_Nothing: device-only output will place many outputs
4828   // into a single offloading action. We should count all inputs to the action
4829   // as outputs. Also ignore device-only outputs if we're compiling with
4830   // -fsyntax-only.
4831   if (FinalOutput) {
4832     unsigned NumOutputs = 0;
4833     unsigned NumIfsOutputs = 0;
4834     for (const Action *A : C.getActions()) {
4835       if (A->getType() != types::TY_Nothing &&
4836           A->getType() != types::TY_DX_CONTAINER &&
4837           !(A->getKind() == Action::IfsMergeJobClass ||
4838             (A->getType() == clang::driver::types::TY_IFS_CPP &&
4839              A->getKind() == clang::driver::Action::CompileJobClass &&
4840              0 == NumIfsOutputs++) ||
4841             (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4842              A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4843         ++NumOutputs;
4844       else if (A->getKind() == Action::OffloadClass &&
4845                A->getType() == types::TY_Nothing &&
4846                !C.getArgs().hasArg(options::OPT_fsyntax_only))
4847         NumOutputs += A->size();
4848     }
4849 
4850     if (NumOutputs > 1) {
4851       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4852       FinalOutput = nullptr;
4853     }
4854   }
4855 
4856   const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4857 
4858   // Collect the list of architectures.
4859   llvm::StringSet<> ArchNames;
4860   if (RawTriple.isOSBinFormatMachO())
4861     for (const Arg *A : C.getArgs())
4862       if (A->getOption().matches(options::OPT_arch))
4863         ArchNames.insert(A->getValue());
4864 
4865   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4866   std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4867   for (Action *A : C.getActions()) {
4868     // If we are linking an image for multiple archs then the linker wants
4869     // -arch_multiple and -final_output <final image name>. Unfortunately, this
4870     // doesn't fit in cleanly because we have to pass this information down.
4871     //
4872     // FIXME: This is a hack; find a cleaner way to integrate this into the
4873     // process.
4874     const char *LinkingOutput = nullptr;
4875     if (isa<LipoJobAction>(A)) {
4876       if (FinalOutput)
4877         LinkingOutput = FinalOutput->getValue();
4878       else
4879         LinkingOutput = getDefaultImageName();
4880     }
4881 
4882     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4883                        /*BoundArch*/ StringRef(),
4884                        /*AtTopLevel*/ true,
4885                        /*MultipleArchs*/ ArchNames.size() > 1,
4886                        /*LinkingOutput*/ LinkingOutput, CachedResults,
4887                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
4888   }
4889 
4890   // If we have more than one job, then disable integrated-cc1 for now. Do this
4891   // also when we need to report process execution statistics.
4892   if (C.getJobs().size() > 1 || CCPrintProcessStats)
4893     for (auto &J : C.getJobs())
4894       J.InProcess = false;
4895 
4896   if (CCPrintProcessStats) {
4897     C.setPostCallback([=](const Command &Cmd, int Res) {
4898       std::optional<llvm::sys::ProcessStatistics> ProcStat =
4899           Cmd.getProcessStatistics();
4900       if (!ProcStat)
4901         return;
4902 
4903       const char *LinkingOutput = nullptr;
4904       if (FinalOutput)
4905         LinkingOutput = FinalOutput->getValue();
4906       else if (!Cmd.getOutputFilenames().empty())
4907         LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4908       else
4909         LinkingOutput = getDefaultImageName();
4910 
4911       if (CCPrintStatReportFilename.empty()) {
4912         using namespace llvm;
4913         // Human readable output.
4914         outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4915                << "output=" << LinkingOutput;
4916         outs() << ", total="
4917                << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4918                << ", user="
4919                << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4920                << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4921       } else {
4922         // CSV format.
4923         std::string Buffer;
4924         llvm::raw_string_ostream Out(Buffer);
4925         llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4926                             /*Quote*/ true);
4927         Out << ',';
4928         llvm::sys::printArg(Out, LinkingOutput, true);
4929         Out << ',' << ProcStat->TotalTime.count() << ','
4930             << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4931             << '\n';
4932         Out.flush();
4933         std::error_code EC;
4934         llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
4935                                 llvm::sys::fs::OF_Append |
4936                                     llvm::sys::fs::OF_Text);
4937         if (EC)
4938           return;
4939         auto L = OS.lock();
4940         if (!L) {
4941           llvm::errs() << "ERROR: Cannot lock file "
4942                        << CCPrintStatReportFilename << ": "
4943                        << toString(L.takeError()) << "\n";
4944           return;
4945         }
4946         OS << Buffer;
4947         OS.flush();
4948       }
4949     });
4950   }
4951 
4952   // If the user passed -Qunused-arguments or there were errors, don't warn
4953   // about any unused arguments.
4954   if (Diags.hasErrorOccurred() ||
4955       C.getArgs().hasArg(options::OPT_Qunused_arguments))
4956     return;
4957 
4958   // Claim -fdriver-only here.
4959   (void)C.getArgs().hasArg(options::OPT_fdriver_only);
4960   // Claim -### here.
4961   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4962 
4963   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4964   (void)C.getArgs().hasArg(options::OPT_driver_mode);
4965   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4966 
4967   bool HasAssembleJob = llvm::any_of(C.getJobs(), [](auto &J) {
4968     // Match ClangAs and other derived assemblers of Tool. ClangAs uses a
4969     // longer ShortName "clang integrated assembler" while other assemblers just
4970     // use "assembler".
4971     return strstr(J.getCreator().getShortName(), "assembler");
4972   });
4973   for (Arg *A : C.getArgs()) {
4974     // FIXME: It would be nice to be able to send the argument to the
4975     // DiagnosticsEngine, so that extra values, position, and so on could be
4976     // printed.
4977     if (!A->isClaimed()) {
4978       if (A->getOption().hasFlag(options::NoArgumentUnused))
4979         continue;
4980 
4981       // Suppress the warning automatically if this is just a flag, and it is an
4982       // instance of an argument we already claimed.
4983       const Option &Opt = A->getOption();
4984       if (Opt.getKind() == Option::FlagClass) {
4985         bool DuplicateClaimed = false;
4986 
4987         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4988           if (AA->isClaimed()) {
4989             DuplicateClaimed = true;
4990             break;
4991           }
4992         }
4993 
4994         if (DuplicateClaimed)
4995           continue;
4996       }
4997 
4998       // In clang-cl, don't mention unknown arguments here since they have
4999       // already been warned about.
5000       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) {
5001         if (A->getOption().hasFlag(options::TargetSpecific) &&
5002             !A->isIgnoredTargetSpecific() && !HasAssembleJob &&
5003             // When for example -### or -v is used
5004             // without a file, target specific options are not
5005             // consumed/validated.
5006             // Instead emitting an error emit a warning instead.
5007             !C.getActions().empty()) {
5008           Diag(diag::err_drv_unsupported_opt_for_target)
5009               << A->getSpelling() << getTargetTriple();
5010         } else {
5011           Diag(clang::diag::warn_drv_unused_argument)
5012               << A->getAsString(C.getArgs());
5013         }
5014       }
5015     }
5016   }
5017 }
5018 
5019 namespace {
5020 /// Utility class to control the collapse of dependent actions and select the
5021 /// tools accordingly.
5022 class ToolSelector final {
5023   /// The tool chain this selector refers to.
5024   const ToolChain &TC;
5025 
5026   /// The compilation this selector refers to.
5027   const Compilation &C;
5028 
5029   /// The base action this selector refers to.
5030   const JobAction *BaseAction;
5031 
5032   /// Set to true if the current toolchain refers to host actions.
5033   bool IsHostSelector;
5034 
5035   /// Set to true if save-temps and embed-bitcode functionalities are active.
5036   bool SaveTemps;
5037   bool EmbedBitcode;
5038 
5039   /// Get previous dependent action or null if that does not exist. If
5040   /// \a CanBeCollapsed is false, that action must be legal to collapse or
5041   /// null will be returned.
5042   const JobAction *getPrevDependentAction(const ActionList &Inputs,
5043                                           ActionList &SavedOffloadAction,
5044                                           bool CanBeCollapsed = true) {
5045     // An option can be collapsed only if it has a single input.
5046     if (Inputs.size() != 1)
5047       return nullptr;
5048 
5049     Action *CurAction = *Inputs.begin();
5050     if (CanBeCollapsed &&
5051         !CurAction->isCollapsingWithNextDependentActionLegal())
5052       return nullptr;
5053 
5054     // If the input action is an offload action. Look through it and save any
5055     // offload action that can be dropped in the event of a collapse.
5056     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
5057       // If the dependent action is a device action, we will attempt to collapse
5058       // only with other device actions. Otherwise, we would do the same but
5059       // with host actions only.
5060       if (!IsHostSelector) {
5061         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
5062           CurAction =
5063               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
5064           if (CanBeCollapsed &&
5065               !CurAction->isCollapsingWithNextDependentActionLegal())
5066             return nullptr;
5067           SavedOffloadAction.push_back(OA);
5068           return dyn_cast<JobAction>(CurAction);
5069         }
5070       } else if (OA->hasHostDependence()) {
5071         CurAction = OA->getHostDependence();
5072         if (CanBeCollapsed &&
5073             !CurAction->isCollapsingWithNextDependentActionLegal())
5074           return nullptr;
5075         SavedOffloadAction.push_back(OA);
5076         return dyn_cast<JobAction>(CurAction);
5077       }
5078       return nullptr;
5079     }
5080 
5081     return dyn_cast<JobAction>(CurAction);
5082   }
5083 
5084   /// Return true if an assemble action can be collapsed.
5085   bool canCollapseAssembleAction() const {
5086     return TC.useIntegratedAs() && !SaveTemps &&
5087            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
5088            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
5089            !C.getArgs().hasArg(options::OPT__SLASH_Fa) &&
5090            !C.getArgs().hasArg(options::OPT_dxc_Fc);
5091   }
5092 
5093   /// Return true if a preprocessor action can be collapsed.
5094   bool canCollapsePreprocessorAction() const {
5095     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
5096            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
5097            !C.getArgs().hasArg(options::OPT_rewrite_objc);
5098   }
5099 
5100   /// Struct that relates an action with the offload actions that would be
5101   /// collapsed with it.
5102   struct JobActionInfo final {
5103     /// The action this info refers to.
5104     const JobAction *JA = nullptr;
5105     /// The offload actions we need to take care off if this action is
5106     /// collapsed.
5107     ActionList SavedOffloadAction;
5108   };
5109 
5110   /// Append collapsed offload actions from the give nnumber of elements in the
5111   /// action info array.
5112   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
5113                                            ArrayRef<JobActionInfo> &ActionInfo,
5114                                            unsigned ElementNum) {
5115     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
5116     for (unsigned I = 0; I < ElementNum; ++I)
5117       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
5118                                     ActionInfo[I].SavedOffloadAction.end());
5119   }
5120 
5121   /// Functions that attempt to perform the combining. They detect if that is
5122   /// legal, and if so they update the inputs \a Inputs and the offload action
5123   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
5124   /// the combined action is returned. If the combining is not legal or if the
5125   /// tool does not exist, null is returned.
5126   /// Currently three kinds of collapsing are supported:
5127   ///  - Assemble + Backend + Compile;
5128   ///  - Assemble + Backend ;
5129   ///  - Backend + Compile.
5130   const Tool *
5131   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5132                                 ActionList &Inputs,
5133                                 ActionList &CollapsedOffloadAction) {
5134     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
5135       return nullptr;
5136     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5137     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5138     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
5139     if (!AJ || !BJ || !CJ)
5140       return nullptr;
5141 
5142     // Get compiler tool.
5143     const Tool *T = TC.SelectTool(*CJ);
5144     if (!T)
5145       return nullptr;
5146 
5147     // Can't collapse if we don't have codegen support unless we are
5148     // emitting LLVM IR.
5149     bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5150     if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5151       return nullptr;
5152 
5153     // When using -fembed-bitcode, it is required to have the same tool (clang)
5154     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
5155     if (EmbedBitcode) {
5156       const Tool *BT = TC.SelectTool(*BJ);
5157       if (BT == T)
5158         return nullptr;
5159     }
5160 
5161     if (!T->hasIntegratedAssembler())
5162       return nullptr;
5163 
5164     Inputs = CJ->getInputs();
5165     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5166                                  /*NumElements=*/3);
5167     return T;
5168   }
5169   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
5170                                      ActionList &Inputs,
5171                                      ActionList &CollapsedOffloadAction) {
5172     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
5173       return nullptr;
5174     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5175     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5176     if (!AJ || !BJ)
5177       return nullptr;
5178 
5179     // Get backend tool.
5180     const Tool *T = TC.SelectTool(*BJ);
5181     if (!T)
5182       return nullptr;
5183 
5184     if (!T->hasIntegratedAssembler())
5185       return nullptr;
5186 
5187     Inputs = BJ->getInputs();
5188     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5189                                  /*NumElements=*/2);
5190     return T;
5191   }
5192   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5193                                     ActionList &Inputs,
5194                                     ActionList &CollapsedOffloadAction) {
5195     if (ActionInfo.size() < 2)
5196       return nullptr;
5197     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
5198     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
5199     if (!BJ || !CJ)
5200       return nullptr;
5201 
5202     // Check if the initial input (to the compile job or its predessor if one
5203     // exists) is LLVM bitcode. In that case, no preprocessor step is required
5204     // and we can still collapse the compile and backend jobs when we have
5205     // -save-temps. I.e. there is no need for a separate compile job just to
5206     // emit unoptimized bitcode.
5207     bool InputIsBitcode = true;
5208     for (size_t i = 1; i < ActionInfo.size(); i++)
5209       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
5210           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
5211         InputIsBitcode = false;
5212         break;
5213       }
5214     if (!InputIsBitcode && !canCollapsePreprocessorAction())
5215       return nullptr;
5216 
5217     // Get compiler tool.
5218     const Tool *T = TC.SelectTool(*CJ);
5219     if (!T)
5220       return nullptr;
5221 
5222     // Can't collapse if we don't have codegen support unless we are
5223     // emitting LLVM IR.
5224     bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5225     if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5226       return nullptr;
5227 
5228     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
5229       return nullptr;
5230 
5231     Inputs = CJ->getInputs();
5232     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5233                                  /*NumElements=*/2);
5234     return T;
5235   }
5236 
5237   /// Updates the inputs if the obtained tool supports combining with
5238   /// preprocessor action, and the current input is indeed a preprocessor
5239   /// action. If combining results in the collapse of offloading actions, those
5240   /// are appended to \a CollapsedOffloadAction.
5241   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5242                                ActionList &CollapsedOffloadAction) {
5243     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5244       return;
5245 
5246     // Attempt to get a preprocessor action dependence.
5247     ActionList PreprocessJobOffloadActions;
5248     ActionList NewInputs;
5249     for (Action *A : Inputs) {
5250       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
5251       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
5252         NewInputs.push_back(A);
5253         continue;
5254       }
5255 
5256       // This is legal to combine. Append any offload action we found and add the
5257       // current input to preprocessor inputs.
5258       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
5259                                     PreprocessJobOffloadActions.end());
5260       NewInputs.append(PJ->input_begin(), PJ->input_end());
5261     }
5262     Inputs = NewInputs;
5263   }
5264 
5265 public:
5266   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5267                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5268       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5269         EmbedBitcode(EmbedBitcode) {
5270     assert(BaseAction && "Invalid base action.");
5271     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5272   }
5273 
5274   /// Check if a chain of actions can be combined and return the tool that can
5275   /// handle the combination of actions. The pointer to the current inputs \a
5276   /// Inputs and the list of offload actions \a CollapsedOffloadActions
5277   /// connected to collapsed actions are updated accordingly. The latter enables
5278   /// the caller of the selector to process them afterwards instead of just
5279   /// dropping them. If no suitable tool is found, null will be returned.
5280   const Tool *getTool(ActionList &Inputs,
5281                       ActionList &CollapsedOffloadAction) {
5282     //
5283     // Get the largest chain of actions that we could combine.
5284     //
5285 
5286     SmallVector<JobActionInfo, 5> ActionChain(1);
5287     ActionChain.back().JA = BaseAction;
5288     while (ActionChain.back().JA) {
5289       const Action *CurAction = ActionChain.back().JA;
5290 
5291       // Grow the chain by one element.
5292       ActionChain.resize(ActionChain.size() + 1);
5293       JobActionInfo &AI = ActionChain.back();
5294 
5295       // Attempt to fill it with the
5296       AI.JA =
5297           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
5298     }
5299 
5300     // Pop the last action info as it could not be filled.
5301     ActionChain.pop_back();
5302 
5303     //
5304     // Attempt to combine actions. If all combining attempts failed, just return
5305     // the tool of the provided action. At the end we attempt to combine the
5306     // action with any preprocessor action it may depend on.
5307     //
5308 
5309     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
5310                                                   CollapsedOffloadAction);
5311     if (!T)
5312       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
5313     if (!T)
5314       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
5315     if (!T) {
5316       Inputs = BaseAction->getInputs();
5317       T = TC.SelectTool(*BaseAction);
5318     }
5319 
5320     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5321     return T;
5322   }
5323 };
5324 }
5325 
5326 /// Return a string that uniquely identifies the result of a job. The bound arch
5327 /// is not necessarily represented in the toolchain's triple -- for example,
5328 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
5329 /// Also, we need to add the offloading device kind, as the same tool chain can
5330 /// be used for host and device for some programming models, e.g. OpenMP.
5331 static std::string GetTriplePlusArchString(const ToolChain *TC,
5332                                            StringRef BoundArch,
5333                                            Action::OffloadKind OffloadKind) {
5334   std::string TriplePlusArch = TC->getTriple().normalize();
5335   if (!BoundArch.empty()) {
5336     TriplePlusArch += "-";
5337     TriplePlusArch += BoundArch;
5338   }
5339   TriplePlusArch += "-";
5340   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
5341   return TriplePlusArch;
5342 }
5343 
5344 InputInfoList Driver::BuildJobsForAction(
5345     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5346     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5347     std::map<std::pair<const Action *, std::string>, InputInfoList>
5348         &CachedResults,
5349     Action::OffloadKind TargetDeviceOffloadKind) const {
5350   std::pair<const Action *, std::string> ActionTC = {
5351       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5352   auto CachedResult = CachedResults.find(ActionTC);
5353   if (CachedResult != CachedResults.end()) {
5354     return CachedResult->second;
5355   }
5356   InputInfoList Result = BuildJobsForActionNoCache(
5357       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5358       CachedResults, TargetDeviceOffloadKind);
5359   CachedResults[ActionTC] = Result;
5360   return Result;
5361 }
5362 
5363 static void handleTimeTrace(Compilation &C, const ArgList &Args,
5364                             const JobAction *JA, const char *BaseInput,
5365                             const InputInfo &Result) {
5366   Arg *A =
5367       Args.getLastArg(options::OPT_ftime_trace, options::OPT_ftime_trace_EQ);
5368   if (!A)
5369     return;
5370   SmallString<128> Path;
5371   if (A->getOption().matches(options::OPT_ftime_trace_EQ)) {
5372     Path = A->getValue();
5373     if (llvm::sys::fs::is_directory(Path)) {
5374       SmallString<128> Tmp(Result.getFilename());
5375       llvm::sys::path::replace_extension(Tmp, "json");
5376       llvm::sys::path::append(Path, llvm::sys::path::filename(Tmp));
5377     }
5378   } else {
5379     if (Arg *DumpDir = Args.getLastArgNoClaim(options::OPT_dumpdir)) {
5380       // The trace file is ${dumpdir}${basename}.json. Note that dumpdir may not
5381       // end with a path separator.
5382       Path = DumpDir->getValue();
5383       Path += llvm::sys::path::filename(BaseInput);
5384     } else {
5385       Path = Result.getFilename();
5386     }
5387     llvm::sys::path::replace_extension(Path, "json");
5388   }
5389   const char *ResultFile = C.getArgs().MakeArgString(Path);
5390   C.addTimeTraceFile(ResultFile, JA);
5391   C.addResultFile(ResultFile, JA);
5392 }
5393 
5394 InputInfoList Driver::BuildJobsForActionNoCache(
5395     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5396     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5397     std::map<std::pair<const Action *, std::string>, InputInfoList>
5398         &CachedResults,
5399     Action::OffloadKind TargetDeviceOffloadKind) const {
5400   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5401 
5402   InputInfoList OffloadDependencesInputInfo;
5403   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5404   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
5405     // The 'Darwin' toolchain is initialized only when its arguments are
5406     // computed. Get the default arguments for OFK_None to ensure that
5407     // initialization is performed before processing the offload action.
5408     // FIXME: Remove when darwin's toolchain is initialized during construction.
5409     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
5410 
5411     // The offload action is expected to be used in four different situations.
5412     //
5413     // a) Set a toolchain/architecture/kind for a host action:
5414     //    Host Action 1 -> OffloadAction -> Host Action 2
5415     //
5416     // b) Set a toolchain/architecture/kind for a device action;
5417     //    Device Action 1 -> OffloadAction -> Device Action 2
5418     //
5419     // c) Specify a device dependence to a host action;
5420     //    Device Action 1  _
5421     //                      \
5422     //      Host Action 1  ---> OffloadAction -> Host Action 2
5423     //
5424     // d) Specify a host dependence to a device action.
5425     //      Host Action 1  _
5426     //                      \
5427     //    Device Action 1  ---> OffloadAction -> Device Action 2
5428     //
5429     // For a) and b), we just return the job generated for the dependences. For
5430     // c) and d) we override the current action with the host/device dependence
5431     // if the current toolchain is host/device and set the offload dependences
5432     // info with the jobs obtained from the device/host dependence(s).
5433 
5434     // If there is a single device option or has no host action, just generate
5435     // the job for it.
5436     if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) {
5437       InputInfoList DevA;
5438       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
5439                                        const char *DepBoundArch) {
5440         DevA.append(BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
5441                                        /*MultipleArchs*/ !!DepBoundArch,
5442                                        LinkingOutput, CachedResults,
5443                                        DepA->getOffloadingDeviceKind()));
5444       });
5445       return DevA;
5446     }
5447 
5448     // If 'Action 2' is host, we generate jobs for the device dependences and
5449     // override the current action with the host dependence. Otherwise, we
5450     // generate the host dependences and override the action with the device
5451     // dependence. The dependences can't therefore be a top-level action.
5452     OA->doOnEachDependence(
5453         /*IsHostDependence=*/BuildingForOffloadDevice,
5454         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5455           OffloadDependencesInputInfo.append(BuildJobsForAction(
5456               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
5457               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5458               DepA->getOffloadingDeviceKind()));
5459         });
5460 
5461     A = BuildingForOffloadDevice
5462             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5463             : OA->getHostDependence();
5464 
5465     // We may have already built this action as a part of the offloading
5466     // toolchain, return the cached input if so.
5467     std::pair<const Action *, std::string> ActionTC = {
5468         OA->getHostDependence(),
5469         GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5470     if (CachedResults.find(ActionTC) != CachedResults.end()) {
5471       InputInfoList Inputs = CachedResults[ActionTC];
5472       Inputs.append(OffloadDependencesInputInfo);
5473       return Inputs;
5474     }
5475   }
5476 
5477   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
5478     // FIXME: It would be nice to not claim this here; maybe the old scheme of
5479     // just using Args was better?
5480     const Arg &Input = IA->getInputArg();
5481     Input.claim();
5482     if (Input.getOption().matches(options::OPT_INPUT)) {
5483       const char *Name = Input.getValue();
5484       return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5485     }
5486     return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5487   }
5488 
5489   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
5490     const ToolChain *TC;
5491     StringRef ArchName = BAA->getArchName();
5492 
5493     if (!ArchName.empty())
5494       TC = &getToolChain(C.getArgs(),
5495                          computeTargetTriple(*this, TargetTriple,
5496                                              C.getArgs(), ArchName));
5497     else
5498       TC = &C.getDefaultToolChain();
5499 
5500     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
5501                               MultipleArchs, LinkingOutput, CachedResults,
5502                               TargetDeviceOffloadKind);
5503   }
5504 
5505 
5506   ActionList Inputs = A->getInputs();
5507 
5508   const JobAction *JA = cast<JobAction>(A);
5509   ActionList CollapsedOffloadActions;
5510 
5511   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5512                   embedBitcodeInObject() && !isUsingLTO());
5513   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
5514 
5515   if (!T)
5516     return {InputInfo()};
5517 
5518   // If we've collapsed action list that contained OffloadAction we
5519   // need to build jobs for host/device-side inputs it may have held.
5520   for (const auto *OA : CollapsedOffloadActions)
5521     cast<OffloadAction>(OA)->doOnEachDependence(
5522         /*IsHostDependence=*/BuildingForOffloadDevice,
5523         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5524           OffloadDependencesInputInfo.append(BuildJobsForAction(
5525               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
5526               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5527               DepA->getOffloadingDeviceKind()));
5528         });
5529 
5530   // Only use pipes when there is exactly one input.
5531   InputInfoList InputInfos;
5532   for (const Action *Input : Inputs) {
5533     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5534     // shouldn't get temporary output names.
5535     // FIXME: Clean this up.
5536     bool SubJobAtTopLevel =
5537         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5538     InputInfos.append(BuildJobsForAction(
5539         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5540         CachedResults, A->getOffloadingDeviceKind()));
5541   }
5542 
5543   // Always use the first file input as the base input.
5544   const char *BaseInput = InputInfos[0].getBaseInput();
5545   for (auto &Info : InputInfos) {
5546     if (Info.isFilename()) {
5547       BaseInput = Info.getBaseInput();
5548       break;
5549     }
5550   }
5551 
5552   // ... except dsymutil actions, which use their actual input as the base
5553   // input.
5554   if (JA->getType() == types::TY_dSYM)
5555     BaseInput = InputInfos[0].getFilename();
5556 
5557   // Append outputs of offload device jobs to the input list
5558   if (!OffloadDependencesInputInfo.empty())
5559     InputInfos.append(OffloadDependencesInputInfo.begin(),
5560                       OffloadDependencesInputInfo.end());
5561 
5562   // Set the effective triple of the toolchain for the duration of this job.
5563   llvm::Triple EffectiveTriple;
5564   const ToolChain &ToolTC = T->getToolChain();
5565   const ArgList &Args =
5566       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5567   if (InputInfos.size() != 1) {
5568     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5569   } else {
5570     // Pass along the input type if it can be unambiguously determined.
5571     EffectiveTriple = llvm::Triple(
5572         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5573   }
5574   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5575 
5576   // Determine the place to write output to, if any.
5577   InputInfo Result;
5578   InputInfoList UnbundlingResults;
5579   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5580     // If we have an unbundling job, we need to create results for all the
5581     // outputs. We also update the results cache so that other actions using
5582     // this unbundling action can get the right results.
5583     for (auto &UI : UA->getDependentActionsInfo()) {
5584       assert(UI.DependentOffloadKind != Action::OFK_None &&
5585              "Unbundling with no offloading??");
5586 
5587       // Unbundling actions are never at the top level. When we generate the
5588       // offloading prefix, we also do that for the host file because the
5589       // unbundling action does not change the type of the output which can
5590       // cause a overwrite.
5591       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5592           UI.DependentOffloadKind,
5593           UI.DependentToolChain->getTriple().normalize(),
5594           /*CreatePrefixForHost=*/true);
5595       auto CurI = InputInfo(
5596           UA,
5597           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5598                              /*AtTopLevel=*/false,
5599                              MultipleArchs ||
5600                                  UI.DependentOffloadKind == Action::OFK_HIP,
5601                              OffloadingPrefix),
5602           BaseInput);
5603       // Save the unbundling result.
5604       UnbundlingResults.push_back(CurI);
5605 
5606       // Get the unique string identifier for this dependence and cache the
5607       // result.
5608       StringRef Arch;
5609       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5610         if (UI.DependentOffloadKind == Action::OFK_Host)
5611           Arch = StringRef();
5612         else
5613           Arch = UI.DependentBoundArch;
5614       } else
5615         Arch = BoundArch;
5616 
5617       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5618                                                 UI.DependentOffloadKind)}] = {
5619           CurI};
5620     }
5621 
5622     // Now that we have all the results generated, select the one that should be
5623     // returned for the current depending action.
5624     std::pair<const Action *, std::string> ActionTC = {
5625         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5626     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5627            "Result does not exist??");
5628     Result = CachedResults[ActionTC].front();
5629   } else if (JA->getType() == types::TY_Nothing)
5630     Result = {InputInfo(A, BaseInput)};
5631   else {
5632     // We only have to generate a prefix for the host if this is not a top-level
5633     // action.
5634     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5635         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5636         /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) ||
5637             !(A->getOffloadingHostActiveKinds() == Action::OFK_None ||
5638               AtTopLevel));
5639     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5640                                              AtTopLevel, MultipleArchs,
5641                                              OffloadingPrefix),
5642                        BaseInput);
5643     if (T->canEmitIR() && OffloadingPrefix.empty())
5644       handleTimeTrace(C, Args, JA, BaseInput, Result);
5645   }
5646 
5647   if (CCCPrintBindings && !CCGenDiagnostics) {
5648     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5649                  << " - \"" << T->getName() << "\", inputs: [";
5650     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5651       llvm::errs() << InputInfos[i].getAsString();
5652       if (i + 1 != e)
5653         llvm::errs() << ", ";
5654     }
5655     if (UnbundlingResults.empty())
5656       llvm::errs() << "], output: " << Result.getAsString() << "\n";
5657     else {
5658       llvm::errs() << "], outputs: [";
5659       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5660         llvm::errs() << UnbundlingResults[i].getAsString();
5661         if (i + 1 != e)
5662           llvm::errs() << ", ";
5663       }
5664       llvm::errs() << "] \n";
5665     }
5666   } else {
5667     if (UnbundlingResults.empty())
5668       T->ConstructJob(
5669           C, *JA, Result, InputInfos,
5670           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5671           LinkingOutput);
5672     else
5673       T->ConstructJobMultipleOutputs(
5674           C, *JA, UnbundlingResults, InputInfos,
5675           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5676           LinkingOutput);
5677   }
5678   return {Result};
5679 }
5680 
5681 const char *Driver::getDefaultImageName() const {
5682   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5683   return Target.isOSWindows() ? "a.exe" : "a.out";
5684 }
5685 
5686 /// Create output filename based on ArgValue, which could either be a
5687 /// full filename, filename without extension, or a directory. If ArgValue
5688 /// does not provide a filename, then use BaseName, and use the extension
5689 /// suitable for FileType.
5690 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5691                                         StringRef BaseName,
5692                                         types::ID FileType) {
5693   SmallString<128> Filename = ArgValue;
5694 
5695   if (ArgValue.empty()) {
5696     // If the argument is empty, output to BaseName in the current dir.
5697     Filename = BaseName;
5698   } else if (llvm::sys::path::is_separator(Filename.back())) {
5699     // If the argument is a directory, output to BaseName in that dir.
5700     llvm::sys::path::append(Filename, BaseName);
5701   }
5702 
5703   if (!llvm::sys::path::has_extension(ArgValue)) {
5704     // If the argument didn't provide an extension, then set it.
5705     const char *Extension = types::getTypeTempSuffix(FileType, true);
5706 
5707     if (FileType == types::TY_Image &&
5708         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5709       // The output file is a dll.
5710       Extension = "dll";
5711     }
5712 
5713     llvm::sys::path::replace_extension(Filename, Extension);
5714   }
5715 
5716   return Args.MakeArgString(Filename.c_str());
5717 }
5718 
5719 static bool HasPreprocessOutput(const Action &JA) {
5720   if (isa<PreprocessJobAction>(JA))
5721     return true;
5722   if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5723     return true;
5724   if (isa<OffloadBundlingJobAction>(JA) &&
5725       HasPreprocessOutput(*(JA.getInputs()[0])))
5726     return true;
5727   return false;
5728 }
5729 
5730 const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix,
5731                                    StringRef Suffix, bool MultipleArchs,
5732                                    StringRef BoundArch,
5733                                    bool NeedUniqueDirectory) const {
5734   SmallString<128> TmpName;
5735   Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5736   std::optional<std::string> CrashDirectory =
5737       CCGenDiagnostics && A
5738           ? std::string(A->getValue())
5739           : llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR");
5740   if (CrashDirectory) {
5741     if (!getVFS().exists(*CrashDirectory))
5742       llvm::sys::fs::create_directories(*CrashDirectory);
5743     SmallString<128> Path(*CrashDirectory);
5744     llvm::sys::path::append(Path, Prefix);
5745     const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%";
5746     if (std::error_code EC =
5747             llvm::sys::fs::createUniqueFile(Path + Middle + Suffix, TmpName)) {
5748       Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5749       return "";
5750     }
5751   } else {
5752     if (MultipleArchs && !BoundArch.empty()) {
5753       if (NeedUniqueDirectory) {
5754         TmpName = GetTemporaryDirectory(Prefix);
5755         llvm::sys::path::append(TmpName,
5756                                 Twine(Prefix) + "-" + BoundArch + "." + Suffix);
5757       } else {
5758         TmpName =
5759             GetTemporaryPath((Twine(Prefix) + "-" + BoundArch).str(), Suffix);
5760       }
5761 
5762     } else {
5763       TmpName = GetTemporaryPath(Prefix, Suffix);
5764     }
5765   }
5766   return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5767 }
5768 
5769 // Calculate the output path of the module file when compiling a module unit
5770 // with the `-fmodule-output` option or `-fmodule-output=` option specified.
5771 // The behavior is:
5772 // - If `-fmodule-output=` is specfied, then the module file is
5773 //   writing to the value.
5774 // - Otherwise if the output object file of the module unit is specified, the
5775 // output path
5776 //   of the module file should be the same with the output object file except
5777 //   the corresponding suffix. This requires both `-o` and `-c` are specified.
5778 // - Otherwise, the output path of the module file will be the same with the
5779 //   input with the corresponding suffix.
5780 static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA,
5781                                        const char *BaseInput) {
5782   assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile &&
5783          (C.getArgs().hasArg(options::OPT_fmodule_output) ||
5784           C.getArgs().hasArg(options::OPT_fmodule_output_EQ)));
5785 
5786   if (Arg *ModuleOutputEQ =
5787           C.getArgs().getLastArg(options::OPT_fmodule_output_EQ))
5788     return C.addResultFile(ModuleOutputEQ->getValue(), &JA);
5789 
5790   SmallString<64> OutputPath;
5791   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5792   if (FinalOutput && C.getArgs().hasArg(options::OPT_c))
5793     OutputPath = FinalOutput->getValue();
5794   else
5795     OutputPath = BaseInput;
5796 
5797   const char *Extension = types::getTypeTempSuffix(JA.getType());
5798   llvm::sys::path::replace_extension(OutputPath, Extension);
5799   return C.addResultFile(C.getArgs().MakeArgString(OutputPath.c_str()), &JA);
5800 }
5801 
5802 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5803                                        const char *BaseInput,
5804                                        StringRef OrigBoundArch, bool AtTopLevel,
5805                                        bool MultipleArchs,
5806                                        StringRef OffloadingPrefix) const {
5807   std::string BoundArch = OrigBoundArch.str();
5808   if (is_style_windows(llvm::sys::path::Style::native)) {
5809     // BoundArch may contains ':', which is invalid in file names on Windows,
5810     // therefore replace it with '%'.
5811     std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5812   }
5813 
5814   llvm::PrettyStackTraceString CrashInfo("Computing output path");
5815   // Output to a user requested destination?
5816   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5817     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5818       return C.addResultFile(FinalOutput->getValue(), &JA);
5819   }
5820 
5821   // For /P, preprocess to file named after BaseInput.
5822   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5823     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5824     StringRef BaseName = llvm::sys::path::filename(BaseInput);
5825     StringRef NameArg;
5826     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5827       NameArg = A->getValue();
5828     return C.addResultFile(
5829         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5830         &JA);
5831   }
5832 
5833   // Default to writing to stdout?
5834   if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5835     return "-";
5836   }
5837 
5838   if (JA.getType() == types::TY_ModuleFile &&
5839       C.getArgs().getLastArg(options::OPT_module_file_info)) {
5840     return "-";
5841   }
5842 
5843   if (JA.getType() == types::TY_PP_Asm &&
5844       C.getArgs().hasArg(options::OPT_dxc_Fc)) {
5845     StringRef FcValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fc);
5846     // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5847     // handle this as part of the SLASH_Fa handling below.
5848     return C.addResultFile(C.getArgs().MakeArgString(FcValue.str()), &JA);
5849   }
5850 
5851   if (JA.getType() == types::TY_Object &&
5852       C.getArgs().hasArg(options::OPT_dxc_Fo)) {
5853     StringRef FoValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fo);
5854     // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5855     // handle this as part of the SLASH_Fo handling below.
5856     return C.addResultFile(C.getArgs().MakeArgString(FoValue.str()), &JA);
5857   }
5858 
5859   // Is this the assembly listing for /FA?
5860   if (JA.getType() == types::TY_PP_Asm &&
5861       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5862        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5863     // Use /Fa and the input filename to determine the asm file name.
5864     StringRef BaseName = llvm::sys::path::filename(BaseInput);
5865     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5866     return C.addResultFile(
5867         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5868         &JA);
5869   }
5870 
5871   // DXC defaults to standard out when generating assembly. We check this after
5872   // any DXC flags that might specify a file.
5873   if (AtTopLevel && JA.getType() == types::TY_PP_Asm && IsDXCMode())
5874     return "-";
5875 
5876   bool SpecifiedModuleOutput =
5877       C.getArgs().hasArg(options::OPT_fmodule_output) ||
5878       C.getArgs().hasArg(options::OPT_fmodule_output_EQ);
5879   if (MultipleArchs && SpecifiedModuleOutput)
5880     Diag(clang::diag::err_drv_module_output_with_multiple_arch);
5881 
5882   // If we're emitting a module output with the specified option
5883   // `-fmodule-output`.
5884   if (!AtTopLevel && isa<PrecompileJobAction>(JA) &&
5885       JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput)
5886     return GetModuleOutputPath(C, JA, BaseInput);
5887 
5888   // Output to a temporary file?
5889   if ((!AtTopLevel && !isSaveTempsEnabled() &&
5890        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5891       CCGenDiagnostics) {
5892     StringRef Name = llvm::sys::path::filename(BaseInput);
5893     std::pair<StringRef, StringRef> Split = Name.split('.');
5894     const char *Suffix =
5895         types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5896     // The non-offloading toolchain on Darwin requires deterministic input
5897     // file name for binaries to be deterministic, therefore it needs unique
5898     // directory.
5899     llvm::Triple Triple(C.getDriver().getTargetTriple());
5900     bool NeedUniqueDirectory =
5901         (JA.getOffloadingDeviceKind() == Action::OFK_None ||
5902          JA.getOffloadingDeviceKind() == Action::OFK_Host) &&
5903         Triple.isOSDarwin();
5904     return CreateTempFile(C, Split.first, Suffix, MultipleArchs, BoundArch,
5905                           NeedUniqueDirectory);
5906   }
5907 
5908   SmallString<128> BasePath(BaseInput);
5909   SmallString<128> ExternalPath("");
5910   StringRef BaseName;
5911 
5912   // Dsymutil actions should use the full path.
5913   if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5914     ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5915     // We use posix style here because the tests (specifically
5916     // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5917     // even on Windows and if we don't then the similar test covering this
5918     // fails.
5919     llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
5920                             llvm::sys::path::filename(BasePath));
5921     BaseName = ExternalPath;
5922   } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
5923     BaseName = BasePath;
5924   else
5925     BaseName = llvm::sys::path::filename(BasePath);
5926 
5927   // Determine what the derived output name should be.
5928   const char *NamedOutput;
5929 
5930   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
5931       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
5932     // The /Fo or /o flag decides the object filename.
5933     StringRef Val =
5934         C.getArgs()
5935             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
5936             ->getValue();
5937     NamedOutput =
5938         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5939   } else if (JA.getType() == types::TY_Image &&
5940              C.getArgs().hasArg(options::OPT__SLASH_Fe,
5941                                 options::OPT__SLASH_o)) {
5942     // The /Fe or /o flag names the linked file.
5943     StringRef Val =
5944         C.getArgs()
5945             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
5946             ->getValue();
5947     NamedOutput =
5948         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
5949   } else if (JA.getType() == types::TY_Image) {
5950     if (IsCLMode()) {
5951       // clang-cl uses BaseName for the executable name.
5952       NamedOutput =
5953           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
5954     } else {
5955       SmallString<128> Output(getDefaultImageName());
5956       // HIP image for device compilation with -fno-gpu-rdc is per compilation
5957       // unit.
5958       bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5959                         !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
5960                                              options::OPT_fno_gpu_rdc, false);
5961       bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA);
5962       if (UseOutExtension) {
5963         Output = BaseName;
5964         llvm::sys::path::replace_extension(Output, "");
5965       }
5966       Output += OffloadingPrefix;
5967       if (MultipleArchs && !BoundArch.empty()) {
5968         Output += "-";
5969         Output.append(BoundArch);
5970       }
5971       if (UseOutExtension)
5972         Output += ".out";
5973       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5974     }
5975   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5976     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5977   } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) &&
5978              C.getArgs().hasArg(options::OPT__SLASH_o)) {
5979     StringRef Val =
5980         C.getArgs()
5981             .getLastArg(options::OPT__SLASH_o)
5982             ->getValue();
5983     NamedOutput =
5984         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5985   } else {
5986     const char *Suffix =
5987         types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5988     assert(Suffix && "All types used for output should have a suffix.");
5989 
5990     std::string::size_type End = std::string::npos;
5991     if (!types::appendSuffixForType(JA.getType()))
5992       End = BaseName.rfind('.');
5993     SmallString<128> Suffixed(BaseName.substr(0, End));
5994     Suffixed += OffloadingPrefix;
5995     if (MultipleArchs && !BoundArch.empty()) {
5996       Suffixed += "-";
5997       Suffixed.append(BoundArch);
5998     }
5999     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
6000     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
6001     // optimized bitcode output.
6002     auto IsAMDRDCInCompilePhase = [](const JobAction &JA,
6003                                      const llvm::opt::DerivedArgList &Args) {
6004       // The relocatable compilation in HIP and OpenMP implies -emit-llvm.
6005       // Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode
6006       // (generated in the compile phase.)
6007       const ToolChain *TC = JA.getOffloadingToolChain();
6008       return isa<CompileJobAction>(JA) &&
6009              ((JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
6010                Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
6011                             false)) ||
6012               (JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC &&
6013                TC->getTriple().isAMDGPU()));
6014     };
6015     if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
6016         (C.getArgs().hasArg(options::OPT_emit_llvm) ||
6017          IsAMDRDCInCompilePhase(JA, C.getArgs())))
6018       Suffixed += ".tmp";
6019     Suffixed += '.';
6020     Suffixed += Suffix;
6021     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
6022   }
6023 
6024   // Prepend object file path if -save-temps=obj
6025   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
6026       JA.getType() != types::TY_PCH) {
6027     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
6028     SmallString<128> TempPath(FinalOutput->getValue());
6029     llvm::sys::path::remove_filename(TempPath);
6030     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
6031     llvm::sys::path::append(TempPath, OutputFileName);
6032     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
6033   }
6034 
6035   // If we're saving temps and the temp file conflicts with the input file,
6036   // then avoid overwriting input file.
6037   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
6038     bool SameFile = false;
6039     SmallString<256> Result;
6040     llvm::sys::fs::current_path(Result);
6041     llvm::sys::path::append(Result, BaseName);
6042     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
6043     // Must share the same path to conflict.
6044     if (SameFile) {
6045       StringRef Name = llvm::sys::path::filename(BaseInput);
6046       std::pair<StringRef, StringRef> Split = Name.split('.');
6047       std::string TmpName = GetTemporaryPath(
6048           Split.first,
6049           types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode()));
6050       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
6051     }
6052   }
6053 
6054   // As an annoying special case, PCH generation doesn't strip the pathname.
6055   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
6056     llvm::sys::path::remove_filename(BasePath);
6057     if (BasePath.empty())
6058       BasePath = NamedOutput;
6059     else
6060       llvm::sys::path::append(BasePath, NamedOutput);
6061     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
6062   }
6063 
6064   return C.addResultFile(NamedOutput, &JA);
6065 }
6066 
6067 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
6068   // Search for Name in a list of paths.
6069   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
6070       -> std::optional<std::string> {
6071     // Respect a limited subset of the '-Bprefix' functionality in GCC by
6072     // attempting to use this prefix when looking for file paths.
6073     for (const auto &Dir : P) {
6074       if (Dir.empty())
6075         continue;
6076       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
6077       llvm::sys::path::append(P, Name);
6078       if (llvm::sys::fs::exists(Twine(P)))
6079         return std::string(P);
6080     }
6081     return std::nullopt;
6082   };
6083 
6084   if (auto P = SearchPaths(PrefixDirs))
6085     return *P;
6086 
6087   SmallString<128> R(ResourceDir);
6088   llvm::sys::path::append(R, Name);
6089   if (llvm::sys::fs::exists(Twine(R)))
6090     return std::string(R);
6091 
6092   SmallString<128> P(TC.getCompilerRTPath());
6093   llvm::sys::path::append(P, Name);
6094   if (llvm::sys::fs::exists(Twine(P)))
6095     return std::string(P);
6096 
6097   SmallString<128> D(Dir);
6098   llvm::sys::path::append(D, "..", Name);
6099   if (llvm::sys::fs::exists(Twine(D)))
6100     return std::string(D);
6101 
6102   if (auto P = SearchPaths(TC.getLibraryPaths()))
6103     return *P;
6104 
6105   if (auto P = SearchPaths(TC.getFilePaths()))
6106     return *P;
6107 
6108   return std::string(Name);
6109 }
6110 
6111 void Driver::generatePrefixedToolNames(
6112     StringRef Tool, const ToolChain &TC,
6113     SmallVectorImpl<std::string> &Names) const {
6114   // FIXME: Needs a better variable than TargetTriple
6115   Names.emplace_back((TargetTriple + "-" + Tool).str());
6116   Names.emplace_back(Tool);
6117 }
6118 
6119 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
6120   llvm::sys::path::append(Dir, Name);
6121   if (llvm::sys::fs::can_execute(Twine(Dir)))
6122     return true;
6123   llvm::sys::path::remove_filename(Dir);
6124   return false;
6125 }
6126 
6127 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
6128   SmallVector<std::string, 2> TargetSpecificExecutables;
6129   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
6130 
6131   // Respect a limited subset of the '-Bprefix' functionality in GCC by
6132   // attempting to use this prefix when looking for program paths.
6133   for (const auto &PrefixDir : PrefixDirs) {
6134     if (llvm::sys::fs::is_directory(PrefixDir)) {
6135       SmallString<128> P(PrefixDir);
6136       if (ScanDirForExecutable(P, Name))
6137         return std::string(P);
6138     } else {
6139       SmallString<128> P((PrefixDir + Name).str());
6140       if (llvm::sys::fs::can_execute(Twine(P)))
6141         return std::string(P);
6142     }
6143   }
6144 
6145   const ToolChain::path_list &List = TC.getProgramPaths();
6146   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
6147     // For each possible name of the tool look for it in
6148     // program paths first, then the path.
6149     // Higher priority names will be first, meaning that
6150     // a higher priority name in the path will be found
6151     // instead of a lower priority name in the program path.
6152     // E.g. <triple>-gcc on the path will be found instead
6153     // of gcc in the program path
6154     for (const auto &Path : List) {
6155       SmallString<128> P(Path);
6156       if (ScanDirForExecutable(P, TargetSpecificExecutable))
6157         return std::string(P);
6158     }
6159 
6160     // Fall back to the path
6161     if (llvm::ErrorOr<std::string> P =
6162             llvm::sys::findProgramByName(TargetSpecificExecutable))
6163       return *P;
6164   }
6165 
6166   return std::string(Name);
6167 }
6168 
6169 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
6170   SmallString<128> Path;
6171   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
6172   if (EC) {
6173     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6174     return "";
6175   }
6176 
6177   return std::string(Path);
6178 }
6179 
6180 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
6181   SmallString<128> Path;
6182   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
6183   if (EC) {
6184     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6185     return "";
6186   }
6187 
6188   return std::string(Path);
6189 }
6190 
6191 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
6192   SmallString<128> Output;
6193   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
6194     // FIXME: If anybody needs it, implement this obscure rule:
6195     // "If you specify a directory without a file name, the default file name
6196     // is VCx0.pch., where x is the major version of Visual C++ in use."
6197     Output = FpArg->getValue();
6198 
6199     // "If you do not specify an extension as part of the path name, an
6200     // extension of .pch is assumed. "
6201     if (!llvm::sys::path::has_extension(Output))
6202       Output += ".pch";
6203   } else {
6204     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
6205       Output = YcArg->getValue();
6206     if (Output.empty())
6207       Output = BaseName;
6208     llvm::sys::path::replace_extension(Output, ".pch");
6209   }
6210   return std::string(Output);
6211 }
6212 
6213 const ToolChain &Driver::getToolChain(const ArgList &Args,
6214                                       const llvm::Triple &Target) const {
6215 
6216   auto &TC = ToolChains[Target.str()];
6217   if (!TC) {
6218     switch (Target.getOS()) {
6219     case llvm::Triple::AIX:
6220       TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
6221       break;
6222     case llvm::Triple::Haiku:
6223       TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
6224       break;
6225     case llvm::Triple::Darwin:
6226     case llvm::Triple::MacOSX:
6227     case llvm::Triple::IOS:
6228     case llvm::Triple::TvOS:
6229     case llvm::Triple::WatchOS:
6230     case llvm::Triple::XROS:
6231     case llvm::Triple::DriverKit:
6232       TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
6233       break;
6234     case llvm::Triple::DragonFly:
6235       TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
6236       break;
6237     case llvm::Triple::OpenBSD:
6238       TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
6239       break;
6240     case llvm::Triple::NetBSD:
6241       TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
6242       break;
6243     case llvm::Triple::FreeBSD:
6244       if (Target.isPPC())
6245         TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
6246                                                                Args);
6247       else
6248         TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
6249       break;
6250     case llvm::Triple::Linux:
6251     case llvm::Triple::ELFIAMCU:
6252       if (Target.getArch() == llvm::Triple::hexagon)
6253         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6254                                                              Args);
6255       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
6256                !Target.hasEnvironment())
6257         TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
6258                                                               Args);
6259       else if (Target.isPPC())
6260         TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
6261                                                               Args);
6262       else if (Target.getArch() == llvm::Triple::ve)
6263         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6264       else if (Target.isOHOSFamily())
6265         TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6266       else
6267         TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
6268       break;
6269     case llvm::Triple::NaCl:
6270       TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
6271       break;
6272     case llvm::Triple::Fuchsia:
6273       TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
6274       break;
6275     case llvm::Triple::Solaris:
6276       TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
6277       break;
6278     case llvm::Triple::CUDA:
6279       TC = std::make_unique<toolchains::NVPTXToolChain>(*this, Target, Args);
6280       break;
6281     case llvm::Triple::AMDHSA:
6282       TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
6283       break;
6284     case llvm::Triple::AMDPAL:
6285     case llvm::Triple::Mesa3D:
6286       TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
6287       break;
6288     case llvm::Triple::Win32:
6289       switch (Target.getEnvironment()) {
6290       default:
6291         if (Target.isOSBinFormatELF())
6292           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6293         else if (Target.isOSBinFormatMachO())
6294           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6295         else
6296           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6297         break;
6298       case llvm::Triple::GNU:
6299         TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
6300         break;
6301       case llvm::Triple::Itanium:
6302         TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
6303                                                                   Args);
6304         break;
6305       case llvm::Triple::MSVC:
6306       case llvm::Triple::UnknownEnvironment:
6307         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
6308                 .starts_with_insensitive("bfd"))
6309           TC = std::make_unique<toolchains::CrossWindowsToolChain>(
6310               *this, Target, Args);
6311         else
6312           TC =
6313               std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
6314         break;
6315       }
6316       break;
6317     case llvm::Triple::PS4:
6318       TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
6319       break;
6320     case llvm::Triple::PS5:
6321       TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args);
6322       break;
6323     case llvm::Triple::Hurd:
6324       TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
6325       break;
6326     case llvm::Triple::LiteOS:
6327       TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6328       break;
6329     case llvm::Triple::ZOS:
6330       TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
6331       break;
6332     case llvm::Triple::ShaderModel:
6333       TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args);
6334       break;
6335     default:
6336       // Of these targets, Hexagon is the only one that might have
6337       // an OS of Linux, in which case it got handled above already.
6338       switch (Target.getArch()) {
6339       case llvm::Triple::tce:
6340         TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
6341         break;
6342       case llvm::Triple::tcele:
6343         TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
6344         break;
6345       case llvm::Triple::hexagon:
6346         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6347                                                              Args);
6348         break;
6349       case llvm::Triple::lanai:
6350         TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
6351         break;
6352       case llvm::Triple::xcore:
6353         TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
6354         break;
6355       case llvm::Triple::wasm32:
6356       case llvm::Triple::wasm64:
6357         TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
6358         break;
6359       case llvm::Triple::avr:
6360         TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
6361         break;
6362       case llvm::Triple::msp430:
6363         TC =
6364             std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
6365         break;
6366       case llvm::Triple::riscv32:
6367       case llvm::Triple::riscv64:
6368         if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
6369           TC =
6370               std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
6371         else
6372           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6373         break;
6374       case llvm::Triple::ve:
6375         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6376         break;
6377       case llvm::Triple::spirv32:
6378       case llvm::Triple::spirv64:
6379         TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
6380         break;
6381       case llvm::Triple::csky:
6382         TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args);
6383         break;
6384       default:
6385         if (toolchains::BareMetal::handlesTarget(Target))
6386           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6387         else if (Target.isOSBinFormatELF())
6388           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6389         else if (Target.isOSBinFormatMachO())
6390           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6391         else
6392           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6393       }
6394     }
6395   }
6396 
6397   return *TC;
6398 }
6399 
6400 const ToolChain &Driver::getOffloadingDeviceToolChain(
6401     const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
6402     const Action::OffloadKind &TargetDeviceOffloadKind) const {
6403   // Use device / host triples as the key into the ToolChains map because the
6404   // device ToolChain we create depends on both.
6405   auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
6406   if (!TC) {
6407     // Categorized by offload kind > arch rather than OS > arch like
6408     // the normal getToolChain call, as it seems a reasonable way to categorize
6409     // things.
6410     switch (TargetDeviceOffloadKind) {
6411     case Action::OFK_HIP: {
6412       if (Target.getArch() == llvm::Triple::amdgcn &&
6413           Target.getVendor() == llvm::Triple::AMD &&
6414           Target.getOS() == llvm::Triple::AMDHSA)
6415         TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
6416                                                            HostTC, Args);
6417       else if (Target.getArch() == llvm::Triple::spirv64 &&
6418                Target.getVendor() == llvm::Triple::UnknownVendor &&
6419                Target.getOS() == llvm::Triple::UnknownOS)
6420         TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
6421                                                            HostTC, Args);
6422       break;
6423     }
6424     default:
6425       break;
6426     }
6427   }
6428 
6429   return *TC;
6430 }
6431 
6432 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
6433   // Say "no" if there is not exactly one input of a type clang understands.
6434   if (JA.size() != 1 ||
6435       !types::isAcceptedByClang((*JA.input_begin())->getType()))
6436     return false;
6437 
6438   // And say "no" if this is not a kind of action clang understands.
6439   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
6440       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) &&
6441       !isa<ExtractAPIJobAction>(JA))
6442     return false;
6443 
6444   return true;
6445 }
6446 
6447 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
6448   // Say "no" if there is not exactly one input of a type flang understands.
6449   if (JA.size() != 1 ||
6450       !types::isAcceptedByFlang((*JA.input_begin())->getType()))
6451     return false;
6452 
6453   // And say "no" if this is not a kind of action flang understands.
6454   if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) &&
6455       !isa<BackendJobAction>(JA))
6456     return false;
6457 
6458   return true;
6459 }
6460 
6461 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
6462   // Only emit static library if the flag is set explicitly.
6463   if (Args.hasArg(options::OPT_emit_static_lib))
6464     return true;
6465   return false;
6466 }
6467 
6468 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
6469 /// grouped values as integers. Numbers which are not provided are set to 0.
6470 ///
6471 /// \return True if the entire string was parsed (9.2), or all groups were
6472 /// parsed (10.3.5extrastuff).
6473 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
6474                                unsigned &Micro, bool &HadExtra) {
6475   HadExtra = false;
6476 
6477   Major = Minor = Micro = 0;
6478   if (Str.empty())
6479     return false;
6480 
6481   if (Str.consumeInteger(10, Major))
6482     return false;
6483   if (Str.empty())
6484     return true;
6485   if (Str[0] != '.')
6486     return false;
6487 
6488   Str = Str.drop_front(1);
6489 
6490   if (Str.consumeInteger(10, Minor))
6491     return false;
6492   if (Str.empty())
6493     return true;
6494   if (Str[0] != '.')
6495     return false;
6496   Str = Str.drop_front(1);
6497 
6498   if (Str.consumeInteger(10, Micro))
6499     return false;
6500   if (!Str.empty())
6501     HadExtra = true;
6502   return true;
6503 }
6504 
6505 /// Parse digits from a string \p Str and fulfill \p Digits with
6506 /// the parsed numbers. This method assumes that the max number of
6507 /// digits to look for is equal to Digits.size().
6508 ///
6509 /// \return True if the entire string was parsed and there are
6510 /// no extra characters remaining at the end.
6511 bool Driver::GetReleaseVersion(StringRef Str,
6512                                MutableArrayRef<unsigned> Digits) {
6513   if (Str.empty())
6514     return false;
6515 
6516   unsigned CurDigit = 0;
6517   while (CurDigit < Digits.size()) {
6518     unsigned Digit;
6519     if (Str.consumeInteger(10, Digit))
6520       return false;
6521     Digits[CurDigit] = Digit;
6522     if (Str.empty())
6523       return true;
6524     if (Str[0] != '.')
6525       return false;
6526     Str = Str.drop_front(1);
6527     CurDigit++;
6528   }
6529 
6530   // More digits than requested, bail out...
6531   return false;
6532 }
6533 
6534 llvm::opt::Visibility
6535 Driver::getOptionVisibilityMask(bool UseDriverMode) const {
6536   if (!UseDriverMode)
6537     return llvm::opt::Visibility(options::ClangOption);
6538   if (IsCLMode())
6539     return llvm::opt::Visibility(options::CLOption);
6540   if (IsDXCMode())
6541     return llvm::opt::Visibility(options::DXCOption);
6542   if (IsFlangMode())  {
6543     return llvm::opt::Visibility(options::FlangOption);
6544   }
6545   return llvm::opt::Visibility(options::ClangOption);
6546 }
6547 
6548 const char *Driver::getExecutableForDriverMode(DriverMode Mode) {
6549   switch (Mode) {
6550   case GCCMode:
6551     return "clang";
6552   case GXXMode:
6553     return "clang++";
6554   case CPPMode:
6555     return "clang-cpp";
6556   case CLMode:
6557     return "clang-cl";
6558   case FlangMode:
6559     return "flang";
6560   case DXCMode:
6561     return "clang-dxc";
6562   }
6563 
6564   llvm_unreachable("Unhandled Mode");
6565 }
6566 
6567 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
6568   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
6569 }
6570 
6571 bool clang::driver::willEmitRemarks(const ArgList &Args) {
6572   // -fsave-optimization-record enables it.
6573   if (Args.hasFlag(options::OPT_fsave_optimization_record,
6574                    options::OPT_fno_save_optimization_record, false))
6575     return true;
6576 
6577   // -fsave-optimization-record=<format> enables it as well.
6578   if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
6579                    options::OPT_fno_save_optimization_record, false))
6580     return true;
6581 
6582   // -foptimization-record-file alone enables it too.
6583   if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
6584                    options::OPT_fno_save_optimization_record, false))
6585     return true;
6586 
6587   // -foptimization-record-passes alone enables it too.
6588   if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
6589                    options::OPT_fno_save_optimization_record, false))
6590     return true;
6591   return false;
6592 }
6593 
6594 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
6595                                              ArrayRef<const char *> Args) {
6596   static StringRef OptName =
6597       getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
6598   llvm::StringRef Opt;
6599   for (StringRef Arg : Args) {
6600     if (!Arg.starts_with(OptName))
6601       continue;
6602     Opt = Arg;
6603   }
6604   if (Opt.empty())
6605     Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
6606   return Opt.consume_front(OptName) ? Opt : "";
6607 }
6608 
6609 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }
6610 
6611 llvm::Error driver::expandResponseFiles(SmallVectorImpl<const char *> &Args,
6612                                         bool ClangCLMode,
6613                                         llvm::BumpPtrAllocator &Alloc,
6614                                         llvm::vfs::FileSystem *FS) {
6615   // Parse response files using the GNU syntax, unless we're in CL mode. There
6616   // are two ways to put clang in CL compatibility mode: ProgName is either
6617   // clang-cl or cl, or --driver-mode=cl is on the command line. The normal
6618   // command line parsing can't happen until after response file parsing, so we
6619   // have to manually search for a --driver-mode=cl argument the hard way.
6620   // Finally, our -cc1 tools don't care which tokenization mode we use because
6621   // response files written by clang will tokenize the same way in either mode.
6622   enum { Default, POSIX, Windows } RSPQuoting = Default;
6623   for (const char *F : Args) {
6624     if (strcmp(F, "--rsp-quoting=posix") == 0)
6625       RSPQuoting = POSIX;
6626     else if (strcmp(F, "--rsp-quoting=windows") == 0)
6627       RSPQuoting = Windows;
6628   }
6629 
6630   // Determines whether we want nullptr markers in Args to indicate response
6631   // files end-of-lines. We only use this for the /LINK driver argument with
6632   // clang-cl.exe on Windows.
6633   bool MarkEOLs = ClangCLMode;
6634 
6635   llvm::cl::TokenizerCallback Tokenizer;
6636   if (RSPQuoting == Windows || (RSPQuoting == Default && ClangCLMode))
6637     Tokenizer = &llvm::cl::TokenizeWindowsCommandLine;
6638   else
6639     Tokenizer = &llvm::cl::TokenizeGNUCommandLine;
6640 
6641   if (MarkEOLs && Args.size() > 1 && StringRef(Args[1]).starts_with("-cc1"))
6642     MarkEOLs = false;
6643 
6644   llvm::cl::ExpansionContext ECtx(Alloc, Tokenizer);
6645   ECtx.setMarkEOLs(MarkEOLs);
6646   if (FS)
6647     ECtx.setVFS(FS);
6648 
6649   if (llvm::Error Err = ECtx.expandResponseFiles(Args))
6650     return Err;
6651 
6652   // If -cc1 came from a response file, remove the EOL sentinels.
6653   auto FirstArg = llvm::find_if(llvm::drop_begin(Args),
6654                                 [](const char *A) { return A != nullptr; });
6655   if (FirstArg != Args.end() && StringRef(*FirstArg).starts_with("-cc1")) {
6656     // If -cc1 came from a response file, remove the EOL sentinels.
6657     if (MarkEOLs) {
6658       auto newEnd = std::remove(Args.begin(), Args.end(), nullptr);
6659       Args.resize(newEnd - Args.begin());
6660     }
6661   }
6662 
6663   return llvm::Error::success();
6664 }
6665