xref: /freebsd/contrib/llvm-project/clang/lib/Driver/Driver.cpp (revision 3ceba58a7509418b47b8fca2d2b6bbf088714e26)
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Arch/RISCV.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/CSKYToolChain.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CrossWindows.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIPAMD.h"
26 #include "ToolChains/HIPSPV.h"
27 #include "ToolChains/HLSL.h"
28 #include "ToolChains/Haiku.h"
29 #include "ToolChains/Hexagon.h"
30 #include "ToolChains/Hurd.h"
31 #include "ToolChains/Lanai.h"
32 #include "ToolChains/Linux.h"
33 #include "ToolChains/MSP430.h"
34 #include "ToolChains/MSVC.h"
35 #include "ToolChains/MinGW.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OHOS.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PPCFreeBSD.h"
42 #include "ToolChains/PPCLinux.h"
43 #include "ToolChains/PS4CPU.h"
44 #include "ToolChains/RISCVToolchain.h"
45 #include "ToolChains/SPIRV.h"
46 #include "ToolChains/Solaris.h"
47 #include "ToolChains/TCE.h"
48 #include "ToolChains/VEToolchain.h"
49 #include "ToolChains/WebAssembly.h"
50 #include "ToolChains/XCore.h"
51 #include "ToolChains/ZOS.h"
52 #include "clang/Basic/DiagnosticDriver.h"
53 #include "clang/Basic/TargetID.h"
54 #include "clang/Basic/Version.h"
55 #include "clang/Config/config.h"
56 #include "clang/Driver/Action.h"
57 #include "clang/Driver/Compilation.h"
58 #include "clang/Driver/DriverDiagnostic.h"
59 #include "clang/Driver/InputInfo.h"
60 #include "clang/Driver/Job.h"
61 #include "clang/Driver/Options.h"
62 #include "clang/Driver/Phases.h"
63 #include "clang/Driver/SanitizerArgs.h"
64 #include "clang/Driver/Tool.h"
65 #include "clang/Driver/ToolChain.h"
66 #include "clang/Driver/Types.h"
67 #include "llvm/ADT/ArrayRef.h"
68 #include "llvm/ADT/STLExtras.h"
69 #include "llvm/ADT/StringExtras.h"
70 #include "llvm/ADT/StringRef.h"
71 #include "llvm/ADT/StringSet.h"
72 #include "llvm/ADT/StringSwitch.h"
73 #include "llvm/Config/llvm-config.h"
74 #include "llvm/MC/TargetRegistry.h"
75 #include "llvm/Option/Arg.h"
76 #include "llvm/Option/ArgList.h"
77 #include "llvm/Option/OptSpecifier.h"
78 #include "llvm/Option/OptTable.h"
79 #include "llvm/Option/Option.h"
80 #include "llvm/Support/CommandLine.h"
81 #include "llvm/Support/ErrorHandling.h"
82 #include "llvm/Support/ExitCodes.h"
83 #include "llvm/Support/FileSystem.h"
84 #include "llvm/Support/FormatVariadic.h"
85 #include "llvm/Support/MD5.h"
86 #include "llvm/Support/Path.h"
87 #include "llvm/Support/PrettyStackTrace.h"
88 #include "llvm/Support/Process.h"
89 #include "llvm/Support/Program.h"
90 #include "llvm/Support/Regex.h"
91 #include "llvm/Support/StringSaver.h"
92 #include "llvm/Support/VirtualFileSystem.h"
93 #include "llvm/Support/raw_ostream.h"
94 #include "llvm/TargetParser/Host.h"
95 #include "llvm/TargetParser/RISCVISAInfo.h"
96 #include <cstdlib> // ::getenv
97 #include <map>
98 #include <memory>
99 #include <optional>
100 #include <set>
101 #include <utility>
102 #if LLVM_ON_UNIX
103 #include <unistd.h> // getpid
104 #endif
105 
106 using namespace clang::driver;
107 using namespace clang;
108 using namespace llvm::opt;
109 
110 static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D,
111                                                           const ArgList &Args) {
112   auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
113   // Offload compilation flow does not support multiple targets for now. We
114   // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
115   // to support multiple tool chains first.
116   switch (OffloadTargets.size()) {
117   default:
118     D.Diag(diag::err_drv_only_one_offload_target_supported);
119     return std::nullopt;
120   case 0:
121     D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
122     return std::nullopt;
123   case 1:
124     break;
125   }
126   return llvm::Triple(OffloadTargets[0]);
127 }
128 
129 static std::optional<llvm::Triple>
130 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
131                              const llvm::Triple &HostTriple) {
132   if (!Args.hasArg(options::OPT_offload_EQ)) {
133     return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
134                                                  : "nvptx-nvidia-cuda");
135   }
136   auto TT = getOffloadTargetTriple(D, Args);
137   if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
138              TT->getArch() == llvm::Triple::spirv64)) {
139     if (Args.hasArg(options::OPT_emit_llvm))
140       return TT;
141     D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
142     return std::nullopt;
143   }
144   D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
145   return std::nullopt;
146 }
147 static std::optional<llvm::Triple>
148 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
149   if (!Args.hasArg(options::OPT_offload_EQ)) {
150     auto OffloadArchs = Args.getAllArgValues(options::OPT_offload_arch_EQ);
151     if (llvm::find(OffloadArchs, "amdgcnspirv") != OffloadArchs.cend()) {
152       if (OffloadArchs.size() == 1)
153         return llvm::Triple("spirv64-amd-amdhsa");
154       // Mixing specific & SPIR-V compilation is not supported for now.
155       D.Diag(diag::err_drv_only_one_offload_target_supported);
156       return std::nullopt;
157     }
158     return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
159   }
160   auto TT = getOffloadTargetTriple(D, Args);
161   if (!TT)
162     return std::nullopt;
163   if (TT->getArch() == llvm::Triple::amdgcn &&
164       TT->getVendor() == llvm::Triple::AMD &&
165       TT->getOS() == llvm::Triple::AMDHSA)
166     return TT;
167   if (TT->getArch() == llvm::Triple::spirv64)
168     return TT;
169   D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
170   return std::nullopt;
171 }
172 
173 // static
174 std::string Driver::GetResourcesPath(StringRef BinaryPath,
175                                      StringRef CustomResourceDir) {
176   // Since the resource directory is embedded in the module hash, it's important
177   // that all places that need it call this function, so that they get the
178   // exact same string ("a/../b/" and "b/" get different hashes, for example).
179 
180   // Dir is bin/ or lib/, depending on where BinaryPath is.
181   std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
182 
183   SmallString<128> P(Dir);
184   if (CustomResourceDir != "") {
185     llvm::sys::path::append(P, CustomResourceDir);
186   } else {
187     // On Windows, libclang.dll is in bin/.
188     // On non-Windows, libclang.so/.dylib is in lib/.
189     // With a static-library build of libclang, LibClangPath will contain the
190     // path of the embedding binary, which for LLVM binaries will be in bin/.
191     // ../lib gets us to lib/ in both cases.
192     P = llvm::sys::path::parent_path(Dir);
193     // This search path is also created in the COFF driver of lld, so any
194     // changes here also needs to happen in lld/COFF/Driver.cpp
195     llvm::sys::path::append(P, CLANG_INSTALL_LIBDIR_BASENAME, "clang",
196                             CLANG_VERSION_MAJOR_STRING);
197   }
198 
199   return std::string(P);
200 }
201 
202 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
203                DiagnosticsEngine &Diags, std::string Title,
204                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
205     : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
206       SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
207       Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None),
208       ModulesModeCXX20(false), LTOMode(LTOK_None),
209       ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
210       DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
211       CCLogDiagnostics(false), CCGenDiagnostics(false),
212       CCPrintProcessStats(false), CCPrintInternalStats(false),
213       TargetTriple(TargetTriple), Saver(Alloc), PrependArg(nullptr),
214       CheckInputsExist(true), ProbePrecompiled(true),
215       SuppressMissingInputWarning(false) {
216   // Provide a sane fallback if no VFS is specified.
217   if (!this->VFS)
218     this->VFS = llvm::vfs::getRealFileSystem();
219 
220   Name = std::string(llvm::sys::path::filename(ClangExecutable));
221   Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
222 
223   if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
224     // Prepend InstalledDir if SysRoot is relative
225     SmallString<128> P(Dir);
226     llvm::sys::path::append(P, SysRoot);
227     SysRoot = std::string(P);
228   }
229 
230 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
231   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
232 #endif
233 #if defined(CLANG_CONFIG_FILE_USER_DIR)
234   {
235     SmallString<128> P;
236     llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P);
237     UserConfigDir = static_cast<std::string>(P);
238   }
239 #endif
240 
241   // Compute the path to the resource directory.
242   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
243 }
244 
245 void Driver::setDriverMode(StringRef Value) {
246   static StringRef OptName =
247       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
248   if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value)
249                    .Case("gcc", GCCMode)
250                    .Case("g++", GXXMode)
251                    .Case("cpp", CPPMode)
252                    .Case("cl", CLMode)
253                    .Case("flang", FlangMode)
254                    .Case("dxc", DXCMode)
255                    .Default(std::nullopt))
256     Mode = *M;
257   else
258     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
259 }
260 
261 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
262                                      bool UseDriverMode, bool &ContainsError) {
263   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
264   ContainsError = false;
265 
266   llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask(UseDriverMode);
267   unsigned MissingArgIndex, MissingArgCount;
268   InputArgList Args = getOpts().ParseArgs(ArgStrings, MissingArgIndex,
269                                           MissingArgCount, VisibilityMask);
270 
271   // Check for missing argument error.
272   if (MissingArgCount) {
273     Diag(diag::err_drv_missing_argument)
274         << Args.getArgString(MissingArgIndex) << MissingArgCount;
275     ContainsError |=
276         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
277                                  SourceLocation()) > DiagnosticsEngine::Warning;
278   }
279 
280   // Check for unsupported options.
281   for (const Arg *A : Args) {
282     if (A->getOption().hasFlag(options::Unsupported)) {
283       Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args);
284       ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_unsupported_opt,
285                                                 SourceLocation()) >
286                        DiagnosticsEngine::Warning;
287       continue;
288     }
289 
290     // Warn about -mcpu= without an argument.
291     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
292       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
293       ContainsError |= Diags.getDiagnosticLevel(
294                            diag::warn_drv_empty_joined_argument,
295                            SourceLocation()) > DiagnosticsEngine::Warning;
296     }
297   }
298 
299   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
300     unsigned DiagID;
301     auto ArgString = A->getAsString(Args);
302     std::string Nearest;
303     if (getOpts().findNearest(ArgString, Nearest, VisibilityMask) > 1) {
304       if (!IsCLMode() &&
305           getOpts().findExact(ArgString, Nearest,
306                               llvm::opt::Visibility(options::CC1Option))) {
307         DiagID = diag::err_drv_unknown_argument_with_suggestion;
308         Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest;
309       } else {
310         DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
311                             : diag::err_drv_unknown_argument;
312         Diags.Report(DiagID) << ArgString;
313       }
314     } else {
315       DiagID = IsCLMode()
316                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
317                    : diag::err_drv_unknown_argument_with_suggestion;
318       Diags.Report(DiagID) << ArgString << Nearest;
319     }
320     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
321                      DiagnosticsEngine::Warning;
322   }
323 
324   for (const Arg *A : Args.filtered(options::OPT_o)) {
325     if (ArgStrings[A->getIndex()] == A->getSpelling())
326       continue;
327 
328     // Warn on joined arguments that are similar to a long argument.
329     std::string ArgString = ArgStrings[A->getIndex()];
330     std::string Nearest;
331     if (getOpts().findExact("-" + ArgString, Nearest, VisibilityMask))
332       Diags.Report(diag::warn_drv_potentially_misspelled_joined_argument)
333           << A->getAsString(Args) << Nearest;
334   }
335 
336   return Args;
337 }
338 
339 // Determine which compilation mode we are in. We look for options which
340 // affect the phase, starting with the earliest phases, and record which
341 // option we used to determine the final phase.
342 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
343                                  Arg **FinalPhaseArg) const {
344   Arg *PhaseArg = nullptr;
345   phases::ID FinalPhase;
346 
347   // -{E,EP,P,M,MM} only run the preprocessor.
348   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
349       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
350       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
351       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
352       CCGenDiagnostics) {
353     FinalPhase = phases::Preprocess;
354 
355     // --precompile only runs up to precompilation.
356     // Options that cause the output of C++20 compiled module interfaces or
357     // header units have the same effect.
358   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
359              (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) ||
360              (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header,
361                                         options::OPT_fmodule_header_EQ))) {
362     FinalPhase = phases::Precompile;
363     // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
364   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
365              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
366              (PhaseArg = DAL.getLastArg(options::OPT_print_enabled_extensions)) ||
367              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
368              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
369              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
370              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
371              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
372              (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
373              (PhaseArg = DAL.getLastArg(options::OPT_emit_cir)) ||
374              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
375     FinalPhase = phases::Compile;
376 
377   // -S only runs up to the backend.
378   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
379     FinalPhase = phases::Backend;
380 
381   // -c compilation only runs up to the assembler.
382   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
383     FinalPhase = phases::Assemble;
384 
385   } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
386     FinalPhase = phases::IfsMerge;
387 
388   // Otherwise do everything.
389   } else
390     FinalPhase = phases::Link;
391 
392   if (FinalPhaseArg)
393     *FinalPhaseArg = PhaseArg;
394 
395   return FinalPhase;
396 }
397 
398 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
399                          StringRef Value, bool Claim = true) {
400   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
401                    Args.getBaseArgs().MakeIndex(Value), Value.data());
402   Args.AddSynthesizedArg(A);
403   if (Claim)
404     A->claim();
405   return A;
406 }
407 
408 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
409   const llvm::opt::OptTable &Opts = getOpts();
410   DerivedArgList *DAL = new DerivedArgList(Args);
411 
412   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
413   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
414   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
415   bool IgnoreUnused = false;
416   for (Arg *A : Args) {
417     if (IgnoreUnused)
418       A->claim();
419 
420     if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
421       IgnoreUnused = true;
422       continue;
423     }
424     if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
425       IgnoreUnused = false;
426       continue;
427     }
428 
429     // Unfortunately, we have to parse some forwarding options (-Xassembler,
430     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
431     // (assembler and preprocessor), or bypass a previous driver ('collect2').
432 
433     // Rewrite linker options, to replace --no-demangle with a custom internal
434     // option.
435     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
436          A->getOption().matches(options::OPT_Xlinker)) &&
437         A->containsValue("--no-demangle")) {
438       // Add the rewritten no-demangle argument.
439       DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
440 
441       // Add the remaining values as Xlinker arguments.
442       for (StringRef Val : A->getValues())
443         if (Val != "--no-demangle")
444           DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
445 
446       continue;
447     }
448 
449     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
450     // some build systems. We don't try to be complete here because we don't
451     // care to encourage this usage model.
452     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
453         (A->getValue(0) == StringRef("-MD") ||
454          A->getValue(0) == StringRef("-MMD"))) {
455       // Rewrite to -MD/-MMD along with -MF.
456       if (A->getValue(0) == StringRef("-MD"))
457         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
458       else
459         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
460       if (A->getNumValues() == 2)
461         DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
462       continue;
463     }
464 
465     // Rewrite reserved library names.
466     if (A->getOption().matches(options::OPT_l)) {
467       StringRef Value = A->getValue();
468 
469       // Rewrite unless -nostdlib is present.
470       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
471           Value == "stdc++") {
472         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
473         continue;
474       }
475 
476       // Rewrite unconditionally.
477       if (Value == "cc_kext") {
478         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
479         continue;
480       }
481     }
482 
483     // Pick up inputs via the -- option.
484     if (A->getOption().matches(options::OPT__DASH_DASH)) {
485       A->claim();
486       for (StringRef Val : A->getValues())
487         DAL->append(MakeInputArg(*DAL, Opts, Val, false));
488       continue;
489     }
490 
491     DAL->append(A);
492   }
493 
494   // DXC mode quits before assembly if an output object file isn't specified.
495   if (IsDXCMode() && !Args.hasArg(options::OPT_dxc_Fo))
496     DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_S));
497 
498   // Enforce -static if -miamcu is present.
499   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
500     DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
501 
502 // Add a default value of -mlinker-version=, if one was given and the user
503 // didn't specify one.
504 #if defined(HOST_LINK_VERSION)
505   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
506       strlen(HOST_LINK_VERSION) > 0) {
507     DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
508                       HOST_LINK_VERSION);
509     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
510   }
511 #endif
512 
513   return DAL;
514 }
515 
516 /// Compute target triple from args.
517 ///
518 /// This routine provides the logic to compute a target triple from various
519 /// args passed to the driver and the default triple string.
520 static llvm::Triple computeTargetTriple(const Driver &D,
521                                         StringRef TargetTriple,
522                                         const ArgList &Args,
523                                         StringRef DarwinArchName = "") {
524   // FIXME: Already done in Compilation *Driver::BuildCompilation
525   if (const Arg *A = Args.getLastArg(options::OPT_target))
526     TargetTriple = A->getValue();
527 
528   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
529 
530   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
531   // -gnu* only, and we can not change this, so we have to detect that case as
532   // being the Hurd OS.
533   if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
534     Target.setOSName("hurd");
535 
536   // Handle Apple-specific options available here.
537   if (Target.isOSBinFormatMachO()) {
538     // If an explicit Darwin arch name is given, that trumps all.
539     if (!DarwinArchName.empty()) {
540       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName,
541                                                    Args);
542       return Target;
543     }
544 
545     // Handle the Darwin '-arch' flag.
546     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
547       StringRef ArchName = A->getValue();
548       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName, Args);
549     }
550   }
551 
552   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
553   // '-mbig-endian'/'-EB'.
554   if (Arg *A = Args.getLastArgNoClaim(options::OPT_mlittle_endian,
555                                       options::OPT_mbig_endian)) {
556     llvm::Triple T = A->getOption().matches(options::OPT_mlittle_endian)
557                          ? Target.getLittleEndianArchVariant()
558                          : Target.getBigEndianArchVariant();
559     if (T.getArch() != llvm::Triple::UnknownArch) {
560       Target = std::move(T);
561       Args.claimAllArgs(options::OPT_mlittle_endian, options::OPT_mbig_endian);
562     }
563   }
564 
565   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
566   if (Target.getArch() == llvm::Triple::tce)
567     return Target;
568 
569   // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
570   if (Target.isOSAIX()) {
571     if (std::optional<std::string> ObjectModeValue =
572             llvm::sys::Process::GetEnv("OBJECT_MODE")) {
573       StringRef ObjectMode = *ObjectModeValue;
574       llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
575 
576       if (ObjectMode == "64") {
577         AT = Target.get64BitArchVariant().getArch();
578       } else if (ObjectMode == "32") {
579         AT = Target.get32BitArchVariant().getArch();
580       } else {
581         D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
582       }
583 
584       if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
585         Target.setArch(AT);
586     }
587   }
588 
589   // The `-maix[32|64]` flags are only valid for AIX targets.
590   if (Arg *A = Args.getLastArgNoClaim(options::OPT_maix32, options::OPT_maix64);
591       A && !Target.isOSAIX())
592     D.Diag(diag::err_drv_unsupported_opt_for_target)
593         << A->getAsString(Args) << Target.str();
594 
595   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
596   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
597                            options::OPT_m32, options::OPT_m16,
598                            options::OPT_maix32, options::OPT_maix64);
599   if (A) {
600     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
601 
602     if (A->getOption().matches(options::OPT_m64) ||
603         A->getOption().matches(options::OPT_maix64)) {
604       AT = Target.get64BitArchVariant().getArch();
605       if (Target.getEnvironment() == llvm::Triple::GNUX32)
606         Target.setEnvironment(llvm::Triple::GNU);
607       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
608         Target.setEnvironment(llvm::Triple::Musl);
609     } else if (A->getOption().matches(options::OPT_mx32) &&
610                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
611       AT = llvm::Triple::x86_64;
612       if (Target.getEnvironment() == llvm::Triple::Musl)
613         Target.setEnvironment(llvm::Triple::MuslX32);
614       else
615         Target.setEnvironment(llvm::Triple::GNUX32);
616     } else if (A->getOption().matches(options::OPT_m32) ||
617                A->getOption().matches(options::OPT_maix32)) {
618       AT = Target.get32BitArchVariant().getArch();
619       if (Target.getEnvironment() == llvm::Triple::GNUX32)
620         Target.setEnvironment(llvm::Triple::GNU);
621       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
622         Target.setEnvironment(llvm::Triple::Musl);
623     } else if (A->getOption().matches(options::OPT_m16) &&
624                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
625       AT = llvm::Triple::x86;
626       Target.setEnvironment(llvm::Triple::CODE16);
627     }
628 
629     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
630       Target.setArch(AT);
631       if (Target.isWindowsGNUEnvironment())
632         toolchains::MinGW::fixTripleArch(D, Target, Args);
633     }
634   }
635 
636   // Handle -miamcu flag.
637   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
638     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
639       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
640                                                        << Target.str();
641 
642     if (A && !A->getOption().matches(options::OPT_m32))
643       D.Diag(diag::err_drv_argument_not_allowed_with)
644           << "-miamcu" << A->getBaseArg().getAsString(Args);
645 
646     Target.setArch(llvm::Triple::x86);
647     Target.setArchName("i586");
648     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
649     Target.setEnvironmentName("");
650     Target.setOS(llvm::Triple::ELFIAMCU);
651     Target.setVendor(llvm::Triple::UnknownVendor);
652     Target.setVendorName("intel");
653   }
654 
655   // If target is MIPS adjust the target triple
656   // accordingly to provided ABI name.
657   if (Target.isMIPS()) {
658     if ((A = Args.getLastArg(options::OPT_mabi_EQ))) {
659       StringRef ABIName = A->getValue();
660       if (ABIName == "32") {
661         Target = Target.get32BitArchVariant();
662         if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
663             Target.getEnvironment() == llvm::Triple::GNUABIN32)
664           Target.setEnvironment(llvm::Triple::GNU);
665       } else if (ABIName == "n32") {
666         Target = Target.get64BitArchVariant();
667         if (Target.getEnvironment() == llvm::Triple::GNU ||
668             Target.getEnvironment() == llvm::Triple::GNUABI64)
669           Target.setEnvironment(llvm::Triple::GNUABIN32);
670       } else if (ABIName == "64") {
671         Target = Target.get64BitArchVariant();
672         if (Target.getEnvironment() == llvm::Triple::GNU ||
673             Target.getEnvironment() == llvm::Triple::GNUABIN32)
674           Target.setEnvironment(llvm::Triple::GNUABI64);
675       }
676     }
677   }
678 
679   // If target is RISC-V adjust the target triple according to
680   // provided architecture name
681   if (Target.isRISCV()) {
682     if (Args.hasArg(options::OPT_march_EQ) ||
683         Args.hasArg(options::OPT_mcpu_EQ)) {
684       std::string ArchName = tools::riscv::getRISCVArch(Args, Target);
685       auto ISAInfo = llvm::RISCVISAInfo::parseArchString(
686           ArchName, /*EnableExperimentalExtensions=*/true);
687       if (!llvm::errorToBool(ISAInfo.takeError())) {
688         unsigned XLen = (*ISAInfo)->getXLen();
689         if (XLen == 32)
690           Target.setArch(llvm::Triple::riscv32);
691         else if (XLen == 64)
692           Target.setArch(llvm::Triple::riscv64);
693       }
694     }
695   }
696 
697   return Target;
698 }
699 
700 // Parse the LTO options and record the type of LTO compilation
701 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
702 // option occurs last.
703 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
704                                     OptSpecifier OptEq, OptSpecifier OptNeg) {
705   if (!Args.hasFlag(OptEq, OptNeg, false))
706     return LTOK_None;
707 
708   const Arg *A = Args.getLastArg(OptEq);
709   StringRef LTOName = A->getValue();
710 
711   driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
712                                 .Case("full", LTOK_Full)
713                                 .Case("thin", LTOK_Thin)
714                                 .Default(LTOK_Unknown);
715 
716   if (LTOMode == LTOK_Unknown) {
717     D.Diag(diag::err_drv_unsupported_option_argument)
718         << A->getSpelling() << A->getValue();
719     return LTOK_None;
720   }
721   return LTOMode;
722 }
723 
724 // Parse the LTO options.
725 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
726   LTOMode =
727       parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
728 
729   OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
730                                 options::OPT_fno_offload_lto);
731 
732   // Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on.
733   if (Args.hasFlag(options::OPT_fopenmp_target_jit,
734                    options::OPT_fno_openmp_target_jit, false)) {
735     if (Arg *A = Args.getLastArg(options::OPT_foffload_lto_EQ,
736                                  options::OPT_fno_offload_lto))
737       if (OffloadLTOMode != LTOK_Full)
738         Diag(diag::err_drv_incompatible_options)
739             << A->getSpelling() << "-fopenmp-target-jit";
740     OffloadLTOMode = LTOK_Full;
741   }
742 }
743 
744 /// Compute the desired OpenMP runtime from the flags provided.
745 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
746   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
747 
748   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
749   if (A)
750     RuntimeName = A->getValue();
751 
752   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
753                 .Case("libomp", OMPRT_OMP)
754                 .Case("libgomp", OMPRT_GOMP)
755                 .Case("libiomp5", OMPRT_IOMP5)
756                 .Default(OMPRT_Unknown);
757 
758   if (RT == OMPRT_Unknown) {
759     if (A)
760       Diag(diag::err_drv_unsupported_option_argument)
761           << A->getSpelling() << A->getValue();
762     else
763       // FIXME: We could use a nicer diagnostic here.
764       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
765   }
766 
767   return RT;
768 }
769 
770 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
771                                               InputList &Inputs) {
772 
773   //
774   // CUDA/HIP
775   //
776   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
777   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
778   bool IsCuda =
779       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
780         return types::isCuda(I.first);
781       });
782   bool IsHIP =
783       llvm::any_of(Inputs,
784                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
785                      return types::isHIP(I.first);
786                    }) ||
787       C.getInputArgs().hasArg(options::OPT_hip_link) ||
788       C.getInputArgs().hasArg(options::OPT_hipstdpar);
789   if (IsCuda && IsHIP) {
790     Diag(clang::diag::err_drv_mix_cuda_hip);
791     return;
792   }
793   if (IsCuda) {
794     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
795     const llvm::Triple &HostTriple = HostTC->getTriple();
796     auto OFK = Action::OFK_Cuda;
797     auto CudaTriple =
798         getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
799     if (!CudaTriple)
800       return;
801     // Use the CUDA and host triples as the key into the ToolChains map,
802     // because the device toolchain we create depends on both.
803     auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
804     if (!CudaTC) {
805       CudaTC = std::make_unique<toolchains::CudaToolChain>(
806           *this, *CudaTriple, *HostTC, C.getInputArgs());
807 
808       // Emit a warning if the detected CUDA version is too new.
809       CudaInstallationDetector &CudaInstallation =
810           static_cast<toolchains::CudaToolChain &>(*CudaTC).CudaInstallation;
811       if (CudaInstallation.isValid())
812         CudaInstallation.WarnIfUnsupportedVersion();
813     }
814     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
815   } else if (IsHIP) {
816     if (auto *OMPTargetArg =
817             C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
818       Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
819           << OMPTargetArg->getSpelling() << "HIP";
820       return;
821     }
822     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
823     auto OFK = Action::OFK_HIP;
824     auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
825     if (!HIPTriple)
826       return;
827     auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
828                                                 *HostTC, OFK);
829     assert(HIPTC && "Could not create offloading device tool chain.");
830     C.addOffloadDeviceToolChain(HIPTC, OFK);
831   }
832 
833   //
834   // OpenMP
835   //
836   // We need to generate an OpenMP toolchain if the user specified targets with
837   // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
838   bool IsOpenMPOffloading =
839       C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
840                                options::OPT_fno_openmp, false) &&
841       (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) ||
842        C.getInputArgs().hasArg(options::OPT_offload_arch_EQ));
843   if (IsOpenMPOffloading) {
844     // We expect that -fopenmp-targets is always used in conjunction with the
845     // option -fopenmp specifying a valid runtime with offloading support, i.e.
846     // libomp or libiomp.
847     OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs());
848     if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
849       Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
850       return;
851     }
852 
853     llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs;
854     llvm::StringMap<StringRef> FoundNormalizedTriples;
855     std::multiset<StringRef> OpenMPTriples;
856 
857     // If the user specified -fopenmp-targets= we create a toolchain for each
858     // valid triple. Otherwise, if only --offload-arch= was specified we instead
859     // attempt to derive the appropriate toolchains from the arguments.
860     if (Arg *OpenMPTargets =
861             C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
862       if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
863         Diag(clang::diag::warn_drv_empty_joined_argument)
864             << OpenMPTargets->getAsString(C.getInputArgs());
865         return;
866       }
867       for (StringRef T : OpenMPTargets->getValues())
868         OpenMPTriples.insert(T);
869     } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) &&
870                !IsHIP && !IsCuda) {
871       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
872       auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
873       auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(),
874                                                       HostTC->getTriple());
875 
876       // Attempt to deduce the offloading triple from the set of architectures.
877       // We can only correctly deduce NVPTX / AMDGPU triples currently. We need
878       // to temporarily create these toolchains so that we can access tools for
879       // inferring architectures.
880       llvm::DenseSet<StringRef> Archs;
881       if (NVPTXTriple) {
882         auto TempTC = std::make_unique<toolchains::CudaToolChain>(
883             *this, *NVPTXTriple, *HostTC, C.getInputArgs());
884         for (StringRef Arch : getOffloadArchs(
885                  C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
886           Archs.insert(Arch);
887       }
888       if (AMDTriple) {
889         auto TempTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
890             *this, *AMDTriple, *HostTC, C.getInputArgs());
891         for (StringRef Arch : getOffloadArchs(
892                  C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
893           Archs.insert(Arch);
894       }
895       if (!AMDTriple && !NVPTXTriple) {
896         for (StringRef Arch :
897              getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr, true))
898           Archs.insert(Arch);
899       }
900 
901       for (StringRef Arch : Archs) {
902         if (NVPTXTriple && IsNVIDIAOffloadArch(StringToOffloadArch(
903                                getProcessorFromTargetID(*NVPTXTriple, Arch)))) {
904           DerivedArchs[NVPTXTriple->getTriple()].insert(Arch);
905         } else if (AMDTriple &&
906                    IsAMDOffloadArch(StringToOffloadArch(
907                        getProcessorFromTargetID(*AMDTriple, Arch)))) {
908           DerivedArchs[AMDTriple->getTriple()].insert(Arch);
909         } else {
910           Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
911           return;
912         }
913       }
914 
915       // If the set is empty then we failed to find a native architecture.
916       if (Archs.empty()) {
917         Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch)
918             << "native";
919         return;
920       }
921 
922       for (const auto &TripleAndArchs : DerivedArchs)
923         OpenMPTriples.insert(TripleAndArchs.first());
924     }
925 
926     for (StringRef Val : OpenMPTriples) {
927       llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
928       std::string NormalizedName = TT.normalize();
929 
930       // Make sure we don't have a duplicate triple.
931       auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
932       if (Duplicate != FoundNormalizedTriples.end()) {
933         Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
934             << Val << Duplicate->second;
935         continue;
936       }
937 
938       // Store the current triple so that we can check for duplicates in the
939       // following iterations.
940       FoundNormalizedTriples[NormalizedName] = Val;
941 
942       // If the specified target is invalid, emit a diagnostic.
943       if (TT.getArch() == llvm::Triple::UnknownArch)
944         Diag(clang::diag::err_drv_invalid_omp_target) << Val;
945       else {
946         const ToolChain *TC;
947         // Device toolchains have to be selected differently. They pair host
948         // and device in their implementation.
949         if (TT.isNVPTX() || TT.isAMDGCN()) {
950           const ToolChain *HostTC =
951               C.getSingleOffloadToolChain<Action::OFK_Host>();
952           assert(HostTC && "Host toolchain should be always defined.");
953           auto &DeviceTC =
954               ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
955           if (!DeviceTC) {
956             if (TT.isNVPTX())
957               DeviceTC = std::make_unique<toolchains::CudaToolChain>(
958                   *this, TT, *HostTC, C.getInputArgs());
959             else if (TT.isAMDGCN())
960               DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
961                   *this, TT, *HostTC, C.getInputArgs());
962             else
963               assert(DeviceTC && "Device toolchain not defined.");
964           }
965 
966           TC = DeviceTC.get();
967         } else
968           TC = &getToolChain(C.getInputArgs(), TT);
969         C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
970         if (DerivedArchs.contains(TT.getTriple()))
971           KnownArchs[TC] = DerivedArchs[TT.getTriple()];
972       }
973     }
974   } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) {
975     Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
976     return;
977   }
978 
979   //
980   // TODO: Add support for other offloading programming models here.
981   //
982 }
983 
984 static void appendOneArg(InputArgList &Args, const Arg *Opt,
985                          const Arg *BaseArg) {
986   // The args for config files or /clang: flags belong to different InputArgList
987   // objects than Args. This copies an Arg from one of those other InputArgLists
988   // to the ownership of Args.
989   unsigned Index = Args.MakeIndex(Opt->getSpelling());
990   Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
991                                  Index, BaseArg);
992   Copy->getValues() = Opt->getValues();
993   if (Opt->isClaimed())
994     Copy->claim();
995   Copy->setOwnsValues(Opt->getOwnsValues());
996   Opt->setOwnsValues(false);
997   Args.append(Copy);
998 }
999 
1000 bool Driver::readConfigFile(StringRef FileName,
1001                             llvm::cl::ExpansionContext &ExpCtx) {
1002   // Try opening the given file.
1003   auto Status = getVFS().status(FileName);
1004   if (!Status) {
1005     Diag(diag::err_drv_cannot_open_config_file)
1006         << FileName << Status.getError().message();
1007     return true;
1008   }
1009   if (Status->getType() != llvm::sys::fs::file_type::regular_file) {
1010     Diag(diag::err_drv_cannot_open_config_file)
1011         << FileName << "not a regular file";
1012     return true;
1013   }
1014 
1015   // Try reading the given file.
1016   SmallVector<const char *, 32> NewCfgArgs;
1017   if (llvm::Error Err = ExpCtx.readConfigFile(FileName, NewCfgArgs)) {
1018     Diag(diag::err_drv_cannot_read_config_file)
1019         << FileName << toString(std::move(Err));
1020     return true;
1021   }
1022 
1023   // Read options from config file.
1024   llvm::SmallString<128> CfgFileName(FileName);
1025   llvm::sys::path::native(CfgFileName);
1026   bool ContainErrors;
1027   std::unique_ptr<InputArgList> NewOptions = std::make_unique<InputArgList>(
1028       ParseArgStrings(NewCfgArgs, /*UseDriverMode=*/true, ContainErrors));
1029   if (ContainErrors)
1030     return true;
1031 
1032   // Claim all arguments that come from a configuration file so that the driver
1033   // does not warn on any that is unused.
1034   for (Arg *A : *NewOptions)
1035     A->claim();
1036 
1037   if (!CfgOptions)
1038     CfgOptions = std::move(NewOptions);
1039   else {
1040     // If this is a subsequent config file, append options to the previous one.
1041     for (auto *Opt : *NewOptions) {
1042       const Arg *BaseArg = &Opt->getBaseArg();
1043       if (BaseArg == Opt)
1044         BaseArg = nullptr;
1045       appendOneArg(*CfgOptions, Opt, BaseArg);
1046     }
1047   }
1048   ConfigFiles.push_back(std::string(CfgFileName));
1049   return false;
1050 }
1051 
1052 bool Driver::loadConfigFiles() {
1053   llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(),
1054                                     llvm::cl::tokenizeConfigFile);
1055   ExpCtx.setVFS(&getVFS());
1056 
1057   // Process options that change search path for config files.
1058   if (CLOptions) {
1059     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
1060       SmallString<128> CfgDir;
1061       CfgDir.append(
1062           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
1063       if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1064         SystemConfigDir.clear();
1065       else
1066         SystemConfigDir = static_cast<std::string>(CfgDir);
1067     }
1068     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
1069       SmallString<128> CfgDir;
1070       llvm::sys::fs::expand_tilde(
1071           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ), CfgDir);
1072       if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1073         UserConfigDir.clear();
1074       else
1075         UserConfigDir = static_cast<std::string>(CfgDir);
1076     }
1077   }
1078 
1079   // Prepare list of directories where config file is searched for.
1080   StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1081   ExpCtx.setSearchDirs(CfgFileSearchDirs);
1082 
1083   // First try to load configuration from the default files, return on error.
1084   if (loadDefaultConfigFiles(ExpCtx))
1085     return true;
1086 
1087   // Then load configuration files specified explicitly.
1088   SmallString<128> CfgFilePath;
1089   if (CLOptions) {
1090     for (auto CfgFileName : CLOptions->getAllArgValues(options::OPT_config)) {
1091       // If argument contains directory separator, treat it as a path to
1092       // configuration file.
1093       if (llvm::sys::path::has_parent_path(CfgFileName)) {
1094         CfgFilePath.assign(CfgFileName);
1095         if (llvm::sys::path::is_relative(CfgFilePath)) {
1096           if (getVFS().makeAbsolute(CfgFilePath)) {
1097             Diag(diag::err_drv_cannot_open_config_file)
1098                 << CfgFilePath << "cannot get absolute path";
1099             return true;
1100           }
1101         }
1102       } else if (!ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1103         // Report an error that the config file could not be found.
1104         Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1105         for (const StringRef &SearchDir : CfgFileSearchDirs)
1106           if (!SearchDir.empty())
1107             Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1108         return true;
1109       }
1110 
1111       // Try to read the config file, return on error.
1112       if (readConfigFile(CfgFilePath, ExpCtx))
1113         return true;
1114     }
1115   }
1116 
1117   // No error occurred.
1118   return false;
1119 }
1120 
1121 bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) {
1122   // Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty
1123   // value.
1124   if (const char *NoConfigEnv = ::getenv("CLANG_NO_DEFAULT_CONFIG")) {
1125     if (*NoConfigEnv)
1126       return false;
1127   }
1128   if (CLOptions && CLOptions->hasArg(options::OPT_no_default_config))
1129     return false;
1130 
1131   std::string RealMode = getExecutableForDriverMode(Mode);
1132   std::string Triple;
1133 
1134   // If name prefix is present, no --target= override was passed via CLOptions
1135   // and the name prefix is not a valid triple, force it for backwards
1136   // compatibility.
1137   if (!ClangNameParts.TargetPrefix.empty() &&
1138       computeTargetTriple(*this, "/invalid/", *CLOptions).str() ==
1139           "/invalid/") {
1140     llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix};
1141     if (PrefixTriple.getArch() == llvm::Triple::UnknownArch ||
1142         PrefixTriple.isOSUnknown())
1143       Triple = PrefixTriple.str();
1144   }
1145 
1146   // Otherwise, use the real triple as used by the driver.
1147   if (Triple.empty()) {
1148     llvm::Triple RealTriple =
1149         computeTargetTriple(*this, TargetTriple, *CLOptions);
1150     Triple = RealTriple.str();
1151     assert(!Triple.empty());
1152   }
1153 
1154   // Search for config files in the following order:
1155   // 1. <triple>-<mode>.cfg using real driver mode
1156   //    (e.g. i386-pc-linux-gnu-clang++.cfg).
1157   // 2. <triple>-<mode>.cfg using executable suffix
1158   //    (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++).
1159   // 3. <triple>.cfg + <mode>.cfg using real driver mode
1160   //    (e.g. i386-pc-linux-gnu.cfg + clang++.cfg).
1161   // 4. <triple>.cfg + <mode>.cfg using executable suffix
1162   //    (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++).
1163 
1164   // Try loading <triple>-<mode>.cfg, and return if we find a match.
1165   SmallString<128> CfgFilePath;
1166   std::string CfgFileName = Triple + '-' + RealMode + ".cfg";
1167   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1168     return readConfigFile(CfgFilePath, ExpCtx);
1169 
1170   bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() &&
1171                        ClangNameParts.ModeSuffix != RealMode;
1172   if (TryModeSuffix) {
1173     CfgFileName = Triple + '-' + ClangNameParts.ModeSuffix + ".cfg";
1174     if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1175       return readConfigFile(CfgFilePath, ExpCtx);
1176   }
1177 
1178   // Try loading <mode>.cfg, and return if loading failed.  If a matching file
1179   // was not found, still proceed on to try <triple>.cfg.
1180   CfgFileName = RealMode + ".cfg";
1181   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1182     if (readConfigFile(CfgFilePath, ExpCtx))
1183       return true;
1184   } else if (TryModeSuffix) {
1185     CfgFileName = ClangNameParts.ModeSuffix + ".cfg";
1186     if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath) &&
1187         readConfigFile(CfgFilePath, ExpCtx))
1188       return true;
1189   }
1190 
1191   // Try loading <triple>.cfg and return if we find a match.
1192   CfgFileName = Triple + ".cfg";
1193   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1194     return readConfigFile(CfgFilePath, ExpCtx);
1195 
1196   // If we were unable to find a config file deduced from executable name,
1197   // that is not an error.
1198   return false;
1199 }
1200 
1201 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1202   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1203 
1204   // FIXME: Handle environment options which affect driver behavior, somewhere
1205   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1206 
1207   // We look for the driver mode option early, because the mode can affect
1208   // how other options are parsed.
1209 
1210   auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1211   if (!DriverMode.empty())
1212     setDriverMode(DriverMode);
1213 
1214   // FIXME: What are we going to do with -V and -b?
1215 
1216   // Arguments specified in command line.
1217   bool ContainsError;
1218   CLOptions = std::make_unique<InputArgList>(
1219       ParseArgStrings(ArgList.slice(1), /*UseDriverMode=*/true, ContainsError));
1220 
1221   // Try parsing configuration file.
1222   if (!ContainsError)
1223     ContainsError = loadConfigFiles();
1224   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1225 
1226   // All arguments, from both config file and command line.
1227   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1228                                               : std::move(*CLOptions));
1229 
1230   if (HasConfigFile)
1231     for (auto *Opt : *CLOptions) {
1232       if (Opt->getOption().matches(options::OPT_config))
1233         continue;
1234       const Arg *BaseArg = &Opt->getBaseArg();
1235       if (BaseArg == Opt)
1236         BaseArg = nullptr;
1237       appendOneArg(Args, Opt, BaseArg);
1238     }
1239 
1240   // In CL mode, look for any pass-through arguments
1241   if (IsCLMode() && !ContainsError) {
1242     SmallVector<const char *, 16> CLModePassThroughArgList;
1243     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1244       A->claim();
1245       CLModePassThroughArgList.push_back(A->getValue());
1246     }
1247 
1248     if (!CLModePassThroughArgList.empty()) {
1249       // Parse any pass through args using default clang processing rather
1250       // than clang-cl processing.
1251       auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1252           ParseArgStrings(CLModePassThroughArgList, /*UseDriverMode=*/false,
1253                           ContainsError));
1254 
1255       if (!ContainsError)
1256         for (auto *Opt : *CLModePassThroughOptions) {
1257           appendOneArg(Args, Opt, nullptr);
1258         }
1259     }
1260   }
1261 
1262   // Check for working directory option before accessing any files
1263   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1264     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1265       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1266 
1267   // Check for missing include directories.
1268   if (!Diags.isIgnored(diag::warn_missing_include_dirs, SourceLocation())) {
1269     for (auto IncludeDir : Args.getAllArgValues(options::OPT_I_Group)) {
1270       if (!VFS->exists(IncludeDir))
1271         Diag(diag::warn_missing_include_dirs) << IncludeDir;
1272     }
1273   }
1274 
1275   // FIXME: This stuff needs to go into the Compilation, not the driver.
1276   bool CCCPrintPhases;
1277 
1278   // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1279   Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1280   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1281 
1282   // f(no-)integated-cc1 is also used very early in main.
1283   Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1284   Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1285 
1286   // Ignore -pipe.
1287   Args.ClaimAllArgs(options::OPT_pipe);
1288 
1289   // Extract -ccc args.
1290   //
1291   // FIXME: We need to figure out where this behavior should live. Most of it
1292   // should be outside in the client; the parts that aren't should have proper
1293   // options, either by introducing new ones or by overloading gcc ones like -V
1294   // or -b.
1295   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1296   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1297   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1298     CCCGenericGCCName = A->getValue();
1299 
1300   // Process -fproc-stat-report options.
1301   if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1302     CCPrintProcessStats = true;
1303     CCPrintStatReportFilename = A->getValue();
1304   }
1305   if (Args.hasArg(options::OPT_fproc_stat_report))
1306     CCPrintProcessStats = true;
1307 
1308   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1309   // and getToolChain is const.
1310   if (IsCLMode()) {
1311     // clang-cl targets MSVC-style Win32.
1312     llvm::Triple T(TargetTriple);
1313     T.setOS(llvm::Triple::Win32);
1314     T.setVendor(llvm::Triple::PC);
1315     T.setEnvironment(llvm::Triple::MSVC);
1316     T.setObjectFormat(llvm::Triple::COFF);
1317     if (Args.hasArg(options::OPT__SLASH_arm64EC))
1318       T.setArch(llvm::Triple::aarch64, llvm::Triple::AArch64SubArch_arm64ec);
1319     TargetTriple = T.str();
1320   } else if (IsDXCMode()) {
1321     // Build TargetTriple from target_profile option for clang-dxc.
1322     if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) {
1323       StringRef TargetProfile = A->getValue();
1324       if (auto Triple =
1325               toolchains::HLSLToolChain::parseTargetProfile(TargetProfile))
1326         TargetTriple = *Triple;
1327       else
1328         Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile;
1329 
1330       A->claim();
1331 
1332       if (Args.hasArg(options::OPT_spirv)) {
1333         llvm::Triple T(TargetTriple);
1334         T.setArch(llvm::Triple::spirv);
1335         T.setOS(llvm::Triple::Vulkan);
1336 
1337         // Set specific Vulkan version if applicable.
1338         if (const Arg *A = Args.getLastArg(options::OPT_fspv_target_env_EQ)) {
1339           const llvm::StringSet<> ValidValues = {"vulkan1.2", "vulkan1.3"};
1340           if (ValidValues.contains(A->getValue())) {
1341             T.setOSName(A->getValue());
1342           } else {
1343             Diag(diag::err_drv_invalid_value)
1344                 << A->getAsString(Args) << A->getValue();
1345           }
1346           A->claim();
1347         }
1348 
1349         TargetTriple = T.str();
1350       }
1351     } else {
1352       Diag(diag::err_drv_dxc_missing_target_profile);
1353     }
1354   }
1355 
1356   if (const Arg *A = Args.getLastArg(options::OPT_target))
1357     TargetTriple = A->getValue();
1358   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1359     Dir = Dir = A->getValue();
1360   for (const Arg *A : Args.filtered(options::OPT_B)) {
1361     A->claim();
1362     PrefixDirs.push_back(A->getValue(0));
1363   }
1364   if (std::optional<std::string> CompilerPathValue =
1365           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1366     StringRef CompilerPath = *CompilerPathValue;
1367     while (!CompilerPath.empty()) {
1368       std::pair<StringRef, StringRef> Split =
1369           CompilerPath.split(llvm::sys::EnvPathSeparator);
1370       PrefixDirs.push_back(std::string(Split.first));
1371       CompilerPath = Split.second;
1372     }
1373   }
1374   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1375     SysRoot = A->getValue();
1376   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1377     DyldPrefix = A->getValue();
1378 
1379   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1380     ResourceDir = A->getValue();
1381 
1382   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1383     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1384                     .Case("cwd", SaveTempsCwd)
1385                     .Case("obj", SaveTempsObj)
1386                     .Default(SaveTempsCwd);
1387   }
1388 
1389   if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only,
1390                                      options::OPT_offload_device_only,
1391                                      options::OPT_offload_host_device)) {
1392     if (A->getOption().matches(options::OPT_offload_host_only))
1393       Offload = OffloadHost;
1394     else if (A->getOption().matches(options::OPT_offload_device_only))
1395       Offload = OffloadDevice;
1396     else
1397       Offload = OffloadHostDevice;
1398   }
1399 
1400   setLTOMode(Args);
1401 
1402   // Process -fembed-bitcode= flags.
1403   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1404     StringRef Name = A->getValue();
1405     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1406         .Case("off", EmbedNone)
1407         .Case("all", EmbedBitcode)
1408         .Case("bitcode", EmbedBitcode)
1409         .Case("marker", EmbedMarker)
1410         .Default(~0U);
1411     if (Model == ~0U) {
1412       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1413                                                 << Name;
1414     } else
1415       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1416   }
1417 
1418   // Remove existing compilation database so that each job can append to it.
1419   if (Arg *A = Args.getLastArg(options::OPT_MJ))
1420     llvm::sys::fs::remove(A->getValue());
1421 
1422   // Setting up the jobs for some precompile cases depends on whether we are
1423   // treating them as PCH, implicit modules or C++20 ones.
1424   // TODO: inferring the mode like this seems fragile (it meets the objective
1425   // of not requiring anything new for operation, however).
1426   const Arg *Std = Args.getLastArg(options::OPT_std_EQ);
1427   ModulesModeCXX20 =
1428       !Args.hasArg(options::OPT_fmodules) && Std &&
1429       (Std->containsValue("c++20") || Std->containsValue("c++2a") ||
1430        Std->containsValue("c++23") || Std->containsValue("c++2b") ||
1431        Std->containsValue("c++26") || Std->containsValue("c++2c") ||
1432        Std->containsValue("c++latest"));
1433 
1434   // Process -fmodule-header{=} flags.
1435   if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ,
1436                                options::OPT_fmodule_header)) {
1437     // These flags force C++20 handling of headers.
1438     ModulesModeCXX20 = true;
1439     if (A->getOption().matches(options::OPT_fmodule_header))
1440       CXX20HeaderType = HeaderMode_Default;
1441     else {
1442       StringRef ArgName = A->getValue();
1443       unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1444                           .Case("user", HeaderMode_User)
1445                           .Case("system", HeaderMode_System)
1446                           .Default(~0U);
1447       if (Kind == ~0U) {
1448         Diags.Report(diag::err_drv_invalid_value)
1449             << A->getAsString(Args) << ArgName;
1450       } else
1451         CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1452     }
1453   }
1454 
1455   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1456       std::make_unique<InputArgList>(std::move(Args));
1457 
1458   // Perform the default argument translations.
1459   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1460 
1461   // Owned by the host.
1462   const ToolChain &TC = getToolChain(
1463       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1464 
1465   // Check if the environment version is valid except wasm case.
1466   llvm::Triple Triple = TC.getTriple();
1467   if (!Triple.isWasm()) {
1468     StringRef TripleVersionName = Triple.getEnvironmentVersionString();
1469     StringRef TripleObjectFormat =
1470         Triple.getObjectFormatTypeName(Triple.getObjectFormat());
1471     if (Triple.getEnvironmentVersion().empty() && TripleVersionName != "" &&
1472         TripleVersionName != TripleObjectFormat) {
1473       Diags.Report(diag::err_drv_triple_version_invalid)
1474           << TripleVersionName << TC.getTripleString();
1475       ContainsError = true;
1476     }
1477   }
1478 
1479   // Report warning when arm64EC option is overridden by specified target
1480   if ((TC.getTriple().getArch() != llvm::Triple::aarch64 ||
1481        TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) &&
1482       UArgs->hasArg(options::OPT__SLASH_arm64EC)) {
1483     getDiags().Report(clang::diag::warn_target_override_arm64ec)
1484         << TC.getTriple().str();
1485   }
1486 
1487   // A common user mistake is specifying a target of aarch64-none-eabi or
1488   // arm-none-elf whereas the correct names are aarch64-none-elf &
1489   // arm-none-eabi. Detect these cases and issue a warning.
1490   if (TC.getTriple().getOS() == llvm::Triple::UnknownOS &&
1491       TC.getTriple().getVendor() == llvm::Triple::UnknownVendor) {
1492     switch (TC.getTriple().getArch()) {
1493     case llvm::Triple::arm:
1494     case llvm::Triple::armeb:
1495     case llvm::Triple::thumb:
1496     case llvm::Triple::thumbeb:
1497       if (TC.getTriple().getEnvironmentName() == "elf") {
1498         Diag(diag::warn_target_unrecognized_env)
1499             << TargetTriple
1500             << (TC.getTriple().getArchName().str() + "-none-eabi");
1501       }
1502       break;
1503     case llvm::Triple::aarch64:
1504     case llvm::Triple::aarch64_be:
1505     case llvm::Triple::aarch64_32:
1506       if (TC.getTriple().getEnvironmentName().starts_with("eabi")) {
1507         Diag(diag::warn_target_unrecognized_env)
1508             << TargetTriple
1509             << (TC.getTriple().getArchName().str() + "-none-elf");
1510       }
1511       break;
1512     default:
1513       break;
1514     }
1515   }
1516 
1517   // The compilation takes ownership of Args.
1518   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1519                                    ContainsError);
1520 
1521   if (!HandleImmediateArgs(*C))
1522     return C;
1523 
1524   // Construct the list of inputs.
1525   InputList Inputs;
1526   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1527 
1528   // Populate the tool chains for the offloading devices, if any.
1529   CreateOffloadingDeviceToolChains(*C, Inputs);
1530 
1531   // Construct the list of abstract actions to perform for this compilation. On
1532   // MachO targets this uses the driver-driver and universal actions.
1533   if (TC.getTriple().isOSBinFormatMachO())
1534     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1535   else
1536     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1537 
1538   if (CCCPrintPhases) {
1539     PrintActions(*C);
1540     return C;
1541   }
1542 
1543   BuildJobs(*C);
1544 
1545   return C;
1546 }
1547 
1548 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1549   llvm::opt::ArgStringList ASL;
1550   for (const auto *A : Args) {
1551     // Use user's original spelling of flags. For example, use
1552     // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1553     // wrote the former.
1554     while (A->getAlias())
1555       A = A->getAlias();
1556     A->render(Args, ASL);
1557   }
1558 
1559   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1560     if (I != ASL.begin())
1561       OS << ' ';
1562     llvm::sys::printArg(OS, *I, true);
1563   }
1564   OS << '\n';
1565 }
1566 
1567 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1568                                     SmallString<128> &CrashDiagDir) {
1569   using namespace llvm::sys;
1570   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1571          "Only knows about .crash files on Darwin");
1572 
1573   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1574   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1575   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1576   path::home_directory(CrashDiagDir);
1577   if (CrashDiagDir.starts_with("/var/root"))
1578     CrashDiagDir = "/";
1579   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1580   int PID =
1581 #if LLVM_ON_UNIX
1582       getpid();
1583 #else
1584       0;
1585 #endif
1586   std::error_code EC;
1587   fs::file_status FileStatus;
1588   TimePoint<> LastAccessTime;
1589   SmallString<128> CrashFilePath;
1590   // Lookup the .crash files and get the one generated by a subprocess spawned
1591   // by this driver invocation.
1592   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1593        File != FileEnd && !EC; File.increment(EC)) {
1594     StringRef FileName = path::filename(File->path());
1595     if (!FileName.starts_with(Name))
1596       continue;
1597     if (fs::status(File->path(), FileStatus))
1598       continue;
1599     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1600         llvm::MemoryBuffer::getFile(File->path());
1601     if (!CrashFile)
1602       continue;
1603     // The first line should start with "Process:", otherwise this isn't a real
1604     // .crash file.
1605     StringRef Data = CrashFile.get()->getBuffer();
1606     if (!Data.starts_with("Process:"))
1607       continue;
1608     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1609     size_t ParentProcPos = Data.find("Parent Process:");
1610     if (ParentProcPos == StringRef::npos)
1611       continue;
1612     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1613     if (LineEnd == StringRef::npos)
1614       continue;
1615     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1616     int OpenBracket = -1, CloseBracket = -1;
1617     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1618       if (ParentProcess[i] == '[')
1619         OpenBracket = i;
1620       if (ParentProcess[i] == ']')
1621         CloseBracket = i;
1622     }
1623     // Extract the parent process PID from the .crash file and check whether
1624     // it matches this driver invocation pid.
1625     int CrashPID;
1626     if (OpenBracket < 0 || CloseBracket < 0 ||
1627         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1628             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1629       continue;
1630     }
1631 
1632     // Found a .crash file matching the driver pid. To avoid getting an older
1633     // and misleading crash file, continue looking for the most recent.
1634     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1635     // multiple crashes poiting to the same parent process. Since the driver
1636     // does not collect pid information for the dispatched invocation there's
1637     // currently no way to distinguish among them.
1638     const auto FileAccessTime = FileStatus.getLastModificationTime();
1639     if (FileAccessTime > LastAccessTime) {
1640       CrashFilePath.assign(File->path());
1641       LastAccessTime = FileAccessTime;
1642     }
1643   }
1644 
1645   // If found, copy it over to the location of other reproducer files.
1646   if (!CrashFilePath.empty()) {
1647     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1648     if (EC)
1649       return false;
1650     return true;
1651   }
1652 
1653   return false;
1654 }
1655 
1656 static const char BugReporMsg[] =
1657     "\n********************\n\n"
1658     "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1659     "Preprocessed source(s) and associated run script(s) are located at:";
1660 
1661 // When clang crashes, produce diagnostic information including the fully
1662 // preprocessed source file(s).  Request that the developer attach the
1663 // diagnostic information to a bug report.
1664 void Driver::generateCompilationDiagnostics(
1665     Compilation &C, const Command &FailingCommand,
1666     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1667   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1668     return;
1669 
1670   unsigned Level = 1;
1671   if (Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ)) {
1672     Level = llvm::StringSwitch<unsigned>(A->getValue())
1673                 .Case("off", 0)
1674                 .Case("compiler", 1)
1675                 .Case("all", 2)
1676                 .Default(1);
1677   }
1678   if (!Level)
1679     return;
1680 
1681   // Don't try to generate diagnostics for dsymutil jobs.
1682   if (FailingCommand.getCreator().isDsymutilJob())
1683     return;
1684 
1685   bool IsLLD = false;
1686   ArgStringList SavedTemps;
1687   if (FailingCommand.getCreator().isLinkJob()) {
1688     C.getDefaultToolChain().GetLinkerPath(&IsLLD);
1689     if (!IsLLD || Level < 2)
1690       return;
1691 
1692     // If lld crashed, we will re-run the same command with the input it used
1693     // to have. In that case we should not remove temp files in
1694     // initCompilationForDiagnostics yet. They will be added back and removed
1695     // later.
1696     SavedTemps = std::move(C.getTempFiles());
1697     assert(!C.getTempFiles().size());
1698   }
1699 
1700   // Print the version of the compiler.
1701   PrintVersion(C, llvm::errs());
1702 
1703   // Suppress driver output and emit preprocessor output to temp file.
1704   CCGenDiagnostics = true;
1705 
1706   // Save the original job command(s).
1707   Command Cmd = FailingCommand;
1708 
1709   // Keep track of whether we produce any errors while trying to produce
1710   // preprocessed sources.
1711   DiagnosticErrorTrap Trap(Diags);
1712 
1713   // Suppress tool output.
1714   C.initCompilationForDiagnostics();
1715 
1716   // If lld failed, rerun it again with --reproduce.
1717   if (IsLLD) {
1718     const char *TmpName = CreateTempFile(C, "linker-crash", "tar");
1719     Command NewLLDInvocation = Cmd;
1720     llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments();
1721     StringRef ReproduceOption =
1722         C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment()
1723             ? "/reproduce:"
1724             : "--reproduce=";
1725     ArgList.push_back(Saver.save(Twine(ReproduceOption) + TmpName).data());
1726     NewLLDInvocation.replaceArguments(std::move(ArgList));
1727 
1728     // Redirect stdout/stderr to /dev/null.
1729     NewLLDInvocation.Execute({std::nullopt, {""}, {""}}, nullptr, nullptr);
1730     Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1731     Diag(clang::diag::note_drv_command_failed_diag_msg) << TmpName;
1732     Diag(clang::diag::note_drv_command_failed_diag_msg)
1733         << "\n\n********************";
1734     if (Report)
1735       Report->TemporaryFiles.push_back(TmpName);
1736     return;
1737   }
1738 
1739   // Construct the list of inputs.
1740   InputList Inputs;
1741   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1742 
1743   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1744     bool IgnoreInput = false;
1745 
1746     // Ignore input from stdin or any inputs that cannot be preprocessed.
1747     // Check type first as not all linker inputs have a value.
1748     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1749       IgnoreInput = true;
1750     } else if (!strcmp(it->second->getValue(), "-")) {
1751       Diag(clang::diag::note_drv_command_failed_diag_msg)
1752           << "Error generating preprocessed source(s) - "
1753              "ignoring input from stdin.";
1754       IgnoreInput = true;
1755     }
1756 
1757     if (IgnoreInput) {
1758       it = Inputs.erase(it);
1759       ie = Inputs.end();
1760     } else {
1761       ++it;
1762     }
1763   }
1764 
1765   if (Inputs.empty()) {
1766     Diag(clang::diag::note_drv_command_failed_diag_msg)
1767         << "Error generating preprocessed source(s) - "
1768            "no preprocessable inputs.";
1769     return;
1770   }
1771 
1772   // Don't attempt to generate preprocessed files if multiple -arch options are
1773   // used, unless they're all duplicates.
1774   llvm::StringSet<> ArchNames;
1775   for (const Arg *A : C.getArgs()) {
1776     if (A->getOption().matches(options::OPT_arch)) {
1777       StringRef ArchName = A->getValue();
1778       ArchNames.insert(ArchName);
1779     }
1780   }
1781   if (ArchNames.size() > 1) {
1782     Diag(clang::diag::note_drv_command_failed_diag_msg)
1783         << "Error generating preprocessed source(s) - cannot generate "
1784            "preprocessed source with multiple -arch options.";
1785     return;
1786   }
1787 
1788   // Construct the list of abstract actions to perform for this compilation. On
1789   // Darwin OSes this uses the driver-driver and builds universal actions.
1790   const ToolChain &TC = C.getDefaultToolChain();
1791   if (TC.getTriple().isOSBinFormatMachO())
1792     BuildUniversalActions(C, TC, Inputs);
1793   else
1794     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1795 
1796   BuildJobs(C);
1797 
1798   // If there were errors building the compilation, quit now.
1799   if (Trap.hasErrorOccurred()) {
1800     Diag(clang::diag::note_drv_command_failed_diag_msg)
1801         << "Error generating preprocessed source(s).";
1802     return;
1803   }
1804 
1805   // Generate preprocessed output.
1806   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1807   C.ExecuteJobs(C.getJobs(), FailingCommands);
1808 
1809   // If any of the preprocessing commands failed, clean up and exit.
1810   if (!FailingCommands.empty()) {
1811     Diag(clang::diag::note_drv_command_failed_diag_msg)
1812         << "Error generating preprocessed source(s).";
1813     return;
1814   }
1815 
1816   const ArgStringList &TempFiles = C.getTempFiles();
1817   if (TempFiles.empty()) {
1818     Diag(clang::diag::note_drv_command_failed_diag_msg)
1819         << "Error generating preprocessed source(s).";
1820     return;
1821   }
1822 
1823   Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1824 
1825   SmallString<128> VFS;
1826   SmallString<128> ReproCrashFilename;
1827   for (const char *TempFile : TempFiles) {
1828     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1829     if (Report)
1830       Report->TemporaryFiles.push_back(TempFile);
1831     if (ReproCrashFilename.empty()) {
1832       ReproCrashFilename = TempFile;
1833       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1834     }
1835     if (StringRef(TempFile).ends_with(".cache")) {
1836       // In some cases (modules) we'll dump extra data to help with reproducing
1837       // the crash into a directory next to the output.
1838       VFS = llvm::sys::path::filename(TempFile);
1839       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1840     }
1841   }
1842 
1843   for (const char *TempFile : SavedTemps)
1844     C.addTempFile(TempFile);
1845 
1846   // Assume associated files are based off of the first temporary file.
1847   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1848 
1849   llvm::SmallString<128> Script(CrashInfo.Filename);
1850   llvm::sys::path::replace_extension(Script, "sh");
1851   std::error_code EC;
1852   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1853                                 llvm::sys::fs::FA_Write,
1854                                 llvm::sys::fs::OF_Text);
1855   if (EC) {
1856     Diag(clang::diag::note_drv_command_failed_diag_msg)
1857         << "Error generating run script: " << Script << " " << EC.message();
1858   } else {
1859     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1860              << "# Driver args: ";
1861     printArgList(ScriptOS, C.getInputArgs());
1862     ScriptOS << "# Original command: ";
1863     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1864     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1865     if (!AdditionalInformation.empty())
1866       ScriptOS << "\n# Additional information: " << AdditionalInformation
1867                << "\n";
1868     if (Report)
1869       Report->TemporaryFiles.push_back(std::string(Script));
1870     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1871   }
1872 
1873   // On darwin, provide information about the .crash diagnostic report.
1874   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1875     SmallString<128> CrashDiagDir;
1876     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1877       Diag(clang::diag::note_drv_command_failed_diag_msg)
1878           << ReproCrashFilename.str();
1879     } else { // Suggest a directory for the user to look for .crash files.
1880       llvm::sys::path::append(CrashDiagDir, Name);
1881       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1882       Diag(clang::diag::note_drv_command_failed_diag_msg)
1883           << "Crash backtrace is located in";
1884       Diag(clang::diag::note_drv_command_failed_diag_msg)
1885           << CrashDiagDir.str();
1886       Diag(clang::diag::note_drv_command_failed_diag_msg)
1887           << "(choose the .crash file that corresponds to your crash)";
1888     }
1889   }
1890 
1891   Diag(clang::diag::note_drv_command_failed_diag_msg)
1892       << "\n\n********************";
1893 }
1894 
1895 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1896   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1897   // capacity if the tool does not support response files, there is a chance/
1898   // that things will just work without a response file, so we silently just
1899   // skip it.
1900   if (Cmd.getResponseFileSupport().ResponseKind ==
1901           ResponseFileSupport::RF_None ||
1902       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1903                                                    Cmd.getArguments()))
1904     return;
1905 
1906   std::string TmpName = GetTemporaryPath("response", "txt");
1907   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1908 }
1909 
1910 int Driver::ExecuteCompilation(
1911     Compilation &C,
1912     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1913   if (C.getArgs().hasArg(options::OPT_fdriver_only)) {
1914     if (C.getArgs().hasArg(options::OPT_v))
1915       C.getJobs().Print(llvm::errs(), "\n", true);
1916 
1917     C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true);
1918 
1919     // If there were errors building the compilation, quit now.
1920     if (!FailingCommands.empty() || Diags.hasErrorOccurred())
1921       return 1;
1922 
1923     return 0;
1924   }
1925 
1926   // Just print if -### was present.
1927   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1928     C.getJobs().Print(llvm::errs(), "\n", true);
1929     return Diags.hasErrorOccurred() ? 1 : 0;
1930   }
1931 
1932   // If there were errors building the compilation, quit now.
1933   if (Diags.hasErrorOccurred())
1934     return 1;
1935 
1936   // Set up response file names for each command, if necessary.
1937   for (auto &Job : C.getJobs())
1938     setUpResponseFiles(C, Job);
1939 
1940   C.ExecuteJobs(C.getJobs(), FailingCommands);
1941 
1942   // If the command succeeded, we are done.
1943   if (FailingCommands.empty())
1944     return 0;
1945 
1946   // Otherwise, remove result files and print extra information about abnormal
1947   // failures.
1948   int Res = 0;
1949   for (const auto &CmdPair : FailingCommands) {
1950     int CommandRes = CmdPair.first;
1951     const Command *FailingCommand = CmdPair.second;
1952 
1953     // Remove result files if we're not saving temps.
1954     if (!isSaveTempsEnabled()) {
1955       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1956       C.CleanupFileMap(C.getResultFiles(), JA, true);
1957 
1958       // Failure result files are valid unless we crashed.
1959       if (CommandRes < 0)
1960         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1961     }
1962 
1963     // llvm/lib/Support/*/Signals.inc will exit with a special return code
1964     // for SIGPIPE. Do not print diagnostics for this case.
1965     if (CommandRes == EX_IOERR) {
1966       Res = CommandRes;
1967       continue;
1968     }
1969 
1970     // Print extra information about abnormal failures, if possible.
1971     //
1972     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1973     // status was 1, assume the command failed normally. In particular, if it
1974     // was the compiler then assume it gave a reasonable error code. Failures
1975     // in other tools are less common, and they generally have worse
1976     // diagnostics, so always print the diagnostic there.
1977     const Tool &FailingTool = FailingCommand->getCreator();
1978 
1979     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1980       // FIXME: See FIXME above regarding result code interpretation.
1981       if (CommandRes < 0)
1982         Diag(clang::diag::err_drv_command_signalled)
1983             << FailingTool.getShortName();
1984       else
1985         Diag(clang::diag::err_drv_command_failed)
1986             << FailingTool.getShortName() << CommandRes;
1987     }
1988   }
1989   return Res;
1990 }
1991 
1992 void Driver::PrintHelp(bool ShowHidden) const {
1993   llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask();
1994 
1995   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1996   getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1997                       ShowHidden, /*ShowAllAliases=*/false,
1998                       VisibilityMask);
1999 }
2000 
2001 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
2002   if (IsFlangMode()) {
2003     OS << getClangToolFullVersion("flang-new") << '\n';
2004   } else {
2005     // FIXME: The following handlers should use a callback mechanism, we don't
2006     // know what the client would like to do.
2007     OS << getClangFullVersion() << '\n';
2008   }
2009   const ToolChain &TC = C.getDefaultToolChain();
2010   OS << "Target: " << TC.getTripleString() << '\n';
2011 
2012   // Print the threading model.
2013   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
2014     // Don't print if the ToolChain would have barfed on it already
2015     if (TC.isThreadModelSupported(A->getValue()))
2016       OS << "Thread model: " << A->getValue();
2017   } else
2018     OS << "Thread model: " << TC.getThreadModel();
2019   OS << '\n';
2020 
2021   // Print out the install directory.
2022   OS << "InstalledDir: " << Dir << '\n';
2023 
2024   // Print the build config if it's non-default.
2025   // Intended to help LLVM developers understand the configs of compilers
2026   // they're investigating.
2027   if (!llvm::cl::getCompilerBuildConfig().empty())
2028     llvm::cl::printBuildConfig(OS);
2029 
2030   // If configuration files were used, print their paths.
2031   for (auto ConfigFile : ConfigFiles)
2032     OS << "Configuration file: " << ConfigFile << '\n';
2033 }
2034 
2035 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
2036 /// option.
2037 static void PrintDiagnosticCategories(raw_ostream &OS) {
2038   // Skip the empty category.
2039   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
2040        ++i)
2041     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
2042 }
2043 
2044 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
2045   if (PassedFlags == "")
2046     return;
2047   // Print out all options that start with a given argument. This is used for
2048   // shell autocompletion.
2049   std::vector<std::string> SuggestedCompletions;
2050   std::vector<std::string> Flags;
2051 
2052   llvm::opt::Visibility VisibilityMask(options::ClangOption);
2053 
2054   // Make sure that Flang-only options don't pollute the Clang output
2055   // TODO: Make sure that Clang-only options don't pollute Flang output
2056   if (IsFlangMode())
2057     VisibilityMask = llvm::opt::Visibility(options::FlangOption);
2058 
2059   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
2060   // because the latter indicates that the user put space before pushing tab
2061   // which should end up in a file completion.
2062   const bool HasSpace = PassedFlags.ends_with(",");
2063 
2064   // Parse PassedFlags by "," as all the command-line flags are passed to this
2065   // function separated by ","
2066   StringRef TargetFlags = PassedFlags;
2067   while (TargetFlags != "") {
2068     StringRef CurFlag;
2069     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
2070     Flags.push_back(std::string(CurFlag));
2071   }
2072 
2073   // We want to show cc1-only options only when clang is invoked with -cc1 or
2074   // -Xclang.
2075   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
2076     VisibilityMask = llvm::opt::Visibility(options::CC1Option);
2077 
2078   const llvm::opt::OptTable &Opts = getOpts();
2079   StringRef Cur;
2080   Cur = Flags.at(Flags.size() - 1);
2081   StringRef Prev;
2082   if (Flags.size() >= 2) {
2083     Prev = Flags.at(Flags.size() - 2);
2084     SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
2085   }
2086 
2087   if (SuggestedCompletions.empty())
2088     SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
2089 
2090   // If Flags were empty, it means the user typed `clang [tab]` where we should
2091   // list all possible flags. If there was no value completion and the user
2092   // pressed tab after a space, we should fall back to a file completion.
2093   // We're printing a newline to be consistent with what we print at the end of
2094   // this function.
2095   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
2096     llvm::outs() << '\n';
2097     return;
2098   }
2099 
2100   // When flag ends with '=' and there was no value completion, return empty
2101   // string and fall back to the file autocompletion.
2102   if (SuggestedCompletions.empty() && !Cur.ends_with("=")) {
2103     // If the flag is in the form of "--autocomplete=-foo",
2104     // we were requested to print out all option names that start with "-foo".
2105     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
2106     SuggestedCompletions = Opts.findByPrefix(
2107         Cur, VisibilityMask,
2108         /*DisableFlags=*/options::Unsupported | options::Ignored);
2109 
2110     // We have to query the -W flags manually as they're not in the OptTable.
2111     // TODO: Find a good way to add them to OptTable instead and them remove
2112     // this code.
2113     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
2114       if (S.starts_with(Cur))
2115         SuggestedCompletions.push_back(std::string(S));
2116   }
2117 
2118   // Sort the autocomplete candidates so that shells print them out in a
2119   // deterministic order. We could sort in any way, but we chose
2120   // case-insensitive sorting for consistency with the -help option
2121   // which prints out options in the case-insensitive alphabetical order.
2122   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
2123     if (int X = A.compare_insensitive(B))
2124       return X < 0;
2125     return A.compare(B) > 0;
2126   });
2127 
2128   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
2129 }
2130 
2131 bool Driver::HandleImmediateArgs(Compilation &C) {
2132   // The order these options are handled in gcc is all over the place, but we
2133   // don't expect inconsistencies w.r.t. that to matter in practice.
2134 
2135   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
2136     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
2137     return false;
2138   }
2139 
2140   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
2141     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
2142     // return an answer which matches our definition of __VERSION__.
2143     llvm::outs() << CLANG_VERSION_STRING << "\n";
2144     return false;
2145   }
2146 
2147   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
2148     PrintDiagnosticCategories(llvm::outs());
2149     return false;
2150   }
2151 
2152   if (C.getArgs().hasArg(options::OPT_help) ||
2153       C.getArgs().hasArg(options::OPT__help_hidden)) {
2154     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
2155     return false;
2156   }
2157 
2158   if (C.getArgs().hasArg(options::OPT__version)) {
2159     // Follow gcc behavior and use stdout for --version and stderr for -v.
2160     PrintVersion(C, llvm::outs());
2161     return false;
2162   }
2163 
2164   if (C.getArgs().hasArg(options::OPT_v) ||
2165       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
2166       C.getArgs().hasArg(options::OPT_print_supported_cpus) ||
2167       C.getArgs().hasArg(options::OPT_print_supported_extensions) ||
2168       C.getArgs().hasArg(options::OPT_print_enabled_extensions)) {
2169     PrintVersion(C, llvm::errs());
2170     SuppressMissingInputWarning = true;
2171   }
2172 
2173   if (C.getArgs().hasArg(options::OPT_v)) {
2174     if (!SystemConfigDir.empty())
2175       llvm::errs() << "System configuration file directory: "
2176                    << SystemConfigDir << "\n";
2177     if (!UserConfigDir.empty())
2178       llvm::errs() << "User configuration file directory: "
2179                    << UserConfigDir << "\n";
2180   }
2181 
2182   const ToolChain &TC = C.getDefaultToolChain();
2183 
2184   if (C.getArgs().hasArg(options::OPT_v))
2185     TC.printVerboseInfo(llvm::errs());
2186 
2187   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
2188     llvm::outs() << ResourceDir << '\n';
2189     return false;
2190   }
2191 
2192   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
2193     llvm::outs() << "programs: =";
2194     bool separator = false;
2195     // Print -B and COMPILER_PATH.
2196     for (const std::string &Path : PrefixDirs) {
2197       if (separator)
2198         llvm::outs() << llvm::sys::EnvPathSeparator;
2199       llvm::outs() << Path;
2200       separator = true;
2201     }
2202     for (const std::string &Path : TC.getProgramPaths()) {
2203       if (separator)
2204         llvm::outs() << llvm::sys::EnvPathSeparator;
2205       llvm::outs() << Path;
2206       separator = true;
2207     }
2208     llvm::outs() << "\n";
2209     llvm::outs() << "libraries: =" << ResourceDir;
2210 
2211     StringRef sysroot = C.getSysRoot();
2212 
2213     for (const std::string &Path : TC.getFilePaths()) {
2214       // Always print a separator. ResourceDir was the first item shown.
2215       llvm::outs() << llvm::sys::EnvPathSeparator;
2216       // Interpretation of leading '=' is needed only for NetBSD.
2217       if (Path[0] == '=')
2218         llvm::outs() << sysroot << Path.substr(1);
2219       else
2220         llvm::outs() << Path;
2221     }
2222     llvm::outs() << "\n";
2223     return false;
2224   }
2225 
2226   if (C.getArgs().hasArg(options::OPT_print_std_module_manifest_path)) {
2227     llvm::outs() << GetStdModuleManifestPath(C, C.getDefaultToolChain())
2228                  << '\n';
2229     return false;
2230   }
2231 
2232   if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
2233     if (std::optional<std::string> RuntimePath = TC.getRuntimePath())
2234       llvm::outs() << *RuntimePath << '\n';
2235     else
2236       llvm::outs() << TC.getCompilerRTPath() << '\n';
2237     return false;
2238   }
2239 
2240   if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) {
2241     std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags();
2242     for (std::size_t I = 0; I != Flags.size(); I += 2)
2243       llvm::outs() << "  " << Flags[I] << "\n  " << Flags[I + 1] << "\n\n";
2244     return false;
2245   }
2246 
2247   // FIXME: The following handlers should use a callback mechanism, we don't
2248   // know what the client would like to do.
2249   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
2250     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
2251     return false;
2252   }
2253 
2254   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
2255     StringRef ProgName = A->getValue();
2256 
2257     // Null program name cannot have a path.
2258     if (! ProgName.empty())
2259       llvm::outs() << GetProgramPath(ProgName, TC);
2260 
2261     llvm::outs() << "\n";
2262     return false;
2263   }
2264 
2265   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
2266     StringRef PassedFlags = A->getValue();
2267     HandleAutocompletions(PassedFlags);
2268     return false;
2269   }
2270 
2271   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
2272     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
2273     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2274     // The 'Darwin' toolchain is initialized only when its arguments are
2275     // computed. Get the default arguments for OFK_None to ensure that
2276     // initialization is performed before trying to access properties of
2277     // the toolchain in the functions below.
2278     // FIXME: Remove when darwin's toolchain is initialized during construction.
2279     // FIXME: For some more esoteric targets the default toolchain is not the
2280     //        correct one.
2281     C.getArgsForToolChain(&TC, Triple.getArchName(), Action::OFK_None);
2282     RegisterEffectiveTriple TripleRAII(TC, Triple);
2283     switch (RLT) {
2284     case ToolChain::RLT_CompilerRT:
2285       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
2286       break;
2287     case ToolChain::RLT_Libgcc:
2288       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
2289       break;
2290     }
2291     return false;
2292   }
2293 
2294   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
2295     for (const Multilib &Multilib : TC.getMultilibs())
2296       llvm::outs() << Multilib << "\n";
2297     return false;
2298   }
2299 
2300   if (C.getArgs().hasArg(options::OPT_print_multi_flags)) {
2301     Multilib::flags_list ArgFlags = TC.getMultilibFlags(C.getArgs());
2302     llvm::StringSet<> ExpandedFlags = TC.getMultilibs().expandFlags(ArgFlags);
2303     std::set<llvm::StringRef> SortedFlags;
2304     for (const auto &FlagEntry : ExpandedFlags)
2305       SortedFlags.insert(FlagEntry.getKey());
2306     for (auto Flag : SortedFlags)
2307       llvm::outs() << Flag << '\n';
2308     return false;
2309   }
2310 
2311   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
2312     for (const Multilib &Multilib : TC.getSelectedMultilibs()) {
2313       if (Multilib.gccSuffix().empty())
2314         llvm::outs() << ".\n";
2315       else {
2316         StringRef Suffix(Multilib.gccSuffix());
2317         assert(Suffix.front() == '/');
2318         llvm::outs() << Suffix.substr(1) << "\n";
2319       }
2320     }
2321     return false;
2322   }
2323 
2324   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
2325     llvm::outs() << TC.getTripleString() << "\n";
2326     return false;
2327   }
2328 
2329   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
2330     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2331     llvm::outs() << Triple.getTriple() << "\n";
2332     return false;
2333   }
2334 
2335   if (C.getArgs().hasArg(options::OPT_print_targets)) {
2336     llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2337     return false;
2338   }
2339 
2340   return true;
2341 }
2342 
2343 enum {
2344   TopLevelAction = 0,
2345   HeadSibAction = 1,
2346   OtherSibAction = 2,
2347 };
2348 
2349 // Display an action graph human-readably.  Action A is the "sink" node
2350 // and latest-occuring action. Traversal is in pre-order, visiting the
2351 // inputs to each action before printing the action itself.
2352 static unsigned PrintActions1(const Compilation &C, Action *A,
2353                               std::map<Action *, unsigned> &Ids,
2354                               Twine Indent = {}, int Kind = TopLevelAction) {
2355   if (Ids.count(A)) // A was already visited.
2356     return Ids[A];
2357 
2358   std::string str;
2359   llvm::raw_string_ostream os(str);
2360 
2361   auto getSibIndent = [](int K) -> Twine {
2362     return (K == HeadSibAction) ? "   " : (K == OtherSibAction) ? "|  " : "";
2363   };
2364 
2365   Twine SibIndent = Indent + getSibIndent(Kind);
2366   int SibKind = HeadSibAction;
2367   os << Action::getClassName(A->getKind()) << ", ";
2368   if (InputAction *IA = dyn_cast<InputAction>(A)) {
2369     os << "\"" << IA->getInputArg().getValue() << "\"";
2370   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2371     os << '"' << BIA->getArchName() << '"' << ", {"
2372        << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2373   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2374     bool IsFirst = true;
2375     OA->doOnEachDependence(
2376         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2377           assert(TC && "Unknown host toolchain");
2378           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2379           // sm_35 this will generate:
2380           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2381           // (nvptx64-nvidia-cuda:sm_35) {#ID}
2382           if (!IsFirst)
2383             os << ", ";
2384           os << '"';
2385           os << A->getOffloadingKindPrefix();
2386           os << " (";
2387           os << TC->getTriple().normalize();
2388           if (BoundArch)
2389             os << ":" << BoundArch;
2390           os << ")";
2391           os << '"';
2392           os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2393           IsFirst = false;
2394           SibKind = OtherSibAction;
2395         });
2396   } else {
2397     const ActionList *AL = &A->getInputs();
2398 
2399     if (AL->size()) {
2400       const char *Prefix = "{";
2401       for (Action *PreRequisite : *AL) {
2402         os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2403         Prefix = ", ";
2404         SibKind = OtherSibAction;
2405       }
2406       os << "}";
2407     } else
2408       os << "{}";
2409   }
2410 
2411   // Append offload info for all options other than the offloading action
2412   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2413   std::string offload_str;
2414   llvm::raw_string_ostream offload_os(offload_str);
2415   if (!isa<OffloadAction>(A)) {
2416     auto S = A->getOffloadingKindPrefix();
2417     if (!S.empty()) {
2418       offload_os << ", (" << S;
2419       if (A->getOffloadingArch())
2420         offload_os << ", " << A->getOffloadingArch();
2421       offload_os << ")";
2422     }
2423   }
2424 
2425   auto getSelfIndent = [](int K) -> Twine {
2426     return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2427   };
2428 
2429   unsigned Id = Ids.size();
2430   Ids[A] = Id;
2431   llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2432                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2433 
2434   return Id;
2435 }
2436 
2437 // Print the action graphs in a compilation C.
2438 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
2439 void Driver::PrintActions(const Compilation &C) const {
2440   std::map<Action *, unsigned> Ids;
2441   for (Action *A : C.getActions())
2442     PrintActions1(C, A, Ids);
2443 }
2444 
2445 /// Check whether the given input tree contains any compilation or
2446 /// assembly actions.
2447 static bool ContainsCompileOrAssembleAction(const Action *A) {
2448   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2449       isa<AssembleJobAction>(A))
2450     return true;
2451 
2452   return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2453 }
2454 
2455 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2456                                    const InputList &BAInputs) const {
2457   DerivedArgList &Args = C.getArgs();
2458   ActionList &Actions = C.getActions();
2459   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2460   // Collect the list of architectures. Duplicates are allowed, but should only
2461   // be handled once (in the order seen).
2462   llvm::StringSet<> ArchNames;
2463   SmallVector<const char *, 4> Archs;
2464   for (Arg *A : Args) {
2465     if (A->getOption().matches(options::OPT_arch)) {
2466       // Validate the option here; we don't save the type here because its
2467       // particular spelling may participate in other driver choices.
2468       llvm::Triple::ArchType Arch =
2469           tools::darwin::getArchTypeForMachOArchName(A->getValue());
2470       if (Arch == llvm::Triple::UnknownArch) {
2471         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2472         continue;
2473       }
2474 
2475       A->claim();
2476       if (ArchNames.insert(A->getValue()).second)
2477         Archs.push_back(A->getValue());
2478     }
2479   }
2480 
2481   // When there is no explicit arch for this platform, make sure we still bind
2482   // the architecture (to the default) so that -Xarch_ is handled correctly.
2483   if (!Archs.size())
2484     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2485 
2486   ActionList SingleActions;
2487   BuildActions(C, Args, BAInputs, SingleActions);
2488 
2489   // Add in arch bindings for every top level action, as well as lipo and
2490   // dsymutil steps if needed.
2491   for (Action* Act : SingleActions) {
2492     // Make sure we can lipo this kind of output. If not (and it is an actual
2493     // output) then we disallow, since we can't create an output file with the
2494     // right name without overwriting it. We could remove this oddity by just
2495     // changing the output names to include the arch, which would also fix
2496     // -save-temps. Compatibility wins for now.
2497 
2498     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2499       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2500           << types::getTypeName(Act->getType());
2501 
2502     ActionList Inputs;
2503     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2504       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2505 
2506     // Lipo if necessary, we do it this way because we need to set the arch flag
2507     // so that -Xarch_ gets overwritten.
2508     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2509       Actions.append(Inputs.begin(), Inputs.end());
2510     else
2511       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2512 
2513     // Handle debug info queries.
2514     Arg *A = Args.getLastArg(options::OPT_g_Group);
2515     bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2516                             !A->getOption().matches(options::OPT_gstabs);
2517     if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2518         ContainsCompileOrAssembleAction(Actions.back())) {
2519 
2520       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2521       // have a compile input. We need to run 'dsymutil' ourselves in such cases
2522       // because the debug info will refer to a temporary object file which
2523       // will be removed at the end of the compilation process.
2524       if (Act->getType() == types::TY_Image) {
2525         ActionList Inputs;
2526         Inputs.push_back(Actions.back());
2527         Actions.pop_back();
2528         Actions.push_back(
2529             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2530       }
2531 
2532       // Verify the debug info output.
2533       if (Args.hasArg(options::OPT_verify_debug_info)) {
2534         Action* LastAction = Actions.back();
2535         Actions.pop_back();
2536         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2537             LastAction, types::TY_Nothing));
2538       }
2539     }
2540   }
2541 }
2542 
2543 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2544                                     types::ID Ty, bool TypoCorrect) const {
2545   if (!getCheckInputsExist())
2546     return true;
2547 
2548   // stdin always exists.
2549   if (Value == "-")
2550     return true;
2551 
2552   // If it's a header to be found in the system or user search path, then defer
2553   // complaints about its absence until those searches can be done.  When we
2554   // are definitely processing headers for C++20 header units, extend this to
2555   // allow the user to put "-fmodule-header -xc++-header vector" for example.
2556   if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2557       (ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2558     return true;
2559 
2560   if (getVFS().exists(Value))
2561     return true;
2562 
2563   if (TypoCorrect) {
2564     // Check if the filename is a typo for an option flag. OptTable thinks
2565     // that all args that are not known options and that start with / are
2566     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2567     // the option `/diagnostics:caret` than a reference to a file in the root
2568     // directory.
2569     std::string Nearest;
2570     if (getOpts().findNearest(Value, Nearest, getOptionVisibilityMask()) <= 1) {
2571       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2572           << Value << Nearest;
2573       return false;
2574     }
2575   }
2576 
2577   // In CL mode, don't error on apparently non-existent linker inputs, because
2578   // they can be influenced by linker flags the clang driver might not
2579   // understand.
2580   // Examples:
2581   // - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver
2582   //   module look for an MSVC installation in the registry. (We could ask
2583   //   the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2584   //   look in the registry might move into lld-link in the future so that
2585   //   lld-link invocations in non-MSVC shells just work too.)
2586   // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2587   //   including /libpath:, which is used to find .lib and .obj files.
2588   // So do not diagnose this on the driver level. Rely on the linker diagnosing
2589   // it. (If we don't end up invoking the linker, this means we'll emit a
2590   // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2591   // of an error.)
2592   //
2593   // Only do this skip after the typo correction step above. `/Brepo` is treated
2594   // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2595   // an error if we have a flag that's within an edit distance of 1 from a
2596   // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2597   // driver in the unlikely case they run into this.)
2598   //
2599   // Don't do this for inputs that start with a '/', else we'd pass options
2600   // like /libpath: through to the linker silently.
2601   //
2602   // Emitting an error for linker inputs can also cause incorrect diagnostics
2603   // with the gcc driver. The command
2604   //     clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2605   // will make lld look for some/dir/file.o, while we will diagnose here that
2606   // `/file.o` does not exist. However, configure scripts check if
2607   // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2608   // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2609   // in cc mode. (We can in cl mode because cl.exe itself only warns on
2610   // unknown flags.)
2611   if (IsCLMode() && Ty == types::TY_Object && !Value.starts_with("/"))
2612     return true;
2613 
2614   Diag(clang::diag::err_drv_no_such_file) << Value;
2615   return false;
2616 }
2617 
2618 // Get the C++20 Header Unit type corresponding to the input type.
2619 static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) {
2620   switch (HM) {
2621   case HeaderMode_User:
2622     return types::TY_CXXUHeader;
2623   case HeaderMode_System:
2624     return types::TY_CXXSHeader;
2625   case HeaderMode_Default:
2626     break;
2627   case HeaderMode_None:
2628     llvm_unreachable("should not be called in this case");
2629   }
2630   return types::TY_CXXHUHeader;
2631 }
2632 
2633 // Construct a the list of inputs and their types.
2634 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2635                          InputList &Inputs) const {
2636   const llvm::opt::OptTable &Opts = getOpts();
2637   // Track the current user specified (-x) input. We also explicitly track the
2638   // argument used to set the type; we only want to claim the type when we
2639   // actually use it, so we warn about unused -x arguments.
2640   types::ID InputType = types::TY_Nothing;
2641   Arg *InputTypeArg = nullptr;
2642 
2643   // The last /TC or /TP option sets the input type to C or C++ globally.
2644   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2645                                          options::OPT__SLASH_TP)) {
2646     InputTypeArg = TCTP;
2647     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2648                     ? types::TY_C
2649                     : types::TY_CXX;
2650 
2651     Arg *Previous = nullptr;
2652     bool ShowNote = false;
2653     for (Arg *A :
2654          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2655       if (Previous) {
2656         Diag(clang::diag::warn_drv_overriding_option)
2657             << Previous->getSpelling() << A->getSpelling();
2658         ShowNote = true;
2659       }
2660       Previous = A;
2661     }
2662     if (ShowNote)
2663       Diag(clang::diag::note_drv_t_option_is_global);
2664   }
2665 
2666   // Warn -x after last input file has no effect
2667   {
2668     Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2669     Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2670     if (LastXArg && LastInputArg &&
2671         LastInputArg->getIndex() < LastXArg->getIndex())
2672       Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2673   }
2674 
2675   for (Arg *A : Args) {
2676     if (A->getOption().getKind() == Option::InputClass) {
2677       const char *Value = A->getValue();
2678       types::ID Ty = types::TY_INVALID;
2679 
2680       // Infer the input type if necessary.
2681       if (InputType == types::TY_Nothing) {
2682         // If there was an explicit arg for this, claim it.
2683         if (InputTypeArg)
2684           InputTypeArg->claim();
2685 
2686         // stdin must be handled specially.
2687         if (memcmp(Value, "-", 2) == 0) {
2688           if (IsFlangMode()) {
2689             Ty = types::TY_Fortran;
2690           } else if (IsDXCMode()) {
2691             Ty = types::TY_HLSL;
2692           } else {
2693             // If running with -E, treat as a C input (this changes the
2694             // builtin macros, for example). This may be overridden by -ObjC
2695             // below.
2696             //
2697             // Otherwise emit an error but still use a valid type to avoid
2698             // spurious errors (e.g., no inputs).
2699             assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2700             if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2701               Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2702                               : clang::diag::err_drv_unknown_stdin_type);
2703             Ty = types::TY_C;
2704           }
2705         } else {
2706           // Otherwise lookup by extension.
2707           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2708           // clang-cl /E, or Object otherwise.
2709           // We use a host hook here because Darwin at least has its own
2710           // idea of what .s is.
2711           if (const char *Ext = strrchr(Value, '.'))
2712             Ty = TC.LookupTypeForExtension(Ext + 1);
2713 
2714           if (Ty == types::TY_INVALID) {
2715             if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2716               Ty = types::TY_CXX;
2717             else if (CCCIsCPP() || CCGenDiagnostics)
2718               Ty = types::TY_C;
2719             else
2720               Ty = types::TY_Object;
2721           }
2722 
2723           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2724           // should autodetect some input files as C++ for g++ compatibility.
2725           if (CCCIsCXX()) {
2726             types::ID OldTy = Ty;
2727             Ty = types::lookupCXXTypeForCType(Ty);
2728 
2729             // Do not complain about foo.h, when we are known to be processing
2730             // it as a C++20 header unit.
2731             if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
2732               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2733                   << getTypeName(OldTy) << getTypeName(Ty);
2734           }
2735 
2736           // If running with -fthinlto-index=, extensions that normally identify
2737           // native object files actually identify LLVM bitcode files.
2738           if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2739               Ty == types::TY_Object)
2740             Ty = types::TY_LLVM_BC;
2741         }
2742 
2743         // -ObjC and -ObjC++ override the default language, but only for "source
2744         // files". We just treat everything that isn't a linker input as a
2745         // source file.
2746         //
2747         // FIXME: Clean this up if we move the phase sequence into the type.
2748         if (Ty != types::TY_Object) {
2749           if (Args.hasArg(options::OPT_ObjC))
2750             Ty = types::TY_ObjC;
2751           else if (Args.hasArg(options::OPT_ObjCXX))
2752             Ty = types::TY_ObjCXX;
2753         }
2754 
2755         // Disambiguate headers that are meant to be header units from those
2756         // intended to be PCH.  Avoid missing '.h' cases that are counted as
2757         // C headers by default - we know we are in C++ mode and we do not
2758         // want to issue a complaint about compiling things in the wrong mode.
2759         if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
2760             hasHeaderMode())
2761           Ty = CXXHeaderUnitType(CXX20HeaderType);
2762       } else {
2763         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2764         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2765           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2766           // object files.
2767           const char *Ext = strrchr(Value, '.');
2768           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2769             Ty = types::TY_Object;
2770         }
2771         if (Ty == types::TY_INVALID) {
2772           Ty = InputType;
2773           InputTypeArg->claim();
2774         }
2775       }
2776 
2777       if ((Ty == types::TY_C || Ty == types::TY_CXX) &&
2778           Args.hasArgNoClaim(options::OPT_hipstdpar))
2779         Ty = types::TY_HIP;
2780 
2781       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2782         Inputs.push_back(std::make_pair(Ty, A));
2783 
2784     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2785       StringRef Value = A->getValue();
2786       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2787                                  /*TypoCorrect=*/false)) {
2788         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2789         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2790       }
2791       A->claim();
2792     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2793       StringRef Value = A->getValue();
2794       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2795                                  /*TypoCorrect=*/false)) {
2796         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2797         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2798       }
2799       A->claim();
2800     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2801       // Just treat as object type, we could make a special type for this if
2802       // necessary.
2803       Inputs.push_back(std::make_pair(types::TY_Object, A));
2804 
2805     } else if (A->getOption().matches(options::OPT_x)) {
2806       InputTypeArg = A;
2807       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2808       A->claim();
2809 
2810       // Follow gcc behavior and treat as linker input for invalid -x
2811       // options. Its not clear why we shouldn't just revert to unknown; but
2812       // this isn't very important, we might as well be bug compatible.
2813       if (!InputType) {
2814         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2815         InputType = types::TY_Object;
2816       }
2817 
2818       // If the user has put -fmodule-header{,=} then we treat C++ headers as
2819       // header unit inputs.  So we 'promote' -xc++-header appropriately.
2820       if (InputType == types::TY_CXXHeader && hasHeaderMode())
2821         InputType = CXXHeaderUnitType(CXX20HeaderType);
2822     } else if (A->getOption().getID() == options::OPT_U) {
2823       assert(A->getNumValues() == 1 && "The /U option has one value.");
2824       StringRef Val = A->getValue(0);
2825       if (Val.find_first_of("/\\") != StringRef::npos) {
2826         // Warn about e.g. "/Users/me/myfile.c".
2827         Diag(diag::warn_slash_u_filename) << Val;
2828         Diag(diag::note_use_dashdash);
2829       }
2830     }
2831   }
2832   if (CCCIsCPP() && Inputs.empty()) {
2833     // If called as standalone preprocessor, stdin is processed
2834     // if no other input is present.
2835     Arg *A = MakeInputArg(Args, Opts, "-");
2836     Inputs.push_back(std::make_pair(types::TY_C, A));
2837   }
2838 }
2839 
2840 namespace {
2841 /// Provides a convenient interface for different programming models to generate
2842 /// the required device actions.
2843 class OffloadingActionBuilder final {
2844   /// Flag used to trace errors in the builder.
2845   bool IsValid = false;
2846 
2847   /// The compilation that is using this builder.
2848   Compilation &C;
2849 
2850   /// Map between an input argument and the offload kinds used to process it.
2851   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2852 
2853   /// Map between a host action and its originating input argument.
2854   std::map<Action *, const Arg *> HostActionToInputArgMap;
2855 
2856   /// Builder interface. It doesn't build anything or keep any state.
2857   class DeviceActionBuilder {
2858   public:
2859     typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2860 
2861     enum ActionBuilderReturnCode {
2862       // The builder acted successfully on the current action.
2863       ABRT_Success,
2864       // The builder didn't have to act on the current action.
2865       ABRT_Inactive,
2866       // The builder was successful and requested the host action to not be
2867       // generated.
2868       ABRT_Ignore_Host,
2869     };
2870 
2871   protected:
2872     /// Compilation associated with this builder.
2873     Compilation &C;
2874 
2875     /// Tool chains associated with this builder. The same programming
2876     /// model may have associated one or more tool chains.
2877     SmallVector<const ToolChain *, 2> ToolChains;
2878 
2879     /// The derived arguments associated with this builder.
2880     DerivedArgList &Args;
2881 
2882     /// The inputs associated with this builder.
2883     const Driver::InputList &Inputs;
2884 
2885     /// The associated offload kind.
2886     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2887 
2888   public:
2889     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2890                         const Driver::InputList &Inputs,
2891                         Action::OffloadKind AssociatedOffloadKind)
2892         : C(C), Args(Args), Inputs(Inputs),
2893           AssociatedOffloadKind(AssociatedOffloadKind) {}
2894     virtual ~DeviceActionBuilder() {}
2895 
2896     /// Fill up the array \a DA with all the device dependences that should be
2897     /// added to the provided host action \a HostAction. By default it is
2898     /// inactive.
2899     virtual ActionBuilderReturnCode
2900     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2901                          phases::ID CurPhase, phases::ID FinalPhase,
2902                          PhasesTy &Phases) {
2903       return ABRT_Inactive;
2904     }
2905 
2906     /// Update the state to include the provided host action \a HostAction as a
2907     /// dependency of the current device action. By default it is inactive.
2908     virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) {
2909       return ABRT_Inactive;
2910     }
2911 
2912     /// Append top level actions generated by the builder.
2913     virtual void appendTopLevelActions(ActionList &AL) {}
2914 
2915     /// Append linker device actions generated by the builder.
2916     virtual void appendLinkDeviceActions(ActionList &AL) {}
2917 
2918     /// Append linker host action generated by the builder.
2919     virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2920 
2921     /// Append linker actions generated by the builder.
2922     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2923 
2924     /// Initialize the builder. Return true if any initialization errors are
2925     /// found.
2926     virtual bool initialize() { return false; }
2927 
2928     /// Return true if the builder can use bundling/unbundling.
2929     virtual bool canUseBundlerUnbundler() const { return false; }
2930 
2931     /// Return true if this builder is valid. We have a valid builder if we have
2932     /// associated device tool chains.
2933     bool isValid() { return !ToolChains.empty(); }
2934 
2935     /// Return the associated offload kind.
2936     Action::OffloadKind getAssociatedOffloadKind() {
2937       return AssociatedOffloadKind;
2938     }
2939   };
2940 
2941   /// Base class for CUDA/HIP action builder. It injects device code in
2942   /// the host backend action.
2943   class CudaActionBuilderBase : public DeviceActionBuilder {
2944   protected:
2945     /// Flags to signal if the user requested host-only or device-only
2946     /// compilation.
2947     bool CompileHostOnly = false;
2948     bool CompileDeviceOnly = false;
2949     bool EmitLLVM = false;
2950     bool EmitAsm = false;
2951 
2952     /// ID to identify each device compilation. For CUDA it is simply the
2953     /// GPU arch string. For HIP it is either the GPU arch string or GPU
2954     /// arch string plus feature strings delimited by a plus sign, e.g.
2955     /// gfx906+xnack.
2956     struct TargetID {
2957       /// Target ID string which is persistent throughout the compilation.
2958       const char *ID;
2959       TargetID(OffloadArch Arch) { ID = OffloadArchToString(Arch); }
2960       TargetID(const char *ID) : ID(ID) {}
2961       operator const char *() { return ID; }
2962       operator StringRef() { return StringRef(ID); }
2963     };
2964     /// List of GPU architectures to use in this compilation.
2965     SmallVector<TargetID, 4> GpuArchList;
2966 
2967     /// The CUDA actions for the current input.
2968     ActionList CudaDeviceActions;
2969 
2970     /// The CUDA fat binary if it was generated for the current input.
2971     Action *CudaFatBinary = nullptr;
2972 
2973     /// Flag that is set to true if this builder acted on the current input.
2974     bool IsActive = false;
2975 
2976     /// Flag for -fgpu-rdc.
2977     bool Relocatable = false;
2978 
2979     /// Default GPU architecture if there's no one specified.
2980     OffloadArch DefaultOffloadArch = OffloadArch::UNKNOWN;
2981 
2982     /// Method to generate compilation unit ID specified by option
2983     /// '-fuse-cuid='.
2984     enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2985     UseCUIDKind UseCUID = CUID_Hash;
2986 
2987     /// Compilation unit ID specified by option '-cuid='.
2988     StringRef FixedCUID;
2989 
2990   public:
2991     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2992                           const Driver::InputList &Inputs,
2993                           Action::OffloadKind OFKind)
2994         : DeviceActionBuilder(C, Args, Inputs, OFKind) {
2995 
2996       CompileDeviceOnly = C.getDriver().offloadDeviceOnly();
2997       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2998                                  options::OPT_fno_gpu_rdc, /*Default=*/false);
2999     }
3000 
3001     ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override {
3002       // While generating code for CUDA, we only depend on the host input action
3003       // to trigger the creation of all the CUDA device actions.
3004 
3005       // If we are dealing with an input action, replicate it for each GPU
3006       // architecture. If we are in host-only mode we return 'success' so that
3007       // the host uses the CUDA offload kind.
3008       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
3009         assert(!GpuArchList.empty() &&
3010                "We should have at least one GPU architecture.");
3011 
3012         // If the host input is not CUDA or HIP, we don't need to bother about
3013         // this input.
3014         if (!(IA->getType() == types::TY_CUDA ||
3015               IA->getType() == types::TY_HIP ||
3016               IA->getType() == types::TY_PP_HIP)) {
3017           // The builder will ignore this input.
3018           IsActive = false;
3019           return ABRT_Inactive;
3020         }
3021 
3022         // Set the flag to true, so that the builder acts on the current input.
3023         IsActive = true;
3024 
3025         if (CompileHostOnly)
3026           return ABRT_Success;
3027 
3028         // Replicate inputs for each GPU architecture.
3029         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
3030                                                  : types::TY_CUDA_DEVICE;
3031         std::string CUID = FixedCUID.str();
3032         if (CUID.empty()) {
3033           if (UseCUID == CUID_Random)
3034             CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
3035                                    /*LowerCase=*/true);
3036           else if (UseCUID == CUID_Hash) {
3037             llvm::MD5 Hasher;
3038             llvm::MD5::MD5Result Hash;
3039             SmallString<256> RealPath;
3040             llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
3041                                      /*expand_tilde=*/true);
3042             Hasher.update(RealPath);
3043             for (auto *A : Args) {
3044               if (A->getOption().matches(options::OPT_INPUT))
3045                 continue;
3046               Hasher.update(A->getAsString(Args));
3047             }
3048             Hasher.final(Hash);
3049             CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
3050           }
3051         }
3052         IA->setId(CUID);
3053 
3054         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3055           CudaDeviceActions.push_back(
3056               C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
3057         }
3058 
3059         return ABRT_Success;
3060       }
3061 
3062       // If this is an unbundling action use it as is for each CUDA toolchain.
3063       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3064 
3065         // If -fgpu-rdc is disabled, should not unbundle since there is no
3066         // device code to link.
3067         if (UA->getType() == types::TY_Object && !Relocatable)
3068           return ABRT_Inactive;
3069 
3070         CudaDeviceActions.clear();
3071         auto *IA = cast<InputAction>(UA->getInputs().back());
3072         std::string FileName = IA->getInputArg().getAsString(Args);
3073         // Check if the type of the file is the same as the action. Do not
3074         // unbundle it if it is not. Do not unbundle .so files, for example,
3075         // which are not object files. Files with extension ".lib" is classified
3076         // as TY_Object but they are actually archives, therefore should not be
3077         // unbundled here as objects. They will be handled at other places.
3078         const StringRef LibFileExt = ".lib";
3079         if (IA->getType() == types::TY_Object &&
3080             (!llvm::sys::path::has_extension(FileName) ||
3081              types::lookupTypeForExtension(
3082                  llvm::sys::path::extension(FileName).drop_front()) !=
3083                  types::TY_Object ||
3084              llvm::sys::path::extension(FileName) == LibFileExt))
3085           return ABRT_Inactive;
3086 
3087         for (auto Arch : GpuArchList) {
3088           CudaDeviceActions.push_back(UA);
3089           UA->registerDependentActionInfo(ToolChains[0], Arch,
3090                                           AssociatedOffloadKind);
3091         }
3092         IsActive = true;
3093         return ABRT_Success;
3094       }
3095 
3096       return IsActive ? ABRT_Success : ABRT_Inactive;
3097     }
3098 
3099     void appendTopLevelActions(ActionList &AL) override {
3100       // Utility to append actions to the top level list.
3101       auto AddTopLevel = [&](Action *A, TargetID TargetID) {
3102         OffloadAction::DeviceDependences Dep;
3103         Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
3104         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3105       };
3106 
3107       // If we have a fat binary, add it to the list.
3108       if (CudaFatBinary) {
3109         AddTopLevel(CudaFatBinary, OffloadArch::UNUSED);
3110         CudaDeviceActions.clear();
3111         CudaFatBinary = nullptr;
3112         return;
3113       }
3114 
3115       if (CudaDeviceActions.empty())
3116         return;
3117 
3118       // If we have CUDA actions at this point, that's because we have a have
3119       // partial compilation, so we should have an action for each GPU
3120       // architecture.
3121       assert(CudaDeviceActions.size() == GpuArchList.size() &&
3122              "Expecting one action per GPU architecture.");
3123       assert(ToolChains.size() == 1 &&
3124              "Expecting to have a single CUDA toolchain.");
3125       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
3126         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
3127 
3128       CudaDeviceActions.clear();
3129     }
3130 
3131     /// Get canonicalized offload arch option. \returns empty StringRef if the
3132     /// option is invalid.
3133     virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
3134 
3135     virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3136     getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
3137 
3138     bool initialize() override {
3139       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
3140              AssociatedOffloadKind == Action::OFK_HIP);
3141 
3142       // We don't need to support CUDA.
3143       if (AssociatedOffloadKind == Action::OFK_Cuda &&
3144           !C.hasOffloadToolChain<Action::OFK_Cuda>())
3145         return false;
3146 
3147       // We don't need to support HIP.
3148       if (AssociatedOffloadKind == Action::OFK_HIP &&
3149           !C.hasOffloadToolChain<Action::OFK_HIP>())
3150         return false;
3151 
3152       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
3153       assert(HostTC && "No toolchain for host compilation.");
3154       if (HostTC->getTriple().isNVPTX() ||
3155           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
3156         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
3157         // an error and abort pipeline construction early so we don't trip
3158         // asserts that assume device-side compilation.
3159         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
3160             << HostTC->getTriple().getArchName();
3161         return true;
3162       }
3163 
3164       ToolChains.push_back(
3165           AssociatedOffloadKind == Action::OFK_Cuda
3166               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
3167               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
3168 
3169       CompileHostOnly = C.getDriver().offloadHostOnly();
3170       EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
3171       EmitAsm = Args.getLastArg(options::OPT_S);
3172       FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
3173       if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
3174         StringRef UseCUIDStr = A->getValue();
3175         UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
3176                       .Case("hash", CUID_Hash)
3177                       .Case("random", CUID_Random)
3178                       .Case("none", CUID_None)
3179                       .Default(CUID_Invalid);
3180         if (UseCUID == CUID_Invalid) {
3181           C.getDriver().Diag(diag::err_drv_invalid_value)
3182               << A->getAsString(Args) << UseCUIDStr;
3183           C.setContainsError();
3184           return true;
3185         }
3186       }
3187 
3188       // --offload and --offload-arch options are mutually exclusive.
3189       if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
3190           Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
3191                              options::OPT_no_offload_arch_EQ)) {
3192         C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
3193                                                              << "--offload";
3194       }
3195 
3196       // Collect all offload arch parameters, removing duplicates.
3197       std::set<StringRef> GpuArchs;
3198       bool Error = false;
3199       for (Arg *A : Args) {
3200         if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
3201               A->getOption().matches(options::OPT_no_offload_arch_EQ)))
3202           continue;
3203         A->claim();
3204 
3205         for (StringRef ArchStr : llvm::split(A->getValue(), ",")) {
3206           if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
3207               ArchStr == "all") {
3208             GpuArchs.clear();
3209           } else if (ArchStr == "native") {
3210             const ToolChain &TC = *ToolChains.front();
3211             auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args);
3212             if (!GPUsOrErr) {
3213               TC.getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
3214                   << llvm::Triple::getArchTypeName(TC.getArch())
3215                   << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
3216               continue;
3217             }
3218 
3219             for (auto GPU : *GPUsOrErr) {
3220               GpuArchs.insert(Args.MakeArgString(GPU));
3221             }
3222           } else {
3223             ArchStr = getCanonicalOffloadArch(ArchStr);
3224             if (ArchStr.empty()) {
3225               Error = true;
3226             } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
3227               GpuArchs.insert(ArchStr);
3228             else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
3229               GpuArchs.erase(ArchStr);
3230             else
3231               llvm_unreachable("Unexpected option.");
3232           }
3233         }
3234       }
3235 
3236       auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
3237       if (ConflictingArchs) {
3238         C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
3239             << ConflictingArchs->first << ConflictingArchs->second;
3240         C.setContainsError();
3241         return true;
3242       }
3243 
3244       // Collect list of GPUs remaining in the set.
3245       for (auto Arch : GpuArchs)
3246         GpuArchList.push_back(Arch.data());
3247 
3248       // Default to sm_20 which is the lowest common denominator for
3249       // supported GPUs.  sm_20 code should work correctly, if
3250       // suboptimally, on all newer GPUs.
3251       if (GpuArchList.empty()) {
3252         if (ToolChains.front()->getTriple().isSPIRV()) {
3253           if (ToolChains.front()->getTriple().getVendor() == llvm::Triple::AMD)
3254             GpuArchList.push_back(OffloadArch::AMDGCNSPIRV);
3255           else
3256             GpuArchList.push_back(OffloadArch::Generic);
3257         } else {
3258           GpuArchList.push_back(DefaultOffloadArch);
3259         }
3260       }
3261 
3262       return Error;
3263     }
3264   };
3265 
3266   /// \brief CUDA action builder. It injects device code in the host backend
3267   /// action.
3268   class CudaActionBuilder final : public CudaActionBuilderBase {
3269   public:
3270     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3271                       const Driver::InputList &Inputs)
3272         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3273       DefaultOffloadArch = OffloadArch::CudaDefault;
3274     }
3275 
3276     StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3277       OffloadArch Arch = StringToOffloadArch(ArchStr);
3278       if (Arch == OffloadArch::UNKNOWN || !IsNVIDIAOffloadArch(Arch)) {
3279         C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3280         return StringRef();
3281       }
3282       return OffloadArchToString(Arch);
3283     }
3284 
3285     std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3286     getConflictOffloadArchCombination(
3287         const std::set<StringRef> &GpuArchs) override {
3288       return std::nullopt;
3289     }
3290 
3291     ActionBuilderReturnCode
3292     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3293                          phases::ID CurPhase, phases::ID FinalPhase,
3294                          PhasesTy &Phases) override {
3295       if (!IsActive)
3296         return ABRT_Inactive;
3297 
3298       // If we don't have more CUDA actions, we don't have any dependences to
3299       // create for the host.
3300       if (CudaDeviceActions.empty())
3301         return ABRT_Success;
3302 
3303       assert(CudaDeviceActions.size() == GpuArchList.size() &&
3304              "Expecting one action per GPU architecture.");
3305       assert(!CompileHostOnly &&
3306              "Not expecting CUDA actions in host-only compilation.");
3307 
3308       // If we are generating code for the device or we are in a backend phase,
3309       // we attempt to generate the fat binary. We compile each arch to ptx and
3310       // assemble to cubin, then feed the cubin *and* the ptx into a device
3311       // "link" action, which uses fatbinary to combine these cubins into one
3312       // fatbin.  The fatbin is then an input to the host action if not in
3313       // device-only mode.
3314       if (CompileDeviceOnly || CurPhase == phases::Backend) {
3315         ActionList DeviceActions;
3316         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3317           // Produce the device action from the current phase up to the assemble
3318           // phase.
3319           for (auto Ph : Phases) {
3320             // Skip the phases that were already dealt with.
3321             if (Ph < CurPhase)
3322               continue;
3323             // We have to be consistent with the host final phase.
3324             if (Ph > FinalPhase)
3325               break;
3326 
3327             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3328                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
3329 
3330             if (Ph == phases::Assemble)
3331               break;
3332           }
3333 
3334           // If we didn't reach the assemble phase, we can't generate the fat
3335           // binary. We don't need to generate the fat binary if we are not in
3336           // device-only mode.
3337           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
3338               CompileDeviceOnly)
3339             continue;
3340 
3341           Action *AssembleAction = CudaDeviceActions[I];
3342           assert(AssembleAction->getType() == types::TY_Object);
3343           assert(AssembleAction->getInputs().size() == 1);
3344 
3345           Action *BackendAction = AssembleAction->getInputs()[0];
3346           assert(BackendAction->getType() == types::TY_PP_Asm);
3347 
3348           for (auto &A : {AssembleAction, BackendAction}) {
3349             OffloadAction::DeviceDependences DDep;
3350             DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
3351             DeviceActions.push_back(
3352                 C.MakeAction<OffloadAction>(DDep, A->getType()));
3353           }
3354         }
3355 
3356         // We generate the fat binary if we have device input actions.
3357         if (!DeviceActions.empty()) {
3358           CudaFatBinary =
3359               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
3360 
3361           if (!CompileDeviceOnly) {
3362             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3363                    Action::OFK_Cuda);
3364             // Clear the fat binary, it is already a dependence to an host
3365             // action.
3366             CudaFatBinary = nullptr;
3367           }
3368 
3369           // Remove the CUDA actions as they are already connected to an host
3370           // action or fat binary.
3371           CudaDeviceActions.clear();
3372         }
3373 
3374         // We avoid creating host action in device-only mode.
3375         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3376       } else if (CurPhase > phases::Backend) {
3377         // If we are past the backend phase and still have a device action, we
3378         // don't have to do anything as this action is already a device
3379         // top-level action.
3380         return ABRT_Success;
3381       }
3382 
3383       assert(CurPhase < phases::Backend && "Generating single CUDA "
3384                                            "instructions should only occur "
3385                                            "before the backend phase!");
3386 
3387       // By default, we produce an action for each device arch.
3388       for (Action *&A : CudaDeviceActions)
3389         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3390 
3391       return ABRT_Success;
3392     }
3393   };
3394   /// \brief HIP action builder. It injects device code in the host backend
3395   /// action.
3396   class HIPActionBuilder final : public CudaActionBuilderBase {
3397     /// The linker inputs obtained for each device arch.
3398     SmallVector<ActionList, 8> DeviceLinkerInputs;
3399     // The default bundling behavior depends on the type of output, therefore
3400     // BundleOutput needs to be tri-value: None, true, or false.
3401     // Bundle code objects except --no-gpu-output is specified for device
3402     // only compilation. Bundle other type of output files only if
3403     // --gpu-bundle-output is specified for device only compilation.
3404     std::optional<bool> BundleOutput;
3405     std::optional<bool> EmitReloc;
3406 
3407   public:
3408     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3409                      const Driver::InputList &Inputs)
3410         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3411 
3412       DefaultOffloadArch = OffloadArch::HIPDefault;
3413 
3414       if (Args.hasArg(options::OPT_fhip_emit_relocatable,
3415                       options::OPT_fno_hip_emit_relocatable)) {
3416         EmitReloc = Args.hasFlag(options::OPT_fhip_emit_relocatable,
3417                                  options::OPT_fno_hip_emit_relocatable, false);
3418 
3419         if (*EmitReloc) {
3420           if (Relocatable) {
3421             C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
3422                 << "-fhip-emit-relocatable"
3423                 << "-fgpu-rdc";
3424           }
3425 
3426           if (!CompileDeviceOnly) {
3427             C.getDriver().Diag(diag::err_opt_not_valid_without_opt)
3428                 << "-fhip-emit-relocatable"
3429                 << "--cuda-device-only";
3430           }
3431         }
3432       }
3433 
3434       if (Args.hasArg(options::OPT_gpu_bundle_output,
3435                       options::OPT_no_gpu_bundle_output))
3436         BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3437                                     options::OPT_no_gpu_bundle_output, true) &&
3438                        (!EmitReloc || !*EmitReloc);
3439     }
3440 
3441     bool canUseBundlerUnbundler() const override { return true; }
3442 
3443     StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3444       llvm::StringMap<bool> Features;
3445       // getHIPOffloadTargetTriple() is known to return valid value as it has
3446       // been called successfully in the CreateOffloadingDeviceToolChains().
3447       auto ArchStr = parseTargetID(
3448           *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3449           &Features);
3450       if (!ArchStr) {
3451         C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3452         C.setContainsError();
3453         return StringRef();
3454       }
3455       auto CanId = getCanonicalTargetID(*ArchStr, Features);
3456       return Args.MakeArgStringRef(CanId);
3457     };
3458 
3459     std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3460     getConflictOffloadArchCombination(
3461         const std::set<StringRef> &GpuArchs) override {
3462       return getConflictTargetIDCombination(GpuArchs);
3463     }
3464 
3465     ActionBuilderReturnCode
3466     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3467                          phases::ID CurPhase, phases::ID FinalPhase,
3468                          PhasesTy &Phases) override {
3469       if (!IsActive)
3470         return ABRT_Inactive;
3471 
3472       // amdgcn does not support linking of object files, therefore we skip
3473       // backend and assemble phases to output LLVM IR. Except for generating
3474       // non-relocatable device code, where we generate fat binary for device
3475       // code and pass to host in Backend phase.
3476       if (CudaDeviceActions.empty())
3477         return ABRT_Success;
3478 
3479       assert(((CurPhase == phases::Link && Relocatable) ||
3480               CudaDeviceActions.size() == GpuArchList.size()) &&
3481              "Expecting one action per GPU architecture.");
3482       assert(!CompileHostOnly &&
3483              "Not expecting HIP actions in host-only compilation.");
3484 
3485       bool ShouldLink = !EmitReloc || !*EmitReloc;
3486 
3487       if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3488           !EmitAsm && ShouldLink) {
3489         // If we are in backend phase, we attempt to generate the fat binary.
3490         // We compile each arch to IR and use a link action to generate code
3491         // object containing ISA. Then we use a special "link" action to create
3492         // a fat binary containing all the code objects for different GPU's.
3493         // The fat binary is then an input to the host action.
3494         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3495           if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3496             // When LTO is enabled, skip the backend and assemble phases and
3497             // use lld to link the bitcode.
3498             ActionList AL;
3499             AL.push_back(CudaDeviceActions[I]);
3500             // Create a link action to link device IR with device library
3501             // and generate ISA.
3502             CudaDeviceActions[I] =
3503                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3504           } else {
3505             // When LTO is not enabled, we follow the conventional
3506             // compiler phases, including backend and assemble phases.
3507             ActionList AL;
3508             Action *BackendAction = nullptr;
3509             if (ToolChains.front()->getTriple().isSPIRV()) {
3510               // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3511               // (HIPSPVToolChain) runs post-link LLVM IR passes.
3512               types::ID Output = Args.hasArg(options::OPT_S)
3513                                      ? types::TY_LLVM_IR
3514                                      : types::TY_LLVM_BC;
3515               BackendAction =
3516                   C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3517             } else
3518               BackendAction = C.getDriver().ConstructPhaseAction(
3519                   C, Args, phases::Backend, CudaDeviceActions[I],
3520                   AssociatedOffloadKind);
3521             auto AssembleAction = C.getDriver().ConstructPhaseAction(
3522                 C, Args, phases::Assemble, BackendAction,
3523                 AssociatedOffloadKind);
3524             AL.push_back(AssembleAction);
3525             // Create a link action to link device IR with device library
3526             // and generate ISA.
3527             CudaDeviceActions[I] =
3528                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3529           }
3530 
3531           // OffloadingActionBuilder propagates device arch until an offload
3532           // action. Since the next action for creating fatbin does
3533           // not have device arch, whereas the above link action and its input
3534           // have device arch, an offload action is needed to stop the null
3535           // device arch of the next action being propagated to the above link
3536           // action.
3537           OffloadAction::DeviceDependences DDep;
3538           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3539                    AssociatedOffloadKind);
3540           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3541               DDep, CudaDeviceActions[I]->getType());
3542         }
3543 
3544         if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3545           // Create HIP fat binary with a special "link" action.
3546           CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3547                                                       types::TY_HIP_FATBIN);
3548 
3549           if (!CompileDeviceOnly) {
3550             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3551                    AssociatedOffloadKind);
3552             // Clear the fat binary, it is already a dependence to an host
3553             // action.
3554             CudaFatBinary = nullptr;
3555           }
3556 
3557           // Remove the CUDA actions as they are already connected to an host
3558           // action or fat binary.
3559           CudaDeviceActions.clear();
3560         }
3561 
3562         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3563       } else if (CurPhase == phases::Link) {
3564         if (!ShouldLink)
3565           return ABRT_Success;
3566         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3567         // This happens to each device action originated from each input file.
3568         // Later on, device actions in DeviceLinkerInputs are used to create
3569         // device link actions in appendLinkDependences and the created device
3570         // link actions are passed to the offload action as device dependence.
3571         DeviceLinkerInputs.resize(CudaDeviceActions.size());
3572         auto LI = DeviceLinkerInputs.begin();
3573         for (auto *A : CudaDeviceActions) {
3574           LI->push_back(A);
3575           ++LI;
3576         }
3577 
3578         // We will pass the device action as a host dependence, so we don't
3579         // need to do anything else with them.
3580         CudaDeviceActions.clear();
3581         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3582       }
3583 
3584       // By default, we produce an action for each device arch.
3585       for (Action *&A : CudaDeviceActions)
3586         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3587                                                AssociatedOffloadKind);
3588 
3589       if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput &&
3590           *BundleOutput) {
3591         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3592           OffloadAction::DeviceDependences DDep;
3593           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3594                    AssociatedOffloadKind);
3595           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3596               DDep, CudaDeviceActions[I]->getType());
3597         }
3598         CudaFatBinary =
3599             C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3600         CudaDeviceActions.clear();
3601       }
3602 
3603       return (CompileDeviceOnly &&
3604               (CurPhase == FinalPhase ||
3605                (!ShouldLink && CurPhase == phases::Assemble)))
3606                  ? ABRT_Ignore_Host
3607                  : ABRT_Success;
3608     }
3609 
3610     void appendLinkDeviceActions(ActionList &AL) override {
3611       if (DeviceLinkerInputs.size() == 0)
3612         return;
3613 
3614       assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3615              "Linker inputs and GPU arch list sizes do not match.");
3616 
3617       ActionList Actions;
3618       unsigned I = 0;
3619       // Append a new link action for each device.
3620       // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3621       for (auto &LI : DeviceLinkerInputs) {
3622 
3623         types::ID Output = Args.hasArg(options::OPT_emit_llvm)
3624                                    ? types::TY_LLVM_BC
3625                                    : types::TY_Image;
3626 
3627         auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output);
3628         // Linking all inputs for the current GPU arch.
3629         // LI contains all the inputs for the linker.
3630         OffloadAction::DeviceDependences DeviceLinkDeps;
3631         DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3632             GpuArchList[I], AssociatedOffloadKind);
3633         Actions.push_back(C.MakeAction<OffloadAction>(
3634             DeviceLinkDeps, DeviceLinkAction->getType()));
3635         ++I;
3636       }
3637       DeviceLinkerInputs.clear();
3638 
3639       // If emitting LLVM, do not generate final host/device compilation action
3640       if (Args.hasArg(options::OPT_emit_llvm)) {
3641           AL.append(Actions);
3642           return;
3643       }
3644 
3645       // Create a host object from all the device images by embedding them
3646       // in a fat binary for mixed host-device compilation. For device-only
3647       // compilation, creates a fat binary.
3648       OffloadAction::DeviceDependences DDeps;
3649       if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3650         auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3651             Actions,
3652             CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3653         DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3654                   AssociatedOffloadKind);
3655         // Offload the host object to the host linker.
3656         AL.push_back(
3657             C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3658       } else {
3659         AL.append(Actions);
3660       }
3661     }
3662 
3663     Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3664 
3665     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3666   };
3667 
3668   ///
3669   /// TODO: Add the implementation for other specialized builders here.
3670   ///
3671 
3672   /// Specialized builders being used by this offloading action builder.
3673   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3674 
3675   /// Flag set to true if all valid builders allow file bundling/unbundling.
3676   bool CanUseBundler;
3677 
3678 public:
3679   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3680                           const Driver::InputList &Inputs)
3681       : C(C) {
3682     // Create a specialized builder for each device toolchain.
3683 
3684     IsValid = true;
3685 
3686     // Create a specialized builder for CUDA.
3687     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3688 
3689     // Create a specialized builder for HIP.
3690     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3691 
3692     //
3693     // TODO: Build other specialized builders here.
3694     //
3695 
3696     // Initialize all the builders, keeping track of errors. If all valid
3697     // builders agree that we can use bundling, set the flag to true.
3698     unsigned ValidBuilders = 0u;
3699     unsigned ValidBuildersSupportingBundling = 0u;
3700     for (auto *SB : SpecializedBuilders) {
3701       IsValid = IsValid && !SB->initialize();
3702 
3703       // Update the counters if the builder is valid.
3704       if (SB->isValid()) {
3705         ++ValidBuilders;
3706         if (SB->canUseBundlerUnbundler())
3707           ++ValidBuildersSupportingBundling;
3708       }
3709     }
3710     CanUseBundler =
3711         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3712   }
3713 
3714   ~OffloadingActionBuilder() {
3715     for (auto *SB : SpecializedBuilders)
3716       delete SB;
3717   }
3718 
3719   /// Record a host action and its originating input argument.
3720   void recordHostAction(Action *HostAction, const Arg *InputArg) {
3721     assert(HostAction && "Invalid host action");
3722     assert(InputArg && "Invalid input argument");
3723     auto Loc = HostActionToInputArgMap.find(HostAction);
3724     if (Loc == HostActionToInputArgMap.end())
3725       HostActionToInputArgMap[HostAction] = InputArg;
3726     assert(HostActionToInputArgMap[HostAction] == InputArg &&
3727            "host action mapped to multiple input arguments");
3728   }
3729 
3730   /// Generate an action that adds device dependences (if any) to a host action.
3731   /// If no device dependence actions exist, just return the host action \a
3732   /// HostAction. If an error is found or if no builder requires the host action
3733   /// to be generated, return nullptr.
3734   Action *
3735   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3736                                    phases::ID CurPhase, phases::ID FinalPhase,
3737                                    DeviceActionBuilder::PhasesTy &Phases) {
3738     if (!IsValid)
3739       return nullptr;
3740 
3741     if (SpecializedBuilders.empty())
3742       return HostAction;
3743 
3744     assert(HostAction && "Invalid host action!");
3745     recordHostAction(HostAction, InputArg);
3746 
3747     OffloadAction::DeviceDependences DDeps;
3748     // Check if all the programming models agree we should not emit the host
3749     // action. Also, keep track of the offloading kinds employed.
3750     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3751     unsigned InactiveBuilders = 0u;
3752     unsigned IgnoringBuilders = 0u;
3753     for (auto *SB : SpecializedBuilders) {
3754       if (!SB->isValid()) {
3755         ++InactiveBuilders;
3756         continue;
3757       }
3758       auto RetCode =
3759           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3760 
3761       // If the builder explicitly says the host action should be ignored,
3762       // we need to increment the variable that tracks the builders that request
3763       // the host object to be ignored.
3764       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3765         ++IgnoringBuilders;
3766 
3767       // Unless the builder was inactive for this action, we have to record the
3768       // offload kind because the host will have to use it.
3769       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3770         OffloadKind |= SB->getAssociatedOffloadKind();
3771     }
3772 
3773     // If all builders agree that the host object should be ignored, just return
3774     // nullptr.
3775     if (IgnoringBuilders &&
3776         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3777       return nullptr;
3778 
3779     if (DDeps.getActions().empty())
3780       return HostAction;
3781 
3782     // We have dependences we need to bundle together. We use an offload action
3783     // for that.
3784     OffloadAction::HostDependence HDep(
3785         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3786         /*BoundArch=*/nullptr, DDeps);
3787     return C.MakeAction<OffloadAction>(HDep, DDeps);
3788   }
3789 
3790   /// Generate an action that adds a host dependence to a device action. The
3791   /// results will be kept in this action builder. Return true if an error was
3792   /// found.
3793   bool addHostDependenceToDeviceActions(Action *&HostAction,
3794                                         const Arg *InputArg) {
3795     if (!IsValid)
3796       return true;
3797 
3798     recordHostAction(HostAction, InputArg);
3799 
3800     // If we are supporting bundling/unbundling and the current action is an
3801     // input action of non-source file, we replace the host action by the
3802     // unbundling action. The bundler tool has the logic to detect if an input
3803     // is a bundle or not and if the input is not a bundle it assumes it is a
3804     // host file. Therefore it is safe to create an unbundling action even if
3805     // the input is not a bundle.
3806     if (CanUseBundler && isa<InputAction>(HostAction) &&
3807         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3808         (!types::isSrcFile(HostAction->getType()) ||
3809          HostAction->getType() == types::TY_PP_HIP)) {
3810       auto UnbundlingHostAction =
3811           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3812       UnbundlingHostAction->registerDependentActionInfo(
3813           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3814           /*BoundArch=*/StringRef(), Action::OFK_Host);
3815       HostAction = UnbundlingHostAction;
3816       recordHostAction(HostAction, InputArg);
3817     }
3818 
3819     assert(HostAction && "Invalid host action!");
3820 
3821     // Register the offload kinds that are used.
3822     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3823     for (auto *SB : SpecializedBuilders) {
3824       if (!SB->isValid())
3825         continue;
3826 
3827       auto RetCode = SB->addDeviceDependences(HostAction);
3828 
3829       // Host dependences for device actions are not compatible with that same
3830       // action being ignored.
3831       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3832              "Host dependence not expected to be ignored.!");
3833 
3834       // Unless the builder was inactive for this action, we have to record the
3835       // offload kind because the host will have to use it.
3836       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3837         OffloadKind |= SB->getAssociatedOffloadKind();
3838     }
3839 
3840     // Do not use unbundler if the Host does not depend on device action.
3841     if (OffloadKind == Action::OFK_None && CanUseBundler)
3842       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3843         HostAction = UA->getInputs().back();
3844 
3845     return false;
3846   }
3847 
3848   /// Add the offloading top level actions to the provided action list. This
3849   /// function can replace the host action by a bundling action if the
3850   /// programming models allow it.
3851   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3852                              const Arg *InputArg) {
3853     if (HostAction)
3854       recordHostAction(HostAction, InputArg);
3855 
3856     // Get the device actions to be appended.
3857     ActionList OffloadAL;
3858     for (auto *SB : SpecializedBuilders) {
3859       if (!SB->isValid())
3860         continue;
3861       SB->appendTopLevelActions(OffloadAL);
3862     }
3863 
3864     // If we can use the bundler, replace the host action by the bundling one in
3865     // the resulting list. Otherwise, just append the device actions. For
3866     // device only compilation, HostAction is a null pointer, therefore only do
3867     // this when HostAction is not a null pointer.
3868     if (CanUseBundler && HostAction &&
3869         HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3870       // Add the host action to the list in order to create the bundling action.
3871       OffloadAL.push_back(HostAction);
3872 
3873       // We expect that the host action was just appended to the action list
3874       // before this method was called.
3875       assert(HostAction == AL.back() && "Host action not in the list??");
3876       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3877       recordHostAction(HostAction, InputArg);
3878       AL.back() = HostAction;
3879     } else
3880       AL.append(OffloadAL.begin(), OffloadAL.end());
3881 
3882     // Propagate to the current host action (if any) the offload information
3883     // associated with the current input.
3884     if (HostAction)
3885       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3886                                            /*BoundArch=*/nullptr);
3887     return false;
3888   }
3889 
3890   void appendDeviceLinkActions(ActionList &AL) {
3891     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3892       if (!SB->isValid())
3893         continue;
3894       SB->appendLinkDeviceActions(AL);
3895     }
3896   }
3897 
3898   Action *makeHostLinkAction() {
3899     // Build a list of device linking actions.
3900     ActionList DeviceAL;
3901     appendDeviceLinkActions(DeviceAL);
3902     if (DeviceAL.empty())
3903       return nullptr;
3904 
3905     // Let builders add host linking actions.
3906     Action* HA = nullptr;
3907     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3908       if (!SB->isValid())
3909         continue;
3910       HA = SB->appendLinkHostActions(DeviceAL);
3911       // This created host action has no originating input argument, therefore
3912       // needs to set its offloading kind directly.
3913       if (HA)
3914         HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3915                                      /*BoundArch=*/nullptr);
3916     }
3917     return HA;
3918   }
3919 
3920   /// Processes the host linker action. This currently consists of replacing it
3921   /// with an offload action if there are device link objects and propagate to
3922   /// the host action all the offload kinds used in the current compilation. The
3923   /// resulting action is returned.
3924   Action *processHostLinkAction(Action *HostAction) {
3925     // Add all the dependences from the device linking actions.
3926     OffloadAction::DeviceDependences DDeps;
3927     for (auto *SB : SpecializedBuilders) {
3928       if (!SB->isValid())
3929         continue;
3930 
3931       SB->appendLinkDependences(DDeps);
3932     }
3933 
3934     // Calculate all the offload kinds used in the current compilation.
3935     unsigned ActiveOffloadKinds = 0u;
3936     for (auto &I : InputArgToOffloadKindMap)
3937       ActiveOffloadKinds |= I.second;
3938 
3939     // If we don't have device dependencies, we don't have to create an offload
3940     // action.
3941     if (DDeps.getActions().empty()) {
3942       // Set all the active offloading kinds to the link action. Given that it
3943       // is a link action it is assumed to depend on all actions generated so
3944       // far.
3945       HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3946                                      /*BoundArch=*/nullptr);
3947       // Propagate active offloading kinds for each input to the link action.
3948       // Each input may have different active offloading kind.
3949       for (auto *A : HostAction->inputs()) {
3950         auto ArgLoc = HostActionToInputArgMap.find(A);
3951         if (ArgLoc == HostActionToInputArgMap.end())
3952           continue;
3953         auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3954         if (OFKLoc == InputArgToOffloadKindMap.end())
3955           continue;
3956         A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3957       }
3958       return HostAction;
3959     }
3960 
3961     // Create the offload action with all dependences. When an offload action
3962     // is created the kinds are propagated to the host action, so we don't have
3963     // to do that explicitly here.
3964     OffloadAction::HostDependence HDep(
3965         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3966         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3967     return C.MakeAction<OffloadAction>(HDep, DDeps);
3968   }
3969 };
3970 } // anonymous namespace.
3971 
3972 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3973                              const InputList &Inputs,
3974                              ActionList &Actions) const {
3975 
3976   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3977   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3978   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3979   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3980     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3981     Args.eraseArg(options::OPT__SLASH_Yc);
3982     Args.eraseArg(options::OPT__SLASH_Yu);
3983     YcArg = YuArg = nullptr;
3984   }
3985   if (YcArg && Inputs.size() > 1) {
3986     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3987     Args.eraseArg(options::OPT__SLASH_Yc);
3988     YcArg = nullptr;
3989   }
3990 
3991   Arg *FinalPhaseArg;
3992   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3993 
3994   if (FinalPhase == phases::Link) {
3995     if (Args.hasArgNoClaim(options::OPT_hipstdpar)) {
3996       Args.AddFlagArg(nullptr, getOpts().getOption(options::OPT_hip_link));
3997       Args.AddFlagArg(nullptr,
3998                       getOpts().getOption(options::OPT_frtlib_add_rpath));
3999     }
4000     // Emitting LLVM while linking disabled except in HIPAMD Toolchain
4001     if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link))
4002       Diag(clang::diag::err_drv_emit_llvm_link);
4003     if (IsCLMode() && LTOMode != LTOK_None &&
4004         !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4005              .equals_insensitive("lld"))
4006       Diag(clang::diag::err_drv_lto_without_lld);
4007 
4008     // If -dumpdir is not specified, give a default prefix derived from the link
4009     // output filename. For example, `clang -g -gsplit-dwarf a.c -o x` passes
4010     // `-dumpdir x-` to cc1. If -o is unspecified, use
4011     // stem(getDefaultImageName()) (usually stem("a.out") = "a").
4012     if (!Args.hasArg(options::OPT_dumpdir)) {
4013       Arg *FinalOutput = Args.getLastArg(options::OPT_o, options::OPT__SLASH_o);
4014       Arg *Arg = Args.MakeSeparateArg(
4015           nullptr, getOpts().getOption(options::OPT_dumpdir),
4016           Args.MakeArgString(
4017               (FinalOutput ? FinalOutput->getValue()
4018                            : llvm::sys::path::stem(getDefaultImageName())) +
4019               "-"));
4020       Arg->claim();
4021       Args.append(Arg);
4022     }
4023   }
4024 
4025   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
4026     // If only preprocessing or /Y- is used, all pch handling is disabled.
4027     // Rather than check for it everywhere, just remove clang-cl pch-related
4028     // flags here.
4029     Args.eraseArg(options::OPT__SLASH_Fp);
4030     Args.eraseArg(options::OPT__SLASH_Yc);
4031     Args.eraseArg(options::OPT__SLASH_Yu);
4032     YcArg = YuArg = nullptr;
4033   }
4034 
4035   unsigned LastPLSize = 0;
4036   for (auto &I : Inputs) {
4037     types::ID InputType = I.first;
4038     const Arg *InputArg = I.second;
4039 
4040     auto PL = types::getCompilationPhases(InputType);
4041     LastPLSize = PL.size();
4042 
4043     // If the first step comes after the final phase we are doing as part of
4044     // this compilation, warn the user about it.
4045     phases::ID InitialPhase = PL[0];
4046     if (InitialPhase > FinalPhase) {
4047       if (InputArg->isClaimed())
4048         continue;
4049 
4050       // Claim here to avoid the more general unused warning.
4051       InputArg->claim();
4052 
4053       // Suppress all unused style warnings with -Qunused-arguments
4054       if (Args.hasArg(options::OPT_Qunused_arguments))
4055         continue;
4056 
4057       // Special case when final phase determined by binary name, rather than
4058       // by a command-line argument with a corresponding Arg.
4059       if (CCCIsCPP())
4060         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
4061             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
4062       // Special case '-E' warning on a previously preprocessed file to make
4063       // more sense.
4064       else if (InitialPhase == phases::Compile &&
4065                (Args.getLastArg(options::OPT__SLASH_EP,
4066                                 options::OPT__SLASH_P) ||
4067                 Args.getLastArg(options::OPT_E) ||
4068                 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
4069                getPreprocessedType(InputType) == types::TY_INVALID)
4070         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
4071             << InputArg->getAsString(Args) << !!FinalPhaseArg
4072             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4073       else
4074         Diag(clang::diag::warn_drv_input_file_unused)
4075             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
4076             << !!FinalPhaseArg
4077             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4078       continue;
4079     }
4080 
4081     if (YcArg) {
4082       // Add a separate precompile phase for the compile phase.
4083       if (FinalPhase >= phases::Compile) {
4084         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
4085         // Build the pipeline for the pch file.
4086         Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
4087         for (phases::ID Phase : types::getCompilationPhases(HeaderType))
4088           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
4089         assert(ClangClPch);
4090         Actions.push_back(ClangClPch);
4091         // The driver currently exits after the first failed command.  This
4092         // relies on that behavior, to make sure if the pch generation fails,
4093         // the main compilation won't run.
4094         // FIXME: If the main compilation fails, the PCH generation should
4095         // probably not be considered successful either.
4096       }
4097     }
4098   }
4099 
4100   // If we are linking, claim any options which are obviously only used for
4101   // compilation.
4102   // FIXME: Understand why the last Phase List length is used here.
4103   if (FinalPhase == phases::Link && LastPLSize == 1) {
4104     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
4105     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
4106   }
4107 }
4108 
4109 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
4110                           const InputList &Inputs, ActionList &Actions) const {
4111   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
4112 
4113   if (!SuppressMissingInputWarning && Inputs.empty()) {
4114     Diag(clang::diag::err_drv_no_input_files);
4115     return;
4116   }
4117 
4118   // Diagnose misuse of /Fo.
4119   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
4120     StringRef V = A->getValue();
4121     if (Inputs.size() > 1 && !V.empty() &&
4122         !llvm::sys::path::is_separator(V.back())) {
4123       // Check whether /Fo tries to name an output file for multiple inputs.
4124       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4125           << A->getSpelling() << V;
4126       Args.eraseArg(options::OPT__SLASH_Fo);
4127     }
4128   }
4129 
4130   // Diagnose misuse of /Fa.
4131   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
4132     StringRef V = A->getValue();
4133     if (Inputs.size() > 1 && !V.empty() &&
4134         !llvm::sys::path::is_separator(V.back())) {
4135       // Check whether /Fa tries to name an asm file for multiple inputs.
4136       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4137           << A->getSpelling() << V;
4138       Args.eraseArg(options::OPT__SLASH_Fa);
4139     }
4140   }
4141 
4142   // Diagnose misuse of /o.
4143   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
4144     if (A->getValue()[0] == '\0') {
4145       // It has to have a value.
4146       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
4147       Args.eraseArg(options::OPT__SLASH_o);
4148     }
4149   }
4150 
4151   handleArguments(C, Args, Inputs, Actions);
4152 
4153   bool UseNewOffloadingDriver =
4154       C.isOffloadingHostKind(Action::OFK_OpenMP) ||
4155       Args.hasFlag(options::OPT_offload_new_driver,
4156                    options::OPT_no_offload_new_driver, false);
4157 
4158   // Builder to be used to build offloading actions.
4159   std::unique_ptr<OffloadingActionBuilder> OffloadBuilder =
4160       !UseNewOffloadingDriver
4161           ? std::make_unique<OffloadingActionBuilder>(C, Args, Inputs)
4162           : nullptr;
4163 
4164   // Construct the actions to perform.
4165   ExtractAPIJobAction *ExtractAPIAction = nullptr;
4166   ActionList LinkerInputs;
4167   ActionList MergerInputs;
4168 
4169   for (auto &I : Inputs) {
4170     types::ID InputType = I.first;
4171     const Arg *InputArg = I.second;
4172 
4173     auto PL = types::getCompilationPhases(*this, Args, InputType);
4174     if (PL.empty())
4175       continue;
4176 
4177     auto FullPL = types::getCompilationPhases(InputType);
4178 
4179     // Build the pipeline for this file.
4180     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4181 
4182     // Use the current host action in any of the offloading actions, if
4183     // required.
4184     if (!UseNewOffloadingDriver)
4185       if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg))
4186         break;
4187 
4188     for (phases::ID Phase : PL) {
4189 
4190       // Add any offload action the host action depends on.
4191       if (!UseNewOffloadingDriver)
4192         Current = OffloadBuilder->addDeviceDependencesToHostAction(
4193             Current, InputArg, Phase, PL.back(), FullPL);
4194       if (!Current)
4195         break;
4196 
4197       // Queue linker inputs.
4198       if (Phase == phases::Link) {
4199         assert(Phase == PL.back() && "linking must be final compilation step.");
4200         // We don't need to generate additional link commands if emitting AMD
4201         // bitcode or compiling only for the offload device
4202         if (!(C.getInputArgs().hasArg(options::OPT_hip_link) &&
4203               (C.getInputArgs().hasArg(options::OPT_emit_llvm))) &&
4204             !offloadDeviceOnly())
4205           LinkerInputs.push_back(Current);
4206         Current = nullptr;
4207         break;
4208       }
4209 
4210       // TODO: Consider removing this because the merged may not end up being
4211       // the final Phase in the pipeline. Perhaps the merged could just merge
4212       // and then pass an artifact of some sort to the Link Phase.
4213       // Queue merger inputs.
4214       if (Phase == phases::IfsMerge) {
4215         assert(Phase == PL.back() && "merging must be final compilation step.");
4216         MergerInputs.push_back(Current);
4217         Current = nullptr;
4218         break;
4219       }
4220 
4221       if (Phase == phases::Precompile && ExtractAPIAction) {
4222         ExtractAPIAction->addHeaderInput(Current);
4223         Current = nullptr;
4224         break;
4225       }
4226 
4227       // FIXME: Should we include any prior module file outputs as inputs of
4228       // later actions in the same command line?
4229 
4230       // Otherwise construct the appropriate action.
4231       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
4232 
4233       // We didn't create a new action, so we will just move to the next phase.
4234       if (NewCurrent == Current)
4235         continue;
4236 
4237       if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
4238         ExtractAPIAction = EAA;
4239 
4240       Current = NewCurrent;
4241 
4242       // Try to build the offloading actions and add the result as a dependency
4243       // to the host.
4244       if (UseNewOffloadingDriver)
4245         Current = BuildOffloadingActions(C, Args, I, Current);
4246       // Use the current host action in any of the offloading actions, if
4247       // required.
4248       else if (OffloadBuilder->addHostDependenceToDeviceActions(Current,
4249                                                                 InputArg))
4250         break;
4251 
4252       if (Current->getType() == types::TY_Nothing)
4253         break;
4254     }
4255 
4256     // If we ended with something, add to the output list.
4257     if (Current)
4258       Actions.push_back(Current);
4259 
4260     // Add any top level actions generated for offloading.
4261     if (!UseNewOffloadingDriver)
4262       OffloadBuilder->appendTopLevelActions(Actions, Current, InputArg);
4263     else if (Current)
4264       Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4265                                         /*BoundArch=*/nullptr);
4266   }
4267 
4268   // Add a link action if necessary.
4269 
4270   if (LinkerInputs.empty()) {
4271     Arg *FinalPhaseArg;
4272     if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4273       if (!UseNewOffloadingDriver)
4274         OffloadBuilder->appendDeviceLinkActions(Actions);
4275   }
4276 
4277   if (!LinkerInputs.empty()) {
4278     if (!UseNewOffloadingDriver)
4279       if (Action *Wrapper = OffloadBuilder->makeHostLinkAction())
4280         LinkerInputs.push_back(Wrapper);
4281     Action *LA;
4282     // Check if this Linker Job should emit a static library.
4283     if (ShouldEmitStaticLibrary(Args)) {
4284       LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4285     } else if (UseNewOffloadingDriver ||
4286                Args.hasArg(options::OPT_offload_link)) {
4287       LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4288       LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4289                                    /*BoundArch=*/nullptr);
4290     } else {
4291       LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4292     }
4293     if (!UseNewOffloadingDriver)
4294       LA = OffloadBuilder->processHostLinkAction(LA);
4295     Actions.push_back(LA);
4296   }
4297 
4298   // Add an interface stubs merge action if necessary.
4299   if (!MergerInputs.empty())
4300     Actions.push_back(
4301         C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4302 
4303   if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4304     auto PhaseList = types::getCompilationPhases(
4305         types::TY_IFS_CPP,
4306         Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4307 
4308     ActionList MergerInputs;
4309 
4310     for (auto &I : Inputs) {
4311       types::ID InputType = I.first;
4312       const Arg *InputArg = I.second;
4313 
4314       // Currently clang and the llvm assembler do not support generating symbol
4315       // stubs from assembly, so we skip the input on asm files. For ifs files
4316       // we rely on the normal pipeline setup in the pipeline setup code above.
4317       if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4318           InputType == types::TY_Asm)
4319         continue;
4320 
4321       Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4322 
4323       for (auto Phase : PhaseList) {
4324         switch (Phase) {
4325         default:
4326           llvm_unreachable(
4327               "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4328         case phases::Compile: {
4329           // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4330           // files where the .o file is located. The compile action can not
4331           // handle this.
4332           if (InputType == types::TY_Object)
4333             break;
4334 
4335           Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4336           break;
4337         }
4338         case phases::IfsMerge: {
4339           assert(Phase == PhaseList.back() &&
4340                  "merging must be final compilation step.");
4341           MergerInputs.push_back(Current);
4342           Current = nullptr;
4343           break;
4344         }
4345         }
4346       }
4347 
4348       // If we ended with something, add to the output list.
4349       if (Current)
4350         Actions.push_back(Current);
4351     }
4352 
4353     // Add an interface stubs merge action if necessary.
4354     if (!MergerInputs.empty())
4355       Actions.push_back(
4356           C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4357   }
4358 
4359   for (auto Opt : {options::OPT_print_supported_cpus,
4360                    options::OPT_print_supported_extensions,
4361                    options::OPT_print_enabled_extensions}) {
4362     // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a
4363     // custom Compile phase that prints out supported cpu models and quits.
4364     //
4365     // If either --print-supported-extensions or --print-enabled-extensions is
4366     // specified, call the corresponding helper function that prints out the
4367     // supported/enabled extensions and quits.
4368     if (Arg *A = Args.getLastArg(Opt)) {
4369       if (Opt == options::OPT_print_supported_extensions &&
4370           !C.getDefaultToolChain().getTriple().isRISCV() &&
4371           !C.getDefaultToolChain().getTriple().isAArch64() &&
4372           !C.getDefaultToolChain().getTriple().isARM()) {
4373         C.getDriver().Diag(diag::err_opt_not_valid_on_target)
4374             << "--print-supported-extensions";
4375         return;
4376       }
4377       if (Opt == options::OPT_print_enabled_extensions &&
4378           !C.getDefaultToolChain().getTriple().isRISCV() &&
4379           !C.getDefaultToolChain().getTriple().isAArch64()) {
4380         C.getDriver().Diag(diag::err_opt_not_valid_on_target)
4381             << "--print-enabled-extensions";
4382         return;
4383       }
4384 
4385       // Use the -mcpu=? flag as the dummy input to cc1.
4386       Actions.clear();
4387       Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4388       Actions.push_back(
4389           C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4390       for (auto &I : Inputs)
4391         I.second->claim();
4392     }
4393   }
4394 
4395   // Call validator for dxil when -Vd not in Args.
4396   if (C.getDefaultToolChain().getTriple().isDXIL()) {
4397     // Only add action when needValidation.
4398     const auto &TC =
4399         static_cast<const toolchains::HLSLToolChain &>(C.getDefaultToolChain());
4400     if (TC.requiresValidation(Args)) {
4401       Action *LastAction = Actions.back();
4402       Actions.push_back(C.MakeAction<BinaryAnalyzeJobAction>(
4403           LastAction, types::TY_DX_CONTAINER));
4404     }
4405   }
4406 
4407   // Claim ignored clang-cl options.
4408   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4409 }
4410 
4411 /// Returns the canonical name for the offloading architecture when using a HIP
4412 /// or CUDA architecture.
4413 static StringRef getCanonicalArchString(Compilation &C,
4414                                         const llvm::opt::DerivedArgList &Args,
4415                                         StringRef ArchStr,
4416                                         const llvm::Triple &Triple,
4417                                         bool SuppressError = false) {
4418   // Lookup the CUDA / HIP architecture string. Only report an error if we were
4419   // expecting the triple to be only NVPTX / AMDGPU.
4420   OffloadArch Arch =
4421       StringToOffloadArch(getProcessorFromTargetID(Triple, ArchStr));
4422   if (!SuppressError && Triple.isNVPTX() &&
4423       (Arch == OffloadArch::UNKNOWN || !IsNVIDIAOffloadArch(Arch))) {
4424     C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4425         << "CUDA" << ArchStr;
4426     return StringRef();
4427   } else if (!SuppressError && Triple.isAMDGPU() &&
4428              (Arch == OffloadArch::UNKNOWN || !IsAMDOffloadArch(Arch))) {
4429     C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4430         << "HIP" << ArchStr;
4431     return StringRef();
4432   }
4433 
4434   if (IsNVIDIAOffloadArch(Arch))
4435     return Args.MakeArgStringRef(OffloadArchToString(Arch));
4436 
4437   if (IsAMDOffloadArch(Arch)) {
4438     llvm::StringMap<bool> Features;
4439     auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs());
4440     if (!HIPTriple)
4441       return StringRef();
4442     auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features);
4443     if (!Arch) {
4444       C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr;
4445       C.setContainsError();
4446       return StringRef();
4447     }
4448     return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features));
4449   }
4450 
4451   // If the input isn't CUDA or HIP just return the architecture.
4452   return ArchStr;
4453 }
4454 
4455 /// Checks if the set offloading architectures does not conflict. Returns the
4456 /// incompatible pair if a conflict occurs.
4457 static std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
4458 getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs,
4459                                   llvm::Triple Triple) {
4460   if (!Triple.isAMDGPU())
4461     return std::nullopt;
4462 
4463   std::set<StringRef> ArchSet;
4464   llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin()));
4465   return getConflictTargetIDCombination(ArchSet);
4466 }
4467 
4468 llvm::DenseSet<StringRef>
4469 Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4470                         Action::OffloadKind Kind, const ToolChain *TC,
4471                         bool SuppressError) const {
4472   if (!TC)
4473     TC = &C.getDefaultToolChain();
4474 
4475   // --offload and --offload-arch options are mutually exclusive.
4476   if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
4477       Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
4478                          options::OPT_no_offload_arch_EQ)) {
4479     C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
4480         << "--offload"
4481         << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ)
4482                 ? "--offload-arch"
4483                 : "--no-offload-arch");
4484   }
4485 
4486   if (KnownArchs.contains(TC))
4487     return KnownArchs.lookup(TC);
4488 
4489   llvm::DenseSet<StringRef> Archs;
4490   for (auto *Arg : Args) {
4491     // Extract any '--[no-]offload-arch' arguments intended for this toolchain.
4492     std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr;
4493     if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) &&
4494         ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) {
4495       Arg->claim();
4496       unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1));
4497       ExtractedArg = getOpts().ParseOneArg(Args, Index);
4498       Arg = ExtractedArg.get();
4499     }
4500 
4501     // Add or remove the seen architectures in order of appearance. If an
4502     // invalid architecture is given we simply exit.
4503     if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) {
4504       for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4505         if (Arch == "native" || Arch.empty()) {
4506           auto GPUsOrErr = TC->getSystemGPUArchs(Args);
4507           if (!GPUsOrErr) {
4508             if (SuppressError)
4509               llvm::consumeError(GPUsOrErr.takeError());
4510             else
4511               TC->getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
4512                   << llvm::Triple::getArchTypeName(TC->getArch())
4513                   << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
4514             continue;
4515           }
4516 
4517           for (auto ArchStr : *GPUsOrErr) {
4518             Archs.insert(
4519                 getCanonicalArchString(C, Args, Args.MakeArgString(ArchStr),
4520                                        TC->getTriple(), SuppressError));
4521           }
4522         } else {
4523           StringRef ArchStr = getCanonicalArchString(
4524               C, Args, Arch, TC->getTriple(), SuppressError);
4525           if (ArchStr.empty())
4526             return Archs;
4527           Archs.insert(ArchStr);
4528         }
4529       }
4530     } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) {
4531       for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4532         if (Arch == "all") {
4533           Archs.clear();
4534         } else {
4535           StringRef ArchStr = getCanonicalArchString(
4536               C, Args, Arch, TC->getTriple(), SuppressError);
4537           if (ArchStr.empty())
4538             return Archs;
4539           Archs.erase(ArchStr);
4540         }
4541       }
4542     }
4543   }
4544 
4545   if (auto ConflictingArchs =
4546           getConflictOffloadArchCombination(Archs, TC->getTriple())) {
4547     C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
4548         << ConflictingArchs->first << ConflictingArchs->second;
4549     C.setContainsError();
4550   }
4551 
4552   // Skip filling defaults if we're just querying what is availible.
4553   if (SuppressError)
4554     return Archs;
4555 
4556   if (Archs.empty()) {
4557     if (Kind == Action::OFK_Cuda)
4558       Archs.insert(OffloadArchToString(OffloadArch::CudaDefault));
4559     else if (Kind == Action::OFK_HIP)
4560       Archs.insert(OffloadArchToString(OffloadArch::HIPDefault));
4561     else if (Kind == Action::OFK_OpenMP)
4562       Archs.insert(StringRef());
4563   } else {
4564     Args.ClaimAllArgs(options::OPT_offload_arch_EQ);
4565     Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ);
4566   }
4567 
4568   return Archs;
4569 }
4570 
4571 Action *Driver::BuildOffloadingActions(Compilation &C,
4572                                        llvm::opt::DerivedArgList &Args,
4573                                        const InputTy &Input,
4574                                        Action *HostAction) const {
4575   // Don't build offloading actions if explicitly disabled or we do not have a
4576   // valid source input and compile action to embed it in. If preprocessing only
4577   // ignore embedding.
4578   if (offloadHostOnly() || !types::isSrcFile(Input.first) ||
4579       !(isa<CompileJobAction>(HostAction) ||
4580         getFinalPhase(Args) == phases::Preprocess))
4581     return HostAction;
4582 
4583   ActionList OffloadActions;
4584   OffloadAction::DeviceDependences DDeps;
4585 
4586   const Action::OffloadKind OffloadKinds[] = {
4587       Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP};
4588 
4589   for (Action::OffloadKind Kind : OffloadKinds) {
4590     SmallVector<const ToolChain *, 2> ToolChains;
4591     ActionList DeviceActions;
4592 
4593     auto TCRange = C.getOffloadToolChains(Kind);
4594     for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4595       ToolChains.push_back(TI->second);
4596 
4597     if (ToolChains.empty())
4598       continue;
4599 
4600     types::ID InputType = Input.first;
4601     const Arg *InputArg = Input.second;
4602 
4603     // The toolchain can be active for unsupported file types.
4604     if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) ||
4605         (Kind == Action::OFK_HIP && !types::isHIP(InputType)))
4606       continue;
4607 
4608     // Get the product of all bound architectures and toolchains.
4609     SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs;
4610     for (const ToolChain *TC : ToolChains) {
4611       llvm::DenseSet<StringRef> Arches = getOffloadArchs(C, Args, Kind, TC);
4612       SmallVector<StringRef, 0> Sorted(Arches.begin(), Arches.end());
4613       llvm::sort(Sorted);
4614       for (StringRef Arch : Sorted)
4615         TCAndArchs.push_back(std::make_pair(TC, Arch));
4616     }
4617 
4618     for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I)
4619       DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4620 
4621     if (DeviceActions.empty())
4622       return HostAction;
4623 
4624     auto PL = types::getCompilationPhases(*this, Args, InputType);
4625 
4626     for (phases::ID Phase : PL) {
4627       if (Phase == phases::Link) {
4628         assert(Phase == PL.back() && "linking must be final compilation step.");
4629         break;
4630       }
4631 
4632       auto TCAndArch = TCAndArchs.begin();
4633       for (Action *&A : DeviceActions) {
4634         if (A->getType() == types::TY_Nothing)
4635           continue;
4636 
4637         // Propagate the ToolChain so we can use it in ConstructPhaseAction.
4638         A->propagateDeviceOffloadInfo(Kind, TCAndArch->second.data(),
4639                                       TCAndArch->first);
4640         A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4641 
4642         if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) &&
4643             Kind == Action::OFK_OpenMP &&
4644             HostAction->getType() != types::TY_Nothing) {
4645           // OpenMP offloading has a dependency on the host compile action to
4646           // identify which declarations need to be emitted. This shouldn't be
4647           // collapsed with any other actions so we can use it in the device.
4648           HostAction->setCannotBeCollapsedWithNextDependentAction();
4649           OffloadAction::HostDependence HDep(
4650               *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4651               TCAndArch->second.data(), Kind);
4652           OffloadAction::DeviceDependences DDep;
4653           DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4654           A = C.MakeAction<OffloadAction>(HDep, DDep);
4655         }
4656 
4657         ++TCAndArch;
4658       }
4659     }
4660 
4661     // Compiling HIP in non-RDC mode requires linking each action individually.
4662     for (Action *&A : DeviceActions) {
4663       if ((A->getType() != types::TY_Object &&
4664            A->getType() != types::TY_LTO_BC) ||
4665           Kind != Action::OFK_HIP ||
4666           Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
4667         continue;
4668       ActionList LinkerInput = {A};
4669       A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image);
4670     }
4671 
4672     auto TCAndArch = TCAndArchs.begin();
4673     for (Action *A : DeviceActions) {
4674       DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4675       OffloadAction::DeviceDependences DDep;
4676       DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4677 
4678       // Compiling CUDA in non-RDC mode uses the PTX output if available.
4679       for (Action *Input : A->getInputs())
4680         if (Kind == Action::OFK_Cuda && A->getType() == types::TY_Object &&
4681             !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4682                           false))
4683           DDep.add(*Input, *TCAndArch->first, TCAndArch->second.data(), Kind);
4684       OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType()));
4685 
4686       ++TCAndArch;
4687     }
4688   }
4689 
4690   // HIP code in non-RDC mode will bundle the output if it invoked the linker.
4691   bool ShouldBundleHIP =
4692       C.isOffloadingHostKind(Action::OFK_HIP) &&
4693       Args.hasFlag(options::OPT_gpu_bundle_output,
4694                    options::OPT_no_gpu_bundle_output, true) &&
4695       !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false) &&
4696       !llvm::any_of(OffloadActions,
4697                     [](Action *A) { return A->getType() != types::TY_Image; });
4698 
4699   // All kinds exit now in device-only mode except for non-RDC mode HIP.
4700   if (offloadDeviceOnly() && !ShouldBundleHIP)
4701     return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing);
4702 
4703   if (OffloadActions.empty())
4704     return HostAction;
4705 
4706   OffloadAction::DeviceDependences DDep;
4707   if (C.isOffloadingHostKind(Action::OFK_Cuda) &&
4708       !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) {
4709     // If we are not in RDC-mode we just emit the final CUDA fatbinary for
4710     // each translation unit without requiring any linking.
4711     Action *FatbinAction =
4712         C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN);
4713     DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
4714              nullptr, Action::OFK_Cuda);
4715   } else if (C.isOffloadingHostKind(Action::OFK_HIP) &&
4716              !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4717                            false)) {
4718     // If we are not in RDC-mode we just emit the final HIP fatbinary for each
4719     // translation unit, linking each input individually.
4720     Action *FatbinAction =
4721         C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN);
4722     DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(),
4723              nullptr, Action::OFK_HIP);
4724   } else {
4725     // Package all the offloading actions into a single output that can be
4726     // embedded in the host and linked.
4727     Action *PackagerAction =
4728         C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image);
4729     DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4730              nullptr, C.getActiveOffloadKinds());
4731   }
4732 
4733   // HIP wants '--offload-device-only' to create a fatbinary by default.
4734   if (offloadDeviceOnly())
4735     return C.MakeAction<OffloadAction>(DDep, types::TY_Nothing);
4736 
4737   // If we are unable to embed a single device output into the host, we need to
4738   // add each device output as a host dependency to ensure they are still built.
4739   bool SingleDeviceOutput = !llvm::any_of(OffloadActions, [](Action *A) {
4740     return A->getType() == types::TY_Nothing;
4741   }) && isa<CompileJobAction>(HostAction);
4742   OffloadAction::HostDependence HDep(
4743       *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4744       /*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps);
4745   return C.MakeAction<OffloadAction>(HDep, SingleDeviceOutput ? DDep : DDeps);
4746 }
4747 
4748 Action *Driver::ConstructPhaseAction(
4749     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4750     Action::OffloadKind TargetDeviceOffloadKind) const {
4751   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4752 
4753   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4754   // encode this in the steps because the intermediate type depends on
4755   // arguments. Just special case here.
4756   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4757     return Input;
4758 
4759   // Build the appropriate action.
4760   switch (Phase) {
4761   case phases::Link:
4762     llvm_unreachable("link action invalid here.");
4763   case phases::IfsMerge:
4764     llvm_unreachable("ifsmerge action invalid here.");
4765   case phases::Preprocess: {
4766     types::ID OutputTy;
4767     // -M and -MM specify the dependency file name by altering the output type,
4768     // -if -MD and -MMD are not specified.
4769     if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4770         !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4771       OutputTy = types::TY_Dependencies;
4772     } else {
4773       OutputTy = Input->getType();
4774       // For these cases, the preprocessor is only translating forms, the Output
4775       // still needs preprocessing.
4776       if (!Args.hasFlag(options::OPT_frewrite_includes,
4777                         options::OPT_fno_rewrite_includes, false) &&
4778           !Args.hasFlag(options::OPT_frewrite_imports,
4779                         options::OPT_fno_rewrite_imports, false) &&
4780           !Args.hasFlag(options::OPT_fdirectives_only,
4781                         options::OPT_fno_directives_only, false) &&
4782           !CCGenDiagnostics)
4783         OutputTy = types::getPreprocessedType(OutputTy);
4784       assert(OutputTy != types::TY_INVALID &&
4785              "Cannot preprocess this input type!");
4786     }
4787     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4788   }
4789   case phases::Precompile: {
4790     // API extraction should not generate an actual precompilation action.
4791     if (Args.hasArg(options::OPT_extract_api))
4792       return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4793 
4794     // With 'fexperimental-modules-reduced-bmi', we don't want to run the
4795     // precompile phase unless the user specified '--precompile'. In the case
4796     // the '--precompile' flag is enabled, we will try to emit the reduced BMI
4797     // as a by product in GenerateModuleInterfaceAction.
4798     if (Args.hasArg(options::OPT_modules_reduced_bmi) &&
4799         !Args.getLastArg(options::OPT__precompile))
4800       return Input;
4801 
4802     types::ID OutputTy = getPrecompiledType(Input->getType());
4803     assert(OutputTy != types::TY_INVALID &&
4804            "Cannot precompile this input type!");
4805 
4806     // If we're given a module name, precompile header file inputs as a
4807     // module, not as a precompiled header.
4808     const char *ModName = nullptr;
4809     if (OutputTy == types::TY_PCH) {
4810       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4811         ModName = A->getValue();
4812       if (ModName)
4813         OutputTy = types::TY_ModuleFile;
4814     }
4815 
4816     if (Args.hasArg(options::OPT_fsyntax_only)) {
4817       // Syntax checks should not emit a PCH file
4818       OutputTy = types::TY_Nothing;
4819     }
4820 
4821     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4822   }
4823   case phases::Compile: {
4824     if (Args.hasArg(options::OPT_fsyntax_only))
4825       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4826     if (Args.hasArg(options::OPT_rewrite_objc))
4827       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4828     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4829       return C.MakeAction<CompileJobAction>(Input,
4830                                             types::TY_RewrittenLegacyObjC);
4831     if (Args.hasArg(options::OPT__analyze))
4832       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4833     if (Args.hasArg(options::OPT__migrate))
4834       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4835     if (Args.hasArg(options::OPT_emit_ast))
4836       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4837     if (Args.hasArg(options::OPT_emit_cir))
4838       return C.MakeAction<CompileJobAction>(Input, types::TY_CIR);
4839     if (Args.hasArg(options::OPT_module_file_info))
4840       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4841     if (Args.hasArg(options::OPT_verify_pch))
4842       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4843     if (Args.hasArg(options::OPT_extract_api))
4844       return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4845     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4846   }
4847   case phases::Backend: {
4848     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4849       types::ID Output;
4850       if (Args.hasArg(options::OPT_ffat_lto_objects) &&
4851           !Args.hasArg(options::OPT_emit_llvm))
4852         Output = types::TY_PP_Asm;
4853       else if (Args.hasArg(options::OPT_S))
4854         Output = types::TY_LTO_IR;
4855       else
4856         Output = types::TY_LTO_BC;
4857       return C.MakeAction<BackendJobAction>(Input, Output);
4858     }
4859     if (isUsingLTO(/* IsOffload */ true) &&
4860         TargetDeviceOffloadKind != Action::OFK_None) {
4861       types::ID Output =
4862           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4863       return C.MakeAction<BackendJobAction>(Input, Output);
4864     }
4865     if (Args.hasArg(options::OPT_emit_llvm) ||
4866         (((Input->getOffloadingToolChain() &&
4867            Input->getOffloadingToolChain()->getTriple().isAMDGPU()) ||
4868           TargetDeviceOffloadKind == Action::OFK_HIP) &&
4869          (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4870                        false) ||
4871           TargetDeviceOffloadKind == Action::OFK_OpenMP))) {
4872       types::ID Output =
4873           Args.hasArg(options::OPT_S) &&
4874                   (TargetDeviceOffloadKind == Action::OFK_None ||
4875                    offloadDeviceOnly() ||
4876                    (TargetDeviceOffloadKind == Action::OFK_HIP &&
4877                     !Args.hasFlag(options::OPT_offload_new_driver,
4878                                   options::OPT_no_offload_new_driver, false)))
4879               ? types::TY_LLVM_IR
4880               : types::TY_LLVM_BC;
4881       return C.MakeAction<BackendJobAction>(Input, Output);
4882     }
4883     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4884   }
4885   case phases::Assemble:
4886     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4887   }
4888 
4889   llvm_unreachable("invalid phase in ConstructPhaseAction");
4890 }
4891 
4892 void Driver::BuildJobs(Compilation &C) const {
4893   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4894 
4895   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4896 
4897   // It is an error to provide a -o option if we are making multiple output
4898   // files. There are exceptions:
4899   //
4900   // IfsMergeJob: when generating interface stubs enabled we want to be able to
4901   // generate the stub file at the same time that we generate the real
4902   // library/a.out. So when a .o, .so, etc are the output, with clang interface
4903   // stubs there will also be a .ifs and .ifso at the same location.
4904   //
4905   // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4906   // and -c is passed, we still want to be able to generate a .ifs file while
4907   // we are also generating .o files. So we allow more than one output file in
4908   // this case as well.
4909   //
4910   // OffloadClass of type TY_Nothing: device-only output will place many outputs
4911   // into a single offloading action. We should count all inputs to the action
4912   // as outputs. Also ignore device-only outputs if we're compiling with
4913   // -fsyntax-only.
4914   if (FinalOutput) {
4915     unsigned NumOutputs = 0;
4916     unsigned NumIfsOutputs = 0;
4917     for (const Action *A : C.getActions()) {
4918       if (A->getType() != types::TY_Nothing &&
4919           A->getType() != types::TY_DX_CONTAINER &&
4920           !(A->getKind() == Action::IfsMergeJobClass ||
4921             (A->getType() == clang::driver::types::TY_IFS_CPP &&
4922              A->getKind() == clang::driver::Action::CompileJobClass &&
4923              0 == NumIfsOutputs++) ||
4924             (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4925              A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4926         ++NumOutputs;
4927       else if (A->getKind() == Action::OffloadClass &&
4928                A->getType() == types::TY_Nothing &&
4929                !C.getArgs().hasArg(options::OPT_fsyntax_only))
4930         NumOutputs += A->size();
4931     }
4932 
4933     if (NumOutputs > 1) {
4934       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4935       FinalOutput = nullptr;
4936     }
4937   }
4938 
4939   const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4940 
4941   // Collect the list of architectures.
4942   llvm::StringSet<> ArchNames;
4943   if (RawTriple.isOSBinFormatMachO())
4944     for (const Arg *A : C.getArgs())
4945       if (A->getOption().matches(options::OPT_arch))
4946         ArchNames.insert(A->getValue());
4947 
4948   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4949   std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4950   for (Action *A : C.getActions()) {
4951     // If we are linking an image for multiple archs then the linker wants
4952     // -arch_multiple and -final_output <final image name>. Unfortunately, this
4953     // doesn't fit in cleanly because we have to pass this information down.
4954     //
4955     // FIXME: This is a hack; find a cleaner way to integrate this into the
4956     // process.
4957     const char *LinkingOutput = nullptr;
4958     if (isa<LipoJobAction>(A)) {
4959       if (FinalOutput)
4960         LinkingOutput = FinalOutput->getValue();
4961       else
4962         LinkingOutput = getDefaultImageName();
4963     }
4964 
4965     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4966                        /*BoundArch*/ StringRef(),
4967                        /*AtTopLevel*/ true,
4968                        /*MultipleArchs*/ ArchNames.size() > 1,
4969                        /*LinkingOutput*/ LinkingOutput, CachedResults,
4970                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
4971   }
4972 
4973   // If we have more than one job, then disable integrated-cc1 for now. Do this
4974   // also when we need to report process execution statistics.
4975   if (C.getJobs().size() > 1 || CCPrintProcessStats)
4976     for (auto &J : C.getJobs())
4977       J.InProcess = false;
4978 
4979   if (CCPrintProcessStats) {
4980     C.setPostCallback([=](const Command &Cmd, int Res) {
4981       std::optional<llvm::sys::ProcessStatistics> ProcStat =
4982           Cmd.getProcessStatistics();
4983       if (!ProcStat)
4984         return;
4985 
4986       const char *LinkingOutput = nullptr;
4987       if (FinalOutput)
4988         LinkingOutput = FinalOutput->getValue();
4989       else if (!Cmd.getOutputFilenames().empty())
4990         LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4991       else
4992         LinkingOutput = getDefaultImageName();
4993 
4994       if (CCPrintStatReportFilename.empty()) {
4995         using namespace llvm;
4996         // Human readable output.
4997         outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4998                << "output=" << LinkingOutput;
4999         outs() << ", total="
5000                << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
5001                << ", user="
5002                << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
5003                << ", mem=" << ProcStat->PeakMemory << " Kb\n";
5004       } else {
5005         // CSV format.
5006         std::string Buffer;
5007         llvm::raw_string_ostream Out(Buffer);
5008         llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
5009                             /*Quote*/ true);
5010         Out << ',';
5011         llvm::sys::printArg(Out, LinkingOutput, true);
5012         Out << ',' << ProcStat->TotalTime.count() << ','
5013             << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
5014             << '\n';
5015         Out.flush();
5016         std::error_code EC;
5017         llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
5018                                 llvm::sys::fs::OF_Append |
5019                                     llvm::sys::fs::OF_Text);
5020         if (EC)
5021           return;
5022         auto L = OS.lock();
5023         if (!L) {
5024           llvm::errs() << "ERROR: Cannot lock file "
5025                        << CCPrintStatReportFilename << ": "
5026                        << toString(L.takeError()) << "\n";
5027           return;
5028         }
5029         OS << Buffer;
5030         OS.flush();
5031       }
5032     });
5033   }
5034 
5035   // If the user passed -Qunused-arguments or there were errors, don't warn
5036   // about any unused arguments.
5037   if (Diags.hasErrorOccurred() ||
5038       C.getArgs().hasArg(options::OPT_Qunused_arguments))
5039     return;
5040 
5041   // Claim -fdriver-only here.
5042   (void)C.getArgs().hasArg(options::OPT_fdriver_only);
5043   // Claim -### here.
5044   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
5045 
5046   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
5047   (void)C.getArgs().hasArg(options::OPT_driver_mode);
5048   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
5049 
5050   bool HasAssembleJob = llvm::any_of(C.getJobs(), [](auto &J) {
5051     // Match ClangAs and other derived assemblers of Tool. ClangAs uses a
5052     // longer ShortName "clang integrated assembler" while other assemblers just
5053     // use "assembler".
5054     return strstr(J.getCreator().getShortName(), "assembler");
5055   });
5056   for (Arg *A : C.getArgs()) {
5057     // FIXME: It would be nice to be able to send the argument to the
5058     // DiagnosticsEngine, so that extra values, position, and so on could be
5059     // printed.
5060     if (!A->isClaimed()) {
5061       if (A->getOption().hasFlag(options::NoArgumentUnused))
5062         continue;
5063 
5064       // Suppress the warning automatically if this is just a flag, and it is an
5065       // instance of an argument we already claimed.
5066       const Option &Opt = A->getOption();
5067       if (Opt.getKind() == Option::FlagClass) {
5068         bool DuplicateClaimed = false;
5069 
5070         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
5071           if (AA->isClaimed()) {
5072             DuplicateClaimed = true;
5073             break;
5074           }
5075         }
5076 
5077         if (DuplicateClaimed)
5078           continue;
5079       }
5080 
5081       // In clang-cl, don't mention unknown arguments here since they have
5082       // already been warned about.
5083       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) {
5084         if (A->getOption().hasFlag(options::TargetSpecific) &&
5085             !A->isIgnoredTargetSpecific() && !HasAssembleJob &&
5086             // When for example -### or -v is used
5087             // without a file, target specific options are not
5088             // consumed/validated.
5089             // Instead emitting an error emit a warning instead.
5090             !C.getActions().empty()) {
5091           Diag(diag::err_drv_unsupported_opt_for_target)
5092               << A->getSpelling() << getTargetTriple();
5093         } else {
5094           Diag(clang::diag::warn_drv_unused_argument)
5095               << A->getAsString(C.getArgs());
5096         }
5097       }
5098     }
5099   }
5100 }
5101 
5102 namespace {
5103 /// Utility class to control the collapse of dependent actions and select the
5104 /// tools accordingly.
5105 class ToolSelector final {
5106   /// The tool chain this selector refers to.
5107   const ToolChain &TC;
5108 
5109   /// The compilation this selector refers to.
5110   const Compilation &C;
5111 
5112   /// The base action this selector refers to.
5113   const JobAction *BaseAction;
5114 
5115   /// Set to true if the current toolchain refers to host actions.
5116   bool IsHostSelector;
5117 
5118   /// Set to true if save-temps and embed-bitcode functionalities are active.
5119   bool SaveTemps;
5120   bool EmbedBitcode;
5121 
5122   /// Get previous dependent action or null if that does not exist. If
5123   /// \a CanBeCollapsed is false, that action must be legal to collapse or
5124   /// null will be returned.
5125   const JobAction *getPrevDependentAction(const ActionList &Inputs,
5126                                           ActionList &SavedOffloadAction,
5127                                           bool CanBeCollapsed = true) {
5128     // An option can be collapsed only if it has a single input.
5129     if (Inputs.size() != 1)
5130       return nullptr;
5131 
5132     Action *CurAction = *Inputs.begin();
5133     if (CanBeCollapsed &&
5134         !CurAction->isCollapsingWithNextDependentActionLegal())
5135       return nullptr;
5136 
5137     // If the input action is an offload action. Look through it and save any
5138     // offload action that can be dropped in the event of a collapse.
5139     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
5140       // If the dependent action is a device action, we will attempt to collapse
5141       // only with other device actions. Otherwise, we would do the same but
5142       // with host actions only.
5143       if (!IsHostSelector) {
5144         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
5145           CurAction =
5146               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
5147           if (CanBeCollapsed &&
5148               !CurAction->isCollapsingWithNextDependentActionLegal())
5149             return nullptr;
5150           SavedOffloadAction.push_back(OA);
5151           return dyn_cast<JobAction>(CurAction);
5152         }
5153       } else if (OA->hasHostDependence()) {
5154         CurAction = OA->getHostDependence();
5155         if (CanBeCollapsed &&
5156             !CurAction->isCollapsingWithNextDependentActionLegal())
5157           return nullptr;
5158         SavedOffloadAction.push_back(OA);
5159         return dyn_cast<JobAction>(CurAction);
5160       }
5161       return nullptr;
5162     }
5163 
5164     return dyn_cast<JobAction>(CurAction);
5165   }
5166 
5167   /// Return true if an assemble action can be collapsed.
5168   bool canCollapseAssembleAction() const {
5169     return TC.useIntegratedAs() && !SaveTemps &&
5170            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
5171            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
5172            !C.getArgs().hasArg(options::OPT__SLASH_Fa) &&
5173            !C.getArgs().hasArg(options::OPT_dxc_Fc);
5174   }
5175 
5176   /// Return true if a preprocessor action can be collapsed.
5177   bool canCollapsePreprocessorAction() const {
5178     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
5179            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
5180            !C.getArgs().hasArg(options::OPT_rewrite_objc);
5181   }
5182 
5183   /// Struct that relates an action with the offload actions that would be
5184   /// collapsed with it.
5185   struct JobActionInfo final {
5186     /// The action this info refers to.
5187     const JobAction *JA = nullptr;
5188     /// The offload actions we need to take care off if this action is
5189     /// collapsed.
5190     ActionList SavedOffloadAction;
5191   };
5192 
5193   /// Append collapsed offload actions from the give nnumber of elements in the
5194   /// action info array.
5195   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
5196                                            ArrayRef<JobActionInfo> &ActionInfo,
5197                                            unsigned ElementNum) {
5198     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
5199     for (unsigned I = 0; I < ElementNum; ++I)
5200       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
5201                                     ActionInfo[I].SavedOffloadAction.end());
5202   }
5203 
5204   /// Functions that attempt to perform the combining. They detect if that is
5205   /// legal, and if so they update the inputs \a Inputs and the offload action
5206   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
5207   /// the combined action is returned. If the combining is not legal or if the
5208   /// tool does not exist, null is returned.
5209   /// Currently three kinds of collapsing are supported:
5210   ///  - Assemble + Backend + Compile;
5211   ///  - Assemble + Backend ;
5212   ///  - Backend + Compile.
5213   const Tool *
5214   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5215                                 ActionList &Inputs,
5216                                 ActionList &CollapsedOffloadAction) {
5217     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
5218       return nullptr;
5219     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5220     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5221     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
5222     if (!AJ || !BJ || !CJ)
5223       return nullptr;
5224 
5225     // Get compiler tool.
5226     const Tool *T = TC.SelectTool(*CJ);
5227     if (!T)
5228       return nullptr;
5229 
5230     // Can't collapse if we don't have codegen support unless we are
5231     // emitting LLVM IR.
5232     bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5233     if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5234       return nullptr;
5235 
5236     // When using -fembed-bitcode, it is required to have the same tool (clang)
5237     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
5238     if (EmbedBitcode) {
5239       const Tool *BT = TC.SelectTool(*BJ);
5240       if (BT == T)
5241         return nullptr;
5242     }
5243 
5244     if (!T->hasIntegratedAssembler())
5245       return nullptr;
5246 
5247     Inputs = CJ->getInputs();
5248     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5249                                  /*NumElements=*/3);
5250     return T;
5251   }
5252   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
5253                                      ActionList &Inputs,
5254                                      ActionList &CollapsedOffloadAction) {
5255     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
5256       return nullptr;
5257     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5258     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5259     if (!AJ || !BJ)
5260       return nullptr;
5261 
5262     // Get backend tool.
5263     const Tool *T = TC.SelectTool(*BJ);
5264     if (!T)
5265       return nullptr;
5266 
5267     if (!T->hasIntegratedAssembler())
5268       return nullptr;
5269 
5270     Inputs = BJ->getInputs();
5271     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5272                                  /*NumElements=*/2);
5273     return T;
5274   }
5275   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5276                                     ActionList &Inputs,
5277                                     ActionList &CollapsedOffloadAction) {
5278     if (ActionInfo.size() < 2)
5279       return nullptr;
5280     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
5281     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
5282     if (!BJ || !CJ)
5283       return nullptr;
5284 
5285     // Check if the initial input (to the compile job or its predessor if one
5286     // exists) is LLVM bitcode. In that case, no preprocessor step is required
5287     // and we can still collapse the compile and backend jobs when we have
5288     // -save-temps. I.e. there is no need for a separate compile job just to
5289     // emit unoptimized bitcode.
5290     bool InputIsBitcode = true;
5291     for (size_t i = 1; i < ActionInfo.size(); i++)
5292       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
5293           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
5294         InputIsBitcode = false;
5295         break;
5296       }
5297     if (!InputIsBitcode && !canCollapsePreprocessorAction())
5298       return nullptr;
5299 
5300     // Get compiler tool.
5301     const Tool *T = TC.SelectTool(*CJ);
5302     if (!T)
5303       return nullptr;
5304 
5305     // Can't collapse if we don't have codegen support unless we are
5306     // emitting LLVM IR.
5307     bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5308     if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5309       return nullptr;
5310 
5311     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
5312       return nullptr;
5313 
5314     Inputs = CJ->getInputs();
5315     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5316                                  /*NumElements=*/2);
5317     return T;
5318   }
5319 
5320   /// Updates the inputs if the obtained tool supports combining with
5321   /// preprocessor action, and the current input is indeed a preprocessor
5322   /// action. If combining results in the collapse of offloading actions, those
5323   /// are appended to \a CollapsedOffloadAction.
5324   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5325                                ActionList &CollapsedOffloadAction) {
5326     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5327       return;
5328 
5329     // Attempt to get a preprocessor action dependence.
5330     ActionList PreprocessJobOffloadActions;
5331     ActionList NewInputs;
5332     for (Action *A : Inputs) {
5333       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
5334       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
5335         NewInputs.push_back(A);
5336         continue;
5337       }
5338 
5339       // This is legal to combine. Append any offload action we found and add the
5340       // current input to preprocessor inputs.
5341       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
5342                                     PreprocessJobOffloadActions.end());
5343       NewInputs.append(PJ->input_begin(), PJ->input_end());
5344     }
5345     Inputs = NewInputs;
5346   }
5347 
5348 public:
5349   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5350                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5351       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5352         EmbedBitcode(EmbedBitcode) {
5353     assert(BaseAction && "Invalid base action.");
5354     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5355   }
5356 
5357   /// Check if a chain of actions can be combined and return the tool that can
5358   /// handle the combination of actions. The pointer to the current inputs \a
5359   /// Inputs and the list of offload actions \a CollapsedOffloadActions
5360   /// connected to collapsed actions are updated accordingly. The latter enables
5361   /// the caller of the selector to process them afterwards instead of just
5362   /// dropping them. If no suitable tool is found, null will be returned.
5363   const Tool *getTool(ActionList &Inputs,
5364                       ActionList &CollapsedOffloadAction) {
5365     //
5366     // Get the largest chain of actions that we could combine.
5367     //
5368 
5369     SmallVector<JobActionInfo, 5> ActionChain(1);
5370     ActionChain.back().JA = BaseAction;
5371     while (ActionChain.back().JA) {
5372       const Action *CurAction = ActionChain.back().JA;
5373 
5374       // Grow the chain by one element.
5375       ActionChain.resize(ActionChain.size() + 1);
5376       JobActionInfo &AI = ActionChain.back();
5377 
5378       // Attempt to fill it with the
5379       AI.JA =
5380           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
5381     }
5382 
5383     // Pop the last action info as it could not be filled.
5384     ActionChain.pop_back();
5385 
5386     //
5387     // Attempt to combine actions. If all combining attempts failed, just return
5388     // the tool of the provided action. At the end we attempt to combine the
5389     // action with any preprocessor action it may depend on.
5390     //
5391 
5392     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
5393                                                   CollapsedOffloadAction);
5394     if (!T)
5395       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
5396     if (!T)
5397       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
5398     if (!T) {
5399       Inputs = BaseAction->getInputs();
5400       T = TC.SelectTool(*BaseAction);
5401     }
5402 
5403     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5404     return T;
5405   }
5406 };
5407 }
5408 
5409 /// Return a string that uniquely identifies the result of a job. The bound arch
5410 /// is not necessarily represented in the toolchain's triple -- for example,
5411 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
5412 /// Also, we need to add the offloading device kind, as the same tool chain can
5413 /// be used for host and device for some programming models, e.g. OpenMP.
5414 static std::string GetTriplePlusArchString(const ToolChain *TC,
5415                                            StringRef BoundArch,
5416                                            Action::OffloadKind OffloadKind) {
5417   std::string TriplePlusArch = TC->getTriple().normalize();
5418   if (!BoundArch.empty()) {
5419     TriplePlusArch += "-";
5420     TriplePlusArch += BoundArch;
5421   }
5422   TriplePlusArch += "-";
5423   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
5424   return TriplePlusArch;
5425 }
5426 
5427 InputInfoList Driver::BuildJobsForAction(
5428     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5429     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5430     std::map<std::pair<const Action *, std::string>, InputInfoList>
5431         &CachedResults,
5432     Action::OffloadKind TargetDeviceOffloadKind) const {
5433   std::pair<const Action *, std::string> ActionTC = {
5434       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5435   auto CachedResult = CachedResults.find(ActionTC);
5436   if (CachedResult != CachedResults.end()) {
5437     return CachedResult->second;
5438   }
5439   InputInfoList Result = BuildJobsForActionNoCache(
5440       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5441       CachedResults, TargetDeviceOffloadKind);
5442   CachedResults[ActionTC] = Result;
5443   return Result;
5444 }
5445 
5446 static void handleTimeTrace(Compilation &C, const ArgList &Args,
5447                             const JobAction *JA, const char *BaseInput,
5448                             const InputInfo &Result) {
5449   Arg *A =
5450       Args.getLastArg(options::OPT_ftime_trace, options::OPT_ftime_trace_EQ);
5451   if (!A)
5452     return;
5453   SmallString<128> Path;
5454   if (A->getOption().matches(options::OPT_ftime_trace_EQ)) {
5455     Path = A->getValue();
5456     if (llvm::sys::fs::is_directory(Path)) {
5457       SmallString<128> Tmp(Result.getFilename());
5458       llvm::sys::path::replace_extension(Tmp, "json");
5459       llvm::sys::path::append(Path, llvm::sys::path::filename(Tmp));
5460     }
5461   } else {
5462     if (Arg *DumpDir = Args.getLastArgNoClaim(options::OPT_dumpdir)) {
5463       // The trace file is ${dumpdir}${basename}.json. Note that dumpdir may not
5464       // end with a path separator.
5465       Path = DumpDir->getValue();
5466       Path += llvm::sys::path::filename(BaseInput);
5467     } else {
5468       Path = Result.getFilename();
5469     }
5470     llvm::sys::path::replace_extension(Path, "json");
5471   }
5472   const char *ResultFile = C.getArgs().MakeArgString(Path);
5473   C.addTimeTraceFile(ResultFile, JA);
5474   C.addResultFile(ResultFile, JA);
5475 }
5476 
5477 InputInfoList Driver::BuildJobsForActionNoCache(
5478     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5479     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5480     std::map<std::pair<const Action *, std::string>, InputInfoList>
5481         &CachedResults,
5482     Action::OffloadKind TargetDeviceOffloadKind) const {
5483   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5484 
5485   InputInfoList OffloadDependencesInputInfo;
5486   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5487   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
5488     // The 'Darwin' toolchain is initialized only when its arguments are
5489     // computed. Get the default arguments for OFK_None to ensure that
5490     // initialization is performed before processing the offload action.
5491     // FIXME: Remove when darwin's toolchain is initialized during construction.
5492     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
5493 
5494     // The offload action is expected to be used in four different situations.
5495     //
5496     // a) Set a toolchain/architecture/kind for a host action:
5497     //    Host Action 1 -> OffloadAction -> Host Action 2
5498     //
5499     // b) Set a toolchain/architecture/kind for a device action;
5500     //    Device Action 1 -> OffloadAction -> Device Action 2
5501     //
5502     // c) Specify a device dependence to a host action;
5503     //    Device Action 1  _
5504     //                      \
5505     //      Host Action 1  ---> OffloadAction -> Host Action 2
5506     //
5507     // d) Specify a host dependence to a device action.
5508     //      Host Action 1  _
5509     //                      \
5510     //    Device Action 1  ---> OffloadAction -> Device Action 2
5511     //
5512     // For a) and b), we just return the job generated for the dependences. For
5513     // c) and d) we override the current action with the host/device dependence
5514     // if the current toolchain is host/device and set the offload dependences
5515     // info with the jobs obtained from the device/host dependence(s).
5516 
5517     // If there is a single device option or has no host action, just generate
5518     // the job for it.
5519     if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) {
5520       InputInfoList DevA;
5521       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
5522                                        const char *DepBoundArch) {
5523         DevA.append(BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
5524                                        /*MultipleArchs*/ !!DepBoundArch,
5525                                        LinkingOutput, CachedResults,
5526                                        DepA->getOffloadingDeviceKind()));
5527       });
5528       return DevA;
5529     }
5530 
5531     // If 'Action 2' is host, we generate jobs for the device dependences and
5532     // override the current action with the host dependence. Otherwise, we
5533     // generate the host dependences and override the action with the device
5534     // dependence. The dependences can't therefore be a top-level action.
5535     OA->doOnEachDependence(
5536         /*IsHostDependence=*/BuildingForOffloadDevice,
5537         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5538           OffloadDependencesInputInfo.append(BuildJobsForAction(
5539               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
5540               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5541               DepA->getOffloadingDeviceKind()));
5542         });
5543 
5544     A = BuildingForOffloadDevice
5545             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5546             : OA->getHostDependence();
5547 
5548     // We may have already built this action as a part of the offloading
5549     // toolchain, return the cached input if so.
5550     std::pair<const Action *, std::string> ActionTC = {
5551         OA->getHostDependence(),
5552         GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5553     if (CachedResults.find(ActionTC) != CachedResults.end()) {
5554       InputInfoList Inputs = CachedResults[ActionTC];
5555       Inputs.append(OffloadDependencesInputInfo);
5556       return Inputs;
5557     }
5558   }
5559 
5560   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
5561     // FIXME: It would be nice to not claim this here; maybe the old scheme of
5562     // just using Args was better?
5563     const Arg &Input = IA->getInputArg();
5564     Input.claim();
5565     if (Input.getOption().matches(options::OPT_INPUT)) {
5566       const char *Name = Input.getValue();
5567       return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5568     }
5569     return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5570   }
5571 
5572   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
5573     const ToolChain *TC;
5574     StringRef ArchName = BAA->getArchName();
5575 
5576     if (!ArchName.empty())
5577       TC = &getToolChain(C.getArgs(),
5578                          computeTargetTriple(*this, TargetTriple,
5579                                              C.getArgs(), ArchName));
5580     else
5581       TC = &C.getDefaultToolChain();
5582 
5583     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
5584                               MultipleArchs, LinkingOutput, CachedResults,
5585                               TargetDeviceOffloadKind);
5586   }
5587 
5588 
5589   ActionList Inputs = A->getInputs();
5590 
5591   const JobAction *JA = cast<JobAction>(A);
5592   ActionList CollapsedOffloadActions;
5593 
5594   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5595                   embedBitcodeInObject() && !isUsingLTO());
5596   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
5597 
5598   if (!T)
5599     return {InputInfo()};
5600 
5601   // If we've collapsed action list that contained OffloadAction we
5602   // need to build jobs for host/device-side inputs it may have held.
5603   for (const auto *OA : CollapsedOffloadActions)
5604     cast<OffloadAction>(OA)->doOnEachDependence(
5605         /*IsHostDependence=*/BuildingForOffloadDevice,
5606         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5607           OffloadDependencesInputInfo.append(BuildJobsForAction(
5608               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
5609               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5610               DepA->getOffloadingDeviceKind()));
5611         });
5612 
5613   // Only use pipes when there is exactly one input.
5614   InputInfoList InputInfos;
5615   for (const Action *Input : Inputs) {
5616     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5617     // shouldn't get temporary output names.
5618     // FIXME: Clean this up.
5619     bool SubJobAtTopLevel =
5620         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5621     InputInfos.append(BuildJobsForAction(
5622         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5623         CachedResults, A->getOffloadingDeviceKind()));
5624   }
5625 
5626   // Always use the first file input as the base input.
5627   const char *BaseInput = InputInfos[0].getBaseInput();
5628   for (auto &Info : InputInfos) {
5629     if (Info.isFilename()) {
5630       BaseInput = Info.getBaseInput();
5631       break;
5632     }
5633   }
5634 
5635   // ... except dsymutil actions, which use their actual input as the base
5636   // input.
5637   if (JA->getType() == types::TY_dSYM)
5638     BaseInput = InputInfos[0].getFilename();
5639 
5640   // Append outputs of offload device jobs to the input list
5641   if (!OffloadDependencesInputInfo.empty())
5642     InputInfos.append(OffloadDependencesInputInfo.begin(),
5643                       OffloadDependencesInputInfo.end());
5644 
5645   // Set the effective triple of the toolchain for the duration of this job.
5646   llvm::Triple EffectiveTriple;
5647   const ToolChain &ToolTC = T->getToolChain();
5648   const ArgList &Args =
5649       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5650   if (InputInfos.size() != 1) {
5651     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5652   } else {
5653     // Pass along the input type if it can be unambiguously determined.
5654     EffectiveTriple = llvm::Triple(
5655         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5656   }
5657   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5658 
5659   // Determine the place to write output to, if any.
5660   InputInfo Result;
5661   InputInfoList UnbundlingResults;
5662   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5663     // If we have an unbundling job, we need to create results for all the
5664     // outputs. We also update the results cache so that other actions using
5665     // this unbundling action can get the right results.
5666     for (auto &UI : UA->getDependentActionsInfo()) {
5667       assert(UI.DependentOffloadKind != Action::OFK_None &&
5668              "Unbundling with no offloading??");
5669 
5670       // Unbundling actions are never at the top level. When we generate the
5671       // offloading prefix, we also do that for the host file because the
5672       // unbundling action does not change the type of the output which can
5673       // cause a overwrite.
5674       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5675           UI.DependentOffloadKind,
5676           UI.DependentToolChain->getTriple().normalize(),
5677           /*CreatePrefixForHost=*/true);
5678       auto CurI = InputInfo(
5679           UA,
5680           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5681                              /*AtTopLevel=*/false,
5682                              MultipleArchs ||
5683                                  UI.DependentOffloadKind == Action::OFK_HIP,
5684                              OffloadingPrefix),
5685           BaseInput);
5686       // Save the unbundling result.
5687       UnbundlingResults.push_back(CurI);
5688 
5689       // Get the unique string identifier for this dependence and cache the
5690       // result.
5691       StringRef Arch;
5692       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5693         if (UI.DependentOffloadKind == Action::OFK_Host)
5694           Arch = StringRef();
5695         else
5696           Arch = UI.DependentBoundArch;
5697       } else
5698         Arch = BoundArch;
5699 
5700       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5701                                                 UI.DependentOffloadKind)}] = {
5702           CurI};
5703     }
5704 
5705     // Now that we have all the results generated, select the one that should be
5706     // returned for the current depending action.
5707     std::pair<const Action *, std::string> ActionTC = {
5708         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5709     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5710            "Result does not exist??");
5711     Result = CachedResults[ActionTC].front();
5712   } else if (JA->getType() == types::TY_Nothing)
5713     Result = {InputInfo(A, BaseInput)};
5714   else {
5715     // We only have to generate a prefix for the host if this is not a top-level
5716     // action.
5717     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5718         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5719         /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) ||
5720             !(A->getOffloadingHostActiveKinds() == Action::OFK_None ||
5721               AtTopLevel));
5722     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5723                                              AtTopLevel, MultipleArchs,
5724                                              OffloadingPrefix),
5725                        BaseInput);
5726     if (T->canEmitIR() && OffloadingPrefix.empty())
5727       handleTimeTrace(C, Args, JA, BaseInput, Result);
5728   }
5729 
5730   if (CCCPrintBindings && !CCGenDiagnostics) {
5731     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5732                  << " - \"" << T->getName() << "\", inputs: [";
5733     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5734       llvm::errs() << InputInfos[i].getAsString();
5735       if (i + 1 != e)
5736         llvm::errs() << ", ";
5737     }
5738     if (UnbundlingResults.empty())
5739       llvm::errs() << "], output: " << Result.getAsString() << "\n";
5740     else {
5741       llvm::errs() << "], outputs: [";
5742       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5743         llvm::errs() << UnbundlingResults[i].getAsString();
5744         if (i + 1 != e)
5745           llvm::errs() << ", ";
5746       }
5747       llvm::errs() << "] \n";
5748     }
5749   } else {
5750     if (UnbundlingResults.empty())
5751       T->ConstructJob(
5752           C, *JA, Result, InputInfos,
5753           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5754           LinkingOutput);
5755     else
5756       T->ConstructJobMultipleOutputs(
5757           C, *JA, UnbundlingResults, InputInfos,
5758           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5759           LinkingOutput);
5760   }
5761   return {Result};
5762 }
5763 
5764 const char *Driver::getDefaultImageName() const {
5765   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5766   return Target.isOSWindows() ? "a.exe" : "a.out";
5767 }
5768 
5769 /// Create output filename based on ArgValue, which could either be a
5770 /// full filename, filename without extension, or a directory. If ArgValue
5771 /// does not provide a filename, then use BaseName, and use the extension
5772 /// suitable for FileType.
5773 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5774                                         StringRef BaseName,
5775                                         types::ID FileType) {
5776   SmallString<128> Filename = ArgValue;
5777 
5778   if (ArgValue.empty()) {
5779     // If the argument is empty, output to BaseName in the current dir.
5780     Filename = BaseName;
5781   } else if (llvm::sys::path::is_separator(Filename.back())) {
5782     // If the argument is a directory, output to BaseName in that dir.
5783     llvm::sys::path::append(Filename, BaseName);
5784   }
5785 
5786   if (!llvm::sys::path::has_extension(ArgValue)) {
5787     // If the argument didn't provide an extension, then set it.
5788     const char *Extension = types::getTypeTempSuffix(FileType, true);
5789 
5790     if (FileType == types::TY_Image &&
5791         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5792       // The output file is a dll.
5793       Extension = "dll";
5794     }
5795 
5796     llvm::sys::path::replace_extension(Filename, Extension);
5797   }
5798 
5799   return Args.MakeArgString(Filename.c_str());
5800 }
5801 
5802 static bool HasPreprocessOutput(const Action &JA) {
5803   if (isa<PreprocessJobAction>(JA))
5804     return true;
5805   if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5806     return true;
5807   if (isa<OffloadBundlingJobAction>(JA) &&
5808       HasPreprocessOutput(*(JA.getInputs()[0])))
5809     return true;
5810   return false;
5811 }
5812 
5813 const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix,
5814                                    StringRef Suffix, bool MultipleArchs,
5815                                    StringRef BoundArch,
5816                                    bool NeedUniqueDirectory) const {
5817   SmallString<128> TmpName;
5818   Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5819   std::optional<std::string> CrashDirectory =
5820       CCGenDiagnostics && A
5821           ? std::string(A->getValue())
5822           : llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR");
5823   if (CrashDirectory) {
5824     if (!getVFS().exists(*CrashDirectory))
5825       llvm::sys::fs::create_directories(*CrashDirectory);
5826     SmallString<128> Path(*CrashDirectory);
5827     llvm::sys::path::append(Path, Prefix);
5828     const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%";
5829     if (std::error_code EC =
5830             llvm::sys::fs::createUniqueFile(Path + Middle + Suffix, TmpName)) {
5831       Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5832       return "";
5833     }
5834   } else {
5835     if (MultipleArchs && !BoundArch.empty()) {
5836       if (NeedUniqueDirectory) {
5837         TmpName = GetTemporaryDirectory(Prefix);
5838         llvm::sys::path::append(TmpName,
5839                                 Twine(Prefix) + "-" + BoundArch + "." + Suffix);
5840       } else {
5841         TmpName =
5842             GetTemporaryPath((Twine(Prefix) + "-" + BoundArch).str(), Suffix);
5843       }
5844 
5845     } else {
5846       TmpName = GetTemporaryPath(Prefix, Suffix);
5847     }
5848   }
5849   return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5850 }
5851 
5852 // Calculate the output path of the module file when compiling a module unit
5853 // with the `-fmodule-output` option or `-fmodule-output=` option specified.
5854 // The behavior is:
5855 // - If `-fmodule-output=` is specfied, then the module file is
5856 //   writing to the value.
5857 // - Otherwise if the output object file of the module unit is specified, the
5858 // output path
5859 //   of the module file should be the same with the output object file except
5860 //   the corresponding suffix. This requires both `-o` and `-c` are specified.
5861 // - Otherwise, the output path of the module file will be the same with the
5862 //   input with the corresponding suffix.
5863 static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA,
5864                                        const char *BaseInput) {
5865   assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile &&
5866          (C.getArgs().hasArg(options::OPT_fmodule_output) ||
5867           C.getArgs().hasArg(options::OPT_fmodule_output_EQ)));
5868 
5869   SmallString<256> OutputPath =
5870       tools::getCXX20NamedModuleOutputPath(C.getArgs(), BaseInput);
5871 
5872   return C.addResultFile(C.getArgs().MakeArgString(OutputPath.c_str()), &JA);
5873 }
5874 
5875 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5876                                        const char *BaseInput,
5877                                        StringRef OrigBoundArch, bool AtTopLevel,
5878                                        bool MultipleArchs,
5879                                        StringRef OffloadingPrefix) const {
5880   std::string BoundArch = OrigBoundArch.str();
5881   if (is_style_windows(llvm::sys::path::Style::native)) {
5882     // BoundArch may contains ':', which is invalid in file names on Windows,
5883     // therefore replace it with '%'.
5884     std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5885   }
5886 
5887   llvm::PrettyStackTraceString CrashInfo("Computing output path");
5888   // Output to a user requested destination?
5889   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5890     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5891       return C.addResultFile(FinalOutput->getValue(), &JA);
5892   }
5893 
5894   // For /P, preprocess to file named after BaseInput.
5895   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5896     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5897     StringRef BaseName = llvm::sys::path::filename(BaseInput);
5898     StringRef NameArg;
5899     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5900       NameArg = A->getValue();
5901     return C.addResultFile(
5902         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5903         &JA);
5904   }
5905 
5906   // Default to writing to stdout?
5907   if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5908     return "-";
5909   }
5910 
5911   if (JA.getType() == types::TY_ModuleFile &&
5912       C.getArgs().getLastArg(options::OPT_module_file_info)) {
5913     return "-";
5914   }
5915 
5916   if (JA.getType() == types::TY_PP_Asm &&
5917       C.getArgs().hasArg(options::OPT_dxc_Fc)) {
5918     StringRef FcValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fc);
5919     // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5920     // handle this as part of the SLASH_Fa handling below.
5921     return C.addResultFile(C.getArgs().MakeArgString(FcValue.str()), &JA);
5922   }
5923 
5924   if (JA.getType() == types::TY_Object &&
5925       C.getArgs().hasArg(options::OPT_dxc_Fo)) {
5926     StringRef FoValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fo);
5927     // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5928     // handle this as part of the SLASH_Fo handling below.
5929     return C.addResultFile(C.getArgs().MakeArgString(FoValue.str()), &JA);
5930   }
5931 
5932   // Is this the assembly listing for /FA?
5933   if (JA.getType() == types::TY_PP_Asm &&
5934       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5935        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5936     // Use /Fa and the input filename to determine the asm file name.
5937     StringRef BaseName = llvm::sys::path::filename(BaseInput);
5938     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5939     return C.addResultFile(
5940         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5941         &JA);
5942   }
5943 
5944   if (JA.getType() == types::TY_API_INFO &&
5945       C.getArgs().hasArg(options::OPT_emit_extension_symbol_graphs) &&
5946       C.getArgs().hasArg(options::OPT_o))
5947     Diag(clang::diag::err_drv_unexpected_symbol_graph_output)
5948         << C.getArgs().getLastArgValue(options::OPT_o);
5949 
5950   // DXC defaults to standard out when generating assembly. We check this after
5951   // any DXC flags that might specify a file.
5952   if (AtTopLevel && JA.getType() == types::TY_PP_Asm && IsDXCMode())
5953     return "-";
5954 
5955   bool SpecifiedModuleOutput =
5956       C.getArgs().hasArg(options::OPT_fmodule_output) ||
5957       C.getArgs().hasArg(options::OPT_fmodule_output_EQ);
5958   if (MultipleArchs && SpecifiedModuleOutput)
5959     Diag(clang::diag::err_drv_module_output_with_multiple_arch);
5960 
5961   // If we're emitting a module output with the specified option
5962   // `-fmodule-output`.
5963   if (!AtTopLevel && isa<PrecompileJobAction>(JA) &&
5964       JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput) {
5965     assert(!C.getArgs().hasArg(options::OPT_modules_reduced_bmi));
5966     return GetModuleOutputPath(C, JA, BaseInput);
5967   }
5968 
5969   // Output to a temporary file?
5970   if ((!AtTopLevel && !isSaveTempsEnabled() &&
5971        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5972       CCGenDiagnostics) {
5973     StringRef Name = llvm::sys::path::filename(BaseInput);
5974     std::pair<StringRef, StringRef> Split = Name.split('.');
5975     const char *Suffix =
5976         types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5977     // The non-offloading toolchain on Darwin requires deterministic input
5978     // file name for binaries to be deterministic, therefore it needs unique
5979     // directory.
5980     llvm::Triple Triple(C.getDriver().getTargetTriple());
5981     bool NeedUniqueDirectory =
5982         (JA.getOffloadingDeviceKind() == Action::OFK_None ||
5983          JA.getOffloadingDeviceKind() == Action::OFK_Host) &&
5984         Triple.isOSDarwin();
5985     return CreateTempFile(C, Split.first, Suffix, MultipleArchs, BoundArch,
5986                           NeedUniqueDirectory);
5987   }
5988 
5989   SmallString<128> BasePath(BaseInput);
5990   SmallString<128> ExternalPath("");
5991   StringRef BaseName;
5992 
5993   // Dsymutil actions should use the full path.
5994   if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5995     ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5996     // We use posix style here because the tests (specifically
5997     // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5998     // even on Windows and if we don't then the similar test covering this
5999     // fails.
6000     llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
6001                             llvm::sys::path::filename(BasePath));
6002     BaseName = ExternalPath;
6003   } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
6004     BaseName = BasePath;
6005   else
6006     BaseName = llvm::sys::path::filename(BasePath);
6007 
6008   // Determine what the derived output name should be.
6009   const char *NamedOutput;
6010 
6011   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
6012       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
6013     // The /Fo or /o flag decides the object filename.
6014     StringRef Val =
6015         C.getArgs()
6016             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
6017             ->getValue();
6018     NamedOutput =
6019         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
6020   } else if (JA.getType() == types::TY_Image &&
6021              C.getArgs().hasArg(options::OPT__SLASH_Fe,
6022                                 options::OPT__SLASH_o)) {
6023     // The /Fe or /o flag names the linked file.
6024     StringRef Val =
6025         C.getArgs()
6026             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
6027             ->getValue();
6028     NamedOutput =
6029         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
6030   } else if (JA.getType() == types::TY_Image) {
6031     if (IsCLMode()) {
6032       // clang-cl uses BaseName for the executable name.
6033       NamedOutput =
6034           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
6035     } else {
6036       SmallString<128> Output(getDefaultImageName());
6037       // HIP image for device compilation with -fno-gpu-rdc is per compilation
6038       // unit.
6039       bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
6040                         !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
6041                                              options::OPT_fno_gpu_rdc, false);
6042       bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA);
6043       if (UseOutExtension) {
6044         Output = BaseName;
6045         llvm::sys::path::replace_extension(Output, "");
6046       }
6047       Output += OffloadingPrefix;
6048       if (MultipleArchs && !BoundArch.empty()) {
6049         Output += "-";
6050         Output.append(BoundArch);
6051       }
6052       if (UseOutExtension)
6053         Output += ".out";
6054       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
6055     }
6056   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
6057     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
6058   } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) &&
6059              C.getArgs().hasArg(options::OPT__SLASH_o)) {
6060     StringRef Val =
6061         C.getArgs()
6062             .getLastArg(options::OPT__SLASH_o)
6063             ->getValue();
6064     NamedOutput =
6065         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
6066   } else {
6067     const char *Suffix =
6068         types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
6069     assert(Suffix && "All types used for output should have a suffix.");
6070 
6071     std::string::size_type End = std::string::npos;
6072     if (!types::appendSuffixForType(JA.getType()))
6073       End = BaseName.rfind('.');
6074     SmallString<128> Suffixed(BaseName.substr(0, End));
6075     Suffixed += OffloadingPrefix;
6076     if (MultipleArchs && !BoundArch.empty()) {
6077       Suffixed += "-";
6078       Suffixed.append(BoundArch);
6079     }
6080     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
6081     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
6082     // optimized bitcode output.
6083     auto IsAMDRDCInCompilePhase = [](const JobAction &JA,
6084                                      const llvm::opt::DerivedArgList &Args) {
6085       // The relocatable compilation in HIP and OpenMP implies -emit-llvm.
6086       // Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode
6087       // (generated in the compile phase.)
6088       const ToolChain *TC = JA.getOffloadingToolChain();
6089       return isa<CompileJobAction>(JA) &&
6090              ((JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
6091                Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
6092                             false)) ||
6093               (JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC &&
6094                TC->getTriple().isAMDGPU()));
6095     };
6096     if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
6097         (C.getArgs().hasArg(options::OPT_emit_llvm) ||
6098          IsAMDRDCInCompilePhase(JA, C.getArgs())))
6099       Suffixed += ".tmp";
6100     Suffixed += '.';
6101     Suffixed += Suffix;
6102     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
6103   }
6104 
6105   // Prepend object file path if -save-temps=obj
6106   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
6107       JA.getType() != types::TY_PCH) {
6108     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
6109     SmallString<128> TempPath(FinalOutput->getValue());
6110     llvm::sys::path::remove_filename(TempPath);
6111     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
6112     llvm::sys::path::append(TempPath, OutputFileName);
6113     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
6114   }
6115 
6116   // If we're saving temps and the temp file conflicts with the input file,
6117   // then avoid overwriting input file.
6118   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
6119     bool SameFile = false;
6120     SmallString<256> Result;
6121     llvm::sys::fs::current_path(Result);
6122     llvm::sys::path::append(Result, BaseName);
6123     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
6124     // Must share the same path to conflict.
6125     if (SameFile) {
6126       StringRef Name = llvm::sys::path::filename(BaseInput);
6127       std::pair<StringRef, StringRef> Split = Name.split('.');
6128       std::string TmpName = GetTemporaryPath(
6129           Split.first,
6130           types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode()));
6131       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
6132     }
6133   }
6134 
6135   // As an annoying special case, PCH generation doesn't strip the pathname.
6136   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
6137     llvm::sys::path::remove_filename(BasePath);
6138     if (BasePath.empty())
6139       BasePath = NamedOutput;
6140     else
6141       llvm::sys::path::append(BasePath, NamedOutput);
6142     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
6143   }
6144 
6145   return C.addResultFile(NamedOutput, &JA);
6146 }
6147 
6148 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
6149   // Search for Name in a list of paths.
6150   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
6151       -> std::optional<std::string> {
6152     // Respect a limited subset of the '-Bprefix' functionality in GCC by
6153     // attempting to use this prefix when looking for file paths.
6154     for (const auto &Dir : P) {
6155       if (Dir.empty())
6156         continue;
6157       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
6158       llvm::sys::path::append(P, Name);
6159       if (llvm::sys::fs::exists(Twine(P)))
6160         return std::string(P);
6161     }
6162     return std::nullopt;
6163   };
6164 
6165   if (auto P = SearchPaths(PrefixDirs))
6166     return *P;
6167 
6168   SmallString<128> R(ResourceDir);
6169   llvm::sys::path::append(R, Name);
6170   if (llvm::sys::fs::exists(Twine(R)))
6171     return std::string(R);
6172 
6173   SmallString<128> P(TC.getCompilerRTPath());
6174   llvm::sys::path::append(P, Name);
6175   if (llvm::sys::fs::exists(Twine(P)))
6176     return std::string(P);
6177 
6178   SmallString<128> D(Dir);
6179   llvm::sys::path::append(D, "..", Name);
6180   if (llvm::sys::fs::exists(Twine(D)))
6181     return std::string(D);
6182 
6183   if (auto P = SearchPaths(TC.getLibraryPaths()))
6184     return *P;
6185 
6186   if (auto P = SearchPaths(TC.getFilePaths()))
6187     return *P;
6188 
6189   return std::string(Name);
6190 }
6191 
6192 void Driver::generatePrefixedToolNames(
6193     StringRef Tool, const ToolChain &TC,
6194     SmallVectorImpl<std::string> &Names) const {
6195   // FIXME: Needs a better variable than TargetTriple
6196   Names.emplace_back((TargetTriple + "-" + Tool).str());
6197   Names.emplace_back(Tool);
6198 }
6199 
6200 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
6201   llvm::sys::path::append(Dir, Name);
6202   if (llvm::sys::fs::can_execute(Twine(Dir)))
6203     return true;
6204   llvm::sys::path::remove_filename(Dir);
6205   return false;
6206 }
6207 
6208 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
6209   SmallVector<std::string, 2> TargetSpecificExecutables;
6210   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
6211 
6212   // Respect a limited subset of the '-Bprefix' functionality in GCC by
6213   // attempting to use this prefix when looking for program paths.
6214   for (const auto &PrefixDir : PrefixDirs) {
6215     if (llvm::sys::fs::is_directory(PrefixDir)) {
6216       SmallString<128> P(PrefixDir);
6217       if (ScanDirForExecutable(P, Name))
6218         return std::string(P);
6219     } else {
6220       SmallString<128> P((PrefixDir + Name).str());
6221       if (llvm::sys::fs::can_execute(Twine(P)))
6222         return std::string(P);
6223     }
6224   }
6225 
6226   const ToolChain::path_list &List = TC.getProgramPaths();
6227   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
6228     // For each possible name of the tool look for it in
6229     // program paths first, then the path.
6230     // Higher priority names will be first, meaning that
6231     // a higher priority name in the path will be found
6232     // instead of a lower priority name in the program path.
6233     // E.g. <triple>-gcc on the path will be found instead
6234     // of gcc in the program path
6235     for (const auto &Path : List) {
6236       SmallString<128> P(Path);
6237       if (ScanDirForExecutable(P, TargetSpecificExecutable))
6238         return std::string(P);
6239     }
6240 
6241     // Fall back to the path
6242     if (llvm::ErrorOr<std::string> P =
6243             llvm::sys::findProgramByName(TargetSpecificExecutable))
6244       return *P;
6245   }
6246 
6247   return std::string(Name);
6248 }
6249 
6250 std::string Driver::GetStdModuleManifestPath(const Compilation &C,
6251                                              const ToolChain &TC) const {
6252   std::string error = "<NOT PRESENT>";
6253 
6254   switch (TC.GetCXXStdlibType(C.getArgs())) {
6255   case ToolChain::CST_Libcxx: {
6256     auto evaluate = [&](const char *library) -> std::optional<std::string> {
6257       std::string lib = GetFilePath(library, TC);
6258 
6259       // Note when there are multiple flavours of libc++ the module json needs
6260       // to look at the command-line arguments for the proper json. These
6261       // flavours do not exist at the moment, but there are plans to provide a
6262       // variant that is built with sanitizer instrumentation enabled.
6263 
6264       // For example
6265       //  StringRef modules = [&] {
6266       //    const SanitizerArgs &Sanitize = TC.getSanitizerArgs(C.getArgs());
6267       //    if (Sanitize.needsAsanRt())
6268       //      return "libc++.modules-asan.json";
6269       //    return "libc++.modules.json";
6270       //  }();
6271 
6272       SmallString<128> path(lib.begin(), lib.end());
6273       llvm::sys::path::remove_filename(path);
6274       llvm::sys::path::append(path, "libc++.modules.json");
6275       if (TC.getVFS().exists(path))
6276         return static_cast<std::string>(path);
6277 
6278       return {};
6279     };
6280 
6281     if (std::optional<std::string> result = evaluate("libc++.so"); result)
6282       return *result;
6283 
6284     return evaluate("libc++.a").value_or(error);
6285   }
6286 
6287   case ToolChain::CST_Libstdcxx:
6288     // libstdc++ does not provide Standard library modules yet.
6289     return error;
6290   }
6291 
6292   return error;
6293 }
6294 
6295 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
6296   SmallString<128> Path;
6297   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
6298   if (EC) {
6299     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6300     return "";
6301   }
6302 
6303   return std::string(Path);
6304 }
6305 
6306 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
6307   SmallString<128> Path;
6308   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
6309   if (EC) {
6310     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6311     return "";
6312   }
6313 
6314   return std::string(Path);
6315 }
6316 
6317 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
6318   SmallString<128> Output;
6319   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
6320     // FIXME: If anybody needs it, implement this obscure rule:
6321     // "If you specify a directory without a file name, the default file name
6322     // is VCx0.pch., where x is the major version of Visual C++ in use."
6323     Output = FpArg->getValue();
6324 
6325     // "If you do not specify an extension as part of the path name, an
6326     // extension of .pch is assumed. "
6327     if (!llvm::sys::path::has_extension(Output))
6328       Output += ".pch";
6329   } else {
6330     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
6331       Output = YcArg->getValue();
6332     if (Output.empty())
6333       Output = BaseName;
6334     llvm::sys::path::replace_extension(Output, ".pch");
6335   }
6336   return std::string(Output);
6337 }
6338 
6339 const ToolChain &Driver::getToolChain(const ArgList &Args,
6340                                       const llvm::Triple &Target) const {
6341 
6342   auto &TC = ToolChains[Target.str()];
6343   if (!TC) {
6344     switch (Target.getOS()) {
6345     case llvm::Triple::AIX:
6346       TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
6347       break;
6348     case llvm::Triple::Haiku:
6349       TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
6350       break;
6351     case llvm::Triple::Darwin:
6352     case llvm::Triple::MacOSX:
6353     case llvm::Triple::IOS:
6354     case llvm::Triple::TvOS:
6355     case llvm::Triple::WatchOS:
6356     case llvm::Triple::XROS:
6357     case llvm::Triple::DriverKit:
6358       TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
6359       break;
6360     case llvm::Triple::DragonFly:
6361       TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
6362       break;
6363     case llvm::Triple::OpenBSD:
6364       TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
6365       break;
6366     case llvm::Triple::NetBSD:
6367       TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
6368       break;
6369     case llvm::Triple::FreeBSD:
6370       if (Target.isPPC())
6371         TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
6372                                                                Args);
6373       else
6374         TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
6375       break;
6376     case llvm::Triple::Linux:
6377     case llvm::Triple::ELFIAMCU:
6378       if (Target.getArch() == llvm::Triple::hexagon)
6379         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6380                                                              Args);
6381       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
6382                !Target.hasEnvironment())
6383         TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
6384                                                               Args);
6385       else if (Target.isPPC())
6386         TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
6387                                                               Args);
6388       else if (Target.getArch() == llvm::Triple::ve)
6389         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6390       else if (Target.isOHOSFamily())
6391         TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6392       else
6393         TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
6394       break;
6395     case llvm::Triple::NaCl:
6396       TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
6397       break;
6398     case llvm::Triple::Fuchsia:
6399       TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
6400       break;
6401     case llvm::Triple::Solaris:
6402       TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
6403       break;
6404     case llvm::Triple::CUDA:
6405       TC = std::make_unique<toolchains::NVPTXToolChain>(*this, Target, Args);
6406       break;
6407     case llvm::Triple::AMDHSA:
6408       TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
6409       break;
6410     case llvm::Triple::AMDPAL:
6411     case llvm::Triple::Mesa3D:
6412       TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
6413       break;
6414     case llvm::Triple::Win32:
6415       switch (Target.getEnvironment()) {
6416       default:
6417         if (Target.isOSBinFormatELF())
6418           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6419         else if (Target.isOSBinFormatMachO())
6420           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6421         else
6422           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6423         break;
6424       case llvm::Triple::GNU:
6425         TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
6426         break;
6427       case llvm::Triple::Itanium:
6428         TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
6429                                                                   Args);
6430         break;
6431       case llvm::Triple::MSVC:
6432       case llvm::Triple::UnknownEnvironment:
6433         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
6434                 .starts_with_insensitive("bfd"))
6435           TC = std::make_unique<toolchains::CrossWindowsToolChain>(
6436               *this, Target, Args);
6437         else
6438           TC =
6439               std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
6440         break;
6441       }
6442       break;
6443     case llvm::Triple::PS4:
6444       TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
6445       break;
6446     case llvm::Triple::PS5:
6447       TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args);
6448       break;
6449     case llvm::Triple::Hurd:
6450       TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
6451       break;
6452     case llvm::Triple::LiteOS:
6453       TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6454       break;
6455     case llvm::Triple::ZOS:
6456       TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
6457       break;
6458     case llvm::Triple::ShaderModel:
6459       TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args);
6460       break;
6461     default:
6462       // Of these targets, Hexagon is the only one that might have
6463       // an OS of Linux, in which case it got handled above already.
6464       switch (Target.getArch()) {
6465       case llvm::Triple::tce:
6466         TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
6467         break;
6468       case llvm::Triple::tcele:
6469         TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
6470         break;
6471       case llvm::Triple::hexagon:
6472         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6473                                                              Args);
6474         break;
6475       case llvm::Triple::lanai:
6476         TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
6477         break;
6478       case llvm::Triple::xcore:
6479         TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
6480         break;
6481       case llvm::Triple::wasm32:
6482       case llvm::Triple::wasm64:
6483         TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
6484         break;
6485       case llvm::Triple::avr:
6486         TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
6487         break;
6488       case llvm::Triple::msp430:
6489         TC =
6490             std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
6491         break;
6492       case llvm::Triple::riscv32:
6493       case llvm::Triple::riscv64:
6494         if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
6495           TC =
6496               std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
6497         else
6498           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6499         break;
6500       case llvm::Triple::ve:
6501         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6502         break;
6503       case llvm::Triple::spirv32:
6504       case llvm::Triple::spirv64:
6505         TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
6506         break;
6507       case llvm::Triple::csky:
6508         TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args);
6509         break;
6510       default:
6511         if (toolchains::BareMetal::handlesTarget(Target))
6512           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6513         else if (Target.isOSBinFormatELF())
6514           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6515         else if (Target.isOSBinFormatMachO())
6516           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6517         else
6518           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6519       }
6520     }
6521   }
6522 
6523   return *TC;
6524 }
6525 
6526 const ToolChain &Driver::getOffloadingDeviceToolChain(
6527     const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
6528     const Action::OffloadKind &TargetDeviceOffloadKind) const {
6529   // Use device / host triples as the key into the ToolChains map because the
6530   // device ToolChain we create depends on both.
6531   auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
6532   if (!TC) {
6533     // Categorized by offload kind > arch rather than OS > arch like
6534     // the normal getToolChain call, as it seems a reasonable way to categorize
6535     // things.
6536     switch (TargetDeviceOffloadKind) {
6537     case Action::OFK_HIP: {
6538       if (((Target.getArch() == llvm::Triple::amdgcn ||
6539             Target.getArch() == llvm::Triple::spirv64) &&
6540            Target.getVendor() == llvm::Triple::AMD &&
6541            Target.getOS() == llvm::Triple::AMDHSA) ||
6542           !Args.hasArgNoClaim(options::OPT_offload_EQ))
6543         TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
6544                                                            HostTC, Args);
6545       else if (Target.getArch() == llvm::Triple::spirv64 &&
6546                Target.getVendor() == llvm::Triple::UnknownVendor &&
6547                Target.getOS() == llvm::Triple::UnknownOS)
6548         TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
6549                                                            HostTC, Args);
6550       break;
6551     }
6552     default:
6553       break;
6554     }
6555   }
6556 
6557   return *TC;
6558 }
6559 
6560 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
6561   // Say "no" if there is not exactly one input of a type clang understands.
6562   if (JA.size() != 1 ||
6563       !types::isAcceptedByClang((*JA.input_begin())->getType()))
6564     return false;
6565 
6566   // And say "no" if this is not a kind of action clang understands.
6567   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
6568       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) &&
6569       !isa<ExtractAPIJobAction>(JA))
6570     return false;
6571 
6572   return true;
6573 }
6574 
6575 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
6576   // Say "no" if there is not exactly one input of a type flang understands.
6577   if (JA.size() != 1 ||
6578       !types::isAcceptedByFlang((*JA.input_begin())->getType()))
6579     return false;
6580 
6581   // And say "no" if this is not a kind of action flang understands.
6582   if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) &&
6583       !isa<BackendJobAction>(JA))
6584     return false;
6585 
6586   return true;
6587 }
6588 
6589 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
6590   // Only emit static library if the flag is set explicitly.
6591   if (Args.hasArg(options::OPT_emit_static_lib))
6592     return true;
6593   return false;
6594 }
6595 
6596 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
6597 /// grouped values as integers. Numbers which are not provided are set to 0.
6598 ///
6599 /// \return True if the entire string was parsed (9.2), or all groups were
6600 /// parsed (10.3.5extrastuff).
6601 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
6602                                unsigned &Micro, bool &HadExtra) {
6603   HadExtra = false;
6604 
6605   Major = Minor = Micro = 0;
6606   if (Str.empty())
6607     return false;
6608 
6609   if (Str.consumeInteger(10, Major))
6610     return false;
6611   if (Str.empty())
6612     return true;
6613   if (!Str.consume_front("."))
6614     return false;
6615 
6616   if (Str.consumeInteger(10, Minor))
6617     return false;
6618   if (Str.empty())
6619     return true;
6620   if (!Str.consume_front("."))
6621     return false;
6622 
6623   if (Str.consumeInteger(10, Micro))
6624     return false;
6625   if (!Str.empty())
6626     HadExtra = true;
6627   return true;
6628 }
6629 
6630 /// Parse digits from a string \p Str and fulfill \p Digits with
6631 /// the parsed numbers. This method assumes that the max number of
6632 /// digits to look for is equal to Digits.size().
6633 ///
6634 /// \return True if the entire string was parsed and there are
6635 /// no extra characters remaining at the end.
6636 bool Driver::GetReleaseVersion(StringRef Str,
6637                                MutableArrayRef<unsigned> Digits) {
6638   if (Str.empty())
6639     return false;
6640 
6641   unsigned CurDigit = 0;
6642   while (CurDigit < Digits.size()) {
6643     unsigned Digit;
6644     if (Str.consumeInteger(10, Digit))
6645       return false;
6646     Digits[CurDigit] = Digit;
6647     if (Str.empty())
6648       return true;
6649     if (!Str.consume_front("."))
6650       return false;
6651     CurDigit++;
6652   }
6653 
6654   // More digits than requested, bail out...
6655   return false;
6656 }
6657 
6658 llvm::opt::Visibility
6659 Driver::getOptionVisibilityMask(bool UseDriverMode) const {
6660   if (!UseDriverMode)
6661     return llvm::opt::Visibility(options::ClangOption);
6662   if (IsCLMode())
6663     return llvm::opt::Visibility(options::CLOption);
6664   if (IsDXCMode())
6665     return llvm::opt::Visibility(options::DXCOption);
6666   if (IsFlangMode())  {
6667     return llvm::opt::Visibility(options::FlangOption);
6668   }
6669   return llvm::opt::Visibility(options::ClangOption);
6670 }
6671 
6672 const char *Driver::getExecutableForDriverMode(DriverMode Mode) {
6673   switch (Mode) {
6674   case GCCMode:
6675     return "clang";
6676   case GXXMode:
6677     return "clang++";
6678   case CPPMode:
6679     return "clang-cpp";
6680   case CLMode:
6681     return "clang-cl";
6682   case FlangMode:
6683     return "flang";
6684   case DXCMode:
6685     return "clang-dxc";
6686   }
6687 
6688   llvm_unreachable("Unhandled Mode");
6689 }
6690 
6691 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
6692   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
6693 }
6694 
6695 bool clang::driver::willEmitRemarks(const ArgList &Args) {
6696   // -fsave-optimization-record enables it.
6697   if (Args.hasFlag(options::OPT_fsave_optimization_record,
6698                    options::OPT_fno_save_optimization_record, false))
6699     return true;
6700 
6701   // -fsave-optimization-record=<format> enables it as well.
6702   if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
6703                    options::OPT_fno_save_optimization_record, false))
6704     return true;
6705 
6706   // -foptimization-record-file alone enables it too.
6707   if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
6708                    options::OPT_fno_save_optimization_record, false))
6709     return true;
6710 
6711   // -foptimization-record-passes alone enables it too.
6712   if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
6713                    options::OPT_fno_save_optimization_record, false))
6714     return true;
6715   return false;
6716 }
6717 
6718 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
6719                                              ArrayRef<const char *> Args) {
6720   static StringRef OptName =
6721       getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
6722   llvm::StringRef Opt;
6723   for (StringRef Arg : Args) {
6724     if (!Arg.starts_with(OptName))
6725       continue;
6726     Opt = Arg;
6727   }
6728   if (Opt.empty())
6729     Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
6730   return Opt.consume_front(OptName) ? Opt : "";
6731 }
6732 
6733 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode == "cl"; }
6734 
6735 llvm::Error driver::expandResponseFiles(SmallVectorImpl<const char *> &Args,
6736                                         bool ClangCLMode,
6737                                         llvm::BumpPtrAllocator &Alloc,
6738                                         llvm::vfs::FileSystem *FS) {
6739   // Parse response files using the GNU syntax, unless we're in CL mode. There
6740   // are two ways to put clang in CL compatibility mode: ProgName is either
6741   // clang-cl or cl, or --driver-mode=cl is on the command line. The normal
6742   // command line parsing can't happen until after response file parsing, so we
6743   // have to manually search for a --driver-mode=cl argument the hard way.
6744   // Finally, our -cc1 tools don't care which tokenization mode we use because
6745   // response files written by clang will tokenize the same way in either mode.
6746   enum { Default, POSIX, Windows } RSPQuoting = Default;
6747   for (const char *F : Args) {
6748     if (strcmp(F, "--rsp-quoting=posix") == 0)
6749       RSPQuoting = POSIX;
6750     else if (strcmp(F, "--rsp-quoting=windows") == 0)
6751       RSPQuoting = Windows;
6752   }
6753 
6754   // Determines whether we want nullptr markers in Args to indicate response
6755   // files end-of-lines. We only use this for the /LINK driver argument with
6756   // clang-cl.exe on Windows.
6757   bool MarkEOLs = ClangCLMode;
6758 
6759   llvm::cl::TokenizerCallback Tokenizer;
6760   if (RSPQuoting == Windows || (RSPQuoting == Default && ClangCLMode))
6761     Tokenizer = &llvm::cl::TokenizeWindowsCommandLine;
6762   else
6763     Tokenizer = &llvm::cl::TokenizeGNUCommandLine;
6764 
6765   if (MarkEOLs && Args.size() > 1 && StringRef(Args[1]).starts_with("-cc1"))
6766     MarkEOLs = false;
6767 
6768   llvm::cl::ExpansionContext ECtx(Alloc, Tokenizer);
6769   ECtx.setMarkEOLs(MarkEOLs);
6770   if (FS)
6771     ECtx.setVFS(FS);
6772 
6773   if (llvm::Error Err = ECtx.expandResponseFiles(Args))
6774     return Err;
6775 
6776   // If -cc1 came from a response file, remove the EOL sentinels.
6777   auto FirstArg = llvm::find_if(llvm::drop_begin(Args),
6778                                 [](const char *A) { return A != nullptr; });
6779   if (FirstArg != Args.end() && StringRef(*FirstArg).starts_with("-cc1")) {
6780     // If -cc1 came from a response file, remove the EOL sentinels.
6781     if (MarkEOLs) {
6782       auto newEnd = std::remove(Args.begin(), Args.end(), nullptr);
6783       Args.resize(newEnd - Args.begin());
6784     }
6785   }
6786 
6787   return llvm::Error::success();
6788 }
6789 
6790 static const char *GetStableCStr(llvm::StringSet<> &SavedStrings, StringRef S) {
6791   return SavedStrings.insert(S).first->getKeyData();
6792 }
6793 
6794 /// Apply a list of edits to the input argument lists.
6795 ///
6796 /// The input string is a space separated list of edits to perform,
6797 /// they are applied in order to the input argument lists. Edits
6798 /// should be one of the following forms:
6799 ///
6800 ///  '#': Silence information about the changes to the command line arguments.
6801 ///
6802 ///  '^': Add FOO as a new argument at the beginning of the command line.
6803 ///
6804 ///  '+': Add FOO as a new argument at the end of the command line.
6805 ///
6806 ///  's/XXX/YYY/': Substitute the regular expression XXX with YYY in the command
6807 ///  line.
6808 ///
6809 ///  'xOPTION': Removes all instances of the literal argument OPTION.
6810 ///
6811 ///  'XOPTION': Removes all instances of the literal argument OPTION,
6812 ///  and the following argument.
6813 ///
6814 ///  'Ox': Removes all flags matching 'O' or 'O[sz0-9]' and adds 'Ox'
6815 ///  at the end of the command line.
6816 ///
6817 /// \param OS - The stream to write edit information to.
6818 /// \param Args - The vector of command line arguments.
6819 /// \param Edit - The override command to perform.
6820 /// \param SavedStrings - Set to use for storing string representations.
6821 static void applyOneOverrideOption(raw_ostream &OS,
6822                                    SmallVectorImpl<const char *> &Args,
6823                                    StringRef Edit,
6824                                    llvm::StringSet<> &SavedStrings) {
6825   // This does not need to be efficient.
6826 
6827   if (Edit[0] == '^') {
6828     const char *Str = GetStableCStr(SavedStrings, Edit.substr(1));
6829     OS << "### Adding argument " << Str << " at beginning\n";
6830     Args.insert(Args.begin() + 1, Str);
6831   } else if (Edit[0] == '+') {
6832     const char *Str = GetStableCStr(SavedStrings, Edit.substr(1));
6833     OS << "### Adding argument " << Str << " at end\n";
6834     Args.push_back(Str);
6835   } else if (Edit[0] == 's' && Edit[1] == '/' && Edit.ends_with("/") &&
6836              Edit.slice(2, Edit.size() - 1).contains('/')) {
6837     StringRef MatchPattern = Edit.substr(2).split('/').first;
6838     StringRef ReplPattern = Edit.substr(2).split('/').second;
6839     ReplPattern = ReplPattern.slice(0, ReplPattern.size() - 1);
6840 
6841     for (unsigned i = 1, e = Args.size(); i != e; ++i) {
6842       // Ignore end-of-line response file markers
6843       if (Args[i] == nullptr)
6844         continue;
6845       std::string Repl = llvm::Regex(MatchPattern).sub(ReplPattern, Args[i]);
6846 
6847       if (Repl != Args[i]) {
6848         OS << "### Replacing '" << Args[i] << "' with '" << Repl << "'\n";
6849         Args[i] = GetStableCStr(SavedStrings, Repl);
6850       }
6851     }
6852   } else if (Edit[0] == 'x' || Edit[0] == 'X') {
6853     auto Option = Edit.substr(1);
6854     for (unsigned i = 1; i < Args.size();) {
6855       if (Option == Args[i]) {
6856         OS << "### Deleting argument " << Args[i] << '\n';
6857         Args.erase(Args.begin() + i);
6858         if (Edit[0] == 'X') {
6859           if (i < Args.size()) {
6860             OS << "### Deleting argument " << Args[i] << '\n';
6861             Args.erase(Args.begin() + i);
6862           } else
6863             OS << "### Invalid X edit, end of command line!\n";
6864         }
6865       } else
6866         ++i;
6867     }
6868   } else if (Edit[0] == 'O') {
6869     for (unsigned i = 1; i < Args.size();) {
6870       const char *A = Args[i];
6871       // Ignore end-of-line response file markers
6872       if (A == nullptr)
6873         continue;
6874       if (A[0] == '-' && A[1] == 'O' &&
6875           (A[2] == '\0' || (A[3] == '\0' && (A[2] == 's' || A[2] == 'z' ||
6876                                              ('0' <= A[2] && A[2] <= '9'))))) {
6877         OS << "### Deleting argument " << Args[i] << '\n';
6878         Args.erase(Args.begin() + i);
6879       } else
6880         ++i;
6881     }
6882     OS << "### Adding argument " << Edit << " at end\n";
6883     Args.push_back(GetStableCStr(SavedStrings, '-' + Edit.str()));
6884   } else {
6885     OS << "### Unrecognized edit: " << Edit << "\n";
6886   }
6887 }
6888 
6889 void driver::applyOverrideOptions(SmallVectorImpl<const char *> &Args,
6890                                   const char *OverrideStr,
6891                                   llvm::StringSet<> &SavedStrings,
6892                                   raw_ostream *OS) {
6893   if (!OS)
6894     OS = &llvm::nulls();
6895 
6896   if (OverrideStr[0] == '#') {
6897     ++OverrideStr;
6898     OS = &llvm::nulls();
6899   }
6900 
6901   *OS << "### CCC_OVERRIDE_OPTIONS: " << OverrideStr << "\n";
6902 
6903   // This does not need to be efficient.
6904 
6905   const char *S = OverrideStr;
6906   while (*S) {
6907     const char *End = ::strchr(S, ' ');
6908     if (!End)
6909       End = S + strlen(S);
6910     if (End != S)
6911       applyOneOverrideOption(*OS, Args, std::string(S, End), SavedStrings);
6912     S = End;
6913     if (*S != '\0')
6914       ++S;
6915   }
6916 }
6917