xref: /freebsd/contrib/llvm-project/clang/lib/Driver/Driver.cpp (revision 18f21f0355481283ceef0ec10e99554f44c205c2)
1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "clang/Driver/Driver.h"
10 #include "InputInfo.h"
11 #include "ToolChains/AIX.h"
12 #include "ToolChains/AMDGPU.h"
13 #include "ToolChains/AVR.h"
14 #include "ToolChains/Ananas.h"
15 #include "ToolChains/BareMetal.h"
16 #include "ToolChains/Clang.h"
17 #include "ToolChains/CloudABI.h"
18 #include "ToolChains/Contiki.h"
19 #include "ToolChains/CrossWindows.h"
20 #include "ToolChains/Cuda.h"
21 #include "ToolChains/Darwin.h"
22 #include "ToolChains/DragonFly.h"
23 #include "ToolChains/FreeBSD.h"
24 #include "ToolChains/Fuchsia.h"
25 #include "ToolChains/Gnu.h"
26 #include "ToolChains/HIP.h"
27 #include "ToolChains/Haiku.h"
28 #include "ToolChains/Hexagon.h"
29 #include "ToolChains/Hurd.h"
30 #include "ToolChains/Lanai.h"
31 #include "ToolChains/Linux.h"
32 #include "ToolChains/MSP430.h"
33 #include "ToolChains/MSVC.h"
34 #include "ToolChains/MinGW.h"
35 #include "ToolChains/Minix.h"
36 #include "ToolChains/MipsLinux.h"
37 #include "ToolChains/Myriad.h"
38 #include "ToolChains/NaCl.h"
39 #include "ToolChains/NetBSD.h"
40 #include "ToolChains/OpenBSD.h"
41 #include "ToolChains/PPCLinux.h"
42 #include "ToolChains/PS4CPU.h"
43 #include "ToolChains/RISCVToolchain.h"
44 #include "ToolChains/Solaris.h"
45 #include "ToolChains/TCE.h"
46 #include "ToolChains/VEToolchain.h"
47 #include "ToolChains/WebAssembly.h"
48 #include "ToolChains/XCore.h"
49 #include "clang/Basic/Version.h"
50 #include "clang/Config/config.h"
51 #include "clang/Driver/Action.h"
52 #include "clang/Driver/Compilation.h"
53 #include "clang/Driver/DriverDiagnostic.h"
54 #include "clang/Driver/Job.h"
55 #include "clang/Driver/Options.h"
56 #include "clang/Driver/SanitizerArgs.h"
57 #include "clang/Driver/Tool.h"
58 #include "clang/Driver/ToolChain.h"
59 #include "llvm/ADT/ArrayRef.h"
60 #include "llvm/ADT/STLExtras.h"
61 #include "llvm/ADT/SmallSet.h"
62 #include "llvm/ADT/StringExtras.h"
63 #include "llvm/ADT/StringSet.h"
64 #include "llvm/ADT/StringSwitch.h"
65 #include "llvm/Config/llvm-config.h"
66 #include "llvm/Option/Arg.h"
67 #include "llvm/Option/ArgList.h"
68 #include "llvm/Option/OptSpecifier.h"
69 #include "llvm/Option/OptTable.h"
70 #include "llvm/Option/Option.h"
71 #include "llvm/Support/CommandLine.h"
72 #include "llvm/Support/ErrorHandling.h"
73 #include "llvm/Support/FileSystem.h"
74 #include "llvm/Support/FormatVariadic.h"
75 #include "llvm/Support/Host.h"
76 #include "llvm/Support/Path.h"
77 #include "llvm/Support/PrettyStackTrace.h"
78 #include "llvm/Support/Process.h"
79 #include "llvm/Support/Program.h"
80 #include "llvm/Support/StringSaver.h"
81 #include "llvm/Support/TargetRegistry.h"
82 #include "llvm/Support/VirtualFileSystem.h"
83 #include "llvm/Support/raw_ostream.h"
84 #include <map>
85 #include <memory>
86 #include <utility>
87 #if LLVM_ON_UNIX
88 #include <unistd.h> // getpid
89 #include <sysexits.h> // EX_IOERR
90 #endif
91 
92 using namespace clang::driver;
93 using namespace clang;
94 using namespace llvm::opt;
95 
96 // static
97 std::string Driver::GetResourcesPath(StringRef BinaryPath,
98                                      StringRef CustomResourceDir) {
99   // Since the resource directory is embedded in the module hash, it's important
100   // that all places that need it call this function, so that they get the
101   // exact same string ("a/../b/" and "b/" get different hashes, for example).
102 
103   // Dir is bin/ or lib/, depending on where BinaryPath is.
104   std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath));
105 
106   SmallString<128> P(Dir);
107   if (CustomResourceDir != "") {
108     llvm::sys::path::append(P, CustomResourceDir);
109   } else {
110     // On Windows, libclang.dll is in bin/.
111     // On non-Windows, libclang.so/.dylib is in lib/.
112     // With a static-library build of libclang, LibClangPath will contain the
113     // path of the embedding binary, which for LLVM binaries will be in bin/.
114     // ../lib gets us to lib/ in both cases.
115     P = llvm::sys::path::parent_path(Dir);
116     llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang",
117                             CLANG_VERSION_STRING);
118   }
119 
120   return std::string(P.str());
121 }
122 
123 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple,
124                DiagnosticsEngine &Diags,
125                IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS)
126     : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode),
127       SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None),
128       ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT),
129       DriverTitle("clang LLVM compiler"), CCPrintOptionsFilename(nullptr),
130       CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr),
131       CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false),
132       CCLogDiagnostics(false), CCGenDiagnostics(false),
133       TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc),
134       CheckInputsExist(true), GenReproducer(false),
135       SuppressMissingInputWarning(false) {
136   // Provide a sane fallback if no VFS is specified.
137   if (!this->VFS)
138     this->VFS = llvm::vfs::getRealFileSystem();
139 
140   Name = std::string(llvm::sys::path::filename(ClangExecutable));
141   Dir = std::string(llvm::sys::path::parent_path(ClangExecutable));
142   InstalledDir = Dir; // Provide a sensible default installed dir.
143 
144   if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) {
145     // Prepend InstalledDir if SysRoot is relative
146     SmallString<128> P(InstalledDir);
147     llvm::sys::path::append(P, SysRoot);
148     SysRoot = std::string(P);
149   }
150 
151 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR)
152   SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR;
153 #endif
154 #if defined(CLANG_CONFIG_FILE_USER_DIR)
155   UserConfigDir = CLANG_CONFIG_FILE_USER_DIR;
156 #endif
157 
158   // Compute the path to the resource directory.
159   ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR);
160 }
161 
162 void Driver::ParseDriverMode(StringRef ProgramName,
163                              ArrayRef<const char *> Args) {
164   if (ClangNameParts.isEmpty())
165     ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName);
166   setDriverModeFromOption(ClangNameParts.DriverMode);
167 
168   for (const char *ArgPtr : Args) {
169     // Ignore nullptrs, they are the response file's EOL markers.
170     if (ArgPtr == nullptr)
171       continue;
172     const StringRef Arg = ArgPtr;
173     setDriverModeFromOption(Arg);
174   }
175 }
176 
177 void Driver::setDriverModeFromOption(StringRef Opt) {
178   const std::string OptName =
179       getOpts().getOption(options::OPT_driver_mode).getPrefixedName();
180   if (!Opt.startswith(OptName))
181     return;
182   StringRef Value = Opt.drop_front(OptName.size());
183 
184   if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value)
185                    .Case("gcc", GCCMode)
186                    .Case("g++", GXXMode)
187                    .Case("cpp", CPPMode)
188                    .Case("cl", CLMode)
189                    .Case("flang", FlangMode)
190                    .Default(None))
191     Mode = *M;
192   else
193     Diag(diag::err_drv_unsupported_option_argument) << OptName << Value;
194 }
195 
196 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings,
197                                      bool IsClCompatMode,
198                                      bool &ContainsError) {
199   llvm::PrettyStackTraceString CrashInfo("Command line argument parsing");
200   ContainsError = false;
201 
202   unsigned IncludedFlagsBitmask;
203   unsigned ExcludedFlagsBitmask;
204   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
205       getIncludeExcludeOptionFlagMasks(IsClCompatMode);
206 
207   unsigned MissingArgIndex, MissingArgCount;
208   InputArgList Args =
209       getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount,
210                           IncludedFlagsBitmask, ExcludedFlagsBitmask);
211 
212   // Check for missing argument error.
213   if (MissingArgCount) {
214     Diag(diag::err_drv_missing_argument)
215         << Args.getArgString(MissingArgIndex) << MissingArgCount;
216     ContainsError |=
217         Diags.getDiagnosticLevel(diag::err_drv_missing_argument,
218                                  SourceLocation()) > DiagnosticsEngine::Warning;
219   }
220 
221   // Check for unsupported options.
222   for (const Arg *A : Args) {
223     if (A->getOption().hasFlag(options::Unsupported)) {
224       unsigned DiagID;
225       auto ArgString = A->getAsString(Args);
226       std::string Nearest;
227       if (getOpts().findNearest(
228             ArgString, Nearest, IncludedFlagsBitmask,
229             ExcludedFlagsBitmask | options::Unsupported) > 1) {
230         DiagID = diag::err_drv_unsupported_opt;
231         Diag(DiagID) << ArgString;
232       } else {
233         DiagID = diag::err_drv_unsupported_opt_with_suggestion;
234         Diag(DiagID) << ArgString << Nearest;
235       }
236       ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
237                        DiagnosticsEngine::Warning;
238       continue;
239     }
240 
241     // Warn about -mcpu= without an argument.
242     if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) {
243       Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args);
244       ContainsError |= Diags.getDiagnosticLevel(
245                            diag::warn_drv_empty_joined_argument,
246                            SourceLocation()) > DiagnosticsEngine::Warning;
247     }
248   }
249 
250   for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) {
251     unsigned DiagID;
252     auto ArgString = A->getAsString(Args);
253     std::string Nearest;
254     if (getOpts().findNearest(
255           ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) {
256       DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl
257                           : diag::err_drv_unknown_argument;
258       Diags.Report(DiagID) << ArgString;
259     } else {
260       DiagID = IsCLMode()
261                    ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion
262                    : diag::err_drv_unknown_argument_with_suggestion;
263       Diags.Report(DiagID) << ArgString << Nearest;
264     }
265     ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) >
266                      DiagnosticsEngine::Warning;
267   }
268 
269   return Args;
270 }
271 
272 // Determine which compilation mode we are in. We look for options which
273 // affect the phase, starting with the earliest phases, and record which
274 // option we used to determine the final phase.
275 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL,
276                                  Arg **FinalPhaseArg) const {
277   Arg *PhaseArg = nullptr;
278   phases::ID FinalPhase;
279 
280   // -{E,EP,P,M,MM} only run the preprocessor.
281   if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) ||
282       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) ||
283       (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) ||
284       (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) {
285     FinalPhase = phases::Preprocess;
286 
287   // --precompile only runs up to precompilation.
288   } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) {
289     FinalPhase = phases::Precompile;
290 
291   // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler.
292   } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) ||
293              (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) ||
294              (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) ||
295              (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) ||
296              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) ||
297              (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) ||
298              (PhaseArg = DAL.getLastArg(options::OPT__migrate)) ||
299              (PhaseArg = DAL.getLastArg(options::OPT__analyze)) ||
300              (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) {
301     FinalPhase = phases::Compile;
302 
303   // -S only runs up to the backend.
304   } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) {
305     FinalPhase = phases::Backend;
306 
307   // -c compilation only runs up to the assembler.
308   } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) {
309     FinalPhase = phases::Assemble;
310 
311   // Otherwise do everything.
312   } else
313     FinalPhase = phases::Link;
314 
315   if (FinalPhaseArg)
316     *FinalPhaseArg = PhaseArg;
317 
318   return FinalPhase;
319 }
320 
321 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts,
322                          StringRef Value, bool Claim = true) {
323   Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value,
324                    Args.getBaseArgs().MakeIndex(Value), Value.data());
325   Args.AddSynthesizedArg(A);
326   if (Claim)
327     A->claim();
328   return A;
329 }
330 
331 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const {
332   const llvm::opt::OptTable &Opts = getOpts();
333   DerivedArgList *DAL = new DerivedArgList(Args);
334 
335   bool HasNostdlib = Args.hasArg(options::OPT_nostdlib);
336   bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx);
337   bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs);
338   for (Arg *A : Args) {
339     // Unfortunately, we have to parse some forwarding options (-Xassembler,
340     // -Xlinker, -Xpreprocessor) because we either integrate their functionality
341     // (assembler and preprocessor), or bypass a previous driver ('collect2').
342 
343     // Rewrite linker options, to replace --no-demangle with a custom internal
344     // option.
345     if ((A->getOption().matches(options::OPT_Wl_COMMA) ||
346          A->getOption().matches(options::OPT_Xlinker)) &&
347         A->containsValue("--no-demangle")) {
348       // Add the rewritten no-demangle argument.
349       DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle));
350 
351       // Add the remaining values as Xlinker arguments.
352       for (StringRef Val : A->getValues())
353         if (Val != "--no-demangle")
354           DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val);
355 
356       continue;
357     }
358 
359     // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by
360     // some build systems. We don't try to be complete here because we don't
361     // care to encourage this usage model.
362     if (A->getOption().matches(options::OPT_Wp_COMMA) &&
363         (A->getValue(0) == StringRef("-MD") ||
364          A->getValue(0) == StringRef("-MMD"))) {
365       // Rewrite to -MD/-MMD along with -MF.
366       if (A->getValue(0) == StringRef("-MD"))
367         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD));
368       else
369         DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD));
370       if (A->getNumValues() == 2)
371         DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1));
372       continue;
373     }
374 
375     // Rewrite reserved library names.
376     if (A->getOption().matches(options::OPT_l)) {
377       StringRef Value = A->getValue();
378 
379       // Rewrite unless -nostdlib is present.
380       if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx &&
381           Value == "stdc++") {
382         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx));
383         continue;
384       }
385 
386       // Rewrite unconditionally.
387       if (Value == "cc_kext") {
388         DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext));
389         continue;
390       }
391     }
392 
393     // Pick up inputs via the -- option.
394     if (A->getOption().matches(options::OPT__DASH_DASH)) {
395       A->claim();
396       for (StringRef Val : A->getValues())
397         DAL->append(MakeInputArg(*DAL, Opts, Val, false));
398       continue;
399     }
400 
401     DAL->append(A);
402   }
403 
404   // Enforce -static if -miamcu is present.
405   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false))
406     DAL->AddFlagArg(0, Opts.getOption(options::OPT_static));
407 
408 // Add a default value of -mlinker-version=, if one was given and the user
409 // didn't specify one.
410 #if defined(HOST_LINK_VERSION)
411   if (!Args.hasArg(options::OPT_mlinker_version_EQ) &&
412       strlen(HOST_LINK_VERSION) > 0) {
413     DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ),
414                       HOST_LINK_VERSION);
415     DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim();
416   }
417 #endif
418 
419   return DAL;
420 }
421 
422 /// Compute target triple from args.
423 ///
424 /// This routine provides the logic to compute a target triple from various
425 /// args passed to the driver and the default triple string.
426 static llvm::Triple computeTargetTriple(const Driver &D,
427                                         StringRef TargetTriple,
428                                         const ArgList &Args,
429                                         StringRef DarwinArchName = "") {
430   // FIXME: Already done in Compilation *Driver::BuildCompilation
431   if (const Arg *A = Args.getLastArg(options::OPT_target))
432     TargetTriple = A->getValue();
433 
434   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
435 
436   // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made
437   // -gnu* only, and we can not change this, so we have to detect that case as
438   // being the Hurd OS.
439   if (TargetTriple.find("-unknown-gnu") != StringRef::npos ||
440       TargetTriple.find("-pc-gnu") != StringRef::npos)
441     Target.setOSName("hurd");
442 
443   // Handle Apple-specific options available here.
444   if (Target.isOSBinFormatMachO()) {
445     // If an explicit Darwin arch name is given, that trumps all.
446     if (!DarwinArchName.empty()) {
447       tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName);
448       return Target;
449     }
450 
451     // Handle the Darwin '-arch' flag.
452     if (Arg *A = Args.getLastArg(options::OPT_arch)) {
453       StringRef ArchName = A->getValue();
454       tools::darwin::setTripleTypeForMachOArchName(Target, ArchName);
455     }
456   }
457 
458   // Handle pseudo-target flags '-mlittle-endian'/'-EL' and
459   // '-mbig-endian'/'-EB'.
460   if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian,
461                                options::OPT_mbig_endian)) {
462     if (A->getOption().matches(options::OPT_mlittle_endian)) {
463       llvm::Triple LE = Target.getLittleEndianArchVariant();
464       if (LE.getArch() != llvm::Triple::UnknownArch)
465         Target = std::move(LE);
466     } else {
467       llvm::Triple BE = Target.getBigEndianArchVariant();
468       if (BE.getArch() != llvm::Triple::UnknownArch)
469         Target = std::move(BE);
470     }
471   }
472 
473   // Skip further flag support on OSes which don't support '-m32' or '-m64'.
474   if (Target.getArch() == llvm::Triple::tce ||
475       Target.getOS() == llvm::Triple::Minix)
476     return Target;
477 
478   // On AIX, the env OBJECT_MODE may affect the resulting arch variant.
479   if (Target.isOSAIX()) {
480     if (Optional<std::string> ObjectModeValue =
481             llvm::sys::Process::GetEnv("OBJECT_MODE")) {
482       StringRef ObjectMode = *ObjectModeValue;
483       llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
484 
485       if (ObjectMode.equals("64")) {
486         AT = Target.get64BitArchVariant().getArch();
487       } else if (ObjectMode.equals("32")) {
488         AT = Target.get32BitArchVariant().getArch();
489       } else {
490         D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode;
491       }
492 
493       if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
494         Target.setArch(AT);
495     }
496   }
497 
498   // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'.
499   Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32,
500                            options::OPT_m32, options::OPT_m16);
501   if (A) {
502     llvm::Triple::ArchType AT = llvm::Triple::UnknownArch;
503 
504     if (A->getOption().matches(options::OPT_m64)) {
505       AT = Target.get64BitArchVariant().getArch();
506       if (Target.getEnvironment() == llvm::Triple::GNUX32)
507         Target.setEnvironment(llvm::Triple::GNU);
508     } else if (A->getOption().matches(options::OPT_mx32) &&
509                Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) {
510       AT = llvm::Triple::x86_64;
511       Target.setEnvironment(llvm::Triple::GNUX32);
512     } else if (A->getOption().matches(options::OPT_m32)) {
513       AT = Target.get32BitArchVariant().getArch();
514       if (Target.getEnvironment() == llvm::Triple::GNUX32)
515         Target.setEnvironment(llvm::Triple::GNU);
516     } else if (A->getOption().matches(options::OPT_m16) &&
517                Target.get32BitArchVariant().getArch() == llvm::Triple::x86) {
518       AT = llvm::Triple::x86;
519       Target.setEnvironment(llvm::Triple::CODE16);
520     }
521 
522     if (AT != llvm::Triple::UnknownArch && AT != Target.getArch())
523       Target.setArch(AT);
524   }
525 
526   // Handle -miamcu flag.
527   if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) {
528     if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86)
529       D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu"
530                                                        << Target.str();
531 
532     if (A && !A->getOption().matches(options::OPT_m32))
533       D.Diag(diag::err_drv_argument_not_allowed_with)
534           << "-miamcu" << A->getBaseArg().getAsString(Args);
535 
536     Target.setArch(llvm::Triple::x86);
537     Target.setArchName("i586");
538     Target.setEnvironment(llvm::Triple::UnknownEnvironment);
539     Target.setEnvironmentName("");
540     Target.setOS(llvm::Triple::ELFIAMCU);
541     Target.setVendor(llvm::Triple::UnknownVendor);
542     Target.setVendorName("intel");
543   }
544 
545   // If target is MIPS adjust the target triple
546   // accordingly to provided ABI name.
547   A = Args.getLastArg(options::OPT_mabi_EQ);
548   if (A && Target.isMIPS()) {
549     StringRef ABIName = A->getValue();
550     if (ABIName == "32") {
551       Target = Target.get32BitArchVariant();
552       if (Target.getEnvironment() == llvm::Triple::GNUABI64 ||
553           Target.getEnvironment() == llvm::Triple::GNUABIN32)
554         Target.setEnvironment(llvm::Triple::GNU);
555     } else if (ABIName == "n32") {
556       Target = Target.get64BitArchVariant();
557       if (Target.getEnvironment() == llvm::Triple::GNU ||
558           Target.getEnvironment() == llvm::Triple::GNUABI64)
559         Target.setEnvironment(llvm::Triple::GNUABIN32);
560     } else if (ABIName == "64") {
561       Target = Target.get64BitArchVariant();
562       if (Target.getEnvironment() == llvm::Triple::GNU ||
563           Target.getEnvironment() == llvm::Triple::GNUABIN32)
564         Target.setEnvironment(llvm::Triple::GNUABI64);
565     }
566   }
567 
568   // If target is RISC-V adjust the target triple according to
569   // provided architecture name
570   A = Args.getLastArg(options::OPT_march_EQ);
571   if (A && Target.isRISCV()) {
572     StringRef ArchName = A->getValue();
573     if (ArchName.startswith_lower("rv32"))
574       Target.setArch(llvm::Triple::riscv32);
575     else if (ArchName.startswith_lower("rv64"))
576       Target.setArch(llvm::Triple::riscv64);
577   }
578 
579   return Target;
580 }
581 
582 // Parse the LTO options and record the type of LTO compilation
583 // based on which -f(no-)?lto(=.*)? option occurs last.
584 void Driver::setLTOMode(const llvm::opt::ArgList &Args) {
585   LTOMode = LTOK_None;
586   if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ,
587                     options::OPT_fno_lto, false))
588     return;
589 
590   StringRef LTOName("full");
591 
592   const Arg *A = Args.getLastArg(options::OPT_flto_EQ);
593   if (A)
594     LTOName = A->getValue();
595 
596   LTOMode = llvm::StringSwitch<LTOKind>(LTOName)
597                 .Case("full", LTOK_Full)
598                 .Case("thin", LTOK_Thin)
599                 .Default(LTOK_Unknown);
600 
601   if (LTOMode == LTOK_Unknown) {
602     assert(A);
603     Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName()
604                                                     << A->getValue();
605   }
606 }
607 
608 /// Compute the desired OpenMP runtime from the flags provided.
609 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const {
610   StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME);
611 
612   const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ);
613   if (A)
614     RuntimeName = A->getValue();
615 
616   auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName)
617                 .Case("libomp", OMPRT_OMP)
618                 .Case("libgomp", OMPRT_GOMP)
619                 .Case("libiomp5", OMPRT_IOMP5)
620                 .Default(OMPRT_Unknown);
621 
622   if (RT == OMPRT_Unknown) {
623     if (A)
624       Diag(diag::err_drv_unsupported_option_argument)
625           << A->getOption().getName() << A->getValue();
626     else
627       // FIXME: We could use a nicer diagnostic here.
628       Diag(diag::err_drv_unsupported_opt) << "-fopenmp";
629   }
630 
631   return RT;
632 }
633 
634 void Driver::CreateOffloadingDeviceToolChains(Compilation &C,
635                                               InputList &Inputs) {
636 
637   //
638   // CUDA/HIP
639   //
640   // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA
641   // or HIP type. However, mixed CUDA/HIP compilation is not supported.
642   bool IsCuda =
643       llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
644         return types::isCuda(I.first);
645       });
646   bool IsHIP =
647       llvm::any_of(Inputs,
648                    [](std::pair<types::ID, const llvm::opt::Arg *> &I) {
649                      return types::isHIP(I.first);
650                    }) ||
651       C.getInputArgs().hasArg(options::OPT_hip_link);
652   if (IsCuda && IsHIP) {
653     Diag(clang::diag::err_drv_mix_cuda_hip);
654     return;
655   }
656   if (IsCuda) {
657     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
658     const llvm::Triple &HostTriple = HostTC->getTriple();
659     StringRef DeviceTripleStr;
660     auto OFK = Action::OFK_Cuda;
661     DeviceTripleStr =
662         HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda";
663     llvm::Triple CudaTriple(DeviceTripleStr);
664     // Use the CUDA and host triples as the key into the ToolChains map,
665     // because the device toolchain we create depends on both.
666     auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()];
667     if (!CudaTC) {
668       CudaTC = std::make_unique<toolchains::CudaToolChain>(
669           *this, CudaTriple, *HostTC, C.getInputArgs(), OFK);
670     }
671     C.addOffloadDeviceToolChain(CudaTC.get(), OFK);
672   } else if (IsHIP) {
673     const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
674     const llvm::Triple &HostTriple = HostTC->getTriple();
675     StringRef DeviceTripleStr;
676     auto OFK = Action::OFK_HIP;
677     DeviceTripleStr = "amdgcn-amd-amdhsa";
678     llvm::Triple HIPTriple(DeviceTripleStr);
679     // Use the HIP and host triples as the key into the ToolChains map,
680     // because the device toolchain we create depends on both.
681     auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()];
682     if (!HIPTC) {
683       HIPTC = std::make_unique<toolchains::HIPToolChain>(
684           *this, HIPTriple, *HostTC, C.getInputArgs());
685     }
686     C.addOffloadDeviceToolChain(HIPTC.get(), OFK);
687   }
688 
689   //
690   // OpenMP
691   //
692   // We need to generate an OpenMP toolchain if the user specified targets with
693   // the -fopenmp-targets option.
694   if (Arg *OpenMPTargets =
695           C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) {
696     if (OpenMPTargets->getNumValues()) {
697       // We expect that -fopenmp-targets is always used in conjunction with the
698       // option -fopenmp specifying a valid runtime with offloading support,
699       // i.e. libomp or libiomp.
700       bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag(
701           options::OPT_fopenmp, options::OPT_fopenmp_EQ,
702           options::OPT_fno_openmp, false);
703       if (HasValidOpenMPRuntime) {
704         OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs());
705         HasValidOpenMPRuntime =
706             OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5;
707       }
708 
709       if (HasValidOpenMPRuntime) {
710         llvm::StringMap<const char *> FoundNormalizedTriples;
711         for (const char *Val : OpenMPTargets->getValues()) {
712           llvm::Triple TT(Val);
713           std::string NormalizedName = TT.normalize();
714 
715           // Make sure we don't have a duplicate triple.
716           auto Duplicate = FoundNormalizedTriples.find(NormalizedName);
717           if (Duplicate != FoundNormalizedTriples.end()) {
718             Diag(clang::diag::warn_drv_omp_offload_target_duplicate)
719                 << Val << Duplicate->second;
720             continue;
721           }
722 
723           // Store the current triple so that we can check for duplicates in the
724           // following iterations.
725           FoundNormalizedTriples[NormalizedName] = Val;
726 
727           // If the specified target is invalid, emit a diagnostic.
728           if (TT.getArch() == llvm::Triple::UnknownArch)
729             Diag(clang::diag::err_drv_invalid_omp_target) << Val;
730           else {
731             const ToolChain *TC;
732             // CUDA toolchains have to be selected differently. They pair host
733             // and device in their implementation.
734             if (TT.isNVPTX()) {
735               const ToolChain *HostTC =
736                   C.getSingleOffloadToolChain<Action::OFK_Host>();
737               assert(HostTC && "Host toolchain should be always defined.");
738               auto &CudaTC =
739                   ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()];
740               if (!CudaTC)
741                 CudaTC = std::make_unique<toolchains::CudaToolChain>(
742                     *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP);
743               TC = CudaTC.get();
744             } else
745               TC = &getToolChain(C.getInputArgs(), TT);
746             C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP);
747           }
748         }
749       } else
750         Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets);
751     } else
752       Diag(clang::diag::warn_drv_empty_joined_argument)
753           << OpenMPTargets->getAsString(C.getInputArgs());
754   }
755 
756   //
757   // TODO: Add support for other offloading programming models here.
758   //
759 }
760 
761 /// Looks the given directories for the specified file.
762 ///
763 /// \param[out] FilePath File path, if the file was found.
764 /// \param[in]  Dirs Directories used for the search.
765 /// \param[in]  FileName Name of the file to search for.
766 /// \return True if file was found.
767 ///
768 /// Looks for file specified by FileName sequentially in directories specified
769 /// by Dirs.
770 ///
771 static bool searchForFile(SmallVectorImpl<char> &FilePath,
772                           ArrayRef<std::string> Dirs,
773                           StringRef FileName) {
774   SmallString<128> WPath;
775   for (const std::string &Dir : Dirs) {
776     if (Dir.empty())
777       continue;
778     WPath.clear();
779     llvm::sys::path::append(WPath, Dir, FileName);
780     llvm::sys::path::native(WPath);
781     if (llvm::sys::fs::is_regular_file(WPath)) {
782       FilePath = std::move(WPath);
783       return true;
784     }
785   }
786   return false;
787 }
788 
789 bool Driver::readConfigFile(StringRef FileName) {
790   // Try reading the given file.
791   SmallVector<const char *, 32> NewCfgArgs;
792   if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) {
793     Diag(diag::err_drv_cannot_read_config_file) << FileName;
794     return true;
795   }
796 
797   // Read options from config file.
798   llvm::SmallString<128> CfgFileName(FileName);
799   llvm::sys::path::native(CfgFileName);
800   ConfigFile = std::string(CfgFileName.str());
801   bool ContainErrors;
802   CfgOptions = std::make_unique<InputArgList>(
803       ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors));
804   if (ContainErrors) {
805     CfgOptions.reset();
806     return true;
807   }
808 
809   if (CfgOptions->hasArg(options::OPT_config)) {
810     CfgOptions.reset();
811     Diag(diag::err_drv_nested_config_file);
812     return true;
813   }
814 
815   // Claim all arguments that come from a configuration file so that the driver
816   // does not warn on any that is unused.
817   for (Arg *A : *CfgOptions)
818     A->claim();
819   return false;
820 }
821 
822 bool Driver::loadConfigFile() {
823   std::string CfgFileName;
824   bool FileSpecifiedExplicitly = false;
825 
826   // Process options that change search path for config files.
827   if (CLOptions) {
828     if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) {
829       SmallString<128> CfgDir;
830       CfgDir.append(
831           CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ));
832       if (!CfgDir.empty()) {
833         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
834           SystemConfigDir.clear();
835         else
836           SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end());
837       }
838     }
839     if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) {
840       SmallString<128> CfgDir;
841       CfgDir.append(
842           CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ));
843       if (!CfgDir.empty()) {
844         if (llvm::sys::fs::make_absolute(CfgDir).value() != 0)
845           UserConfigDir.clear();
846         else
847           UserConfigDir = std::string(CfgDir.begin(), CfgDir.end());
848       }
849     }
850   }
851 
852   // First try to find config file specified in command line.
853   if (CLOptions) {
854     std::vector<std::string> ConfigFiles =
855         CLOptions->getAllArgValues(options::OPT_config);
856     if (ConfigFiles.size() > 1) {
857       if (!std::all_of(
858               ConfigFiles.begin(), ConfigFiles.end(),
859               [ConfigFiles](std::string s) { return s == ConfigFiles[0]; })) {
860         Diag(diag::err_drv_duplicate_config);
861         return true;
862       }
863     }
864 
865     if (!ConfigFiles.empty()) {
866       CfgFileName = ConfigFiles.front();
867       assert(!CfgFileName.empty());
868 
869       // If argument contains directory separator, treat it as a path to
870       // configuration file.
871       if (llvm::sys::path::has_parent_path(CfgFileName)) {
872         SmallString<128> CfgFilePath;
873         if (llvm::sys::path::is_relative(CfgFileName))
874           llvm::sys::fs::current_path(CfgFilePath);
875         llvm::sys::path::append(CfgFilePath, CfgFileName);
876         if (!llvm::sys::fs::is_regular_file(CfgFilePath)) {
877           Diag(diag::err_drv_config_file_not_exist) << CfgFilePath;
878           return true;
879         }
880         return readConfigFile(CfgFilePath);
881       }
882 
883       FileSpecifiedExplicitly = true;
884     }
885   }
886 
887   // If config file is not specified explicitly, try to deduce configuration
888   // from executable name. For instance, an executable 'armv7l-clang' will
889   // search for config file 'armv7l-clang.cfg'.
890   if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty())
891     CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix;
892 
893   if (CfgFileName.empty())
894     return false;
895 
896   // Determine architecture part of the file name, if it is present.
897   StringRef CfgFileArch = CfgFileName;
898   size_t ArchPrefixLen = CfgFileArch.find('-');
899   if (ArchPrefixLen == StringRef::npos)
900     ArchPrefixLen = CfgFileArch.size();
901   llvm::Triple CfgTriple;
902   CfgFileArch = CfgFileArch.take_front(ArchPrefixLen);
903   CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch));
904   if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch)
905     ArchPrefixLen = 0;
906 
907   if (!StringRef(CfgFileName).endswith(".cfg"))
908     CfgFileName += ".cfg";
909 
910   // If config file starts with architecture name and command line options
911   // redefine architecture (with options like -m32 -LE etc), try finding new
912   // config file with that architecture.
913   SmallString<128> FixedConfigFile;
914   size_t FixedArchPrefixLen = 0;
915   if (ArchPrefixLen) {
916     // Get architecture name from config file name like 'i386.cfg' or
917     // 'armv7l-clang.cfg'.
918     // Check if command line options changes effective triple.
919     llvm::Triple EffectiveTriple = computeTargetTriple(*this,
920                                              CfgTriple.getTriple(), *CLOptions);
921     if (CfgTriple.getArch() != EffectiveTriple.getArch()) {
922       FixedConfigFile = EffectiveTriple.getArchName();
923       FixedArchPrefixLen = FixedConfigFile.size();
924       // Append the rest of original file name so that file name transforms
925       // like: i386-clang.cfg -> x86_64-clang.cfg.
926       if (ArchPrefixLen < CfgFileName.size())
927         FixedConfigFile += CfgFileName.substr(ArchPrefixLen);
928     }
929   }
930 
931   // Prepare list of directories where config file is searched for.
932   SmallVector<std::string, 3> CfgFileSearchDirs;
933   CfgFileSearchDirs.push_back(UserConfigDir);
934   CfgFileSearchDirs.push_back(SystemConfigDir);
935   CfgFileSearchDirs.push_back(Dir);
936 
937   // Try to find config file. First try file with corrected architecture.
938   llvm::SmallString<128> CfgFilePath;
939   if (!FixedConfigFile.empty()) {
940     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
941       return readConfigFile(CfgFilePath);
942     // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'.
943     FixedConfigFile.resize(FixedArchPrefixLen);
944     FixedConfigFile.append(".cfg");
945     if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile))
946       return readConfigFile(CfgFilePath);
947   }
948 
949   // Then try original file name.
950   if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
951     return readConfigFile(CfgFilePath);
952 
953   // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'.
954   if (!ClangNameParts.ModeSuffix.empty() &&
955       !ClangNameParts.TargetPrefix.empty()) {
956     CfgFileName.assign(ClangNameParts.TargetPrefix);
957     CfgFileName.append(".cfg");
958     if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName))
959       return readConfigFile(CfgFilePath);
960   }
961 
962   // Report error but only if config file was specified explicitly, by option
963   // --config. If it was deduced from executable name, it is not an error.
964   if (FileSpecifiedExplicitly) {
965     Diag(diag::err_drv_config_file_not_found) << CfgFileName;
966     for (const std::string &SearchDir : CfgFileSearchDirs)
967       if (!SearchDir.empty())
968         Diag(diag::note_drv_config_file_searched_in) << SearchDir;
969     return true;
970   }
971 
972   return false;
973 }
974 
975 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) {
976   llvm::PrettyStackTraceString CrashInfo("Compilation construction");
977 
978   // FIXME: Handle environment options which affect driver behavior, somewhere
979   // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS.
980 
981   if (Optional<std::string> CompilerPathValue =
982           llvm::sys::Process::GetEnv("COMPILER_PATH")) {
983     StringRef CompilerPath = *CompilerPathValue;
984     while (!CompilerPath.empty()) {
985       std::pair<StringRef, StringRef> Split =
986           CompilerPath.split(llvm::sys::EnvPathSeparator);
987       PrefixDirs.push_back(std::string(Split.first));
988       CompilerPath = Split.second;
989     }
990   }
991 
992   // We look for the driver mode option early, because the mode can affect
993   // how other options are parsed.
994   ParseDriverMode(ClangExecutable, ArgList.slice(1));
995 
996   // FIXME: What are we going to do with -V and -b?
997 
998   // Arguments specified in command line.
999   bool ContainsError;
1000   CLOptions = std::make_unique<InputArgList>(
1001       ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError));
1002 
1003   // Try parsing configuration file.
1004   if (!ContainsError)
1005     ContainsError = loadConfigFile();
1006   bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr);
1007 
1008   // All arguments, from both config file and command line.
1009   InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions)
1010                                               : std::move(*CLOptions));
1011 
1012   // The args for config files or /clang: flags belong to different InputArgList
1013   // objects than Args. This copies an Arg from one of those other InputArgLists
1014   // to the ownership of Args.
1015   auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) {
1016       unsigned Index = Args.MakeIndex(Opt->getSpelling());
1017       Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Opt->getSpelling(),
1018                                      Index, BaseArg);
1019       Copy->getValues() = Opt->getValues();
1020       if (Opt->isClaimed())
1021         Copy->claim();
1022       Args.append(Copy);
1023   };
1024 
1025   if (HasConfigFile)
1026     for (auto *Opt : *CLOptions) {
1027       if (Opt->getOption().matches(options::OPT_config))
1028         continue;
1029       const Arg *BaseArg = &Opt->getBaseArg();
1030       if (BaseArg == Opt)
1031         BaseArg = nullptr;
1032       appendOneArg(Opt, BaseArg);
1033     }
1034 
1035   // In CL mode, look for any pass-through arguments
1036   if (IsCLMode() && !ContainsError) {
1037     SmallVector<const char *, 16> CLModePassThroughArgList;
1038     for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) {
1039       A->claim();
1040       CLModePassThroughArgList.push_back(A->getValue());
1041     }
1042 
1043     if (!CLModePassThroughArgList.empty()) {
1044       // Parse any pass through args using default clang processing rather
1045       // than clang-cl processing.
1046       auto CLModePassThroughOptions = std::make_unique<InputArgList>(
1047           ParseArgStrings(CLModePassThroughArgList, false, ContainsError));
1048 
1049       if (!ContainsError)
1050         for (auto *Opt : *CLModePassThroughOptions) {
1051           appendOneArg(Opt, nullptr);
1052         }
1053     }
1054   }
1055 
1056   // Check for working directory option before accessing any files
1057   if (Arg *WD = Args.getLastArg(options::OPT_working_directory))
1058     if (VFS->setCurrentWorkingDirectory(WD->getValue()))
1059       Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue();
1060 
1061   // FIXME: This stuff needs to go into the Compilation, not the driver.
1062   bool CCCPrintPhases;
1063 
1064   // Silence driver warnings if requested
1065   Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w));
1066 
1067   // -no-canonical-prefixes is used very early in main.
1068   Args.ClaimAllArgs(options::OPT_no_canonical_prefixes);
1069 
1070   // f(no-)integated-cc1 is also used very early in main.
1071   Args.ClaimAllArgs(options::OPT_fintegrated_cc1);
1072   Args.ClaimAllArgs(options::OPT_fno_integrated_cc1);
1073 
1074   // Ignore -pipe.
1075   Args.ClaimAllArgs(options::OPT_pipe);
1076 
1077   // Extract -ccc args.
1078   //
1079   // FIXME: We need to figure out where this behavior should live. Most of it
1080   // should be outside in the client; the parts that aren't should have proper
1081   // options, either by introducing new ones or by overloading gcc ones like -V
1082   // or -b.
1083   CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases);
1084   CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings);
1085   if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name))
1086     CCCGenericGCCName = A->getValue();
1087   GenReproducer = Args.hasFlag(options::OPT_gen_reproducer,
1088                                options::OPT_fno_crash_diagnostics,
1089                                !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH"));
1090   // FIXME: TargetTriple is used by the target-prefixed calls to as/ld
1091   // and getToolChain is const.
1092   if (IsCLMode()) {
1093     // clang-cl targets MSVC-style Win32.
1094     llvm::Triple T(TargetTriple);
1095     T.setOS(llvm::Triple::Win32);
1096     T.setVendor(llvm::Triple::PC);
1097     T.setEnvironment(llvm::Triple::MSVC);
1098     T.setObjectFormat(llvm::Triple::COFF);
1099     TargetTriple = T.str();
1100   }
1101   if (const Arg *A = Args.getLastArg(options::OPT_target))
1102     TargetTriple = A->getValue();
1103   if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir))
1104     Dir = InstalledDir = A->getValue();
1105   for (const Arg *A : Args.filtered(options::OPT_B)) {
1106     A->claim();
1107     PrefixDirs.push_back(A->getValue(0));
1108   }
1109   if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ))
1110     SysRoot = A->getValue();
1111   if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ))
1112     DyldPrefix = A->getValue();
1113 
1114   if (const Arg *A = Args.getLastArg(options::OPT_resource_dir))
1115     ResourceDir = A->getValue();
1116 
1117   if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) {
1118     SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue())
1119                     .Case("cwd", SaveTempsCwd)
1120                     .Case("obj", SaveTempsObj)
1121                     .Default(SaveTempsCwd);
1122   }
1123 
1124   setLTOMode(Args);
1125 
1126   // Process -fembed-bitcode= flags.
1127   if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) {
1128     StringRef Name = A->getValue();
1129     unsigned Model = llvm::StringSwitch<unsigned>(Name)
1130         .Case("off", EmbedNone)
1131         .Case("all", EmbedBitcode)
1132         .Case("bitcode", EmbedBitcode)
1133         .Case("marker", EmbedMarker)
1134         .Default(~0U);
1135     if (Model == ~0U) {
1136       Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args)
1137                                                 << Name;
1138     } else
1139       BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model);
1140   }
1141 
1142   std::unique_ptr<llvm::opt::InputArgList> UArgs =
1143       std::make_unique<InputArgList>(std::move(Args));
1144 
1145   // Perform the default argument translations.
1146   DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs);
1147 
1148   // Owned by the host.
1149   const ToolChain &TC = getToolChain(
1150       *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs));
1151 
1152   // The compilation takes ownership of Args.
1153   Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs,
1154                                    ContainsError);
1155 
1156   if (!HandleImmediateArgs(*C))
1157     return C;
1158 
1159   // Construct the list of inputs.
1160   InputList Inputs;
1161   BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs);
1162 
1163   // Populate the tool chains for the offloading devices, if any.
1164   CreateOffloadingDeviceToolChains(*C, Inputs);
1165 
1166   // Construct the list of abstract actions to perform for this compilation. On
1167   // MachO targets this uses the driver-driver and universal actions.
1168   if (TC.getTriple().isOSBinFormatMachO())
1169     BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs);
1170   else
1171     BuildActions(*C, C->getArgs(), Inputs, C->getActions());
1172 
1173   if (CCCPrintPhases) {
1174     PrintActions(*C);
1175     return C;
1176   }
1177 
1178   BuildJobs(*C);
1179 
1180   return C;
1181 }
1182 
1183 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) {
1184   llvm::opt::ArgStringList ASL;
1185   for (const auto *A : Args)
1186     A->render(Args, ASL);
1187 
1188   for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) {
1189     if (I != ASL.begin())
1190       OS << ' ';
1191     llvm::sys::printArg(OS, *I, true);
1192   }
1193   OS << '\n';
1194 }
1195 
1196 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename,
1197                                     SmallString<128> &CrashDiagDir) {
1198   using namespace llvm::sys;
1199   assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() &&
1200          "Only knows about .crash files on Darwin");
1201 
1202   // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/
1203   // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern
1204   // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash.
1205   path::home_directory(CrashDiagDir);
1206   if (CrashDiagDir.startswith("/var/root"))
1207     CrashDiagDir = "/";
1208   path::append(CrashDiagDir, "Library/Logs/DiagnosticReports");
1209   int PID =
1210 #if LLVM_ON_UNIX
1211       getpid();
1212 #else
1213       0;
1214 #endif
1215   std::error_code EC;
1216   fs::file_status FileStatus;
1217   TimePoint<> LastAccessTime;
1218   SmallString<128> CrashFilePath;
1219   // Lookup the .crash files and get the one generated by a subprocess spawned
1220   // by this driver invocation.
1221   for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd;
1222        File != FileEnd && !EC; File.increment(EC)) {
1223     StringRef FileName = path::filename(File->path());
1224     if (!FileName.startswith(Name))
1225       continue;
1226     if (fs::status(File->path(), FileStatus))
1227       continue;
1228     llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile =
1229         llvm::MemoryBuffer::getFile(File->path());
1230     if (!CrashFile)
1231       continue;
1232     // The first line should start with "Process:", otherwise this isn't a real
1233     // .crash file.
1234     StringRef Data = CrashFile.get()->getBuffer();
1235     if (!Data.startswith("Process:"))
1236       continue;
1237     // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]"
1238     size_t ParentProcPos = Data.find("Parent Process:");
1239     if (ParentProcPos == StringRef::npos)
1240       continue;
1241     size_t LineEnd = Data.find_first_of("\n", ParentProcPos);
1242     if (LineEnd == StringRef::npos)
1243       continue;
1244     StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim();
1245     int OpenBracket = -1, CloseBracket = -1;
1246     for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) {
1247       if (ParentProcess[i] == '[')
1248         OpenBracket = i;
1249       if (ParentProcess[i] == ']')
1250         CloseBracket = i;
1251     }
1252     // Extract the parent process PID from the .crash file and check whether
1253     // it matches this driver invocation pid.
1254     int CrashPID;
1255     if (OpenBracket < 0 || CloseBracket < 0 ||
1256         ParentProcess.slice(OpenBracket + 1, CloseBracket)
1257             .getAsInteger(10, CrashPID) || CrashPID != PID) {
1258       continue;
1259     }
1260 
1261     // Found a .crash file matching the driver pid. To avoid getting an older
1262     // and misleading crash file, continue looking for the most recent.
1263     // FIXME: the driver can dispatch multiple cc1 invocations, leading to
1264     // multiple crashes poiting to the same parent process. Since the driver
1265     // does not collect pid information for the dispatched invocation there's
1266     // currently no way to distinguish among them.
1267     const auto FileAccessTime = FileStatus.getLastModificationTime();
1268     if (FileAccessTime > LastAccessTime) {
1269       CrashFilePath.assign(File->path());
1270       LastAccessTime = FileAccessTime;
1271     }
1272   }
1273 
1274   // If found, copy it over to the location of other reproducer files.
1275   if (!CrashFilePath.empty()) {
1276     EC = fs::copy_file(CrashFilePath, ReproCrashFilename);
1277     if (EC)
1278       return false;
1279     return true;
1280   }
1281 
1282   return false;
1283 }
1284 
1285 // When clang crashes, produce diagnostic information including the fully
1286 // preprocessed source file(s).  Request that the developer attach the
1287 // diagnostic information to a bug report.
1288 void Driver::generateCompilationDiagnostics(
1289     Compilation &C, const Command &FailingCommand,
1290     StringRef AdditionalInformation, CompilationDiagnosticReport *Report) {
1291   if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics))
1292     return;
1293 
1294   // Don't try to generate diagnostics for link or dsymutil jobs.
1295   if (FailingCommand.getCreator().isLinkJob() ||
1296       FailingCommand.getCreator().isDsymutilJob())
1297     return;
1298 
1299   // Print the version of the compiler.
1300   PrintVersion(C, llvm::errs());
1301 
1302   // Suppress driver output and emit preprocessor output to temp file.
1303   Mode = CPPMode;
1304   CCGenDiagnostics = true;
1305 
1306   // Save the original job command(s).
1307   Command Cmd = FailingCommand;
1308 
1309   // Keep track of whether we produce any errors while trying to produce
1310   // preprocessed sources.
1311   DiagnosticErrorTrap Trap(Diags);
1312 
1313   // Suppress tool output.
1314   C.initCompilationForDiagnostics();
1315 
1316   // Construct the list of inputs.
1317   InputList Inputs;
1318   BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs);
1319 
1320   for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) {
1321     bool IgnoreInput = false;
1322 
1323     // Ignore input from stdin or any inputs that cannot be preprocessed.
1324     // Check type first as not all linker inputs have a value.
1325     if (types::getPreprocessedType(it->first) == types::TY_INVALID) {
1326       IgnoreInput = true;
1327     } else if (!strcmp(it->second->getValue(), "-")) {
1328       Diag(clang::diag::note_drv_command_failed_diag_msg)
1329           << "Error generating preprocessed source(s) - "
1330              "ignoring input from stdin.";
1331       IgnoreInput = true;
1332     }
1333 
1334     if (IgnoreInput) {
1335       it = Inputs.erase(it);
1336       ie = Inputs.end();
1337     } else {
1338       ++it;
1339     }
1340   }
1341 
1342   if (Inputs.empty()) {
1343     Diag(clang::diag::note_drv_command_failed_diag_msg)
1344         << "Error generating preprocessed source(s) - "
1345            "no preprocessable inputs.";
1346     return;
1347   }
1348 
1349   // Don't attempt to generate preprocessed files if multiple -arch options are
1350   // used, unless they're all duplicates.
1351   llvm::StringSet<> ArchNames;
1352   for (const Arg *A : C.getArgs()) {
1353     if (A->getOption().matches(options::OPT_arch)) {
1354       StringRef ArchName = A->getValue();
1355       ArchNames.insert(ArchName);
1356     }
1357   }
1358   if (ArchNames.size() > 1) {
1359     Diag(clang::diag::note_drv_command_failed_diag_msg)
1360         << "Error generating preprocessed source(s) - cannot generate "
1361            "preprocessed source with multiple -arch options.";
1362     return;
1363   }
1364 
1365   // Construct the list of abstract actions to perform for this compilation. On
1366   // Darwin OSes this uses the driver-driver and builds universal actions.
1367   const ToolChain &TC = C.getDefaultToolChain();
1368   if (TC.getTriple().isOSBinFormatMachO())
1369     BuildUniversalActions(C, TC, Inputs);
1370   else
1371     BuildActions(C, C.getArgs(), Inputs, C.getActions());
1372 
1373   BuildJobs(C);
1374 
1375   // If there were errors building the compilation, quit now.
1376   if (Trap.hasErrorOccurred()) {
1377     Diag(clang::diag::note_drv_command_failed_diag_msg)
1378         << "Error generating preprocessed source(s).";
1379     return;
1380   }
1381 
1382   // Generate preprocessed output.
1383   SmallVector<std::pair<int, const Command *>, 4> FailingCommands;
1384   C.ExecuteJobs(C.getJobs(), FailingCommands);
1385 
1386   // If any of the preprocessing commands failed, clean up and exit.
1387   if (!FailingCommands.empty()) {
1388     Diag(clang::diag::note_drv_command_failed_diag_msg)
1389         << "Error generating preprocessed source(s).";
1390     return;
1391   }
1392 
1393   const ArgStringList &TempFiles = C.getTempFiles();
1394   if (TempFiles.empty()) {
1395     Diag(clang::diag::note_drv_command_failed_diag_msg)
1396         << "Error generating preprocessed source(s).";
1397     return;
1398   }
1399 
1400   Diag(clang::diag::note_drv_command_failed_diag_msg)
1401       << "\n********************\n\n"
1402          "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n"
1403          "Preprocessed source(s) and associated run script(s) are located at:";
1404 
1405   SmallString<128> VFS;
1406   SmallString<128> ReproCrashFilename;
1407   for (const char *TempFile : TempFiles) {
1408     Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile;
1409     if (Report)
1410       Report->TemporaryFiles.push_back(TempFile);
1411     if (ReproCrashFilename.empty()) {
1412       ReproCrashFilename = TempFile;
1413       llvm::sys::path::replace_extension(ReproCrashFilename, ".crash");
1414     }
1415     if (StringRef(TempFile).endswith(".cache")) {
1416       // In some cases (modules) we'll dump extra data to help with reproducing
1417       // the crash into a directory next to the output.
1418       VFS = llvm::sys::path::filename(TempFile);
1419       llvm::sys::path::append(VFS, "vfs", "vfs.yaml");
1420     }
1421   }
1422 
1423   // Assume associated files are based off of the first temporary file.
1424   CrashReportInfo CrashInfo(TempFiles[0], VFS);
1425 
1426   llvm::SmallString<128> Script(CrashInfo.Filename);
1427   llvm::sys::path::replace_extension(Script, "sh");
1428   std::error_code EC;
1429   llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew);
1430   if (EC) {
1431     Diag(clang::diag::note_drv_command_failed_diag_msg)
1432         << "Error generating run script: " << Script << " " << EC.message();
1433   } else {
1434     ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n"
1435              << "# Driver args: ";
1436     printArgList(ScriptOS, C.getInputArgs());
1437     ScriptOS << "# Original command: ";
1438     Cmd.Print(ScriptOS, "\n", /*Quote=*/true);
1439     Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo);
1440     if (!AdditionalInformation.empty())
1441       ScriptOS << "\n# Additional information: " << AdditionalInformation
1442                << "\n";
1443     if (Report)
1444       Report->TemporaryFiles.push_back(std::string(Script.str()));
1445     Diag(clang::diag::note_drv_command_failed_diag_msg) << Script;
1446   }
1447 
1448   // On darwin, provide information about the .crash diagnostic report.
1449   if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) {
1450     SmallString<128> CrashDiagDir;
1451     if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) {
1452       Diag(clang::diag::note_drv_command_failed_diag_msg)
1453           << ReproCrashFilename.str();
1454     } else { // Suggest a directory for the user to look for .crash files.
1455       llvm::sys::path::append(CrashDiagDir, Name);
1456       CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash";
1457       Diag(clang::diag::note_drv_command_failed_diag_msg)
1458           << "Crash backtrace is located in";
1459       Diag(clang::diag::note_drv_command_failed_diag_msg)
1460           << CrashDiagDir.str();
1461       Diag(clang::diag::note_drv_command_failed_diag_msg)
1462           << "(choose the .crash file that corresponds to your crash)";
1463     }
1464   }
1465 
1466   for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file,
1467                                             options::OPT_frewrite_map_file_EQ))
1468     Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue();
1469 
1470   Diag(clang::diag::note_drv_command_failed_diag_msg)
1471       << "\n\n********************";
1472 }
1473 
1474 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) {
1475   // Since commandLineFitsWithinSystemLimits() may underestimate system's
1476   // capacity if the tool does not support response files, there is a chance/
1477   // that things will just work without a response file, so we silently just
1478   // skip it.
1479   if (Cmd.getResponseFileSupport().ResponseKind ==
1480           ResponseFileSupport::RF_None ||
1481       llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(),
1482                                                    Cmd.getArguments()))
1483     return;
1484 
1485   std::string TmpName = GetTemporaryPath("response", "txt");
1486   Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName)));
1487 }
1488 
1489 int Driver::ExecuteCompilation(
1490     Compilation &C,
1491     SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) {
1492   // Just print if -### was present.
1493   if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) {
1494     C.getJobs().Print(llvm::errs(), "\n", true);
1495     return 0;
1496   }
1497 
1498   // If there were errors building the compilation, quit now.
1499   if (Diags.hasErrorOccurred())
1500     return 1;
1501 
1502   // Set up response file names for each command, if necessary
1503   for (auto &Job : C.getJobs())
1504     setUpResponseFiles(C, Job);
1505 
1506   C.ExecuteJobs(C.getJobs(), FailingCommands);
1507 
1508   // If the command succeeded, we are done.
1509   if (FailingCommands.empty())
1510     return 0;
1511 
1512   // Otherwise, remove result files and print extra information about abnormal
1513   // failures.
1514   int Res = 0;
1515   for (const auto &CmdPair : FailingCommands) {
1516     int CommandRes = CmdPair.first;
1517     const Command *FailingCommand = CmdPair.second;
1518 
1519     // Remove result files if we're not saving temps.
1520     if (!isSaveTempsEnabled()) {
1521       const JobAction *JA = cast<JobAction>(&FailingCommand->getSource());
1522       C.CleanupFileMap(C.getResultFiles(), JA, true);
1523 
1524       // Failure result files are valid unless we crashed.
1525       if (CommandRes < 0)
1526         C.CleanupFileMap(C.getFailureResultFiles(), JA, true);
1527     }
1528 
1529 #if LLVM_ON_UNIX
1530     // llvm/lib/Support/Unix/Signals.inc will exit with a special return code
1531     // for SIGPIPE. Do not print diagnostics for this case.
1532     if (CommandRes == EX_IOERR) {
1533       Res = CommandRes;
1534       continue;
1535     }
1536 #endif
1537 
1538     // Print extra information about abnormal failures, if possible.
1539     //
1540     // This is ad-hoc, but we don't want to be excessively noisy. If the result
1541     // status was 1, assume the command failed normally. In particular, if it
1542     // was the compiler then assume it gave a reasonable error code. Failures
1543     // in other tools are less common, and they generally have worse
1544     // diagnostics, so always print the diagnostic there.
1545     const Tool &FailingTool = FailingCommand->getCreator();
1546 
1547     if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) {
1548       // FIXME: See FIXME above regarding result code interpretation.
1549       if (CommandRes < 0)
1550         Diag(clang::diag::err_drv_command_signalled)
1551             << FailingTool.getShortName();
1552       else
1553         Diag(clang::diag::err_drv_command_failed)
1554             << FailingTool.getShortName() << CommandRes;
1555     }
1556   }
1557   return Res;
1558 }
1559 
1560 void Driver::PrintHelp(bool ShowHidden) const {
1561   unsigned IncludedFlagsBitmask;
1562   unsigned ExcludedFlagsBitmask;
1563   std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
1564       getIncludeExcludeOptionFlagMasks(IsCLMode());
1565 
1566   ExcludedFlagsBitmask |= options::NoDriverOption;
1567   if (!ShowHidden)
1568     ExcludedFlagsBitmask |= HelpHidden;
1569 
1570   std::string Usage = llvm::formatv("{0} [options] file...", Name).str();
1571   getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(),
1572                       IncludedFlagsBitmask, ExcludedFlagsBitmask,
1573                       /*ShowAllAliases=*/false);
1574 }
1575 
1576 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const {
1577   // FIXME: The following handlers should use a callback mechanism, we don't
1578   // know what the client would like to do.
1579   OS << getClangFullVersion() << '\n';
1580   const ToolChain &TC = C.getDefaultToolChain();
1581   OS << "Target: " << TC.getTripleString() << '\n';
1582 
1583   // Print the threading model.
1584   if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) {
1585     // Don't print if the ToolChain would have barfed on it already
1586     if (TC.isThreadModelSupported(A->getValue()))
1587       OS << "Thread model: " << A->getValue();
1588   } else
1589     OS << "Thread model: " << TC.getThreadModel();
1590   OS << '\n';
1591 
1592   // Print out the install directory.
1593   OS << "InstalledDir: " << InstalledDir << '\n';
1594 
1595   // If configuration file was used, print its path.
1596   if (!ConfigFile.empty())
1597     OS << "Configuration file: " << ConfigFile << '\n';
1598 }
1599 
1600 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories
1601 /// option.
1602 static void PrintDiagnosticCategories(raw_ostream &OS) {
1603   // Skip the empty category.
1604   for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max;
1605        ++i)
1606     OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n';
1607 }
1608 
1609 void Driver::HandleAutocompletions(StringRef PassedFlags) const {
1610   if (PassedFlags == "")
1611     return;
1612   // Print out all options that start with a given argument. This is used for
1613   // shell autocompletion.
1614   std::vector<std::string> SuggestedCompletions;
1615   std::vector<std::string> Flags;
1616 
1617   unsigned short DisableFlags =
1618       options::NoDriverOption | options::Unsupported | options::Ignored;
1619 
1620   // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag,"
1621   // because the latter indicates that the user put space before pushing tab
1622   // which should end up in a file completion.
1623   const bool HasSpace = PassedFlags.endswith(",");
1624 
1625   // Parse PassedFlags by "," as all the command-line flags are passed to this
1626   // function separated by ","
1627   StringRef TargetFlags = PassedFlags;
1628   while (TargetFlags != "") {
1629     StringRef CurFlag;
1630     std::tie(CurFlag, TargetFlags) = TargetFlags.split(",");
1631     Flags.push_back(std::string(CurFlag));
1632   }
1633 
1634   // We want to show cc1-only options only when clang is invoked with -cc1 or
1635   // -Xclang.
1636   if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1"))
1637     DisableFlags &= ~options::NoDriverOption;
1638 
1639   const llvm::opt::OptTable &Opts = getOpts();
1640   StringRef Cur;
1641   Cur = Flags.at(Flags.size() - 1);
1642   StringRef Prev;
1643   if (Flags.size() >= 2) {
1644     Prev = Flags.at(Flags.size() - 2);
1645     SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur);
1646   }
1647 
1648   if (SuggestedCompletions.empty())
1649     SuggestedCompletions = Opts.suggestValueCompletions(Cur, "");
1650 
1651   // If Flags were empty, it means the user typed `clang [tab]` where we should
1652   // list all possible flags. If there was no value completion and the user
1653   // pressed tab after a space, we should fall back to a file completion.
1654   // We're printing a newline to be consistent with what we print at the end of
1655   // this function.
1656   if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) {
1657     llvm::outs() << '\n';
1658     return;
1659   }
1660 
1661   // When flag ends with '=' and there was no value completion, return empty
1662   // string and fall back to the file autocompletion.
1663   if (SuggestedCompletions.empty() && !Cur.endswith("=")) {
1664     // If the flag is in the form of "--autocomplete=-foo",
1665     // we were requested to print out all option names that start with "-foo".
1666     // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only".
1667     SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags);
1668 
1669     // We have to query the -W flags manually as they're not in the OptTable.
1670     // TODO: Find a good way to add them to OptTable instead and them remove
1671     // this code.
1672     for (StringRef S : DiagnosticIDs::getDiagnosticFlags())
1673       if (S.startswith(Cur))
1674         SuggestedCompletions.push_back(std::string(S));
1675   }
1676 
1677   // Sort the autocomplete candidates so that shells print them out in a
1678   // deterministic order. We could sort in any way, but we chose
1679   // case-insensitive sorting for consistency with the -help option
1680   // which prints out options in the case-insensitive alphabetical order.
1681   llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) {
1682     if (int X = A.compare_lower(B))
1683       return X < 0;
1684     return A.compare(B) > 0;
1685   });
1686 
1687   llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n';
1688 }
1689 
1690 bool Driver::HandleImmediateArgs(const Compilation &C) {
1691   // The order these options are handled in gcc is all over the place, but we
1692   // don't expect inconsistencies w.r.t. that to matter in practice.
1693 
1694   if (C.getArgs().hasArg(options::OPT_dumpmachine)) {
1695     llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n';
1696     return false;
1697   }
1698 
1699   if (C.getArgs().hasArg(options::OPT_dumpversion)) {
1700     // Since -dumpversion is only implemented for pedantic GCC compatibility, we
1701     // return an answer which matches our definition of __VERSION__.
1702     llvm::outs() << CLANG_VERSION_STRING << "\n";
1703     return false;
1704   }
1705 
1706   if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) {
1707     PrintDiagnosticCategories(llvm::outs());
1708     return false;
1709   }
1710 
1711   if (C.getArgs().hasArg(options::OPT_help) ||
1712       C.getArgs().hasArg(options::OPT__help_hidden)) {
1713     PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden));
1714     return false;
1715   }
1716 
1717   if (C.getArgs().hasArg(options::OPT__version)) {
1718     // Follow gcc behavior and use stdout for --version and stderr for -v.
1719     PrintVersion(C, llvm::outs());
1720     return false;
1721   }
1722 
1723   if (C.getArgs().hasArg(options::OPT_v) ||
1724       C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) ||
1725       C.getArgs().hasArg(options::OPT_print_supported_cpus)) {
1726     PrintVersion(C, llvm::errs());
1727     SuppressMissingInputWarning = true;
1728   }
1729 
1730   if (C.getArgs().hasArg(options::OPT_v)) {
1731     if (!SystemConfigDir.empty())
1732       llvm::errs() << "System configuration file directory: "
1733                    << SystemConfigDir << "\n";
1734     if (!UserConfigDir.empty())
1735       llvm::errs() << "User configuration file directory: "
1736                    << UserConfigDir << "\n";
1737   }
1738 
1739   const ToolChain &TC = C.getDefaultToolChain();
1740 
1741   if (C.getArgs().hasArg(options::OPT_v))
1742     TC.printVerboseInfo(llvm::errs());
1743 
1744   if (C.getArgs().hasArg(options::OPT_print_resource_dir)) {
1745     llvm::outs() << ResourceDir << '\n';
1746     return false;
1747   }
1748 
1749   if (C.getArgs().hasArg(options::OPT_print_search_dirs)) {
1750     llvm::outs() << "programs: =";
1751     bool separator = false;
1752     for (const std::string &Path : TC.getProgramPaths()) {
1753       if (separator)
1754         llvm::outs() << llvm::sys::EnvPathSeparator;
1755       llvm::outs() << Path;
1756       separator = true;
1757     }
1758     llvm::outs() << "\n";
1759     llvm::outs() << "libraries: =" << ResourceDir;
1760 
1761     StringRef sysroot = C.getSysRoot();
1762 
1763     for (const std::string &Path : TC.getFilePaths()) {
1764       // Always print a separator. ResourceDir was the first item shown.
1765       llvm::outs() << llvm::sys::EnvPathSeparator;
1766       // Interpretation of leading '=' is needed only for NetBSD.
1767       if (Path[0] == '=')
1768         llvm::outs() << sysroot << Path.substr(1);
1769       else
1770         llvm::outs() << Path;
1771     }
1772     llvm::outs() << "\n";
1773     return false;
1774   }
1775 
1776   // FIXME: The following handlers should use a callback mechanism, we don't
1777   // know what the client would like to do.
1778   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) {
1779     llvm::outs() << GetFilePath(A->getValue(), TC) << "\n";
1780     return false;
1781   }
1782 
1783   if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) {
1784     StringRef ProgName = A->getValue();
1785 
1786     // Null program name cannot have a path.
1787     if (! ProgName.empty())
1788       llvm::outs() << GetProgramPath(ProgName, TC);
1789 
1790     llvm::outs() << "\n";
1791     return false;
1792   }
1793 
1794   if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) {
1795     StringRef PassedFlags = A->getValue();
1796     HandleAutocompletions(PassedFlags);
1797     return false;
1798   }
1799 
1800   if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) {
1801     ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs());
1802     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1803     RegisterEffectiveTriple TripleRAII(TC, Triple);
1804     switch (RLT) {
1805     case ToolChain::RLT_CompilerRT:
1806       llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n";
1807       break;
1808     case ToolChain::RLT_Libgcc:
1809       llvm::outs() << GetFilePath("libgcc.a", TC) << "\n";
1810       break;
1811     }
1812     return false;
1813   }
1814 
1815   if (C.getArgs().hasArg(options::OPT_print_multi_lib)) {
1816     for (const Multilib &Multilib : TC.getMultilibs())
1817       llvm::outs() << Multilib << "\n";
1818     return false;
1819   }
1820 
1821   if (C.getArgs().hasArg(options::OPT_print_multi_directory)) {
1822     const Multilib &Multilib = TC.getMultilib();
1823     if (Multilib.gccSuffix().empty())
1824       llvm::outs() << ".\n";
1825     else {
1826       StringRef Suffix(Multilib.gccSuffix());
1827       assert(Suffix.front() == '/');
1828       llvm::outs() << Suffix.substr(1) << "\n";
1829     }
1830     return false;
1831   }
1832 
1833   if (C.getArgs().hasArg(options::OPT_print_target_triple)) {
1834     llvm::outs() << TC.getTripleString() << "\n";
1835     return false;
1836   }
1837 
1838   if (C.getArgs().hasArg(options::OPT_print_effective_triple)) {
1839     const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs()));
1840     llvm::outs() << Triple.getTriple() << "\n";
1841     return false;
1842   }
1843 
1844   if (C.getArgs().hasArg(options::OPT_print_targets)) {
1845     llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs());
1846     return false;
1847   }
1848 
1849   return true;
1850 }
1851 
1852 enum {
1853   TopLevelAction = 0,
1854   HeadSibAction = 1,
1855   OtherSibAction = 2,
1856 };
1857 
1858 // Display an action graph human-readably.  Action A is the "sink" node
1859 // and latest-occuring action. Traversal is in pre-order, visiting the
1860 // inputs to each action before printing the action itself.
1861 static unsigned PrintActions1(const Compilation &C, Action *A,
1862                               std::map<Action *, unsigned> &Ids,
1863                               Twine Indent = {}, int Kind = TopLevelAction) {
1864   if (Ids.count(A)) // A was already visited.
1865     return Ids[A];
1866 
1867   std::string str;
1868   llvm::raw_string_ostream os(str);
1869 
1870   auto getSibIndent = [](int K) -> Twine {
1871     return (K == HeadSibAction) ? "   " : (K == OtherSibAction) ? "|  " : "";
1872   };
1873 
1874   Twine SibIndent = Indent + getSibIndent(Kind);
1875   int SibKind = HeadSibAction;
1876   os << Action::getClassName(A->getKind()) << ", ";
1877   if (InputAction *IA = dyn_cast<InputAction>(A)) {
1878     os << "\"" << IA->getInputArg().getValue() << "\"";
1879   } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) {
1880     os << '"' << BIA->getArchName() << '"' << ", {"
1881        << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}";
1882   } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
1883     bool IsFirst = true;
1884     OA->doOnEachDependence(
1885         [&](Action *A, const ToolChain *TC, const char *BoundArch) {
1886           assert(TC && "Unknown host toolchain");
1887           // E.g. for two CUDA device dependences whose bound arch is sm_20 and
1888           // sm_35 this will generate:
1889           // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device"
1890           // (nvptx64-nvidia-cuda:sm_35) {#ID}
1891           if (!IsFirst)
1892             os << ", ";
1893           os << '"';
1894           os << A->getOffloadingKindPrefix();
1895           os << " (";
1896           os << TC->getTriple().normalize();
1897           if (BoundArch)
1898             os << ":" << BoundArch;
1899           os << ")";
1900           os << '"';
1901           os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}";
1902           IsFirst = false;
1903           SibKind = OtherSibAction;
1904         });
1905   } else {
1906     const ActionList *AL = &A->getInputs();
1907 
1908     if (AL->size()) {
1909       const char *Prefix = "{";
1910       for (Action *PreRequisite : *AL) {
1911         os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind);
1912         Prefix = ", ";
1913         SibKind = OtherSibAction;
1914       }
1915       os << "}";
1916     } else
1917       os << "{}";
1918   }
1919 
1920   // Append offload info for all options other than the offloading action
1921   // itself (e.g. (cuda-device, sm_20) or (cuda-host)).
1922   std::string offload_str;
1923   llvm::raw_string_ostream offload_os(offload_str);
1924   if (!isa<OffloadAction>(A)) {
1925     auto S = A->getOffloadingKindPrefix();
1926     if (!S.empty()) {
1927       offload_os << ", (" << S;
1928       if (A->getOffloadingArch())
1929         offload_os << ", " << A->getOffloadingArch();
1930       offload_os << ")";
1931     }
1932   }
1933 
1934   auto getSelfIndent = [](int K) -> Twine {
1935     return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : "";
1936   };
1937 
1938   unsigned Id = Ids.size();
1939   Ids[A] = Id;
1940   llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", "
1941                << types::getTypeName(A->getType()) << offload_os.str() << "\n";
1942 
1943   return Id;
1944 }
1945 
1946 // Print the action graphs in a compilation C.
1947 // For example "clang -c file1.c file2.c" is composed of two subgraphs.
1948 void Driver::PrintActions(const Compilation &C) const {
1949   std::map<Action *, unsigned> Ids;
1950   for (Action *A : C.getActions())
1951     PrintActions1(C, A, Ids);
1952 }
1953 
1954 /// Check whether the given input tree contains any compilation or
1955 /// assembly actions.
1956 static bool ContainsCompileOrAssembleAction(const Action *A) {
1957   if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) ||
1958       isa<AssembleJobAction>(A))
1959     return true;
1960 
1961   for (const Action *Input : A->inputs())
1962     if (ContainsCompileOrAssembleAction(Input))
1963       return true;
1964 
1965   return false;
1966 }
1967 
1968 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC,
1969                                    const InputList &BAInputs) const {
1970   DerivedArgList &Args = C.getArgs();
1971   ActionList &Actions = C.getActions();
1972   llvm::PrettyStackTraceString CrashInfo("Building universal build actions");
1973   // Collect the list of architectures. Duplicates are allowed, but should only
1974   // be handled once (in the order seen).
1975   llvm::StringSet<> ArchNames;
1976   SmallVector<const char *, 4> Archs;
1977   for (Arg *A : Args) {
1978     if (A->getOption().matches(options::OPT_arch)) {
1979       // Validate the option here; we don't save the type here because its
1980       // particular spelling may participate in other driver choices.
1981       llvm::Triple::ArchType Arch =
1982           tools::darwin::getArchTypeForMachOArchName(A->getValue());
1983       if (Arch == llvm::Triple::UnknownArch) {
1984         Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args);
1985         continue;
1986       }
1987 
1988       A->claim();
1989       if (ArchNames.insert(A->getValue()).second)
1990         Archs.push_back(A->getValue());
1991     }
1992   }
1993 
1994   // When there is no explicit arch for this platform, make sure we still bind
1995   // the architecture (to the default) so that -Xarch_ is handled correctly.
1996   if (!Archs.size())
1997     Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName()));
1998 
1999   ActionList SingleActions;
2000   BuildActions(C, Args, BAInputs, SingleActions);
2001 
2002   // Add in arch bindings for every top level action, as well as lipo and
2003   // dsymutil steps if needed.
2004   for (Action* Act : SingleActions) {
2005     // Make sure we can lipo this kind of output. If not (and it is an actual
2006     // output) then we disallow, since we can't create an output file with the
2007     // right name without overwriting it. We could remove this oddity by just
2008     // changing the output names to include the arch, which would also fix
2009     // -save-temps. Compatibility wins for now.
2010 
2011     if (Archs.size() > 1 && !types::canLipoType(Act->getType()))
2012       Diag(clang::diag::err_drv_invalid_output_with_multiple_archs)
2013           << types::getTypeName(Act->getType());
2014 
2015     ActionList Inputs;
2016     for (unsigned i = 0, e = Archs.size(); i != e; ++i)
2017       Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i]));
2018 
2019     // Lipo if necessary, we do it this way because we need to set the arch flag
2020     // so that -Xarch_ gets overwritten.
2021     if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing)
2022       Actions.append(Inputs.begin(), Inputs.end());
2023     else
2024       Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType()));
2025 
2026     // Handle debug info queries.
2027     Arg *A = Args.getLastArg(options::OPT_g_Group);
2028     bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) &&
2029                             !A->getOption().matches(options::OPT_gstabs);
2030     if ((enablesDebugInfo || willEmitRemarks(Args)) &&
2031         ContainsCompileOrAssembleAction(Actions.back())) {
2032 
2033       // Add a 'dsymutil' step if necessary, when debug info is enabled and we
2034       // have a compile input. We need to run 'dsymutil' ourselves in such cases
2035       // because the debug info will refer to a temporary object file which
2036       // will be removed at the end of the compilation process.
2037       if (Act->getType() == types::TY_Image) {
2038         ActionList Inputs;
2039         Inputs.push_back(Actions.back());
2040         Actions.pop_back();
2041         Actions.push_back(
2042             C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM));
2043       }
2044 
2045       // Verify the debug info output.
2046       if (Args.hasArg(options::OPT_verify_debug_info)) {
2047         Action* LastAction = Actions.back();
2048         Actions.pop_back();
2049         Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>(
2050             LastAction, types::TY_Nothing));
2051       }
2052     }
2053   }
2054 }
2055 
2056 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value,
2057                                     types::ID Ty, bool TypoCorrect) const {
2058   if (!getCheckInputsExist())
2059     return true;
2060 
2061   // stdin always exists.
2062   if (Value == "-")
2063     return true;
2064 
2065   if (getVFS().exists(Value))
2066     return true;
2067 
2068   if (IsCLMode()) {
2069     if (!llvm::sys::path::is_absolute(Twine(Value)) &&
2070         llvm::sys::Process::FindInEnvPath("LIB", Value))
2071       return true;
2072 
2073     if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) {
2074       // Arguments to the /link flag might cause the linker to search for object
2075       // and library files in paths we don't know about. Don't error in such
2076       // cases.
2077       return true;
2078     }
2079   }
2080 
2081   if (TypoCorrect) {
2082     // Check if the filename is a typo for an option flag. OptTable thinks
2083     // that all args that are not known options and that start with / are
2084     // filenames, but e.g. `/diagnostic:caret` is more likely a typo for
2085     // the option `/diagnostics:caret` than a reference to a file in the root
2086     // directory.
2087     unsigned IncludedFlagsBitmask;
2088     unsigned ExcludedFlagsBitmask;
2089     std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) =
2090         getIncludeExcludeOptionFlagMasks(IsCLMode());
2091     std::string Nearest;
2092     if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask,
2093                               ExcludedFlagsBitmask) <= 1) {
2094       Diag(clang::diag::err_drv_no_such_file_with_suggestion)
2095           << Value << Nearest;
2096       return false;
2097     }
2098   }
2099 
2100   Diag(clang::diag::err_drv_no_such_file) << Value;
2101   return false;
2102 }
2103 
2104 // Construct a the list of inputs and their types.
2105 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args,
2106                          InputList &Inputs) const {
2107   const llvm::opt::OptTable &Opts = getOpts();
2108   // Track the current user specified (-x) input. We also explicitly track the
2109   // argument used to set the type; we only want to claim the type when we
2110   // actually use it, so we warn about unused -x arguments.
2111   types::ID InputType = types::TY_Nothing;
2112   Arg *InputTypeArg = nullptr;
2113 
2114   // The last /TC or /TP option sets the input type to C or C++ globally.
2115   if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC,
2116                                          options::OPT__SLASH_TP)) {
2117     InputTypeArg = TCTP;
2118     InputType = TCTP->getOption().matches(options::OPT__SLASH_TC)
2119                     ? types::TY_C
2120                     : types::TY_CXX;
2121 
2122     Arg *Previous = nullptr;
2123     bool ShowNote = false;
2124     for (Arg *A :
2125          Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) {
2126       if (Previous) {
2127         Diag(clang::diag::warn_drv_overriding_flag_option)
2128           << Previous->getSpelling() << A->getSpelling();
2129         ShowNote = true;
2130       }
2131       Previous = A;
2132     }
2133     if (ShowNote)
2134       Diag(clang::diag::note_drv_t_option_is_global);
2135 
2136     // No driver mode exposes -x and /TC or /TP; we don't support mixing them.
2137     assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed");
2138   }
2139 
2140   for (Arg *A : Args) {
2141     if (A->getOption().getKind() == Option::InputClass) {
2142       const char *Value = A->getValue();
2143       types::ID Ty = types::TY_INVALID;
2144 
2145       // Infer the input type if necessary.
2146       if (InputType == types::TY_Nothing) {
2147         // If there was an explicit arg for this, claim it.
2148         if (InputTypeArg)
2149           InputTypeArg->claim();
2150 
2151         // stdin must be handled specially.
2152         if (memcmp(Value, "-", 2) == 0) {
2153           // If running with -E, treat as a C input (this changes the builtin
2154           // macros, for example). This may be overridden by -ObjC below.
2155           //
2156           // Otherwise emit an error but still use a valid type to avoid
2157           // spurious errors (e.g., no inputs).
2158           if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP())
2159             Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl
2160                             : clang::diag::err_drv_unknown_stdin_type);
2161           Ty = types::TY_C;
2162         } else {
2163           // Otherwise lookup by extension.
2164           // Fallback is C if invoked as C preprocessor, C++ if invoked with
2165           // clang-cl /E, or Object otherwise.
2166           // We use a host hook here because Darwin at least has its own
2167           // idea of what .s is.
2168           if (const char *Ext = strrchr(Value, '.'))
2169             Ty = TC.LookupTypeForExtension(Ext + 1);
2170 
2171           if (Ty == types::TY_INVALID) {
2172             if (CCCIsCPP())
2173               Ty = types::TY_C;
2174             else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E))
2175               Ty = types::TY_CXX;
2176             else
2177               Ty = types::TY_Object;
2178           }
2179 
2180           // If the driver is invoked as C++ compiler (like clang++ or c++) it
2181           // should autodetect some input files as C++ for g++ compatibility.
2182           if (CCCIsCXX()) {
2183             types::ID OldTy = Ty;
2184             Ty = types::lookupCXXTypeForCType(Ty);
2185 
2186             if (Ty != OldTy)
2187               Diag(clang::diag::warn_drv_treating_input_as_cxx)
2188                   << getTypeName(OldTy) << getTypeName(Ty);
2189           }
2190 
2191           // If running with -fthinlto-index=, extensions that normally identify
2192           // native object files actually identify LLVM bitcode files.
2193           if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) &&
2194               Ty == types::TY_Object)
2195             Ty = types::TY_LLVM_BC;
2196         }
2197 
2198         // -ObjC and -ObjC++ override the default language, but only for "source
2199         // files". We just treat everything that isn't a linker input as a
2200         // source file.
2201         //
2202         // FIXME: Clean this up if we move the phase sequence into the type.
2203         if (Ty != types::TY_Object) {
2204           if (Args.hasArg(options::OPT_ObjC))
2205             Ty = types::TY_ObjC;
2206           else if (Args.hasArg(options::OPT_ObjCXX))
2207             Ty = types::TY_ObjCXX;
2208         }
2209       } else {
2210         assert(InputTypeArg && "InputType set w/o InputTypeArg");
2211         if (!InputTypeArg->getOption().matches(options::OPT_x)) {
2212           // If emulating cl.exe, make sure that /TC and /TP don't affect input
2213           // object files.
2214           const char *Ext = strrchr(Value, '.');
2215           if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object)
2216             Ty = types::TY_Object;
2217         }
2218         if (Ty == types::TY_INVALID) {
2219           Ty = InputType;
2220           InputTypeArg->claim();
2221         }
2222       }
2223 
2224       if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true))
2225         Inputs.push_back(std::make_pair(Ty, A));
2226 
2227     } else if (A->getOption().matches(options::OPT__SLASH_Tc)) {
2228       StringRef Value = A->getValue();
2229       if (DiagnoseInputExistence(Args, Value, types::TY_C,
2230                                  /*TypoCorrect=*/false)) {
2231         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2232         Inputs.push_back(std::make_pair(types::TY_C, InputArg));
2233       }
2234       A->claim();
2235     } else if (A->getOption().matches(options::OPT__SLASH_Tp)) {
2236       StringRef Value = A->getValue();
2237       if (DiagnoseInputExistence(Args, Value, types::TY_CXX,
2238                                  /*TypoCorrect=*/false)) {
2239         Arg *InputArg = MakeInputArg(Args, Opts, A->getValue());
2240         Inputs.push_back(std::make_pair(types::TY_CXX, InputArg));
2241       }
2242       A->claim();
2243     } else if (A->getOption().hasFlag(options::LinkerInput)) {
2244       // Just treat as object type, we could make a special type for this if
2245       // necessary.
2246       Inputs.push_back(std::make_pair(types::TY_Object, A));
2247 
2248     } else if (A->getOption().matches(options::OPT_x)) {
2249       InputTypeArg = A;
2250       InputType = types::lookupTypeForTypeSpecifier(A->getValue());
2251       A->claim();
2252 
2253       // Follow gcc behavior and treat as linker input for invalid -x
2254       // options. Its not clear why we shouldn't just revert to unknown; but
2255       // this isn't very important, we might as well be bug compatible.
2256       if (!InputType) {
2257         Diag(clang::diag::err_drv_unknown_language) << A->getValue();
2258         InputType = types::TY_Object;
2259       }
2260     } else if (A->getOption().getID() == options::OPT_U) {
2261       assert(A->getNumValues() == 1 && "The /U option has one value.");
2262       StringRef Val = A->getValue(0);
2263       if (Val.find_first_of("/\\") != StringRef::npos) {
2264         // Warn about e.g. "/Users/me/myfile.c".
2265         Diag(diag::warn_slash_u_filename) << Val;
2266         Diag(diag::note_use_dashdash);
2267       }
2268     }
2269   }
2270   if (CCCIsCPP() && Inputs.empty()) {
2271     // If called as standalone preprocessor, stdin is processed
2272     // if no other input is present.
2273     Arg *A = MakeInputArg(Args, Opts, "-");
2274     Inputs.push_back(std::make_pair(types::TY_C, A));
2275   }
2276 }
2277 
2278 namespace {
2279 /// Provides a convenient interface for different programming models to generate
2280 /// the required device actions.
2281 class OffloadingActionBuilder final {
2282   /// Flag used to trace errors in the builder.
2283   bool IsValid = false;
2284 
2285   /// The compilation that is using this builder.
2286   Compilation &C;
2287 
2288   /// Map between an input argument and the offload kinds used to process it.
2289   std::map<const Arg *, unsigned> InputArgToOffloadKindMap;
2290 
2291   /// Builder interface. It doesn't build anything or keep any state.
2292   class DeviceActionBuilder {
2293   public:
2294     typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy;
2295 
2296     enum ActionBuilderReturnCode {
2297       // The builder acted successfully on the current action.
2298       ABRT_Success,
2299       // The builder didn't have to act on the current action.
2300       ABRT_Inactive,
2301       // The builder was successful and requested the host action to not be
2302       // generated.
2303       ABRT_Ignore_Host,
2304     };
2305 
2306   protected:
2307     /// Compilation associated with this builder.
2308     Compilation &C;
2309 
2310     /// Tool chains associated with this builder. The same programming
2311     /// model may have associated one or more tool chains.
2312     SmallVector<const ToolChain *, 2> ToolChains;
2313 
2314     /// The derived arguments associated with this builder.
2315     DerivedArgList &Args;
2316 
2317     /// The inputs associated with this builder.
2318     const Driver::InputList &Inputs;
2319 
2320     /// The associated offload kind.
2321     Action::OffloadKind AssociatedOffloadKind = Action::OFK_None;
2322 
2323   public:
2324     DeviceActionBuilder(Compilation &C, DerivedArgList &Args,
2325                         const Driver::InputList &Inputs,
2326                         Action::OffloadKind AssociatedOffloadKind)
2327         : C(C), Args(Args), Inputs(Inputs),
2328           AssociatedOffloadKind(AssociatedOffloadKind) {}
2329     virtual ~DeviceActionBuilder() {}
2330 
2331     /// Fill up the array \a DA with all the device dependences that should be
2332     /// added to the provided host action \a HostAction. By default it is
2333     /// inactive.
2334     virtual ActionBuilderReturnCode
2335     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2336                          phases::ID CurPhase, phases::ID FinalPhase,
2337                          PhasesTy &Phases) {
2338       return ABRT_Inactive;
2339     }
2340 
2341     /// Update the state to include the provided host action \a HostAction as a
2342     /// dependency of the current device action. By default it is inactive.
2343     virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) {
2344       return ABRT_Inactive;
2345     }
2346 
2347     /// Append top level actions generated by the builder.
2348     virtual void appendTopLevelActions(ActionList &AL) {}
2349 
2350     /// Append linker device actions generated by the builder.
2351     virtual void appendLinkDeviceActions(ActionList &AL) {}
2352 
2353     /// Append linker host action generated by the builder.
2354     virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; }
2355 
2356     /// Append linker actions generated by the builder.
2357     virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {}
2358 
2359     /// Initialize the builder. Return true if any initialization errors are
2360     /// found.
2361     virtual bool initialize() { return false; }
2362 
2363     /// Return true if the builder can use bundling/unbundling.
2364     virtual bool canUseBundlerUnbundler() const { return false; }
2365 
2366     /// Return true if this builder is valid. We have a valid builder if we have
2367     /// associated device tool chains.
2368     bool isValid() { return !ToolChains.empty(); }
2369 
2370     /// Return the associated offload kind.
2371     Action::OffloadKind getAssociatedOffloadKind() {
2372       return AssociatedOffloadKind;
2373     }
2374   };
2375 
2376   /// Base class for CUDA/HIP action builder. It injects device code in
2377   /// the host backend action.
2378   class CudaActionBuilderBase : public DeviceActionBuilder {
2379   protected:
2380     /// Flags to signal if the user requested host-only or device-only
2381     /// compilation.
2382     bool CompileHostOnly = false;
2383     bool CompileDeviceOnly = false;
2384     bool EmitLLVM = false;
2385     bool EmitAsm = false;
2386 
2387     /// List of GPU architectures to use in this compilation.
2388     SmallVector<CudaArch, 4> GpuArchList;
2389 
2390     /// The CUDA actions for the current input.
2391     ActionList CudaDeviceActions;
2392 
2393     /// The CUDA fat binary if it was generated for the current input.
2394     Action *CudaFatBinary = nullptr;
2395 
2396     /// Flag that is set to true if this builder acted on the current input.
2397     bool IsActive = false;
2398 
2399     /// Flag for -fgpu-rdc.
2400     bool Relocatable = false;
2401 
2402     /// Default GPU architecture if there's no one specified.
2403     CudaArch DefaultCudaArch = CudaArch::UNKNOWN;
2404 
2405   public:
2406     CudaActionBuilderBase(Compilation &C, DerivedArgList &Args,
2407                           const Driver::InputList &Inputs,
2408                           Action::OffloadKind OFKind)
2409         : DeviceActionBuilder(C, Args, Inputs, OFKind) {}
2410 
2411     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2412       // While generating code for CUDA, we only depend on the host input action
2413       // to trigger the creation of all the CUDA device actions.
2414 
2415       // If we are dealing with an input action, replicate it for each GPU
2416       // architecture. If we are in host-only mode we return 'success' so that
2417       // the host uses the CUDA offload kind.
2418       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2419         assert(!GpuArchList.empty() &&
2420                "We should have at least one GPU architecture.");
2421 
2422         // If the host input is not CUDA or HIP, we don't need to bother about
2423         // this input.
2424         if (IA->getType() != types::TY_CUDA &&
2425             IA->getType() != types::TY_HIP) {
2426           // The builder will ignore this input.
2427           IsActive = false;
2428           return ABRT_Inactive;
2429         }
2430 
2431         // Set the flag to true, so that the builder acts on the current input.
2432         IsActive = true;
2433 
2434         if (CompileHostOnly)
2435           return ABRT_Success;
2436 
2437         // Replicate inputs for each GPU architecture.
2438         auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE
2439                                                  : types::TY_CUDA_DEVICE;
2440         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2441           CudaDeviceActions.push_back(
2442               C.MakeAction<InputAction>(IA->getInputArg(), Ty));
2443         }
2444 
2445         return ABRT_Success;
2446       }
2447 
2448       // If this is an unbundling action use it as is for each CUDA toolchain.
2449       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2450 
2451         // If -fgpu-rdc is disabled, should not unbundle since there is no
2452         // device code to link.
2453         if (!Relocatable)
2454           return ABRT_Inactive;
2455 
2456         CudaDeviceActions.clear();
2457         auto *IA = cast<InputAction>(UA->getInputs().back());
2458         std::string FileName = IA->getInputArg().getAsString(Args);
2459         // Check if the type of the file is the same as the action. Do not
2460         // unbundle it if it is not. Do not unbundle .so files, for example,
2461         // which are not object files.
2462         if (IA->getType() == types::TY_Object &&
2463             (!llvm::sys::path::has_extension(FileName) ||
2464              types::lookupTypeForExtension(
2465                  llvm::sys::path::extension(FileName).drop_front()) !=
2466                  types::TY_Object))
2467           return ABRT_Inactive;
2468 
2469         for (auto Arch : GpuArchList) {
2470           CudaDeviceActions.push_back(UA);
2471           UA->registerDependentActionInfo(ToolChains[0], CudaArchToString(Arch),
2472                                           AssociatedOffloadKind);
2473         }
2474         return ABRT_Success;
2475       }
2476 
2477       return IsActive ? ABRT_Success : ABRT_Inactive;
2478     }
2479 
2480     void appendTopLevelActions(ActionList &AL) override {
2481       // Utility to append actions to the top level list.
2482       auto AddTopLevel = [&](Action *A, CudaArch BoundArch) {
2483         OffloadAction::DeviceDependences Dep;
2484         Dep.add(*A, *ToolChains.front(), CudaArchToString(BoundArch),
2485                 AssociatedOffloadKind);
2486         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2487       };
2488 
2489       // If we have a fat binary, add it to the list.
2490       if (CudaFatBinary) {
2491         AddTopLevel(CudaFatBinary, CudaArch::UNKNOWN);
2492         CudaDeviceActions.clear();
2493         CudaFatBinary = nullptr;
2494         return;
2495       }
2496 
2497       if (CudaDeviceActions.empty())
2498         return;
2499 
2500       // If we have CUDA actions at this point, that's because we have a have
2501       // partial compilation, so we should have an action for each GPU
2502       // architecture.
2503       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2504              "Expecting one action per GPU architecture.");
2505       assert(ToolChains.size() == 1 &&
2506              "Expecting to have a sing CUDA toolchain.");
2507       for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I)
2508         AddTopLevel(CudaDeviceActions[I], GpuArchList[I]);
2509 
2510       CudaDeviceActions.clear();
2511     }
2512 
2513     bool initialize() override {
2514       assert(AssociatedOffloadKind == Action::OFK_Cuda ||
2515              AssociatedOffloadKind == Action::OFK_HIP);
2516 
2517       // We don't need to support CUDA.
2518       if (AssociatedOffloadKind == Action::OFK_Cuda &&
2519           !C.hasOffloadToolChain<Action::OFK_Cuda>())
2520         return false;
2521 
2522       // We don't need to support HIP.
2523       if (AssociatedOffloadKind == Action::OFK_HIP &&
2524           !C.hasOffloadToolChain<Action::OFK_HIP>())
2525         return false;
2526 
2527       Relocatable = Args.hasFlag(options::OPT_fgpu_rdc,
2528           options::OPT_fno_gpu_rdc, /*Default=*/false);
2529 
2530       const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>();
2531       assert(HostTC && "No toolchain for host compilation.");
2532       if (HostTC->getTriple().isNVPTX() ||
2533           HostTC->getTriple().getArch() == llvm::Triple::amdgcn) {
2534         // We do not support targeting NVPTX/AMDGCN for host compilation. Throw
2535         // an error and abort pipeline construction early so we don't trip
2536         // asserts that assume device-side compilation.
2537         C.getDriver().Diag(diag::err_drv_cuda_host_arch)
2538             << HostTC->getTriple().getArchName();
2539         return true;
2540       }
2541 
2542       ToolChains.push_back(
2543           AssociatedOffloadKind == Action::OFK_Cuda
2544               ? C.getSingleOffloadToolChain<Action::OFK_Cuda>()
2545               : C.getSingleOffloadToolChain<Action::OFK_HIP>());
2546 
2547       Arg *PartialCompilationArg = Args.getLastArg(
2548           options::OPT_cuda_host_only, options::OPT_cuda_device_only,
2549           options::OPT_cuda_compile_host_device);
2550       CompileHostOnly = PartialCompilationArg &&
2551                         PartialCompilationArg->getOption().matches(
2552                             options::OPT_cuda_host_only);
2553       CompileDeviceOnly = PartialCompilationArg &&
2554                           PartialCompilationArg->getOption().matches(
2555                               options::OPT_cuda_device_only);
2556       EmitLLVM = Args.getLastArg(options::OPT_emit_llvm);
2557       EmitAsm = Args.getLastArg(options::OPT_S);
2558 
2559       // Collect all cuda_gpu_arch parameters, removing duplicates.
2560       std::set<CudaArch> GpuArchs;
2561       bool Error = false;
2562       for (Arg *A : Args) {
2563         if (!(A->getOption().matches(options::OPT_offload_arch_EQ) ||
2564               A->getOption().matches(options::OPT_no_offload_arch_EQ)))
2565           continue;
2566         A->claim();
2567 
2568         const StringRef ArchStr = A->getValue();
2569         if (A->getOption().matches(options::OPT_no_offload_arch_EQ) &&
2570             ArchStr == "all") {
2571           GpuArchs.clear();
2572           continue;
2573         }
2574         CudaArch Arch = StringToCudaArch(ArchStr);
2575         if (Arch == CudaArch::UNKNOWN) {
2576           C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr;
2577           Error = true;
2578         } else if (A->getOption().matches(options::OPT_offload_arch_EQ))
2579           GpuArchs.insert(Arch);
2580         else if (A->getOption().matches(options::OPT_no_offload_arch_EQ))
2581           GpuArchs.erase(Arch);
2582         else
2583           llvm_unreachable("Unexpected option.");
2584       }
2585 
2586       // Collect list of GPUs remaining in the set.
2587       for (CudaArch Arch : GpuArchs)
2588         GpuArchList.push_back(Arch);
2589 
2590       // Default to sm_20 which is the lowest common denominator for
2591       // supported GPUs.  sm_20 code should work correctly, if
2592       // suboptimally, on all newer GPUs.
2593       if (GpuArchList.empty())
2594         GpuArchList.push_back(DefaultCudaArch);
2595 
2596       return Error;
2597     }
2598   };
2599 
2600   /// \brief CUDA action builder. It injects device code in the host backend
2601   /// action.
2602   class CudaActionBuilder final : public CudaActionBuilderBase {
2603   public:
2604     CudaActionBuilder(Compilation &C, DerivedArgList &Args,
2605                       const Driver::InputList &Inputs)
2606         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) {
2607       DefaultCudaArch = CudaArch::SM_20;
2608     }
2609 
2610     ActionBuilderReturnCode
2611     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2612                          phases::ID CurPhase, phases::ID FinalPhase,
2613                          PhasesTy &Phases) override {
2614       if (!IsActive)
2615         return ABRT_Inactive;
2616 
2617       // If we don't have more CUDA actions, we don't have any dependences to
2618       // create for the host.
2619       if (CudaDeviceActions.empty())
2620         return ABRT_Success;
2621 
2622       assert(CudaDeviceActions.size() == GpuArchList.size() &&
2623              "Expecting one action per GPU architecture.");
2624       assert(!CompileHostOnly &&
2625              "Not expecting CUDA actions in host-only compilation.");
2626 
2627       // If we are generating code for the device or we are in a backend phase,
2628       // we attempt to generate the fat binary. We compile each arch to ptx and
2629       // assemble to cubin, then feed the cubin *and* the ptx into a device
2630       // "link" action, which uses fatbinary to combine these cubins into one
2631       // fatbin.  The fatbin is then an input to the host action if not in
2632       // device-only mode.
2633       if (CompileDeviceOnly || CurPhase == phases::Backend) {
2634         ActionList DeviceActions;
2635         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2636           // Produce the device action from the current phase up to the assemble
2637           // phase.
2638           for (auto Ph : Phases) {
2639             // Skip the phases that were already dealt with.
2640             if (Ph < CurPhase)
2641               continue;
2642             // We have to be consistent with the host final phase.
2643             if (Ph > FinalPhase)
2644               break;
2645 
2646             CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction(
2647                 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda);
2648 
2649             if (Ph == phases::Assemble)
2650               break;
2651           }
2652 
2653           // If we didn't reach the assemble phase, we can't generate the fat
2654           // binary. We don't need to generate the fat binary if we are not in
2655           // device-only mode.
2656           if (!isa<AssembleJobAction>(CudaDeviceActions[I]) ||
2657               CompileDeviceOnly)
2658             continue;
2659 
2660           Action *AssembleAction = CudaDeviceActions[I];
2661           assert(AssembleAction->getType() == types::TY_Object);
2662           assert(AssembleAction->getInputs().size() == 1);
2663 
2664           Action *BackendAction = AssembleAction->getInputs()[0];
2665           assert(BackendAction->getType() == types::TY_PP_Asm);
2666 
2667           for (auto &A : {AssembleAction, BackendAction}) {
2668             OffloadAction::DeviceDependences DDep;
2669             DDep.add(*A, *ToolChains.front(), CudaArchToString(GpuArchList[I]),
2670                      Action::OFK_Cuda);
2671             DeviceActions.push_back(
2672                 C.MakeAction<OffloadAction>(DDep, A->getType()));
2673           }
2674         }
2675 
2676         // We generate the fat binary if we have device input actions.
2677         if (!DeviceActions.empty()) {
2678           CudaFatBinary =
2679               C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN);
2680 
2681           if (!CompileDeviceOnly) {
2682             DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2683                    Action::OFK_Cuda);
2684             // Clear the fat binary, it is already a dependence to an host
2685             // action.
2686             CudaFatBinary = nullptr;
2687           }
2688 
2689           // Remove the CUDA actions as they are already connected to an host
2690           // action or fat binary.
2691           CudaDeviceActions.clear();
2692         }
2693 
2694         // We avoid creating host action in device-only mode.
2695         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2696       } else if (CurPhase > phases::Backend) {
2697         // If we are past the backend phase and still have a device action, we
2698         // don't have to do anything as this action is already a device
2699         // top-level action.
2700         return ABRT_Success;
2701       }
2702 
2703       assert(CurPhase < phases::Backend && "Generating single CUDA "
2704                                            "instructions should only occur "
2705                                            "before the backend phase!");
2706 
2707       // By default, we produce an action for each device arch.
2708       for (Action *&A : CudaDeviceActions)
2709         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2710 
2711       return ABRT_Success;
2712     }
2713   };
2714   /// \brief HIP action builder. It injects device code in the host backend
2715   /// action.
2716   class HIPActionBuilder final : public CudaActionBuilderBase {
2717     /// The linker inputs obtained for each device arch.
2718     SmallVector<ActionList, 8> DeviceLinkerInputs;
2719 
2720   public:
2721     HIPActionBuilder(Compilation &C, DerivedArgList &Args,
2722                      const Driver::InputList &Inputs)
2723         : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) {
2724       DefaultCudaArch = CudaArch::GFX803;
2725     }
2726 
2727     bool canUseBundlerUnbundler() const override { return true; }
2728 
2729     ActionBuilderReturnCode
2730     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2731                          phases::ID CurPhase, phases::ID FinalPhase,
2732                          PhasesTy &Phases) override {
2733       // amdgcn does not support linking of object files, therefore we skip
2734       // backend and assemble phases to output LLVM IR. Except for generating
2735       // non-relocatable device coee, where we generate fat binary for device
2736       // code and pass to host in Backend phase.
2737       if (CudaDeviceActions.empty())
2738         return ABRT_Success;
2739 
2740       assert(((CurPhase == phases::Link && Relocatable) ||
2741               CudaDeviceActions.size() == GpuArchList.size()) &&
2742              "Expecting one action per GPU architecture.");
2743       assert(!CompileHostOnly &&
2744              "Not expecting CUDA actions in host-only compilation.");
2745 
2746       if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM &&
2747           !EmitAsm) {
2748         // If we are in backend phase, we attempt to generate the fat binary.
2749         // We compile each arch to IR and use a link action to generate code
2750         // object containing ISA. Then we use a special "link" action to create
2751         // a fat binary containing all the code objects for different GPU's.
2752         // The fat binary is then an input to the host action.
2753         for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) {
2754           auto BackendAction = C.getDriver().ConstructPhaseAction(
2755               C, Args, phases::Backend, CudaDeviceActions[I],
2756               AssociatedOffloadKind);
2757           auto AssembleAction = C.getDriver().ConstructPhaseAction(
2758               C, Args, phases::Assemble, BackendAction, AssociatedOffloadKind);
2759           // Create a link action to link device IR with device library
2760           // and generate ISA.
2761           ActionList AL;
2762           AL.push_back(AssembleAction);
2763           CudaDeviceActions[I] =
2764               C.MakeAction<LinkJobAction>(AL, types::TY_Image);
2765 
2766           // OffloadingActionBuilder propagates device arch until an offload
2767           // action. Since the next action for creating fatbin does
2768           // not have device arch, whereas the above link action and its input
2769           // have device arch, an offload action is needed to stop the null
2770           // device arch of the next action being propagated to the above link
2771           // action.
2772           OffloadAction::DeviceDependences DDep;
2773           DDep.add(*CudaDeviceActions[I], *ToolChains.front(),
2774                    CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2775           CudaDeviceActions[I] = C.MakeAction<OffloadAction>(
2776               DDep, CudaDeviceActions[I]->getType());
2777         }
2778         // Create HIP fat binary with a special "link" action.
2779         CudaFatBinary =
2780             C.MakeAction<LinkJobAction>(CudaDeviceActions,
2781                 types::TY_HIP_FATBIN);
2782 
2783         if (!CompileDeviceOnly) {
2784           DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr,
2785                  AssociatedOffloadKind);
2786           // Clear the fat binary, it is already a dependence to an host
2787           // action.
2788           CudaFatBinary = nullptr;
2789         }
2790 
2791         // Remove the CUDA actions as they are already connected to an host
2792         // action or fat binary.
2793         CudaDeviceActions.clear();
2794 
2795         return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success;
2796       } else if (CurPhase == phases::Link) {
2797         // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch.
2798         // This happens to each device action originated from each input file.
2799         // Later on, device actions in DeviceLinkerInputs are used to create
2800         // device link actions in appendLinkDependences and the created device
2801         // link actions are passed to the offload action as device dependence.
2802         DeviceLinkerInputs.resize(CudaDeviceActions.size());
2803         auto LI = DeviceLinkerInputs.begin();
2804         for (auto *A : CudaDeviceActions) {
2805           LI->push_back(A);
2806           ++LI;
2807         }
2808 
2809         // We will pass the device action as a host dependence, so we don't
2810         // need to do anything else with them.
2811         CudaDeviceActions.clear();
2812         return ABRT_Success;
2813       }
2814 
2815       // By default, we produce an action for each device arch.
2816       for (Action *&A : CudaDeviceActions)
2817         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A,
2818                                                AssociatedOffloadKind);
2819 
2820       return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host
2821                                                            : ABRT_Success;
2822     }
2823 
2824     void appendLinkDeviceActions(ActionList &AL) override {
2825       if (DeviceLinkerInputs.size() == 0)
2826         return;
2827 
2828       assert(DeviceLinkerInputs.size() == GpuArchList.size() &&
2829              "Linker inputs and GPU arch list sizes do not match.");
2830 
2831       // Append a new link action for each device.
2832       unsigned I = 0;
2833       for (auto &LI : DeviceLinkerInputs) {
2834         // Each entry in DeviceLinkerInputs corresponds to a GPU arch.
2835         auto *DeviceLinkAction =
2836             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2837         // Linking all inputs for the current GPU arch.
2838         // LI contains all the inputs for the linker.
2839         OffloadAction::DeviceDependences DeviceLinkDeps;
2840         DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0],
2841             CudaArchToString(GpuArchList[I]), AssociatedOffloadKind);
2842         AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
2843             DeviceLinkAction->getType()));
2844         ++I;
2845       }
2846       DeviceLinkerInputs.clear();
2847 
2848       // Create a host object from all the device images by embedding them
2849       // in a fat binary.
2850       OffloadAction::DeviceDependences DDeps;
2851       auto *TopDeviceLinkAction =
2852           C.MakeAction<LinkJobAction>(AL, types::TY_Object);
2853       DDeps.add(*TopDeviceLinkAction, *ToolChains[0],
2854           nullptr, AssociatedOffloadKind);
2855 
2856       // Offload the host object to the host linker.
2857       AL.push_back(C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType()));
2858     }
2859 
2860     Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); }
2861 
2862     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
2863   };
2864 
2865   /// OpenMP action builder. The host bitcode is passed to the device frontend
2866   /// and all the device linked images are passed to the host link phase.
2867   class OpenMPActionBuilder final : public DeviceActionBuilder {
2868     /// The OpenMP actions for the current input.
2869     ActionList OpenMPDeviceActions;
2870 
2871     /// The linker inputs obtained for each toolchain.
2872     SmallVector<ActionList, 8> DeviceLinkerInputs;
2873 
2874   public:
2875     OpenMPActionBuilder(Compilation &C, DerivedArgList &Args,
2876                         const Driver::InputList &Inputs)
2877         : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {}
2878 
2879     ActionBuilderReturnCode
2880     getDeviceDependences(OffloadAction::DeviceDependences &DA,
2881                          phases::ID CurPhase, phases::ID FinalPhase,
2882                          PhasesTy &Phases) override {
2883       if (OpenMPDeviceActions.empty())
2884         return ABRT_Inactive;
2885 
2886       // We should always have an action for each input.
2887       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2888              "Number of OpenMP actions and toolchains do not match.");
2889 
2890       // The host only depends on device action in the linking phase, when all
2891       // the device images have to be embedded in the host image.
2892       if (CurPhase == phases::Link) {
2893         assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2894                "Toolchains and linker inputs sizes do not match.");
2895         auto LI = DeviceLinkerInputs.begin();
2896         for (auto *A : OpenMPDeviceActions) {
2897           LI->push_back(A);
2898           ++LI;
2899         }
2900 
2901         // We passed the device action as a host dependence, so we don't need to
2902         // do anything else with them.
2903         OpenMPDeviceActions.clear();
2904         return ABRT_Success;
2905       }
2906 
2907       // By default, we produce an action for each device arch.
2908       for (Action *&A : OpenMPDeviceActions)
2909         A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A);
2910 
2911       return ABRT_Success;
2912     }
2913 
2914     ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override {
2915 
2916       // If this is an input action replicate it for each OpenMP toolchain.
2917       if (auto *IA = dyn_cast<InputAction>(HostAction)) {
2918         OpenMPDeviceActions.clear();
2919         for (unsigned I = 0; I < ToolChains.size(); ++I)
2920           OpenMPDeviceActions.push_back(
2921               C.MakeAction<InputAction>(IA->getInputArg(), IA->getType()));
2922         return ABRT_Success;
2923       }
2924 
2925       // If this is an unbundling action use it as is for each OpenMP toolchain.
2926       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) {
2927         OpenMPDeviceActions.clear();
2928         auto *IA = cast<InputAction>(UA->getInputs().back());
2929         std::string FileName = IA->getInputArg().getAsString(Args);
2930         // Check if the type of the file is the same as the action. Do not
2931         // unbundle it if it is not. Do not unbundle .so files, for example,
2932         // which are not object files.
2933         if (IA->getType() == types::TY_Object &&
2934             (!llvm::sys::path::has_extension(FileName) ||
2935              types::lookupTypeForExtension(
2936                  llvm::sys::path::extension(FileName).drop_front()) !=
2937                  types::TY_Object))
2938           return ABRT_Inactive;
2939         for (unsigned I = 0; I < ToolChains.size(); ++I) {
2940           OpenMPDeviceActions.push_back(UA);
2941           UA->registerDependentActionInfo(
2942               ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP);
2943         }
2944         return ABRT_Success;
2945       }
2946 
2947       // When generating code for OpenMP we use the host compile phase result as
2948       // a dependence to the device compile phase so that it can learn what
2949       // declarations should be emitted. However, this is not the only use for
2950       // the host action, so we prevent it from being collapsed.
2951       if (isa<CompileJobAction>(HostAction)) {
2952         HostAction->setCannotBeCollapsedWithNextDependentAction();
2953         assert(ToolChains.size() == OpenMPDeviceActions.size() &&
2954                "Toolchains and device action sizes do not match.");
2955         OffloadAction::HostDependence HDep(
2956             *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
2957             /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2958         auto TC = ToolChains.begin();
2959         for (Action *&A : OpenMPDeviceActions) {
2960           assert(isa<CompileJobAction>(A));
2961           OffloadAction::DeviceDependences DDep;
2962           DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2963           A = C.MakeAction<OffloadAction>(HDep, DDep);
2964           ++TC;
2965         }
2966       }
2967       return ABRT_Success;
2968     }
2969 
2970     void appendTopLevelActions(ActionList &AL) override {
2971       if (OpenMPDeviceActions.empty())
2972         return;
2973 
2974       // We should always have an action for each input.
2975       assert(OpenMPDeviceActions.size() == ToolChains.size() &&
2976              "Number of OpenMP actions and toolchains do not match.");
2977 
2978       // Append all device actions followed by the proper offload action.
2979       auto TI = ToolChains.begin();
2980       for (auto *A : OpenMPDeviceActions) {
2981         OffloadAction::DeviceDependences Dep;
2982         Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP);
2983         AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType()));
2984         ++TI;
2985       }
2986       // We no longer need the action stored in this builder.
2987       OpenMPDeviceActions.clear();
2988     }
2989 
2990     void appendLinkDeviceActions(ActionList &AL) override {
2991       assert(ToolChains.size() == DeviceLinkerInputs.size() &&
2992              "Toolchains and linker inputs sizes do not match.");
2993 
2994       // Append a new link action for each device.
2995       auto TC = ToolChains.begin();
2996       for (auto &LI : DeviceLinkerInputs) {
2997         auto *DeviceLinkAction =
2998             C.MakeAction<LinkJobAction>(LI, types::TY_Image);
2999         OffloadAction::DeviceDependences DeviceLinkDeps;
3000         DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr,
3001 		        Action::OFK_OpenMP);
3002         AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps,
3003             DeviceLinkAction->getType()));
3004         ++TC;
3005       }
3006       DeviceLinkerInputs.clear();
3007     }
3008 
3009     Action* appendLinkHostActions(ActionList &AL) override {
3010       // Create wrapper bitcode from the result of device link actions and compile
3011       // it to an object which will be added to the host link command.
3012       auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC);
3013       auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm);
3014       return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object);
3015     }
3016 
3017     void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {}
3018 
3019     bool initialize() override {
3020       // Get the OpenMP toolchains. If we don't get any, the action builder will
3021       // know there is nothing to do related to OpenMP offloading.
3022       auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>();
3023       for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE;
3024            ++TI)
3025         ToolChains.push_back(TI->second);
3026 
3027       DeviceLinkerInputs.resize(ToolChains.size());
3028       return false;
3029     }
3030 
3031     bool canUseBundlerUnbundler() const override {
3032       // OpenMP should use bundled files whenever possible.
3033       return true;
3034     }
3035   };
3036 
3037   ///
3038   /// TODO: Add the implementation for other specialized builders here.
3039   ///
3040 
3041   /// Specialized builders being used by this offloading action builder.
3042   SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders;
3043 
3044   /// Flag set to true if all valid builders allow file bundling/unbundling.
3045   bool CanUseBundler;
3046 
3047 public:
3048   OffloadingActionBuilder(Compilation &C, DerivedArgList &Args,
3049                           const Driver::InputList &Inputs)
3050       : C(C) {
3051     // Create a specialized builder for each device toolchain.
3052 
3053     IsValid = true;
3054 
3055     // Create a specialized builder for CUDA.
3056     SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs));
3057 
3058     // Create a specialized builder for HIP.
3059     SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs));
3060 
3061     // Create a specialized builder for OpenMP.
3062     SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs));
3063 
3064     //
3065     // TODO: Build other specialized builders here.
3066     //
3067 
3068     // Initialize all the builders, keeping track of errors. If all valid
3069     // builders agree that we can use bundling, set the flag to true.
3070     unsigned ValidBuilders = 0u;
3071     unsigned ValidBuildersSupportingBundling = 0u;
3072     for (auto *SB : SpecializedBuilders) {
3073       IsValid = IsValid && !SB->initialize();
3074 
3075       // Update the counters if the builder is valid.
3076       if (SB->isValid()) {
3077         ++ValidBuilders;
3078         if (SB->canUseBundlerUnbundler())
3079           ++ValidBuildersSupportingBundling;
3080       }
3081     }
3082     CanUseBundler =
3083         ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling;
3084   }
3085 
3086   ~OffloadingActionBuilder() {
3087     for (auto *SB : SpecializedBuilders)
3088       delete SB;
3089   }
3090 
3091   /// Generate an action that adds device dependences (if any) to a host action.
3092   /// If no device dependence actions exist, just return the host action \a
3093   /// HostAction. If an error is found or if no builder requires the host action
3094   /// to be generated, return nullptr.
3095   Action *
3096   addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg,
3097                                    phases::ID CurPhase, phases::ID FinalPhase,
3098                                    DeviceActionBuilder::PhasesTy &Phases) {
3099     if (!IsValid)
3100       return nullptr;
3101 
3102     if (SpecializedBuilders.empty())
3103       return HostAction;
3104 
3105     assert(HostAction && "Invalid host action!");
3106 
3107     OffloadAction::DeviceDependences DDeps;
3108     // Check if all the programming models agree we should not emit the host
3109     // action. Also, keep track of the offloading kinds employed.
3110     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3111     unsigned InactiveBuilders = 0u;
3112     unsigned IgnoringBuilders = 0u;
3113     for (auto *SB : SpecializedBuilders) {
3114       if (!SB->isValid()) {
3115         ++InactiveBuilders;
3116         continue;
3117       }
3118 
3119       auto RetCode =
3120           SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases);
3121 
3122       // If the builder explicitly says the host action should be ignored,
3123       // we need to increment the variable that tracks the builders that request
3124       // the host object to be ignored.
3125       if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host)
3126         ++IgnoringBuilders;
3127 
3128       // Unless the builder was inactive for this action, we have to record the
3129       // offload kind because the host will have to use it.
3130       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3131         OffloadKind |= SB->getAssociatedOffloadKind();
3132     }
3133 
3134     // If all builders agree that the host object should be ignored, just return
3135     // nullptr.
3136     if (IgnoringBuilders &&
3137         SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders))
3138       return nullptr;
3139 
3140     if (DDeps.getActions().empty())
3141       return HostAction;
3142 
3143     // We have dependences we need to bundle together. We use an offload action
3144     // for that.
3145     OffloadAction::HostDependence HDep(
3146         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3147         /*BoundArch=*/nullptr, DDeps);
3148     return C.MakeAction<OffloadAction>(HDep, DDeps);
3149   }
3150 
3151   /// Generate an action that adds a host dependence to a device action. The
3152   /// results will be kept in this action builder. Return true if an error was
3153   /// found.
3154   bool addHostDependenceToDeviceActions(Action *&HostAction,
3155                                         const Arg *InputArg) {
3156     if (!IsValid)
3157       return true;
3158 
3159     // If we are supporting bundling/unbundling and the current action is an
3160     // input action of non-source file, we replace the host action by the
3161     // unbundling action. The bundler tool has the logic to detect if an input
3162     // is a bundle or not and if the input is not a bundle it assumes it is a
3163     // host file. Therefore it is safe to create an unbundling action even if
3164     // the input is not a bundle.
3165     if (CanUseBundler && isa<InputAction>(HostAction) &&
3166         InputArg->getOption().getKind() == llvm::opt::Option::InputClass &&
3167         !types::isSrcFile(HostAction->getType())) {
3168       auto UnbundlingHostAction =
3169           C.MakeAction<OffloadUnbundlingJobAction>(HostAction);
3170       UnbundlingHostAction->registerDependentActionInfo(
3171           C.getSingleOffloadToolChain<Action::OFK_Host>(),
3172           /*BoundArch=*/StringRef(), Action::OFK_Host);
3173       HostAction = UnbundlingHostAction;
3174     }
3175 
3176     assert(HostAction && "Invalid host action!");
3177 
3178     // Register the offload kinds that are used.
3179     auto &OffloadKind = InputArgToOffloadKindMap[InputArg];
3180     for (auto *SB : SpecializedBuilders) {
3181       if (!SB->isValid())
3182         continue;
3183 
3184       auto RetCode = SB->addDeviceDepences(HostAction);
3185 
3186       // Host dependences for device actions are not compatible with that same
3187       // action being ignored.
3188       assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host &&
3189              "Host dependence not expected to be ignored.!");
3190 
3191       // Unless the builder was inactive for this action, we have to record the
3192       // offload kind because the host will have to use it.
3193       if (RetCode != DeviceActionBuilder::ABRT_Inactive)
3194         OffloadKind |= SB->getAssociatedOffloadKind();
3195     }
3196 
3197     // Do not use unbundler if the Host does not depend on device action.
3198     if (OffloadKind == Action::OFK_None && CanUseBundler)
3199       if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction))
3200         HostAction = UA->getInputs().back();
3201 
3202     return false;
3203   }
3204 
3205   /// Add the offloading top level actions to the provided action list. This
3206   /// function can replace the host action by a bundling action if the
3207   /// programming models allow it.
3208   bool appendTopLevelActions(ActionList &AL, Action *HostAction,
3209                              const Arg *InputArg) {
3210     // Get the device actions to be appended.
3211     ActionList OffloadAL;
3212     for (auto *SB : SpecializedBuilders) {
3213       if (!SB->isValid())
3214         continue;
3215       SB->appendTopLevelActions(OffloadAL);
3216     }
3217 
3218     // If we can use the bundler, replace the host action by the bundling one in
3219     // the resulting list. Otherwise, just append the device actions. For
3220     // device only compilation, HostAction is a null pointer, therefore only do
3221     // this when HostAction is not a null pointer.
3222     if (CanUseBundler && HostAction &&
3223         HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) {
3224       // Add the host action to the list in order to create the bundling action.
3225       OffloadAL.push_back(HostAction);
3226 
3227       // We expect that the host action was just appended to the action list
3228       // before this method was called.
3229       assert(HostAction == AL.back() && "Host action not in the list??");
3230       HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL);
3231       AL.back() = HostAction;
3232     } else
3233       AL.append(OffloadAL.begin(), OffloadAL.end());
3234 
3235     // Propagate to the current host action (if any) the offload information
3236     // associated with the current input.
3237     if (HostAction)
3238       HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg],
3239                                            /*BoundArch=*/nullptr);
3240     return false;
3241   }
3242 
3243   Action* makeHostLinkAction() {
3244     // Build a list of device linking actions.
3245     ActionList DeviceAL;
3246     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3247       if (!SB->isValid())
3248         continue;
3249       SB->appendLinkDeviceActions(DeviceAL);
3250     }
3251 
3252     if (DeviceAL.empty())
3253       return nullptr;
3254 
3255     // Let builders add host linking actions.
3256     Action* HA;
3257     for (DeviceActionBuilder *SB : SpecializedBuilders) {
3258       if (!SB->isValid())
3259         continue;
3260       HA = SB->appendLinkHostActions(DeviceAL);
3261     }
3262     return HA;
3263   }
3264 
3265   /// Processes the host linker action. This currently consists of replacing it
3266   /// with an offload action if there are device link objects and propagate to
3267   /// the host action all the offload kinds used in the current compilation. The
3268   /// resulting action is returned.
3269   Action *processHostLinkAction(Action *HostAction) {
3270     // Add all the dependences from the device linking actions.
3271     OffloadAction::DeviceDependences DDeps;
3272     for (auto *SB : SpecializedBuilders) {
3273       if (!SB->isValid())
3274         continue;
3275 
3276       SB->appendLinkDependences(DDeps);
3277     }
3278 
3279     // Calculate all the offload kinds used in the current compilation.
3280     unsigned ActiveOffloadKinds = 0u;
3281     for (auto &I : InputArgToOffloadKindMap)
3282       ActiveOffloadKinds |= I.second;
3283 
3284     // If we don't have device dependencies, we don't have to create an offload
3285     // action.
3286     if (DDeps.getActions().empty()) {
3287       // Propagate all the active kinds to host action. Given that it is a link
3288       // action it is assumed to depend on all actions generated so far.
3289       HostAction->propagateHostOffloadInfo(ActiveOffloadKinds,
3290                                            /*BoundArch=*/nullptr);
3291       return HostAction;
3292     }
3293 
3294     // Create the offload action with all dependences. When an offload action
3295     // is created the kinds are propagated to the host action, so we don't have
3296     // to do that explicitly here.
3297     OffloadAction::HostDependence HDep(
3298         *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(),
3299         /*BoundArch*/ nullptr, ActiveOffloadKinds);
3300     return C.MakeAction<OffloadAction>(HDep, DDeps);
3301   }
3302 };
3303 } // anonymous namespace.
3304 
3305 void Driver::handleArguments(Compilation &C, DerivedArgList &Args,
3306                              const InputList &Inputs,
3307                              ActionList &Actions) const {
3308 
3309   // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames.
3310   Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc);
3311   Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu);
3312   if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) {
3313     Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl);
3314     Args.eraseArg(options::OPT__SLASH_Yc);
3315     Args.eraseArg(options::OPT__SLASH_Yu);
3316     YcArg = YuArg = nullptr;
3317   }
3318   if (YcArg && Inputs.size() > 1) {
3319     Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl);
3320     Args.eraseArg(options::OPT__SLASH_Yc);
3321     YcArg = nullptr;
3322   }
3323 
3324   Arg *FinalPhaseArg;
3325   phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg);
3326 
3327   if (FinalPhase == phases::Link) {
3328     if (Args.hasArg(options::OPT_emit_llvm))
3329       Diag(clang::diag::err_drv_emit_llvm_link);
3330     if (IsCLMode() && LTOMode != LTOK_None &&
3331         !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld"))
3332       Diag(clang::diag::err_drv_lto_without_lld);
3333   }
3334 
3335   if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) {
3336     // If only preprocessing or /Y- is used, all pch handling is disabled.
3337     // Rather than check for it everywhere, just remove clang-cl pch-related
3338     // flags here.
3339     Args.eraseArg(options::OPT__SLASH_Fp);
3340     Args.eraseArg(options::OPT__SLASH_Yc);
3341     Args.eraseArg(options::OPT__SLASH_Yu);
3342     YcArg = YuArg = nullptr;
3343   }
3344 
3345   unsigned LastPLSize = 0;
3346   for (auto &I : Inputs) {
3347     types::ID InputType = I.first;
3348     const Arg *InputArg = I.second;
3349 
3350     auto PL = types::getCompilationPhases(InputType);
3351     LastPLSize = PL.size();
3352 
3353     // If the first step comes after the final phase we are doing as part of
3354     // this compilation, warn the user about it.
3355     phases::ID InitialPhase = PL[0];
3356     if (InitialPhase > FinalPhase) {
3357       if (InputArg->isClaimed())
3358         continue;
3359 
3360       // Claim here to avoid the more general unused warning.
3361       InputArg->claim();
3362 
3363       // Suppress all unused style warnings with -Qunused-arguments
3364       if (Args.hasArg(options::OPT_Qunused_arguments))
3365         continue;
3366 
3367       // Special case when final phase determined by binary name, rather than
3368       // by a command-line argument with a corresponding Arg.
3369       if (CCCIsCPP())
3370         Diag(clang::diag::warn_drv_input_file_unused_by_cpp)
3371             << InputArg->getAsString(Args) << getPhaseName(InitialPhase);
3372       // Special case '-E' warning on a previously preprocessed file to make
3373       // more sense.
3374       else if (InitialPhase == phases::Compile &&
3375                (Args.getLastArg(options::OPT__SLASH_EP,
3376                                 options::OPT__SLASH_P) ||
3377                 Args.getLastArg(options::OPT_E) ||
3378                 Args.getLastArg(options::OPT_M, options::OPT_MM)) &&
3379                getPreprocessedType(InputType) == types::TY_INVALID)
3380         Diag(clang::diag::warn_drv_preprocessed_input_file_unused)
3381             << InputArg->getAsString(Args) << !!FinalPhaseArg
3382             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3383       else
3384         Diag(clang::diag::warn_drv_input_file_unused)
3385             << InputArg->getAsString(Args) << getPhaseName(InitialPhase)
3386             << !!FinalPhaseArg
3387             << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : "");
3388       continue;
3389     }
3390 
3391     if (YcArg) {
3392       // Add a separate precompile phase for the compile phase.
3393       if (FinalPhase >= phases::Compile) {
3394         const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType);
3395         // Build the pipeline for the pch file.
3396         Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType);
3397         for (phases::ID Phase : types::getCompilationPhases(HeaderType))
3398           ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch);
3399         assert(ClangClPch);
3400         Actions.push_back(ClangClPch);
3401         // The driver currently exits after the first failed command.  This
3402         // relies on that behavior, to make sure if the pch generation fails,
3403         // the main compilation won't run.
3404         // FIXME: If the main compilation fails, the PCH generation should
3405         // probably not be considered successful either.
3406       }
3407     }
3408   }
3409 
3410   // If we are linking, claim any options which are obviously only used for
3411   // compilation.
3412   // FIXME: Understand why the last Phase List length is used here.
3413   if (FinalPhase == phases::Link && LastPLSize == 1) {
3414     Args.ClaimAllArgs(options::OPT_CompileOnly_Group);
3415     Args.ClaimAllArgs(options::OPT_cl_compile_Group);
3416   }
3417 }
3418 
3419 void Driver::BuildActions(Compilation &C, DerivedArgList &Args,
3420                           const InputList &Inputs, ActionList &Actions) const {
3421   llvm::PrettyStackTraceString CrashInfo("Building compilation actions");
3422 
3423   if (!SuppressMissingInputWarning && Inputs.empty()) {
3424     Diag(clang::diag::err_drv_no_input_files);
3425     return;
3426   }
3427 
3428   // Reject -Z* at the top level, these options should never have been exposed
3429   // by gcc.
3430   if (Arg *A = Args.getLastArg(options::OPT_Z_Joined))
3431     Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args);
3432 
3433   // Diagnose misuse of /Fo.
3434   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) {
3435     StringRef V = A->getValue();
3436     if (Inputs.size() > 1 && !V.empty() &&
3437         !llvm::sys::path::is_separator(V.back())) {
3438       // Check whether /Fo tries to name an output file for multiple inputs.
3439       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3440           << A->getSpelling() << V;
3441       Args.eraseArg(options::OPT__SLASH_Fo);
3442     }
3443   }
3444 
3445   // Diagnose misuse of /Fa.
3446   if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) {
3447     StringRef V = A->getValue();
3448     if (Inputs.size() > 1 && !V.empty() &&
3449         !llvm::sys::path::is_separator(V.back())) {
3450       // Check whether /Fa tries to name an asm file for multiple inputs.
3451       Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources)
3452           << A->getSpelling() << V;
3453       Args.eraseArg(options::OPT__SLASH_Fa);
3454     }
3455   }
3456 
3457   // Diagnose misuse of /o.
3458   if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) {
3459     if (A->getValue()[0] == '\0') {
3460       // It has to have a value.
3461       Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1;
3462       Args.eraseArg(options::OPT__SLASH_o);
3463     }
3464   }
3465 
3466   handleArguments(C, Args, Inputs, Actions);
3467 
3468   // Builder to be used to build offloading actions.
3469   OffloadingActionBuilder OffloadBuilder(C, Args, Inputs);
3470 
3471   // Construct the actions to perform.
3472   HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr;
3473   ActionList LinkerInputs;
3474   ActionList MergerInputs;
3475 
3476   for (auto &I : Inputs) {
3477     types::ID InputType = I.first;
3478     const Arg *InputArg = I.second;
3479 
3480     auto PL = types::getCompilationPhases(*this, Args, InputType);
3481     if (PL.empty())
3482       continue;
3483 
3484     auto FullPL = types::getCompilationPhases(InputType);
3485 
3486     // Build the pipeline for this file.
3487     Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3488 
3489     // Use the current host action in any of the offloading actions, if
3490     // required.
3491     if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3492       break;
3493 
3494     for (phases::ID Phase : PL) {
3495 
3496       // Add any offload action the host action depends on.
3497       Current = OffloadBuilder.addDeviceDependencesToHostAction(
3498           Current, InputArg, Phase, PL.back(), FullPL);
3499       if (!Current)
3500         break;
3501 
3502       // Queue linker inputs.
3503       if (Phase == phases::Link) {
3504         assert(Phase == PL.back() && "linking must be final compilation step.");
3505         LinkerInputs.push_back(Current);
3506         Current = nullptr;
3507         break;
3508       }
3509 
3510       // TODO: Consider removing this because the merged may not end up being
3511       // the final Phase in the pipeline. Perhaps the merged could just merge
3512       // and then pass an artifact of some sort to the Link Phase.
3513       // Queue merger inputs.
3514       if (Phase == phases::IfsMerge) {
3515         assert(Phase == PL.back() && "merging must be final compilation step.");
3516         MergerInputs.push_back(Current);
3517         Current = nullptr;
3518         break;
3519       }
3520 
3521       // Each precompiled header file after a module file action is a module
3522       // header of that same module file, rather than being compiled to a
3523       // separate PCH.
3524       if (Phase == phases::Precompile && HeaderModuleAction &&
3525           getPrecompiledType(InputType) == types::TY_PCH) {
3526         HeaderModuleAction->addModuleHeaderInput(Current);
3527         Current = nullptr;
3528         break;
3529       }
3530 
3531       // FIXME: Should we include any prior module file outputs as inputs of
3532       // later actions in the same command line?
3533 
3534       // Otherwise construct the appropriate action.
3535       Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current);
3536 
3537       // We didn't create a new action, so we will just move to the next phase.
3538       if (NewCurrent == Current)
3539         continue;
3540 
3541       if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent))
3542         HeaderModuleAction = HMA;
3543 
3544       Current = NewCurrent;
3545 
3546       // Use the current host action in any of the offloading actions, if
3547       // required.
3548       if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg))
3549         break;
3550 
3551       if (Current->getType() == types::TY_Nothing)
3552         break;
3553     }
3554 
3555     // If we ended with something, add to the output list.
3556     if (Current)
3557       Actions.push_back(Current);
3558 
3559     // Add any top level actions generated for offloading.
3560     OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg);
3561   }
3562 
3563   // Add a link action if necessary.
3564   if (!LinkerInputs.empty()) {
3565     if (Action *Wrapper = OffloadBuilder.makeHostLinkAction())
3566       LinkerInputs.push_back(Wrapper);
3567     Action *LA;
3568     // Check if this Linker Job should emit a static library.
3569     if (ShouldEmitStaticLibrary(Args)) {
3570       LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image);
3571     } else {
3572       LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image);
3573     }
3574     LA = OffloadBuilder.processHostLinkAction(LA);
3575     Actions.push_back(LA);
3576   }
3577 
3578   // Add an interface stubs merge action if necessary.
3579   if (!MergerInputs.empty())
3580     Actions.push_back(
3581         C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3582 
3583   if (Args.hasArg(options::OPT_emit_interface_stubs)) {
3584     auto PhaseList = types::getCompilationPhases(
3585         types::TY_IFS_CPP,
3586         Args.hasArg(options::OPT_c) ? phases::Compile : phases::LastPhase);
3587 
3588     ActionList MergerInputs;
3589 
3590     for (auto &I : Inputs) {
3591       types::ID InputType = I.first;
3592       const Arg *InputArg = I.second;
3593 
3594       // Currently clang and the llvm assembler do not support generating symbol
3595       // stubs from assembly, so we skip the input on asm files. For ifs files
3596       // we rely on the normal pipeline setup in the pipeline setup code above.
3597       if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm ||
3598           InputType == types::TY_Asm)
3599         continue;
3600 
3601       Action *Current = C.MakeAction<InputAction>(*InputArg, InputType);
3602 
3603       for (auto Phase : PhaseList) {
3604         switch (Phase) {
3605         default:
3606           llvm_unreachable(
3607               "IFS Pipeline can only consist of Compile followed by IfsMerge.");
3608         case phases::Compile: {
3609           // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs
3610           // files where the .o file is located. The compile action can not
3611           // handle this.
3612           if (InputType == types::TY_Object)
3613             break;
3614 
3615           Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP);
3616           break;
3617         }
3618         case phases::IfsMerge: {
3619           assert(Phase == PhaseList.back() &&
3620                  "merging must be final compilation step.");
3621           MergerInputs.push_back(Current);
3622           Current = nullptr;
3623           break;
3624         }
3625         }
3626       }
3627 
3628       // If we ended with something, add to the output list.
3629       if (Current)
3630         Actions.push_back(Current);
3631     }
3632 
3633     // Add an interface stubs merge action if necessary.
3634     if (!MergerInputs.empty())
3635       Actions.push_back(
3636           C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image));
3637   }
3638 
3639   // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom
3640   // Compile phase that prints out supported cpu models and quits.
3641   if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) {
3642     // Use the -mcpu=? flag as the dummy input to cc1.
3643     Actions.clear();
3644     Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C);
3645     Actions.push_back(
3646         C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing));
3647     for (auto &I : Inputs)
3648       I.second->claim();
3649   }
3650 
3651   // Claim ignored clang-cl options.
3652   Args.ClaimAllArgs(options::OPT_cl_ignored_Group);
3653 
3654   // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed
3655   // to non-CUDA compilations and should not trigger warnings there.
3656   Args.ClaimAllArgs(options::OPT_cuda_host_only);
3657   Args.ClaimAllArgs(options::OPT_cuda_compile_host_device);
3658 }
3659 
3660 Action *Driver::ConstructPhaseAction(
3661     Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input,
3662     Action::OffloadKind TargetDeviceOffloadKind) const {
3663   llvm::PrettyStackTraceString CrashInfo("Constructing phase actions");
3664 
3665   // Some types skip the assembler phase (e.g., llvm-bc), but we can't
3666   // encode this in the steps because the intermediate type depends on
3667   // arguments. Just special case here.
3668   if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm)
3669     return Input;
3670 
3671   // Build the appropriate action.
3672   switch (Phase) {
3673   case phases::Link:
3674     llvm_unreachable("link action invalid here.");
3675   case phases::IfsMerge:
3676     llvm_unreachable("ifsmerge action invalid here.");
3677   case phases::Preprocess: {
3678     types::ID OutputTy;
3679     // -M and -MM specify the dependency file name by altering the output type,
3680     // -if -MD and -MMD are not specified.
3681     if (Args.hasArg(options::OPT_M, options::OPT_MM) &&
3682         !Args.hasArg(options::OPT_MD, options::OPT_MMD)) {
3683       OutputTy = types::TY_Dependencies;
3684     } else {
3685       OutputTy = Input->getType();
3686       if (!Args.hasFlag(options::OPT_frewrite_includes,
3687                         options::OPT_fno_rewrite_includes, false) &&
3688           !Args.hasFlag(options::OPT_frewrite_imports,
3689                         options::OPT_fno_rewrite_imports, false) &&
3690           !CCGenDiagnostics)
3691         OutputTy = types::getPreprocessedType(OutputTy);
3692       assert(OutputTy != types::TY_INVALID &&
3693              "Cannot preprocess this input type!");
3694     }
3695     return C.MakeAction<PreprocessJobAction>(Input, OutputTy);
3696   }
3697   case phases::Precompile: {
3698     types::ID OutputTy = getPrecompiledType(Input->getType());
3699     assert(OutputTy != types::TY_INVALID &&
3700            "Cannot precompile this input type!");
3701 
3702     // If we're given a module name, precompile header file inputs as a
3703     // module, not as a precompiled header.
3704     const char *ModName = nullptr;
3705     if (OutputTy == types::TY_PCH) {
3706       if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ))
3707         ModName = A->getValue();
3708       if (ModName)
3709         OutputTy = types::TY_ModuleFile;
3710     }
3711 
3712     if (Args.hasArg(options::OPT_fsyntax_only)) {
3713       // Syntax checks should not emit a PCH file
3714       OutputTy = types::TY_Nothing;
3715     }
3716 
3717     if (ModName)
3718       return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy,
3719                                                            ModName);
3720     return C.MakeAction<PrecompileJobAction>(Input, OutputTy);
3721   }
3722   case phases::Compile: {
3723     if (Args.hasArg(options::OPT_fsyntax_only))
3724       return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing);
3725     if (Args.hasArg(options::OPT_rewrite_objc))
3726       return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC);
3727     if (Args.hasArg(options::OPT_rewrite_legacy_objc))
3728       return C.MakeAction<CompileJobAction>(Input,
3729                                             types::TY_RewrittenLegacyObjC);
3730     if (Args.hasArg(options::OPT__analyze))
3731       return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist);
3732     if (Args.hasArg(options::OPT__migrate))
3733       return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap);
3734     if (Args.hasArg(options::OPT_emit_ast))
3735       return C.MakeAction<CompileJobAction>(Input, types::TY_AST);
3736     if (Args.hasArg(options::OPT_module_file_info))
3737       return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile);
3738     if (Args.hasArg(options::OPT_verify_pch))
3739       return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing);
3740     return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC);
3741   }
3742   case phases::Backend: {
3743     if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) {
3744       types::ID Output =
3745           Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC;
3746       return C.MakeAction<BackendJobAction>(Input, Output);
3747     }
3748     if (Args.hasArg(options::OPT_emit_llvm) ||
3749         (TargetDeviceOffloadKind == Action::OFK_HIP &&
3750          Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
3751                       false))) {
3752       types::ID Output =
3753           Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC;
3754       return C.MakeAction<BackendJobAction>(Input, Output);
3755     }
3756     return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm);
3757   }
3758   case phases::Assemble:
3759     return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object);
3760   }
3761 
3762   llvm_unreachable("invalid phase in ConstructPhaseAction");
3763 }
3764 
3765 void Driver::BuildJobs(Compilation &C) const {
3766   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
3767 
3768   Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
3769 
3770   // It is an error to provide a -o option if we are making multiple output
3771   // files. There are exceptions:
3772   //
3773   // IfsMergeJob: when generating interface stubs enabled we want to be able to
3774   // generate the stub file at the same time that we generate the real
3775   // library/a.out. So when a .o, .so, etc are the output, with clang interface
3776   // stubs there will also be a .ifs and .ifso at the same location.
3777   //
3778   // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled
3779   // and -c is passed, we still want to be able to generate a .ifs file while
3780   // we are also generating .o files. So we allow more than one output file in
3781   // this case as well.
3782   //
3783   if (FinalOutput) {
3784     unsigned NumOutputs = 0;
3785     unsigned NumIfsOutputs = 0;
3786     for (const Action *A : C.getActions())
3787       if (A->getType() != types::TY_Nothing &&
3788           !(A->getKind() == Action::IfsMergeJobClass ||
3789             (A->getType() == clang::driver::types::TY_IFS_CPP &&
3790              A->getKind() == clang::driver::Action::CompileJobClass &&
3791              0 == NumIfsOutputs++) ||
3792             (A->getKind() == Action::BindArchClass && A->getInputs().size() &&
3793              A->getInputs().front()->getKind() == Action::IfsMergeJobClass)))
3794         ++NumOutputs;
3795 
3796     if (NumOutputs > 1) {
3797       Diag(clang::diag::err_drv_output_argument_with_multiple_files);
3798       FinalOutput = nullptr;
3799     }
3800   }
3801 
3802   // Collect the list of architectures.
3803   llvm::StringSet<> ArchNames;
3804   if (C.getDefaultToolChain().getTriple().isOSBinFormatMachO())
3805     for (const Arg *A : C.getArgs())
3806       if (A->getOption().matches(options::OPT_arch))
3807         ArchNames.insert(A->getValue());
3808 
3809   // Set of (Action, canonical ToolChain triple) pairs we've built jobs for.
3810   std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults;
3811   for (Action *A : C.getActions()) {
3812     // If we are linking an image for multiple archs then the linker wants
3813     // -arch_multiple and -final_output <final image name>. Unfortunately, this
3814     // doesn't fit in cleanly because we have to pass this information down.
3815     //
3816     // FIXME: This is a hack; find a cleaner way to integrate this into the
3817     // process.
3818     const char *LinkingOutput = nullptr;
3819     if (isa<LipoJobAction>(A)) {
3820       if (FinalOutput)
3821         LinkingOutput = FinalOutput->getValue();
3822       else
3823         LinkingOutput = getDefaultImageName();
3824     }
3825 
3826     BuildJobsForAction(C, A, &C.getDefaultToolChain(),
3827                        /*BoundArch*/ StringRef(),
3828                        /*AtTopLevel*/ true,
3829                        /*MultipleArchs*/ ArchNames.size() > 1,
3830                        /*LinkingOutput*/ LinkingOutput, CachedResults,
3831                        /*TargetDeviceOffloadKind*/ Action::OFK_None);
3832   }
3833 
3834   // If we have more than one job, then disable integrated-cc1 for now.
3835   if (C.getJobs().size() > 1)
3836     for (auto &J : C.getJobs())
3837       J.InProcess = false;
3838 
3839   // If the user passed -Qunused-arguments or there were errors, don't warn
3840   // about any unused arguments.
3841   if (Diags.hasErrorOccurred() ||
3842       C.getArgs().hasArg(options::OPT_Qunused_arguments))
3843     return;
3844 
3845   // Claim -### here.
3846   (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH);
3847 
3848   // Claim --driver-mode, --rsp-quoting, it was handled earlier.
3849   (void)C.getArgs().hasArg(options::OPT_driver_mode);
3850   (void)C.getArgs().hasArg(options::OPT_rsp_quoting);
3851 
3852   for (Arg *A : C.getArgs()) {
3853     // FIXME: It would be nice to be able to send the argument to the
3854     // DiagnosticsEngine, so that extra values, position, and so on could be
3855     // printed.
3856     if (!A->isClaimed()) {
3857       if (A->getOption().hasFlag(options::NoArgumentUnused))
3858         continue;
3859 
3860       // Suppress the warning automatically if this is just a flag, and it is an
3861       // instance of an argument we already claimed.
3862       const Option &Opt = A->getOption();
3863       if (Opt.getKind() == Option::FlagClass) {
3864         bool DuplicateClaimed = false;
3865 
3866         for (const Arg *AA : C.getArgs().filtered(&Opt)) {
3867           if (AA->isClaimed()) {
3868             DuplicateClaimed = true;
3869             break;
3870           }
3871         }
3872 
3873         if (DuplicateClaimed)
3874           continue;
3875       }
3876 
3877       // In clang-cl, don't mention unknown arguments here since they have
3878       // already been warned about.
3879       if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN))
3880         Diag(clang::diag::warn_drv_unused_argument)
3881             << A->getAsString(C.getArgs());
3882     }
3883   }
3884 }
3885 
3886 namespace {
3887 /// Utility class to control the collapse of dependent actions and select the
3888 /// tools accordingly.
3889 class ToolSelector final {
3890   /// The tool chain this selector refers to.
3891   const ToolChain &TC;
3892 
3893   /// The compilation this selector refers to.
3894   const Compilation &C;
3895 
3896   /// The base action this selector refers to.
3897   const JobAction *BaseAction;
3898 
3899   /// Set to true if the current toolchain refers to host actions.
3900   bool IsHostSelector;
3901 
3902   /// Set to true if save-temps and embed-bitcode functionalities are active.
3903   bool SaveTemps;
3904   bool EmbedBitcode;
3905 
3906   /// Get previous dependent action or null if that does not exist. If
3907   /// \a CanBeCollapsed is false, that action must be legal to collapse or
3908   /// null will be returned.
3909   const JobAction *getPrevDependentAction(const ActionList &Inputs,
3910                                           ActionList &SavedOffloadAction,
3911                                           bool CanBeCollapsed = true) {
3912     // An option can be collapsed only if it has a single input.
3913     if (Inputs.size() != 1)
3914       return nullptr;
3915 
3916     Action *CurAction = *Inputs.begin();
3917     if (CanBeCollapsed &&
3918         !CurAction->isCollapsingWithNextDependentActionLegal())
3919       return nullptr;
3920 
3921     // If the input action is an offload action. Look through it and save any
3922     // offload action that can be dropped in the event of a collapse.
3923     if (auto *OA = dyn_cast<OffloadAction>(CurAction)) {
3924       // If the dependent action is a device action, we will attempt to collapse
3925       // only with other device actions. Otherwise, we would do the same but
3926       // with host actions only.
3927       if (!IsHostSelector) {
3928         if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) {
3929           CurAction =
3930               OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true);
3931           if (CanBeCollapsed &&
3932               !CurAction->isCollapsingWithNextDependentActionLegal())
3933             return nullptr;
3934           SavedOffloadAction.push_back(OA);
3935           return dyn_cast<JobAction>(CurAction);
3936         }
3937       } else if (OA->hasHostDependence()) {
3938         CurAction = OA->getHostDependence();
3939         if (CanBeCollapsed &&
3940             !CurAction->isCollapsingWithNextDependentActionLegal())
3941           return nullptr;
3942         SavedOffloadAction.push_back(OA);
3943         return dyn_cast<JobAction>(CurAction);
3944       }
3945       return nullptr;
3946     }
3947 
3948     return dyn_cast<JobAction>(CurAction);
3949   }
3950 
3951   /// Return true if an assemble action can be collapsed.
3952   bool canCollapseAssembleAction() const {
3953     return TC.useIntegratedAs() && !SaveTemps &&
3954            !C.getArgs().hasArg(options::OPT_via_file_asm) &&
3955            !C.getArgs().hasArg(options::OPT__SLASH_FA) &&
3956            !C.getArgs().hasArg(options::OPT__SLASH_Fa);
3957   }
3958 
3959   /// Return true if a preprocessor action can be collapsed.
3960   bool canCollapsePreprocessorAction() const {
3961     return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) &&
3962            !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps &&
3963            !C.getArgs().hasArg(options::OPT_rewrite_objc);
3964   }
3965 
3966   /// Struct that relates an action with the offload actions that would be
3967   /// collapsed with it.
3968   struct JobActionInfo final {
3969     /// The action this info refers to.
3970     const JobAction *JA = nullptr;
3971     /// The offload actions we need to take care off if this action is
3972     /// collapsed.
3973     ActionList SavedOffloadAction;
3974   };
3975 
3976   /// Append collapsed offload actions from the give nnumber of elements in the
3977   /// action info array.
3978   static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction,
3979                                            ArrayRef<JobActionInfo> &ActionInfo,
3980                                            unsigned ElementNum) {
3981     assert(ElementNum <= ActionInfo.size() && "Invalid number of elements.");
3982     for (unsigned I = 0; I < ElementNum; ++I)
3983       CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(),
3984                                     ActionInfo[I].SavedOffloadAction.end());
3985   }
3986 
3987   /// Functions that attempt to perform the combining. They detect if that is
3988   /// legal, and if so they update the inputs \a Inputs and the offload action
3989   /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with
3990   /// the combined action is returned. If the combining is not legal or if the
3991   /// tool does not exist, null is returned.
3992   /// Currently three kinds of collapsing are supported:
3993   ///  - Assemble + Backend + Compile;
3994   ///  - Assemble + Backend ;
3995   ///  - Backend + Compile.
3996   const Tool *
3997   combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
3998                                 ActionList &Inputs,
3999                                 ActionList &CollapsedOffloadAction) {
4000     if (ActionInfo.size() < 3 || !canCollapseAssembleAction())
4001       return nullptr;
4002     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4003     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4004     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA);
4005     if (!AJ || !BJ || !CJ)
4006       return nullptr;
4007 
4008     // Get compiler tool.
4009     const Tool *T = TC.SelectTool(*CJ);
4010     if (!T)
4011       return nullptr;
4012 
4013     // When using -fembed-bitcode, it is required to have the same tool (clang)
4014     // for both CompilerJA and BackendJA. Otherwise, combine two stages.
4015     if (EmbedBitcode) {
4016       const Tool *BT = TC.SelectTool(*BJ);
4017       if (BT == T)
4018         return nullptr;
4019     }
4020 
4021     if (!T->hasIntegratedAssembler())
4022       return nullptr;
4023 
4024     Inputs = CJ->getInputs();
4025     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4026                                  /*NumElements=*/3);
4027     return T;
4028   }
4029   const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo,
4030                                      ActionList &Inputs,
4031                                      ActionList &CollapsedOffloadAction) {
4032     if (ActionInfo.size() < 2 || !canCollapseAssembleAction())
4033       return nullptr;
4034     auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA);
4035     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA);
4036     if (!AJ || !BJ)
4037       return nullptr;
4038 
4039     // Get backend tool.
4040     const Tool *T = TC.SelectTool(*BJ);
4041     if (!T)
4042       return nullptr;
4043 
4044     if (!T->hasIntegratedAssembler())
4045       return nullptr;
4046 
4047     Inputs = BJ->getInputs();
4048     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4049                                  /*NumElements=*/2);
4050     return T;
4051   }
4052   const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo,
4053                                     ActionList &Inputs,
4054                                     ActionList &CollapsedOffloadAction) {
4055     if (ActionInfo.size() < 2)
4056       return nullptr;
4057     auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA);
4058     auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA);
4059     if (!BJ || !CJ)
4060       return nullptr;
4061 
4062     // Check if the initial input (to the compile job or its predessor if one
4063     // exists) is LLVM bitcode. In that case, no preprocessor step is required
4064     // and we can still collapse the compile and backend jobs when we have
4065     // -save-temps. I.e. there is no need for a separate compile job just to
4066     // emit unoptimized bitcode.
4067     bool InputIsBitcode = true;
4068     for (size_t i = 1; i < ActionInfo.size(); i++)
4069       if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC &&
4070           ActionInfo[i].JA->getType() != types::TY_LTO_BC) {
4071         InputIsBitcode = false;
4072         break;
4073       }
4074     if (!InputIsBitcode && !canCollapsePreprocessorAction())
4075       return nullptr;
4076 
4077     // Get compiler tool.
4078     const Tool *T = TC.SelectTool(*CJ);
4079     if (!T)
4080       return nullptr;
4081 
4082     if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode))
4083       return nullptr;
4084 
4085     Inputs = CJ->getInputs();
4086     AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo,
4087                                  /*NumElements=*/2);
4088     return T;
4089   }
4090 
4091   /// Updates the inputs if the obtained tool supports combining with
4092   /// preprocessor action, and the current input is indeed a preprocessor
4093   /// action. If combining results in the collapse of offloading actions, those
4094   /// are appended to \a CollapsedOffloadAction.
4095   void combineWithPreprocessor(const Tool *T, ActionList &Inputs,
4096                                ActionList &CollapsedOffloadAction) {
4097     if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP())
4098       return;
4099 
4100     // Attempt to get a preprocessor action dependence.
4101     ActionList PreprocessJobOffloadActions;
4102     ActionList NewInputs;
4103     for (Action *A : Inputs) {
4104       auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions);
4105       if (!PJ || !isa<PreprocessJobAction>(PJ)) {
4106         NewInputs.push_back(A);
4107         continue;
4108       }
4109 
4110       // This is legal to combine. Append any offload action we found and add the
4111       // current input to preprocessor inputs.
4112       CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(),
4113                                     PreprocessJobOffloadActions.end());
4114       NewInputs.append(PJ->input_begin(), PJ->input_end());
4115     }
4116     Inputs = NewInputs;
4117   }
4118 
4119 public:
4120   ToolSelector(const JobAction *BaseAction, const ToolChain &TC,
4121                const Compilation &C, bool SaveTemps, bool EmbedBitcode)
4122       : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps),
4123         EmbedBitcode(EmbedBitcode) {
4124     assert(BaseAction && "Invalid base action.");
4125     IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None;
4126   }
4127 
4128   /// Check if a chain of actions can be combined and return the tool that can
4129   /// handle the combination of actions. The pointer to the current inputs \a
4130   /// Inputs and the list of offload actions \a CollapsedOffloadActions
4131   /// connected to collapsed actions are updated accordingly. The latter enables
4132   /// the caller of the selector to process them afterwards instead of just
4133   /// dropping them. If no suitable tool is found, null will be returned.
4134   const Tool *getTool(ActionList &Inputs,
4135                       ActionList &CollapsedOffloadAction) {
4136     //
4137     // Get the largest chain of actions that we could combine.
4138     //
4139 
4140     SmallVector<JobActionInfo, 5> ActionChain(1);
4141     ActionChain.back().JA = BaseAction;
4142     while (ActionChain.back().JA) {
4143       const Action *CurAction = ActionChain.back().JA;
4144 
4145       // Grow the chain by one element.
4146       ActionChain.resize(ActionChain.size() + 1);
4147       JobActionInfo &AI = ActionChain.back();
4148 
4149       // Attempt to fill it with the
4150       AI.JA =
4151           getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction);
4152     }
4153 
4154     // Pop the last action info as it could not be filled.
4155     ActionChain.pop_back();
4156 
4157     //
4158     // Attempt to combine actions. If all combining attempts failed, just return
4159     // the tool of the provided action. At the end we attempt to combine the
4160     // action with any preprocessor action it may depend on.
4161     //
4162 
4163     const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs,
4164                                                   CollapsedOffloadAction);
4165     if (!T)
4166       T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction);
4167     if (!T)
4168       T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction);
4169     if (!T) {
4170       Inputs = BaseAction->getInputs();
4171       T = TC.SelectTool(*BaseAction);
4172     }
4173 
4174     combineWithPreprocessor(T, Inputs, CollapsedOffloadAction);
4175     return T;
4176   }
4177 };
4178 }
4179 
4180 /// Return a string that uniquely identifies the result of a job. The bound arch
4181 /// is not necessarily represented in the toolchain's triple -- for example,
4182 /// armv7 and armv7s both map to the same triple -- so we need both in our map.
4183 /// Also, we need to add the offloading device kind, as the same tool chain can
4184 /// be used for host and device for some programming models, e.g. OpenMP.
4185 static std::string GetTriplePlusArchString(const ToolChain *TC,
4186                                            StringRef BoundArch,
4187                                            Action::OffloadKind OffloadKind) {
4188   std::string TriplePlusArch = TC->getTriple().normalize();
4189   if (!BoundArch.empty()) {
4190     TriplePlusArch += "-";
4191     TriplePlusArch += BoundArch;
4192   }
4193   TriplePlusArch += "-";
4194   TriplePlusArch += Action::GetOffloadKindName(OffloadKind);
4195   return TriplePlusArch;
4196 }
4197 
4198 InputInfo Driver::BuildJobsForAction(
4199     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4200     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4201     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4202     Action::OffloadKind TargetDeviceOffloadKind) const {
4203   std::pair<const Action *, std::string> ActionTC = {
4204       A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4205   auto CachedResult = CachedResults.find(ActionTC);
4206   if (CachedResult != CachedResults.end()) {
4207     return CachedResult->second;
4208   }
4209   InputInfo Result = BuildJobsForActionNoCache(
4210       C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput,
4211       CachedResults, TargetDeviceOffloadKind);
4212   CachedResults[ActionTC] = Result;
4213   return Result;
4214 }
4215 
4216 InputInfo Driver::BuildJobsForActionNoCache(
4217     Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch,
4218     bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput,
4219     std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults,
4220     Action::OffloadKind TargetDeviceOffloadKind) const {
4221   llvm::PrettyStackTraceString CrashInfo("Building compilation jobs");
4222 
4223   InputInfoList OffloadDependencesInputInfo;
4224   bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None;
4225   if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) {
4226     // The 'Darwin' toolchain is initialized only when its arguments are
4227     // computed. Get the default arguments for OFK_None to ensure that
4228     // initialization is performed before processing the offload action.
4229     // FIXME: Remove when darwin's toolchain is initialized during construction.
4230     C.getArgsForToolChain(TC, BoundArch, Action::OFK_None);
4231 
4232     // The offload action is expected to be used in four different situations.
4233     //
4234     // a) Set a toolchain/architecture/kind for a host action:
4235     //    Host Action 1 -> OffloadAction -> Host Action 2
4236     //
4237     // b) Set a toolchain/architecture/kind for a device action;
4238     //    Device Action 1 -> OffloadAction -> Device Action 2
4239     //
4240     // c) Specify a device dependence to a host action;
4241     //    Device Action 1  _
4242     //                      \
4243     //      Host Action 1  ---> OffloadAction -> Host Action 2
4244     //
4245     // d) Specify a host dependence to a device action.
4246     //      Host Action 1  _
4247     //                      \
4248     //    Device Action 1  ---> OffloadAction -> Device Action 2
4249     //
4250     // For a) and b), we just return the job generated for the dependence. For
4251     // c) and d) we override the current action with the host/device dependence
4252     // if the current toolchain is host/device and set the offload dependences
4253     // info with the jobs obtained from the device/host dependence(s).
4254 
4255     // If there is a single device option, just generate the job for it.
4256     if (OA->hasSingleDeviceDependence()) {
4257       InputInfo DevA;
4258       OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC,
4259                                        const char *DepBoundArch) {
4260         DevA =
4261             BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel,
4262                                /*MultipleArchs*/ !!DepBoundArch, LinkingOutput,
4263                                CachedResults, DepA->getOffloadingDeviceKind());
4264       });
4265       return DevA;
4266     }
4267 
4268     // If 'Action 2' is host, we generate jobs for the device dependences and
4269     // override the current action with the host dependence. Otherwise, we
4270     // generate the host dependences and override the action with the device
4271     // dependence. The dependences can't therefore be a top-level action.
4272     OA->doOnEachDependence(
4273         /*IsHostDependence=*/BuildingForOffloadDevice,
4274         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4275           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4276               C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false,
4277               /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults,
4278               DepA->getOffloadingDeviceKind()));
4279         });
4280 
4281     A = BuildingForOffloadDevice
4282             ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)
4283             : OA->getHostDependence();
4284   }
4285 
4286   if (const InputAction *IA = dyn_cast<InputAction>(A)) {
4287     // FIXME: It would be nice to not claim this here; maybe the old scheme of
4288     // just using Args was better?
4289     const Arg &Input = IA->getInputArg();
4290     Input.claim();
4291     if (Input.getOption().matches(options::OPT_INPUT)) {
4292       const char *Name = Input.getValue();
4293       return InputInfo(A, Name, /* _BaseInput = */ Name);
4294     }
4295     return InputInfo(A, &Input, /* _BaseInput = */ "");
4296   }
4297 
4298   if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) {
4299     const ToolChain *TC;
4300     StringRef ArchName = BAA->getArchName();
4301 
4302     if (!ArchName.empty())
4303       TC = &getToolChain(C.getArgs(),
4304                          computeTargetTriple(*this, TargetTriple,
4305                                              C.getArgs(), ArchName));
4306     else
4307       TC = &C.getDefaultToolChain();
4308 
4309     return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel,
4310                               MultipleArchs, LinkingOutput, CachedResults,
4311                               TargetDeviceOffloadKind);
4312   }
4313 
4314 
4315   ActionList Inputs = A->getInputs();
4316 
4317   const JobAction *JA = cast<JobAction>(A);
4318   ActionList CollapsedOffloadActions;
4319 
4320   ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(),
4321                   embedBitcodeInObject() && !isUsingLTO());
4322   const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions);
4323 
4324   if (!T)
4325     return InputInfo();
4326 
4327   // If we've collapsed action list that contained OffloadAction we
4328   // need to build jobs for host/device-side inputs it may have held.
4329   for (const auto *OA : CollapsedOffloadActions)
4330     cast<OffloadAction>(OA)->doOnEachDependence(
4331         /*IsHostDependence=*/BuildingForOffloadDevice,
4332         [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) {
4333           OffloadDependencesInputInfo.push_back(BuildJobsForAction(
4334               C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false,
4335               /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults,
4336               DepA->getOffloadingDeviceKind()));
4337         });
4338 
4339   // Only use pipes when there is exactly one input.
4340   InputInfoList InputInfos;
4341   for (const Action *Input : Inputs) {
4342     // Treat dsymutil and verify sub-jobs as being at the top-level too, they
4343     // shouldn't get temporary output names.
4344     // FIXME: Clean this up.
4345     bool SubJobAtTopLevel =
4346         AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A));
4347     InputInfos.push_back(BuildJobsForAction(
4348         C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput,
4349         CachedResults, A->getOffloadingDeviceKind()));
4350   }
4351 
4352   // Always use the first input as the base input.
4353   const char *BaseInput = InputInfos[0].getBaseInput();
4354 
4355   // ... except dsymutil actions, which use their actual input as the base
4356   // input.
4357   if (JA->getType() == types::TY_dSYM)
4358     BaseInput = InputInfos[0].getFilename();
4359 
4360   // ... and in header module compilations, which use the module name.
4361   if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA))
4362     BaseInput = ModuleJA->getModuleName();
4363 
4364   // Append outputs of offload device jobs to the input list
4365   if (!OffloadDependencesInputInfo.empty())
4366     InputInfos.append(OffloadDependencesInputInfo.begin(),
4367                       OffloadDependencesInputInfo.end());
4368 
4369   // Set the effective triple of the toolchain for the duration of this job.
4370   llvm::Triple EffectiveTriple;
4371   const ToolChain &ToolTC = T->getToolChain();
4372   const ArgList &Args =
4373       C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind());
4374   if (InputInfos.size() != 1) {
4375     EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args));
4376   } else {
4377     // Pass along the input type if it can be unambiguously determined.
4378     EffectiveTriple = llvm::Triple(
4379         ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType()));
4380   }
4381   RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple);
4382 
4383   // Determine the place to write output to, if any.
4384   InputInfo Result;
4385   InputInfoList UnbundlingResults;
4386   if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) {
4387     // If we have an unbundling job, we need to create results for all the
4388     // outputs. We also update the results cache so that other actions using
4389     // this unbundling action can get the right results.
4390     for (auto &UI : UA->getDependentActionsInfo()) {
4391       assert(UI.DependentOffloadKind != Action::OFK_None &&
4392              "Unbundling with no offloading??");
4393 
4394       // Unbundling actions are never at the top level. When we generate the
4395       // offloading prefix, we also do that for the host file because the
4396       // unbundling action does not change the type of the output which can
4397       // cause a overwrite.
4398       std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4399           UI.DependentOffloadKind,
4400           UI.DependentToolChain->getTriple().normalize(),
4401           /*CreatePrefixForHost=*/true);
4402       auto CurI = InputInfo(
4403           UA,
4404           GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch,
4405                              /*AtTopLevel=*/false,
4406                              MultipleArchs ||
4407                                  UI.DependentOffloadKind == Action::OFK_HIP,
4408                              OffloadingPrefix),
4409           BaseInput);
4410       // Save the unbundling result.
4411       UnbundlingResults.push_back(CurI);
4412 
4413       // Get the unique string identifier for this dependence and cache the
4414       // result.
4415       StringRef Arch;
4416       if (TargetDeviceOffloadKind == Action::OFK_HIP) {
4417         if (UI.DependentOffloadKind == Action::OFK_Host)
4418           Arch = StringRef();
4419         else
4420           Arch = UI.DependentBoundArch;
4421       } else
4422         Arch = BoundArch;
4423 
4424       CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch,
4425                                                 UI.DependentOffloadKind)}] =
4426           CurI;
4427     }
4428 
4429     // Now that we have all the results generated, select the one that should be
4430     // returned for the current depending action.
4431     std::pair<const Action *, std::string> ActionTC = {
4432         A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)};
4433     assert(CachedResults.find(ActionTC) != CachedResults.end() &&
4434            "Result does not exist??");
4435     Result = CachedResults[ActionTC];
4436   } else if (JA->getType() == types::TY_Nothing)
4437     Result = InputInfo(A, BaseInput);
4438   else {
4439     // We only have to generate a prefix for the host if this is not a top-level
4440     // action.
4441     std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix(
4442         A->getOffloadingDeviceKind(), TC->getTriple().normalize(),
4443         /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() &&
4444             !AtTopLevel);
4445     if (isa<OffloadWrapperJobAction>(JA)) {
4446       OffloadingPrefix += "-wrapper";
4447       if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4448         BaseInput = FinalOutput->getValue();
4449       else
4450         BaseInput = getDefaultImageName();
4451     }
4452     Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch,
4453                                              AtTopLevel, MultipleArchs,
4454                                              OffloadingPrefix),
4455                        BaseInput);
4456   }
4457 
4458   if (CCCPrintBindings && !CCGenDiagnostics) {
4459     llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"'
4460                  << " - \"" << T->getName() << "\", inputs: [";
4461     for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) {
4462       llvm::errs() << InputInfos[i].getAsString();
4463       if (i + 1 != e)
4464         llvm::errs() << ", ";
4465     }
4466     if (UnbundlingResults.empty())
4467       llvm::errs() << "], output: " << Result.getAsString() << "\n";
4468     else {
4469       llvm::errs() << "], outputs: [";
4470       for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) {
4471         llvm::errs() << UnbundlingResults[i].getAsString();
4472         if (i + 1 != e)
4473           llvm::errs() << ", ";
4474       }
4475       llvm::errs() << "] \n";
4476     }
4477   } else {
4478     if (UnbundlingResults.empty())
4479       T->ConstructJob(
4480           C, *JA, Result, InputInfos,
4481           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4482           LinkingOutput);
4483     else
4484       T->ConstructJobMultipleOutputs(
4485           C, *JA, UnbundlingResults, InputInfos,
4486           C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()),
4487           LinkingOutput);
4488   }
4489   return Result;
4490 }
4491 
4492 const char *Driver::getDefaultImageName() const {
4493   llvm::Triple Target(llvm::Triple::normalize(TargetTriple));
4494   return Target.isOSWindows() ? "a.exe" : "a.out";
4495 }
4496 
4497 /// Create output filename based on ArgValue, which could either be a
4498 /// full filename, filename without extension, or a directory. If ArgValue
4499 /// does not provide a filename, then use BaseName, and use the extension
4500 /// suitable for FileType.
4501 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue,
4502                                         StringRef BaseName,
4503                                         types::ID FileType) {
4504   SmallString<128> Filename = ArgValue;
4505 
4506   if (ArgValue.empty()) {
4507     // If the argument is empty, output to BaseName in the current dir.
4508     Filename = BaseName;
4509   } else if (llvm::sys::path::is_separator(Filename.back())) {
4510     // If the argument is a directory, output to BaseName in that dir.
4511     llvm::sys::path::append(Filename, BaseName);
4512   }
4513 
4514   if (!llvm::sys::path::has_extension(ArgValue)) {
4515     // If the argument didn't provide an extension, then set it.
4516     const char *Extension = types::getTypeTempSuffix(FileType, true);
4517 
4518     if (FileType == types::TY_Image &&
4519         Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) {
4520       // The output file is a dll.
4521       Extension = "dll";
4522     }
4523 
4524     llvm::sys::path::replace_extension(Filename, Extension);
4525   }
4526 
4527   return Args.MakeArgString(Filename.c_str());
4528 }
4529 
4530 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA,
4531                                        const char *BaseInput,
4532                                        StringRef BoundArch, bool AtTopLevel,
4533                                        bool MultipleArchs,
4534                                        StringRef OffloadingPrefix) const {
4535   llvm::PrettyStackTraceString CrashInfo("Computing output path");
4536   // Output to a user requested destination?
4537   if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) {
4538     if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o))
4539       return C.addResultFile(FinalOutput->getValue(), &JA);
4540   }
4541 
4542   // For /P, preprocess to file named after BaseInput.
4543   if (C.getArgs().hasArg(options::OPT__SLASH_P)) {
4544     assert(AtTopLevel && isa<PreprocessJobAction>(JA));
4545     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4546     StringRef NameArg;
4547     if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi))
4548       NameArg = A->getValue();
4549     return C.addResultFile(
4550         MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C),
4551         &JA);
4552   }
4553 
4554   // Default to writing to stdout?
4555   if (AtTopLevel && !CCGenDiagnostics && isa<PreprocessJobAction>(JA))
4556     return "-";
4557 
4558   // Is this the assembly listing for /FA?
4559   if (JA.getType() == types::TY_PP_Asm &&
4560       (C.getArgs().hasArg(options::OPT__SLASH_FA) ||
4561        C.getArgs().hasArg(options::OPT__SLASH_Fa))) {
4562     // Use /Fa and the input filename to determine the asm file name.
4563     StringRef BaseName = llvm::sys::path::filename(BaseInput);
4564     StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa);
4565     return C.addResultFile(
4566         MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()),
4567         &JA);
4568   }
4569 
4570   // Output to a temporary file?
4571   if ((!AtTopLevel && !isSaveTempsEnabled() &&
4572        !C.getArgs().hasArg(options::OPT__SLASH_Fo)) ||
4573       CCGenDiagnostics) {
4574     StringRef Name = llvm::sys::path::filename(BaseInput);
4575     std::pair<StringRef, StringRef> Split = Name.split('.');
4576     SmallString<128> TmpName;
4577     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4578     Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir);
4579     if (CCGenDiagnostics && A) {
4580       SmallString<128> CrashDirectory(A->getValue());
4581       if (!getVFS().exists(CrashDirectory))
4582         llvm::sys::fs::create_directories(CrashDirectory);
4583       llvm::sys::path::append(CrashDirectory, Split.first);
4584       const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%";
4585       std::error_code EC = llvm::sys::fs::createUniqueFile(
4586           CrashDirectory + Middle + Suffix, TmpName);
4587       if (EC) {
4588         Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4589         return "";
4590       }
4591     } else {
4592       TmpName = GetTemporaryPath(Split.first, Suffix);
4593     }
4594     return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4595   }
4596 
4597   SmallString<128> BasePath(BaseInput);
4598   StringRef BaseName;
4599 
4600   // Dsymutil actions should use the full path.
4601   if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA))
4602     BaseName = BasePath;
4603   else
4604     BaseName = llvm::sys::path::filename(BasePath);
4605 
4606   // Determine what the derived output name should be.
4607   const char *NamedOutput;
4608 
4609   if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) &&
4610       C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) {
4611     // The /Fo or /o flag decides the object filename.
4612     StringRef Val =
4613         C.getArgs()
4614             .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)
4615             ->getValue();
4616     NamedOutput =
4617         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object);
4618   } else if (JA.getType() == types::TY_Image &&
4619              C.getArgs().hasArg(options::OPT__SLASH_Fe,
4620                                 options::OPT__SLASH_o)) {
4621     // The /Fe or /o flag names the linked file.
4622     StringRef Val =
4623         C.getArgs()
4624             .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o)
4625             ->getValue();
4626     NamedOutput =
4627         MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image);
4628   } else if (JA.getType() == types::TY_Image) {
4629     if (IsCLMode()) {
4630       // clang-cl uses BaseName for the executable name.
4631       NamedOutput =
4632           MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image);
4633     } else {
4634       SmallString<128> Output(getDefaultImageName());
4635       // HIP image for device compilation with -fno-gpu-rdc is per compilation
4636       // unit.
4637       bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
4638                         !C.getArgs().hasFlag(options::OPT_fgpu_rdc,
4639                                              options::OPT_fno_gpu_rdc, false);
4640       if (IsHIPNoRDC) {
4641         Output = BaseName;
4642         llvm::sys::path::replace_extension(Output, "");
4643       }
4644       Output += OffloadingPrefix;
4645       if (MultipleArchs && !BoundArch.empty()) {
4646         Output += "-";
4647         Output.append(BoundArch);
4648       }
4649       if (IsHIPNoRDC)
4650         Output += ".out";
4651       NamedOutput = C.getArgs().MakeArgString(Output.c_str());
4652     }
4653   } else if (JA.getType() == types::TY_PCH && IsCLMode()) {
4654     NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName));
4655   } else {
4656     const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode());
4657     assert(Suffix && "All types used for output should have a suffix.");
4658 
4659     std::string::size_type End = std::string::npos;
4660     if (!types::appendSuffixForType(JA.getType()))
4661       End = BaseName.rfind('.');
4662     SmallString<128> Suffixed(BaseName.substr(0, End));
4663     Suffixed += OffloadingPrefix;
4664     if (MultipleArchs && !BoundArch.empty()) {
4665       Suffixed += "-";
4666       Suffixed.append(BoundArch);
4667     }
4668     // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for
4669     // the unoptimized bitcode so that it does not get overwritten by the ".bc"
4670     // optimized bitcode output.
4671     auto IsHIPRDCInCompilePhase = [](const JobAction &JA,
4672                                      const llvm::opt::DerivedArgList &Args) {
4673       // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a
4674       // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile
4675       // phase.)
4676       return isa<CompileJobAction>(JA) &&
4677              JA.getOffloadingDeviceKind() == Action::OFK_HIP &&
4678              Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc,
4679                           false);
4680     };
4681     if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC &&
4682         (C.getArgs().hasArg(options::OPT_emit_llvm) ||
4683          IsHIPRDCInCompilePhase(JA, C.getArgs())))
4684       Suffixed += ".tmp";
4685     Suffixed += '.';
4686     Suffixed += Suffix;
4687     NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str());
4688   }
4689 
4690   // Prepend object file path if -save-temps=obj
4691   if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) &&
4692       JA.getType() != types::TY_PCH) {
4693     Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o);
4694     SmallString<128> TempPath(FinalOutput->getValue());
4695     llvm::sys::path::remove_filename(TempPath);
4696     StringRef OutputFileName = llvm::sys::path::filename(NamedOutput);
4697     llvm::sys::path::append(TempPath, OutputFileName);
4698     NamedOutput = C.getArgs().MakeArgString(TempPath.c_str());
4699   }
4700 
4701   // If we're saving temps and the temp file conflicts with the input file,
4702   // then avoid overwriting input file.
4703   if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) {
4704     bool SameFile = false;
4705     SmallString<256> Result;
4706     llvm::sys::fs::current_path(Result);
4707     llvm::sys::path::append(Result, BaseName);
4708     llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile);
4709     // Must share the same path to conflict.
4710     if (SameFile) {
4711       StringRef Name = llvm::sys::path::filename(BaseInput);
4712       std::pair<StringRef, StringRef> Split = Name.split('.');
4713       std::string TmpName = GetTemporaryPath(
4714           Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode()));
4715       return C.addTempFile(C.getArgs().MakeArgString(TmpName));
4716     }
4717   }
4718 
4719   // As an annoying special case, PCH generation doesn't strip the pathname.
4720   if (JA.getType() == types::TY_PCH && !IsCLMode()) {
4721     llvm::sys::path::remove_filename(BasePath);
4722     if (BasePath.empty())
4723       BasePath = NamedOutput;
4724     else
4725       llvm::sys::path::append(BasePath, NamedOutput);
4726     return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA);
4727   } else {
4728     return C.addResultFile(NamedOutput, &JA);
4729   }
4730 }
4731 
4732 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const {
4733   // Search for Name in a list of paths.
4734   auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P)
4735       -> llvm::Optional<std::string> {
4736     // Respect a limited subset of the '-Bprefix' functionality in GCC by
4737     // attempting to use this prefix when looking for file paths.
4738     for (const auto &Dir : P) {
4739       if (Dir.empty())
4740         continue;
4741       SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir);
4742       llvm::sys::path::append(P, Name);
4743       if (llvm::sys::fs::exists(Twine(P)))
4744         return std::string(P);
4745     }
4746     return None;
4747   };
4748 
4749   if (auto P = SearchPaths(PrefixDirs))
4750     return *P;
4751 
4752   SmallString<128> R(ResourceDir);
4753   llvm::sys::path::append(R, Name);
4754   if (llvm::sys::fs::exists(Twine(R)))
4755     return std::string(R.str());
4756 
4757   SmallString<128> P(TC.getCompilerRTPath());
4758   llvm::sys::path::append(P, Name);
4759   if (llvm::sys::fs::exists(Twine(P)))
4760     return std::string(P.str());
4761 
4762   SmallString<128> D(Dir);
4763   llvm::sys::path::append(D, "..", Name);
4764   if (llvm::sys::fs::exists(Twine(D)))
4765     return std::string(D.str());
4766 
4767   if (auto P = SearchPaths(TC.getLibraryPaths()))
4768     return *P;
4769 
4770   if (auto P = SearchPaths(TC.getFilePaths()))
4771     return *P;
4772 
4773   return std::string(Name);
4774 }
4775 
4776 void Driver::generatePrefixedToolNames(
4777     StringRef Tool, const ToolChain &TC,
4778     SmallVectorImpl<std::string> &Names) const {
4779   // FIXME: Needs a better variable than TargetTriple
4780   Names.emplace_back((TargetTriple + "-" + Tool).str());
4781   Names.emplace_back(Tool);
4782 
4783   // Allow the discovery of tools prefixed with LLVM's default target triple.
4784   std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple();
4785   if (DefaultTargetTriple != TargetTriple)
4786     Names.emplace_back((DefaultTargetTriple + "-" + Tool).str());
4787 }
4788 
4789 static bool ScanDirForExecutable(SmallString<128> &Dir,
4790                                  const std::string &Name) {
4791   llvm::sys::path::append(Dir, Name);
4792   if (llvm::sys::fs::can_execute(Twine(Dir)))
4793     return true;
4794   llvm::sys::path::remove_filename(Dir);
4795   return false;
4796 }
4797 
4798 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const {
4799   SmallVector<std::string, 2> TargetSpecificExecutables;
4800   generatePrefixedToolNames(Name, TC, TargetSpecificExecutables);
4801 
4802   // Respect a limited subset of the '-Bprefix' functionality in GCC by
4803   // attempting to use this prefix when looking for program paths.
4804   for (const auto &PrefixDir : PrefixDirs) {
4805     if (llvm::sys::fs::is_directory(PrefixDir)) {
4806       SmallString<128> P(PrefixDir);
4807       for (const auto &TargetSpecificExecutable : TargetSpecificExecutables)
4808         if (ScanDirForExecutable(P, TargetSpecificExecutable))
4809           return std::string(P.str());
4810     } else {
4811       SmallString<128> P((PrefixDir + Name).str());
4812       if (llvm::sys::fs::can_execute(Twine(P)))
4813         return std::string(P.str());
4814     }
4815   }
4816 
4817   const ToolChain::path_list &List = TC.getProgramPaths();
4818   for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) {
4819     // For each possible name of the tool look for it in
4820     // program paths first, then the path.
4821     // Higher priority names will be first, meaning that
4822     // a higher priority name in the path will be found
4823     // instead of a lower priority name in the program path.
4824     // E.g. <triple>-gcc on the path will be found instead
4825     // of gcc in the program path
4826     for (const auto &Path : List) {
4827       SmallString<128> P(Path);
4828       if (ScanDirForExecutable(P, TargetSpecificExecutable))
4829         return std::string(P.str());
4830     }
4831 
4832     // Fall back to the path
4833     if (llvm::ErrorOr<std::string> P =
4834             llvm::sys::findProgramByName(TargetSpecificExecutable))
4835       return *P;
4836   }
4837 
4838   return std::string(Name);
4839 }
4840 
4841 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const {
4842   SmallString<128> Path;
4843   std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path);
4844   if (EC) {
4845     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4846     return "";
4847   }
4848 
4849   return std::string(Path.str());
4850 }
4851 
4852 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const {
4853   SmallString<128> Path;
4854   std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path);
4855   if (EC) {
4856     Diag(clang::diag::err_unable_to_make_temp) << EC.message();
4857     return "";
4858   }
4859 
4860   return std::string(Path.str());
4861 }
4862 
4863 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const {
4864   SmallString<128> Output;
4865   if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) {
4866     // FIXME: If anybody needs it, implement this obscure rule:
4867     // "If you specify a directory without a file name, the default file name
4868     // is VCx0.pch., where x is the major version of Visual C++ in use."
4869     Output = FpArg->getValue();
4870 
4871     // "If you do not specify an extension as part of the path name, an
4872     // extension of .pch is assumed. "
4873     if (!llvm::sys::path::has_extension(Output))
4874       Output += ".pch";
4875   } else {
4876     if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc))
4877       Output = YcArg->getValue();
4878     if (Output.empty())
4879       Output = BaseName;
4880     llvm::sys::path::replace_extension(Output, ".pch");
4881   }
4882   return std::string(Output.str());
4883 }
4884 
4885 const ToolChain &Driver::getToolChain(const ArgList &Args,
4886                                       const llvm::Triple &Target) const {
4887 
4888   auto &TC = ToolChains[Target.str()];
4889   if (!TC) {
4890     switch (Target.getOS()) {
4891     case llvm::Triple::AIX:
4892       TC = std::make_unique<toolchains::AIX>(*this, Target, Args);
4893       break;
4894     case llvm::Triple::Haiku:
4895       TC = std::make_unique<toolchains::Haiku>(*this, Target, Args);
4896       break;
4897     case llvm::Triple::Ananas:
4898       TC = std::make_unique<toolchains::Ananas>(*this, Target, Args);
4899       break;
4900     case llvm::Triple::CloudABI:
4901       TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args);
4902       break;
4903     case llvm::Triple::Darwin:
4904     case llvm::Triple::MacOSX:
4905     case llvm::Triple::IOS:
4906     case llvm::Triple::TvOS:
4907     case llvm::Triple::WatchOS:
4908       TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args);
4909       break;
4910     case llvm::Triple::DragonFly:
4911       TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args);
4912       break;
4913     case llvm::Triple::OpenBSD:
4914       TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args);
4915       break;
4916     case llvm::Triple::NetBSD:
4917       TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args);
4918       break;
4919     case llvm::Triple::FreeBSD:
4920       TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args);
4921       break;
4922     case llvm::Triple::Minix:
4923       TC = std::make_unique<toolchains::Minix>(*this, Target, Args);
4924       break;
4925     case llvm::Triple::Linux:
4926     case llvm::Triple::ELFIAMCU:
4927       if (Target.getArch() == llvm::Triple::hexagon)
4928         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
4929                                                              Args);
4930       else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) &&
4931                !Target.hasEnvironment())
4932         TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target,
4933                                                               Args);
4934       else if (Target.getArch() == llvm::Triple::ppc ||
4935                Target.getArch() == llvm::Triple::ppc64 ||
4936                Target.getArch() == llvm::Triple::ppc64le)
4937         TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target,
4938                                                               Args);
4939       else if (Target.getArch() == llvm::Triple::ve)
4940         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
4941 
4942       else
4943         TC = std::make_unique<toolchains::Linux>(*this, Target, Args);
4944       break;
4945     case llvm::Triple::NaCl:
4946       TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args);
4947       break;
4948     case llvm::Triple::Fuchsia:
4949       TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args);
4950       break;
4951     case llvm::Triple::Solaris:
4952       TC = std::make_unique<toolchains::Solaris>(*this, Target, Args);
4953       break;
4954     case llvm::Triple::AMDHSA:
4955       TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args);
4956       break;
4957     case llvm::Triple::AMDPAL:
4958     case llvm::Triple::Mesa3D:
4959       TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args);
4960       break;
4961     case llvm::Triple::Win32:
4962       switch (Target.getEnvironment()) {
4963       default:
4964         if (Target.isOSBinFormatELF())
4965           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
4966         else if (Target.isOSBinFormatMachO())
4967           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
4968         else
4969           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
4970         break;
4971       case llvm::Triple::GNU:
4972         TC = std::make_unique<toolchains::MinGW>(*this, Target, Args);
4973         break;
4974       case llvm::Triple::Itanium:
4975         TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target,
4976                                                                   Args);
4977         break;
4978       case llvm::Triple::MSVC:
4979       case llvm::Triple::UnknownEnvironment:
4980         if (Args.getLastArgValue(options::OPT_fuse_ld_EQ)
4981                 .startswith_lower("bfd"))
4982           TC = std::make_unique<toolchains::CrossWindowsToolChain>(
4983               *this, Target, Args);
4984         else
4985           TC =
4986               std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args);
4987         break;
4988       }
4989       break;
4990     case llvm::Triple::PS4:
4991       TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args);
4992       break;
4993     case llvm::Triple::Contiki:
4994       TC = std::make_unique<toolchains::Contiki>(*this, Target, Args);
4995       break;
4996     case llvm::Triple::Hurd:
4997       TC = std::make_unique<toolchains::Hurd>(*this, Target, Args);
4998       break;
4999     default:
5000       // Of these targets, Hexagon is the only one that might have
5001       // an OS of Linux, in which case it got handled above already.
5002       switch (Target.getArch()) {
5003       case llvm::Triple::tce:
5004         TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args);
5005         break;
5006       case llvm::Triple::tcele:
5007         TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args);
5008         break;
5009       case llvm::Triple::hexagon:
5010         TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target,
5011                                                              Args);
5012         break;
5013       case llvm::Triple::lanai:
5014         TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args);
5015         break;
5016       case llvm::Triple::xcore:
5017         TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args);
5018         break;
5019       case llvm::Triple::wasm32:
5020       case llvm::Triple::wasm64:
5021         TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args);
5022         break;
5023       case llvm::Triple::avr:
5024         TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args);
5025         break;
5026       case llvm::Triple::msp430:
5027         TC =
5028             std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args);
5029         break;
5030       case llvm::Triple::riscv32:
5031       case llvm::Triple::riscv64:
5032         TC = std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args);
5033         break;
5034       case llvm::Triple::ve:
5035         TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args);
5036         break;
5037       default:
5038         if (Target.getVendor() == llvm::Triple::Myriad)
5039           TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target,
5040                                                               Args);
5041         else if (toolchains::BareMetal::handlesTarget(Target))
5042           TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args);
5043         else if (Target.isOSBinFormatELF())
5044           TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args);
5045         else if (Target.isOSBinFormatMachO())
5046           TC = std::make_unique<toolchains::MachO>(*this, Target, Args);
5047         else
5048           TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args);
5049       }
5050     }
5051   }
5052 
5053   // Intentionally omitted from the switch above: llvm::Triple::CUDA.  CUDA
5054   // compiles always need two toolchains, the CUDA toolchain and the host
5055   // toolchain.  So the only valid way to create a CUDA toolchain is via
5056   // CreateOffloadingDeviceToolChains.
5057 
5058   return *TC;
5059 }
5060 
5061 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const {
5062   // Say "no" if there is not exactly one input of a type clang understands.
5063   if (JA.size() != 1 ||
5064       !types::isAcceptedByClang((*JA.input_begin())->getType()))
5065     return false;
5066 
5067   // And say "no" if this is not a kind of action clang understands.
5068   if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) &&
5069       !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5070     return false;
5071 
5072   return true;
5073 }
5074 
5075 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const {
5076   // Say "no" if there is not exactly one input of a type flang understands.
5077   if (JA.size() != 1 ||
5078       !types::isFortran((*JA.input_begin())->getType()))
5079     return false;
5080 
5081   // And say "no" if this is not a kind of action flang understands.
5082   if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA))
5083     return false;
5084 
5085   return true;
5086 }
5087 
5088 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const {
5089   // Only emit static library if the flag is set explicitly.
5090   if (Args.hasArg(options::OPT_emit_static_lib))
5091     return true;
5092   return false;
5093 }
5094 
5095 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the
5096 /// grouped values as integers. Numbers which are not provided are set to 0.
5097 ///
5098 /// \return True if the entire string was parsed (9.2), or all groups were
5099 /// parsed (10.3.5extrastuff).
5100 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor,
5101                                unsigned &Micro, bool &HadExtra) {
5102   HadExtra = false;
5103 
5104   Major = Minor = Micro = 0;
5105   if (Str.empty())
5106     return false;
5107 
5108   if (Str.consumeInteger(10, Major))
5109     return false;
5110   if (Str.empty())
5111     return true;
5112   if (Str[0] != '.')
5113     return false;
5114 
5115   Str = Str.drop_front(1);
5116 
5117   if (Str.consumeInteger(10, Minor))
5118     return false;
5119   if (Str.empty())
5120     return true;
5121   if (Str[0] != '.')
5122     return false;
5123   Str = Str.drop_front(1);
5124 
5125   if (Str.consumeInteger(10, Micro))
5126     return false;
5127   if (!Str.empty())
5128     HadExtra = true;
5129   return true;
5130 }
5131 
5132 /// Parse digits from a string \p Str and fulfill \p Digits with
5133 /// the parsed numbers. This method assumes that the max number of
5134 /// digits to look for is equal to Digits.size().
5135 ///
5136 /// \return True if the entire string was parsed and there are
5137 /// no extra characters remaining at the end.
5138 bool Driver::GetReleaseVersion(StringRef Str,
5139                                MutableArrayRef<unsigned> Digits) {
5140   if (Str.empty())
5141     return false;
5142 
5143   unsigned CurDigit = 0;
5144   while (CurDigit < Digits.size()) {
5145     unsigned Digit;
5146     if (Str.consumeInteger(10, Digit))
5147       return false;
5148     Digits[CurDigit] = Digit;
5149     if (Str.empty())
5150       return true;
5151     if (Str[0] != '.')
5152       return false;
5153     Str = Str.drop_front(1);
5154     CurDigit++;
5155   }
5156 
5157   // More digits than requested, bail out...
5158   return false;
5159 }
5160 
5161 std::pair<unsigned, unsigned>
5162 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const {
5163   unsigned IncludedFlagsBitmask = 0;
5164   unsigned ExcludedFlagsBitmask = options::NoDriverOption;
5165 
5166   if (IsClCompatMode) {
5167     // Include CL and Core options.
5168     IncludedFlagsBitmask |= options::CLOption;
5169     IncludedFlagsBitmask |= options::CoreOption;
5170   } else {
5171     ExcludedFlagsBitmask |= options::CLOption;
5172   }
5173 
5174   return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask);
5175 }
5176 
5177 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) {
5178   return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false);
5179 }
5180 
5181 bool clang::driver::willEmitRemarks(const ArgList &Args) {
5182   // -fsave-optimization-record enables it.
5183   if (Args.hasFlag(options::OPT_fsave_optimization_record,
5184                    options::OPT_fno_save_optimization_record, false))
5185     return true;
5186 
5187   // -fsave-optimization-record=<format> enables it as well.
5188   if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ,
5189                    options::OPT_fno_save_optimization_record, false))
5190     return true;
5191 
5192   // -foptimization-record-file alone enables it too.
5193   if (Args.hasFlag(options::OPT_foptimization_record_file_EQ,
5194                    options::OPT_fno_save_optimization_record, false))
5195     return true;
5196 
5197   // -foptimization-record-passes alone enables it too.
5198   if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ,
5199                    options::OPT_fno_save_optimization_record, false))
5200     return true;
5201   return false;
5202 }
5203