xref: /freebsd/contrib/llvm-project/clang/lib/Driver/Driver.cpp (revision 1db9f3b21e39176dd5b67cf8ac378633b172463e)
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "ToolChains/AIX.h"
11 #include "ToolChains/AMDGPU.h"
12 #include "ToolChains/AMDGPUOpenMP.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Arch/RISCV.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/CSKYToolChain.h"
17 #include "ToolChains/Clang.h"
18 #include "ToolChains/CrossWindows.h"
19 #include "ToolChains/Cuda.h"
20 #include "ToolChains/Darwin.h"
21 #include "ToolChains/DragonFly.h"
22 #include "ToolChains/FreeBSD.h"
23 #include "ToolChains/Fuchsia.h"
24 #include "ToolChains/Gnu.h"
25 #include "ToolChains/HIPAMD.h"
26 #include "ToolChains/HIPSPV.h"
27 #include "ToolChains/HLSL.h"
28 #include "ToolChains/Haiku.h"
29 #include "ToolChains/Hexagon.h"
30 #include "ToolChains/Hurd.h"
31 #include "ToolChains/Lanai.h"
32 #include "ToolChains/Linux.h"
33 #include "ToolChains/MSP430.h"
34 #include "ToolChains/MSVC.h"
35 #include "ToolChains/MinGW.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/NaCl.h"
38 #include "ToolChains/NetBSD.h"
39 #include "ToolChains/OHOS.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PPCFreeBSD.h"
42 #include "ToolChains/PPCLinux.h"
43 #include "ToolChains/PS4CPU.h"
44 #include "ToolChains/RISCVToolchain.h"
45 #include "ToolChains/SPIRV.h"
46 #include "ToolChains/Solaris.h"
47 #include "ToolChains/TCE.h"
48 #include "ToolChains/VEToolchain.h"
49 #include "ToolChains/WebAssembly.h"
50 #include "ToolChains/XCore.h"
51 #include "ToolChains/ZOS.h"
52 #include "clang/Basic/TargetID.h"
53 #include "clang/Basic/Version.h"
54 #include "clang/Config/config.h"
55 #include "clang/Driver/Action.h"
56 #include "clang/Driver/Compilation.h"
57 #include "clang/Driver/DriverDiagnostic.h"
58 #include "clang/Driver/InputInfo.h"
59 #include "clang/Driver/Job.h"
60 #include "clang/Driver/Options.h"
61 #include "clang/Driver/Phases.h"
62 #include "clang/Driver/SanitizerArgs.h"
63 #include "clang/Driver/Tool.h"
64 #include "clang/Driver/ToolChain.h"
65 #include "clang/Driver/Types.h"
66 #include "llvm/ADT/ArrayRef.h"
67 #include "llvm/ADT/STLExtras.h"
68 #include "llvm/ADT/StringExtras.h"
69 #include "llvm/ADT/StringRef.h"
70 #include "llvm/ADT/StringSet.h"
71 #include "llvm/ADT/StringSwitch.h"
72 #include "llvm/Config/llvm-config.h"
73 #include "llvm/MC/TargetRegistry.h"
74 #include "llvm/Option/Arg.h"
75 #include "llvm/Option/ArgList.h"
76 #include "llvm/Option/OptSpecifier.h"
77 #include "llvm/Option/OptTable.h"
78 #include "llvm/Option/Option.h"
79 #include "llvm/Support/CommandLine.h"
80 #include "llvm/Support/ErrorHandling.h"
81 #include "llvm/Support/ExitCodes.h"
82 #include "llvm/Support/FileSystem.h"
83 #include "llvm/Support/FormatVariadic.h"
84 #include "llvm/Support/MD5.h"
85 #include "llvm/Support/Path.h"
86 #include "llvm/Support/PrettyStackTrace.h"
87 #include "llvm/Support/Process.h"
88 #include "llvm/Support/Program.h"
89 #include "llvm/Support/RISCVISAInfo.h"
90 #include "llvm/Support/StringSaver.h"
91 #include "llvm/Support/VirtualFileSystem.h"
92 #include "llvm/Support/raw_ostream.h"
93 #include "llvm/TargetParser/Host.h"
94 #include <cstdlib> // ::getenv
95 #include <map>
96 #include <memory>
97 #include <optional>
98 #include <set>
99 #include <utility>
100 #if LLVM_ON_UNIX
101 #include <unistd.h> // getpid
102 #endif
103 
104 using namespace clang::driver;
105 using namespace clang;
106 using namespace llvm::opt;
107 
108 static std::optional<llvm::Triple> getOffloadTargetTriple(const Driver &D,
109                                                           const ArgList &Args) {
110   auto OffloadTargets = Args.getAllArgValues(options::OPT_offload_EQ);
111   // Offload compilation flow does not support multiple targets for now. We
112   // need the HIPActionBuilder (and possibly the CudaActionBuilder{,Base}too)
113   // to support multiple tool chains first.
114   switch (OffloadTargets.size()) {
115   default:
116     D.Diag(diag::err_drv_only_one_offload_target_supported);
117     return std::nullopt;
118   case 0:
119     D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << "";
120     return std::nullopt;
121   case 1:
122     break;
123   }
124   return llvm::Triple(OffloadTargets[0]);
125 }
126 
127 static std::optional<llvm::Triple>
128 getNVIDIAOffloadTargetTriple(const Driver &D, const ArgList &Args,
129                              const llvm::Triple &HostTriple) {
130   if (!Args.hasArg(options::OPT_offload_EQ)) {
131     return llvm::Triple(HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda"
132                                                  : "nvptx-nvidia-cuda");
133   }
134   auto TT = getOffloadTargetTriple(D, Args);
135   if (TT && (TT->getArch() == llvm::Triple::spirv32 ||
136              TT->getArch() == llvm::Triple::spirv64)) {
137     if (Args.hasArg(options::OPT_emit_llvm))
138       return TT;
139     D.Diag(diag::err_drv_cuda_offload_only_emit_bc);
140     return std::nullopt;
141   }
142   D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
143   return std::nullopt;
144 }
145 static std::optional<llvm::Triple>
146 getHIPOffloadTargetTriple(const Driver &D, const ArgList &Args) {
147   if (!Args.hasArg(options::OPT_offload_EQ)) {
148     return llvm::Triple("amdgcn-amd-amdhsa"); // Default HIP triple.
149   }
150   auto TT = getOffloadTargetTriple(D, Args);
151   if (!TT)
152     return std::nullopt;
153   if (TT->getArch() == llvm::Triple::amdgcn &&
154       TT->getVendor() == llvm::Triple::AMD &&
155       TT->getOS() == llvm::Triple::AMDHSA)
156     return TT;
157   if (TT->getArch() == llvm::Triple::spirv64)
158     return TT;
159   D.Diag(diag::err_drv_invalid_or_unsupported_offload_target) << TT->str();
160   return std::nullopt;
161 }
162 
163 // static
164 std::string Driver::GetResourcesPath(StringRef BinaryPath,
165                                      StringRef CustomResourceDir) {
166   // Since the resource directory is embedded in the module hash, it's important
167   // that all places that need it call this function, so that they get the
168   // exact same string ("a/../b/" and "b/" get different hashes, for example).
169 
170   // Dir is bin/ or lib/, depending on where BinaryPath is.
171   std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
172 
173   SmallString<128> P(Dir);
174   if (CustomResourceDir != "") {
175     llvm::sys::path::append(P, CustomResourceDir);
176   } else {
177     // On Windows, libclang.dll is in bin/.
178     // On non-Windows, libclang.so/.dylib is in lib/.
179     // With a static-library build of libclang, LibClangPath will contain the
180     // path of the embedding binary, which for LLVM binaries will be in bin/.
181     // ../lib gets us to lib/ in both cases.
182     P = llvm::sys::path::parent_path(Dir);
183     // This search path is also created in the COFF driver of lld, so any
184     // changes here also needs to happen in lld/COFF/Driver.cpp
185     llvm::sys::path::append(P, CLANG_INSTALL_LIBDIR_BASENAME, "clang",
186                             CLANG_VERSION_MAJOR_STRING);
187   }
188 
189   return std::string(P.str());
190 }
191 
192 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
193                DiagnosticsEngine &Diags, std::string Title,
194                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
195     : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
196       SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone),
197       Offload(OffloadHostDevice), CXX20HeaderType(HeaderMode_None),
198       ModulesModeCXX20(false), LTOMode(LTOK_None),
199       ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
200       DriverTitle(Title), CCCPrintBindings(false), CCPrintOptions(false),
201       CCLogDiagnostics(false), CCGenDiagnostics(false),
202       CCPrintProcessStats(false), CCPrintInternalStats(false),
203       TargetTriple(TargetTriple), Saver(Alloc), PrependArg(nullptr),
204       CheckInputsExist(true), ProbePrecompiled(true),
205       SuppressMissingInputWarning(false) {
206   // Provide a sane fallback if no VFS is specified.
207   if (!this->VFS)
208     this->VFS = llvm::vfs::getRealFileSystem();
209 
210   Name = std::string(llvm::sys::path::filename(ClangExecutable));
211   Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
212   InstalledDir = Dir; // Provide a sensible default installed dir.
213 
214   if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
215     // Prepend InstalledDir if SysRoot is relative
216     SmallString<128> P(InstalledDir);
217     llvm::sys::path::append(P, SysRoot);
218     SysRoot = std::string(P);
219   }
220 
221 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
222   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
223 #endif
224 #if defined(CLANG_CONFIG_FILE_USER_DIR)
225   {
226     SmallString<128> P;
227     llvm::sys::fs::expand_tilde(CLANG_CONFIG_FILE_USER_DIR, P);
228     UserConfigDir = static_cast<std::string>(P);
229   }
230 #endif
231 
232   // Compute the path to the resource directory.
233   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
234 }
235 
236 void Driver::setDriverMode(StringRef Value) {
237   static StringRef OptName =
238       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
239   if (auto M = llvm::StringSwitch<std::optional<DriverMode>>(Value)
240                    .Case("gcc", GCCMode)
241                    .Case("g++", GXXMode)
242                    .Case("cpp", CPPMode)
243                    .Case("cl", CLMode)
244                    .Case("flang", FlangMode)
245                    .Case("dxc", DXCMode)
246                    .Default(std::nullopt))
247     Mode = *M;
248   else
249     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
250 }
251 
252 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
253                                      bool UseDriverMode, bool &ContainsError) {
254   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
255   ContainsError = false;
256 
257   llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask(UseDriverMode);
258   unsigned MissingArgIndex, MissingArgCount;
259   InputArgList Args = getOpts().ParseArgs(ArgStrings, MissingArgIndex,
260                                           MissingArgCount, VisibilityMask);
261 
262   // Check for missing argument error.
263   if (MissingArgCount) {
264     Diag(diag::err_drv_missing_argument)
265         << Args.getArgString(MissingArgIndex) << MissingArgCount;
266     ContainsError |=
267         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
268                                  SourceLocation()) > DiagnosticsEngine::Warning;
269   }
270 
271   // Check for unsupported options.
272   for (const Arg *A : Args) {
273     if (A->getOption().hasFlag(options::Unsupported)) {
274       Diag(diag::err_drv_unsupported_opt) << A->getAsString(Args);
275       ContainsError |= Diags.getDiagnosticLevel(diag::err_drv_unsupported_opt,
276                                                 SourceLocation()) >
277                        DiagnosticsEngine::Warning;
278       continue;
279     }
280 
281     // Warn about -mcpu= without an argument.
282     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
283       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
284       ContainsError |= Diags.getDiagnosticLevel(
285                            diag::warn_drv_empty_joined_argument,
286                            SourceLocation()) > DiagnosticsEngine::Warning;
287     }
288   }
289 
290   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
291     unsigned DiagID;
292     auto ArgString = A->getAsString(Args);
293     std::string Nearest;
294     if (getOpts().findNearest(ArgString, Nearest, VisibilityMask) > 1) {
295       if (!IsCLMode() &&
296           getOpts().findExact(ArgString, Nearest,
297                               llvm::opt::Visibility(options::CC1Option))) {
298         DiagID = diag::err_drv_unknown_argument_with_suggestion;
299         Diags.Report(DiagID) << ArgString << "-Xclang " + Nearest;
300       } else {
301         DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
302                             : diag::err_drv_unknown_argument;
303         Diags.Report(DiagID) << ArgString;
304       }
305     } else {
306       DiagID = IsCLMode()
307                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
308                    : diag::err_drv_unknown_argument_with_suggestion;
309       Diags.Report(DiagID) << ArgString << Nearest;
310     }
311     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
312                      DiagnosticsEngine::Warning;
313   }
314 
315   for (const Arg *A : Args.filtered(options::OPT_o)) {
316     if (ArgStrings[A->getIndex()] == A->getSpelling())
317       continue;
318 
319     // Warn on joined arguments that are similar to a long argument.
320     std::string ArgString = ArgStrings[A->getIndex()];
321     std::string Nearest;
322     if (getOpts().findExact("-" + ArgString, Nearest, VisibilityMask))
323       Diags.Report(diag::warn_drv_potentially_misspelled_joined_argument)
324           << A->getAsString(Args) << Nearest;
325   }
326 
327   return Args;
328 }
329 
330 // Determine which compilation mode we are in. We look for options which
331 // affect the phase, starting with the earliest phases, and record which
332 // option we used to determine the final phase.
333 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
334                                  Arg **FinalPhaseArg) const {
335   Arg *PhaseArg = nullptr;
336   phases::ID FinalPhase;
337 
338   // -{E,EP,P,M,MM} only run the preprocessor.
339   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
340       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
341       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
342       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P)) ||
343       CCGenDiagnostics) {
344     FinalPhase = phases::Preprocess;
345 
346     // --precompile only runs up to precompilation.
347     // Options that cause the output of C++20 compiled module interfaces or
348     // header units have the same effect.
349   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile)) ||
350              (PhaseArg = DAL.getLastArg(options::OPT_extract_api)) ||
351              (PhaseArg = DAL.getLastArg(options::OPT_fmodule_header,
352                                         options::OPT_fmodule_header_EQ))) {
353     FinalPhase = phases::Precompile;
354     // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
355   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
356              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
357              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
358              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
359              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
360              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
361              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
362              (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
363              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
364     FinalPhase = phases::Compile;
365 
366   // -S only runs up to the backend.
367   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
368     FinalPhase = phases::Backend;
369 
370   // -c compilation only runs up to the assembler.
371   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
372     FinalPhase = phases::Assemble;
373 
374   } else if ((PhaseArg = DAL.getLastArg(options::OPT_emit_interface_stubs))) {
375     FinalPhase = phases::IfsMerge;
376 
377   // Otherwise do everything.
378   } else
379     FinalPhase = phases::Link;
380 
381   if (FinalPhaseArg)
382     *FinalPhaseArg = PhaseArg;
383 
384   return FinalPhase;
385 }
386 
387 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
388                          StringRef Value, bool Claim = true) {
389   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
390                    Args.getBaseArgs().MakeIndex(Value), Value.data());
391   Args.AddSynthesizedArg(A);
392   if (Claim)
393     A->claim();
394   return A;
395 }
396 
397 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
398   const llvm::opt::OptTable &Opts = getOpts();
399   DerivedArgList *DAL = new DerivedArgList(Args);
400 
401   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
402   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
403   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
404   bool IgnoreUnused = false;
405   for (Arg *A : Args) {
406     if (IgnoreUnused)
407       A->claim();
408 
409     if (A->getOption().matches(options::OPT_start_no_unused_arguments)) {
410       IgnoreUnused = true;
411       continue;
412     }
413     if (A->getOption().matches(options::OPT_end_no_unused_arguments)) {
414       IgnoreUnused = false;
415       continue;
416     }
417 
418     // Unfortunately, we have to parse some forwarding options (-Xassembler,
419     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
420     // (assembler and preprocessor), or bypass a previous driver ('collect2').
421 
422     // Rewrite linker options, to replace --no-demangle with a custom internal
423     // option.
424     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
425          A->getOption().matches(options::OPT_Xlinker)) &&
426         A->containsValue("--no-demangle")) {
427       // Add the rewritten no-demangle argument.
428       DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
429 
430       // Add the remaining values as Xlinker arguments.
431       for (StringRef Val : A->getValues())
432         if (Val != "--no-demangle")
433           DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
434 
435       continue;
436     }
437 
438     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
439     // some build systems. We don't try to be complete here because we don't
440     // care to encourage this usage model.
441     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
442         (A->getValue(0) == StringRef("-MD") ||
443          A->getValue(0) == StringRef("-MMD"))) {
444       // Rewrite to -MD/-MMD along with -MF.
445       if (A->getValue(0) == StringRef("-MD"))
446         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
447       else
448         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
449       if (A->getNumValues() == 2)
450         DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
451       continue;
452     }
453 
454     // Rewrite reserved library names.
455     if (A->getOption().matches(options::OPT_l)) {
456       StringRef Value = A->getValue();
457 
458       // Rewrite unless -nostdlib is present.
459       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
460           Value == "stdc++") {
461         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
462         continue;
463       }
464 
465       // Rewrite unconditionally.
466       if (Value == "cc_kext") {
467         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
468         continue;
469       }
470     }
471 
472     // Pick up inputs via the -- option.
473     if (A->getOption().matches(options::OPT__DASH_DASH)) {
474       A->claim();
475       for (StringRef Val : A->getValues())
476         DAL->append(MakeInputArg(*DAL, Opts, Val, false));
477       continue;
478     }
479 
480     DAL->append(A);
481   }
482 
483   // DXC mode quits before assembly if an output object file isn't specified.
484   if (IsDXCMode() && !Args.hasArg(options::OPT_dxc_Fo))
485     DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_S));
486 
487   // Enforce -static if -miamcu is present.
488   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
489     DAL->AddFlagArg(nullptr, Opts.getOption(options::OPT_static));
490 
491 // Add a default value of -mlinker-version=, if one was given and the user
492 // didn't specify one.
493 #if defined(HOST_LINK_VERSION)
494   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
495       strlen(HOST_LINK_VERSION) > 0) {
496     DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
497                       HOST_LINK_VERSION);
498     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
499   }
500 #endif
501 
502   return DAL;
503 }
504 
505 /// Compute target triple from args.
506 ///
507 /// This routine provides the logic to compute a target triple from various
508 /// args passed to the driver and the default triple string.
509 static llvm::Triple computeTargetTriple(const Driver &D,
510                                         StringRef TargetTriple,
511                                         const ArgList &Args,
512                                         StringRef DarwinArchName = "") {
513   // FIXME: Already done in Compilation *Driver::BuildCompilation
514   if (const Arg *A = Args.getLastArg(options::OPT_target))
515     TargetTriple = A->getValue();
516 
517   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
518 
519   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
520   // -gnu* only, and we can not change this, so we have to detect that case as
521   // being the Hurd OS.
522   if (TargetTriple.contains("-unknown-gnu") || TargetTriple.contains("-pc-gnu"))
523     Target.setOSName("hurd");
524 
525   // Handle Apple-specific options available here.
526   if (Target.isOSBinFormatMachO()) {
527     // If an explicit Darwin arch name is given, that trumps all.
528     if (!DarwinArchName.empty()) {
529       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName,
530                                                    Args);
531       return Target;
532     }
533 
534     // Handle the Darwin '-arch' flag.
535     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
536       StringRef ArchName = A->getValue();
537       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName, Args);
538     }
539   }
540 
541   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
542   // '-mbig-endian'/'-EB'.
543   if (Arg *A = Args.getLastArgNoClaim(options::OPT_mlittle_endian,
544                                       options::OPT_mbig_endian)) {
545     llvm::Triple T = A->getOption().matches(options::OPT_mlittle_endian)
546                          ? Target.getLittleEndianArchVariant()
547                          : Target.getBigEndianArchVariant();
548     if (T.getArch() != llvm::Triple::UnknownArch) {
549       Target = std::move(T);
550       Args.claimAllArgs(options::OPT_mlittle_endian, options::OPT_mbig_endian);
551     }
552   }
553 
554   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
555   if (Target.getArch() == llvm::Triple::tce)
556     return Target;
557 
558   // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
559   if (Target.isOSAIX()) {
560     if (std::optional<std::string> ObjectModeValue =
561             llvm::sys::Process::GetEnv("OBJECT_MODE")) {
562       StringRef ObjectMode = *ObjectModeValue;
563       llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
564 
565       if (ObjectMode.equals("64")) {
566         AT = Target.get64BitArchVariant().getArch();
567       } else if (ObjectMode.equals("32")) {
568         AT = Target.get32BitArchVariant().getArch();
569       } else {
570         D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
571       }
572 
573       if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
574         Target.setArch(AT);
575     }
576   }
577 
578   // The `-maix[32|64]` flags are only valid for AIX targets.
579   if (Arg *A = Args.getLastArgNoClaim(options::OPT_maix32, options::OPT_maix64);
580       A && !Target.isOSAIX())
581     D.Diag(diag::err_drv_unsupported_opt_for_target)
582         << A->getAsString(Args) << Target.str();
583 
584   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
585   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
586                            options::OPT_m32, options::OPT_m16,
587                            options::OPT_maix32, options::OPT_maix64);
588   if (A) {
589     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
590 
591     if (A->getOption().matches(options::OPT_m64) ||
592         A->getOption().matches(options::OPT_maix64)) {
593       AT = Target.get64BitArchVariant().getArch();
594       if (Target.getEnvironment() == llvm::Triple::GNUX32)
595         Target.setEnvironment(llvm::Triple::GNU);
596       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
597         Target.setEnvironment(llvm::Triple::Musl);
598     } else if (A->getOption().matches(options::OPT_mx32) &&
599                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
600       AT = llvm::Triple::x86_64;
601       if (Target.getEnvironment() == llvm::Triple::Musl)
602         Target.setEnvironment(llvm::Triple::MuslX32);
603       else
604         Target.setEnvironment(llvm::Triple::GNUX32);
605     } else if (A->getOption().matches(options::OPT_m32) ||
606                A->getOption().matches(options::OPT_maix32)) {
607       AT = Target.get32BitArchVariant().getArch();
608       if (Target.getEnvironment() == llvm::Triple::GNUX32)
609         Target.setEnvironment(llvm::Triple::GNU);
610       else if (Target.getEnvironment() == llvm::Triple::MuslX32)
611         Target.setEnvironment(llvm::Triple::Musl);
612     } else if (A->getOption().matches(options::OPT_m16) &&
613                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
614       AT = llvm::Triple::x86;
615       Target.setEnvironment(llvm::Triple::CODE16);
616     }
617 
618     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) {
619       Target.setArch(AT);
620       if (Target.isWindowsGNUEnvironment())
621         toolchains::MinGW::fixTripleArch(D, Target, Args);
622     }
623   }
624 
625   // Handle -miamcu flag.
626   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
627     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
628       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
629                                                        << Target.str();
630 
631     if (A && !A->getOption().matches(options::OPT_m32))
632       D.Diag(diag::err_drv_argument_not_allowed_with)
633           << "-miamcu" << A->getBaseArg().getAsString(Args);
634 
635     Target.setArch(llvm::Triple::x86);
636     Target.setArchName("i586");
637     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
638     Target.setEnvironmentName("");
639     Target.setOS(llvm::Triple::ELFIAMCU);
640     Target.setVendor(llvm::Triple::UnknownVendor);
641     Target.setVendorName("intel");
642   }
643 
644   // If target is MIPS adjust the target triple
645   // accordingly to provided ABI name.
646   if (Target.isMIPS()) {
647     if ((A = Args.getLastArg(options::OPT_mabi_EQ))) {
648       StringRef ABIName = A->getValue();
649       if (ABIName == "32") {
650         Target = Target.get32BitArchVariant();
651         if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
652             Target.getEnvironment() == llvm::Triple::GNUABIN32)
653           Target.setEnvironment(llvm::Triple::GNU);
654       } else if (ABIName == "n32") {
655         Target = Target.get64BitArchVariant();
656         if (Target.getEnvironment() == llvm::Triple::GNU ||
657             Target.getEnvironment() == llvm::Triple::GNUABI64)
658           Target.setEnvironment(llvm::Triple::GNUABIN32);
659       } else if (ABIName == "64") {
660         Target = Target.get64BitArchVariant();
661         if (Target.getEnvironment() == llvm::Triple::GNU ||
662             Target.getEnvironment() == llvm::Triple::GNUABIN32)
663           Target.setEnvironment(llvm::Triple::GNUABI64);
664       }
665     }
666   }
667 
668   // If target is RISC-V adjust the target triple according to
669   // provided architecture name
670   if (Target.isRISCV()) {
671     if (Args.hasArg(options::OPT_march_EQ) ||
672         Args.hasArg(options::OPT_mcpu_EQ)) {
673       StringRef ArchName = tools::riscv::getRISCVArch(Args, Target);
674       auto ISAInfo = llvm::RISCVISAInfo::parseArchString(
675           ArchName, /*EnableExperimentalExtensions=*/true);
676       if (!llvm::errorToBool(ISAInfo.takeError())) {
677         unsigned XLen = (*ISAInfo)->getXLen();
678         if (XLen == 32)
679           Target.setArch(llvm::Triple::riscv32);
680         else if (XLen == 64)
681           Target.setArch(llvm::Triple::riscv64);
682       }
683     }
684   }
685 
686   return Target;
687 }
688 
689 // Parse the LTO options and record the type of LTO compilation
690 // based on which -f(no-)?lto(=.*)? or -f(no-)?offload-lto(=.*)?
691 // option occurs last.
692 static driver::LTOKind parseLTOMode(Driver &D, const llvm::opt::ArgList &Args,
693                                     OptSpecifier OptEq, OptSpecifier OptNeg) {
694   if (!Args.hasFlag(OptEq, OptNeg, false))
695     return LTOK_None;
696 
697   const Arg *A = Args.getLastArg(OptEq);
698   StringRef LTOName = A->getValue();
699 
700   driver::LTOKind LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
701                                 .Case("full", LTOK_Full)
702                                 .Case("thin", LTOK_Thin)
703                                 .Default(LTOK_Unknown);
704 
705   if (LTOMode == LTOK_Unknown) {
706     D.Diag(diag::err_drv_unsupported_option_argument)
707         << A->getSpelling() << A->getValue();
708     return LTOK_None;
709   }
710   return LTOMode;
711 }
712 
713 // Parse the LTO options.
714 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
715   LTOMode =
716       parseLTOMode(*this, Args, options::OPT_flto_EQ, options::OPT_fno_lto);
717 
718   OffloadLTOMode = parseLTOMode(*this, Args, options::OPT_foffload_lto_EQ,
719                                 options::OPT_fno_offload_lto);
720 
721   // Try to enable `-foffload-lto=full` if `-fopenmp-target-jit` is on.
722   if (Args.hasFlag(options::OPT_fopenmp_target_jit,
723                    options::OPT_fno_openmp_target_jit, false)) {
724     if (Arg *A = Args.getLastArg(options::OPT_foffload_lto_EQ,
725                                  options::OPT_fno_offload_lto))
726       if (OffloadLTOMode != LTOK_Full)
727         Diag(diag::err_drv_incompatible_options)
728             << A->getSpelling() << "-fopenmp-target-jit";
729     OffloadLTOMode = LTOK_Full;
730   }
731 }
732 
733 /// Compute the desired OpenMP runtime from the flags provided.
734 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
735   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
736 
737   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
738   if (A)
739     RuntimeName = A->getValue();
740 
741   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
742                 .Case("libomp", OMPRT_OMP)
743                 .Case("libgomp", OMPRT_GOMP)
744                 .Case("libiomp5", OMPRT_IOMP5)
745                 .Default(OMPRT_Unknown);
746 
747   if (RT == OMPRT_Unknown) {
748     if (A)
749       Diag(diag::err_drv_unsupported_option_argument)
750           << A->getSpelling() << A->getValue();
751     else
752       // FIXME: We could use a nicer diagnostic here.
753       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
754   }
755 
756   return RT;
757 }
758 
759 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
760                                               InputList &Inputs) {
761 
762   //
763   // CUDA/HIP
764   //
765   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
766   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
767   bool IsCuda =
768       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
769         return types::isCuda(I.first);
770       });
771   bool IsHIP =
772       llvm::any_of(Inputs,
773                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
774                      return types::isHIP(I.first);
775                    }) ||
776       C.getInputArgs().hasArg(options::OPT_hip_link) ||
777       C.getInputArgs().hasArg(options::OPT_hipstdpar);
778   if (IsCuda && IsHIP) {
779     Diag(clang::diag::err_drv_mix_cuda_hip);
780     return;
781   }
782   if (IsCuda) {
783     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
784     const llvm::Triple &HostTriple = HostTC->getTriple();
785     auto OFK = Action::OFK_Cuda;
786     auto CudaTriple =
787         getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(), HostTriple);
788     if (!CudaTriple)
789       return;
790     // Use the CUDA and host triples as the key into the ToolChains map,
791     // because the device toolchain we create depends on both.
792     auto &CudaTC = ToolChains[CudaTriple->str() + "/" + HostTriple.str()];
793     if (!CudaTC) {
794       CudaTC = std::make_unique<toolchains::CudaToolChain>(
795           *this, *CudaTriple, *HostTC, C.getInputArgs());
796 
797       // Emit a warning if the detected CUDA version is too new.
798       CudaInstallationDetector &CudaInstallation =
799           static_cast<toolchains::CudaToolChain &>(*CudaTC).CudaInstallation;
800       if (CudaInstallation.isValid())
801         CudaInstallation.WarnIfUnsupportedVersion();
802     }
803     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
804   } else if (IsHIP) {
805     if (auto *OMPTargetArg =
806             C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
807       Diag(clang::diag::err_drv_unsupported_opt_for_language_mode)
808           << OMPTargetArg->getSpelling() << "HIP";
809       return;
810     }
811     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
812     auto OFK = Action::OFK_HIP;
813     auto HIPTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
814     if (!HIPTriple)
815       return;
816     auto *HIPTC = &getOffloadingDeviceToolChain(C.getInputArgs(), *HIPTriple,
817                                                 *HostTC, OFK);
818     assert(HIPTC && "Could not create offloading device tool chain.");
819     C.addOffloadDeviceToolChain(HIPTC, OFK);
820   }
821 
822   //
823   // OpenMP
824   //
825   // We need to generate an OpenMP toolchain if the user specified targets with
826   // the -fopenmp-targets option or used --offload-arch with OpenMP enabled.
827   bool IsOpenMPOffloading =
828       C.getInputArgs().hasFlag(options::OPT_fopenmp, options::OPT_fopenmp_EQ,
829                                options::OPT_fno_openmp, false) &&
830       (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ) ||
831        C.getInputArgs().hasArg(options::OPT_offload_arch_EQ));
832   if (IsOpenMPOffloading) {
833     // We expect that -fopenmp-targets is always used in conjunction with the
834     // option -fopenmp specifying a valid runtime with offloading support, i.e.
835     // libomp or libiomp.
836     OpenMPRuntimeKind RuntimeKind = getOpenMPRuntime(C.getInputArgs());
837     if (RuntimeKind != OMPRT_OMP && RuntimeKind != OMPRT_IOMP5) {
838       Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
839       return;
840     }
841 
842     llvm::StringMap<llvm::DenseSet<StringRef>> DerivedArchs;
843     llvm::StringMap<StringRef> FoundNormalizedTriples;
844     std::multiset<StringRef> OpenMPTriples;
845 
846     // If the user specified -fopenmp-targets= we create a toolchain for each
847     // valid triple. Otherwise, if only --offload-arch= was specified we instead
848     // attempt to derive the appropriate toolchains from the arguments.
849     if (Arg *OpenMPTargets =
850             C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
851       if (OpenMPTargets && !OpenMPTargets->getNumValues()) {
852         Diag(clang::diag::warn_drv_empty_joined_argument)
853             << OpenMPTargets->getAsString(C.getInputArgs());
854         return;
855       }
856       for (StringRef T : OpenMPTargets->getValues())
857         OpenMPTriples.insert(T);
858     } else if (C.getInputArgs().hasArg(options::OPT_offload_arch_EQ) &&
859                !IsHIP && !IsCuda) {
860       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
861       auto AMDTriple = getHIPOffloadTargetTriple(*this, C.getInputArgs());
862       auto NVPTXTriple = getNVIDIAOffloadTargetTriple(*this, C.getInputArgs(),
863                                                       HostTC->getTriple());
864 
865       // Attempt to deduce the offloading triple from the set of architectures.
866       // We can only correctly deduce NVPTX / AMDGPU triples currently. We need
867       // to temporarily create these toolchains so that we can access tools for
868       // inferring architectures.
869       llvm::DenseSet<StringRef> Archs;
870       if (NVPTXTriple) {
871         auto TempTC = std::make_unique<toolchains::CudaToolChain>(
872             *this, *NVPTXTriple, *HostTC, C.getInputArgs());
873         for (StringRef Arch : getOffloadArchs(
874                  C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
875           Archs.insert(Arch);
876       }
877       if (AMDTriple) {
878         auto TempTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
879             *this, *AMDTriple, *HostTC, C.getInputArgs());
880         for (StringRef Arch : getOffloadArchs(
881                  C, C.getArgs(), Action::OFK_OpenMP, &*TempTC, true))
882           Archs.insert(Arch);
883       }
884       if (!AMDTriple && !NVPTXTriple) {
885         for (StringRef Arch :
886              getOffloadArchs(C, C.getArgs(), Action::OFK_OpenMP, nullptr, true))
887           Archs.insert(Arch);
888       }
889 
890       for (StringRef Arch : Archs) {
891         if (NVPTXTriple && IsNVIDIAGpuArch(StringToCudaArch(
892                                getProcessorFromTargetID(*NVPTXTriple, Arch)))) {
893           DerivedArchs[NVPTXTriple->getTriple()].insert(Arch);
894         } else if (AMDTriple &&
895                    IsAMDGpuArch(StringToCudaArch(
896                        getProcessorFromTargetID(*AMDTriple, Arch)))) {
897           DerivedArchs[AMDTriple->getTriple()].insert(Arch);
898         } else {
899           Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch) << Arch;
900           return;
901         }
902       }
903 
904       // If the set is empty then we failed to find a native architecture.
905       if (Archs.empty()) {
906         Diag(clang::diag::err_drv_failed_to_deduce_target_from_arch)
907             << "native";
908         return;
909       }
910 
911       for (const auto &TripleAndArchs : DerivedArchs)
912         OpenMPTriples.insert(TripleAndArchs.first());
913     }
914 
915     for (StringRef Val : OpenMPTriples) {
916       llvm::Triple TT(ToolChain::getOpenMPTriple(Val));
917       std::string NormalizedName = TT.normalize();
918 
919       // Make sure we don't have a duplicate triple.
920       auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
921       if (Duplicate != FoundNormalizedTriples.end()) {
922         Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
923             << Val << Duplicate->second;
924         continue;
925       }
926 
927       // Store the current triple so that we can check for duplicates in the
928       // following iterations.
929       FoundNormalizedTriples[NormalizedName] = Val;
930 
931       // If the specified target is invalid, emit a diagnostic.
932       if (TT.getArch() == llvm::Triple::UnknownArch)
933         Diag(clang::diag::err_drv_invalid_omp_target) << Val;
934       else {
935         const ToolChain *TC;
936         // Device toolchains have to be selected differently. They pair host
937         // and device in their implementation.
938         if (TT.isNVPTX() || TT.isAMDGCN()) {
939           const ToolChain *HostTC =
940               C.getSingleOffloadToolChain<Action::OFK_Host>();
941           assert(HostTC && "Host toolchain should be always defined.");
942           auto &DeviceTC =
943               ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
944           if (!DeviceTC) {
945             if (TT.isNVPTX())
946               DeviceTC = std::make_unique<toolchains::CudaToolChain>(
947                   *this, TT, *HostTC, C.getInputArgs());
948             else if (TT.isAMDGCN())
949               DeviceTC = std::make_unique<toolchains::AMDGPUOpenMPToolChain>(
950                   *this, TT, *HostTC, C.getInputArgs());
951             else
952               assert(DeviceTC && "Device toolchain not defined.");
953           }
954 
955           TC = DeviceTC.get();
956         } else
957           TC = &getToolChain(C.getInputArgs(), TT);
958         C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
959         if (DerivedArchs.contains(TT.getTriple()))
960           KnownArchs[TC] = DerivedArchs[TT.getTriple()];
961       }
962     }
963   } else if (C.getInputArgs().hasArg(options::OPT_fopenmp_targets_EQ)) {
964     Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
965     return;
966   }
967 
968   //
969   // TODO: Add support for other offloading programming models here.
970   //
971 }
972 
973 static void appendOneArg(InputArgList &Args, const Arg *Opt,
974                          const Arg *BaseArg) {
975   // The args for config files or /clang: flags belong to different InputArgList
976   // objects than Args. This copies an Arg from one of those other InputArgLists
977   // to the ownership of Args.
978   unsigned Index = Args.MakeIndex(Opt->getSpelling());
979   Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index),
980                                  Index, BaseArg);
981   Copy->getValues() = Opt->getValues();
982   if (Opt->isClaimed())
983     Copy->claim();
984   Copy->setOwnsValues(Opt->getOwnsValues());
985   Opt->setOwnsValues(false);
986   Args.append(Copy);
987 }
988 
989 bool Driver::readConfigFile(StringRef FileName,
990                             llvm::cl::ExpansionContext &ExpCtx) {
991   // Try opening the given file.
992   auto Status = getVFS().status(FileName);
993   if (!Status) {
994     Diag(diag::err_drv_cannot_open_config_file)
995         << FileName << Status.getError().message();
996     return true;
997   }
998   if (Status->getType() != llvm::sys::fs::file_type::regular_file) {
999     Diag(diag::err_drv_cannot_open_config_file)
1000         << FileName << "not a regular file";
1001     return true;
1002   }
1003 
1004   // Try reading the given file.
1005   SmallVector<const char *, 32> NewCfgArgs;
1006   if (llvm::Error Err = ExpCtx.readConfigFile(FileName, NewCfgArgs)) {
1007     Diag(diag::err_drv_cannot_read_config_file)
1008         << FileName << toString(std::move(Err));
1009     return true;
1010   }
1011 
1012   // Read options from config file.
1013   llvm::SmallString<128> CfgFileName(FileName);
1014   llvm::sys::path::native(CfgFileName);
1015   bool ContainErrors;
1016   std::unique_ptr<InputArgList> NewOptions = std::make_unique<InputArgList>(
1017       ParseArgStrings(NewCfgArgs, /*UseDriverMode=*/true, ContainErrors));
1018   if (ContainErrors)
1019     return true;
1020 
1021   // Claim all arguments that come from a configuration file so that the driver
1022   // does not warn on any that is unused.
1023   for (Arg *A : *NewOptions)
1024     A->claim();
1025 
1026   if (!CfgOptions)
1027     CfgOptions = std::move(NewOptions);
1028   else {
1029     // If this is a subsequent config file, append options to the previous one.
1030     for (auto *Opt : *NewOptions) {
1031       const Arg *BaseArg = &Opt->getBaseArg();
1032       if (BaseArg == Opt)
1033         BaseArg = nullptr;
1034       appendOneArg(*CfgOptions, Opt, BaseArg);
1035     }
1036   }
1037   ConfigFiles.push_back(std::string(CfgFileName));
1038   return false;
1039 }
1040 
1041 bool Driver::loadConfigFiles() {
1042   llvm::cl::ExpansionContext ExpCtx(Saver.getAllocator(),
1043                                     llvm::cl::tokenizeConfigFile);
1044   ExpCtx.setVFS(&getVFS());
1045 
1046   // Process options that change search path for config files.
1047   if (CLOptions) {
1048     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
1049       SmallString<128> CfgDir;
1050       CfgDir.append(
1051           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
1052       if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1053         SystemConfigDir.clear();
1054       else
1055         SystemConfigDir = static_cast<std::string>(CfgDir);
1056     }
1057     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
1058       SmallString<128> CfgDir;
1059       llvm::sys::fs::expand_tilde(
1060           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ), CfgDir);
1061       if (CfgDir.empty() || getVFS().makeAbsolute(CfgDir))
1062         UserConfigDir.clear();
1063       else
1064         UserConfigDir = static_cast<std::string>(CfgDir);
1065     }
1066   }
1067 
1068   // Prepare list of directories where config file is searched for.
1069   StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir};
1070   ExpCtx.setSearchDirs(CfgFileSearchDirs);
1071 
1072   // First try to load configuration from the default files, return on error.
1073   if (loadDefaultConfigFiles(ExpCtx))
1074     return true;
1075 
1076   // Then load configuration files specified explicitly.
1077   SmallString<128> CfgFilePath;
1078   if (CLOptions) {
1079     for (auto CfgFileName : CLOptions->getAllArgValues(options::OPT_config)) {
1080       // If argument contains directory separator, treat it as a path to
1081       // configuration file.
1082       if (llvm::sys::path::has_parent_path(CfgFileName)) {
1083         CfgFilePath.assign(CfgFileName);
1084         if (llvm::sys::path::is_relative(CfgFilePath)) {
1085           if (getVFS().makeAbsolute(CfgFilePath)) {
1086             Diag(diag::err_drv_cannot_open_config_file)
1087                 << CfgFilePath << "cannot get absolute path";
1088             return true;
1089           }
1090         }
1091       } else if (!ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1092         // Report an error that the config file could not be found.
1093         Diag(diag::err_drv_config_file_not_found) << CfgFileName;
1094         for (const StringRef &SearchDir : CfgFileSearchDirs)
1095           if (!SearchDir.empty())
1096             Diag(diag::note_drv_config_file_searched_in) << SearchDir;
1097         return true;
1098       }
1099 
1100       // Try to read the config file, return on error.
1101       if (readConfigFile(CfgFilePath, ExpCtx))
1102         return true;
1103     }
1104   }
1105 
1106   // No error occurred.
1107   return false;
1108 }
1109 
1110 bool Driver::loadDefaultConfigFiles(llvm::cl::ExpansionContext &ExpCtx) {
1111   // Disable default config if CLANG_NO_DEFAULT_CONFIG is set to a non-empty
1112   // value.
1113   if (const char *NoConfigEnv = ::getenv("CLANG_NO_DEFAULT_CONFIG")) {
1114     if (*NoConfigEnv)
1115       return false;
1116   }
1117   if (CLOptions && CLOptions->hasArg(options::OPT_no_default_config))
1118     return false;
1119 
1120   std::string RealMode = getExecutableForDriverMode(Mode);
1121   std::string Triple;
1122 
1123   // If name prefix is present, no --target= override was passed via CLOptions
1124   // and the name prefix is not a valid triple, force it for backwards
1125   // compatibility.
1126   if (!ClangNameParts.TargetPrefix.empty() &&
1127       computeTargetTriple(*this, "/invalid/", *CLOptions).str() ==
1128           "/invalid/") {
1129     llvm::Triple PrefixTriple{ClangNameParts.TargetPrefix};
1130     if (PrefixTriple.getArch() == llvm::Triple::UnknownArch ||
1131         PrefixTriple.isOSUnknown())
1132       Triple = PrefixTriple.str();
1133   }
1134 
1135   // Otherwise, use the real triple as used by the driver.
1136   if (Triple.empty()) {
1137     llvm::Triple RealTriple =
1138         computeTargetTriple(*this, TargetTriple, *CLOptions);
1139     Triple = RealTriple.str();
1140     assert(!Triple.empty());
1141   }
1142 
1143   // Search for config files in the following order:
1144   // 1. <triple>-<mode>.cfg using real driver mode
1145   //    (e.g. i386-pc-linux-gnu-clang++.cfg).
1146   // 2. <triple>-<mode>.cfg using executable suffix
1147   //    (e.g. i386-pc-linux-gnu-clang-g++.cfg for *clang-g++).
1148   // 3. <triple>.cfg + <mode>.cfg using real driver mode
1149   //    (e.g. i386-pc-linux-gnu.cfg + clang++.cfg).
1150   // 4. <triple>.cfg + <mode>.cfg using executable suffix
1151   //    (e.g. i386-pc-linux-gnu.cfg + clang-g++.cfg for *clang-g++).
1152 
1153   // Try loading <triple>-<mode>.cfg, and return if we find a match.
1154   SmallString<128> CfgFilePath;
1155   std::string CfgFileName = Triple + '-' + RealMode + ".cfg";
1156   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1157     return readConfigFile(CfgFilePath, ExpCtx);
1158 
1159   bool TryModeSuffix = !ClangNameParts.ModeSuffix.empty() &&
1160                        ClangNameParts.ModeSuffix != RealMode;
1161   if (TryModeSuffix) {
1162     CfgFileName = Triple + '-' + ClangNameParts.ModeSuffix + ".cfg";
1163     if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1164       return readConfigFile(CfgFilePath, ExpCtx);
1165   }
1166 
1167   // Try loading <mode>.cfg, and return if loading failed.  If a matching file
1168   // was not found, still proceed on to try <triple>.cfg.
1169   CfgFileName = RealMode + ".cfg";
1170   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath)) {
1171     if (readConfigFile(CfgFilePath, ExpCtx))
1172       return true;
1173   } else if (TryModeSuffix) {
1174     CfgFileName = ClangNameParts.ModeSuffix + ".cfg";
1175     if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath) &&
1176         readConfigFile(CfgFilePath, ExpCtx))
1177       return true;
1178   }
1179 
1180   // Try loading <triple>.cfg and return if we find a match.
1181   CfgFileName = Triple + ".cfg";
1182   if (ExpCtx.findConfigFile(CfgFileName, CfgFilePath))
1183     return readConfigFile(CfgFilePath, ExpCtx);
1184 
1185   // If we were unable to find a config file deduced from executable name,
1186   // that is not an error.
1187   return false;
1188 }
1189 
1190 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
1191   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
1192 
1193   // FIXME: Handle environment options which affect driver behavior, somewhere
1194   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
1195 
1196   // We look for the driver mode option early, because the mode can affect
1197   // how other options are parsed.
1198 
1199   auto DriverMode = getDriverMode(ClangExecutable, ArgList.slice(1));
1200   if (!DriverMode.empty())
1201     setDriverMode(DriverMode);
1202 
1203   // FIXME: What are we going to do with -V and -b?
1204 
1205   // Arguments specified in command line.
1206   bool ContainsError;
1207   CLOptions = std::make_unique<InputArgList>(
1208       ParseArgStrings(ArgList.slice(1), /*UseDriverMode=*/true, ContainsError));
1209 
1210   // Try parsing configuration file.
1211   if (!ContainsError)
1212     ContainsError = loadConfigFiles();
1213   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1214 
1215   // All arguments, from both config file and command line.
1216   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1217                                               : std::move(*CLOptions));
1218 
1219   if (HasConfigFile)
1220     for (auto *Opt : *CLOptions) {
1221       if (Opt->getOption().matches(options::OPT_config))
1222         continue;
1223       const Arg *BaseArg = &Opt->getBaseArg();
1224       if (BaseArg == Opt)
1225         BaseArg = nullptr;
1226       appendOneArg(Args, Opt, BaseArg);
1227     }
1228 
1229   // In CL mode, look for any pass-through arguments
1230   if (IsCLMode() && !ContainsError) {
1231     SmallVector<const char *, 16> CLModePassThroughArgList;
1232     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1233       A->claim();
1234       CLModePassThroughArgList.push_back(A->getValue());
1235     }
1236 
1237     if (!CLModePassThroughArgList.empty()) {
1238       // Parse any pass through args using default clang processing rather
1239       // than clang-cl processing.
1240       auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1241           ParseArgStrings(CLModePassThroughArgList, /*UseDriverMode=*/false,
1242                           ContainsError));
1243 
1244       if (!ContainsError)
1245         for (auto *Opt : *CLModePassThroughOptions) {
1246           appendOneArg(Args, Opt, nullptr);
1247         }
1248     }
1249   }
1250 
1251   // Check for working directory option before accessing any files
1252   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1253     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1254       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1255 
1256   // FIXME: This stuff needs to go into the Compilation, not the driver.
1257   bool CCCPrintPhases;
1258 
1259   // -canonical-prefixes, -no-canonical-prefixes are used very early in main.
1260   Args.ClaimAllArgs(options::OPT_canonical_prefixes);
1261   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1262 
1263   // f(no-)integated-cc1 is also used very early in main.
1264   Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1265   Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1266 
1267   // Ignore -pipe.
1268   Args.ClaimAllArgs(options::OPT_pipe);
1269 
1270   // Extract -ccc args.
1271   //
1272   // FIXME: We need to figure out where this behavior should live. Most of it
1273   // should be outside in the client; the parts that aren't should have proper
1274   // options, either by introducing new ones or by overloading gcc ones like -V
1275   // or -b.
1276   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1277   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1278   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1279     CCCGenericGCCName = A->getValue();
1280 
1281   // Process -fproc-stat-report options.
1282   if (const Arg *A = Args.getLastArg(options::OPT_fproc_stat_report_EQ)) {
1283     CCPrintProcessStats = true;
1284     CCPrintStatReportFilename = A->getValue();
1285   }
1286   if (Args.hasArg(options::OPT_fproc_stat_report))
1287     CCPrintProcessStats = true;
1288 
1289   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1290   // and getToolChain is const.
1291   if (IsCLMode()) {
1292     // clang-cl targets MSVC-style Win32.
1293     llvm::Triple T(TargetTriple);
1294     T.setOS(llvm::Triple::Win32);
1295     T.setVendor(llvm::Triple::PC);
1296     T.setEnvironment(llvm::Triple::MSVC);
1297     T.setObjectFormat(llvm::Triple::COFF);
1298     if (Args.hasArg(options::OPT__SLASH_arm64EC))
1299       T.setArch(llvm::Triple::aarch64, llvm::Triple::AArch64SubArch_arm64ec);
1300     TargetTriple = T.str();
1301   } else if (IsDXCMode()) {
1302     // Build TargetTriple from target_profile option for clang-dxc.
1303     if (const Arg *A = Args.getLastArg(options::OPT_target_profile)) {
1304       StringRef TargetProfile = A->getValue();
1305       if (auto Triple =
1306               toolchains::HLSLToolChain::parseTargetProfile(TargetProfile))
1307         TargetTriple = *Triple;
1308       else
1309         Diag(diag::err_drv_invalid_directx_shader_module) << TargetProfile;
1310 
1311       A->claim();
1312 
1313       // TODO: Specify Vulkan target environment somewhere in the triple.
1314       if (Args.hasArg(options::OPT_spirv)) {
1315         llvm::Triple T(TargetTriple);
1316         T.setArch(llvm::Triple::spirv);
1317         TargetTriple = T.str();
1318       }
1319     } else {
1320       Diag(diag::err_drv_dxc_missing_target_profile);
1321     }
1322   }
1323 
1324   if (const Arg *A = Args.getLastArg(options::OPT_target))
1325     TargetTriple = A->getValue();
1326   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1327     Dir = InstalledDir = A->getValue();
1328   for (const Arg *A : Args.filtered(options::OPT_B)) {
1329     A->claim();
1330     PrefixDirs.push_back(A->getValue(0));
1331   }
1332   if (std::optional<std::string> CompilerPathValue =
1333           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
1334     StringRef CompilerPath = *CompilerPathValue;
1335     while (!CompilerPath.empty()) {
1336       std::pair<StringRef, StringRef> Split =
1337           CompilerPath.split(llvm::sys::EnvPathSeparator);
1338       PrefixDirs.push_back(std::string(Split.first));
1339       CompilerPath = Split.second;
1340     }
1341   }
1342   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1343     SysRoot = A->getValue();
1344   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1345     DyldPrefix = A->getValue();
1346 
1347   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1348     ResourceDir = A->getValue();
1349 
1350   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1351     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1352                     .Case("cwd", SaveTempsCwd)
1353                     .Case("obj", SaveTempsObj)
1354                     .Default(SaveTempsCwd);
1355   }
1356 
1357   if (const Arg *A = Args.getLastArg(options::OPT_offload_host_only,
1358                                      options::OPT_offload_device_only,
1359                                      options::OPT_offload_host_device)) {
1360     if (A->getOption().matches(options::OPT_offload_host_only))
1361       Offload = OffloadHost;
1362     else if (A->getOption().matches(options::OPT_offload_device_only))
1363       Offload = OffloadDevice;
1364     else
1365       Offload = OffloadHostDevice;
1366   }
1367 
1368   setLTOMode(Args);
1369 
1370   // Process -fembed-bitcode= flags.
1371   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1372     StringRef Name = A->getValue();
1373     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1374         .Case("off", EmbedNone)
1375         .Case("all", EmbedBitcode)
1376         .Case("bitcode", EmbedBitcode)
1377         .Case("marker", EmbedMarker)
1378         .Default(~0U);
1379     if (Model == ~0U) {
1380       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1381                                                 << Name;
1382     } else
1383       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1384   }
1385 
1386   // Remove existing compilation database so that each job can append to it.
1387   if (Arg *A = Args.getLastArg(options::OPT_MJ))
1388     llvm::sys::fs::remove(A->getValue());
1389 
1390   // Setting up the jobs for some precompile cases depends on whether we are
1391   // treating them as PCH, implicit modules or C++20 ones.
1392   // TODO: inferring the mode like this seems fragile (it meets the objective
1393   // of not requiring anything new for operation, however).
1394   const Arg *Std = Args.getLastArg(options::OPT_std_EQ);
1395   ModulesModeCXX20 =
1396       !Args.hasArg(options::OPT_fmodules) && Std &&
1397       (Std->containsValue("c++20") || Std->containsValue("c++2a") ||
1398        Std->containsValue("c++23") || Std->containsValue("c++2b") ||
1399        Std->containsValue("c++26") || Std->containsValue("c++2c") ||
1400        Std->containsValue("c++latest"));
1401 
1402   // Process -fmodule-header{=} flags.
1403   if (Arg *A = Args.getLastArg(options::OPT_fmodule_header_EQ,
1404                                options::OPT_fmodule_header)) {
1405     // These flags force C++20 handling of headers.
1406     ModulesModeCXX20 = true;
1407     if (A->getOption().matches(options::OPT_fmodule_header))
1408       CXX20HeaderType = HeaderMode_Default;
1409     else {
1410       StringRef ArgName = A->getValue();
1411       unsigned Kind = llvm::StringSwitch<unsigned>(ArgName)
1412                           .Case("user", HeaderMode_User)
1413                           .Case("system", HeaderMode_System)
1414                           .Default(~0U);
1415       if (Kind == ~0U) {
1416         Diags.Report(diag::err_drv_invalid_value)
1417             << A->getAsString(Args) << ArgName;
1418       } else
1419         CXX20HeaderType = static_cast<ModuleHeaderMode>(Kind);
1420     }
1421   }
1422 
1423   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1424       std::make_unique<InputArgList>(std::move(Args));
1425 
1426   // Perform the default argument translations.
1427   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1428 
1429   // Owned by the host.
1430   const ToolChain &TC = getToolChain(
1431       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1432 
1433   if (TC.getTriple().isAndroid()) {
1434     llvm::Triple Triple = TC.getTriple();
1435     StringRef TripleVersionName = Triple.getEnvironmentVersionString();
1436 
1437     if (Triple.getEnvironmentVersion().empty() && TripleVersionName != "") {
1438       Diags.Report(diag::err_drv_triple_version_invalid)
1439           << TripleVersionName << TC.getTripleString();
1440       ContainsError = true;
1441     }
1442   }
1443 
1444   // Report warning when arm64EC option is overridden by specified target
1445   if ((TC.getTriple().getArch() != llvm::Triple::aarch64 ||
1446        TC.getTriple().getSubArch() != llvm::Triple::AArch64SubArch_arm64ec) &&
1447       UArgs->hasArg(options::OPT__SLASH_arm64EC)) {
1448     getDiags().Report(clang::diag::warn_target_override_arm64ec)
1449         << TC.getTriple().str();
1450   }
1451 
1452   // A common user mistake is specifying a target of aarch64-none-eabi or
1453   // arm-none-elf whereas the correct names are aarch64-none-elf &
1454   // arm-none-eabi. Detect these cases and issue a warning.
1455   if (TC.getTriple().getOS() == llvm::Triple::UnknownOS &&
1456       TC.getTriple().getVendor() == llvm::Triple::UnknownVendor) {
1457     switch (TC.getTriple().getArch()) {
1458     case llvm::Triple::arm:
1459     case llvm::Triple::armeb:
1460     case llvm::Triple::thumb:
1461     case llvm::Triple::thumbeb:
1462       if (TC.getTriple().getEnvironmentName() == "elf") {
1463         Diag(diag::warn_target_unrecognized_env)
1464             << TargetTriple
1465             << (TC.getTriple().getArchName().str() + "-none-eabi");
1466       }
1467       break;
1468     case llvm::Triple::aarch64:
1469     case llvm::Triple::aarch64_be:
1470     case llvm::Triple::aarch64_32:
1471       if (TC.getTriple().getEnvironmentName().starts_with("eabi")) {
1472         Diag(diag::warn_target_unrecognized_env)
1473             << TargetTriple
1474             << (TC.getTriple().getArchName().str() + "-none-elf");
1475       }
1476       break;
1477     default:
1478       break;
1479     }
1480   }
1481 
1482   // The compilation takes ownership of Args.
1483   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1484                                    ContainsError);
1485 
1486   if (!HandleImmediateArgs(*C))
1487     return C;
1488 
1489   // Construct the list of inputs.
1490   InputList Inputs;
1491   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1492 
1493   // Populate the tool chains for the offloading devices, if any.
1494   CreateOffloadingDeviceToolChains(*C, Inputs);
1495 
1496   // Construct the list of abstract actions to perform for this compilation. On
1497   // MachO targets this uses the driver-driver and universal actions.
1498   if (TC.getTriple().isOSBinFormatMachO())
1499     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1500   else
1501     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1502 
1503   if (CCCPrintPhases) {
1504     PrintActions(*C);
1505     return C;
1506   }
1507 
1508   BuildJobs(*C);
1509 
1510   return C;
1511 }
1512 
1513 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1514   llvm::opt::ArgStringList ASL;
1515   for (const auto *A : Args) {
1516     // Use user's original spelling of flags. For example, use
1517     // `/source-charset:utf-8` instead of `-finput-charset=utf-8` if the user
1518     // wrote the former.
1519     while (A->getAlias())
1520       A = A->getAlias();
1521     A->render(Args, ASL);
1522   }
1523 
1524   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1525     if (I != ASL.begin())
1526       OS << ' ';
1527     llvm::sys::printArg(OS, *I, true);
1528   }
1529   OS << '\n';
1530 }
1531 
1532 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1533                                     SmallString<128> &CrashDiagDir) {
1534   using namespace llvm::sys;
1535   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1536          "Only knows about .crash files on Darwin");
1537 
1538   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1539   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1540   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1541   path::home_directory(CrashDiagDir);
1542   if (CrashDiagDir.starts_with("/var/root"))
1543     CrashDiagDir = "/";
1544   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1545   int PID =
1546 #if LLVM_ON_UNIX
1547       getpid();
1548 #else
1549       0;
1550 #endif
1551   std::error_code EC;
1552   fs::file_status FileStatus;
1553   TimePoint<> LastAccessTime;
1554   SmallString<128> CrashFilePath;
1555   // Lookup the .crash files and get the one generated by a subprocess spawned
1556   // by this driver invocation.
1557   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1558        File != FileEnd && !EC; File.increment(EC)) {
1559     StringRef FileName = path::filename(File->path());
1560     if (!FileName.starts_with(Name))
1561       continue;
1562     if (fs::status(File->path(), FileStatus))
1563       continue;
1564     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1565         llvm::MemoryBuffer::getFile(File->path());
1566     if (!CrashFile)
1567       continue;
1568     // The first line should start with "Process:", otherwise this isn't a real
1569     // .crash file.
1570     StringRef Data = CrashFile.get()->getBuffer();
1571     if (!Data.starts_with("Process:"))
1572       continue;
1573     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1574     size_t ParentProcPos = Data.find("Parent Process:");
1575     if (ParentProcPos == StringRef::npos)
1576       continue;
1577     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1578     if (LineEnd == StringRef::npos)
1579       continue;
1580     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1581     int OpenBracket = -1, CloseBracket = -1;
1582     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1583       if (ParentProcess[i] == '[')
1584         OpenBracket = i;
1585       if (ParentProcess[i] == ']')
1586         CloseBracket = i;
1587     }
1588     // Extract the parent process PID from the .crash file and check whether
1589     // it matches this driver invocation pid.
1590     int CrashPID;
1591     if (OpenBracket < 0 || CloseBracket < 0 ||
1592         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1593             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1594       continue;
1595     }
1596 
1597     // Found a .crash file matching the driver pid. To avoid getting an older
1598     // and misleading crash file, continue looking for the most recent.
1599     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1600     // multiple crashes poiting to the same parent process. Since the driver
1601     // does not collect pid information for the dispatched invocation there's
1602     // currently no way to distinguish among them.
1603     const auto FileAccessTime = FileStatus.getLastModificationTime();
1604     if (FileAccessTime > LastAccessTime) {
1605       CrashFilePath.assign(File->path());
1606       LastAccessTime = FileAccessTime;
1607     }
1608   }
1609 
1610   // If found, copy it over to the location of other reproducer files.
1611   if (!CrashFilePath.empty()) {
1612     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1613     if (EC)
1614       return false;
1615     return true;
1616   }
1617 
1618   return false;
1619 }
1620 
1621 static const char BugReporMsg[] =
1622     "\n********************\n\n"
1623     "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1624     "Preprocessed source(s) and associated run script(s) are located at:";
1625 
1626 // When clang crashes, produce diagnostic information including the fully
1627 // preprocessed source file(s).  Request that the developer attach the
1628 // diagnostic information to a bug report.
1629 void Driver::generateCompilationDiagnostics(
1630     Compilation &C, const Command &FailingCommand,
1631     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1632   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1633     return;
1634 
1635   unsigned Level = 1;
1636   if (Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_EQ)) {
1637     Level = llvm::StringSwitch<unsigned>(A->getValue())
1638                 .Case("off", 0)
1639                 .Case("compiler", 1)
1640                 .Case("all", 2)
1641                 .Default(1);
1642   }
1643   if (!Level)
1644     return;
1645 
1646   // Don't try to generate diagnostics for dsymutil jobs.
1647   if (FailingCommand.getCreator().isDsymutilJob())
1648     return;
1649 
1650   bool IsLLD = false;
1651   ArgStringList SavedTemps;
1652   if (FailingCommand.getCreator().isLinkJob()) {
1653     C.getDefaultToolChain().GetLinkerPath(&IsLLD);
1654     if (!IsLLD || Level < 2)
1655       return;
1656 
1657     // If lld crashed, we will re-run the same command with the input it used
1658     // to have. In that case we should not remove temp files in
1659     // initCompilationForDiagnostics yet. They will be added back and removed
1660     // later.
1661     SavedTemps = std::move(C.getTempFiles());
1662     assert(!C.getTempFiles().size());
1663   }
1664 
1665   // Print the version of the compiler.
1666   PrintVersion(C, llvm::errs());
1667 
1668   // Suppress driver output and emit preprocessor output to temp file.
1669   CCGenDiagnostics = true;
1670 
1671   // Save the original job command(s).
1672   Command Cmd = FailingCommand;
1673 
1674   // Keep track of whether we produce any errors while trying to produce
1675   // preprocessed sources.
1676   DiagnosticErrorTrap Trap(Diags);
1677 
1678   // Suppress tool output.
1679   C.initCompilationForDiagnostics();
1680 
1681   // If lld failed, rerun it again with --reproduce.
1682   if (IsLLD) {
1683     const char *TmpName = CreateTempFile(C, "linker-crash", "tar");
1684     Command NewLLDInvocation = Cmd;
1685     llvm::opt::ArgStringList ArgList = NewLLDInvocation.getArguments();
1686     StringRef ReproduceOption =
1687         C.getDefaultToolChain().getTriple().isWindowsMSVCEnvironment()
1688             ? "/reproduce:"
1689             : "--reproduce=";
1690     ArgList.push_back(Saver.save(Twine(ReproduceOption) + TmpName).data());
1691     NewLLDInvocation.replaceArguments(std::move(ArgList));
1692 
1693     // Redirect stdout/stderr to /dev/null.
1694     NewLLDInvocation.Execute({std::nullopt, {""}, {""}}, nullptr, nullptr);
1695     Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1696     Diag(clang::diag::note_drv_command_failed_diag_msg) << TmpName;
1697     Diag(clang::diag::note_drv_command_failed_diag_msg)
1698         << "\n\n********************";
1699     if (Report)
1700       Report->TemporaryFiles.push_back(TmpName);
1701     return;
1702   }
1703 
1704   // Construct the list of inputs.
1705   InputList Inputs;
1706   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1707 
1708   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1709     bool IgnoreInput = false;
1710 
1711     // Ignore input from stdin or any inputs that cannot be preprocessed.
1712     // Check type first as not all linker inputs have a value.
1713     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1714       IgnoreInput = true;
1715     } else if (!strcmp(it->second->getValue(), "-")) {
1716       Diag(clang::diag::note_drv_command_failed_diag_msg)
1717           << "Error generating preprocessed source(s) - "
1718              "ignoring input from stdin.";
1719       IgnoreInput = true;
1720     }
1721 
1722     if (IgnoreInput) {
1723       it = Inputs.erase(it);
1724       ie = Inputs.end();
1725     } else {
1726       ++it;
1727     }
1728   }
1729 
1730   if (Inputs.empty()) {
1731     Diag(clang::diag::note_drv_command_failed_diag_msg)
1732         << "Error generating preprocessed source(s) - "
1733            "no preprocessable inputs.";
1734     return;
1735   }
1736 
1737   // Don't attempt to generate preprocessed files if multiple -arch options are
1738   // used, unless they're all duplicates.
1739   llvm::StringSet<> ArchNames;
1740   for (const Arg *A : C.getArgs()) {
1741     if (A->getOption().matches(options::OPT_arch)) {
1742       StringRef ArchName = A->getValue();
1743       ArchNames.insert(ArchName);
1744     }
1745   }
1746   if (ArchNames.size() > 1) {
1747     Diag(clang::diag::note_drv_command_failed_diag_msg)
1748         << "Error generating preprocessed source(s) - cannot generate "
1749            "preprocessed source with multiple -arch options.";
1750     return;
1751   }
1752 
1753   // Construct the list of abstract actions to perform for this compilation. On
1754   // Darwin OSes this uses the driver-driver and builds universal actions.
1755   const ToolChain &TC = C.getDefaultToolChain();
1756   if (TC.getTriple().isOSBinFormatMachO())
1757     BuildUniversalActions(C, TC, Inputs);
1758   else
1759     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1760 
1761   BuildJobs(C);
1762 
1763   // If there were errors building the compilation, quit now.
1764   if (Trap.hasErrorOccurred()) {
1765     Diag(clang::diag::note_drv_command_failed_diag_msg)
1766         << "Error generating preprocessed source(s).";
1767     return;
1768   }
1769 
1770   // Generate preprocessed output.
1771   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1772   C.ExecuteJobs(C.getJobs(), FailingCommands);
1773 
1774   // If any of the preprocessing commands failed, clean up and exit.
1775   if (!FailingCommands.empty()) {
1776     Diag(clang::diag::note_drv_command_failed_diag_msg)
1777         << "Error generating preprocessed source(s).";
1778     return;
1779   }
1780 
1781   const ArgStringList &TempFiles = C.getTempFiles();
1782   if (TempFiles.empty()) {
1783     Diag(clang::diag::note_drv_command_failed_diag_msg)
1784         << "Error generating preprocessed source(s).";
1785     return;
1786   }
1787 
1788   Diag(clang::diag::note_drv_command_failed_diag_msg) << BugReporMsg;
1789 
1790   SmallString<128> VFS;
1791   SmallString<128> ReproCrashFilename;
1792   for (const char *TempFile : TempFiles) {
1793     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1794     if (Report)
1795       Report->TemporaryFiles.push_back(TempFile);
1796     if (ReproCrashFilename.empty()) {
1797       ReproCrashFilename = TempFile;
1798       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1799     }
1800     if (StringRef(TempFile).ends_with(".cache")) {
1801       // In some cases (modules) we'll dump extra data to help with reproducing
1802       // the crash into a directory next to the output.
1803       VFS = llvm::sys::path::filename(TempFile);
1804       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1805     }
1806   }
1807 
1808   for (const char *TempFile : SavedTemps)
1809     C.addTempFile(TempFile);
1810 
1811   // Assume associated files are based off of the first temporary file.
1812   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1813 
1814   llvm::SmallString<128> Script(CrashInfo.Filename);
1815   llvm::sys::path::replace_extension(Script, "sh");
1816   std::error_code EC;
1817   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew,
1818                                 llvm::sys::fs::FA_Write,
1819                                 llvm::sys::fs::OF_Text);
1820   if (EC) {
1821     Diag(clang::diag::note_drv_command_failed_diag_msg)
1822         << "Error generating run script: " << Script << " " << EC.message();
1823   } else {
1824     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1825              << "# Driver args: ";
1826     printArgList(ScriptOS, C.getInputArgs());
1827     ScriptOS << "# Original command: ";
1828     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1829     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1830     if (!AdditionalInformation.empty())
1831       ScriptOS << "\n# Additional information: " << AdditionalInformation
1832                << "\n";
1833     if (Report)
1834       Report->TemporaryFiles.push_back(std::string(Script.str()));
1835     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1836   }
1837 
1838   // On darwin, provide information about the .crash diagnostic report.
1839   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1840     SmallString<128> CrashDiagDir;
1841     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1842       Diag(clang::diag::note_drv_command_failed_diag_msg)
1843           << ReproCrashFilename.str();
1844     } else { // Suggest a directory for the user to look for .crash files.
1845       llvm::sys::path::append(CrashDiagDir, Name);
1846       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1847       Diag(clang::diag::note_drv_command_failed_diag_msg)
1848           << "Crash backtrace is located in";
1849       Diag(clang::diag::note_drv_command_failed_diag_msg)
1850           << CrashDiagDir.str();
1851       Diag(clang::diag::note_drv_command_failed_diag_msg)
1852           << "(choose the .crash file that corresponds to your crash)";
1853     }
1854   }
1855 
1856   Diag(clang::diag::note_drv_command_failed_diag_msg)
1857       << "\n\n********************";
1858 }
1859 
1860 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1861   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1862   // capacity if the tool does not support response files, there is a chance/
1863   // that things will just work without a response file, so we silently just
1864   // skip it.
1865   if (Cmd.getResponseFileSupport().ResponseKind ==
1866           ResponseFileSupport::RF_None ||
1867       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1868                                                    Cmd.getArguments()))
1869     return;
1870 
1871   std::string TmpName = GetTemporaryPath("response", "txt");
1872   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1873 }
1874 
1875 int Driver::ExecuteCompilation(
1876     Compilation &C,
1877     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1878   if (C.getArgs().hasArg(options::OPT_fdriver_only)) {
1879     if (C.getArgs().hasArg(options::OPT_v))
1880       C.getJobs().Print(llvm::errs(), "\n", true);
1881 
1882     C.ExecuteJobs(C.getJobs(), FailingCommands, /*LogOnly=*/true);
1883 
1884     // If there were errors building the compilation, quit now.
1885     if (!FailingCommands.empty() || Diags.hasErrorOccurred())
1886       return 1;
1887 
1888     return 0;
1889   }
1890 
1891   // Just print if -### was present.
1892   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1893     C.getJobs().Print(llvm::errs(), "\n", true);
1894     return Diags.hasErrorOccurred() ? 1 : 0;
1895   }
1896 
1897   // If there were errors building the compilation, quit now.
1898   if (Diags.hasErrorOccurred())
1899     return 1;
1900 
1901   // Set up response file names for each command, if necessary.
1902   for (auto &Job : C.getJobs())
1903     setUpResponseFiles(C, Job);
1904 
1905   C.ExecuteJobs(C.getJobs(), FailingCommands);
1906 
1907   // If the command succeeded, we are done.
1908   if (FailingCommands.empty())
1909     return 0;
1910 
1911   // Otherwise, remove result files and print extra information about abnormal
1912   // failures.
1913   int Res = 0;
1914   for (const auto &CmdPair : FailingCommands) {
1915     int CommandRes = CmdPair.first;
1916     const Command *FailingCommand = CmdPair.second;
1917 
1918     // Remove result files if we're not saving temps.
1919     if (!isSaveTempsEnabled()) {
1920       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1921       C.CleanupFileMap(C.getResultFiles(), JA, true);
1922 
1923       // Failure result files are valid unless we crashed.
1924       if (CommandRes < 0)
1925         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1926     }
1927 
1928     // llvm/lib/Support/*/Signals.inc will exit with a special return code
1929     // for SIGPIPE. Do not print diagnostics for this case.
1930     if (CommandRes == EX_IOERR) {
1931       Res = CommandRes;
1932       continue;
1933     }
1934 
1935     // Print extra information about abnormal failures, if possible.
1936     //
1937     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1938     // status was 1, assume the command failed normally. In particular, if it
1939     // was the compiler then assume it gave a reasonable error code. Failures
1940     // in other tools are less common, and they generally have worse
1941     // diagnostics, so always print the diagnostic there.
1942     const Tool &FailingTool = FailingCommand->getCreator();
1943 
1944     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1945       // FIXME: See FIXME above regarding result code interpretation.
1946       if (CommandRes < 0)
1947         Diag(clang::diag::err_drv_command_signalled)
1948             << FailingTool.getShortName();
1949       else
1950         Diag(clang::diag::err_drv_command_failed)
1951             << FailingTool.getShortName() << CommandRes;
1952     }
1953   }
1954   return Res;
1955 }
1956 
1957 void Driver::PrintHelp(bool ShowHidden) const {
1958   llvm::opt::Visibility VisibilityMask = getOptionVisibilityMask();
1959 
1960   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1961   getOpts().printHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1962                       ShowHidden, /*ShowAllAliases=*/false,
1963                       VisibilityMask);
1964 }
1965 
1966 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1967   if (IsFlangMode()) {
1968     OS << getClangToolFullVersion("flang-new") << '\n';
1969   } else {
1970     // FIXME: The following handlers should use a callback mechanism, we don't
1971     // know what the client would like to do.
1972     OS << getClangFullVersion() << '\n';
1973   }
1974   const ToolChain &TC = C.getDefaultToolChain();
1975   OS << "Target: " << TC.getTripleString() << '\n';
1976 
1977   // Print the threading model.
1978   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1979     // Don't print if the ToolChain would have barfed on it already
1980     if (TC.isThreadModelSupported(A->getValue()))
1981       OS << "Thread model: " << A->getValue();
1982   } else
1983     OS << "Thread model: " << TC.getThreadModel();
1984   OS << '\n';
1985 
1986   // Print out the install directory.
1987   OS << "InstalledDir: " << InstalledDir << '\n';
1988 
1989   // If configuration files were used, print their paths.
1990   for (auto ConfigFile : ConfigFiles)
1991     OS << "Configuration file: " << ConfigFile << '\n';
1992 }
1993 
1994 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1995 /// option.
1996 static void PrintDiagnosticCategories(raw_ostream &OS) {
1997   // Skip the empty category.
1998   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1999        ++i)
2000     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
2001 }
2002 
2003 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
2004   if (PassedFlags == "")
2005     return;
2006   // Print out all options that start with a given argument. This is used for
2007   // shell autocompletion.
2008   std::vector<std::string> SuggestedCompletions;
2009   std::vector<std::string> Flags;
2010 
2011   llvm::opt::Visibility VisibilityMask(options::ClangOption);
2012 
2013   // Make sure that Flang-only options don't pollute the Clang output
2014   // TODO: Make sure that Clang-only options don't pollute Flang output
2015   if (IsFlangMode())
2016     VisibilityMask = llvm::opt::Visibility(options::FlangOption);
2017 
2018   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
2019   // because the latter indicates that the user put space before pushing tab
2020   // which should end up in a file completion.
2021   const bool HasSpace = PassedFlags.ends_with(",");
2022 
2023   // Parse PassedFlags by "," as all the command-line flags are passed to this
2024   // function separated by ","
2025   StringRef TargetFlags = PassedFlags;
2026   while (TargetFlags != "") {
2027     StringRef CurFlag;
2028     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
2029     Flags.push_back(std::string(CurFlag));
2030   }
2031 
2032   // We want to show cc1-only options only when clang is invoked with -cc1 or
2033   // -Xclang.
2034   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
2035     VisibilityMask = llvm::opt::Visibility(options::CC1Option);
2036 
2037   const llvm::opt::OptTable &Opts = getOpts();
2038   StringRef Cur;
2039   Cur = Flags.at(Flags.size() - 1);
2040   StringRef Prev;
2041   if (Flags.size() >= 2) {
2042     Prev = Flags.at(Flags.size() - 2);
2043     SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
2044   }
2045 
2046   if (SuggestedCompletions.empty())
2047     SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
2048 
2049   // If Flags were empty, it means the user typed `clang [tab]` where we should
2050   // list all possible flags. If there was no value completion and the user
2051   // pressed tab after a space, we should fall back to a file completion.
2052   // We're printing a newline to be consistent with what we print at the end of
2053   // this function.
2054   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
2055     llvm::outs() << '\n';
2056     return;
2057   }
2058 
2059   // When flag ends with '=' and there was no value completion, return empty
2060   // string and fall back to the file autocompletion.
2061   if (SuggestedCompletions.empty() && !Cur.ends_with("=")) {
2062     // If the flag is in the form of "--autocomplete=-foo",
2063     // we were requested to print out all option names that start with "-foo".
2064     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
2065     SuggestedCompletions = Opts.findByPrefix(
2066         Cur, VisibilityMask,
2067         /*DisableFlags=*/options::Unsupported | options::Ignored);
2068 
2069     // We have to query the -W flags manually as they're not in the OptTable.
2070     // TODO: Find a good way to add them to OptTable instead and them remove
2071     // this code.
2072     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
2073       if (S.starts_with(Cur))
2074         SuggestedCompletions.push_back(std::string(S));
2075   }
2076 
2077   // Sort the autocomplete candidates so that shells print them out in a
2078   // deterministic order. We could sort in any way, but we chose
2079   // case-insensitive sorting for consistency with the -help option
2080   // which prints out options in the case-insensitive alphabetical order.
2081   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
2082     if (int X = A.compare_insensitive(B))
2083       return X < 0;
2084     return A.compare(B) > 0;
2085   });
2086 
2087   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
2088 }
2089 
2090 bool Driver::HandleImmediateArgs(const Compilation &C) {
2091   // The order these options are handled in gcc is all over the place, but we
2092   // don't expect inconsistencies w.r.t. that to matter in practice.
2093 
2094   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
2095     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
2096     return false;
2097   }
2098 
2099   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
2100     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
2101     // return an answer which matches our definition of __VERSION__.
2102     llvm::outs() << CLANG_VERSION_STRING << "\n";
2103     return false;
2104   }
2105 
2106   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
2107     PrintDiagnosticCategories(llvm::outs());
2108     return false;
2109   }
2110 
2111   if (C.getArgs().hasArg(options::OPT_help) ||
2112       C.getArgs().hasArg(options::OPT__help_hidden)) {
2113     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
2114     return false;
2115   }
2116 
2117   if (C.getArgs().hasArg(options::OPT__version)) {
2118     // Follow gcc behavior and use stdout for --version and stderr for -v.
2119     PrintVersion(C, llvm::outs());
2120     return false;
2121   }
2122 
2123   if (C.getArgs().hasArg(options::OPT_v) ||
2124       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
2125       C.getArgs().hasArg(options::OPT_print_supported_cpus) ||
2126       C.getArgs().hasArg(options::OPT_print_supported_extensions)) {
2127     PrintVersion(C, llvm::errs());
2128     SuppressMissingInputWarning = true;
2129   }
2130 
2131   if (C.getArgs().hasArg(options::OPT_v)) {
2132     if (!SystemConfigDir.empty())
2133       llvm::errs() << "System configuration file directory: "
2134                    << SystemConfigDir << "\n";
2135     if (!UserConfigDir.empty())
2136       llvm::errs() << "User configuration file directory: "
2137                    << UserConfigDir << "\n";
2138   }
2139 
2140   const ToolChain &TC = C.getDefaultToolChain();
2141 
2142   if (C.getArgs().hasArg(options::OPT_v))
2143     TC.printVerboseInfo(llvm::errs());
2144 
2145   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
2146     llvm::outs() << ResourceDir << '\n';
2147     return false;
2148   }
2149 
2150   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
2151     llvm::outs() << "programs: =";
2152     bool separator = false;
2153     // Print -B and COMPILER_PATH.
2154     for (const std::string &Path : PrefixDirs) {
2155       if (separator)
2156         llvm::outs() << llvm::sys::EnvPathSeparator;
2157       llvm::outs() << Path;
2158       separator = true;
2159     }
2160     for (const std::string &Path : TC.getProgramPaths()) {
2161       if (separator)
2162         llvm::outs() << llvm::sys::EnvPathSeparator;
2163       llvm::outs() << Path;
2164       separator = true;
2165     }
2166     llvm::outs() << "\n";
2167     llvm::outs() << "libraries: =" << ResourceDir;
2168 
2169     StringRef sysroot = C.getSysRoot();
2170 
2171     for (const std::string &Path : TC.getFilePaths()) {
2172       // Always print a separator. ResourceDir was the first item shown.
2173       llvm::outs() << llvm::sys::EnvPathSeparator;
2174       // Interpretation of leading '=' is needed only for NetBSD.
2175       if (Path[0] == '=')
2176         llvm::outs() << sysroot << Path.substr(1);
2177       else
2178         llvm::outs() << Path;
2179     }
2180     llvm::outs() << "\n";
2181     return false;
2182   }
2183 
2184   if (C.getArgs().hasArg(options::OPT_print_runtime_dir)) {
2185     if (std::optional<std::string> RuntimePath = TC.getRuntimePath())
2186       llvm::outs() << *RuntimePath << '\n';
2187     else
2188       llvm::outs() << TC.getCompilerRTPath() << '\n';
2189     return false;
2190   }
2191 
2192   if (C.getArgs().hasArg(options::OPT_print_diagnostic_options)) {
2193     std::vector<std::string> Flags = DiagnosticIDs::getDiagnosticFlags();
2194     for (std::size_t I = 0; I != Flags.size(); I += 2)
2195       llvm::outs() << "  " << Flags[I] << "\n  " << Flags[I + 1] << "\n\n";
2196     return false;
2197   }
2198 
2199   // FIXME: The following handlers should use a callback mechanism, we don't
2200   // know what the client would like to do.
2201   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
2202     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
2203     return false;
2204   }
2205 
2206   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
2207     StringRef ProgName = A->getValue();
2208 
2209     // Null program name cannot have a path.
2210     if (! ProgName.empty())
2211       llvm::outs() << GetProgramPath(ProgName, TC);
2212 
2213     llvm::outs() << "\n";
2214     return false;
2215   }
2216 
2217   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
2218     StringRef PassedFlags = A->getValue();
2219     HandleAutocompletions(PassedFlags);
2220     return false;
2221   }
2222 
2223   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
2224     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
2225     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2226     RegisterEffectiveTriple TripleRAII(TC, Triple);
2227     switch (RLT) {
2228     case ToolChain::RLT_CompilerRT:
2229       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
2230       break;
2231     case ToolChain::RLT_Libgcc:
2232       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
2233       break;
2234     }
2235     return false;
2236   }
2237 
2238   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
2239     for (const Multilib &Multilib : TC.getMultilibs())
2240       llvm::outs() << Multilib << "\n";
2241     return false;
2242   }
2243 
2244   if (C.getArgs().hasArg(options::OPT_print_multi_flags)) {
2245     Multilib::flags_list ArgFlags = TC.getMultilibFlags(C.getArgs());
2246     llvm::StringSet<> ExpandedFlags = TC.getMultilibs().expandFlags(ArgFlags);
2247     std::set<llvm::StringRef> SortedFlags;
2248     for (const auto &FlagEntry : ExpandedFlags)
2249       SortedFlags.insert(FlagEntry.getKey());
2250     for (auto Flag : SortedFlags)
2251       llvm::outs() << Flag << '\n';
2252     return false;
2253   }
2254 
2255   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
2256     for (const Multilib &Multilib : TC.getSelectedMultilibs()) {
2257       if (Multilib.gccSuffix().empty())
2258         llvm::outs() << ".\n";
2259       else {
2260         StringRef Suffix(Multilib.gccSuffix());
2261         assert(Suffix.front() == '/');
2262         llvm::outs() << Suffix.substr(1) << "\n";
2263       }
2264     }
2265     return false;
2266   }
2267 
2268   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
2269     llvm::outs() << TC.getTripleString() << "\n";
2270     return false;
2271   }
2272 
2273   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
2274     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
2275     llvm::outs() << Triple.getTriple() << "\n";
2276     return false;
2277   }
2278 
2279   if (C.getArgs().hasArg(options::OPT_print_targets)) {
2280     llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
2281     return false;
2282   }
2283 
2284   return true;
2285 }
2286 
2287 enum {
2288   TopLevelAction = 0,
2289   HeadSibAction = 1,
2290   OtherSibAction = 2,
2291 };
2292 
2293 // Display an action graph human-readably.  Action A is the "sink" node
2294 // and latest-occuring action. Traversal is in pre-order, visiting the
2295 // inputs to each action before printing the action itself.
2296 static unsigned PrintActions1(const Compilation &C, Action *A,
2297                               std::map<Action *, unsigned> &Ids,
2298                               Twine Indent = {}, int Kind = TopLevelAction) {
2299   if (Ids.count(A)) // A was already visited.
2300     return Ids[A];
2301 
2302   std::string str;
2303   llvm::raw_string_ostream os(str);
2304 
2305   auto getSibIndent = [](int K) -> Twine {
2306     return (K == HeadSibAction) ? "   " : (K == OtherSibAction) ? "|  " : "";
2307   };
2308 
2309   Twine SibIndent = Indent + getSibIndent(Kind);
2310   int SibKind = HeadSibAction;
2311   os << Action::getClassName(A->getKind()) << ", ";
2312   if (InputAction *IA = dyn_cast<InputAction>(A)) {
2313     os << "\"" << IA->getInputArg().getValue() << "\"";
2314   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
2315     os << '"' << BIA->getArchName() << '"' << ", {"
2316        << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
2317   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
2318     bool IsFirst = true;
2319     OA->doOnEachDependence(
2320         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
2321           assert(TC && "Unknown host toolchain");
2322           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
2323           // sm_35 this will generate:
2324           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
2325           // (nvptx64-nvidia-cuda:sm_35) {#ID}
2326           if (!IsFirst)
2327             os << ", ";
2328           os << '"';
2329           os << A->getOffloadingKindPrefix();
2330           os << " (";
2331           os << TC->getTriple().normalize();
2332           if (BoundArch)
2333             os << ":" << BoundArch;
2334           os << ")";
2335           os << '"';
2336           os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
2337           IsFirst = false;
2338           SibKind = OtherSibAction;
2339         });
2340   } else {
2341     const ActionList *AL = &A->getInputs();
2342 
2343     if (AL->size()) {
2344       const char *Prefix = "{";
2345       for (Action *PreRequisite : *AL) {
2346         os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
2347         Prefix = ", ";
2348         SibKind = OtherSibAction;
2349       }
2350       os << "}";
2351     } else
2352       os << "{}";
2353   }
2354 
2355   // Append offload info for all options other than the offloading action
2356   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
2357   std::string offload_str;
2358   llvm::raw_string_ostream offload_os(offload_str);
2359   if (!isa<OffloadAction>(A)) {
2360     auto S = A->getOffloadingKindPrefix();
2361     if (!S.empty()) {
2362       offload_os << ", (" << S;
2363       if (A->getOffloadingArch())
2364         offload_os << ", " << A->getOffloadingArch();
2365       offload_os << ")";
2366     }
2367   }
2368 
2369   auto getSelfIndent = [](int K) -> Twine {
2370     return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
2371   };
2372 
2373   unsigned Id = Ids.size();
2374   Ids[A] = Id;
2375   llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
2376                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
2377 
2378   return Id;
2379 }
2380 
2381 // Print the action graphs in a compilation C.
2382 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
2383 void Driver::PrintActions(const Compilation &C) const {
2384   std::map<Action *, unsigned> Ids;
2385   for (Action *A : C.getActions())
2386     PrintActions1(C, A, Ids);
2387 }
2388 
2389 /// Check whether the given input tree contains any compilation or
2390 /// assembly actions.
2391 static bool ContainsCompileOrAssembleAction(const Action *A) {
2392   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
2393       isa<AssembleJobAction>(A))
2394     return true;
2395 
2396   return llvm::any_of(A->inputs(), ContainsCompileOrAssembleAction);
2397 }
2398 
2399 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
2400                                    const InputList &BAInputs) const {
2401   DerivedArgList &Args = C.getArgs();
2402   ActionList &Actions = C.getActions();
2403   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
2404   // Collect the list of architectures. Duplicates are allowed, but should only
2405   // be handled once (in the order seen).
2406   llvm::StringSet<> ArchNames;
2407   SmallVector<const char *, 4> Archs;
2408   for (Arg *A : Args) {
2409     if (A->getOption().matches(options::OPT_arch)) {
2410       // Validate the option here; we don't save the type here because its
2411       // particular spelling may participate in other driver choices.
2412       llvm::Triple::ArchType Arch =
2413           tools::darwin::getArchTypeForMachOArchName(A->getValue());
2414       if (Arch == llvm::Triple::UnknownArch) {
2415         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
2416         continue;
2417       }
2418 
2419       A->claim();
2420       if (ArchNames.insert(A->getValue()).second)
2421         Archs.push_back(A->getValue());
2422     }
2423   }
2424 
2425   // When there is no explicit arch for this platform, make sure we still bind
2426   // the architecture (to the default) so that -Xarch_ is handled correctly.
2427   if (!Archs.size())
2428     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
2429 
2430   ActionList SingleActions;
2431   BuildActions(C, Args, BAInputs, SingleActions);
2432 
2433   // Add in arch bindings for every top level action, as well as lipo and
2434   // dsymutil steps if needed.
2435   for (Action* Act : SingleActions) {
2436     // Make sure we can lipo this kind of output. If not (and it is an actual
2437     // output) then we disallow, since we can't create an output file with the
2438     // right name without overwriting it. We could remove this oddity by just
2439     // changing the output names to include the arch, which would also fix
2440     // -save-temps. Compatibility wins for now.
2441 
2442     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2443       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2444           << types::getTypeName(Act->getType());
2445 
2446     ActionList Inputs;
2447     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2448       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2449 
2450     // Lipo if necessary, we do it this way because we need to set the arch flag
2451     // so that -Xarch_ gets overwritten.
2452     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2453       Actions.append(Inputs.begin(), Inputs.end());
2454     else
2455       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2456 
2457     // Handle debug info queries.
2458     Arg *A = Args.getLastArg(options::OPT_g_Group);
2459     bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2460                             !A->getOption().matches(options::OPT_gstabs);
2461     if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2462         ContainsCompileOrAssembleAction(Actions.back())) {
2463 
2464       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2465       // have a compile input. We need to run 'dsymutil' ourselves in such cases
2466       // because the debug info will refer to a temporary object file which
2467       // will be removed at the end of the compilation process.
2468       if (Act->getType() == types::TY_Image) {
2469         ActionList Inputs;
2470         Inputs.push_back(Actions.back());
2471         Actions.pop_back();
2472         Actions.push_back(
2473             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2474       }
2475 
2476       // Verify the debug info output.
2477       if (Args.hasArg(options::OPT_verify_debug_info)) {
2478         Action* LastAction = Actions.back();
2479         Actions.pop_back();
2480         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2481             LastAction, types::TY_Nothing));
2482       }
2483     }
2484   }
2485 }
2486 
2487 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2488                                     types::ID Ty, bool TypoCorrect) const {
2489   if (!getCheckInputsExist())
2490     return true;
2491 
2492   // stdin always exists.
2493   if (Value == "-")
2494     return true;
2495 
2496   // If it's a header to be found in the system or user search path, then defer
2497   // complaints about its absence until those searches can be done.  When we
2498   // are definitely processing headers for C++20 header units, extend this to
2499   // allow the user to put "-fmodule-header -xc++-header vector" for example.
2500   if (Ty == types::TY_CXXSHeader || Ty == types::TY_CXXUHeader ||
2501       (ModulesModeCXX20 && Ty == types::TY_CXXHeader))
2502     return true;
2503 
2504   if (getVFS().exists(Value))
2505     return true;
2506 
2507   if (TypoCorrect) {
2508     // Check if the filename is a typo for an option flag. OptTable thinks
2509     // that all args that are not known options and that start with / are
2510     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2511     // the option `/diagnostics:caret` than a reference to a file in the root
2512     // directory.
2513     std::string Nearest;
2514     if (getOpts().findNearest(Value, Nearest, getOptionVisibilityMask()) <= 1) {
2515       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2516           << Value << Nearest;
2517       return false;
2518     }
2519   }
2520 
2521   // In CL mode, don't error on apparently non-existent linker inputs, because
2522   // they can be influenced by linker flags the clang driver might not
2523   // understand.
2524   // Examples:
2525   // - `clang-cl main.cc ole32.lib` in a non-MSVC shell will make the driver
2526   //   module look for an MSVC installation in the registry. (We could ask
2527   //   the MSVCToolChain object if it can find `ole32.lib`, but the logic to
2528   //   look in the registry might move into lld-link in the future so that
2529   //   lld-link invocations in non-MSVC shells just work too.)
2530   // - `clang-cl ... /link ...` can pass arbitrary flags to the linker,
2531   //   including /libpath:, which is used to find .lib and .obj files.
2532   // So do not diagnose this on the driver level. Rely on the linker diagnosing
2533   // it. (If we don't end up invoking the linker, this means we'll emit a
2534   // "'linker' input unused [-Wunused-command-line-argument]" warning instead
2535   // of an error.)
2536   //
2537   // Only do this skip after the typo correction step above. `/Brepo` is treated
2538   // as TY_Object, but it's clearly a typo for `/Brepro`. It seems fine to emit
2539   // an error if we have a flag that's within an edit distance of 1 from a
2540   // flag. (Users can use `-Wl,` or `/linker` to launder the flag past the
2541   // driver in the unlikely case they run into this.)
2542   //
2543   // Don't do this for inputs that start with a '/', else we'd pass options
2544   // like /libpath: through to the linker silently.
2545   //
2546   // Emitting an error for linker inputs can also cause incorrect diagnostics
2547   // with the gcc driver. The command
2548   //     clang -fuse-ld=lld -Wl,--chroot,some/dir /file.o
2549   // will make lld look for some/dir/file.o, while we will diagnose here that
2550   // `/file.o` does not exist. However, configure scripts check if
2551   // `clang /GR-` compiles without error to see if the compiler is cl.exe,
2552   // so we can't downgrade diagnostics for `/GR-` from an error to a warning
2553   // in cc mode. (We can in cl mode because cl.exe itself only warns on
2554   // unknown flags.)
2555   if (IsCLMode() && Ty == types::TY_Object && !Value.starts_with("/"))
2556     return true;
2557 
2558   Diag(clang::diag::err_drv_no_such_file) << Value;
2559   return false;
2560 }
2561 
2562 // Get the C++20 Header Unit type corresponding to the input type.
2563 static types::ID CXXHeaderUnitType(ModuleHeaderMode HM) {
2564   switch (HM) {
2565   case HeaderMode_User:
2566     return types::TY_CXXUHeader;
2567   case HeaderMode_System:
2568     return types::TY_CXXSHeader;
2569   case HeaderMode_Default:
2570     break;
2571   case HeaderMode_None:
2572     llvm_unreachable("should not be called in this case");
2573   }
2574   return types::TY_CXXHUHeader;
2575 }
2576 
2577 // Construct a the list of inputs and their types.
2578 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2579                          InputList &Inputs) const {
2580   const llvm::opt::OptTable &Opts = getOpts();
2581   // Track the current user specified (-x) input. We also explicitly track the
2582   // argument used to set the type; we only want to claim the type when we
2583   // actually use it, so we warn about unused -x arguments.
2584   types::ID InputType = types::TY_Nothing;
2585   Arg *InputTypeArg = nullptr;
2586 
2587   // The last /TC or /TP option sets the input type to C or C++ globally.
2588   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2589                                          options::OPT__SLASH_TP)) {
2590     InputTypeArg = TCTP;
2591     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2592                     ? types::TY_C
2593                     : types::TY_CXX;
2594 
2595     Arg *Previous = nullptr;
2596     bool ShowNote = false;
2597     for (Arg *A :
2598          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2599       if (Previous) {
2600         Diag(clang::diag::warn_drv_overriding_option)
2601             << Previous->getSpelling() << A->getSpelling();
2602         ShowNote = true;
2603       }
2604       Previous = A;
2605     }
2606     if (ShowNote)
2607       Diag(clang::diag::note_drv_t_option_is_global);
2608   }
2609 
2610   // CUDA/HIP and their preprocessor expansions can be accepted by CL mode.
2611   // Warn -x after last input file has no effect
2612   auto LastXArg = Args.getLastArgValue(options::OPT_x);
2613   const llvm::StringSet<> ValidXArgs = {"cuda", "hip", "cui", "hipi"};
2614   if (!IsCLMode() || ValidXArgs.contains(LastXArg)) {
2615     Arg *LastXArg = Args.getLastArgNoClaim(options::OPT_x);
2616     Arg *LastInputArg = Args.getLastArgNoClaim(options::OPT_INPUT);
2617     if (LastXArg && LastInputArg &&
2618         LastInputArg->getIndex() < LastXArg->getIndex())
2619       Diag(clang::diag::warn_drv_unused_x) << LastXArg->getValue();
2620   } else {
2621     // In CL mode suggest /TC or /TP since -x doesn't make sense if passed via
2622     // /clang:.
2623     if (auto *A = Args.getLastArg(options::OPT_x))
2624       Diag(diag::err_drv_unsupported_opt_with_suggestion)
2625           << A->getAsString(Args) << "/TC' or '/TP";
2626   }
2627 
2628   for (Arg *A : Args) {
2629     if (A->getOption().getKind() == Option::InputClass) {
2630       const char *Value = A->getValue();
2631       types::ID Ty = types::TY_INVALID;
2632 
2633       // Infer the input type if necessary.
2634       if (InputType == types::TY_Nothing) {
2635         // If there was an explicit arg for this, claim it.
2636         if (InputTypeArg)
2637           InputTypeArg->claim();
2638 
2639         // stdin must be handled specially.
2640         if (memcmp(Value, "-", 2) == 0) {
2641           if (IsFlangMode()) {
2642             Ty = types::TY_Fortran;
2643           } else if (IsDXCMode()) {
2644             Ty = types::TY_HLSL;
2645           } else {
2646             // If running with -E, treat as a C input (this changes the
2647             // builtin macros, for example). This may be overridden by -ObjC
2648             // below.
2649             //
2650             // Otherwise emit an error but still use a valid type to avoid
2651             // spurious errors (e.g., no inputs).
2652             assert(!CCGenDiagnostics && "stdin produces no crash reproducer");
2653             if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2654               Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2655                               : clang::diag::err_drv_unknown_stdin_type);
2656             Ty = types::TY_C;
2657           }
2658         } else {
2659           // Otherwise lookup by extension.
2660           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2661           // clang-cl /E, or Object otherwise.
2662           // We use a host hook here because Darwin at least has its own
2663           // idea of what .s is.
2664           if (const char *Ext = strrchr(Value, '.'))
2665             Ty = TC.LookupTypeForExtension(Ext + 1);
2666 
2667           if (Ty == types::TY_INVALID) {
2668             if (IsCLMode() && (Args.hasArgNoClaim(options::OPT_E) || CCGenDiagnostics))
2669               Ty = types::TY_CXX;
2670             else if (CCCIsCPP() || CCGenDiagnostics)
2671               Ty = types::TY_C;
2672             else
2673               Ty = types::TY_Object;
2674           }
2675 
2676           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2677           // should autodetect some input files as C++ for g++ compatibility.
2678           if (CCCIsCXX()) {
2679             types::ID OldTy = Ty;
2680             Ty = types::lookupCXXTypeForCType(Ty);
2681 
2682             // Do not complain about foo.h, when we are known to be processing
2683             // it as a C++20 header unit.
2684             if (Ty != OldTy && !(OldTy == types::TY_CHeader && hasHeaderMode()))
2685               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2686                   << getTypeName(OldTy) << getTypeName(Ty);
2687           }
2688 
2689           // If running with -fthinlto-index=, extensions that normally identify
2690           // native object files actually identify LLVM bitcode files.
2691           if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2692               Ty == types::TY_Object)
2693             Ty = types::TY_LLVM_BC;
2694         }
2695 
2696         // -ObjC and -ObjC++ override the default language, but only for "source
2697         // files". We just treat everything that isn't a linker input as a
2698         // source file.
2699         //
2700         // FIXME: Clean this up if we move the phase sequence into the type.
2701         if (Ty != types::TY_Object) {
2702           if (Args.hasArg(options::OPT_ObjC))
2703             Ty = types::TY_ObjC;
2704           else if (Args.hasArg(options::OPT_ObjCXX))
2705             Ty = types::TY_ObjCXX;
2706         }
2707 
2708         // Disambiguate headers that are meant to be header units from those
2709         // intended to be PCH.  Avoid missing '.h' cases that are counted as
2710         // C headers by default - we know we are in C++ mode and we do not
2711         // want to issue a complaint about compiling things in the wrong mode.
2712         if ((Ty == types::TY_CXXHeader || Ty == types::TY_CHeader) &&
2713             hasHeaderMode())
2714           Ty = CXXHeaderUnitType(CXX20HeaderType);
2715       } else {
2716         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2717         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2718           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2719           // object files.
2720           const char *Ext = strrchr(Value, '.');
2721           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2722             Ty = types::TY_Object;
2723         }
2724         if (Ty == types::TY_INVALID) {
2725           Ty = InputType;
2726           InputTypeArg->claim();
2727         }
2728       }
2729 
2730       if ((Ty == types::TY_C || Ty == types::TY_CXX) &&
2731           Args.hasArgNoClaim(options::OPT_hipstdpar))
2732         Ty = types::TY_HIP;
2733 
2734       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2735         Inputs.push_back(std::make_pair(Ty, A));
2736 
2737     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2738       StringRef Value = A->getValue();
2739       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2740                                  /*TypoCorrect=*/false)) {
2741         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2742         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2743       }
2744       A->claim();
2745     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2746       StringRef Value = A->getValue();
2747       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2748                                  /*TypoCorrect=*/false)) {
2749         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2750         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2751       }
2752       A->claim();
2753     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2754       // Just treat as object type, we could make a special type for this if
2755       // necessary.
2756       Inputs.push_back(std::make_pair(types::TY_Object, A));
2757 
2758     } else if (A->getOption().matches(options::OPT_x)) {
2759       InputTypeArg = A;
2760       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2761       A->claim();
2762 
2763       // Follow gcc behavior and treat as linker input for invalid -x
2764       // options. Its not clear why we shouldn't just revert to unknown; but
2765       // this isn't very important, we might as well be bug compatible.
2766       if (!InputType) {
2767         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2768         InputType = types::TY_Object;
2769       }
2770 
2771       // If the user has put -fmodule-header{,=} then we treat C++ headers as
2772       // header unit inputs.  So we 'promote' -xc++-header appropriately.
2773       if (InputType == types::TY_CXXHeader && hasHeaderMode())
2774         InputType = CXXHeaderUnitType(CXX20HeaderType);
2775     } else if (A->getOption().getID() == options::OPT_U) {
2776       assert(A->getNumValues() == 1 && "The /U option has one value.");
2777       StringRef Val = A->getValue(0);
2778       if (Val.find_first_of("/\\") != StringRef::npos) {
2779         // Warn about e.g. "/Users/me/myfile.c".
2780         Diag(diag::warn_slash_u_filename) << Val;
2781         Diag(diag::note_use_dashdash);
2782       }
2783     }
2784   }
2785   if (CCCIsCPP() && Inputs.empty()) {
2786     // If called as standalone preprocessor, stdin is processed
2787     // if no other input is present.
2788     Arg *A = MakeInputArg(Args, Opts, "-");
2789     Inputs.push_back(std::make_pair(types::TY_C, A));
2790   }
2791 }
2792 
2793 namespace {
2794 /// Provides a convenient interface for different programming models to generate
2795 /// the required device actions.
2796 class OffloadingActionBuilder final {
2797   /// Flag used to trace errors in the builder.
2798   bool IsValid = false;
2799 
2800   /// The compilation that is using this builder.
2801   Compilation &C;
2802 
2803   /// Map between an input argument and the offload kinds used to process it.
2804   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2805 
2806   /// Map between a host action and its originating input argument.
2807   std::map<Action *, const Arg *> HostActionToInputArgMap;
2808 
2809   /// Builder interface. It doesn't build anything or keep any state.
2810   class DeviceActionBuilder {
2811   public:
2812     typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2813 
2814     enum ActionBuilderReturnCode {
2815       // The builder acted successfully on the current action.
2816       ABRT_Success,
2817       // The builder didn't have to act on the current action.
2818       ABRT_Inactive,
2819       // The builder was successful and requested the host action to not be
2820       // generated.
2821       ABRT_Ignore_Host,
2822     };
2823 
2824   protected:
2825     /// Compilation associated with this builder.
2826     Compilation &C;
2827 
2828     /// Tool chains associated with this builder. The same programming
2829     /// model may have associated one or more tool chains.
2830     SmallVector<const ToolChain *, 2> ToolChains;
2831 
2832     /// The derived arguments associated with this builder.
2833     DerivedArgList &Args;
2834 
2835     /// The inputs associated with this builder.
2836     const Driver::InputList &Inputs;
2837 
2838     /// The associated offload kind.
2839     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2840 
2841   public:
2842     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2843                         const Driver::InputList &Inputs,
2844                         Action::OffloadKind AssociatedOffloadKind)
2845         : C(C), Args(Args), Inputs(Inputs),
2846           AssociatedOffloadKind(AssociatedOffloadKind) {}
2847     virtual ~DeviceActionBuilder() {}
2848 
2849     /// Fill up the array \a DA with all the device dependences that should be
2850     /// added to the provided host action \a HostAction. By default it is
2851     /// inactive.
2852     virtual ActionBuilderReturnCode
2853     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2854                          phases::ID CurPhase, phases::ID FinalPhase,
2855                          PhasesTy &Phases) {
2856       return ABRT_Inactive;
2857     }
2858 
2859     /// Update the state to include the provided host action \a HostAction as a
2860     /// dependency of the current device action. By default it is inactive.
2861     virtual ActionBuilderReturnCode addDeviceDependences(Action *HostAction) {
2862       return ABRT_Inactive;
2863     }
2864 
2865     /// Append top level actions generated by the builder.
2866     virtual void appendTopLevelActions(ActionList &AL) {}
2867 
2868     /// Append linker device actions generated by the builder.
2869     virtual void appendLinkDeviceActions(ActionList &AL) {}
2870 
2871     /// Append linker host action generated by the builder.
2872     virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2873 
2874     /// Append linker actions generated by the builder.
2875     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2876 
2877     /// Initialize the builder. Return true if any initialization errors are
2878     /// found.
2879     virtual bool initialize() { return false; }
2880 
2881     /// Return true if the builder can use bundling/unbundling.
2882     virtual bool canUseBundlerUnbundler() const { return false; }
2883 
2884     /// Return true if this builder is valid. We have a valid builder if we have
2885     /// associated device tool chains.
2886     bool isValid() { return !ToolChains.empty(); }
2887 
2888     /// Return the associated offload kind.
2889     Action::OffloadKind getAssociatedOffloadKind() {
2890       return AssociatedOffloadKind;
2891     }
2892   };
2893 
2894   /// Base class for CUDA/HIP action builder. It injects device code in
2895   /// the host backend action.
2896   class CudaActionBuilderBase : public DeviceActionBuilder {
2897   protected:
2898     /// Flags to signal if the user requested host-only or device-only
2899     /// compilation.
2900     bool CompileHostOnly = false;
2901     bool CompileDeviceOnly = false;
2902     bool EmitLLVM = false;
2903     bool EmitAsm = false;
2904 
2905     /// ID to identify each device compilation. For CUDA it is simply the
2906     /// GPU arch string. For HIP it is either the GPU arch string or GPU
2907     /// arch string plus feature strings delimited by a plus sign, e.g.
2908     /// gfx906+xnack.
2909     struct TargetID {
2910       /// Target ID string which is persistent throughout the compilation.
2911       const char *ID;
2912       TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); }
2913       TargetID(const char *ID) : ID(ID) {}
2914       operator const char *() { return ID; }
2915       operator StringRef() { return StringRef(ID); }
2916     };
2917     /// List of GPU architectures to use in this compilation.
2918     SmallVector<TargetID, 4> GpuArchList;
2919 
2920     /// The CUDA actions for the current input.
2921     ActionList CudaDeviceActions;
2922 
2923     /// The CUDA fat binary if it was generated for the current input.
2924     Action *CudaFatBinary = nullptr;
2925 
2926     /// Flag that is set to true if this builder acted on the current input.
2927     bool IsActive = false;
2928 
2929     /// Flag for -fgpu-rdc.
2930     bool Relocatable = false;
2931 
2932     /// Default GPU architecture if there's no one specified.
2933     CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2934 
2935     /// Method to generate compilation unit ID specified by option
2936     /// '-fuse-cuid='.
2937     enum UseCUIDKind { CUID_Hash, CUID_Random, CUID_None, CUID_Invalid };
2938     UseCUIDKind UseCUID = CUID_Hash;
2939 
2940     /// Compilation unit ID specified by option '-cuid='.
2941     StringRef FixedCUID;
2942 
2943   public:
2944     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2945                           const Driver::InputList &Inputs,
2946                           Action::OffloadKind OFKind)
2947         : DeviceActionBuilder(C, Args, Inputs, OFKind) {
2948 
2949       CompileDeviceOnly = C.getDriver().offloadDeviceOnly();
2950       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2951                                  options::OPT_fno_gpu_rdc, /*Default=*/false);
2952     }
2953 
2954     ActionBuilderReturnCode addDeviceDependences(Action *HostAction) override {
2955       // While generating code for CUDA, we only depend on the host input action
2956       // to trigger the creation of all the CUDA device actions.
2957 
2958       // If we are dealing with an input action, replicate it for each GPU
2959       // architecture. If we are in host-only mode we return 'success' so that
2960       // the host uses the CUDA offload kind.
2961       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2962         assert(!GpuArchList.empty() &&
2963                "We should have at least one GPU architecture.");
2964 
2965         // If the host input is not CUDA or HIP, we don't need to bother about
2966         // this input.
2967         if (!(IA->getType() == types::TY_CUDA ||
2968               IA->getType() == types::TY_HIP ||
2969               IA->getType() == types::TY_PP_HIP)) {
2970           // The builder will ignore this input.
2971           IsActive = false;
2972           return ABRT_Inactive;
2973         }
2974 
2975         // Set the flag to true, so that the builder acts on the current input.
2976         IsActive = true;
2977 
2978         if (CompileHostOnly)
2979           return ABRT_Success;
2980 
2981         // Replicate inputs for each GPU architecture.
2982         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2983                                                  : types::TY_CUDA_DEVICE;
2984         std::string CUID = FixedCUID.str();
2985         if (CUID.empty()) {
2986           if (UseCUID == CUID_Random)
2987             CUID = llvm::utohexstr(llvm::sys::Process::GetRandomNumber(),
2988                                    /*LowerCase=*/true);
2989           else if (UseCUID == CUID_Hash) {
2990             llvm::MD5 Hasher;
2991             llvm::MD5::MD5Result Hash;
2992             SmallString<256> RealPath;
2993             llvm::sys::fs::real_path(IA->getInputArg().getValue(), RealPath,
2994                                      /*expand_tilde=*/true);
2995             Hasher.update(RealPath);
2996             for (auto *A : Args) {
2997               if (A->getOption().matches(options::OPT_INPUT))
2998                 continue;
2999               Hasher.update(A->getAsString(Args));
3000             }
3001             Hasher.final(Hash);
3002             CUID = llvm::utohexstr(Hash.low(), /*LowerCase=*/true);
3003           }
3004         }
3005         IA->setId(CUID);
3006 
3007         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3008           CudaDeviceActions.push_back(
3009               C.MakeAction<InputAction>(IA->getInputArg(), Ty, IA->getId()));
3010         }
3011 
3012         return ABRT_Success;
3013       }
3014 
3015       // If this is an unbundling action use it as is for each CUDA toolchain.
3016       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
3017 
3018         // If -fgpu-rdc is disabled, should not unbundle since there is no
3019         // device code to link.
3020         if (UA->getType() == types::TY_Object && !Relocatable)
3021           return ABRT_Inactive;
3022 
3023         CudaDeviceActions.clear();
3024         auto *IA = cast<InputAction>(UA->getInputs().back());
3025         std::string FileName = IA->getInputArg().getAsString(Args);
3026         // Check if the type of the file is the same as the action. Do not
3027         // unbundle it if it is not. Do not unbundle .so files, for example,
3028         // which are not object files. Files with extension ".lib" is classified
3029         // as TY_Object but they are actually archives, therefore should not be
3030         // unbundled here as objects. They will be handled at other places.
3031         const StringRef LibFileExt = ".lib";
3032         if (IA->getType() == types::TY_Object &&
3033             (!llvm::sys::path::has_extension(FileName) ||
3034              types::lookupTypeForExtension(
3035                  llvm::sys::path::extension(FileName).drop_front()) !=
3036                  types::TY_Object ||
3037              llvm::sys::path::extension(FileName) == LibFileExt))
3038           return ABRT_Inactive;
3039 
3040         for (auto Arch : GpuArchList) {
3041           CudaDeviceActions.push_back(UA);
3042           UA->registerDependentActionInfo(ToolChains[0], Arch,
3043                                           AssociatedOffloadKind);
3044         }
3045         IsActive = true;
3046         return ABRT_Success;
3047       }
3048 
3049       return IsActive ? ABRT_Success : ABRT_Inactive;
3050     }
3051 
3052     void appendTopLevelActions(ActionList &AL) override {
3053       // Utility to append actions to the top level list.
3054       auto AddTopLevel = [&](Action *A, TargetID TargetID) {
3055         OffloadAction::DeviceDependences Dep;
3056         Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind);
3057         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
3058       };
3059 
3060       // If we have a fat binary, add it to the list.
3061       if (CudaFatBinary) {
3062         AddTopLevel(CudaFatBinary, CudaArch::UNUSED);
3063         CudaDeviceActions.clear();
3064         CudaFatBinary = nullptr;
3065         return;
3066       }
3067 
3068       if (CudaDeviceActions.empty())
3069         return;
3070 
3071       // If we have CUDA actions at this point, that's because we have a have
3072       // partial compilation, so we should have an action for each GPU
3073       // architecture.
3074       assert(CudaDeviceActions.size() == GpuArchList.size() &&
3075              "Expecting one action per GPU architecture.");
3076       assert(ToolChains.size() == 1 &&
3077              "Expecting to have a single CUDA toolchain.");
3078       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
3079         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
3080 
3081       CudaDeviceActions.clear();
3082     }
3083 
3084     /// Get canonicalized offload arch option. \returns empty StringRef if the
3085     /// option is invalid.
3086     virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0;
3087 
3088     virtual std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3089     getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0;
3090 
3091     bool initialize() override {
3092       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
3093              AssociatedOffloadKind == Action::OFK_HIP);
3094 
3095       // We don't need to support CUDA.
3096       if (AssociatedOffloadKind == Action::OFK_Cuda &&
3097           !C.hasOffloadToolChain<Action::OFK_Cuda>())
3098         return false;
3099 
3100       // We don't need to support HIP.
3101       if (AssociatedOffloadKind == Action::OFK_HIP &&
3102           !C.hasOffloadToolChain<Action::OFK_HIP>())
3103         return false;
3104 
3105       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
3106       assert(HostTC && "No toolchain for host compilation.");
3107       if (HostTC->getTriple().isNVPTX() ||
3108           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
3109         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
3110         // an error and abort pipeline construction early so we don't trip
3111         // asserts that assume device-side compilation.
3112         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
3113             << HostTC->getTriple().getArchName();
3114         return true;
3115       }
3116 
3117       ToolChains.push_back(
3118           AssociatedOffloadKind == Action::OFK_Cuda
3119               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
3120               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
3121 
3122       CompileHostOnly = C.getDriver().offloadHostOnly();
3123       EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
3124       EmitAsm = Args.getLastArg(options::OPT_S);
3125       FixedCUID = Args.getLastArgValue(options::OPT_cuid_EQ);
3126       if (Arg *A = Args.getLastArg(options::OPT_fuse_cuid_EQ)) {
3127         StringRef UseCUIDStr = A->getValue();
3128         UseCUID = llvm::StringSwitch<UseCUIDKind>(UseCUIDStr)
3129                       .Case("hash", CUID_Hash)
3130                       .Case("random", CUID_Random)
3131                       .Case("none", CUID_None)
3132                       .Default(CUID_Invalid);
3133         if (UseCUID == CUID_Invalid) {
3134           C.getDriver().Diag(diag::err_drv_invalid_value)
3135               << A->getAsString(Args) << UseCUIDStr;
3136           C.setContainsError();
3137           return true;
3138         }
3139       }
3140 
3141       // --offload and --offload-arch options are mutually exclusive.
3142       if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
3143           Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
3144                              options::OPT_no_offload_arch_EQ)) {
3145         C.getDriver().Diag(diag::err_opt_not_valid_with_opt) << "--offload-arch"
3146                                                              << "--offload";
3147       }
3148 
3149       // Collect all offload arch parameters, removing duplicates.
3150       std::set<StringRef> GpuArchs;
3151       bool Error = false;
3152       for (Arg *A : Args) {
3153         if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
3154               A->getOption().matches(options::OPT_no_offload_arch_EQ)))
3155           continue;
3156         A->claim();
3157 
3158         for (StringRef ArchStr : llvm::split(A->getValue(), ",")) {
3159           if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
3160               ArchStr == "all") {
3161             GpuArchs.clear();
3162           } else if (ArchStr == "native") {
3163             const ToolChain &TC = *ToolChains.front();
3164             auto GPUsOrErr = ToolChains.front()->getSystemGPUArchs(Args);
3165             if (!GPUsOrErr) {
3166               TC.getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
3167                   << llvm::Triple::getArchTypeName(TC.getArch())
3168                   << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
3169               continue;
3170             }
3171 
3172             for (auto GPU : *GPUsOrErr) {
3173               GpuArchs.insert(Args.MakeArgString(GPU));
3174             }
3175           } else {
3176             ArchStr = getCanonicalOffloadArch(ArchStr);
3177             if (ArchStr.empty()) {
3178               Error = true;
3179             } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
3180               GpuArchs.insert(ArchStr);
3181             else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
3182               GpuArchs.erase(ArchStr);
3183             else
3184               llvm_unreachable("Unexpected option.");
3185           }
3186         }
3187       }
3188 
3189       auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs);
3190       if (ConflictingArchs) {
3191         C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
3192             << ConflictingArchs->first << ConflictingArchs->second;
3193         C.setContainsError();
3194         return true;
3195       }
3196 
3197       // Collect list of GPUs remaining in the set.
3198       for (auto Arch : GpuArchs)
3199         GpuArchList.push_back(Arch.data());
3200 
3201       // Default to sm_20 which is the lowest common denominator for
3202       // supported GPUs.  sm_20 code should work correctly, if
3203       // suboptimally, on all newer GPUs.
3204       if (GpuArchList.empty()) {
3205         if (ToolChains.front()->getTriple().isSPIRV())
3206           GpuArchList.push_back(CudaArch::Generic);
3207         else
3208           GpuArchList.push_back(DefaultCudaArch);
3209       }
3210 
3211       return Error;
3212     }
3213   };
3214 
3215   /// \brief CUDA action builder. It injects device code in the host backend
3216   /// action.
3217   class CudaActionBuilder final : public CudaActionBuilderBase {
3218   public:
3219     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
3220                       const Driver::InputList &Inputs)
3221         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
3222       DefaultCudaArch = CudaArch::SM_35;
3223     }
3224 
3225     StringRef getCanonicalOffloadArch(StringRef ArchStr) override {
3226       CudaArch Arch = StringToCudaArch(ArchStr);
3227       if (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch)) {
3228         C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
3229         return StringRef();
3230       }
3231       return CudaArchToString(Arch);
3232     }
3233 
3234     std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3235     getConflictOffloadArchCombination(
3236         const std::set<StringRef> &GpuArchs) override {
3237       return std::nullopt;
3238     }
3239 
3240     ActionBuilderReturnCode
3241     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3242                          phases::ID CurPhase, phases::ID FinalPhase,
3243                          PhasesTy &Phases) override {
3244       if (!IsActive)
3245         return ABRT_Inactive;
3246 
3247       // If we don't have more CUDA actions, we don't have any dependences to
3248       // create for the host.
3249       if (CudaDeviceActions.empty())
3250         return ABRT_Success;
3251 
3252       assert(CudaDeviceActions.size() == GpuArchList.size() &&
3253              "Expecting one action per GPU architecture.");
3254       assert(!CompileHostOnly &&
3255              "Not expecting CUDA actions in host-only compilation.");
3256 
3257       // If we are generating code for the device or we are in a backend phase,
3258       // we attempt to generate the fat binary. We compile each arch to ptx and
3259       // assemble to cubin, then feed the cubin *and* the ptx into a device
3260       // "link" action, which uses fatbinary to combine these cubins into one
3261       // fatbin.  The fatbin is then an input to the host action if not in
3262       // device-only mode.
3263       if (CompileDeviceOnly || CurPhase == phases::Backend) {
3264         ActionList DeviceActions;
3265         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3266           // Produce the device action from the current phase up to the assemble
3267           // phase.
3268           for (auto Ph : Phases) {
3269             // Skip the phases that were already dealt with.
3270             if (Ph < CurPhase)
3271               continue;
3272             // We have to be consistent with the host final phase.
3273             if (Ph > FinalPhase)
3274               break;
3275 
3276             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
3277                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
3278 
3279             if (Ph == phases::Assemble)
3280               break;
3281           }
3282 
3283           // If we didn't reach the assemble phase, we can't generate the fat
3284           // binary. We don't need to generate the fat binary if we are not in
3285           // device-only mode.
3286           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
3287               CompileDeviceOnly)
3288             continue;
3289 
3290           Action *AssembleAction = CudaDeviceActions[I];
3291           assert(AssembleAction->getType() == types::TY_Object);
3292           assert(AssembleAction->getInputs().size() == 1);
3293 
3294           Action *BackendAction = AssembleAction->getInputs()[0];
3295           assert(BackendAction->getType() == types::TY_PP_Asm);
3296 
3297           for (auto &A : {AssembleAction, BackendAction}) {
3298             OffloadAction::DeviceDependences DDep;
3299             DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda);
3300             DeviceActions.push_back(
3301                 C.MakeAction<OffloadAction>(DDep, A->getType()));
3302           }
3303         }
3304 
3305         // We generate the fat binary if we have device input actions.
3306         if (!DeviceActions.empty()) {
3307           CudaFatBinary =
3308               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
3309 
3310           if (!CompileDeviceOnly) {
3311             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3312                    Action::OFK_Cuda);
3313             // Clear the fat binary, it is already a dependence to an host
3314             // action.
3315             CudaFatBinary = nullptr;
3316           }
3317 
3318           // Remove the CUDA actions as they are already connected to an host
3319           // action or fat binary.
3320           CudaDeviceActions.clear();
3321         }
3322 
3323         // We avoid creating host action in device-only mode.
3324         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3325       } else if (CurPhase > phases::Backend) {
3326         // If we are past the backend phase and still have a device action, we
3327         // don't have to do anything as this action is already a device
3328         // top-level action.
3329         return ABRT_Success;
3330       }
3331 
3332       assert(CurPhase < phases::Backend && "Generating single CUDA "
3333                                            "instructions should only occur "
3334                                            "before the backend phase!");
3335 
3336       // By default, we produce an action for each device arch.
3337       for (Action *&A : CudaDeviceActions)
3338         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
3339 
3340       return ABRT_Success;
3341     }
3342   };
3343   /// \brief HIP action builder. It injects device code in the host backend
3344   /// action.
3345   class HIPActionBuilder final : public CudaActionBuilderBase {
3346     /// The linker inputs obtained for each device arch.
3347     SmallVector<ActionList, 8> DeviceLinkerInputs;
3348     // The default bundling behavior depends on the type of output, therefore
3349     // BundleOutput needs to be tri-value: None, true, or false.
3350     // Bundle code objects except --no-gpu-output is specified for device
3351     // only compilation. Bundle other type of output files only if
3352     // --gpu-bundle-output is specified for device only compilation.
3353     std::optional<bool> BundleOutput;
3354     std::optional<bool> EmitReloc;
3355 
3356   public:
3357     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
3358                      const Driver::InputList &Inputs)
3359         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
3360 
3361       DefaultCudaArch = CudaArch::GFX906;
3362 
3363       if (Args.hasArg(options::OPT_fhip_emit_relocatable,
3364                       options::OPT_fno_hip_emit_relocatable)) {
3365         EmitReloc = Args.hasFlag(options::OPT_fhip_emit_relocatable,
3366                                  options::OPT_fno_hip_emit_relocatable, false);
3367 
3368         if (*EmitReloc) {
3369           if (Relocatable) {
3370             C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
3371                 << "-fhip-emit-relocatable"
3372                 << "-fgpu-rdc";
3373           }
3374 
3375           if (!CompileDeviceOnly) {
3376             C.getDriver().Diag(diag::err_opt_not_valid_without_opt)
3377                 << "-fhip-emit-relocatable"
3378                 << "--cuda-device-only";
3379           }
3380         }
3381       }
3382 
3383       if (Args.hasArg(options::OPT_gpu_bundle_output,
3384                       options::OPT_no_gpu_bundle_output))
3385         BundleOutput = Args.hasFlag(options::OPT_gpu_bundle_output,
3386                                     options::OPT_no_gpu_bundle_output, true) &&
3387                        (!EmitReloc || !*EmitReloc);
3388     }
3389 
3390     bool canUseBundlerUnbundler() const override { return true; }
3391 
3392     StringRef getCanonicalOffloadArch(StringRef IdStr) override {
3393       llvm::StringMap<bool> Features;
3394       // getHIPOffloadTargetTriple() is known to return valid value as it has
3395       // been called successfully in the CreateOffloadingDeviceToolChains().
3396       auto ArchStr = parseTargetID(
3397           *getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs()), IdStr,
3398           &Features);
3399       if (!ArchStr) {
3400         C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr;
3401         C.setContainsError();
3402         return StringRef();
3403       }
3404       auto CanId = getCanonicalTargetID(*ArchStr, Features);
3405       return Args.MakeArgStringRef(CanId);
3406     };
3407 
3408     std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
3409     getConflictOffloadArchCombination(
3410         const std::set<StringRef> &GpuArchs) override {
3411       return getConflictTargetIDCombination(GpuArchs);
3412     }
3413 
3414     ActionBuilderReturnCode
3415     getDeviceDependences(OffloadAction::DeviceDependences &DA,
3416                          phases::ID CurPhase, phases::ID FinalPhase,
3417                          PhasesTy &Phases) override {
3418       if (!IsActive)
3419         return ABRT_Inactive;
3420 
3421       // amdgcn does not support linking of object files, therefore we skip
3422       // backend and assemble phases to output LLVM IR. Except for generating
3423       // non-relocatable device code, where we generate fat binary for device
3424       // code and pass to host in Backend phase.
3425       if (CudaDeviceActions.empty())
3426         return ABRT_Success;
3427 
3428       assert(((CurPhase == phases::Link && Relocatable) ||
3429               CudaDeviceActions.size() == GpuArchList.size()) &&
3430              "Expecting one action per GPU architecture.");
3431       assert(!CompileHostOnly &&
3432              "Not expecting HIP actions in host-only compilation.");
3433 
3434       bool ShouldLink = !EmitReloc || !*EmitReloc;
3435 
3436       if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
3437           !EmitAsm && ShouldLink) {
3438         // If we are in backend phase, we attempt to generate the fat binary.
3439         // We compile each arch to IR and use a link action to generate code
3440         // object containing ISA. Then we use a special "link" action to create
3441         // a fat binary containing all the code objects for different GPU's.
3442         // The fat binary is then an input to the host action.
3443         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3444           if (C.getDriver().isUsingLTO(/*IsOffload=*/true)) {
3445             // When LTO is enabled, skip the backend and assemble phases and
3446             // use lld to link the bitcode.
3447             ActionList AL;
3448             AL.push_back(CudaDeviceActions[I]);
3449             // Create a link action to link device IR with device library
3450             // and generate ISA.
3451             CudaDeviceActions[I] =
3452                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3453           } else {
3454             // When LTO is not enabled, we follow the conventional
3455             // compiler phases, including backend and assemble phases.
3456             ActionList AL;
3457             Action *BackendAction = nullptr;
3458             if (ToolChains.front()->getTriple().isSPIRV()) {
3459               // Emit LLVM bitcode for SPIR-V targets. SPIR-V device tool chain
3460               // (HIPSPVToolChain) runs post-link LLVM IR passes.
3461               types::ID Output = Args.hasArg(options::OPT_S)
3462                                      ? types::TY_LLVM_IR
3463                                      : types::TY_LLVM_BC;
3464               BackendAction =
3465                   C.MakeAction<BackendJobAction>(CudaDeviceActions[I], Output);
3466             } else
3467               BackendAction = C.getDriver().ConstructPhaseAction(
3468                   C, Args, phases::Backend, CudaDeviceActions[I],
3469                   AssociatedOffloadKind);
3470             auto AssembleAction = C.getDriver().ConstructPhaseAction(
3471                 C, Args, phases::Assemble, BackendAction,
3472                 AssociatedOffloadKind);
3473             AL.push_back(AssembleAction);
3474             // Create a link action to link device IR with device library
3475             // and generate ISA.
3476             CudaDeviceActions[I] =
3477                 C.MakeAction<LinkJobAction>(AL, types::TY_Image);
3478           }
3479 
3480           // OffloadingActionBuilder propagates device arch until an offload
3481           // action. Since the next action for creating fatbin does
3482           // not have device arch, whereas the above link action and its input
3483           // have device arch, an offload action is needed to stop the null
3484           // device arch of the next action being propagated to the above link
3485           // action.
3486           OffloadAction::DeviceDependences DDep;
3487           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3488                    AssociatedOffloadKind);
3489           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3490               DDep, CudaDeviceActions[I]->getType());
3491         }
3492 
3493         if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3494           // Create HIP fat binary with a special "link" action.
3495           CudaFatBinary = C.MakeAction<LinkJobAction>(CudaDeviceActions,
3496                                                       types::TY_HIP_FATBIN);
3497 
3498           if (!CompileDeviceOnly) {
3499             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
3500                    AssociatedOffloadKind);
3501             // Clear the fat binary, it is already a dependence to an host
3502             // action.
3503             CudaFatBinary = nullptr;
3504           }
3505 
3506           // Remove the CUDA actions as they are already connected to an host
3507           // action or fat binary.
3508           CudaDeviceActions.clear();
3509         }
3510 
3511         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3512       } else if (CurPhase == phases::Link) {
3513         if (!ShouldLink)
3514           return ABRT_Success;
3515         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
3516         // This happens to each device action originated from each input file.
3517         // Later on, device actions in DeviceLinkerInputs are used to create
3518         // device link actions in appendLinkDependences and the created device
3519         // link actions are passed to the offload action as device dependence.
3520         DeviceLinkerInputs.resize(CudaDeviceActions.size());
3521         auto LI = DeviceLinkerInputs.begin();
3522         for (auto *A : CudaDeviceActions) {
3523           LI->push_back(A);
3524           ++LI;
3525         }
3526 
3527         // We will pass the device action as a host dependence, so we don't
3528         // need to do anything else with them.
3529         CudaDeviceActions.clear();
3530         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
3531       }
3532 
3533       // By default, we produce an action for each device arch.
3534       for (Action *&A : CudaDeviceActions)
3535         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
3536                                                AssociatedOffloadKind);
3537 
3538       if (CompileDeviceOnly && CurPhase == FinalPhase && BundleOutput &&
3539           *BundleOutput) {
3540         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
3541           OffloadAction::DeviceDependences DDep;
3542           DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I],
3543                    AssociatedOffloadKind);
3544           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
3545               DDep, CudaDeviceActions[I]->getType());
3546         }
3547         CudaFatBinary =
3548             C.MakeAction<OffloadBundlingJobAction>(CudaDeviceActions);
3549         CudaDeviceActions.clear();
3550       }
3551 
3552       return (CompileDeviceOnly &&
3553               (CurPhase == FinalPhase ||
3554                (!ShouldLink && CurPhase == phases::Assemble)))
3555                  ? ABRT_Ignore_Host
3556                  : ABRT_Success;
3557     }
3558 
3559     void appendLinkDeviceActions(ActionList &AL) override {
3560       if (DeviceLinkerInputs.size() == 0)
3561         return;
3562 
3563       assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
3564              "Linker inputs and GPU arch list sizes do not match.");
3565 
3566       ActionList Actions;
3567       unsigned I = 0;
3568       // Append a new link action for each device.
3569       // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
3570       for (auto &LI : DeviceLinkerInputs) {
3571 
3572         types::ID Output = Args.hasArg(options::OPT_emit_llvm)
3573                                    ? types::TY_LLVM_BC
3574                                    : types::TY_Image;
3575 
3576         auto *DeviceLinkAction = C.MakeAction<LinkJobAction>(LI, Output);
3577         // Linking all inputs for the current GPU arch.
3578         // LI contains all the inputs for the linker.
3579         OffloadAction::DeviceDependences DeviceLinkDeps;
3580         DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
3581             GpuArchList[I], AssociatedOffloadKind);
3582         Actions.push_back(C.MakeAction<OffloadAction>(
3583             DeviceLinkDeps, DeviceLinkAction->getType()));
3584         ++I;
3585       }
3586       DeviceLinkerInputs.clear();
3587 
3588       // If emitting LLVM, do not generate final host/device compilation action
3589       if (Args.hasArg(options::OPT_emit_llvm)) {
3590           AL.append(Actions);
3591           return;
3592       }
3593 
3594       // Create a host object from all the device images by embedding them
3595       // in a fat binary for mixed host-device compilation. For device-only
3596       // compilation, creates a fat binary.
3597       OffloadAction::DeviceDependences DDeps;
3598       if (!CompileDeviceOnly || !BundleOutput || *BundleOutput) {
3599         auto *TopDeviceLinkAction = C.MakeAction<LinkJobAction>(
3600             Actions,
3601             CompileDeviceOnly ? types::TY_HIP_FATBIN : types::TY_Object);
3602         DDeps.add(*TopDeviceLinkAction, *ToolChains[0], nullptr,
3603                   AssociatedOffloadKind);
3604         // Offload the host object to the host linker.
3605         AL.push_back(
3606             C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
3607       } else {
3608         AL.append(Actions);
3609       }
3610     }
3611 
3612     Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
3613 
3614     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3615   };
3616 
3617   ///
3618   /// TODO: Add the implementation for other specialized builders here.
3619   ///
3620 
3621   /// Specialized builders being used by this offloading action builder.
3622   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3623 
3624   /// Flag set to true if all valid builders allow file bundling/unbundling.
3625   bool CanUseBundler;
3626 
3627 public:
3628   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3629                           const Driver::InputList &Inputs)
3630       : C(C) {
3631     // Create a specialized builder for each device toolchain.
3632 
3633     IsValid = true;
3634 
3635     // Create a specialized builder for CUDA.
3636     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3637 
3638     // Create a specialized builder for HIP.
3639     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3640 
3641     //
3642     // TODO: Build other specialized builders here.
3643     //
3644 
3645     // Initialize all the builders, keeping track of errors. If all valid
3646     // builders agree that we can use bundling, set the flag to true.
3647     unsigned ValidBuilders = 0u;
3648     unsigned ValidBuildersSupportingBundling = 0u;
3649     for (auto *SB : SpecializedBuilders) {
3650       IsValid = IsValid && !SB->initialize();
3651 
3652       // Update the counters if the builder is valid.
3653       if (SB->isValid()) {
3654         ++ValidBuilders;
3655         if (SB->canUseBundlerUnbundler())
3656           ++ValidBuildersSupportingBundling;
3657       }
3658     }
3659     CanUseBundler =
3660         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3661   }
3662 
3663   ~OffloadingActionBuilder() {
3664     for (auto *SB : SpecializedBuilders)
3665       delete SB;
3666   }
3667 
3668   /// Record a host action and its originating input argument.
3669   void recordHostAction(Action *HostAction, const Arg *InputArg) {
3670     assert(HostAction && "Invalid host action");
3671     assert(InputArg && "Invalid input argument");
3672     auto Loc = HostActionToInputArgMap.find(HostAction);
3673     if (Loc == HostActionToInputArgMap.end())
3674       HostActionToInputArgMap[HostAction] = InputArg;
3675     assert(HostActionToInputArgMap[HostAction] == InputArg &&
3676            "host action mapped to multiple input arguments");
3677   }
3678 
3679   /// Generate an action that adds device dependences (if any) to a host action.
3680   /// If no device dependence actions exist, just return the host action \a
3681   /// HostAction. If an error is found or if no builder requires the host action
3682   /// to be generated, return nullptr.
3683   Action *
3684   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3685                                    phases::ID CurPhase, phases::ID FinalPhase,
3686                                    DeviceActionBuilder::PhasesTy &Phases) {
3687     if (!IsValid)
3688       return nullptr;
3689 
3690     if (SpecializedBuilders.empty())
3691       return HostAction;
3692 
3693     assert(HostAction && "Invalid host action!");
3694     recordHostAction(HostAction, InputArg);
3695 
3696     OffloadAction::DeviceDependences DDeps;
3697     // Check if all the programming models agree we should not emit the host
3698     // action. Also, keep track of the offloading kinds employed.
3699     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3700     unsigned InactiveBuilders = 0u;
3701     unsigned IgnoringBuilders = 0u;
3702     for (auto *SB : SpecializedBuilders) {
3703       if (!SB->isValid()) {
3704         ++InactiveBuilders;
3705         continue;
3706       }
3707       auto RetCode =
3708           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3709 
3710       // If the builder explicitly says the host action should be ignored,
3711       // we need to increment the variable that tracks the builders that request
3712       // the host object to be ignored.
3713       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3714         ++IgnoringBuilders;
3715 
3716       // Unless the builder was inactive for this action, we have to record the
3717       // offload kind because the host will have to use it.
3718       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3719         OffloadKind |= SB->getAssociatedOffloadKind();
3720     }
3721 
3722     // If all builders agree that the host object should be ignored, just return
3723     // nullptr.
3724     if (IgnoringBuilders &&
3725         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3726       return nullptr;
3727 
3728     if (DDeps.getActions().empty())
3729       return HostAction;
3730 
3731     // We have dependences we need to bundle together. We use an offload action
3732     // for that.
3733     OffloadAction::HostDependence HDep(
3734         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3735         /*BoundArch=*/nullptr, DDeps);
3736     return C.MakeAction<OffloadAction>(HDep, DDeps);
3737   }
3738 
3739   /// Generate an action that adds a host dependence to a device action. The
3740   /// results will be kept in this action builder. Return true if an error was
3741   /// found.
3742   bool addHostDependenceToDeviceActions(Action *&HostAction,
3743                                         const Arg *InputArg) {
3744     if (!IsValid)
3745       return true;
3746 
3747     recordHostAction(HostAction, InputArg);
3748 
3749     // If we are supporting bundling/unbundling and the current action is an
3750     // input action of non-source file, we replace the host action by the
3751     // unbundling action. The bundler tool has the logic to detect if an input
3752     // is a bundle or not and if the input is not a bundle it assumes it is a
3753     // host file. Therefore it is safe to create an unbundling action even if
3754     // the input is not a bundle.
3755     if (CanUseBundler && isa<InputAction>(HostAction) &&
3756         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3757         (!types::isSrcFile(HostAction->getType()) ||
3758          HostAction->getType() == types::TY_PP_HIP)) {
3759       auto UnbundlingHostAction =
3760           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3761       UnbundlingHostAction->registerDependentActionInfo(
3762           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3763           /*BoundArch=*/StringRef(), Action::OFK_Host);
3764       HostAction = UnbundlingHostAction;
3765       recordHostAction(HostAction, InputArg);
3766     }
3767 
3768     assert(HostAction && "Invalid host action!");
3769 
3770     // Register the offload kinds that are used.
3771     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3772     for (auto *SB : SpecializedBuilders) {
3773       if (!SB->isValid())
3774         continue;
3775 
3776       auto RetCode = SB->addDeviceDependences(HostAction);
3777 
3778       // Host dependences for device actions are not compatible with that same
3779       // action being ignored.
3780       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3781              "Host dependence not expected to be ignored.!");
3782 
3783       // Unless the builder was inactive for this action, we have to record the
3784       // offload kind because the host will have to use it.
3785       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3786         OffloadKind |= SB->getAssociatedOffloadKind();
3787     }
3788 
3789     // Do not use unbundler if the Host does not depend on device action.
3790     if (OffloadKind == Action::OFK_None && CanUseBundler)
3791       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3792         HostAction = UA->getInputs().back();
3793 
3794     return false;
3795   }
3796 
3797   /// Add the offloading top level actions to the provided action list. This
3798   /// function can replace the host action by a bundling action if the
3799   /// programming models allow it.
3800   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3801                              const Arg *InputArg) {
3802     if (HostAction)
3803       recordHostAction(HostAction, InputArg);
3804 
3805     // Get the device actions to be appended.
3806     ActionList OffloadAL;
3807     for (auto *SB : SpecializedBuilders) {
3808       if (!SB->isValid())
3809         continue;
3810       SB->appendTopLevelActions(OffloadAL);
3811     }
3812 
3813     // If we can use the bundler, replace the host action by the bundling one in
3814     // the resulting list. Otherwise, just append the device actions. For
3815     // device only compilation, HostAction is a null pointer, therefore only do
3816     // this when HostAction is not a null pointer.
3817     if (CanUseBundler && HostAction &&
3818         HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3819       // Add the host action to the list in order to create the bundling action.
3820       OffloadAL.push_back(HostAction);
3821 
3822       // We expect that the host action was just appended to the action list
3823       // before this method was called.
3824       assert(HostAction == AL.back() && "Host action not in the list??");
3825       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3826       recordHostAction(HostAction, InputArg);
3827       AL.back() = HostAction;
3828     } else
3829       AL.append(OffloadAL.begin(), OffloadAL.end());
3830 
3831     // Propagate to the current host action (if any) the offload information
3832     // associated with the current input.
3833     if (HostAction)
3834       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3835                                            /*BoundArch=*/nullptr);
3836     return false;
3837   }
3838 
3839   void appendDeviceLinkActions(ActionList &AL) {
3840     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3841       if (!SB->isValid())
3842         continue;
3843       SB->appendLinkDeviceActions(AL);
3844     }
3845   }
3846 
3847   Action *makeHostLinkAction() {
3848     // Build a list of device linking actions.
3849     ActionList DeviceAL;
3850     appendDeviceLinkActions(DeviceAL);
3851     if (DeviceAL.empty())
3852       return nullptr;
3853 
3854     // Let builders add host linking actions.
3855     Action* HA = nullptr;
3856     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3857       if (!SB->isValid())
3858         continue;
3859       HA = SB->appendLinkHostActions(DeviceAL);
3860       // This created host action has no originating input argument, therefore
3861       // needs to set its offloading kind directly.
3862       if (HA)
3863         HA->propagateHostOffloadInfo(SB->getAssociatedOffloadKind(),
3864                                      /*BoundArch=*/nullptr);
3865     }
3866     return HA;
3867   }
3868 
3869   /// Processes the host linker action. This currently consists of replacing it
3870   /// with an offload action if there are device link objects and propagate to
3871   /// the host action all the offload kinds used in the current compilation. The
3872   /// resulting action is returned.
3873   Action *processHostLinkAction(Action *HostAction) {
3874     // Add all the dependences from the device linking actions.
3875     OffloadAction::DeviceDependences DDeps;
3876     for (auto *SB : SpecializedBuilders) {
3877       if (!SB->isValid())
3878         continue;
3879 
3880       SB->appendLinkDependences(DDeps);
3881     }
3882 
3883     // Calculate all the offload kinds used in the current compilation.
3884     unsigned ActiveOffloadKinds = 0u;
3885     for (auto &I : InputArgToOffloadKindMap)
3886       ActiveOffloadKinds |= I.second;
3887 
3888     // If we don't have device dependencies, we don't have to create an offload
3889     // action.
3890     if (DDeps.getActions().empty()) {
3891       // Set all the active offloading kinds to the link action. Given that it
3892       // is a link action it is assumed to depend on all actions generated so
3893       // far.
3894       HostAction->setHostOffloadInfo(ActiveOffloadKinds,
3895                                      /*BoundArch=*/nullptr);
3896       // Propagate active offloading kinds for each input to the link action.
3897       // Each input may have different active offloading kind.
3898       for (auto *A : HostAction->inputs()) {
3899         auto ArgLoc = HostActionToInputArgMap.find(A);
3900         if (ArgLoc == HostActionToInputArgMap.end())
3901           continue;
3902         auto OFKLoc = InputArgToOffloadKindMap.find(ArgLoc->second);
3903         if (OFKLoc == InputArgToOffloadKindMap.end())
3904           continue;
3905         A->propagateHostOffloadInfo(OFKLoc->second, /*BoundArch=*/nullptr);
3906       }
3907       return HostAction;
3908     }
3909 
3910     // Create the offload action with all dependences. When an offload action
3911     // is created the kinds are propagated to the host action, so we don't have
3912     // to do that explicitly here.
3913     OffloadAction::HostDependence HDep(
3914         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3915         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3916     return C.MakeAction<OffloadAction>(HDep, DDeps);
3917   }
3918 };
3919 } // anonymous namespace.
3920 
3921 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3922                              const InputList &Inputs,
3923                              ActionList &Actions) const {
3924 
3925   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3926   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3927   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3928   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3929     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3930     Args.eraseArg(options::OPT__SLASH_Yc);
3931     Args.eraseArg(options::OPT__SLASH_Yu);
3932     YcArg = YuArg = nullptr;
3933   }
3934   if (YcArg && Inputs.size() > 1) {
3935     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3936     Args.eraseArg(options::OPT__SLASH_Yc);
3937     YcArg = nullptr;
3938   }
3939 
3940   Arg *FinalPhaseArg;
3941   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3942 
3943   if (FinalPhase == phases::Link) {
3944     if (Args.hasArgNoClaim(options::OPT_hipstdpar)) {
3945       Args.AddFlagArg(nullptr, getOpts().getOption(options::OPT_hip_link));
3946       Args.AddFlagArg(nullptr,
3947                       getOpts().getOption(options::OPT_frtlib_add_rpath));
3948     }
3949     // Emitting LLVM while linking disabled except in HIPAMD Toolchain
3950     if (Args.hasArg(options::OPT_emit_llvm) && !Args.hasArg(options::OPT_hip_link))
3951       Diag(clang::diag::err_drv_emit_llvm_link);
3952     if (IsCLMode() && LTOMode != LTOK_None &&
3953         !Args.getLastArgValue(options::OPT_fuse_ld_EQ)
3954              .equals_insensitive("lld"))
3955       Diag(clang::diag::err_drv_lto_without_lld);
3956 
3957     // If -dumpdir is not specified, give a default prefix derived from the link
3958     // output filename. For example, `clang -g -gsplit-dwarf a.c -o x` passes
3959     // `-dumpdir x-` to cc1. If -o is unspecified, use
3960     // stem(getDefaultImageName()) (usually stem("a.out") = "a").
3961     if (!Args.hasArg(options::OPT_dumpdir)) {
3962       Arg *FinalOutput = Args.getLastArg(options::OPT_o, options::OPT__SLASH_o);
3963       Arg *Arg = Args.MakeSeparateArg(
3964           nullptr, getOpts().getOption(options::OPT_dumpdir),
3965           Args.MakeArgString(
3966               (FinalOutput ? FinalOutput->getValue()
3967                            : llvm::sys::path::stem(getDefaultImageName())) +
3968               "-"));
3969       Arg->claim();
3970       Args.append(Arg);
3971     }
3972   }
3973 
3974   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3975     // If only preprocessing or /Y- is used, all pch handling is disabled.
3976     // Rather than check for it everywhere, just remove clang-cl pch-related
3977     // flags here.
3978     Args.eraseArg(options::OPT__SLASH_Fp);
3979     Args.eraseArg(options::OPT__SLASH_Yc);
3980     Args.eraseArg(options::OPT__SLASH_Yu);
3981     YcArg = YuArg = nullptr;
3982   }
3983 
3984   unsigned LastPLSize = 0;
3985   for (auto &I : Inputs) {
3986     types::ID InputType = I.first;
3987     const Arg *InputArg = I.second;
3988 
3989     auto PL = types::getCompilationPhases(InputType);
3990     LastPLSize = PL.size();
3991 
3992     // If the first step comes after the final phase we are doing as part of
3993     // this compilation, warn the user about it.
3994     phases::ID InitialPhase = PL[0];
3995     if (InitialPhase > FinalPhase) {
3996       if (InputArg->isClaimed())
3997         continue;
3998 
3999       // Claim here to avoid the more general unused warning.
4000       InputArg->claim();
4001 
4002       // Suppress all unused style warnings with -Qunused-arguments
4003       if (Args.hasArg(options::OPT_Qunused_arguments))
4004         continue;
4005 
4006       // Special case when final phase determined by binary name, rather than
4007       // by a command-line argument with a corresponding Arg.
4008       if (CCCIsCPP())
4009         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
4010             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
4011       // Special case '-E' warning on a previously preprocessed file to make
4012       // more sense.
4013       else if (InitialPhase == phases::Compile &&
4014                (Args.getLastArg(options::OPT__SLASH_EP,
4015                                 options::OPT__SLASH_P) ||
4016                 Args.getLastArg(options::OPT_E) ||
4017                 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
4018                getPreprocessedType(InputType) == types::TY_INVALID)
4019         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
4020             << InputArg->getAsString(Args) << !!FinalPhaseArg
4021             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4022       else
4023         Diag(clang::diag::warn_drv_input_file_unused)
4024             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
4025             << !!FinalPhaseArg
4026             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
4027       continue;
4028     }
4029 
4030     if (YcArg) {
4031       // Add a separate precompile phase for the compile phase.
4032       if (FinalPhase >= phases::Compile) {
4033         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
4034         // Build the pipeline for the pch file.
4035         Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
4036         for (phases::ID Phase : types::getCompilationPhases(HeaderType))
4037           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
4038         assert(ClangClPch);
4039         Actions.push_back(ClangClPch);
4040         // The driver currently exits after the first failed command.  This
4041         // relies on that behavior, to make sure if the pch generation fails,
4042         // the main compilation won't run.
4043         // FIXME: If the main compilation fails, the PCH generation should
4044         // probably not be considered successful either.
4045       }
4046     }
4047   }
4048 
4049   // If we are linking, claim any options which are obviously only used for
4050   // compilation.
4051   // FIXME: Understand why the last Phase List length is used here.
4052   if (FinalPhase == phases::Link && LastPLSize == 1) {
4053     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
4054     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
4055   }
4056 }
4057 
4058 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
4059                           const InputList &Inputs, ActionList &Actions) const {
4060   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
4061 
4062   if (!SuppressMissingInputWarning && Inputs.empty()) {
4063     Diag(clang::diag::err_drv_no_input_files);
4064     return;
4065   }
4066 
4067   // Diagnose misuse of /Fo.
4068   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
4069     StringRef V = A->getValue();
4070     if (Inputs.size() > 1 && !V.empty() &&
4071         !llvm::sys::path::is_separator(V.back())) {
4072       // Check whether /Fo tries to name an output file for multiple inputs.
4073       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4074           << A->getSpelling() << V;
4075       Args.eraseArg(options::OPT__SLASH_Fo);
4076     }
4077   }
4078 
4079   // Diagnose misuse of /Fa.
4080   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
4081     StringRef V = A->getValue();
4082     if (Inputs.size() > 1 && !V.empty() &&
4083         !llvm::sys::path::is_separator(V.back())) {
4084       // Check whether /Fa tries to name an asm file for multiple inputs.
4085       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
4086           << A->getSpelling() << V;
4087       Args.eraseArg(options::OPT__SLASH_Fa);
4088     }
4089   }
4090 
4091   // Diagnose misuse of /o.
4092   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
4093     if (A->getValue()[0] == '\0') {
4094       // It has to have a value.
4095       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
4096       Args.eraseArg(options::OPT__SLASH_o);
4097     }
4098   }
4099 
4100   handleArguments(C, Args, Inputs, Actions);
4101 
4102   bool UseNewOffloadingDriver =
4103       C.isOffloadingHostKind(Action::OFK_OpenMP) ||
4104       Args.hasFlag(options::OPT_offload_new_driver,
4105                    options::OPT_no_offload_new_driver, false);
4106 
4107   // Builder to be used to build offloading actions.
4108   std::unique_ptr<OffloadingActionBuilder> OffloadBuilder =
4109       !UseNewOffloadingDriver
4110           ? std::make_unique<OffloadingActionBuilder>(C, Args, Inputs)
4111           : nullptr;
4112 
4113   // Construct the actions to perform.
4114   ExtractAPIJobAction *ExtractAPIAction = nullptr;
4115   ActionList LinkerInputs;
4116   ActionList MergerInputs;
4117 
4118   for (auto &I : Inputs) {
4119     types::ID InputType = I.first;
4120     const Arg *InputArg = I.second;
4121 
4122     auto PL = types::getCompilationPhases(*this, Args, InputType);
4123     if (PL.empty())
4124       continue;
4125 
4126     auto FullPL = types::getCompilationPhases(InputType);
4127 
4128     // Build the pipeline for this file.
4129     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4130 
4131     // Use the current host action in any of the offloading actions, if
4132     // required.
4133     if (!UseNewOffloadingDriver)
4134       if (OffloadBuilder->addHostDependenceToDeviceActions(Current, InputArg))
4135         break;
4136 
4137     for (phases::ID Phase : PL) {
4138 
4139       // Add any offload action the host action depends on.
4140       if (!UseNewOffloadingDriver)
4141         Current = OffloadBuilder->addDeviceDependencesToHostAction(
4142             Current, InputArg, Phase, PL.back(), FullPL);
4143       if (!Current)
4144         break;
4145 
4146       // Queue linker inputs.
4147       if (Phase == phases::Link) {
4148         assert(Phase == PL.back() && "linking must be final compilation step.");
4149         // We don't need to generate additional link commands if emitting AMD
4150         // bitcode or compiling only for the offload device
4151         if (!(C.getInputArgs().hasArg(options::OPT_hip_link) &&
4152               (C.getInputArgs().hasArg(options::OPT_emit_llvm))) &&
4153             !offloadDeviceOnly())
4154           LinkerInputs.push_back(Current);
4155         Current = nullptr;
4156         break;
4157       }
4158 
4159       // TODO: Consider removing this because the merged may not end up being
4160       // the final Phase in the pipeline. Perhaps the merged could just merge
4161       // and then pass an artifact of some sort to the Link Phase.
4162       // Queue merger inputs.
4163       if (Phase == phases::IfsMerge) {
4164         assert(Phase == PL.back() && "merging must be final compilation step.");
4165         MergerInputs.push_back(Current);
4166         Current = nullptr;
4167         break;
4168       }
4169 
4170       if (Phase == phases::Precompile && ExtractAPIAction) {
4171         ExtractAPIAction->addHeaderInput(Current);
4172         Current = nullptr;
4173         break;
4174       }
4175 
4176       // FIXME: Should we include any prior module file outputs as inputs of
4177       // later actions in the same command line?
4178 
4179       // Otherwise construct the appropriate action.
4180       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
4181 
4182       // We didn't create a new action, so we will just move to the next phase.
4183       if (NewCurrent == Current)
4184         continue;
4185 
4186       if (auto *EAA = dyn_cast<ExtractAPIJobAction>(NewCurrent))
4187         ExtractAPIAction = EAA;
4188 
4189       Current = NewCurrent;
4190 
4191       // Try to build the offloading actions and add the result as a dependency
4192       // to the host.
4193       if (UseNewOffloadingDriver)
4194         Current = BuildOffloadingActions(C, Args, I, Current);
4195       // Use the current host action in any of the offloading actions, if
4196       // required.
4197       else if (OffloadBuilder->addHostDependenceToDeviceActions(Current,
4198                                                                 InputArg))
4199         break;
4200 
4201       if (Current->getType() == types::TY_Nothing)
4202         break;
4203     }
4204 
4205     // If we ended with something, add to the output list.
4206     if (Current)
4207       Actions.push_back(Current);
4208 
4209     // Add any top level actions generated for offloading.
4210     if (!UseNewOffloadingDriver)
4211       OffloadBuilder->appendTopLevelActions(Actions, Current, InputArg);
4212     else if (Current)
4213       Current->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4214                                         /*BoundArch=*/nullptr);
4215   }
4216 
4217   // Add a link action if necessary.
4218 
4219   if (LinkerInputs.empty()) {
4220     Arg *FinalPhaseArg;
4221     if (getFinalPhase(Args, &FinalPhaseArg) == phases::Link)
4222       if (!UseNewOffloadingDriver)
4223         OffloadBuilder->appendDeviceLinkActions(Actions);
4224   }
4225 
4226   if (!LinkerInputs.empty()) {
4227     if (!UseNewOffloadingDriver)
4228       if (Action *Wrapper = OffloadBuilder->makeHostLinkAction())
4229         LinkerInputs.push_back(Wrapper);
4230     Action *LA;
4231     // Check if this Linker Job should emit a static library.
4232     if (ShouldEmitStaticLibrary(Args)) {
4233       LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
4234     } else if (UseNewOffloadingDriver ||
4235                Args.hasArg(options::OPT_offload_link)) {
4236       LA = C.MakeAction<LinkerWrapperJobAction>(LinkerInputs, types::TY_Image);
4237       LA->propagateHostOffloadInfo(C.getActiveOffloadKinds(),
4238                                    /*BoundArch=*/nullptr);
4239     } else {
4240       LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
4241     }
4242     if (!UseNewOffloadingDriver)
4243       LA = OffloadBuilder->processHostLinkAction(LA);
4244     Actions.push_back(LA);
4245   }
4246 
4247   // Add an interface stubs merge action if necessary.
4248   if (!MergerInputs.empty())
4249     Actions.push_back(
4250         C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4251 
4252   if (Args.hasArg(options::OPT_emit_interface_stubs)) {
4253     auto PhaseList = types::getCompilationPhases(
4254         types::TY_IFS_CPP,
4255         Args.hasArg(options::OPT_c) ? phases::Compile : phases::IfsMerge);
4256 
4257     ActionList MergerInputs;
4258 
4259     for (auto &I : Inputs) {
4260       types::ID InputType = I.first;
4261       const Arg *InputArg = I.second;
4262 
4263       // Currently clang and the llvm assembler do not support generating symbol
4264       // stubs from assembly, so we skip the input on asm files. For ifs files
4265       // we rely on the normal pipeline setup in the pipeline setup code above.
4266       if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
4267           InputType == types::TY_Asm)
4268         continue;
4269 
4270       Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
4271 
4272       for (auto Phase : PhaseList) {
4273         switch (Phase) {
4274         default:
4275           llvm_unreachable(
4276               "IFS Pipeline can only consist of Compile followed by IfsMerge.");
4277         case phases::Compile: {
4278           // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
4279           // files where the .o file is located. The compile action can not
4280           // handle this.
4281           if (InputType == types::TY_Object)
4282             break;
4283 
4284           Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
4285           break;
4286         }
4287         case phases::IfsMerge: {
4288           assert(Phase == PhaseList.back() &&
4289                  "merging must be final compilation step.");
4290           MergerInputs.push_back(Current);
4291           Current = nullptr;
4292           break;
4293         }
4294         }
4295       }
4296 
4297       // If we ended with something, add to the output list.
4298       if (Current)
4299         Actions.push_back(Current);
4300     }
4301 
4302     // Add an interface stubs merge action if necessary.
4303     if (!MergerInputs.empty())
4304       Actions.push_back(
4305           C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
4306   }
4307 
4308   for (auto Opt : {options::OPT_print_supported_cpus,
4309                    options::OPT_print_supported_extensions}) {
4310     // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a
4311     // custom Compile phase that prints out supported cpu models and quits.
4312     //
4313     // If --print-supported-extensions is specified, call the helper function
4314     // RISCVMarchHelp in RISCVISAInfo.cpp that prints out supported extensions
4315     // and quits.
4316     if (Arg *A = Args.getLastArg(Opt)) {
4317       if (Opt == options::OPT_print_supported_extensions &&
4318           !C.getDefaultToolChain().getTriple().isRISCV() &&
4319           !C.getDefaultToolChain().getTriple().isAArch64() &&
4320           !C.getDefaultToolChain().getTriple().isARM()) {
4321         C.getDriver().Diag(diag::err_opt_not_valid_on_target)
4322             << "--print-supported-extensions";
4323         return;
4324       }
4325 
4326       // Use the -mcpu=? flag as the dummy input to cc1.
4327       Actions.clear();
4328       Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
4329       Actions.push_back(
4330           C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
4331       for (auto &I : Inputs)
4332         I.second->claim();
4333     }
4334   }
4335 
4336   // Call validator for dxil when -Vd not in Args.
4337   if (C.getDefaultToolChain().getTriple().isDXIL()) {
4338     // Only add action when needValidation.
4339     const auto &TC =
4340         static_cast<const toolchains::HLSLToolChain &>(C.getDefaultToolChain());
4341     if (TC.requiresValidation(Args)) {
4342       Action *LastAction = Actions.back();
4343       Actions.push_back(C.MakeAction<BinaryAnalyzeJobAction>(
4344           LastAction, types::TY_DX_CONTAINER));
4345     }
4346   }
4347 
4348   // Claim ignored clang-cl options.
4349   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
4350 }
4351 
4352 /// Returns the canonical name for the offloading architecture when using a HIP
4353 /// or CUDA architecture.
4354 static StringRef getCanonicalArchString(Compilation &C,
4355                                         const llvm::opt::DerivedArgList &Args,
4356                                         StringRef ArchStr,
4357                                         const llvm::Triple &Triple,
4358                                         bool SuppressError = false) {
4359   // Lookup the CUDA / HIP architecture string. Only report an error if we were
4360   // expecting the triple to be only NVPTX / AMDGPU.
4361   CudaArch Arch = StringToCudaArch(getProcessorFromTargetID(Triple, ArchStr));
4362   if (!SuppressError && Triple.isNVPTX() &&
4363       (Arch == CudaArch::UNKNOWN || !IsNVIDIAGpuArch(Arch))) {
4364     C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4365         << "CUDA" << ArchStr;
4366     return StringRef();
4367   } else if (!SuppressError && Triple.isAMDGPU() &&
4368              (Arch == CudaArch::UNKNOWN || !IsAMDGpuArch(Arch))) {
4369     C.getDriver().Diag(clang::diag::err_drv_offload_bad_gpu_arch)
4370         << "HIP" << ArchStr;
4371     return StringRef();
4372   }
4373 
4374   if (IsNVIDIAGpuArch(Arch))
4375     return Args.MakeArgStringRef(CudaArchToString(Arch));
4376 
4377   if (IsAMDGpuArch(Arch)) {
4378     llvm::StringMap<bool> Features;
4379     auto HIPTriple = getHIPOffloadTargetTriple(C.getDriver(), C.getInputArgs());
4380     if (!HIPTriple)
4381       return StringRef();
4382     auto Arch = parseTargetID(*HIPTriple, ArchStr, &Features);
4383     if (!Arch) {
4384       C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << ArchStr;
4385       C.setContainsError();
4386       return StringRef();
4387     }
4388     return Args.MakeArgStringRef(getCanonicalTargetID(*Arch, Features));
4389   }
4390 
4391   // If the input isn't CUDA or HIP just return the architecture.
4392   return ArchStr;
4393 }
4394 
4395 /// Checks if the set offloading architectures does not conflict. Returns the
4396 /// incompatible pair if a conflict occurs.
4397 static std::optional<std::pair<llvm::StringRef, llvm::StringRef>>
4398 getConflictOffloadArchCombination(const llvm::DenseSet<StringRef> &Archs,
4399                                   llvm::Triple Triple) {
4400   if (!Triple.isAMDGPU())
4401     return std::nullopt;
4402 
4403   std::set<StringRef> ArchSet;
4404   llvm::copy(Archs, std::inserter(ArchSet, ArchSet.begin()));
4405   return getConflictTargetIDCombination(ArchSet);
4406 }
4407 
4408 llvm::DenseSet<StringRef>
4409 Driver::getOffloadArchs(Compilation &C, const llvm::opt::DerivedArgList &Args,
4410                         Action::OffloadKind Kind, const ToolChain *TC,
4411                         bool SuppressError) const {
4412   if (!TC)
4413     TC = &C.getDefaultToolChain();
4414 
4415   // --offload and --offload-arch options are mutually exclusive.
4416   if (Args.hasArgNoClaim(options::OPT_offload_EQ) &&
4417       Args.hasArgNoClaim(options::OPT_offload_arch_EQ,
4418                          options::OPT_no_offload_arch_EQ)) {
4419     C.getDriver().Diag(diag::err_opt_not_valid_with_opt)
4420         << "--offload"
4421         << (Args.hasArgNoClaim(options::OPT_offload_arch_EQ)
4422                 ? "--offload-arch"
4423                 : "--no-offload-arch");
4424   }
4425 
4426   if (KnownArchs.contains(TC))
4427     return KnownArchs.lookup(TC);
4428 
4429   llvm::DenseSet<StringRef> Archs;
4430   for (auto *Arg : Args) {
4431     // Extract any '--[no-]offload-arch' arguments intended for this toolchain.
4432     std::unique_ptr<llvm::opt::Arg> ExtractedArg = nullptr;
4433     if (Arg->getOption().matches(options::OPT_Xopenmp_target_EQ) &&
4434         ToolChain::getOpenMPTriple(Arg->getValue(0)) == TC->getTriple()) {
4435       Arg->claim();
4436       unsigned Index = Args.getBaseArgs().MakeIndex(Arg->getValue(1));
4437       ExtractedArg = getOpts().ParseOneArg(Args, Index);
4438       Arg = ExtractedArg.get();
4439     }
4440 
4441     // Add or remove the seen architectures in order of appearance. If an
4442     // invalid architecture is given we simply exit.
4443     if (Arg->getOption().matches(options::OPT_offload_arch_EQ)) {
4444       for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4445         if (Arch == "native" || Arch.empty()) {
4446           auto GPUsOrErr = TC->getSystemGPUArchs(Args);
4447           if (!GPUsOrErr) {
4448             if (SuppressError)
4449               llvm::consumeError(GPUsOrErr.takeError());
4450             else
4451               TC->getDriver().Diag(diag::err_drv_undetermined_gpu_arch)
4452                   << llvm::Triple::getArchTypeName(TC->getArch())
4453                   << llvm::toString(GPUsOrErr.takeError()) << "--offload-arch";
4454             continue;
4455           }
4456 
4457           for (auto ArchStr : *GPUsOrErr) {
4458             Archs.insert(
4459                 getCanonicalArchString(C, Args, Args.MakeArgString(ArchStr),
4460                                        TC->getTriple(), SuppressError));
4461           }
4462         } else {
4463           StringRef ArchStr = getCanonicalArchString(
4464               C, Args, Arch, TC->getTriple(), SuppressError);
4465           if (ArchStr.empty())
4466             return Archs;
4467           Archs.insert(ArchStr);
4468         }
4469       }
4470     } else if (Arg->getOption().matches(options::OPT_no_offload_arch_EQ)) {
4471       for (StringRef Arch : llvm::split(Arg->getValue(), ",")) {
4472         if (Arch == "all") {
4473           Archs.clear();
4474         } else {
4475           StringRef ArchStr = getCanonicalArchString(
4476               C, Args, Arch, TC->getTriple(), SuppressError);
4477           if (ArchStr.empty())
4478             return Archs;
4479           Archs.erase(ArchStr);
4480         }
4481       }
4482     }
4483   }
4484 
4485   if (auto ConflictingArchs =
4486           getConflictOffloadArchCombination(Archs, TC->getTriple())) {
4487     C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo)
4488         << ConflictingArchs->first << ConflictingArchs->second;
4489     C.setContainsError();
4490   }
4491 
4492   // Skip filling defaults if we're just querying what is availible.
4493   if (SuppressError)
4494     return Archs;
4495 
4496   if (Archs.empty()) {
4497     if (Kind == Action::OFK_Cuda)
4498       Archs.insert(CudaArchToString(CudaArch::CudaDefault));
4499     else if (Kind == Action::OFK_HIP)
4500       Archs.insert(CudaArchToString(CudaArch::HIPDefault));
4501     else if (Kind == Action::OFK_OpenMP)
4502       Archs.insert(StringRef());
4503   } else {
4504     Args.ClaimAllArgs(options::OPT_offload_arch_EQ);
4505     Args.ClaimAllArgs(options::OPT_no_offload_arch_EQ);
4506   }
4507 
4508   return Archs;
4509 }
4510 
4511 Action *Driver::BuildOffloadingActions(Compilation &C,
4512                                        llvm::opt::DerivedArgList &Args,
4513                                        const InputTy &Input,
4514                                        Action *HostAction) const {
4515   // Don't build offloading actions if explicitly disabled or we do not have a
4516   // valid source input and compile action to embed it in. If preprocessing only
4517   // ignore embedding.
4518   if (offloadHostOnly() || !types::isSrcFile(Input.first) ||
4519       !(isa<CompileJobAction>(HostAction) ||
4520         getFinalPhase(Args) == phases::Preprocess))
4521     return HostAction;
4522 
4523   ActionList OffloadActions;
4524   OffloadAction::DeviceDependences DDeps;
4525 
4526   const Action::OffloadKind OffloadKinds[] = {
4527       Action::OFK_OpenMP, Action::OFK_Cuda, Action::OFK_HIP};
4528 
4529   for (Action::OffloadKind Kind : OffloadKinds) {
4530     SmallVector<const ToolChain *, 2> ToolChains;
4531     ActionList DeviceActions;
4532 
4533     auto TCRange = C.getOffloadToolChains(Kind);
4534     for (auto TI = TCRange.first, TE = TCRange.second; TI != TE; ++TI)
4535       ToolChains.push_back(TI->second);
4536 
4537     if (ToolChains.empty())
4538       continue;
4539 
4540     types::ID InputType = Input.first;
4541     const Arg *InputArg = Input.second;
4542 
4543     // The toolchain can be active for unsupported file types.
4544     if ((Kind == Action::OFK_Cuda && !types::isCuda(InputType)) ||
4545         (Kind == Action::OFK_HIP && !types::isHIP(InputType)))
4546       continue;
4547 
4548     // Get the product of all bound architectures and toolchains.
4549     SmallVector<std::pair<const ToolChain *, StringRef>> TCAndArchs;
4550     for (const ToolChain *TC : ToolChains)
4551       for (StringRef Arch : getOffloadArchs(C, Args, Kind, TC))
4552         TCAndArchs.push_back(std::make_pair(TC, Arch));
4553 
4554     for (unsigned I = 0, E = TCAndArchs.size(); I != E; ++I)
4555       DeviceActions.push_back(C.MakeAction<InputAction>(*InputArg, InputType));
4556 
4557     if (DeviceActions.empty())
4558       return HostAction;
4559 
4560     auto PL = types::getCompilationPhases(*this, Args, InputType);
4561 
4562     for (phases::ID Phase : PL) {
4563       if (Phase == phases::Link) {
4564         assert(Phase == PL.back() && "linking must be final compilation step.");
4565         break;
4566       }
4567 
4568       auto TCAndArch = TCAndArchs.begin();
4569       for (Action *&A : DeviceActions) {
4570         if (A->getType() == types::TY_Nothing)
4571           continue;
4572 
4573         // Propagate the ToolChain so we can use it in ConstructPhaseAction.
4574         A->propagateDeviceOffloadInfo(Kind, TCAndArch->second.data(),
4575                                       TCAndArch->first);
4576         A = ConstructPhaseAction(C, Args, Phase, A, Kind);
4577 
4578         if (isa<CompileJobAction>(A) && isa<CompileJobAction>(HostAction) &&
4579             Kind == Action::OFK_OpenMP &&
4580             HostAction->getType() != types::TY_Nothing) {
4581           // OpenMP offloading has a dependency on the host compile action to
4582           // identify which declarations need to be emitted. This shouldn't be
4583           // collapsed with any other actions so we can use it in the device.
4584           HostAction->setCannotBeCollapsedWithNextDependentAction();
4585           OffloadAction::HostDependence HDep(
4586               *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4587               TCAndArch->second.data(), Kind);
4588           OffloadAction::DeviceDependences DDep;
4589           DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4590           A = C.MakeAction<OffloadAction>(HDep, DDep);
4591         }
4592 
4593         ++TCAndArch;
4594       }
4595     }
4596 
4597     // Compiling HIP in non-RDC mode requires linking each action individually.
4598     for (Action *&A : DeviceActions) {
4599       if ((A->getType() != types::TY_Object &&
4600            A->getType() != types::TY_LTO_BC) ||
4601           Kind != Action::OFK_HIP ||
4602           Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false))
4603         continue;
4604       ActionList LinkerInput = {A};
4605       A = C.MakeAction<LinkJobAction>(LinkerInput, types::TY_Image);
4606     }
4607 
4608     auto TCAndArch = TCAndArchs.begin();
4609     for (Action *A : DeviceActions) {
4610       DDeps.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4611       OffloadAction::DeviceDependences DDep;
4612       DDep.add(*A, *TCAndArch->first, TCAndArch->second.data(), Kind);
4613       OffloadActions.push_back(C.MakeAction<OffloadAction>(DDep, A->getType()));
4614       ++TCAndArch;
4615     }
4616   }
4617 
4618   if (offloadDeviceOnly())
4619     return C.MakeAction<OffloadAction>(DDeps, types::TY_Nothing);
4620 
4621   if (OffloadActions.empty())
4622     return HostAction;
4623 
4624   OffloadAction::DeviceDependences DDep;
4625   if (C.isOffloadingHostKind(Action::OFK_Cuda) &&
4626       !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, false)) {
4627     // If we are not in RDC-mode we just emit the final CUDA fatbinary for
4628     // each translation unit without requiring any linking.
4629     Action *FatbinAction =
4630         C.MakeAction<LinkJobAction>(OffloadActions, types::TY_CUDA_FATBIN);
4631     DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_Cuda>(),
4632              nullptr, Action::OFK_Cuda);
4633   } else if (C.isOffloadingHostKind(Action::OFK_HIP) &&
4634              !Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4635                            false)) {
4636     // If we are not in RDC-mode we just emit the final HIP fatbinary for each
4637     // translation unit, linking each input individually.
4638     Action *FatbinAction =
4639         C.MakeAction<LinkJobAction>(OffloadActions, types::TY_HIP_FATBIN);
4640     DDep.add(*FatbinAction, *C.getSingleOffloadToolChain<Action::OFK_HIP>(),
4641              nullptr, Action::OFK_HIP);
4642   } else {
4643     // Package all the offloading actions into a single output that can be
4644     // embedded in the host and linked.
4645     Action *PackagerAction =
4646         C.MakeAction<OffloadPackagerJobAction>(OffloadActions, types::TY_Image);
4647     DDep.add(*PackagerAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4648              nullptr, C.getActiveOffloadKinds());
4649   }
4650 
4651   // If we are unable to embed a single device output into the host, we need to
4652   // add each device output as a host dependency to ensure they are still built.
4653   bool SingleDeviceOutput = !llvm::any_of(OffloadActions, [](Action *A) {
4654     return A->getType() == types::TY_Nothing;
4655   }) && isa<CompileJobAction>(HostAction);
4656   OffloadAction::HostDependence HDep(
4657       *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
4658       /*BoundArch=*/nullptr, SingleDeviceOutput ? DDep : DDeps);
4659   return C.MakeAction<OffloadAction>(HDep, SingleDeviceOutput ? DDep : DDeps);
4660 }
4661 
4662 Action *Driver::ConstructPhaseAction(
4663     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
4664     Action::OffloadKind TargetDeviceOffloadKind) const {
4665   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
4666 
4667   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
4668   // encode this in the steps because the intermediate type depends on
4669   // arguments. Just special case here.
4670   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
4671     return Input;
4672 
4673   // Build the appropriate action.
4674   switch (Phase) {
4675   case phases::Link:
4676     llvm_unreachable("link action invalid here.");
4677   case phases::IfsMerge:
4678     llvm_unreachable("ifsmerge action invalid here.");
4679   case phases::Preprocess: {
4680     types::ID OutputTy;
4681     // -M and -MM specify the dependency file name by altering the output type,
4682     // -if -MD and -MMD are not specified.
4683     if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
4684         !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
4685       OutputTy = types::TY_Dependencies;
4686     } else {
4687       OutputTy = Input->getType();
4688       // For these cases, the preprocessor is only translating forms, the Output
4689       // still needs preprocessing.
4690       if (!Args.hasFlag(options::OPT_frewrite_includes,
4691                         options::OPT_fno_rewrite_includes, false) &&
4692           !Args.hasFlag(options::OPT_frewrite_imports,
4693                         options::OPT_fno_rewrite_imports, false) &&
4694           !Args.hasFlag(options::OPT_fdirectives_only,
4695                         options::OPT_fno_directives_only, false) &&
4696           !CCGenDiagnostics)
4697         OutputTy = types::getPreprocessedType(OutputTy);
4698       assert(OutputTy != types::TY_INVALID &&
4699              "Cannot preprocess this input type!");
4700     }
4701     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
4702   }
4703   case phases::Precompile: {
4704     // API extraction should not generate an actual precompilation action.
4705     if (Args.hasArg(options::OPT_extract_api))
4706       return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4707 
4708     types::ID OutputTy = getPrecompiledType(Input->getType());
4709     assert(OutputTy != types::TY_INVALID &&
4710            "Cannot precompile this input type!");
4711 
4712     // If we're given a module name, precompile header file inputs as a
4713     // module, not as a precompiled header.
4714     const char *ModName = nullptr;
4715     if (OutputTy == types::TY_PCH) {
4716       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
4717         ModName = A->getValue();
4718       if (ModName)
4719         OutputTy = types::TY_ModuleFile;
4720     }
4721 
4722     if (Args.hasArg(options::OPT_fsyntax_only)) {
4723       // Syntax checks should not emit a PCH file
4724       OutputTy = types::TY_Nothing;
4725     }
4726 
4727     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
4728   }
4729   case phases::Compile: {
4730     if (Args.hasArg(options::OPT_fsyntax_only))
4731       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
4732     if (Args.hasArg(options::OPT_rewrite_objc))
4733       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
4734     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
4735       return C.MakeAction<CompileJobAction>(Input,
4736                                             types::TY_RewrittenLegacyObjC);
4737     if (Args.hasArg(options::OPT__analyze))
4738       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
4739     if (Args.hasArg(options::OPT__migrate))
4740       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
4741     if (Args.hasArg(options::OPT_emit_ast))
4742       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
4743     if (Args.hasArg(options::OPT_module_file_info))
4744       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
4745     if (Args.hasArg(options::OPT_verify_pch))
4746       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
4747     if (Args.hasArg(options::OPT_extract_api))
4748       return C.MakeAction<ExtractAPIJobAction>(Input, types::TY_API_INFO);
4749     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
4750   }
4751   case phases::Backend: {
4752     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
4753       types::ID Output;
4754       if (Args.hasArg(options::OPT_S))
4755         Output = types::TY_LTO_IR;
4756       else if (Args.hasArg(options::OPT_ffat_lto_objects))
4757         Output = types::TY_PP_Asm;
4758       else
4759         Output = types::TY_LTO_BC;
4760       return C.MakeAction<BackendJobAction>(Input, Output);
4761     }
4762     if (isUsingLTO(/* IsOffload */ true) &&
4763         TargetDeviceOffloadKind != Action::OFK_None) {
4764       types::ID Output =
4765           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
4766       return C.MakeAction<BackendJobAction>(Input, Output);
4767     }
4768     if (Args.hasArg(options::OPT_emit_llvm) ||
4769         (((Input->getOffloadingToolChain() &&
4770            Input->getOffloadingToolChain()->getTriple().isAMDGPU()) ||
4771           TargetDeviceOffloadKind == Action::OFK_HIP) &&
4772          (Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4773                        false) ||
4774           TargetDeviceOffloadKind == Action::OFK_OpenMP))) {
4775       types::ID Output =
4776           Args.hasArg(options::OPT_S) &&
4777                   (TargetDeviceOffloadKind == Action::OFK_None ||
4778                    offloadDeviceOnly() ||
4779                    (TargetDeviceOffloadKind == Action::OFK_HIP &&
4780                     !Args.hasFlag(options::OPT_offload_new_driver,
4781                                   options::OPT_no_offload_new_driver, false)))
4782               ? types::TY_LLVM_IR
4783               : types::TY_LLVM_BC;
4784       return C.MakeAction<BackendJobAction>(Input, Output);
4785     }
4786     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
4787   }
4788   case phases::Assemble:
4789     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
4790   }
4791 
4792   llvm_unreachable("invalid phase in ConstructPhaseAction");
4793 }
4794 
4795 void Driver::BuildJobs(Compilation &C) const {
4796   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4797 
4798   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4799 
4800   // It is an error to provide a -o option if we are making multiple output
4801   // files. There are exceptions:
4802   //
4803   // IfsMergeJob: when generating interface stubs enabled we want to be able to
4804   // generate the stub file at the same time that we generate the real
4805   // library/a.out. So when a .o, .so, etc are the output, with clang interface
4806   // stubs there will also be a .ifs and .ifso at the same location.
4807   //
4808   // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
4809   // and -c is passed, we still want to be able to generate a .ifs file while
4810   // we are also generating .o files. So we allow more than one output file in
4811   // this case as well.
4812   //
4813   // OffloadClass of type TY_Nothing: device-only output will place many outputs
4814   // into a single offloading action. We should count all inputs to the action
4815   // as outputs. Also ignore device-only outputs if we're compiling with
4816   // -fsyntax-only.
4817   if (FinalOutput) {
4818     unsigned NumOutputs = 0;
4819     unsigned NumIfsOutputs = 0;
4820     for (const Action *A : C.getActions()) {
4821       if (A->getType() != types::TY_Nothing &&
4822           A->getType() != types::TY_DX_CONTAINER &&
4823           !(A->getKind() == Action::IfsMergeJobClass ||
4824             (A->getType() == clang::driver::types::TY_IFS_CPP &&
4825              A->getKind() == clang::driver::Action::CompileJobClass &&
4826              0 == NumIfsOutputs++) ||
4827             (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
4828              A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
4829         ++NumOutputs;
4830       else if (A->getKind() == Action::OffloadClass &&
4831                A->getType() == types::TY_Nothing &&
4832                !C.getArgs().hasArg(options::OPT_fsyntax_only))
4833         NumOutputs += A->size();
4834     }
4835 
4836     if (NumOutputs > 1) {
4837       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
4838       FinalOutput = nullptr;
4839     }
4840   }
4841 
4842   const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple();
4843 
4844   // Collect the list of architectures.
4845   llvm::StringSet<> ArchNames;
4846   if (RawTriple.isOSBinFormatMachO())
4847     for (const Arg *A : C.getArgs())
4848       if (A->getOption().matches(options::OPT_arch))
4849         ArchNames.insert(A->getValue());
4850 
4851   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
4852   std::map<std::pair<const Action *, std::string>, InputInfoList> CachedResults;
4853   for (Action *A : C.getActions()) {
4854     // If we are linking an image for multiple archs then the linker wants
4855     // -arch_multiple and -final_output <final image name>. Unfortunately, this
4856     // doesn't fit in cleanly because we have to pass this information down.
4857     //
4858     // FIXME: This is a hack; find a cleaner way to integrate this into the
4859     // process.
4860     const char *LinkingOutput = nullptr;
4861     if (isa<LipoJobAction>(A)) {
4862       if (FinalOutput)
4863         LinkingOutput = FinalOutput->getValue();
4864       else
4865         LinkingOutput = getDefaultImageName();
4866     }
4867 
4868     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
4869                        /*BoundArch*/ StringRef(),
4870                        /*AtTopLevel*/ true,
4871                        /*MultipleArchs*/ ArchNames.size() > 1,
4872                        /*LinkingOutput*/ LinkingOutput, CachedResults,
4873                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
4874   }
4875 
4876   // If we have more than one job, then disable integrated-cc1 for now. Do this
4877   // also when we need to report process execution statistics.
4878   if (C.getJobs().size() > 1 || CCPrintProcessStats)
4879     for (auto &J : C.getJobs())
4880       J.InProcess = false;
4881 
4882   if (CCPrintProcessStats) {
4883     C.setPostCallback([=](const Command &Cmd, int Res) {
4884       std::optional<llvm::sys::ProcessStatistics> ProcStat =
4885           Cmd.getProcessStatistics();
4886       if (!ProcStat)
4887         return;
4888 
4889       const char *LinkingOutput = nullptr;
4890       if (FinalOutput)
4891         LinkingOutput = FinalOutput->getValue();
4892       else if (!Cmd.getOutputFilenames().empty())
4893         LinkingOutput = Cmd.getOutputFilenames().front().c_str();
4894       else
4895         LinkingOutput = getDefaultImageName();
4896 
4897       if (CCPrintStatReportFilename.empty()) {
4898         using namespace llvm;
4899         // Human readable output.
4900         outs() << sys::path::filename(Cmd.getExecutable()) << ": "
4901                << "output=" << LinkingOutput;
4902         outs() << ", total="
4903                << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms"
4904                << ", user="
4905                << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms"
4906                << ", mem=" << ProcStat->PeakMemory << " Kb\n";
4907       } else {
4908         // CSV format.
4909         std::string Buffer;
4910         llvm::raw_string_ostream Out(Buffer);
4911         llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()),
4912                             /*Quote*/ true);
4913         Out << ',';
4914         llvm::sys::printArg(Out, LinkingOutput, true);
4915         Out << ',' << ProcStat->TotalTime.count() << ','
4916             << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory
4917             << '\n';
4918         Out.flush();
4919         std::error_code EC;
4920         llvm::raw_fd_ostream OS(CCPrintStatReportFilename, EC,
4921                                 llvm::sys::fs::OF_Append |
4922                                     llvm::sys::fs::OF_Text);
4923         if (EC)
4924           return;
4925         auto L = OS.lock();
4926         if (!L) {
4927           llvm::errs() << "ERROR: Cannot lock file "
4928                        << CCPrintStatReportFilename << ": "
4929                        << toString(L.takeError()) << "\n";
4930           return;
4931         }
4932         OS << Buffer;
4933         OS.flush();
4934       }
4935     });
4936   }
4937 
4938   // If the user passed -Qunused-arguments or there were errors, don't warn
4939   // about any unused arguments.
4940   if (Diags.hasErrorOccurred() ||
4941       C.getArgs().hasArg(options::OPT_Qunused_arguments))
4942     return;
4943 
4944   // Claim -fdriver-only here.
4945   (void)C.getArgs().hasArg(options::OPT_fdriver_only);
4946   // Claim -### here.
4947   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
4948 
4949   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
4950   (void)C.getArgs().hasArg(options::OPT_driver_mode);
4951   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
4952 
4953   bool HasAssembleJob = llvm::any_of(C.getJobs(), [](auto &J) {
4954     // Match ClangAs and other derived assemblers of Tool. ClangAs uses a
4955     // longer ShortName "clang integrated assembler" while other assemblers just
4956     // use "assembler".
4957     return strstr(J.getCreator().getShortName(), "assembler");
4958   });
4959   for (Arg *A : C.getArgs()) {
4960     // FIXME: It would be nice to be able to send the argument to the
4961     // DiagnosticsEngine, so that extra values, position, and so on could be
4962     // printed.
4963     if (!A->isClaimed()) {
4964       if (A->getOption().hasFlag(options::NoArgumentUnused))
4965         continue;
4966 
4967       // Suppress the warning automatically if this is just a flag, and it is an
4968       // instance of an argument we already claimed.
4969       const Option &Opt = A->getOption();
4970       if (Opt.getKind() == Option::FlagClass) {
4971         bool DuplicateClaimed = false;
4972 
4973         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
4974           if (AA->isClaimed()) {
4975             DuplicateClaimed = true;
4976             break;
4977           }
4978         }
4979 
4980         if (DuplicateClaimed)
4981           continue;
4982       }
4983 
4984       // In clang-cl, don't mention unknown arguments here since they have
4985       // already been warned about.
4986       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) {
4987         if (A->getOption().hasFlag(options::TargetSpecific) &&
4988             !A->isIgnoredTargetSpecific() && !HasAssembleJob &&
4989             // When for example -### or -v is used
4990             // without a file, target specific options are not
4991             // consumed/validated.
4992             // Instead emitting an error emit a warning instead.
4993             !C.getActions().empty()) {
4994           Diag(diag::err_drv_unsupported_opt_for_target)
4995               << A->getSpelling() << getTargetTriple();
4996         } else {
4997           Diag(clang::diag::warn_drv_unused_argument)
4998               << A->getAsString(C.getArgs());
4999         }
5000       }
5001     }
5002   }
5003 }
5004 
5005 namespace {
5006 /// Utility class to control the collapse of dependent actions and select the
5007 /// tools accordingly.
5008 class ToolSelector final {
5009   /// The tool chain this selector refers to.
5010   const ToolChain &TC;
5011 
5012   /// The compilation this selector refers to.
5013   const Compilation &C;
5014 
5015   /// The base action this selector refers to.
5016   const JobAction *BaseAction;
5017 
5018   /// Set to true if the current toolchain refers to host actions.
5019   bool IsHostSelector;
5020 
5021   /// Set to true if save-temps and embed-bitcode functionalities are active.
5022   bool SaveTemps;
5023   bool EmbedBitcode;
5024 
5025   /// Get previous dependent action or null if that does not exist. If
5026   /// \a CanBeCollapsed is false, that action must be legal to collapse or
5027   /// null will be returned.
5028   const JobAction *getPrevDependentAction(const ActionList &Inputs,
5029                                           ActionList &SavedOffloadAction,
5030                                           bool CanBeCollapsed = true) {
5031     // An option can be collapsed only if it has a single input.
5032     if (Inputs.size() != 1)
5033       return nullptr;
5034 
5035     Action *CurAction = *Inputs.begin();
5036     if (CanBeCollapsed &&
5037         !CurAction->isCollapsingWithNextDependentActionLegal())
5038       return nullptr;
5039 
5040     // If the input action is an offload action. Look through it and save any
5041     // offload action that can be dropped in the event of a collapse.
5042     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
5043       // If the dependent action is a device action, we will attempt to collapse
5044       // only with other device actions. Otherwise, we would do the same but
5045       // with host actions only.
5046       if (!IsHostSelector) {
5047         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
5048           CurAction =
5049               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
5050           if (CanBeCollapsed &&
5051               !CurAction->isCollapsingWithNextDependentActionLegal())
5052             return nullptr;
5053           SavedOffloadAction.push_back(OA);
5054           return dyn_cast<JobAction>(CurAction);
5055         }
5056       } else if (OA->hasHostDependence()) {
5057         CurAction = OA->getHostDependence();
5058         if (CanBeCollapsed &&
5059             !CurAction->isCollapsingWithNextDependentActionLegal())
5060           return nullptr;
5061         SavedOffloadAction.push_back(OA);
5062         return dyn_cast<JobAction>(CurAction);
5063       }
5064       return nullptr;
5065     }
5066 
5067     return dyn_cast<JobAction>(CurAction);
5068   }
5069 
5070   /// Return true if an assemble action can be collapsed.
5071   bool canCollapseAssembleAction() const {
5072     return TC.useIntegratedAs() && !SaveTemps &&
5073            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
5074            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
5075            !C.getArgs().hasArg(options::OPT__SLASH_Fa) &&
5076            !C.getArgs().hasArg(options::OPT_dxc_Fc);
5077   }
5078 
5079   /// Return true if a preprocessor action can be collapsed.
5080   bool canCollapsePreprocessorAction() const {
5081     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
5082            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
5083            !C.getArgs().hasArg(options::OPT_rewrite_objc);
5084   }
5085 
5086   /// Struct that relates an action with the offload actions that would be
5087   /// collapsed with it.
5088   struct JobActionInfo final {
5089     /// The action this info refers to.
5090     const JobAction *JA = nullptr;
5091     /// The offload actions we need to take care off if this action is
5092     /// collapsed.
5093     ActionList SavedOffloadAction;
5094   };
5095 
5096   /// Append collapsed offload actions from the give nnumber of elements in the
5097   /// action info array.
5098   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
5099                                            ArrayRef<JobActionInfo> &ActionInfo,
5100                                            unsigned ElementNum) {
5101     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
5102     for (unsigned I = 0; I < ElementNum; ++I)
5103       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
5104                                     ActionInfo[I].SavedOffloadAction.end());
5105   }
5106 
5107   /// Functions that attempt to perform the combining. They detect if that is
5108   /// legal, and if so they update the inputs \a Inputs and the offload action
5109   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
5110   /// the combined action is returned. If the combining is not legal or if the
5111   /// tool does not exist, null is returned.
5112   /// Currently three kinds of collapsing are supported:
5113   ///  - Assemble + Backend + Compile;
5114   ///  - Assemble + Backend ;
5115   ///  - Backend + Compile.
5116   const Tool *
5117   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5118                                 ActionList &Inputs,
5119                                 ActionList &CollapsedOffloadAction) {
5120     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
5121       return nullptr;
5122     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5123     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5124     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
5125     if (!AJ || !BJ || !CJ)
5126       return nullptr;
5127 
5128     // Get compiler tool.
5129     const Tool *T = TC.SelectTool(*CJ);
5130     if (!T)
5131       return nullptr;
5132 
5133     // Can't collapse if we don't have codegen support unless we are
5134     // emitting LLVM IR.
5135     bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5136     if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5137       return nullptr;
5138 
5139     // When using -fembed-bitcode, it is required to have the same tool (clang)
5140     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
5141     if (EmbedBitcode) {
5142       const Tool *BT = TC.SelectTool(*BJ);
5143       if (BT == T)
5144         return nullptr;
5145     }
5146 
5147     if (!T->hasIntegratedAssembler())
5148       return nullptr;
5149 
5150     Inputs = CJ->getInputs();
5151     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5152                                  /*NumElements=*/3);
5153     return T;
5154   }
5155   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
5156                                      ActionList &Inputs,
5157                                      ActionList &CollapsedOffloadAction) {
5158     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
5159       return nullptr;
5160     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
5161     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
5162     if (!AJ || !BJ)
5163       return nullptr;
5164 
5165     // Get backend tool.
5166     const Tool *T = TC.SelectTool(*BJ);
5167     if (!T)
5168       return nullptr;
5169 
5170     if (!T->hasIntegratedAssembler())
5171       return nullptr;
5172 
5173     Inputs = BJ->getInputs();
5174     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5175                                  /*NumElements=*/2);
5176     return T;
5177   }
5178   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
5179                                     ActionList &Inputs,
5180                                     ActionList &CollapsedOffloadAction) {
5181     if (ActionInfo.size() < 2)
5182       return nullptr;
5183     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
5184     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
5185     if (!BJ || !CJ)
5186       return nullptr;
5187 
5188     // Check if the initial input (to the compile job or its predessor if one
5189     // exists) is LLVM bitcode. In that case, no preprocessor step is required
5190     // and we can still collapse the compile and backend jobs when we have
5191     // -save-temps. I.e. there is no need for a separate compile job just to
5192     // emit unoptimized bitcode.
5193     bool InputIsBitcode = true;
5194     for (size_t i = 1; i < ActionInfo.size(); i++)
5195       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
5196           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
5197         InputIsBitcode = false;
5198         break;
5199       }
5200     if (!InputIsBitcode && !canCollapsePreprocessorAction())
5201       return nullptr;
5202 
5203     // Get compiler tool.
5204     const Tool *T = TC.SelectTool(*CJ);
5205     if (!T)
5206       return nullptr;
5207 
5208     // Can't collapse if we don't have codegen support unless we are
5209     // emitting LLVM IR.
5210     bool OutputIsLLVM = types::isLLVMIR(ActionInfo[0].JA->getType());
5211     if (!T->hasIntegratedBackend() && !(OutputIsLLVM && T->canEmitIR()))
5212       return nullptr;
5213 
5214     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
5215       return nullptr;
5216 
5217     Inputs = CJ->getInputs();
5218     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
5219                                  /*NumElements=*/2);
5220     return T;
5221   }
5222 
5223   /// Updates the inputs if the obtained tool supports combining with
5224   /// preprocessor action, and the current input is indeed a preprocessor
5225   /// action. If combining results in the collapse of offloading actions, those
5226   /// are appended to \a CollapsedOffloadAction.
5227   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
5228                                ActionList &CollapsedOffloadAction) {
5229     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
5230       return;
5231 
5232     // Attempt to get a preprocessor action dependence.
5233     ActionList PreprocessJobOffloadActions;
5234     ActionList NewInputs;
5235     for (Action *A : Inputs) {
5236       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
5237       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
5238         NewInputs.push_back(A);
5239         continue;
5240       }
5241 
5242       // This is legal to combine. Append any offload action we found and add the
5243       // current input to preprocessor inputs.
5244       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
5245                                     PreprocessJobOffloadActions.end());
5246       NewInputs.append(PJ->input_begin(), PJ->input_end());
5247     }
5248     Inputs = NewInputs;
5249   }
5250 
5251 public:
5252   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
5253                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
5254       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
5255         EmbedBitcode(EmbedBitcode) {
5256     assert(BaseAction && "Invalid base action.");
5257     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
5258   }
5259 
5260   /// Check if a chain of actions can be combined and return the tool that can
5261   /// handle the combination of actions. The pointer to the current inputs \a
5262   /// Inputs and the list of offload actions \a CollapsedOffloadActions
5263   /// connected to collapsed actions are updated accordingly. The latter enables
5264   /// the caller of the selector to process them afterwards instead of just
5265   /// dropping them. If no suitable tool is found, null will be returned.
5266   const Tool *getTool(ActionList &Inputs,
5267                       ActionList &CollapsedOffloadAction) {
5268     //
5269     // Get the largest chain of actions that we could combine.
5270     //
5271 
5272     SmallVector<JobActionInfo, 5> ActionChain(1);
5273     ActionChain.back().JA = BaseAction;
5274     while (ActionChain.back().JA) {
5275       const Action *CurAction = ActionChain.back().JA;
5276 
5277       // Grow the chain by one element.
5278       ActionChain.resize(ActionChain.size() + 1);
5279       JobActionInfo &AI = ActionChain.back();
5280 
5281       // Attempt to fill it with the
5282       AI.JA =
5283           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
5284     }
5285 
5286     // Pop the last action info as it could not be filled.
5287     ActionChain.pop_back();
5288 
5289     //
5290     // Attempt to combine actions. If all combining attempts failed, just return
5291     // the tool of the provided action. At the end we attempt to combine the
5292     // action with any preprocessor action it may depend on.
5293     //
5294 
5295     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
5296                                                   CollapsedOffloadAction);
5297     if (!T)
5298       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
5299     if (!T)
5300       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
5301     if (!T) {
5302       Inputs = BaseAction->getInputs();
5303       T = TC.SelectTool(*BaseAction);
5304     }
5305 
5306     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
5307     return T;
5308   }
5309 };
5310 }
5311 
5312 /// Return a string that uniquely identifies the result of a job. The bound arch
5313 /// is not necessarily represented in the toolchain's triple -- for example,
5314 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
5315 /// Also, we need to add the offloading device kind, as the same tool chain can
5316 /// be used for host and device for some programming models, e.g. OpenMP.
5317 static std::string GetTriplePlusArchString(const ToolChain *TC,
5318                                            StringRef BoundArch,
5319                                            Action::OffloadKind OffloadKind) {
5320   std::string TriplePlusArch = TC->getTriple().normalize();
5321   if (!BoundArch.empty()) {
5322     TriplePlusArch += "-";
5323     TriplePlusArch += BoundArch;
5324   }
5325   TriplePlusArch += "-";
5326   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
5327   return TriplePlusArch;
5328 }
5329 
5330 InputInfoList Driver::BuildJobsForAction(
5331     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5332     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5333     std::map<std::pair<const Action *, std::string>, InputInfoList>
5334         &CachedResults,
5335     Action::OffloadKind TargetDeviceOffloadKind) const {
5336   std::pair<const Action *, std::string> ActionTC = {
5337       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5338   auto CachedResult = CachedResults.find(ActionTC);
5339   if (CachedResult != CachedResults.end()) {
5340     return CachedResult->second;
5341   }
5342   InputInfoList Result = BuildJobsForActionNoCache(
5343       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
5344       CachedResults, TargetDeviceOffloadKind);
5345   CachedResults[ActionTC] = Result;
5346   return Result;
5347 }
5348 
5349 static void handleTimeTrace(Compilation &C, const ArgList &Args,
5350                             const JobAction *JA, const char *BaseInput,
5351                             const InputInfo &Result) {
5352   Arg *A =
5353       Args.getLastArg(options::OPT_ftime_trace, options::OPT_ftime_trace_EQ);
5354   if (!A)
5355     return;
5356   SmallString<128> Path;
5357   if (A->getOption().matches(options::OPT_ftime_trace_EQ)) {
5358     Path = A->getValue();
5359     if (llvm::sys::fs::is_directory(Path)) {
5360       SmallString<128> Tmp(Result.getFilename());
5361       llvm::sys::path::replace_extension(Tmp, "json");
5362       llvm::sys::path::append(Path, llvm::sys::path::filename(Tmp));
5363     }
5364   } else {
5365     if (Arg *DumpDir = Args.getLastArgNoClaim(options::OPT_dumpdir)) {
5366       // The trace file is ${dumpdir}${basename}.json. Note that dumpdir may not
5367       // end with a path separator.
5368       Path = DumpDir->getValue();
5369       Path += llvm::sys::path::filename(BaseInput);
5370     } else {
5371       Path = Result.getFilename();
5372     }
5373     llvm::sys::path::replace_extension(Path, "json");
5374   }
5375   const char *ResultFile = C.getArgs().MakeArgString(Path);
5376   C.addTimeTraceFile(ResultFile, JA);
5377   C.addResultFile(ResultFile, JA);
5378 }
5379 
5380 InputInfoList Driver::BuildJobsForActionNoCache(
5381     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
5382     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
5383     std::map<std::pair<const Action *, std::string>, InputInfoList>
5384         &CachedResults,
5385     Action::OffloadKind TargetDeviceOffloadKind) const {
5386   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
5387 
5388   InputInfoList OffloadDependencesInputInfo;
5389   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
5390   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
5391     // The 'Darwin' toolchain is initialized only when its arguments are
5392     // computed. Get the default arguments for OFK_None to ensure that
5393     // initialization is performed before processing the offload action.
5394     // FIXME: Remove when darwin's toolchain is initialized during construction.
5395     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
5396 
5397     // The offload action is expected to be used in four different situations.
5398     //
5399     // a) Set a toolchain/architecture/kind for a host action:
5400     //    Host Action 1 -> OffloadAction -> Host Action 2
5401     //
5402     // b) Set a toolchain/architecture/kind for a device action;
5403     //    Device Action 1 -> OffloadAction -> Device Action 2
5404     //
5405     // c) Specify a device dependence to a host action;
5406     //    Device Action 1  _
5407     //                      \
5408     //      Host Action 1  ---> OffloadAction -> Host Action 2
5409     //
5410     // d) Specify a host dependence to a device action.
5411     //      Host Action 1  _
5412     //                      \
5413     //    Device Action 1  ---> OffloadAction -> Device Action 2
5414     //
5415     // For a) and b), we just return the job generated for the dependences. For
5416     // c) and d) we override the current action with the host/device dependence
5417     // if the current toolchain is host/device and set the offload dependences
5418     // info with the jobs obtained from the device/host dependence(s).
5419 
5420     // If there is a single device option or has no host action, just generate
5421     // the job for it.
5422     if (OA->hasSingleDeviceDependence() || !OA->hasHostDependence()) {
5423       InputInfoList DevA;
5424       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
5425                                        const char *DepBoundArch) {
5426         DevA.append(BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
5427                                        /*MultipleArchs*/ !!DepBoundArch,
5428                                        LinkingOutput, CachedResults,
5429                                        DepA->getOffloadingDeviceKind()));
5430       });
5431       return DevA;
5432     }
5433 
5434     // If 'Action 2' is host, we generate jobs for the device dependences and
5435     // override the current action with the host dependence. Otherwise, we
5436     // generate the host dependences and override the action with the device
5437     // dependence. The dependences can't therefore be a top-level action.
5438     OA->doOnEachDependence(
5439         /*IsHostDependence=*/BuildingForOffloadDevice,
5440         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5441           OffloadDependencesInputInfo.append(BuildJobsForAction(
5442               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
5443               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
5444               DepA->getOffloadingDeviceKind()));
5445         });
5446 
5447     A = BuildingForOffloadDevice
5448             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
5449             : OA->getHostDependence();
5450 
5451     // We may have already built this action as a part of the offloading
5452     // toolchain, return the cached input if so.
5453     std::pair<const Action *, std::string> ActionTC = {
5454         OA->getHostDependence(),
5455         GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5456     if (CachedResults.find(ActionTC) != CachedResults.end()) {
5457       InputInfoList Inputs = CachedResults[ActionTC];
5458       Inputs.append(OffloadDependencesInputInfo);
5459       return Inputs;
5460     }
5461   }
5462 
5463   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
5464     // FIXME: It would be nice to not claim this here; maybe the old scheme of
5465     // just using Args was better?
5466     const Arg &Input = IA->getInputArg();
5467     Input.claim();
5468     if (Input.getOption().matches(options::OPT_INPUT)) {
5469       const char *Name = Input.getValue();
5470       return {InputInfo(A, Name, /* _BaseInput = */ Name)};
5471     }
5472     return {InputInfo(A, &Input, /* _BaseInput = */ "")};
5473   }
5474 
5475   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
5476     const ToolChain *TC;
5477     StringRef ArchName = BAA->getArchName();
5478 
5479     if (!ArchName.empty())
5480       TC = &getToolChain(C.getArgs(),
5481                          computeTargetTriple(*this, TargetTriple,
5482                                              C.getArgs(), ArchName));
5483     else
5484       TC = &C.getDefaultToolChain();
5485 
5486     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
5487                               MultipleArchs, LinkingOutput, CachedResults,
5488                               TargetDeviceOffloadKind);
5489   }
5490 
5491 
5492   ActionList Inputs = A->getInputs();
5493 
5494   const JobAction *JA = cast<JobAction>(A);
5495   ActionList CollapsedOffloadActions;
5496 
5497   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
5498                   embedBitcodeInObject() && !isUsingLTO());
5499   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
5500 
5501   if (!T)
5502     return {InputInfo()};
5503 
5504   // If we've collapsed action list that contained OffloadAction we
5505   // need to build jobs for host/device-side inputs it may have held.
5506   for (const auto *OA : CollapsedOffloadActions)
5507     cast<OffloadAction>(OA)->doOnEachDependence(
5508         /*IsHostDependence=*/BuildingForOffloadDevice,
5509         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
5510           OffloadDependencesInputInfo.append(BuildJobsForAction(
5511               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
5512               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
5513               DepA->getOffloadingDeviceKind()));
5514         });
5515 
5516   // Only use pipes when there is exactly one input.
5517   InputInfoList InputInfos;
5518   for (const Action *Input : Inputs) {
5519     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
5520     // shouldn't get temporary output names.
5521     // FIXME: Clean this up.
5522     bool SubJobAtTopLevel =
5523         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
5524     InputInfos.append(BuildJobsForAction(
5525         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
5526         CachedResults, A->getOffloadingDeviceKind()));
5527   }
5528 
5529   // Always use the first file input as the base input.
5530   const char *BaseInput = InputInfos[0].getBaseInput();
5531   for (auto &Info : InputInfos) {
5532     if (Info.isFilename()) {
5533       BaseInput = Info.getBaseInput();
5534       break;
5535     }
5536   }
5537 
5538   // ... except dsymutil actions, which use their actual input as the base
5539   // input.
5540   if (JA->getType() == types::TY_dSYM)
5541     BaseInput = InputInfos[0].getFilename();
5542 
5543   // Append outputs of offload device jobs to the input list
5544   if (!OffloadDependencesInputInfo.empty())
5545     InputInfos.append(OffloadDependencesInputInfo.begin(),
5546                       OffloadDependencesInputInfo.end());
5547 
5548   // Set the effective triple of the toolchain for the duration of this job.
5549   llvm::Triple EffectiveTriple;
5550   const ToolChain &ToolTC = T->getToolChain();
5551   const ArgList &Args =
5552       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
5553   if (InputInfos.size() != 1) {
5554     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
5555   } else {
5556     // Pass along the input type if it can be unambiguously determined.
5557     EffectiveTriple = llvm::Triple(
5558         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
5559   }
5560   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
5561 
5562   // Determine the place to write output to, if any.
5563   InputInfo Result;
5564   InputInfoList UnbundlingResults;
5565   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
5566     // If we have an unbundling job, we need to create results for all the
5567     // outputs. We also update the results cache so that other actions using
5568     // this unbundling action can get the right results.
5569     for (auto &UI : UA->getDependentActionsInfo()) {
5570       assert(UI.DependentOffloadKind != Action::OFK_None &&
5571              "Unbundling with no offloading??");
5572 
5573       // Unbundling actions are never at the top level. When we generate the
5574       // offloading prefix, we also do that for the host file because the
5575       // unbundling action does not change the type of the output which can
5576       // cause a overwrite.
5577       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5578           UI.DependentOffloadKind,
5579           UI.DependentToolChain->getTriple().normalize(),
5580           /*CreatePrefixForHost=*/true);
5581       auto CurI = InputInfo(
5582           UA,
5583           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
5584                              /*AtTopLevel=*/false,
5585                              MultipleArchs ||
5586                                  UI.DependentOffloadKind == Action::OFK_HIP,
5587                              OffloadingPrefix),
5588           BaseInput);
5589       // Save the unbundling result.
5590       UnbundlingResults.push_back(CurI);
5591 
5592       // Get the unique string identifier for this dependence and cache the
5593       // result.
5594       StringRef Arch;
5595       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
5596         if (UI.DependentOffloadKind == Action::OFK_Host)
5597           Arch = StringRef();
5598         else
5599           Arch = UI.DependentBoundArch;
5600       } else
5601         Arch = BoundArch;
5602 
5603       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
5604                                                 UI.DependentOffloadKind)}] = {
5605           CurI};
5606     }
5607 
5608     // Now that we have all the results generated, select the one that should be
5609     // returned for the current depending action.
5610     std::pair<const Action *, std::string> ActionTC = {
5611         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
5612     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
5613            "Result does not exist??");
5614     Result = CachedResults[ActionTC].front();
5615   } else if (JA->getType() == types::TY_Nothing)
5616     Result = {InputInfo(A, BaseInput)};
5617   else {
5618     // We only have to generate a prefix for the host if this is not a top-level
5619     // action.
5620     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
5621         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
5622         /*CreatePrefixForHost=*/isa<OffloadPackagerJobAction>(A) ||
5623             !(A->getOffloadingHostActiveKinds() == Action::OFK_None ||
5624               AtTopLevel));
5625     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
5626                                              AtTopLevel, MultipleArchs,
5627                                              OffloadingPrefix),
5628                        BaseInput);
5629     if (T->canEmitIR() && OffloadingPrefix.empty())
5630       handleTimeTrace(C, Args, JA, BaseInput, Result);
5631   }
5632 
5633   if (CCCPrintBindings && !CCGenDiagnostics) {
5634     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
5635                  << " - \"" << T->getName() << "\", inputs: [";
5636     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
5637       llvm::errs() << InputInfos[i].getAsString();
5638       if (i + 1 != e)
5639         llvm::errs() << ", ";
5640     }
5641     if (UnbundlingResults.empty())
5642       llvm::errs() << "], output: " << Result.getAsString() << "\n";
5643     else {
5644       llvm::errs() << "], outputs: [";
5645       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
5646         llvm::errs() << UnbundlingResults[i].getAsString();
5647         if (i + 1 != e)
5648           llvm::errs() << ", ";
5649       }
5650       llvm::errs() << "] \n";
5651     }
5652   } else {
5653     if (UnbundlingResults.empty())
5654       T->ConstructJob(
5655           C, *JA, Result, InputInfos,
5656           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5657           LinkingOutput);
5658     else
5659       T->ConstructJobMultipleOutputs(
5660           C, *JA, UnbundlingResults, InputInfos,
5661           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
5662           LinkingOutput);
5663   }
5664   return {Result};
5665 }
5666 
5667 const char *Driver::getDefaultImageName() const {
5668   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
5669   return Target.isOSWindows() ? "a.exe" : "a.out";
5670 }
5671 
5672 /// Create output filename based on ArgValue, which could either be a
5673 /// full filename, filename without extension, or a directory. If ArgValue
5674 /// does not provide a filename, then use BaseName, and use the extension
5675 /// suitable for FileType.
5676 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
5677                                         StringRef BaseName,
5678                                         types::ID FileType) {
5679   SmallString<128> Filename = ArgValue;
5680 
5681   if (ArgValue.empty()) {
5682     // If the argument is empty, output to BaseName in the current dir.
5683     Filename = BaseName;
5684   } else if (llvm::sys::path::is_separator(Filename.back())) {
5685     // If the argument is a directory, output to BaseName in that dir.
5686     llvm::sys::path::append(Filename, BaseName);
5687   }
5688 
5689   if (!llvm::sys::path::has_extension(ArgValue)) {
5690     // If the argument didn't provide an extension, then set it.
5691     const char *Extension = types::getTypeTempSuffix(FileType, true);
5692 
5693     if (FileType == types::TY_Image &&
5694         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
5695       // The output file is a dll.
5696       Extension = "dll";
5697     }
5698 
5699     llvm::sys::path::replace_extension(Filename, Extension);
5700   }
5701 
5702   return Args.MakeArgString(Filename.c_str());
5703 }
5704 
5705 static bool HasPreprocessOutput(const Action &JA) {
5706   if (isa<PreprocessJobAction>(JA))
5707     return true;
5708   if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0]))
5709     return true;
5710   if (isa<OffloadBundlingJobAction>(JA) &&
5711       HasPreprocessOutput(*(JA.getInputs()[0])))
5712     return true;
5713   return false;
5714 }
5715 
5716 const char *Driver::CreateTempFile(Compilation &C, StringRef Prefix,
5717                                    StringRef Suffix, bool MultipleArchs,
5718                                    StringRef BoundArch,
5719                                    bool NeedUniqueDirectory) const {
5720   SmallString<128> TmpName;
5721   Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
5722   std::optional<std::string> CrashDirectory =
5723       CCGenDiagnostics && A
5724           ? std::string(A->getValue())
5725           : llvm::sys::Process::GetEnv("CLANG_CRASH_DIAGNOSTICS_DIR");
5726   if (CrashDirectory) {
5727     if (!getVFS().exists(*CrashDirectory))
5728       llvm::sys::fs::create_directories(*CrashDirectory);
5729     SmallString<128> Path(*CrashDirectory);
5730     llvm::sys::path::append(Path, Prefix);
5731     const char *Middle = !Suffix.empty() ? "-%%%%%%." : "-%%%%%%";
5732     if (std::error_code EC =
5733             llvm::sys::fs::createUniqueFile(Path + Middle + Suffix, TmpName)) {
5734       Diag(clang::diag::err_unable_to_make_temp) << EC.message();
5735       return "";
5736     }
5737   } else {
5738     if (MultipleArchs && !BoundArch.empty()) {
5739       if (NeedUniqueDirectory) {
5740         TmpName = GetTemporaryDirectory(Prefix);
5741         llvm::sys::path::append(TmpName,
5742                                 Twine(Prefix) + "-" + BoundArch + "." + Suffix);
5743       } else {
5744         TmpName =
5745             GetTemporaryPath((Twine(Prefix) + "-" + BoundArch).str(), Suffix);
5746       }
5747 
5748     } else {
5749       TmpName = GetTemporaryPath(Prefix, Suffix);
5750     }
5751   }
5752   return C.addTempFile(C.getArgs().MakeArgString(TmpName));
5753 }
5754 
5755 // Calculate the output path of the module file when compiling a module unit
5756 // with the `-fmodule-output` option or `-fmodule-output=` option specified.
5757 // The behavior is:
5758 // - If `-fmodule-output=` is specfied, then the module file is
5759 //   writing to the value.
5760 // - Otherwise if the output object file of the module unit is specified, the
5761 // output path
5762 //   of the module file should be the same with the output object file except
5763 //   the corresponding suffix. This requires both `-o` and `-c` are specified.
5764 // - Otherwise, the output path of the module file will be the same with the
5765 //   input with the corresponding suffix.
5766 static const char *GetModuleOutputPath(Compilation &C, const JobAction &JA,
5767                                        const char *BaseInput) {
5768   assert(isa<PrecompileJobAction>(JA) && JA.getType() == types::TY_ModuleFile &&
5769          (C.getArgs().hasArg(options::OPT_fmodule_output) ||
5770           C.getArgs().hasArg(options::OPT_fmodule_output_EQ)));
5771 
5772   if (Arg *ModuleOutputEQ =
5773           C.getArgs().getLastArg(options::OPT_fmodule_output_EQ))
5774     return C.addResultFile(ModuleOutputEQ->getValue(), &JA);
5775 
5776   SmallString<64> OutputPath;
5777   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
5778   if (FinalOutput && C.getArgs().hasArg(options::OPT_c))
5779     OutputPath = FinalOutput->getValue();
5780   else
5781     OutputPath = BaseInput;
5782 
5783   const char *Extension = types::getTypeTempSuffix(JA.getType());
5784   llvm::sys::path::replace_extension(OutputPath, Extension);
5785   return C.addResultFile(C.getArgs().MakeArgString(OutputPath.c_str()), &JA);
5786 }
5787 
5788 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
5789                                        const char *BaseInput,
5790                                        StringRef OrigBoundArch, bool AtTopLevel,
5791                                        bool MultipleArchs,
5792                                        StringRef OffloadingPrefix) const {
5793   std::string BoundArch = OrigBoundArch.str();
5794   if (is_style_windows(llvm::sys::path::Style::native)) {
5795     // BoundArch may contains ':', which is invalid in file names on Windows,
5796     // therefore replace it with '%'.
5797     std::replace(BoundArch.begin(), BoundArch.end(), ':', '@');
5798   }
5799 
5800   llvm::PrettyStackTraceString CrashInfo("Computing output path");
5801   // Output to a user requested destination?
5802   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
5803     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
5804       return C.addResultFile(FinalOutput->getValue(), &JA);
5805   }
5806 
5807   // For /P, preprocess to file named after BaseInput.
5808   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
5809     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
5810     StringRef BaseName = llvm::sys::path::filename(BaseInput);
5811     StringRef NameArg;
5812     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
5813       NameArg = A->getValue();
5814     return C.addResultFile(
5815         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
5816         &JA);
5817   }
5818 
5819   // Default to writing to stdout?
5820   if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) {
5821     return "-";
5822   }
5823 
5824   if (JA.getType() == types::TY_ModuleFile &&
5825       C.getArgs().getLastArg(options::OPT_module_file_info)) {
5826     return "-";
5827   }
5828 
5829   if (JA.getType() == types::TY_PP_Asm &&
5830       C.getArgs().hasArg(options::OPT_dxc_Fc)) {
5831     StringRef FcValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fc);
5832     // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5833     // handle this as part of the SLASH_Fa handling below.
5834     return C.addResultFile(C.getArgs().MakeArgString(FcValue.str()), &JA);
5835   }
5836 
5837   if (JA.getType() == types::TY_Object &&
5838       C.getArgs().hasArg(options::OPT_dxc_Fo)) {
5839     StringRef FoValue = C.getArgs().getLastArgValue(options::OPT_dxc_Fo);
5840     // TODO: Should we use `MakeCLOutputFilename` here? If so, we can probably
5841     // handle this as part of the SLASH_Fo handling below.
5842     return C.addResultFile(C.getArgs().MakeArgString(FoValue.str()), &JA);
5843   }
5844 
5845   // Is this the assembly listing for /FA?
5846   if (JA.getType() == types::TY_PP_Asm &&
5847       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
5848        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
5849     // Use /Fa and the input filename to determine the asm file name.
5850     StringRef BaseName = llvm::sys::path::filename(BaseInput);
5851     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
5852     return C.addResultFile(
5853         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
5854         &JA);
5855   }
5856 
5857   // DXC defaults to standard out when generating assembly. We check this after
5858   // any DXC flags that might specify a file.
5859   if (AtTopLevel && JA.getType() == types::TY_PP_Asm && IsDXCMode())
5860     return "-";
5861 
5862   bool SpecifiedModuleOutput =
5863       C.getArgs().hasArg(options::OPT_fmodule_output) ||
5864       C.getArgs().hasArg(options::OPT_fmodule_output_EQ);
5865   if (MultipleArchs && SpecifiedModuleOutput)
5866     Diag(clang::diag::err_drv_module_output_with_multiple_arch);
5867 
5868   // If we're emitting a module output with the specified option
5869   // `-fmodule-output`.
5870   if (!AtTopLevel && isa<PrecompileJobAction>(JA) &&
5871       JA.getType() == types::TY_ModuleFile && SpecifiedModuleOutput)
5872     return GetModuleOutputPath(C, JA, BaseInput);
5873 
5874   // Output to a temporary file?
5875   if ((!AtTopLevel && !isSaveTempsEnabled() &&
5876        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
5877       CCGenDiagnostics) {
5878     StringRef Name = llvm::sys::path::filename(BaseInput);
5879     std::pair<StringRef, StringRef> Split = Name.split('.');
5880     const char *Suffix =
5881         types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5882     // The non-offloading toolchain on Darwin requires deterministic input
5883     // file name for binaries to be deterministic, therefore it needs unique
5884     // directory.
5885     llvm::Triple Triple(C.getDriver().getTargetTriple());
5886     bool NeedUniqueDirectory =
5887         (JA.getOffloadingDeviceKind() == Action::OFK_None ||
5888          JA.getOffloadingDeviceKind() == Action::OFK_Host) &&
5889         Triple.isOSDarwin();
5890     return CreateTempFile(C, Split.first, Suffix, MultipleArchs, BoundArch,
5891                           NeedUniqueDirectory);
5892   }
5893 
5894   SmallString<128> BasePath(BaseInput);
5895   SmallString<128> ExternalPath("");
5896   StringRef BaseName;
5897 
5898   // Dsymutil actions should use the full path.
5899   if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) {
5900     ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue();
5901     // We use posix style here because the tests (specifically
5902     // darwin-dsymutil.c) demonstrate that posix style paths are acceptable
5903     // even on Windows and if we don't then the similar test covering this
5904     // fails.
5905     llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix,
5906                             llvm::sys::path::filename(BasePath));
5907     BaseName = ExternalPath;
5908   } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
5909     BaseName = BasePath;
5910   else
5911     BaseName = llvm::sys::path::filename(BasePath);
5912 
5913   // Determine what the derived output name should be.
5914   const char *NamedOutput;
5915 
5916   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
5917       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
5918     // The /Fo or /o flag decides the object filename.
5919     StringRef Val =
5920         C.getArgs()
5921             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
5922             ->getValue();
5923     NamedOutput =
5924         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5925   } else if (JA.getType() == types::TY_Image &&
5926              C.getArgs().hasArg(options::OPT__SLASH_Fe,
5927                                 options::OPT__SLASH_o)) {
5928     // The /Fe or /o flag names the linked file.
5929     StringRef Val =
5930         C.getArgs()
5931             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
5932             ->getValue();
5933     NamedOutput =
5934         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
5935   } else if (JA.getType() == types::TY_Image) {
5936     if (IsCLMode()) {
5937       // clang-cl uses BaseName for the executable name.
5938       NamedOutput =
5939           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
5940     } else {
5941       SmallString<128> Output(getDefaultImageName());
5942       // HIP image for device compilation with -fno-gpu-rdc is per compilation
5943       // unit.
5944       bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5945                         !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
5946                                              options::OPT_fno_gpu_rdc, false);
5947       bool UseOutExtension = IsHIPNoRDC || isa<OffloadPackagerJobAction>(JA);
5948       if (UseOutExtension) {
5949         Output = BaseName;
5950         llvm::sys::path::replace_extension(Output, "");
5951       }
5952       Output += OffloadingPrefix;
5953       if (MultipleArchs && !BoundArch.empty()) {
5954         Output += "-";
5955         Output.append(BoundArch);
5956       }
5957       if (UseOutExtension)
5958         Output += ".out";
5959       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
5960     }
5961   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
5962     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
5963   } else if ((JA.getType() == types::TY_Plist || JA.getType() == types::TY_AST) &&
5964              C.getArgs().hasArg(options::OPT__SLASH_o)) {
5965     StringRef Val =
5966         C.getArgs()
5967             .getLastArg(options::OPT__SLASH_o)
5968             ->getValue();
5969     NamedOutput =
5970         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
5971   } else {
5972     const char *Suffix =
5973         types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode());
5974     assert(Suffix && "All types used for output should have a suffix.");
5975 
5976     std::string::size_type End = std::string::npos;
5977     if (!types::appendSuffixForType(JA.getType()))
5978       End = BaseName.rfind('.');
5979     SmallString<128> Suffixed(BaseName.substr(0, End));
5980     Suffixed += OffloadingPrefix;
5981     if (MultipleArchs && !BoundArch.empty()) {
5982       Suffixed += "-";
5983       Suffixed.append(BoundArch);
5984     }
5985     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
5986     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
5987     // optimized bitcode output.
5988     auto IsAMDRDCInCompilePhase = [](const JobAction &JA,
5989                                      const llvm::opt::DerivedArgList &Args) {
5990       // The relocatable compilation in HIP and OpenMP implies -emit-llvm.
5991       // Similarly, use a ".tmp.bc" suffix for the unoptimized bitcode
5992       // (generated in the compile phase.)
5993       const ToolChain *TC = JA.getOffloadingToolChain();
5994       return isa<CompileJobAction>(JA) &&
5995              ((JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
5996                Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
5997                             false)) ||
5998               (JA.getOffloadingDeviceKind() == Action::OFK_OpenMP && TC &&
5999                TC->getTriple().isAMDGPU()));
6000     };
6001     if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
6002         (C.getArgs().hasArg(options::OPT_emit_llvm) ||
6003          IsAMDRDCInCompilePhase(JA, C.getArgs())))
6004       Suffixed += ".tmp";
6005     Suffixed += '.';
6006     Suffixed += Suffix;
6007     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
6008   }
6009 
6010   // Prepend object file path if -save-temps=obj
6011   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
6012       JA.getType() != types::TY_PCH) {
6013     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
6014     SmallString<128> TempPath(FinalOutput->getValue());
6015     llvm::sys::path::remove_filename(TempPath);
6016     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
6017     llvm::sys::path::append(TempPath, OutputFileName);
6018     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
6019   }
6020 
6021   // If we're saving temps and the temp file conflicts with the input file,
6022   // then avoid overwriting input file.
6023   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
6024     bool SameFile = false;
6025     SmallString<256> Result;
6026     llvm::sys::fs::current_path(Result);
6027     llvm::sys::path::append(Result, BaseName);
6028     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
6029     // Must share the same path to conflict.
6030     if (SameFile) {
6031       StringRef Name = llvm::sys::path::filename(BaseInput);
6032       std::pair<StringRef, StringRef> Split = Name.split('.');
6033       std::string TmpName = GetTemporaryPath(
6034           Split.first,
6035           types::getTypeTempSuffix(JA.getType(), IsCLMode() || IsDXCMode()));
6036       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
6037     }
6038   }
6039 
6040   // As an annoying special case, PCH generation doesn't strip the pathname.
6041   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
6042     llvm::sys::path::remove_filename(BasePath);
6043     if (BasePath.empty())
6044       BasePath = NamedOutput;
6045     else
6046       llvm::sys::path::append(BasePath, NamedOutput);
6047     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
6048   }
6049 
6050   return C.addResultFile(NamedOutput, &JA);
6051 }
6052 
6053 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
6054   // Search for Name in a list of paths.
6055   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
6056       -> std::optional<std::string> {
6057     // Respect a limited subset of the '-Bprefix' functionality in GCC by
6058     // attempting to use this prefix when looking for file paths.
6059     for (const auto &Dir : P) {
6060       if (Dir.empty())
6061         continue;
6062       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
6063       llvm::sys::path::append(P, Name);
6064       if (llvm::sys::fs::exists(Twine(P)))
6065         return std::string(P);
6066     }
6067     return std::nullopt;
6068   };
6069 
6070   if (auto P = SearchPaths(PrefixDirs))
6071     return *P;
6072 
6073   SmallString<128> R(ResourceDir);
6074   llvm::sys::path::append(R, Name);
6075   if (llvm::sys::fs::exists(Twine(R)))
6076     return std::string(R.str());
6077 
6078   SmallString<128> P(TC.getCompilerRTPath());
6079   llvm::sys::path::append(P, Name);
6080   if (llvm::sys::fs::exists(Twine(P)))
6081     return std::string(P.str());
6082 
6083   SmallString<128> D(Dir);
6084   llvm::sys::path::append(D, "..", Name);
6085   if (llvm::sys::fs::exists(Twine(D)))
6086     return std::string(D.str());
6087 
6088   if (auto P = SearchPaths(TC.getLibraryPaths()))
6089     return *P;
6090 
6091   if (auto P = SearchPaths(TC.getFilePaths()))
6092     return *P;
6093 
6094   return std::string(Name);
6095 }
6096 
6097 void Driver::generatePrefixedToolNames(
6098     StringRef Tool, const ToolChain &TC,
6099     SmallVectorImpl<std::string> &Names) const {
6100   // FIXME: Needs a better variable than TargetTriple
6101   Names.emplace_back((TargetTriple + "-" + Tool).str());
6102   Names.emplace_back(Tool);
6103 }
6104 
6105 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) {
6106   llvm::sys::path::append(Dir, Name);
6107   if (llvm::sys::fs::can_execute(Twine(Dir)))
6108     return true;
6109   llvm::sys::path::remove_filename(Dir);
6110   return false;
6111 }
6112 
6113 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
6114   SmallVector<std::string, 2> TargetSpecificExecutables;
6115   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
6116 
6117   // Respect a limited subset of the '-Bprefix' functionality in GCC by
6118   // attempting to use this prefix when looking for program paths.
6119   for (const auto &PrefixDir : PrefixDirs) {
6120     if (llvm::sys::fs::is_directory(PrefixDir)) {
6121       SmallString<128> P(PrefixDir);
6122       if (ScanDirForExecutable(P, Name))
6123         return std::string(P.str());
6124     } else {
6125       SmallString<128> P((PrefixDir + Name).str());
6126       if (llvm::sys::fs::can_execute(Twine(P)))
6127         return std::string(P.str());
6128     }
6129   }
6130 
6131   const ToolChain::path_list &List = TC.getProgramPaths();
6132   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
6133     // For each possible name of the tool look for it in
6134     // program paths first, then the path.
6135     // Higher priority names will be first, meaning that
6136     // a higher priority name in the path will be found
6137     // instead of a lower priority name in the program path.
6138     // E.g. <triple>-gcc on the path will be found instead
6139     // of gcc in the program path
6140     for (const auto &Path : List) {
6141       SmallString<128> P(Path);
6142       if (ScanDirForExecutable(P, TargetSpecificExecutable))
6143         return std::string(P.str());
6144     }
6145 
6146     // Fall back to the path
6147     if (llvm::ErrorOr<std::string> P =
6148             llvm::sys::findProgramByName(TargetSpecificExecutable))
6149       return *P;
6150   }
6151 
6152   return std::string(Name);
6153 }
6154 
6155 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
6156   SmallString<128> Path;
6157   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
6158   if (EC) {
6159     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6160     return "";
6161   }
6162 
6163   return std::string(Path.str());
6164 }
6165 
6166 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
6167   SmallString<128> Path;
6168   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
6169   if (EC) {
6170     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
6171     return "";
6172   }
6173 
6174   return std::string(Path.str());
6175 }
6176 
6177 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
6178   SmallString<128> Output;
6179   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
6180     // FIXME: If anybody needs it, implement this obscure rule:
6181     // "If you specify a directory without a file name, the default file name
6182     // is VCx0.pch., where x is the major version of Visual C++ in use."
6183     Output = FpArg->getValue();
6184 
6185     // "If you do not specify an extension as part of the path name, an
6186     // extension of .pch is assumed. "
6187     if (!llvm::sys::path::has_extension(Output))
6188       Output += ".pch";
6189   } else {
6190     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
6191       Output = YcArg->getValue();
6192     if (Output.empty())
6193       Output = BaseName;
6194     llvm::sys::path::replace_extension(Output, ".pch");
6195   }
6196   return std::string(Output.str());
6197 }
6198 
6199 const ToolChain &Driver::getToolChain(const ArgList &Args,
6200                                       const llvm::Triple &Target) const {
6201 
6202   auto &TC = ToolChains[Target.str()];
6203   if (!TC) {
6204     switch (Target.getOS()) {
6205     case llvm::Triple::AIX:
6206       TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
6207       break;
6208     case llvm::Triple::Haiku:
6209       TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
6210       break;
6211     case llvm::Triple::Darwin:
6212     case llvm::Triple::MacOSX:
6213     case llvm::Triple::IOS:
6214     case llvm::Triple::TvOS:
6215     case llvm::Triple::WatchOS:
6216     case llvm::Triple::DriverKit:
6217       TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
6218       break;
6219     case llvm::Triple::DragonFly:
6220       TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
6221       break;
6222     case llvm::Triple::OpenBSD:
6223       TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
6224       break;
6225     case llvm::Triple::NetBSD:
6226       TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
6227       break;
6228     case llvm::Triple::FreeBSD:
6229       if (Target.isPPC())
6230         TC = std::make_unique<toolchains::PPCFreeBSDToolChain>(*this, Target,
6231                                                                Args);
6232       else
6233         TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
6234       break;
6235     case llvm::Triple::Linux:
6236     case llvm::Triple::ELFIAMCU:
6237       if (Target.getArch() == llvm::Triple::hexagon)
6238         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6239                                                              Args);
6240       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
6241                !Target.hasEnvironment())
6242         TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
6243                                                               Args);
6244       else if (Target.isPPC())
6245         TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
6246                                                               Args);
6247       else if (Target.getArch() == llvm::Triple::ve)
6248         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6249       else if (Target.isOHOSFamily())
6250         TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6251       else
6252         TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
6253       break;
6254     case llvm::Triple::NaCl:
6255       TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
6256       break;
6257     case llvm::Triple::Fuchsia:
6258       TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
6259       break;
6260     case llvm::Triple::Solaris:
6261       TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
6262       break;
6263     case llvm::Triple::CUDA:
6264       TC = std::make_unique<toolchains::NVPTXToolChain>(*this, Target, Args);
6265       break;
6266     case llvm::Triple::AMDHSA:
6267       TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
6268       break;
6269     case llvm::Triple::AMDPAL:
6270     case llvm::Triple::Mesa3D:
6271       TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
6272       break;
6273     case llvm::Triple::Win32:
6274       switch (Target.getEnvironment()) {
6275       default:
6276         if (Target.isOSBinFormatELF())
6277           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6278         else if (Target.isOSBinFormatMachO())
6279           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6280         else
6281           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6282         break;
6283       case llvm::Triple::GNU:
6284         TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
6285         break;
6286       case llvm::Triple::Itanium:
6287         TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
6288                                                                   Args);
6289         break;
6290       case llvm::Triple::MSVC:
6291       case llvm::Triple::UnknownEnvironment:
6292         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
6293                 .starts_with_insensitive("bfd"))
6294           TC = std::make_unique<toolchains::CrossWindowsToolChain>(
6295               *this, Target, Args);
6296         else
6297           TC =
6298               std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
6299         break;
6300       }
6301       break;
6302     case llvm::Triple::PS4:
6303       TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
6304       break;
6305     case llvm::Triple::PS5:
6306       TC = std::make_unique<toolchains::PS5CPU>(*this, Target, Args);
6307       break;
6308     case llvm::Triple::Hurd:
6309       TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
6310       break;
6311     case llvm::Triple::LiteOS:
6312       TC = std::make_unique<toolchains::OHOS>(*this, Target, Args);
6313       break;
6314     case llvm::Triple::ZOS:
6315       TC = std::make_unique<toolchains::ZOS>(*this, Target, Args);
6316       break;
6317     case llvm::Triple::ShaderModel:
6318       TC = std::make_unique<toolchains::HLSLToolChain>(*this, Target, Args);
6319       break;
6320     default:
6321       // Of these targets, Hexagon is the only one that might have
6322       // an OS of Linux, in which case it got handled above already.
6323       switch (Target.getArch()) {
6324       case llvm::Triple::tce:
6325         TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
6326         break;
6327       case llvm::Triple::tcele:
6328         TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
6329         break;
6330       case llvm::Triple::hexagon:
6331         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
6332                                                              Args);
6333         break;
6334       case llvm::Triple::lanai:
6335         TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
6336         break;
6337       case llvm::Triple::xcore:
6338         TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
6339         break;
6340       case llvm::Triple::wasm32:
6341       case llvm::Triple::wasm64:
6342         TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
6343         break;
6344       case llvm::Triple::avr:
6345         TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
6346         break;
6347       case llvm::Triple::msp430:
6348         TC =
6349             std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
6350         break;
6351       case llvm::Triple::riscv32:
6352       case llvm::Triple::riscv64:
6353         if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args))
6354           TC =
6355               std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
6356         else
6357           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6358         break;
6359       case llvm::Triple::ve:
6360         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
6361         break;
6362       case llvm::Triple::spirv32:
6363       case llvm::Triple::spirv64:
6364         TC = std::make_unique<toolchains::SPIRVToolChain>(*this, Target, Args);
6365         break;
6366       case llvm::Triple::csky:
6367         TC = std::make_unique<toolchains::CSKYToolChain>(*this, Target, Args);
6368         break;
6369       default:
6370         if (toolchains::BareMetal::handlesTarget(Target))
6371           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
6372         else if (Target.isOSBinFormatELF())
6373           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
6374         else if (Target.isOSBinFormatMachO())
6375           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
6376         else
6377           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
6378       }
6379     }
6380   }
6381 
6382   return *TC;
6383 }
6384 
6385 const ToolChain &Driver::getOffloadingDeviceToolChain(
6386     const ArgList &Args, const llvm::Triple &Target, const ToolChain &HostTC,
6387     const Action::OffloadKind &TargetDeviceOffloadKind) const {
6388   // Use device / host triples as the key into the ToolChains map because the
6389   // device ToolChain we create depends on both.
6390   auto &TC = ToolChains[Target.str() + "/" + HostTC.getTriple().str()];
6391   if (!TC) {
6392     // Categorized by offload kind > arch rather than OS > arch like
6393     // the normal getToolChain call, as it seems a reasonable way to categorize
6394     // things.
6395     switch (TargetDeviceOffloadKind) {
6396     case Action::OFK_HIP: {
6397       if (Target.getArch() == llvm::Triple::amdgcn &&
6398           Target.getVendor() == llvm::Triple::AMD &&
6399           Target.getOS() == llvm::Triple::AMDHSA)
6400         TC = std::make_unique<toolchains::HIPAMDToolChain>(*this, Target,
6401                                                            HostTC, Args);
6402       else if (Target.getArch() == llvm::Triple::spirv64 &&
6403                Target.getVendor() == llvm::Triple::UnknownVendor &&
6404                Target.getOS() == llvm::Triple::UnknownOS)
6405         TC = std::make_unique<toolchains::HIPSPVToolChain>(*this, Target,
6406                                                            HostTC, Args);
6407       break;
6408     }
6409     default:
6410       break;
6411     }
6412   }
6413 
6414   return *TC;
6415 }
6416 
6417 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
6418   // Say "no" if there is not exactly one input of a type clang understands.
6419   if (JA.size() != 1 ||
6420       !types::isAcceptedByClang((*JA.input_begin())->getType()))
6421     return false;
6422 
6423   // And say "no" if this is not a kind of action clang understands.
6424   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
6425       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA) &&
6426       !isa<ExtractAPIJobAction>(JA))
6427     return false;
6428 
6429   return true;
6430 }
6431 
6432 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
6433   // Say "no" if there is not exactly one input of a type flang understands.
6434   if (JA.size() != 1 ||
6435       !types::isAcceptedByFlang((*JA.input_begin())->getType()))
6436     return false;
6437 
6438   // And say "no" if this is not a kind of action flang understands.
6439   if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) &&
6440       !isa<BackendJobAction>(JA))
6441     return false;
6442 
6443   return true;
6444 }
6445 
6446 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
6447   // Only emit static library if the flag is set explicitly.
6448   if (Args.hasArg(options::OPT_emit_static_lib))
6449     return true;
6450   return false;
6451 }
6452 
6453 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
6454 /// grouped values as integers. Numbers which are not provided are set to 0.
6455 ///
6456 /// \return True if the entire string was parsed (9.2), or all groups were
6457 /// parsed (10.3.5extrastuff).
6458 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
6459                                unsigned &Micro, bool &HadExtra) {
6460   HadExtra = false;
6461 
6462   Major = Minor = Micro = 0;
6463   if (Str.empty())
6464     return false;
6465 
6466   if (Str.consumeInteger(10, Major))
6467     return false;
6468   if (Str.empty())
6469     return true;
6470   if (Str[0] != '.')
6471     return false;
6472 
6473   Str = Str.drop_front(1);
6474 
6475   if (Str.consumeInteger(10, Minor))
6476     return false;
6477   if (Str.empty())
6478     return true;
6479   if (Str[0] != '.')
6480     return false;
6481   Str = Str.drop_front(1);
6482 
6483   if (Str.consumeInteger(10, Micro))
6484     return false;
6485   if (!Str.empty())
6486     HadExtra = true;
6487   return true;
6488 }
6489 
6490 /// Parse digits from a string \p Str and fulfill \p Digits with
6491 /// the parsed numbers. This method assumes that the max number of
6492 /// digits to look for is equal to Digits.size().
6493 ///
6494 /// \return True if the entire string was parsed and there are
6495 /// no extra characters remaining at the end.
6496 bool Driver::GetReleaseVersion(StringRef Str,
6497                                MutableArrayRef<unsigned> Digits) {
6498   if (Str.empty())
6499     return false;
6500 
6501   unsigned CurDigit = 0;
6502   while (CurDigit < Digits.size()) {
6503     unsigned Digit;
6504     if (Str.consumeInteger(10, Digit))
6505       return false;
6506     Digits[CurDigit] = Digit;
6507     if (Str.empty())
6508       return true;
6509     if (Str[0] != '.')
6510       return false;
6511     Str = Str.drop_front(1);
6512     CurDigit++;
6513   }
6514 
6515   // More digits than requested, bail out...
6516   return false;
6517 }
6518 
6519 llvm::opt::Visibility
6520 Driver::getOptionVisibilityMask(bool UseDriverMode) const {
6521   if (!UseDriverMode)
6522     return llvm::opt::Visibility(options::ClangOption);
6523   if (IsCLMode())
6524     return llvm::opt::Visibility(options::CLOption);
6525   if (IsDXCMode())
6526     return llvm::opt::Visibility(options::DXCOption);
6527   if (IsFlangMode())  {
6528     return llvm::opt::Visibility(options::FlangOption);
6529   }
6530   return llvm::opt::Visibility(options::ClangOption);
6531 }
6532 
6533 const char *Driver::getExecutableForDriverMode(DriverMode Mode) {
6534   switch (Mode) {
6535   case GCCMode:
6536     return "clang";
6537   case GXXMode:
6538     return "clang++";
6539   case CPPMode:
6540     return "clang-cpp";
6541   case CLMode:
6542     return "clang-cl";
6543   case FlangMode:
6544     return "flang";
6545   case DXCMode:
6546     return "clang-dxc";
6547   }
6548 
6549   llvm_unreachable("Unhandled Mode");
6550 }
6551 
6552 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
6553   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
6554 }
6555 
6556 bool clang::driver::willEmitRemarks(const ArgList &Args) {
6557   // -fsave-optimization-record enables it.
6558   if (Args.hasFlag(options::OPT_fsave_optimization_record,
6559                    options::OPT_fno_save_optimization_record, false))
6560     return true;
6561 
6562   // -fsave-optimization-record=<format> enables it as well.
6563   if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
6564                    options::OPT_fno_save_optimization_record, false))
6565     return true;
6566 
6567   // -foptimization-record-file alone enables it too.
6568   if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
6569                    options::OPT_fno_save_optimization_record, false))
6570     return true;
6571 
6572   // -foptimization-record-passes alone enables it too.
6573   if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
6574                    options::OPT_fno_save_optimization_record, false))
6575     return true;
6576   return false;
6577 }
6578 
6579 llvm::StringRef clang::driver::getDriverMode(StringRef ProgName,
6580                                              ArrayRef<const char *> Args) {
6581   static StringRef OptName =
6582       getDriverOptTable().getOption(options::OPT_driver_mode).getPrefixedName();
6583   llvm::StringRef Opt;
6584   for (StringRef Arg : Args) {
6585     if (!Arg.starts_with(OptName))
6586       continue;
6587     Opt = Arg;
6588   }
6589   if (Opt.empty())
6590     Opt = ToolChain::getTargetAndModeFromProgramName(ProgName).DriverMode;
6591   return Opt.consume_front(OptName) ? Opt : "";
6592 }
6593 
6594 bool driver::IsClangCL(StringRef DriverMode) { return DriverMode.equals("cl"); }
6595 
6596 llvm::Error driver::expandResponseFiles(SmallVectorImpl<const char *> &Args,
6597                                         bool ClangCLMode,
6598                                         llvm::BumpPtrAllocator &Alloc,
6599                                         llvm::vfs::FileSystem *FS) {
6600   // Parse response files using the GNU syntax, unless we're in CL mode. There
6601   // are two ways to put clang in CL compatibility mode: ProgName is either
6602   // clang-cl or cl, or --driver-mode=cl is on the command line. The normal
6603   // command line parsing can't happen until after response file parsing, so we
6604   // have to manually search for a --driver-mode=cl argument the hard way.
6605   // Finally, our -cc1 tools don't care which tokenization mode we use because
6606   // response files written by clang will tokenize the same way in either mode.
6607   enum { Default, POSIX, Windows } RSPQuoting = Default;
6608   for (const char *F : Args) {
6609     if (strcmp(F, "--rsp-quoting=posix") == 0)
6610       RSPQuoting = POSIX;
6611     else if (strcmp(F, "--rsp-quoting=windows") == 0)
6612       RSPQuoting = Windows;
6613   }
6614 
6615   // Determines whether we want nullptr markers in Args to indicate response
6616   // files end-of-lines. We only use this for the /LINK driver argument with
6617   // clang-cl.exe on Windows.
6618   bool MarkEOLs = ClangCLMode;
6619 
6620   llvm::cl::TokenizerCallback Tokenizer;
6621   if (RSPQuoting == Windows || (RSPQuoting == Default && ClangCLMode))
6622     Tokenizer = &llvm::cl::TokenizeWindowsCommandLine;
6623   else
6624     Tokenizer = &llvm::cl::TokenizeGNUCommandLine;
6625 
6626   if (MarkEOLs && Args.size() > 1 && StringRef(Args[1]).starts_with("-cc1"))
6627     MarkEOLs = false;
6628 
6629   llvm::cl::ExpansionContext ECtx(Alloc, Tokenizer);
6630   ECtx.setMarkEOLs(MarkEOLs);
6631   if (FS)
6632     ECtx.setVFS(FS);
6633 
6634   if (llvm::Error Err = ECtx.expandResponseFiles(Args))
6635     return Err;
6636 
6637   // If -cc1 came from a response file, remove the EOL sentinels.
6638   auto FirstArg = llvm::find_if(llvm::drop_begin(Args),
6639                                 [](const char *A) { return A != nullptr; });
6640   if (FirstArg != Args.end() && StringRef(*FirstArg).starts_with("-cc1")) {
6641     // If -cc1 came from a response file, remove the EOL sentinels.
6642     if (MarkEOLs) {
6643       auto newEnd = std::remove(Args.begin(), Args.end(), nullptr);
6644       Args.resize(newEnd - Args.begin());
6645     }
6646   }
6647 
6648   return llvm::Error::success();
6649 }
6650