1 //===--- Driver.cpp - Clang GCC Compatible Driver -------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "clang/Driver/Driver.h" 10 #include "InputInfo.h" 11 #include "ToolChains/AIX.h" 12 #include "ToolChains/AMDGPU.h" 13 #include "ToolChains/AVR.h" 14 #include "ToolChains/Ananas.h" 15 #include "ToolChains/BareMetal.h" 16 #include "ToolChains/Clang.h" 17 #include "ToolChains/CloudABI.h" 18 #include "ToolChains/Contiki.h" 19 #include "ToolChains/CrossWindows.h" 20 #include "ToolChains/Cuda.h" 21 #include "ToolChains/Darwin.h" 22 #include "ToolChains/DragonFly.h" 23 #include "ToolChains/FreeBSD.h" 24 #include "ToolChains/Fuchsia.h" 25 #include "ToolChains/Gnu.h" 26 #include "ToolChains/HIP.h" 27 #include "ToolChains/Haiku.h" 28 #include "ToolChains/Hexagon.h" 29 #include "ToolChains/Hurd.h" 30 #include "ToolChains/Lanai.h" 31 #include "ToolChains/Linux.h" 32 #include "ToolChains/MSP430.h" 33 #include "ToolChains/MSVC.h" 34 #include "ToolChains/MinGW.h" 35 #include "ToolChains/Minix.h" 36 #include "ToolChains/MipsLinux.h" 37 #include "ToolChains/Myriad.h" 38 #include "ToolChains/NaCl.h" 39 #include "ToolChains/NetBSD.h" 40 #include "ToolChains/OpenBSD.h" 41 #include "ToolChains/PPCLinux.h" 42 #include "ToolChains/PS4CPU.h" 43 #include "ToolChains/RISCVToolchain.h" 44 #include "ToolChains/Solaris.h" 45 #include "ToolChains/TCE.h" 46 #include "ToolChains/VEToolchain.h" 47 #include "ToolChains/WebAssembly.h" 48 #include "ToolChains/XCore.h" 49 #include "ToolChains/ZOS.h" 50 #include "clang/Basic/TargetID.h" 51 #include "clang/Basic/Version.h" 52 #include "clang/Config/config.h" 53 #include "clang/Driver/Action.h" 54 #include "clang/Driver/Compilation.h" 55 #include "clang/Driver/DriverDiagnostic.h" 56 #include "clang/Driver/Job.h" 57 #include "clang/Driver/Options.h" 58 #include "clang/Driver/SanitizerArgs.h" 59 #include "clang/Driver/Tool.h" 60 #include "clang/Driver/ToolChain.h" 61 #include "llvm/ADT/ArrayRef.h" 62 #include "llvm/ADT/STLExtras.h" 63 #include "llvm/ADT/SmallSet.h" 64 #include "llvm/ADT/StringExtras.h" 65 #include "llvm/ADT/StringSet.h" 66 #include "llvm/ADT/StringSwitch.h" 67 #include "llvm/Config/llvm-config.h" 68 #include "llvm/Option/Arg.h" 69 #include "llvm/Option/ArgList.h" 70 #include "llvm/Option/OptSpecifier.h" 71 #include "llvm/Option/OptTable.h" 72 #include "llvm/Option/Option.h" 73 #include "llvm/Support/CommandLine.h" 74 #include "llvm/Support/ErrorHandling.h" 75 #include "llvm/Support/ExitCodes.h" 76 #include "llvm/Support/FileSystem.h" 77 #include "llvm/Support/FormatVariadic.h" 78 #include "llvm/Support/Host.h" 79 #include "llvm/Support/Path.h" 80 #include "llvm/Support/PrettyStackTrace.h" 81 #include "llvm/Support/Process.h" 82 #include "llvm/Support/Program.h" 83 #include "llvm/Support/StringSaver.h" 84 #include "llvm/Support/TargetRegistry.h" 85 #include "llvm/Support/VirtualFileSystem.h" 86 #include "llvm/Support/raw_ostream.h" 87 #include <map> 88 #include <memory> 89 #include <utility> 90 #if LLVM_ON_UNIX 91 #include <unistd.h> // getpid 92 #endif 93 94 using namespace clang::driver; 95 using namespace clang; 96 using namespace llvm::opt; 97 98 static llvm::Triple getHIPOffloadTargetTriple() { 99 static const llvm::Triple T("amdgcn-amd-amdhsa"); 100 return T; 101 } 102 103 // static 104 std::string Driver::GetResourcesPath(StringRef BinaryPath, 105 StringRef CustomResourceDir) { 106 // Since the resource directory is embedded in the module hash, it's important 107 // that all places that need it call this function, so that they get the 108 // exact same string ("a/../b/" and "b/" get different hashes, for example). 109 110 // Dir is bin/ or lib/, depending on where BinaryPath is. 111 std::string Dir = std::string(llvm::sys::path::parent_path(BinaryPath)); 112 113 SmallString<128> P(Dir); 114 if (CustomResourceDir != "") { 115 llvm::sys::path::append(P, CustomResourceDir); 116 } else { 117 // On Windows, libclang.dll is in bin/. 118 // On non-Windows, libclang.so/.dylib is in lib/. 119 // With a static-library build of libclang, LibClangPath will contain the 120 // path of the embedding binary, which for LLVM binaries will be in bin/. 121 // ../lib gets us to lib/ in both cases. 122 P = llvm::sys::path::parent_path(Dir); 123 llvm::sys::path::append(P, Twine("lib") + CLANG_LIBDIR_SUFFIX, "clang", 124 CLANG_VERSION_STRING); 125 } 126 127 return std::string(P.str()); 128 } 129 130 Driver::Driver(StringRef ClangExecutable, StringRef TargetTriple, 131 DiagnosticsEngine &Diags, std::string Title, 132 IntrusiveRefCntPtr<llvm::vfs::FileSystem> VFS) 133 : Diags(Diags), VFS(std::move(VFS)), Mode(GCCMode), 134 SaveTemps(SaveTempsNone), BitcodeEmbed(EmbedNone), LTOMode(LTOK_None), 135 ClangExecutable(ClangExecutable), SysRoot(DEFAULT_SYSROOT), 136 DriverTitle(Title), CCPrintOptionsFilename(nullptr), 137 CCPrintHeadersFilename(nullptr), CCLogDiagnosticsFilename(nullptr), 138 CCCPrintBindings(false), CCPrintOptions(false), CCPrintHeaders(false), 139 CCLogDiagnostics(false), CCGenDiagnostics(false), 140 TargetTriple(TargetTriple), CCCGenericGCCName(""), Saver(Alloc), 141 CheckInputsExist(true), GenReproducer(false), 142 SuppressMissingInputWarning(false) { 143 // Provide a sane fallback if no VFS is specified. 144 if (!this->VFS) 145 this->VFS = llvm::vfs::getRealFileSystem(); 146 147 Name = std::string(llvm::sys::path::filename(ClangExecutable)); 148 Dir = std::string(llvm::sys::path::parent_path(ClangExecutable)); 149 InstalledDir = Dir; // Provide a sensible default installed dir. 150 151 if ((!SysRoot.empty()) && llvm::sys::path::is_relative(SysRoot)) { 152 // Prepend InstalledDir if SysRoot is relative 153 SmallString<128> P(InstalledDir); 154 llvm::sys::path::append(P, SysRoot); 155 SysRoot = std::string(P); 156 } 157 158 #if defined(CLANG_CONFIG_FILE_SYSTEM_DIR) 159 SystemConfigDir = CLANG_CONFIG_FILE_SYSTEM_DIR; 160 #endif 161 #if defined(CLANG_CONFIG_FILE_USER_DIR) 162 UserConfigDir = CLANG_CONFIG_FILE_USER_DIR; 163 #endif 164 165 // Compute the path to the resource directory. 166 ResourceDir = GetResourcesPath(ClangExecutable, CLANG_RESOURCE_DIR); 167 } 168 169 void Driver::ParseDriverMode(StringRef ProgramName, 170 ArrayRef<const char *> Args) { 171 if (ClangNameParts.isEmpty()) 172 ClangNameParts = ToolChain::getTargetAndModeFromProgramName(ProgramName); 173 setDriverModeFromOption(ClangNameParts.DriverMode); 174 175 for (const char *ArgPtr : Args) { 176 // Ignore nullptrs, they are the response file's EOL markers. 177 if (ArgPtr == nullptr) 178 continue; 179 const StringRef Arg = ArgPtr; 180 setDriverModeFromOption(Arg); 181 } 182 } 183 184 void Driver::setDriverModeFromOption(StringRef Opt) { 185 const std::string OptName = 186 getOpts().getOption(options::OPT_driver_mode).getPrefixedName(); 187 if (!Opt.startswith(OptName)) 188 return; 189 StringRef Value = Opt.drop_front(OptName.size()); 190 191 if (auto M = llvm::StringSwitch<llvm::Optional<DriverMode>>(Value) 192 .Case("gcc", GCCMode) 193 .Case("g++", GXXMode) 194 .Case("cpp", CPPMode) 195 .Case("cl", CLMode) 196 .Case("flang", FlangMode) 197 .Default(None)) 198 Mode = *M; 199 else 200 Diag(diag::err_drv_unsupported_option_argument) << OptName << Value; 201 } 202 203 InputArgList Driver::ParseArgStrings(ArrayRef<const char *> ArgStrings, 204 bool IsClCompatMode, 205 bool &ContainsError) { 206 llvm::PrettyStackTraceString CrashInfo("Command line argument parsing"); 207 ContainsError = false; 208 209 unsigned IncludedFlagsBitmask; 210 unsigned ExcludedFlagsBitmask; 211 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 212 getIncludeExcludeOptionFlagMasks(IsClCompatMode); 213 214 // Make sure that Flang-only options don't pollute the Clang output 215 // TODO: Make sure that Clang-only options don't pollute Flang output 216 if (!IsFlangMode()) 217 ExcludedFlagsBitmask |= options::FlangOnlyOption; 218 219 unsigned MissingArgIndex, MissingArgCount; 220 InputArgList Args = 221 getOpts().ParseArgs(ArgStrings, MissingArgIndex, MissingArgCount, 222 IncludedFlagsBitmask, ExcludedFlagsBitmask); 223 224 // Check for missing argument error. 225 if (MissingArgCount) { 226 Diag(diag::err_drv_missing_argument) 227 << Args.getArgString(MissingArgIndex) << MissingArgCount; 228 ContainsError |= 229 Diags.getDiagnosticLevel(diag::err_drv_missing_argument, 230 SourceLocation()) > DiagnosticsEngine::Warning; 231 } 232 233 // Check for unsupported options. 234 for (const Arg *A : Args) { 235 if (A->getOption().hasFlag(options::Unsupported)) { 236 unsigned DiagID; 237 auto ArgString = A->getAsString(Args); 238 std::string Nearest; 239 if (getOpts().findNearest( 240 ArgString, Nearest, IncludedFlagsBitmask, 241 ExcludedFlagsBitmask | options::Unsupported) > 1) { 242 DiagID = diag::err_drv_unsupported_opt; 243 Diag(DiagID) << ArgString; 244 } else { 245 DiagID = diag::err_drv_unsupported_opt_with_suggestion; 246 Diag(DiagID) << ArgString << Nearest; 247 } 248 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 249 DiagnosticsEngine::Warning; 250 continue; 251 } 252 253 // Warn about -mcpu= without an argument. 254 if (A->getOption().matches(options::OPT_mcpu_EQ) && A->containsValue("")) { 255 Diag(diag::warn_drv_empty_joined_argument) << A->getAsString(Args); 256 ContainsError |= Diags.getDiagnosticLevel( 257 diag::warn_drv_empty_joined_argument, 258 SourceLocation()) > DiagnosticsEngine::Warning; 259 } 260 } 261 262 for (const Arg *A : Args.filtered(options::OPT_UNKNOWN)) { 263 unsigned DiagID; 264 auto ArgString = A->getAsString(Args); 265 std::string Nearest; 266 if (getOpts().findNearest( 267 ArgString, Nearest, IncludedFlagsBitmask, ExcludedFlagsBitmask) > 1) { 268 DiagID = IsCLMode() ? diag::warn_drv_unknown_argument_clang_cl 269 : diag::err_drv_unknown_argument; 270 Diags.Report(DiagID) << ArgString; 271 } else { 272 DiagID = IsCLMode() 273 ? diag::warn_drv_unknown_argument_clang_cl_with_suggestion 274 : diag::err_drv_unknown_argument_with_suggestion; 275 Diags.Report(DiagID) << ArgString << Nearest; 276 } 277 ContainsError |= Diags.getDiagnosticLevel(DiagID, SourceLocation()) > 278 DiagnosticsEngine::Warning; 279 } 280 281 return Args; 282 } 283 284 // Determine which compilation mode we are in. We look for options which 285 // affect the phase, starting with the earliest phases, and record which 286 // option we used to determine the final phase. 287 phases::ID Driver::getFinalPhase(const DerivedArgList &DAL, 288 Arg **FinalPhaseArg) const { 289 Arg *PhaseArg = nullptr; 290 phases::ID FinalPhase; 291 292 // -{E,EP,P,M,MM} only run the preprocessor. 293 if (CCCIsCPP() || (PhaseArg = DAL.getLastArg(options::OPT_E)) || 294 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_EP)) || 295 (PhaseArg = DAL.getLastArg(options::OPT_M, options::OPT_MM)) || 296 (PhaseArg = DAL.getLastArg(options::OPT__SLASH_P))) { 297 FinalPhase = phases::Preprocess; 298 299 // --precompile only runs up to precompilation. 300 } else if ((PhaseArg = DAL.getLastArg(options::OPT__precompile))) { 301 FinalPhase = phases::Precompile; 302 303 // -{fsyntax-only,-analyze,emit-ast} only run up to the compiler. 304 } else if ((PhaseArg = DAL.getLastArg(options::OPT_fsyntax_only)) || 305 (PhaseArg = DAL.getLastArg(options::OPT_print_supported_cpus)) || 306 (PhaseArg = DAL.getLastArg(options::OPT_module_file_info)) || 307 (PhaseArg = DAL.getLastArg(options::OPT_verify_pch)) || 308 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_objc)) || 309 (PhaseArg = DAL.getLastArg(options::OPT_rewrite_legacy_objc)) || 310 (PhaseArg = DAL.getLastArg(options::OPT__migrate)) || 311 (PhaseArg = DAL.getLastArg(options::OPT__analyze)) || 312 (PhaseArg = DAL.getLastArg(options::OPT_emit_ast))) { 313 FinalPhase = phases::Compile; 314 315 // -S only runs up to the backend. 316 } else if ((PhaseArg = DAL.getLastArg(options::OPT_S))) { 317 FinalPhase = phases::Backend; 318 319 // -c compilation only runs up to the assembler. 320 } else if ((PhaseArg = DAL.getLastArg(options::OPT_c))) { 321 FinalPhase = phases::Assemble; 322 323 // Otherwise do everything. 324 } else 325 FinalPhase = phases::Link; 326 327 if (FinalPhaseArg) 328 *FinalPhaseArg = PhaseArg; 329 330 return FinalPhase; 331 } 332 333 static Arg *MakeInputArg(DerivedArgList &Args, const OptTable &Opts, 334 StringRef Value, bool Claim = true) { 335 Arg *A = new Arg(Opts.getOption(options::OPT_INPUT), Value, 336 Args.getBaseArgs().MakeIndex(Value), Value.data()); 337 Args.AddSynthesizedArg(A); 338 if (Claim) 339 A->claim(); 340 return A; 341 } 342 343 DerivedArgList *Driver::TranslateInputArgs(const InputArgList &Args) const { 344 const llvm::opt::OptTable &Opts = getOpts(); 345 DerivedArgList *DAL = new DerivedArgList(Args); 346 347 bool HasNostdlib = Args.hasArg(options::OPT_nostdlib); 348 bool HasNostdlibxx = Args.hasArg(options::OPT_nostdlibxx); 349 bool HasNodefaultlib = Args.hasArg(options::OPT_nodefaultlibs); 350 for (Arg *A : Args) { 351 // Unfortunately, we have to parse some forwarding options (-Xassembler, 352 // -Xlinker, -Xpreprocessor) because we either integrate their functionality 353 // (assembler and preprocessor), or bypass a previous driver ('collect2'). 354 355 // Rewrite linker options, to replace --no-demangle with a custom internal 356 // option. 357 if ((A->getOption().matches(options::OPT_Wl_COMMA) || 358 A->getOption().matches(options::OPT_Xlinker)) && 359 A->containsValue("--no-demangle")) { 360 // Add the rewritten no-demangle argument. 361 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_Xlinker__no_demangle)); 362 363 // Add the remaining values as Xlinker arguments. 364 for (StringRef Val : A->getValues()) 365 if (Val != "--no-demangle") 366 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_Xlinker), Val); 367 368 continue; 369 } 370 371 // Rewrite preprocessor options, to replace -Wp,-MD,FOO which is used by 372 // some build systems. We don't try to be complete here because we don't 373 // care to encourage this usage model. 374 if (A->getOption().matches(options::OPT_Wp_COMMA) && 375 (A->getValue(0) == StringRef("-MD") || 376 A->getValue(0) == StringRef("-MMD"))) { 377 // Rewrite to -MD/-MMD along with -MF. 378 if (A->getValue(0) == StringRef("-MD")) 379 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MD)); 380 else 381 DAL->AddFlagArg(A, Opts.getOption(options::OPT_MMD)); 382 if (A->getNumValues() == 2) 383 DAL->AddSeparateArg(A, Opts.getOption(options::OPT_MF), A->getValue(1)); 384 continue; 385 } 386 387 // Rewrite reserved library names. 388 if (A->getOption().matches(options::OPT_l)) { 389 StringRef Value = A->getValue(); 390 391 // Rewrite unless -nostdlib is present. 392 if (!HasNostdlib && !HasNodefaultlib && !HasNostdlibxx && 393 Value == "stdc++") { 394 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_stdcxx)); 395 continue; 396 } 397 398 // Rewrite unconditionally. 399 if (Value == "cc_kext") { 400 DAL->AddFlagArg(A, Opts.getOption(options::OPT_Z_reserved_lib_cckext)); 401 continue; 402 } 403 } 404 405 // Pick up inputs via the -- option. 406 if (A->getOption().matches(options::OPT__DASH_DASH)) { 407 A->claim(); 408 for (StringRef Val : A->getValues()) 409 DAL->append(MakeInputArg(*DAL, Opts, Val, false)); 410 continue; 411 } 412 413 DAL->append(A); 414 } 415 416 // Enforce -static if -miamcu is present. 417 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) 418 DAL->AddFlagArg(0, Opts.getOption(options::OPT_static)); 419 420 // Add a default value of -mlinker-version=, if one was given and the user 421 // didn't specify one. 422 #if defined(HOST_LINK_VERSION) 423 if (!Args.hasArg(options::OPT_mlinker_version_EQ) && 424 strlen(HOST_LINK_VERSION) > 0) { 425 DAL->AddJoinedArg(0, Opts.getOption(options::OPT_mlinker_version_EQ), 426 HOST_LINK_VERSION); 427 DAL->getLastArg(options::OPT_mlinker_version_EQ)->claim(); 428 } 429 #endif 430 431 return DAL; 432 } 433 434 /// Compute target triple from args. 435 /// 436 /// This routine provides the logic to compute a target triple from various 437 /// args passed to the driver and the default triple string. 438 static llvm::Triple computeTargetTriple(const Driver &D, 439 StringRef TargetTriple, 440 const ArgList &Args, 441 StringRef DarwinArchName = "") { 442 // FIXME: Already done in Compilation *Driver::BuildCompilation 443 if (const Arg *A = Args.getLastArg(options::OPT_target)) 444 TargetTriple = A->getValue(); 445 446 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 447 448 // GNU/Hurd's triples should have been -hurd-gnu*, but were historically made 449 // -gnu* only, and we can not change this, so we have to detect that case as 450 // being the Hurd OS. 451 if (TargetTriple.find("-unknown-gnu") != StringRef::npos || 452 TargetTriple.find("-pc-gnu") != StringRef::npos) 453 Target.setOSName("hurd"); 454 455 // Handle Apple-specific options available here. 456 if (Target.isOSBinFormatMachO()) { 457 // If an explicit Darwin arch name is given, that trumps all. 458 if (!DarwinArchName.empty()) { 459 tools::darwin::setTripleTypeForMachOArchName(Target, DarwinArchName); 460 return Target; 461 } 462 463 // Handle the Darwin '-arch' flag. 464 if (Arg *A = Args.getLastArg(options::OPT_arch)) { 465 StringRef ArchName = A->getValue(); 466 tools::darwin::setTripleTypeForMachOArchName(Target, ArchName); 467 } 468 } 469 470 // Handle pseudo-target flags '-mlittle-endian'/'-EL' and 471 // '-mbig-endian'/'-EB'. 472 if (Arg *A = Args.getLastArg(options::OPT_mlittle_endian, 473 options::OPT_mbig_endian)) { 474 if (A->getOption().matches(options::OPT_mlittle_endian)) { 475 llvm::Triple LE = Target.getLittleEndianArchVariant(); 476 if (LE.getArch() != llvm::Triple::UnknownArch) 477 Target = std::move(LE); 478 } else { 479 llvm::Triple BE = Target.getBigEndianArchVariant(); 480 if (BE.getArch() != llvm::Triple::UnknownArch) 481 Target = std::move(BE); 482 } 483 } 484 485 // Skip further flag support on OSes which don't support '-m32' or '-m64'. 486 if (Target.getArch() == llvm::Triple::tce || 487 Target.getOS() == llvm::Triple::Minix) 488 return Target; 489 490 // On AIX, the env OBJECT_MODE may affect the resulting arch variant. 491 if (Target.isOSAIX()) { 492 if (Optional<std::string> ObjectModeValue = 493 llvm::sys::Process::GetEnv("OBJECT_MODE")) { 494 StringRef ObjectMode = *ObjectModeValue; 495 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 496 497 if (ObjectMode.equals("64")) { 498 AT = Target.get64BitArchVariant().getArch(); 499 } else if (ObjectMode.equals("32")) { 500 AT = Target.get32BitArchVariant().getArch(); 501 } else { 502 D.Diag(diag::err_drv_invalid_object_mode) << ObjectMode; 503 } 504 505 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 506 Target.setArch(AT); 507 } 508 } 509 510 // Handle pseudo-target flags '-m64', '-mx32', '-m32' and '-m16'. 511 Arg *A = Args.getLastArg(options::OPT_m64, options::OPT_mx32, 512 options::OPT_m32, options::OPT_m16); 513 if (A) { 514 llvm::Triple::ArchType AT = llvm::Triple::UnknownArch; 515 516 if (A->getOption().matches(options::OPT_m64)) { 517 AT = Target.get64BitArchVariant().getArch(); 518 if (Target.getEnvironment() == llvm::Triple::GNUX32) 519 Target.setEnvironment(llvm::Triple::GNU); 520 } else if (A->getOption().matches(options::OPT_mx32) && 521 Target.get64BitArchVariant().getArch() == llvm::Triple::x86_64) { 522 AT = llvm::Triple::x86_64; 523 Target.setEnvironment(llvm::Triple::GNUX32); 524 } else if (A->getOption().matches(options::OPT_m32)) { 525 AT = Target.get32BitArchVariant().getArch(); 526 if (Target.getEnvironment() == llvm::Triple::GNUX32) 527 Target.setEnvironment(llvm::Triple::GNU); 528 } else if (A->getOption().matches(options::OPT_m16) && 529 Target.get32BitArchVariant().getArch() == llvm::Triple::x86) { 530 AT = llvm::Triple::x86; 531 Target.setEnvironment(llvm::Triple::CODE16); 532 } 533 534 if (AT != llvm::Triple::UnknownArch && AT != Target.getArch()) 535 Target.setArch(AT); 536 } 537 538 // Handle -miamcu flag. 539 if (Args.hasFlag(options::OPT_miamcu, options::OPT_mno_iamcu, false)) { 540 if (Target.get32BitArchVariant().getArch() != llvm::Triple::x86) 541 D.Diag(diag::err_drv_unsupported_opt_for_target) << "-miamcu" 542 << Target.str(); 543 544 if (A && !A->getOption().matches(options::OPT_m32)) 545 D.Diag(diag::err_drv_argument_not_allowed_with) 546 << "-miamcu" << A->getBaseArg().getAsString(Args); 547 548 Target.setArch(llvm::Triple::x86); 549 Target.setArchName("i586"); 550 Target.setEnvironment(llvm::Triple::UnknownEnvironment); 551 Target.setEnvironmentName(""); 552 Target.setOS(llvm::Triple::ELFIAMCU); 553 Target.setVendor(llvm::Triple::UnknownVendor); 554 Target.setVendorName("intel"); 555 } 556 557 // If target is MIPS adjust the target triple 558 // accordingly to provided ABI name. 559 A = Args.getLastArg(options::OPT_mabi_EQ); 560 if (A && Target.isMIPS()) { 561 StringRef ABIName = A->getValue(); 562 if (ABIName == "32") { 563 Target = Target.get32BitArchVariant(); 564 if (Target.getEnvironment() == llvm::Triple::GNUABI64 || 565 Target.getEnvironment() == llvm::Triple::GNUABIN32) 566 Target.setEnvironment(llvm::Triple::GNU); 567 } else if (ABIName == "n32") { 568 Target = Target.get64BitArchVariant(); 569 if (Target.getEnvironment() == llvm::Triple::GNU || 570 Target.getEnvironment() == llvm::Triple::GNUABI64) 571 Target.setEnvironment(llvm::Triple::GNUABIN32); 572 } else if (ABIName == "64") { 573 Target = Target.get64BitArchVariant(); 574 if (Target.getEnvironment() == llvm::Triple::GNU || 575 Target.getEnvironment() == llvm::Triple::GNUABIN32) 576 Target.setEnvironment(llvm::Triple::GNUABI64); 577 } 578 } 579 580 // If target is RISC-V adjust the target triple according to 581 // provided architecture name 582 A = Args.getLastArg(options::OPT_march_EQ); 583 if (A && Target.isRISCV()) { 584 StringRef ArchName = A->getValue(); 585 if (ArchName.startswith_lower("rv32")) 586 Target.setArch(llvm::Triple::riscv32); 587 else if (ArchName.startswith_lower("rv64")) 588 Target.setArch(llvm::Triple::riscv64); 589 } 590 591 return Target; 592 } 593 594 // Parse the LTO options and record the type of LTO compilation 595 // based on which -f(no-)?lto(=.*)? option occurs last. 596 void Driver::setLTOMode(const llvm::opt::ArgList &Args) { 597 LTOMode = LTOK_None; 598 if (!Args.hasFlag(options::OPT_flto, options::OPT_flto_EQ, 599 options::OPT_fno_lto, false)) 600 return; 601 602 StringRef LTOName("full"); 603 604 const Arg *A = Args.getLastArg(options::OPT_flto_EQ); 605 if (A) 606 LTOName = A->getValue(); 607 608 LTOMode = llvm::StringSwitch<LTOKind>(LTOName) 609 .Case("full", LTOK_Full) 610 .Case("thin", LTOK_Thin) 611 .Default(LTOK_Unknown); 612 613 if (LTOMode == LTOK_Unknown) { 614 assert(A); 615 Diag(diag::err_drv_unsupported_option_argument) << A->getOption().getName() 616 << A->getValue(); 617 } 618 } 619 620 /// Compute the desired OpenMP runtime from the flags provided. 621 Driver::OpenMPRuntimeKind Driver::getOpenMPRuntime(const ArgList &Args) const { 622 StringRef RuntimeName(CLANG_DEFAULT_OPENMP_RUNTIME); 623 624 const Arg *A = Args.getLastArg(options::OPT_fopenmp_EQ); 625 if (A) 626 RuntimeName = A->getValue(); 627 628 auto RT = llvm::StringSwitch<OpenMPRuntimeKind>(RuntimeName) 629 .Case("libomp", OMPRT_OMP) 630 .Case("libgomp", OMPRT_GOMP) 631 .Case("libiomp5", OMPRT_IOMP5) 632 .Default(OMPRT_Unknown); 633 634 if (RT == OMPRT_Unknown) { 635 if (A) 636 Diag(diag::err_drv_unsupported_option_argument) 637 << A->getOption().getName() << A->getValue(); 638 else 639 // FIXME: We could use a nicer diagnostic here. 640 Diag(diag::err_drv_unsupported_opt) << "-fopenmp"; 641 } 642 643 return RT; 644 } 645 646 void Driver::CreateOffloadingDeviceToolChains(Compilation &C, 647 InputList &Inputs) { 648 649 // 650 // CUDA/HIP 651 // 652 // We need to generate a CUDA/HIP toolchain if any of the inputs has a CUDA 653 // or HIP type. However, mixed CUDA/HIP compilation is not supported. 654 bool IsCuda = 655 llvm::any_of(Inputs, [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 656 return types::isCuda(I.first); 657 }); 658 bool IsHIP = 659 llvm::any_of(Inputs, 660 [](std::pair<types::ID, const llvm::opt::Arg *> &I) { 661 return types::isHIP(I.first); 662 }) || 663 C.getInputArgs().hasArg(options::OPT_hip_link); 664 if (IsCuda && IsHIP) { 665 Diag(clang::diag::err_drv_mix_cuda_hip); 666 return; 667 } 668 if (IsCuda) { 669 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 670 const llvm::Triple &HostTriple = HostTC->getTriple(); 671 StringRef DeviceTripleStr; 672 auto OFK = Action::OFK_Cuda; 673 DeviceTripleStr = 674 HostTriple.isArch64Bit() ? "nvptx64-nvidia-cuda" : "nvptx-nvidia-cuda"; 675 llvm::Triple CudaTriple(DeviceTripleStr); 676 // Use the CUDA and host triples as the key into the ToolChains map, 677 // because the device toolchain we create depends on both. 678 auto &CudaTC = ToolChains[CudaTriple.str() + "/" + HostTriple.str()]; 679 if (!CudaTC) { 680 CudaTC = std::make_unique<toolchains::CudaToolChain>( 681 *this, CudaTriple, *HostTC, C.getInputArgs(), OFK); 682 } 683 C.addOffloadDeviceToolChain(CudaTC.get(), OFK); 684 } else if (IsHIP) { 685 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 686 const llvm::Triple &HostTriple = HostTC->getTriple(); 687 auto OFK = Action::OFK_HIP; 688 llvm::Triple HIPTriple = getHIPOffloadTargetTriple(); 689 // Use the HIP and host triples as the key into the ToolChains map, 690 // because the device toolchain we create depends on both. 691 auto &HIPTC = ToolChains[HIPTriple.str() + "/" + HostTriple.str()]; 692 if (!HIPTC) { 693 HIPTC = std::make_unique<toolchains::HIPToolChain>( 694 *this, HIPTriple, *HostTC, C.getInputArgs()); 695 } 696 C.addOffloadDeviceToolChain(HIPTC.get(), OFK); 697 } 698 699 // 700 // OpenMP 701 // 702 // We need to generate an OpenMP toolchain if the user specified targets with 703 // the -fopenmp-targets option. 704 if (Arg *OpenMPTargets = 705 C.getInputArgs().getLastArg(options::OPT_fopenmp_targets_EQ)) { 706 if (OpenMPTargets->getNumValues()) { 707 // We expect that -fopenmp-targets is always used in conjunction with the 708 // option -fopenmp specifying a valid runtime with offloading support, 709 // i.e. libomp or libiomp. 710 bool HasValidOpenMPRuntime = C.getInputArgs().hasFlag( 711 options::OPT_fopenmp, options::OPT_fopenmp_EQ, 712 options::OPT_fno_openmp, false); 713 if (HasValidOpenMPRuntime) { 714 OpenMPRuntimeKind OpenMPKind = getOpenMPRuntime(C.getInputArgs()); 715 HasValidOpenMPRuntime = 716 OpenMPKind == OMPRT_OMP || OpenMPKind == OMPRT_IOMP5; 717 } 718 719 if (HasValidOpenMPRuntime) { 720 llvm::StringMap<const char *> FoundNormalizedTriples; 721 for (const char *Val : OpenMPTargets->getValues()) { 722 llvm::Triple TT(Val); 723 std::string NormalizedName = TT.normalize(); 724 725 // Make sure we don't have a duplicate triple. 726 auto Duplicate = FoundNormalizedTriples.find(NormalizedName); 727 if (Duplicate != FoundNormalizedTriples.end()) { 728 Diag(clang::diag::warn_drv_omp_offload_target_duplicate) 729 << Val << Duplicate->second; 730 continue; 731 } 732 733 // Store the current triple so that we can check for duplicates in the 734 // following iterations. 735 FoundNormalizedTriples[NormalizedName] = Val; 736 737 // If the specified target is invalid, emit a diagnostic. 738 if (TT.getArch() == llvm::Triple::UnknownArch) 739 Diag(clang::diag::err_drv_invalid_omp_target) << Val; 740 else { 741 const ToolChain *TC; 742 // CUDA toolchains have to be selected differently. They pair host 743 // and device in their implementation. 744 if (TT.isNVPTX()) { 745 const ToolChain *HostTC = 746 C.getSingleOffloadToolChain<Action::OFK_Host>(); 747 assert(HostTC && "Host toolchain should be always defined."); 748 auto &CudaTC = 749 ToolChains[TT.str() + "/" + HostTC->getTriple().normalize()]; 750 if (!CudaTC) 751 CudaTC = std::make_unique<toolchains::CudaToolChain>( 752 *this, TT, *HostTC, C.getInputArgs(), Action::OFK_OpenMP); 753 TC = CudaTC.get(); 754 } else 755 TC = &getToolChain(C.getInputArgs(), TT); 756 C.addOffloadDeviceToolChain(TC, Action::OFK_OpenMP); 757 } 758 } 759 } else 760 Diag(clang::diag::err_drv_expecting_fopenmp_with_fopenmp_targets); 761 } else 762 Diag(clang::diag::warn_drv_empty_joined_argument) 763 << OpenMPTargets->getAsString(C.getInputArgs()); 764 } 765 766 // 767 // TODO: Add support for other offloading programming models here. 768 // 769 } 770 771 /// Looks the given directories for the specified file. 772 /// 773 /// \param[out] FilePath File path, if the file was found. 774 /// \param[in] Dirs Directories used for the search. 775 /// \param[in] FileName Name of the file to search for. 776 /// \return True if file was found. 777 /// 778 /// Looks for file specified by FileName sequentially in directories specified 779 /// by Dirs. 780 /// 781 static bool searchForFile(SmallVectorImpl<char> &FilePath, 782 ArrayRef<StringRef> Dirs, StringRef FileName) { 783 SmallString<128> WPath; 784 for (const StringRef &Dir : Dirs) { 785 if (Dir.empty()) 786 continue; 787 WPath.clear(); 788 llvm::sys::path::append(WPath, Dir, FileName); 789 llvm::sys::path::native(WPath); 790 if (llvm::sys::fs::is_regular_file(WPath)) { 791 FilePath = std::move(WPath); 792 return true; 793 } 794 } 795 return false; 796 } 797 798 bool Driver::readConfigFile(StringRef FileName) { 799 // Try reading the given file. 800 SmallVector<const char *, 32> NewCfgArgs; 801 if (!llvm::cl::readConfigFile(FileName, Saver, NewCfgArgs)) { 802 Diag(diag::err_drv_cannot_read_config_file) << FileName; 803 return true; 804 } 805 806 // Read options from config file. 807 llvm::SmallString<128> CfgFileName(FileName); 808 llvm::sys::path::native(CfgFileName); 809 ConfigFile = std::string(CfgFileName); 810 bool ContainErrors; 811 CfgOptions = std::make_unique<InputArgList>( 812 ParseArgStrings(NewCfgArgs, IsCLMode(), ContainErrors)); 813 if (ContainErrors) { 814 CfgOptions.reset(); 815 return true; 816 } 817 818 if (CfgOptions->hasArg(options::OPT_config)) { 819 CfgOptions.reset(); 820 Diag(diag::err_drv_nested_config_file); 821 return true; 822 } 823 824 // Claim all arguments that come from a configuration file so that the driver 825 // does not warn on any that is unused. 826 for (Arg *A : *CfgOptions) 827 A->claim(); 828 return false; 829 } 830 831 bool Driver::loadConfigFile() { 832 std::string CfgFileName; 833 bool FileSpecifiedExplicitly = false; 834 835 // Process options that change search path for config files. 836 if (CLOptions) { 837 if (CLOptions->hasArg(options::OPT_config_system_dir_EQ)) { 838 SmallString<128> CfgDir; 839 CfgDir.append( 840 CLOptions->getLastArgValue(options::OPT_config_system_dir_EQ)); 841 if (!CfgDir.empty()) { 842 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 843 SystemConfigDir.clear(); 844 else 845 SystemConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 846 } 847 } 848 if (CLOptions->hasArg(options::OPT_config_user_dir_EQ)) { 849 SmallString<128> CfgDir; 850 CfgDir.append( 851 CLOptions->getLastArgValue(options::OPT_config_user_dir_EQ)); 852 if (!CfgDir.empty()) { 853 if (llvm::sys::fs::make_absolute(CfgDir).value() != 0) 854 UserConfigDir.clear(); 855 else 856 UserConfigDir = std::string(CfgDir.begin(), CfgDir.end()); 857 } 858 } 859 } 860 861 // First try to find config file specified in command line. 862 if (CLOptions) { 863 std::vector<std::string> ConfigFiles = 864 CLOptions->getAllArgValues(options::OPT_config); 865 if (ConfigFiles.size() > 1) { 866 if (!std::all_of(ConfigFiles.begin(), ConfigFiles.end(), 867 [ConfigFiles](const std::string &s) { 868 return s == ConfigFiles[0]; 869 })) { 870 Diag(diag::err_drv_duplicate_config); 871 return true; 872 } 873 } 874 875 if (!ConfigFiles.empty()) { 876 CfgFileName = ConfigFiles.front(); 877 assert(!CfgFileName.empty()); 878 879 // If argument contains directory separator, treat it as a path to 880 // configuration file. 881 if (llvm::sys::path::has_parent_path(CfgFileName)) { 882 SmallString<128> CfgFilePath; 883 if (llvm::sys::path::is_relative(CfgFileName)) 884 llvm::sys::fs::current_path(CfgFilePath); 885 llvm::sys::path::append(CfgFilePath, CfgFileName); 886 if (!llvm::sys::fs::is_regular_file(CfgFilePath)) { 887 Diag(diag::err_drv_config_file_not_exist) << CfgFilePath; 888 return true; 889 } 890 return readConfigFile(CfgFilePath); 891 } 892 893 FileSpecifiedExplicitly = true; 894 } 895 } 896 897 // If config file is not specified explicitly, try to deduce configuration 898 // from executable name. For instance, an executable 'armv7l-clang' will 899 // search for config file 'armv7l-clang.cfg'. 900 if (CfgFileName.empty() && !ClangNameParts.TargetPrefix.empty()) 901 CfgFileName = ClangNameParts.TargetPrefix + '-' + ClangNameParts.ModeSuffix; 902 903 if (CfgFileName.empty()) 904 return false; 905 906 // Determine architecture part of the file name, if it is present. 907 StringRef CfgFileArch = CfgFileName; 908 size_t ArchPrefixLen = CfgFileArch.find('-'); 909 if (ArchPrefixLen == StringRef::npos) 910 ArchPrefixLen = CfgFileArch.size(); 911 llvm::Triple CfgTriple; 912 CfgFileArch = CfgFileArch.take_front(ArchPrefixLen); 913 CfgTriple = llvm::Triple(llvm::Triple::normalize(CfgFileArch)); 914 if (CfgTriple.getArch() == llvm::Triple::ArchType::UnknownArch) 915 ArchPrefixLen = 0; 916 917 if (!StringRef(CfgFileName).endswith(".cfg")) 918 CfgFileName += ".cfg"; 919 920 // If config file starts with architecture name and command line options 921 // redefine architecture (with options like -m32 -LE etc), try finding new 922 // config file with that architecture. 923 SmallString<128> FixedConfigFile; 924 size_t FixedArchPrefixLen = 0; 925 if (ArchPrefixLen) { 926 // Get architecture name from config file name like 'i386.cfg' or 927 // 'armv7l-clang.cfg'. 928 // Check if command line options changes effective triple. 929 llvm::Triple EffectiveTriple = computeTargetTriple(*this, 930 CfgTriple.getTriple(), *CLOptions); 931 if (CfgTriple.getArch() != EffectiveTriple.getArch()) { 932 FixedConfigFile = EffectiveTriple.getArchName(); 933 FixedArchPrefixLen = FixedConfigFile.size(); 934 // Append the rest of original file name so that file name transforms 935 // like: i386-clang.cfg -> x86_64-clang.cfg. 936 if (ArchPrefixLen < CfgFileName.size()) 937 FixedConfigFile += CfgFileName.substr(ArchPrefixLen); 938 } 939 } 940 941 // Prepare list of directories where config file is searched for. 942 StringRef CfgFileSearchDirs[] = {UserConfigDir, SystemConfigDir, Dir}; 943 944 // Try to find config file. First try file with corrected architecture. 945 llvm::SmallString<128> CfgFilePath; 946 if (!FixedConfigFile.empty()) { 947 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 948 return readConfigFile(CfgFilePath); 949 // If 'x86_64-clang.cfg' was not found, try 'x86_64.cfg'. 950 FixedConfigFile.resize(FixedArchPrefixLen); 951 FixedConfigFile.append(".cfg"); 952 if (searchForFile(CfgFilePath, CfgFileSearchDirs, FixedConfigFile)) 953 return readConfigFile(CfgFilePath); 954 } 955 956 // Then try original file name. 957 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 958 return readConfigFile(CfgFilePath); 959 960 // Finally try removing driver mode part: 'x86_64-clang.cfg' -> 'x86_64.cfg'. 961 if (!ClangNameParts.ModeSuffix.empty() && 962 !ClangNameParts.TargetPrefix.empty()) { 963 CfgFileName.assign(ClangNameParts.TargetPrefix); 964 CfgFileName.append(".cfg"); 965 if (searchForFile(CfgFilePath, CfgFileSearchDirs, CfgFileName)) 966 return readConfigFile(CfgFilePath); 967 } 968 969 // Report error but only if config file was specified explicitly, by option 970 // --config. If it was deduced from executable name, it is not an error. 971 if (FileSpecifiedExplicitly) { 972 Diag(diag::err_drv_config_file_not_found) << CfgFileName; 973 for (const StringRef &SearchDir : CfgFileSearchDirs) 974 if (!SearchDir.empty()) 975 Diag(diag::note_drv_config_file_searched_in) << SearchDir; 976 return true; 977 } 978 979 return false; 980 } 981 982 Compilation *Driver::BuildCompilation(ArrayRef<const char *> ArgList) { 983 llvm::PrettyStackTraceString CrashInfo("Compilation construction"); 984 985 // FIXME: Handle environment options which affect driver behavior, somewhere 986 // (client?). GCC_EXEC_PREFIX, LPATH, CC_PRINT_OPTIONS. 987 988 // We look for the driver mode option early, because the mode can affect 989 // how other options are parsed. 990 ParseDriverMode(ClangExecutable, ArgList.slice(1)); 991 992 // FIXME: What are we going to do with -V and -b? 993 994 // Arguments specified in command line. 995 bool ContainsError; 996 CLOptions = std::make_unique<InputArgList>( 997 ParseArgStrings(ArgList.slice(1), IsCLMode(), ContainsError)); 998 999 // Try parsing configuration file. 1000 if (!ContainsError) 1001 ContainsError = loadConfigFile(); 1002 bool HasConfigFile = !ContainsError && (CfgOptions.get() != nullptr); 1003 1004 // All arguments, from both config file and command line. 1005 InputArgList Args = std::move(HasConfigFile ? std::move(*CfgOptions) 1006 : std::move(*CLOptions)); 1007 1008 // The args for config files or /clang: flags belong to different InputArgList 1009 // objects than Args. This copies an Arg from one of those other InputArgLists 1010 // to the ownership of Args. 1011 auto appendOneArg = [&Args](const Arg *Opt, const Arg *BaseArg) { 1012 unsigned Index = Args.MakeIndex(Opt->getSpelling()); 1013 Arg *Copy = new llvm::opt::Arg(Opt->getOption(), Args.getArgString(Index), 1014 Index, BaseArg); 1015 Copy->getValues() = Opt->getValues(); 1016 if (Opt->isClaimed()) 1017 Copy->claim(); 1018 Copy->setOwnsValues(Opt->getOwnsValues()); 1019 Opt->setOwnsValues(false); 1020 Args.append(Copy); 1021 }; 1022 1023 if (HasConfigFile) 1024 for (auto *Opt : *CLOptions) { 1025 if (Opt->getOption().matches(options::OPT_config)) 1026 continue; 1027 const Arg *BaseArg = &Opt->getBaseArg(); 1028 if (BaseArg == Opt) 1029 BaseArg = nullptr; 1030 appendOneArg(Opt, BaseArg); 1031 } 1032 1033 // In CL mode, look for any pass-through arguments 1034 if (IsCLMode() && !ContainsError) { 1035 SmallVector<const char *, 16> CLModePassThroughArgList; 1036 for (const auto *A : Args.filtered(options::OPT__SLASH_clang)) { 1037 A->claim(); 1038 CLModePassThroughArgList.push_back(A->getValue()); 1039 } 1040 1041 if (!CLModePassThroughArgList.empty()) { 1042 // Parse any pass through args using default clang processing rather 1043 // than clang-cl processing. 1044 auto CLModePassThroughOptions = std::make_unique<InputArgList>( 1045 ParseArgStrings(CLModePassThroughArgList, false, ContainsError)); 1046 1047 if (!ContainsError) 1048 for (auto *Opt : *CLModePassThroughOptions) { 1049 appendOneArg(Opt, nullptr); 1050 } 1051 } 1052 } 1053 1054 // Check for working directory option before accessing any files 1055 if (Arg *WD = Args.getLastArg(options::OPT_working_directory)) 1056 if (VFS->setCurrentWorkingDirectory(WD->getValue())) 1057 Diag(diag::err_drv_unable_to_set_working_directory) << WD->getValue(); 1058 1059 // FIXME: This stuff needs to go into the Compilation, not the driver. 1060 bool CCCPrintPhases; 1061 1062 // Silence driver warnings if requested 1063 Diags.setIgnoreAllWarnings(Args.hasArg(options::OPT_w)); 1064 1065 // -no-canonical-prefixes is used very early in main. 1066 Args.ClaimAllArgs(options::OPT_no_canonical_prefixes); 1067 1068 // f(no-)integated-cc1 is also used very early in main. 1069 Args.ClaimAllArgs(options::OPT_fintegrated_cc1); 1070 Args.ClaimAllArgs(options::OPT_fno_integrated_cc1); 1071 1072 // Ignore -pipe. 1073 Args.ClaimAllArgs(options::OPT_pipe); 1074 1075 // Extract -ccc args. 1076 // 1077 // FIXME: We need to figure out where this behavior should live. Most of it 1078 // should be outside in the client; the parts that aren't should have proper 1079 // options, either by introducing new ones or by overloading gcc ones like -V 1080 // or -b. 1081 CCCPrintPhases = Args.hasArg(options::OPT_ccc_print_phases); 1082 CCCPrintBindings = Args.hasArg(options::OPT_ccc_print_bindings); 1083 if (const Arg *A = Args.getLastArg(options::OPT_ccc_gcc_name)) 1084 CCCGenericGCCName = A->getValue(); 1085 GenReproducer = Args.hasFlag(options::OPT_gen_reproducer, 1086 options::OPT_fno_crash_diagnostics, 1087 !!::getenv("FORCE_CLANG_DIAGNOSTICS_CRASH")); 1088 // FIXME: TargetTriple is used by the target-prefixed calls to as/ld 1089 // and getToolChain is const. 1090 if (IsCLMode()) { 1091 // clang-cl targets MSVC-style Win32. 1092 llvm::Triple T(TargetTriple); 1093 T.setOS(llvm::Triple::Win32); 1094 T.setVendor(llvm::Triple::PC); 1095 T.setEnvironment(llvm::Triple::MSVC); 1096 T.setObjectFormat(llvm::Triple::COFF); 1097 TargetTriple = T.str(); 1098 } 1099 if (const Arg *A = Args.getLastArg(options::OPT_target)) 1100 TargetTriple = A->getValue(); 1101 if (const Arg *A = Args.getLastArg(options::OPT_ccc_install_dir)) 1102 Dir = InstalledDir = A->getValue(); 1103 for (const Arg *A : Args.filtered(options::OPT_B)) { 1104 A->claim(); 1105 PrefixDirs.push_back(A->getValue(0)); 1106 } 1107 if (Optional<std::string> CompilerPathValue = 1108 llvm::sys::Process::GetEnv("COMPILER_PATH")) { 1109 StringRef CompilerPath = *CompilerPathValue; 1110 while (!CompilerPath.empty()) { 1111 std::pair<StringRef, StringRef> Split = 1112 CompilerPath.split(llvm::sys::EnvPathSeparator); 1113 PrefixDirs.push_back(std::string(Split.first)); 1114 CompilerPath = Split.second; 1115 } 1116 } 1117 if (const Arg *A = Args.getLastArg(options::OPT__sysroot_EQ)) 1118 SysRoot = A->getValue(); 1119 if (const Arg *A = Args.getLastArg(options::OPT__dyld_prefix_EQ)) 1120 DyldPrefix = A->getValue(); 1121 1122 if (const Arg *A = Args.getLastArg(options::OPT_resource_dir)) 1123 ResourceDir = A->getValue(); 1124 1125 if (const Arg *A = Args.getLastArg(options::OPT_save_temps_EQ)) { 1126 SaveTemps = llvm::StringSwitch<SaveTempsMode>(A->getValue()) 1127 .Case("cwd", SaveTempsCwd) 1128 .Case("obj", SaveTempsObj) 1129 .Default(SaveTempsCwd); 1130 } 1131 1132 setLTOMode(Args); 1133 1134 // Process -fembed-bitcode= flags. 1135 if (Arg *A = Args.getLastArg(options::OPT_fembed_bitcode_EQ)) { 1136 StringRef Name = A->getValue(); 1137 unsigned Model = llvm::StringSwitch<unsigned>(Name) 1138 .Case("off", EmbedNone) 1139 .Case("all", EmbedBitcode) 1140 .Case("bitcode", EmbedBitcode) 1141 .Case("marker", EmbedMarker) 1142 .Default(~0U); 1143 if (Model == ~0U) { 1144 Diags.Report(diag::err_drv_invalid_value) << A->getAsString(Args) 1145 << Name; 1146 } else 1147 BitcodeEmbed = static_cast<BitcodeEmbedMode>(Model); 1148 } 1149 1150 std::unique_ptr<llvm::opt::InputArgList> UArgs = 1151 std::make_unique<InputArgList>(std::move(Args)); 1152 1153 // Perform the default argument translations. 1154 DerivedArgList *TranslatedArgs = TranslateInputArgs(*UArgs); 1155 1156 // Owned by the host. 1157 const ToolChain &TC = getToolChain( 1158 *UArgs, computeTargetTriple(*this, TargetTriple, *UArgs)); 1159 1160 // The compilation takes ownership of Args. 1161 Compilation *C = new Compilation(*this, TC, UArgs.release(), TranslatedArgs, 1162 ContainsError); 1163 1164 if (!HandleImmediateArgs(*C)) 1165 return C; 1166 1167 // Construct the list of inputs. 1168 InputList Inputs; 1169 BuildInputs(C->getDefaultToolChain(), *TranslatedArgs, Inputs); 1170 1171 // Populate the tool chains for the offloading devices, if any. 1172 CreateOffloadingDeviceToolChains(*C, Inputs); 1173 1174 // Construct the list of abstract actions to perform for this compilation. On 1175 // MachO targets this uses the driver-driver and universal actions. 1176 if (TC.getTriple().isOSBinFormatMachO()) 1177 BuildUniversalActions(*C, C->getDefaultToolChain(), Inputs); 1178 else 1179 BuildActions(*C, C->getArgs(), Inputs, C->getActions()); 1180 1181 if (CCCPrintPhases) { 1182 PrintActions(*C); 1183 return C; 1184 } 1185 1186 BuildJobs(*C); 1187 1188 return C; 1189 } 1190 1191 static void printArgList(raw_ostream &OS, const llvm::opt::ArgList &Args) { 1192 llvm::opt::ArgStringList ASL; 1193 for (const auto *A : Args) 1194 A->render(Args, ASL); 1195 1196 for (auto I = ASL.begin(), E = ASL.end(); I != E; ++I) { 1197 if (I != ASL.begin()) 1198 OS << ' '; 1199 llvm::sys::printArg(OS, *I, true); 1200 } 1201 OS << '\n'; 1202 } 1203 1204 bool Driver::getCrashDiagnosticFile(StringRef ReproCrashFilename, 1205 SmallString<128> &CrashDiagDir) { 1206 using namespace llvm::sys; 1207 assert(llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin() && 1208 "Only knows about .crash files on Darwin"); 1209 1210 // The .crash file can be found on at ~/Library/Logs/DiagnosticReports/ 1211 // (or /Library/Logs/DiagnosticReports for root) and has the filename pattern 1212 // clang-<VERSION>_<YYYY-MM-DD-HHMMSS>_<hostname>.crash. 1213 path::home_directory(CrashDiagDir); 1214 if (CrashDiagDir.startswith("/var/root")) 1215 CrashDiagDir = "/"; 1216 path::append(CrashDiagDir, "Library/Logs/DiagnosticReports"); 1217 int PID = 1218 #if LLVM_ON_UNIX 1219 getpid(); 1220 #else 1221 0; 1222 #endif 1223 std::error_code EC; 1224 fs::file_status FileStatus; 1225 TimePoint<> LastAccessTime; 1226 SmallString<128> CrashFilePath; 1227 // Lookup the .crash files and get the one generated by a subprocess spawned 1228 // by this driver invocation. 1229 for (fs::directory_iterator File(CrashDiagDir, EC), FileEnd; 1230 File != FileEnd && !EC; File.increment(EC)) { 1231 StringRef FileName = path::filename(File->path()); 1232 if (!FileName.startswith(Name)) 1233 continue; 1234 if (fs::status(File->path(), FileStatus)) 1235 continue; 1236 llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> CrashFile = 1237 llvm::MemoryBuffer::getFile(File->path()); 1238 if (!CrashFile) 1239 continue; 1240 // The first line should start with "Process:", otherwise this isn't a real 1241 // .crash file. 1242 StringRef Data = CrashFile.get()->getBuffer(); 1243 if (!Data.startswith("Process:")) 1244 continue; 1245 // Parse parent process pid line, e.g: "Parent Process: clang-4.0 [79141]" 1246 size_t ParentProcPos = Data.find("Parent Process:"); 1247 if (ParentProcPos == StringRef::npos) 1248 continue; 1249 size_t LineEnd = Data.find_first_of("\n", ParentProcPos); 1250 if (LineEnd == StringRef::npos) 1251 continue; 1252 StringRef ParentProcess = Data.slice(ParentProcPos+15, LineEnd).trim(); 1253 int OpenBracket = -1, CloseBracket = -1; 1254 for (size_t i = 0, e = ParentProcess.size(); i < e; ++i) { 1255 if (ParentProcess[i] == '[') 1256 OpenBracket = i; 1257 if (ParentProcess[i] == ']') 1258 CloseBracket = i; 1259 } 1260 // Extract the parent process PID from the .crash file and check whether 1261 // it matches this driver invocation pid. 1262 int CrashPID; 1263 if (OpenBracket < 0 || CloseBracket < 0 || 1264 ParentProcess.slice(OpenBracket + 1, CloseBracket) 1265 .getAsInteger(10, CrashPID) || CrashPID != PID) { 1266 continue; 1267 } 1268 1269 // Found a .crash file matching the driver pid. To avoid getting an older 1270 // and misleading crash file, continue looking for the most recent. 1271 // FIXME: the driver can dispatch multiple cc1 invocations, leading to 1272 // multiple crashes poiting to the same parent process. Since the driver 1273 // does not collect pid information for the dispatched invocation there's 1274 // currently no way to distinguish among them. 1275 const auto FileAccessTime = FileStatus.getLastModificationTime(); 1276 if (FileAccessTime > LastAccessTime) { 1277 CrashFilePath.assign(File->path()); 1278 LastAccessTime = FileAccessTime; 1279 } 1280 } 1281 1282 // If found, copy it over to the location of other reproducer files. 1283 if (!CrashFilePath.empty()) { 1284 EC = fs::copy_file(CrashFilePath, ReproCrashFilename); 1285 if (EC) 1286 return false; 1287 return true; 1288 } 1289 1290 return false; 1291 } 1292 1293 // When clang crashes, produce diagnostic information including the fully 1294 // preprocessed source file(s). Request that the developer attach the 1295 // diagnostic information to a bug report. 1296 void Driver::generateCompilationDiagnostics( 1297 Compilation &C, const Command &FailingCommand, 1298 StringRef AdditionalInformation, CompilationDiagnosticReport *Report) { 1299 if (C.getArgs().hasArg(options::OPT_fno_crash_diagnostics)) 1300 return; 1301 1302 // Don't try to generate diagnostics for link or dsymutil jobs. 1303 if (FailingCommand.getCreator().isLinkJob() || 1304 FailingCommand.getCreator().isDsymutilJob()) 1305 return; 1306 1307 // Print the version of the compiler. 1308 PrintVersion(C, llvm::errs()); 1309 1310 // Suppress driver output and emit preprocessor output to temp file. 1311 Mode = CPPMode; 1312 CCGenDiagnostics = true; 1313 1314 // Save the original job command(s). 1315 Command Cmd = FailingCommand; 1316 1317 // Keep track of whether we produce any errors while trying to produce 1318 // preprocessed sources. 1319 DiagnosticErrorTrap Trap(Diags); 1320 1321 // Suppress tool output. 1322 C.initCompilationForDiagnostics(); 1323 1324 // Construct the list of inputs. 1325 InputList Inputs; 1326 BuildInputs(C.getDefaultToolChain(), C.getArgs(), Inputs); 1327 1328 for (InputList::iterator it = Inputs.begin(), ie = Inputs.end(); it != ie;) { 1329 bool IgnoreInput = false; 1330 1331 // Ignore input from stdin or any inputs that cannot be preprocessed. 1332 // Check type first as not all linker inputs have a value. 1333 if (types::getPreprocessedType(it->first) == types::TY_INVALID) { 1334 IgnoreInput = true; 1335 } else if (!strcmp(it->second->getValue(), "-")) { 1336 Diag(clang::diag::note_drv_command_failed_diag_msg) 1337 << "Error generating preprocessed source(s) - " 1338 "ignoring input from stdin."; 1339 IgnoreInput = true; 1340 } 1341 1342 if (IgnoreInput) { 1343 it = Inputs.erase(it); 1344 ie = Inputs.end(); 1345 } else { 1346 ++it; 1347 } 1348 } 1349 1350 if (Inputs.empty()) { 1351 Diag(clang::diag::note_drv_command_failed_diag_msg) 1352 << "Error generating preprocessed source(s) - " 1353 "no preprocessable inputs."; 1354 return; 1355 } 1356 1357 // Don't attempt to generate preprocessed files if multiple -arch options are 1358 // used, unless they're all duplicates. 1359 llvm::StringSet<> ArchNames; 1360 for (const Arg *A : C.getArgs()) { 1361 if (A->getOption().matches(options::OPT_arch)) { 1362 StringRef ArchName = A->getValue(); 1363 ArchNames.insert(ArchName); 1364 } 1365 } 1366 if (ArchNames.size() > 1) { 1367 Diag(clang::diag::note_drv_command_failed_diag_msg) 1368 << "Error generating preprocessed source(s) - cannot generate " 1369 "preprocessed source with multiple -arch options."; 1370 return; 1371 } 1372 1373 // Construct the list of abstract actions to perform for this compilation. On 1374 // Darwin OSes this uses the driver-driver and builds universal actions. 1375 const ToolChain &TC = C.getDefaultToolChain(); 1376 if (TC.getTriple().isOSBinFormatMachO()) 1377 BuildUniversalActions(C, TC, Inputs); 1378 else 1379 BuildActions(C, C.getArgs(), Inputs, C.getActions()); 1380 1381 BuildJobs(C); 1382 1383 // If there were errors building the compilation, quit now. 1384 if (Trap.hasErrorOccurred()) { 1385 Diag(clang::diag::note_drv_command_failed_diag_msg) 1386 << "Error generating preprocessed source(s)."; 1387 return; 1388 } 1389 1390 // Generate preprocessed output. 1391 SmallVector<std::pair<int, const Command *>, 4> FailingCommands; 1392 C.ExecuteJobs(C.getJobs(), FailingCommands); 1393 1394 // If any of the preprocessing commands failed, clean up and exit. 1395 if (!FailingCommands.empty()) { 1396 Diag(clang::diag::note_drv_command_failed_diag_msg) 1397 << "Error generating preprocessed source(s)."; 1398 return; 1399 } 1400 1401 const ArgStringList &TempFiles = C.getTempFiles(); 1402 if (TempFiles.empty()) { 1403 Diag(clang::diag::note_drv_command_failed_diag_msg) 1404 << "Error generating preprocessed source(s)."; 1405 return; 1406 } 1407 1408 Diag(clang::diag::note_drv_command_failed_diag_msg) 1409 << "\n********************\n\n" 1410 "PLEASE ATTACH THE FOLLOWING FILES TO THE BUG REPORT:\n" 1411 "Preprocessed source(s) and associated run script(s) are located at:"; 1412 1413 SmallString<128> VFS; 1414 SmallString<128> ReproCrashFilename; 1415 for (const char *TempFile : TempFiles) { 1416 Diag(clang::diag::note_drv_command_failed_diag_msg) << TempFile; 1417 if (Report) 1418 Report->TemporaryFiles.push_back(TempFile); 1419 if (ReproCrashFilename.empty()) { 1420 ReproCrashFilename = TempFile; 1421 llvm::sys::path::replace_extension(ReproCrashFilename, ".crash"); 1422 } 1423 if (StringRef(TempFile).endswith(".cache")) { 1424 // In some cases (modules) we'll dump extra data to help with reproducing 1425 // the crash into a directory next to the output. 1426 VFS = llvm::sys::path::filename(TempFile); 1427 llvm::sys::path::append(VFS, "vfs", "vfs.yaml"); 1428 } 1429 } 1430 1431 // Assume associated files are based off of the first temporary file. 1432 CrashReportInfo CrashInfo(TempFiles[0], VFS); 1433 1434 llvm::SmallString<128> Script(CrashInfo.Filename); 1435 llvm::sys::path::replace_extension(Script, "sh"); 1436 std::error_code EC; 1437 llvm::raw_fd_ostream ScriptOS(Script, EC, llvm::sys::fs::CD_CreateNew); 1438 if (EC) { 1439 Diag(clang::diag::note_drv_command_failed_diag_msg) 1440 << "Error generating run script: " << Script << " " << EC.message(); 1441 } else { 1442 ScriptOS << "# Crash reproducer for " << getClangFullVersion() << "\n" 1443 << "# Driver args: "; 1444 printArgList(ScriptOS, C.getInputArgs()); 1445 ScriptOS << "# Original command: "; 1446 Cmd.Print(ScriptOS, "\n", /*Quote=*/true); 1447 Cmd.Print(ScriptOS, "\n", /*Quote=*/true, &CrashInfo); 1448 if (!AdditionalInformation.empty()) 1449 ScriptOS << "\n# Additional information: " << AdditionalInformation 1450 << "\n"; 1451 if (Report) 1452 Report->TemporaryFiles.push_back(std::string(Script.str())); 1453 Diag(clang::diag::note_drv_command_failed_diag_msg) << Script; 1454 } 1455 1456 // On darwin, provide information about the .crash diagnostic report. 1457 if (llvm::Triple(llvm::sys::getProcessTriple()).isOSDarwin()) { 1458 SmallString<128> CrashDiagDir; 1459 if (getCrashDiagnosticFile(ReproCrashFilename, CrashDiagDir)) { 1460 Diag(clang::diag::note_drv_command_failed_diag_msg) 1461 << ReproCrashFilename.str(); 1462 } else { // Suggest a directory for the user to look for .crash files. 1463 llvm::sys::path::append(CrashDiagDir, Name); 1464 CrashDiagDir += "_<YYYY-MM-DD-HHMMSS>_<hostname>.crash"; 1465 Diag(clang::diag::note_drv_command_failed_diag_msg) 1466 << "Crash backtrace is located in"; 1467 Diag(clang::diag::note_drv_command_failed_diag_msg) 1468 << CrashDiagDir.str(); 1469 Diag(clang::diag::note_drv_command_failed_diag_msg) 1470 << "(choose the .crash file that corresponds to your crash)"; 1471 } 1472 } 1473 1474 for (const auto &A : C.getArgs().filtered(options::OPT_frewrite_map_file, 1475 options::OPT_frewrite_map_file_EQ)) 1476 Diag(clang::diag::note_drv_command_failed_diag_msg) << A->getValue(); 1477 1478 Diag(clang::diag::note_drv_command_failed_diag_msg) 1479 << "\n\n********************"; 1480 } 1481 1482 void Driver::setUpResponseFiles(Compilation &C, Command &Cmd) { 1483 // Since commandLineFitsWithinSystemLimits() may underestimate system's 1484 // capacity if the tool does not support response files, there is a chance/ 1485 // that things will just work without a response file, so we silently just 1486 // skip it. 1487 if (Cmd.getResponseFileSupport().ResponseKind == 1488 ResponseFileSupport::RF_None || 1489 llvm::sys::commandLineFitsWithinSystemLimits(Cmd.getExecutable(), 1490 Cmd.getArguments())) 1491 return; 1492 1493 std::string TmpName = GetTemporaryPath("response", "txt"); 1494 Cmd.setResponseFile(C.addTempFile(C.getArgs().MakeArgString(TmpName))); 1495 } 1496 1497 int Driver::ExecuteCompilation( 1498 Compilation &C, 1499 SmallVectorImpl<std::pair<int, const Command *>> &FailingCommands) { 1500 // Just print if -### was present. 1501 if (C.getArgs().hasArg(options::OPT__HASH_HASH_HASH)) { 1502 C.getJobs().Print(llvm::errs(), "\n", true); 1503 return 0; 1504 } 1505 1506 // If there were errors building the compilation, quit now. 1507 if (Diags.hasErrorOccurred()) 1508 return 1; 1509 1510 // Set up response file names for each command, if necessary 1511 for (auto &Job : C.getJobs()) 1512 setUpResponseFiles(C, Job); 1513 1514 C.ExecuteJobs(C.getJobs(), FailingCommands); 1515 1516 // If the command succeeded, we are done. 1517 if (FailingCommands.empty()) 1518 return 0; 1519 1520 // Otherwise, remove result files and print extra information about abnormal 1521 // failures. 1522 int Res = 0; 1523 for (const auto &CmdPair : FailingCommands) { 1524 int CommandRes = CmdPair.first; 1525 const Command *FailingCommand = CmdPair.second; 1526 1527 // Remove result files if we're not saving temps. 1528 if (!isSaveTempsEnabled()) { 1529 const JobAction *JA = cast<JobAction>(&FailingCommand->getSource()); 1530 C.CleanupFileMap(C.getResultFiles(), JA, true); 1531 1532 // Failure result files are valid unless we crashed. 1533 if (CommandRes < 0) 1534 C.CleanupFileMap(C.getFailureResultFiles(), JA, true); 1535 } 1536 1537 #if LLVM_ON_UNIX 1538 // llvm/lib/Support/Unix/Signals.inc will exit with a special return code 1539 // for SIGPIPE. Do not print diagnostics for this case. 1540 if (CommandRes == EX_IOERR) { 1541 Res = CommandRes; 1542 continue; 1543 } 1544 #endif 1545 1546 // Print extra information about abnormal failures, if possible. 1547 // 1548 // This is ad-hoc, but we don't want to be excessively noisy. If the result 1549 // status was 1, assume the command failed normally. In particular, if it 1550 // was the compiler then assume it gave a reasonable error code. Failures 1551 // in other tools are less common, and they generally have worse 1552 // diagnostics, so always print the diagnostic there. 1553 const Tool &FailingTool = FailingCommand->getCreator(); 1554 1555 if (!FailingCommand->getCreator().hasGoodDiagnostics() || CommandRes != 1) { 1556 // FIXME: See FIXME above regarding result code interpretation. 1557 if (CommandRes < 0) 1558 Diag(clang::diag::err_drv_command_signalled) 1559 << FailingTool.getShortName(); 1560 else 1561 Diag(clang::diag::err_drv_command_failed) 1562 << FailingTool.getShortName() << CommandRes; 1563 } 1564 } 1565 return Res; 1566 } 1567 1568 void Driver::PrintHelp(bool ShowHidden) const { 1569 unsigned IncludedFlagsBitmask; 1570 unsigned ExcludedFlagsBitmask; 1571 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 1572 getIncludeExcludeOptionFlagMasks(IsCLMode()); 1573 1574 ExcludedFlagsBitmask |= options::NoDriverOption; 1575 if (!ShowHidden) 1576 ExcludedFlagsBitmask |= HelpHidden; 1577 1578 if (IsFlangMode()) 1579 IncludedFlagsBitmask |= options::FlangOption; 1580 else 1581 ExcludedFlagsBitmask |= options::FlangOnlyOption; 1582 1583 std::string Usage = llvm::formatv("{0} [options] file...", Name).str(); 1584 getOpts().PrintHelp(llvm::outs(), Usage.c_str(), DriverTitle.c_str(), 1585 IncludedFlagsBitmask, ExcludedFlagsBitmask, 1586 /*ShowAllAliases=*/false); 1587 } 1588 1589 void Driver::PrintVersion(const Compilation &C, raw_ostream &OS) const { 1590 if (IsFlangMode()) { 1591 OS << getClangToolFullVersion("flang-new") << '\n'; 1592 } else { 1593 // FIXME: The following handlers should use a callback mechanism, we don't 1594 // know what the client would like to do. 1595 OS << getClangFullVersion() << '\n'; 1596 } 1597 const ToolChain &TC = C.getDefaultToolChain(); 1598 OS << "Target: " << TC.getTripleString() << '\n'; 1599 1600 // Print the threading model. 1601 if (Arg *A = C.getArgs().getLastArg(options::OPT_mthread_model)) { 1602 // Don't print if the ToolChain would have barfed on it already 1603 if (TC.isThreadModelSupported(A->getValue())) 1604 OS << "Thread model: " << A->getValue(); 1605 } else 1606 OS << "Thread model: " << TC.getThreadModel(); 1607 OS << '\n'; 1608 1609 // Print out the install directory. 1610 OS << "InstalledDir: " << InstalledDir << '\n'; 1611 1612 // If configuration file was used, print its path. 1613 if (!ConfigFile.empty()) 1614 OS << "Configuration file: " << ConfigFile << '\n'; 1615 } 1616 1617 /// PrintDiagnosticCategories - Implement the --print-diagnostic-categories 1618 /// option. 1619 static void PrintDiagnosticCategories(raw_ostream &OS) { 1620 // Skip the empty category. 1621 for (unsigned i = 1, max = DiagnosticIDs::getNumberOfCategories(); i != max; 1622 ++i) 1623 OS << i << ',' << DiagnosticIDs::getCategoryNameFromID(i) << '\n'; 1624 } 1625 1626 void Driver::HandleAutocompletions(StringRef PassedFlags) const { 1627 if (PassedFlags == "") 1628 return; 1629 // Print out all options that start with a given argument. This is used for 1630 // shell autocompletion. 1631 std::vector<std::string> SuggestedCompletions; 1632 std::vector<std::string> Flags; 1633 1634 unsigned int DisableFlags = 1635 options::NoDriverOption | options::Unsupported | options::Ignored; 1636 1637 // Make sure that Flang-only options don't pollute the Clang output 1638 // TODO: Make sure that Clang-only options don't pollute Flang output 1639 if (!IsFlangMode()) 1640 DisableFlags |= options::FlangOnlyOption; 1641 1642 // Distinguish "--autocomplete=-someflag" and "--autocomplete=-someflag," 1643 // because the latter indicates that the user put space before pushing tab 1644 // which should end up in a file completion. 1645 const bool HasSpace = PassedFlags.endswith(","); 1646 1647 // Parse PassedFlags by "," as all the command-line flags are passed to this 1648 // function separated by "," 1649 StringRef TargetFlags = PassedFlags; 1650 while (TargetFlags != "") { 1651 StringRef CurFlag; 1652 std::tie(CurFlag, TargetFlags) = TargetFlags.split(","); 1653 Flags.push_back(std::string(CurFlag)); 1654 } 1655 1656 // We want to show cc1-only options only when clang is invoked with -cc1 or 1657 // -Xclang. 1658 if (llvm::is_contained(Flags, "-Xclang") || llvm::is_contained(Flags, "-cc1")) 1659 DisableFlags &= ~options::NoDriverOption; 1660 1661 const llvm::opt::OptTable &Opts = getOpts(); 1662 StringRef Cur; 1663 Cur = Flags.at(Flags.size() - 1); 1664 StringRef Prev; 1665 if (Flags.size() >= 2) { 1666 Prev = Flags.at(Flags.size() - 2); 1667 SuggestedCompletions = Opts.suggestValueCompletions(Prev, Cur); 1668 } 1669 1670 if (SuggestedCompletions.empty()) 1671 SuggestedCompletions = Opts.suggestValueCompletions(Cur, ""); 1672 1673 // If Flags were empty, it means the user typed `clang [tab]` where we should 1674 // list all possible flags. If there was no value completion and the user 1675 // pressed tab after a space, we should fall back to a file completion. 1676 // We're printing a newline to be consistent with what we print at the end of 1677 // this function. 1678 if (SuggestedCompletions.empty() && HasSpace && !Flags.empty()) { 1679 llvm::outs() << '\n'; 1680 return; 1681 } 1682 1683 // When flag ends with '=' and there was no value completion, return empty 1684 // string and fall back to the file autocompletion. 1685 if (SuggestedCompletions.empty() && !Cur.endswith("=")) { 1686 // If the flag is in the form of "--autocomplete=-foo", 1687 // we were requested to print out all option names that start with "-foo". 1688 // For example, "--autocomplete=-fsyn" is expanded to "-fsyntax-only". 1689 SuggestedCompletions = Opts.findByPrefix(Cur, DisableFlags); 1690 1691 // We have to query the -W flags manually as they're not in the OptTable. 1692 // TODO: Find a good way to add them to OptTable instead and them remove 1693 // this code. 1694 for (StringRef S : DiagnosticIDs::getDiagnosticFlags()) 1695 if (S.startswith(Cur)) 1696 SuggestedCompletions.push_back(std::string(S)); 1697 } 1698 1699 // Sort the autocomplete candidates so that shells print them out in a 1700 // deterministic order. We could sort in any way, but we chose 1701 // case-insensitive sorting for consistency with the -help option 1702 // which prints out options in the case-insensitive alphabetical order. 1703 llvm::sort(SuggestedCompletions, [](StringRef A, StringRef B) { 1704 if (int X = A.compare_lower(B)) 1705 return X < 0; 1706 return A.compare(B) > 0; 1707 }); 1708 1709 llvm::outs() << llvm::join(SuggestedCompletions, "\n") << '\n'; 1710 } 1711 1712 bool Driver::HandleImmediateArgs(const Compilation &C) { 1713 // The order these options are handled in gcc is all over the place, but we 1714 // don't expect inconsistencies w.r.t. that to matter in practice. 1715 1716 if (C.getArgs().hasArg(options::OPT_dumpmachine)) { 1717 llvm::outs() << C.getDefaultToolChain().getTripleString() << '\n'; 1718 return false; 1719 } 1720 1721 if (C.getArgs().hasArg(options::OPT_dumpversion)) { 1722 // Since -dumpversion is only implemented for pedantic GCC compatibility, we 1723 // return an answer which matches our definition of __VERSION__. 1724 llvm::outs() << CLANG_VERSION_STRING << "\n"; 1725 return false; 1726 } 1727 1728 if (C.getArgs().hasArg(options::OPT__print_diagnostic_categories)) { 1729 PrintDiagnosticCategories(llvm::outs()); 1730 return false; 1731 } 1732 1733 if (C.getArgs().hasArg(options::OPT_help) || 1734 C.getArgs().hasArg(options::OPT__help_hidden)) { 1735 PrintHelp(C.getArgs().hasArg(options::OPT__help_hidden)); 1736 return false; 1737 } 1738 1739 if (C.getArgs().hasArg(options::OPT__version)) { 1740 // Follow gcc behavior and use stdout for --version and stderr for -v. 1741 PrintVersion(C, llvm::outs()); 1742 return false; 1743 } 1744 1745 if (C.getArgs().hasArg(options::OPT_v) || 1746 C.getArgs().hasArg(options::OPT__HASH_HASH_HASH) || 1747 C.getArgs().hasArg(options::OPT_print_supported_cpus)) { 1748 PrintVersion(C, llvm::errs()); 1749 SuppressMissingInputWarning = true; 1750 } 1751 1752 if (C.getArgs().hasArg(options::OPT_v)) { 1753 if (!SystemConfigDir.empty()) 1754 llvm::errs() << "System configuration file directory: " 1755 << SystemConfigDir << "\n"; 1756 if (!UserConfigDir.empty()) 1757 llvm::errs() << "User configuration file directory: " 1758 << UserConfigDir << "\n"; 1759 } 1760 1761 const ToolChain &TC = C.getDefaultToolChain(); 1762 1763 if (C.getArgs().hasArg(options::OPT_v)) 1764 TC.printVerboseInfo(llvm::errs()); 1765 1766 if (C.getArgs().hasArg(options::OPT_print_resource_dir)) { 1767 llvm::outs() << ResourceDir << '\n'; 1768 return false; 1769 } 1770 1771 if (C.getArgs().hasArg(options::OPT_print_search_dirs)) { 1772 llvm::outs() << "programs: ="; 1773 bool separator = false; 1774 // Print -B and COMPILER_PATH. 1775 for (const std::string &Path : PrefixDirs) { 1776 if (separator) 1777 llvm::outs() << llvm::sys::EnvPathSeparator; 1778 llvm::outs() << Path; 1779 separator = true; 1780 } 1781 for (const std::string &Path : TC.getProgramPaths()) { 1782 if (separator) 1783 llvm::outs() << llvm::sys::EnvPathSeparator; 1784 llvm::outs() << Path; 1785 separator = true; 1786 } 1787 llvm::outs() << "\n"; 1788 llvm::outs() << "libraries: =" << ResourceDir; 1789 1790 StringRef sysroot = C.getSysRoot(); 1791 1792 for (const std::string &Path : TC.getFilePaths()) { 1793 // Always print a separator. ResourceDir was the first item shown. 1794 llvm::outs() << llvm::sys::EnvPathSeparator; 1795 // Interpretation of leading '=' is needed only for NetBSD. 1796 if (Path[0] == '=') 1797 llvm::outs() << sysroot << Path.substr(1); 1798 else 1799 llvm::outs() << Path; 1800 } 1801 llvm::outs() << "\n"; 1802 return false; 1803 } 1804 1805 // FIXME: The following handlers should use a callback mechanism, we don't 1806 // know what the client would like to do. 1807 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_file_name_EQ)) { 1808 llvm::outs() << GetFilePath(A->getValue(), TC) << "\n"; 1809 return false; 1810 } 1811 1812 if (Arg *A = C.getArgs().getLastArg(options::OPT_print_prog_name_EQ)) { 1813 StringRef ProgName = A->getValue(); 1814 1815 // Null program name cannot have a path. 1816 if (! ProgName.empty()) 1817 llvm::outs() << GetProgramPath(ProgName, TC); 1818 1819 llvm::outs() << "\n"; 1820 return false; 1821 } 1822 1823 if (Arg *A = C.getArgs().getLastArg(options::OPT_autocomplete)) { 1824 StringRef PassedFlags = A->getValue(); 1825 HandleAutocompletions(PassedFlags); 1826 return false; 1827 } 1828 1829 if (C.getArgs().hasArg(options::OPT_print_libgcc_file_name)) { 1830 ToolChain::RuntimeLibType RLT = TC.GetRuntimeLibType(C.getArgs()); 1831 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1832 RegisterEffectiveTriple TripleRAII(TC, Triple); 1833 switch (RLT) { 1834 case ToolChain::RLT_CompilerRT: 1835 llvm::outs() << TC.getCompilerRT(C.getArgs(), "builtins") << "\n"; 1836 break; 1837 case ToolChain::RLT_Libgcc: 1838 llvm::outs() << GetFilePath("libgcc.a", TC) << "\n"; 1839 break; 1840 } 1841 return false; 1842 } 1843 1844 if (C.getArgs().hasArg(options::OPT_print_multi_lib)) { 1845 for (const Multilib &Multilib : TC.getMultilibs()) 1846 llvm::outs() << Multilib << "\n"; 1847 return false; 1848 } 1849 1850 if (C.getArgs().hasArg(options::OPT_print_multi_directory)) { 1851 const Multilib &Multilib = TC.getMultilib(); 1852 if (Multilib.gccSuffix().empty()) 1853 llvm::outs() << ".\n"; 1854 else { 1855 StringRef Suffix(Multilib.gccSuffix()); 1856 assert(Suffix.front() == '/'); 1857 llvm::outs() << Suffix.substr(1) << "\n"; 1858 } 1859 return false; 1860 } 1861 1862 if (C.getArgs().hasArg(options::OPT_print_target_triple)) { 1863 llvm::outs() << TC.getTripleString() << "\n"; 1864 return false; 1865 } 1866 1867 if (C.getArgs().hasArg(options::OPT_print_effective_triple)) { 1868 const llvm::Triple Triple(TC.ComputeEffectiveClangTriple(C.getArgs())); 1869 llvm::outs() << Triple.getTriple() << "\n"; 1870 return false; 1871 } 1872 1873 if (C.getArgs().hasArg(options::OPT_print_targets)) { 1874 llvm::TargetRegistry::printRegisteredTargetsForVersion(llvm::outs()); 1875 return false; 1876 } 1877 1878 return true; 1879 } 1880 1881 enum { 1882 TopLevelAction = 0, 1883 HeadSibAction = 1, 1884 OtherSibAction = 2, 1885 }; 1886 1887 // Display an action graph human-readably. Action A is the "sink" node 1888 // and latest-occuring action. Traversal is in pre-order, visiting the 1889 // inputs to each action before printing the action itself. 1890 static unsigned PrintActions1(const Compilation &C, Action *A, 1891 std::map<Action *, unsigned> &Ids, 1892 Twine Indent = {}, int Kind = TopLevelAction) { 1893 if (Ids.count(A)) // A was already visited. 1894 return Ids[A]; 1895 1896 std::string str; 1897 llvm::raw_string_ostream os(str); 1898 1899 auto getSibIndent = [](int K) -> Twine { 1900 return (K == HeadSibAction) ? " " : (K == OtherSibAction) ? "| " : ""; 1901 }; 1902 1903 Twine SibIndent = Indent + getSibIndent(Kind); 1904 int SibKind = HeadSibAction; 1905 os << Action::getClassName(A->getKind()) << ", "; 1906 if (InputAction *IA = dyn_cast<InputAction>(A)) { 1907 os << "\"" << IA->getInputArg().getValue() << "\""; 1908 } else if (BindArchAction *BIA = dyn_cast<BindArchAction>(A)) { 1909 os << '"' << BIA->getArchName() << '"' << ", {" 1910 << PrintActions1(C, *BIA->input_begin(), Ids, SibIndent, SibKind) << "}"; 1911 } else if (OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 1912 bool IsFirst = true; 1913 OA->doOnEachDependence( 1914 [&](Action *A, const ToolChain *TC, const char *BoundArch) { 1915 assert(TC && "Unknown host toolchain"); 1916 // E.g. for two CUDA device dependences whose bound arch is sm_20 and 1917 // sm_35 this will generate: 1918 // "cuda-device" (nvptx64-nvidia-cuda:sm_20) {#ID}, "cuda-device" 1919 // (nvptx64-nvidia-cuda:sm_35) {#ID} 1920 if (!IsFirst) 1921 os << ", "; 1922 os << '"'; 1923 os << A->getOffloadingKindPrefix(); 1924 os << " ("; 1925 os << TC->getTriple().normalize(); 1926 if (BoundArch) 1927 os << ":" << BoundArch; 1928 os << ")"; 1929 os << '"'; 1930 os << " {" << PrintActions1(C, A, Ids, SibIndent, SibKind) << "}"; 1931 IsFirst = false; 1932 SibKind = OtherSibAction; 1933 }); 1934 } else { 1935 const ActionList *AL = &A->getInputs(); 1936 1937 if (AL->size()) { 1938 const char *Prefix = "{"; 1939 for (Action *PreRequisite : *AL) { 1940 os << Prefix << PrintActions1(C, PreRequisite, Ids, SibIndent, SibKind); 1941 Prefix = ", "; 1942 SibKind = OtherSibAction; 1943 } 1944 os << "}"; 1945 } else 1946 os << "{}"; 1947 } 1948 1949 // Append offload info for all options other than the offloading action 1950 // itself (e.g. (cuda-device, sm_20) or (cuda-host)). 1951 std::string offload_str; 1952 llvm::raw_string_ostream offload_os(offload_str); 1953 if (!isa<OffloadAction>(A)) { 1954 auto S = A->getOffloadingKindPrefix(); 1955 if (!S.empty()) { 1956 offload_os << ", (" << S; 1957 if (A->getOffloadingArch()) 1958 offload_os << ", " << A->getOffloadingArch(); 1959 offload_os << ")"; 1960 } 1961 } 1962 1963 auto getSelfIndent = [](int K) -> Twine { 1964 return (K == HeadSibAction) ? "+- " : (K == OtherSibAction) ? "|- " : ""; 1965 }; 1966 1967 unsigned Id = Ids.size(); 1968 Ids[A] = Id; 1969 llvm::errs() << Indent + getSelfIndent(Kind) << Id << ": " << os.str() << ", " 1970 << types::getTypeName(A->getType()) << offload_os.str() << "\n"; 1971 1972 return Id; 1973 } 1974 1975 // Print the action graphs in a compilation C. 1976 // For example "clang -c file1.c file2.c" is composed of two subgraphs. 1977 void Driver::PrintActions(const Compilation &C) const { 1978 std::map<Action *, unsigned> Ids; 1979 for (Action *A : C.getActions()) 1980 PrintActions1(C, A, Ids); 1981 } 1982 1983 /// Check whether the given input tree contains any compilation or 1984 /// assembly actions. 1985 static bool ContainsCompileOrAssembleAction(const Action *A) { 1986 if (isa<CompileJobAction>(A) || isa<BackendJobAction>(A) || 1987 isa<AssembleJobAction>(A)) 1988 return true; 1989 1990 for (const Action *Input : A->inputs()) 1991 if (ContainsCompileOrAssembleAction(Input)) 1992 return true; 1993 1994 return false; 1995 } 1996 1997 void Driver::BuildUniversalActions(Compilation &C, const ToolChain &TC, 1998 const InputList &BAInputs) const { 1999 DerivedArgList &Args = C.getArgs(); 2000 ActionList &Actions = C.getActions(); 2001 llvm::PrettyStackTraceString CrashInfo("Building universal build actions"); 2002 // Collect the list of architectures. Duplicates are allowed, but should only 2003 // be handled once (in the order seen). 2004 llvm::StringSet<> ArchNames; 2005 SmallVector<const char *, 4> Archs; 2006 for (Arg *A : Args) { 2007 if (A->getOption().matches(options::OPT_arch)) { 2008 // Validate the option here; we don't save the type here because its 2009 // particular spelling may participate in other driver choices. 2010 llvm::Triple::ArchType Arch = 2011 tools::darwin::getArchTypeForMachOArchName(A->getValue()); 2012 if (Arch == llvm::Triple::UnknownArch) { 2013 Diag(clang::diag::err_drv_invalid_arch_name) << A->getAsString(Args); 2014 continue; 2015 } 2016 2017 A->claim(); 2018 if (ArchNames.insert(A->getValue()).second) 2019 Archs.push_back(A->getValue()); 2020 } 2021 } 2022 2023 // When there is no explicit arch for this platform, make sure we still bind 2024 // the architecture (to the default) so that -Xarch_ is handled correctly. 2025 if (!Archs.size()) 2026 Archs.push_back(Args.MakeArgString(TC.getDefaultUniversalArchName())); 2027 2028 ActionList SingleActions; 2029 BuildActions(C, Args, BAInputs, SingleActions); 2030 2031 // Add in arch bindings for every top level action, as well as lipo and 2032 // dsymutil steps if needed. 2033 for (Action* Act : SingleActions) { 2034 // Make sure we can lipo this kind of output. If not (and it is an actual 2035 // output) then we disallow, since we can't create an output file with the 2036 // right name without overwriting it. We could remove this oddity by just 2037 // changing the output names to include the arch, which would also fix 2038 // -save-temps. Compatibility wins for now. 2039 2040 if (Archs.size() > 1 && !types::canLipoType(Act->getType())) 2041 Diag(clang::diag::err_drv_invalid_output_with_multiple_archs) 2042 << types::getTypeName(Act->getType()); 2043 2044 ActionList Inputs; 2045 for (unsigned i = 0, e = Archs.size(); i != e; ++i) 2046 Inputs.push_back(C.MakeAction<BindArchAction>(Act, Archs[i])); 2047 2048 // Lipo if necessary, we do it this way because we need to set the arch flag 2049 // so that -Xarch_ gets overwritten. 2050 if (Inputs.size() == 1 || Act->getType() == types::TY_Nothing) 2051 Actions.append(Inputs.begin(), Inputs.end()); 2052 else 2053 Actions.push_back(C.MakeAction<LipoJobAction>(Inputs, Act->getType())); 2054 2055 // Handle debug info queries. 2056 Arg *A = Args.getLastArg(options::OPT_g_Group); 2057 bool enablesDebugInfo = A && !A->getOption().matches(options::OPT_g0) && 2058 !A->getOption().matches(options::OPT_gstabs); 2059 if ((enablesDebugInfo || willEmitRemarks(Args)) && 2060 ContainsCompileOrAssembleAction(Actions.back())) { 2061 2062 // Add a 'dsymutil' step if necessary, when debug info is enabled and we 2063 // have a compile input. We need to run 'dsymutil' ourselves in such cases 2064 // because the debug info will refer to a temporary object file which 2065 // will be removed at the end of the compilation process. 2066 if (Act->getType() == types::TY_Image) { 2067 ActionList Inputs; 2068 Inputs.push_back(Actions.back()); 2069 Actions.pop_back(); 2070 Actions.push_back( 2071 C.MakeAction<DsymutilJobAction>(Inputs, types::TY_dSYM)); 2072 } 2073 2074 // Verify the debug info output. 2075 if (Args.hasArg(options::OPT_verify_debug_info)) { 2076 Action* LastAction = Actions.back(); 2077 Actions.pop_back(); 2078 Actions.push_back(C.MakeAction<VerifyDebugInfoJobAction>( 2079 LastAction, types::TY_Nothing)); 2080 } 2081 } 2082 } 2083 } 2084 2085 bool Driver::DiagnoseInputExistence(const DerivedArgList &Args, StringRef Value, 2086 types::ID Ty, bool TypoCorrect) const { 2087 if (!getCheckInputsExist()) 2088 return true; 2089 2090 // stdin always exists. 2091 if (Value == "-") 2092 return true; 2093 2094 if (getVFS().exists(Value)) 2095 return true; 2096 2097 if (IsCLMode()) { 2098 if (!llvm::sys::path::is_absolute(Twine(Value)) && 2099 llvm::sys::Process::FindInEnvPath("LIB", Value, ';')) 2100 return true; 2101 2102 if (Args.hasArg(options::OPT__SLASH_link) && Ty == types::TY_Object) { 2103 // Arguments to the /link flag might cause the linker to search for object 2104 // and library files in paths we don't know about. Don't error in such 2105 // cases. 2106 return true; 2107 } 2108 } 2109 2110 if (TypoCorrect) { 2111 // Check if the filename is a typo for an option flag. OptTable thinks 2112 // that all args that are not known options and that start with / are 2113 // filenames, but e.g. `/diagnostic:caret` is more likely a typo for 2114 // the option `/diagnostics:caret` than a reference to a file in the root 2115 // directory. 2116 unsigned IncludedFlagsBitmask; 2117 unsigned ExcludedFlagsBitmask; 2118 std::tie(IncludedFlagsBitmask, ExcludedFlagsBitmask) = 2119 getIncludeExcludeOptionFlagMasks(IsCLMode()); 2120 std::string Nearest; 2121 if (getOpts().findNearest(Value, Nearest, IncludedFlagsBitmask, 2122 ExcludedFlagsBitmask) <= 1) { 2123 Diag(clang::diag::err_drv_no_such_file_with_suggestion) 2124 << Value << Nearest; 2125 return false; 2126 } 2127 } 2128 2129 Diag(clang::diag::err_drv_no_such_file) << Value; 2130 return false; 2131 } 2132 2133 // Construct a the list of inputs and their types. 2134 void Driver::BuildInputs(const ToolChain &TC, DerivedArgList &Args, 2135 InputList &Inputs) const { 2136 const llvm::opt::OptTable &Opts = getOpts(); 2137 // Track the current user specified (-x) input. We also explicitly track the 2138 // argument used to set the type; we only want to claim the type when we 2139 // actually use it, so we warn about unused -x arguments. 2140 types::ID InputType = types::TY_Nothing; 2141 Arg *InputTypeArg = nullptr; 2142 2143 // The last /TC or /TP option sets the input type to C or C++ globally. 2144 if (Arg *TCTP = Args.getLastArgNoClaim(options::OPT__SLASH_TC, 2145 options::OPT__SLASH_TP)) { 2146 InputTypeArg = TCTP; 2147 InputType = TCTP->getOption().matches(options::OPT__SLASH_TC) 2148 ? types::TY_C 2149 : types::TY_CXX; 2150 2151 Arg *Previous = nullptr; 2152 bool ShowNote = false; 2153 for (Arg *A : 2154 Args.filtered(options::OPT__SLASH_TC, options::OPT__SLASH_TP)) { 2155 if (Previous) { 2156 Diag(clang::diag::warn_drv_overriding_flag_option) 2157 << Previous->getSpelling() << A->getSpelling(); 2158 ShowNote = true; 2159 } 2160 Previous = A; 2161 } 2162 if (ShowNote) 2163 Diag(clang::diag::note_drv_t_option_is_global); 2164 2165 // No driver mode exposes -x and /TC or /TP; we don't support mixing them. 2166 assert(!Args.hasArg(options::OPT_x) && "-x and /TC or /TP is not allowed"); 2167 } 2168 2169 for (Arg *A : Args) { 2170 if (A->getOption().getKind() == Option::InputClass) { 2171 const char *Value = A->getValue(); 2172 types::ID Ty = types::TY_INVALID; 2173 2174 // Infer the input type if necessary. 2175 if (InputType == types::TY_Nothing) { 2176 // If there was an explicit arg for this, claim it. 2177 if (InputTypeArg) 2178 InputTypeArg->claim(); 2179 2180 // stdin must be handled specially. 2181 if (memcmp(Value, "-", 2) == 0) { 2182 // If running with -E, treat as a C input (this changes the builtin 2183 // macros, for example). This may be overridden by -ObjC below. 2184 // 2185 // Otherwise emit an error but still use a valid type to avoid 2186 // spurious errors (e.g., no inputs). 2187 if (!Args.hasArgNoClaim(options::OPT_E) && !CCCIsCPP()) 2188 Diag(IsCLMode() ? clang::diag::err_drv_unknown_stdin_type_clang_cl 2189 : clang::diag::err_drv_unknown_stdin_type); 2190 Ty = types::TY_C; 2191 } else { 2192 // Otherwise lookup by extension. 2193 // Fallback is C if invoked as C preprocessor, C++ if invoked with 2194 // clang-cl /E, or Object otherwise. 2195 // We use a host hook here because Darwin at least has its own 2196 // idea of what .s is. 2197 if (const char *Ext = strrchr(Value, '.')) 2198 Ty = TC.LookupTypeForExtension(Ext + 1); 2199 2200 if (Ty == types::TY_INVALID) { 2201 if (CCCIsCPP()) 2202 Ty = types::TY_C; 2203 else if (IsCLMode() && Args.hasArgNoClaim(options::OPT_E)) 2204 Ty = types::TY_CXX; 2205 else 2206 Ty = types::TY_Object; 2207 } 2208 2209 // If the driver is invoked as C++ compiler (like clang++ or c++) it 2210 // should autodetect some input files as C++ for g++ compatibility. 2211 if (CCCIsCXX()) { 2212 types::ID OldTy = Ty; 2213 Ty = types::lookupCXXTypeForCType(Ty); 2214 2215 if (Ty != OldTy) 2216 Diag(clang::diag::warn_drv_treating_input_as_cxx) 2217 << getTypeName(OldTy) << getTypeName(Ty); 2218 } 2219 2220 // If running with -fthinlto-index=, extensions that normally identify 2221 // native object files actually identify LLVM bitcode files. 2222 if (Args.hasArgNoClaim(options::OPT_fthinlto_index_EQ) && 2223 Ty == types::TY_Object) 2224 Ty = types::TY_LLVM_BC; 2225 } 2226 2227 // -ObjC and -ObjC++ override the default language, but only for "source 2228 // files". We just treat everything that isn't a linker input as a 2229 // source file. 2230 // 2231 // FIXME: Clean this up if we move the phase sequence into the type. 2232 if (Ty != types::TY_Object) { 2233 if (Args.hasArg(options::OPT_ObjC)) 2234 Ty = types::TY_ObjC; 2235 else if (Args.hasArg(options::OPT_ObjCXX)) 2236 Ty = types::TY_ObjCXX; 2237 } 2238 } else { 2239 assert(InputTypeArg && "InputType set w/o InputTypeArg"); 2240 if (!InputTypeArg->getOption().matches(options::OPT_x)) { 2241 // If emulating cl.exe, make sure that /TC and /TP don't affect input 2242 // object files. 2243 const char *Ext = strrchr(Value, '.'); 2244 if (Ext && TC.LookupTypeForExtension(Ext + 1) == types::TY_Object) 2245 Ty = types::TY_Object; 2246 } 2247 if (Ty == types::TY_INVALID) { 2248 Ty = InputType; 2249 InputTypeArg->claim(); 2250 } 2251 } 2252 2253 if (DiagnoseInputExistence(Args, Value, Ty, /*TypoCorrect=*/true)) 2254 Inputs.push_back(std::make_pair(Ty, A)); 2255 2256 } else if (A->getOption().matches(options::OPT__SLASH_Tc)) { 2257 StringRef Value = A->getValue(); 2258 if (DiagnoseInputExistence(Args, Value, types::TY_C, 2259 /*TypoCorrect=*/false)) { 2260 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2261 Inputs.push_back(std::make_pair(types::TY_C, InputArg)); 2262 } 2263 A->claim(); 2264 } else if (A->getOption().matches(options::OPT__SLASH_Tp)) { 2265 StringRef Value = A->getValue(); 2266 if (DiagnoseInputExistence(Args, Value, types::TY_CXX, 2267 /*TypoCorrect=*/false)) { 2268 Arg *InputArg = MakeInputArg(Args, Opts, A->getValue()); 2269 Inputs.push_back(std::make_pair(types::TY_CXX, InputArg)); 2270 } 2271 A->claim(); 2272 } else if (A->getOption().hasFlag(options::LinkerInput)) { 2273 // Just treat as object type, we could make a special type for this if 2274 // necessary. 2275 Inputs.push_back(std::make_pair(types::TY_Object, A)); 2276 2277 } else if (A->getOption().matches(options::OPT_x)) { 2278 InputTypeArg = A; 2279 InputType = types::lookupTypeForTypeSpecifier(A->getValue()); 2280 A->claim(); 2281 2282 // Follow gcc behavior and treat as linker input for invalid -x 2283 // options. Its not clear why we shouldn't just revert to unknown; but 2284 // this isn't very important, we might as well be bug compatible. 2285 if (!InputType) { 2286 Diag(clang::diag::err_drv_unknown_language) << A->getValue(); 2287 InputType = types::TY_Object; 2288 } 2289 } else if (A->getOption().getID() == options::OPT_U) { 2290 assert(A->getNumValues() == 1 && "The /U option has one value."); 2291 StringRef Val = A->getValue(0); 2292 if (Val.find_first_of("/\\") != StringRef::npos) { 2293 // Warn about e.g. "/Users/me/myfile.c". 2294 Diag(diag::warn_slash_u_filename) << Val; 2295 Diag(diag::note_use_dashdash); 2296 } 2297 } 2298 } 2299 if (CCCIsCPP() && Inputs.empty()) { 2300 // If called as standalone preprocessor, stdin is processed 2301 // if no other input is present. 2302 Arg *A = MakeInputArg(Args, Opts, "-"); 2303 Inputs.push_back(std::make_pair(types::TY_C, A)); 2304 } 2305 } 2306 2307 namespace { 2308 /// Provides a convenient interface for different programming models to generate 2309 /// the required device actions. 2310 class OffloadingActionBuilder final { 2311 /// Flag used to trace errors in the builder. 2312 bool IsValid = false; 2313 2314 /// The compilation that is using this builder. 2315 Compilation &C; 2316 2317 /// Map between an input argument and the offload kinds used to process it. 2318 std::map<const Arg *, unsigned> InputArgToOffloadKindMap; 2319 2320 /// Builder interface. It doesn't build anything or keep any state. 2321 class DeviceActionBuilder { 2322 public: 2323 typedef const llvm::SmallVectorImpl<phases::ID> PhasesTy; 2324 2325 enum ActionBuilderReturnCode { 2326 // The builder acted successfully on the current action. 2327 ABRT_Success, 2328 // The builder didn't have to act on the current action. 2329 ABRT_Inactive, 2330 // The builder was successful and requested the host action to not be 2331 // generated. 2332 ABRT_Ignore_Host, 2333 }; 2334 2335 protected: 2336 /// Compilation associated with this builder. 2337 Compilation &C; 2338 2339 /// Tool chains associated with this builder. The same programming 2340 /// model may have associated one or more tool chains. 2341 SmallVector<const ToolChain *, 2> ToolChains; 2342 2343 /// The derived arguments associated with this builder. 2344 DerivedArgList &Args; 2345 2346 /// The inputs associated with this builder. 2347 const Driver::InputList &Inputs; 2348 2349 /// The associated offload kind. 2350 Action::OffloadKind AssociatedOffloadKind = Action::OFK_None; 2351 2352 public: 2353 DeviceActionBuilder(Compilation &C, DerivedArgList &Args, 2354 const Driver::InputList &Inputs, 2355 Action::OffloadKind AssociatedOffloadKind) 2356 : C(C), Args(Args), Inputs(Inputs), 2357 AssociatedOffloadKind(AssociatedOffloadKind) {} 2358 virtual ~DeviceActionBuilder() {} 2359 2360 /// Fill up the array \a DA with all the device dependences that should be 2361 /// added to the provided host action \a HostAction. By default it is 2362 /// inactive. 2363 virtual ActionBuilderReturnCode 2364 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2365 phases::ID CurPhase, phases::ID FinalPhase, 2366 PhasesTy &Phases) { 2367 return ABRT_Inactive; 2368 } 2369 2370 /// Update the state to include the provided host action \a HostAction as a 2371 /// dependency of the current device action. By default it is inactive. 2372 virtual ActionBuilderReturnCode addDeviceDepences(Action *HostAction) { 2373 return ABRT_Inactive; 2374 } 2375 2376 /// Append top level actions generated by the builder. 2377 virtual void appendTopLevelActions(ActionList &AL) {} 2378 2379 /// Append linker device actions generated by the builder. 2380 virtual void appendLinkDeviceActions(ActionList &AL) {} 2381 2382 /// Append linker host action generated by the builder. 2383 virtual Action* appendLinkHostActions(ActionList &AL) { return nullptr; } 2384 2385 /// Append linker actions generated by the builder. 2386 virtual void appendLinkDependences(OffloadAction::DeviceDependences &DA) {} 2387 2388 /// Initialize the builder. Return true if any initialization errors are 2389 /// found. 2390 virtual bool initialize() { return false; } 2391 2392 /// Return true if the builder can use bundling/unbundling. 2393 virtual bool canUseBundlerUnbundler() const { return false; } 2394 2395 /// Return true if this builder is valid. We have a valid builder if we have 2396 /// associated device tool chains. 2397 bool isValid() { return !ToolChains.empty(); } 2398 2399 /// Return the associated offload kind. 2400 Action::OffloadKind getAssociatedOffloadKind() { 2401 return AssociatedOffloadKind; 2402 } 2403 }; 2404 2405 /// Base class for CUDA/HIP action builder. It injects device code in 2406 /// the host backend action. 2407 class CudaActionBuilderBase : public DeviceActionBuilder { 2408 protected: 2409 /// Flags to signal if the user requested host-only or device-only 2410 /// compilation. 2411 bool CompileHostOnly = false; 2412 bool CompileDeviceOnly = false; 2413 bool EmitLLVM = false; 2414 bool EmitAsm = false; 2415 2416 /// ID to identify each device compilation. For CUDA it is simply the 2417 /// GPU arch string. For HIP it is either the GPU arch string or GPU 2418 /// arch string plus feature strings delimited by a plus sign, e.g. 2419 /// gfx906+xnack. 2420 struct TargetID { 2421 /// Target ID string which is persistent throughout the compilation. 2422 const char *ID; 2423 TargetID(CudaArch Arch) { ID = CudaArchToString(Arch); } 2424 TargetID(const char *ID) : ID(ID) {} 2425 operator const char *() { return ID; } 2426 operator StringRef() { return StringRef(ID); } 2427 }; 2428 /// List of GPU architectures to use in this compilation. 2429 SmallVector<TargetID, 4> GpuArchList; 2430 2431 /// The CUDA actions for the current input. 2432 ActionList CudaDeviceActions; 2433 2434 /// The CUDA fat binary if it was generated for the current input. 2435 Action *CudaFatBinary = nullptr; 2436 2437 /// Flag that is set to true if this builder acted on the current input. 2438 bool IsActive = false; 2439 2440 /// Flag for -fgpu-rdc. 2441 bool Relocatable = false; 2442 2443 /// Default GPU architecture if there's no one specified. 2444 CudaArch DefaultCudaArch = CudaArch::UNKNOWN; 2445 2446 public: 2447 CudaActionBuilderBase(Compilation &C, DerivedArgList &Args, 2448 const Driver::InputList &Inputs, 2449 Action::OffloadKind OFKind) 2450 : DeviceActionBuilder(C, Args, Inputs, OFKind) {} 2451 2452 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 2453 // While generating code for CUDA, we only depend on the host input action 2454 // to trigger the creation of all the CUDA device actions. 2455 2456 // If we are dealing with an input action, replicate it for each GPU 2457 // architecture. If we are in host-only mode we return 'success' so that 2458 // the host uses the CUDA offload kind. 2459 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 2460 assert(!GpuArchList.empty() && 2461 "We should have at least one GPU architecture."); 2462 2463 // If the host input is not CUDA or HIP, we don't need to bother about 2464 // this input. 2465 if (!(IA->getType() == types::TY_CUDA || 2466 IA->getType() == types::TY_HIP || 2467 IA->getType() == types::TY_PP_HIP)) { 2468 // The builder will ignore this input. 2469 IsActive = false; 2470 return ABRT_Inactive; 2471 } 2472 2473 // Set the flag to true, so that the builder acts on the current input. 2474 IsActive = true; 2475 2476 if (CompileHostOnly) 2477 return ABRT_Success; 2478 2479 // Replicate inputs for each GPU architecture. 2480 auto Ty = IA->getType() == types::TY_HIP ? types::TY_HIP_DEVICE 2481 : types::TY_CUDA_DEVICE; 2482 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2483 CudaDeviceActions.push_back( 2484 C.MakeAction<InputAction>(IA->getInputArg(), Ty)); 2485 } 2486 2487 return ABRT_Success; 2488 } 2489 2490 // If this is an unbundling action use it as is for each CUDA toolchain. 2491 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 2492 2493 // If -fgpu-rdc is disabled, should not unbundle since there is no 2494 // device code to link. 2495 if (UA->getType() == types::TY_Object && !Relocatable) 2496 return ABRT_Inactive; 2497 2498 CudaDeviceActions.clear(); 2499 auto *IA = cast<InputAction>(UA->getInputs().back()); 2500 std::string FileName = IA->getInputArg().getAsString(Args); 2501 // Check if the type of the file is the same as the action. Do not 2502 // unbundle it if it is not. Do not unbundle .so files, for example, 2503 // which are not object files. 2504 if (IA->getType() == types::TY_Object && 2505 (!llvm::sys::path::has_extension(FileName) || 2506 types::lookupTypeForExtension( 2507 llvm::sys::path::extension(FileName).drop_front()) != 2508 types::TY_Object)) 2509 return ABRT_Inactive; 2510 2511 for (auto Arch : GpuArchList) { 2512 CudaDeviceActions.push_back(UA); 2513 UA->registerDependentActionInfo(ToolChains[0], Arch, 2514 AssociatedOffloadKind); 2515 } 2516 return ABRT_Success; 2517 } 2518 2519 return IsActive ? ABRT_Success : ABRT_Inactive; 2520 } 2521 2522 void appendTopLevelActions(ActionList &AL) override { 2523 // Utility to append actions to the top level list. 2524 auto AddTopLevel = [&](Action *A, TargetID TargetID) { 2525 OffloadAction::DeviceDependences Dep; 2526 Dep.add(*A, *ToolChains.front(), TargetID, AssociatedOffloadKind); 2527 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 2528 }; 2529 2530 // If we have a fat binary, add it to the list. 2531 if (CudaFatBinary) { 2532 AddTopLevel(CudaFatBinary, CudaArch::UNUSED); 2533 CudaDeviceActions.clear(); 2534 CudaFatBinary = nullptr; 2535 return; 2536 } 2537 2538 if (CudaDeviceActions.empty()) 2539 return; 2540 2541 // If we have CUDA actions at this point, that's because we have a have 2542 // partial compilation, so we should have an action for each GPU 2543 // architecture. 2544 assert(CudaDeviceActions.size() == GpuArchList.size() && 2545 "Expecting one action per GPU architecture."); 2546 assert(ToolChains.size() == 1 && 2547 "Expecting to have a sing CUDA toolchain."); 2548 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) 2549 AddTopLevel(CudaDeviceActions[I], GpuArchList[I]); 2550 2551 CudaDeviceActions.clear(); 2552 } 2553 2554 /// Get canonicalized offload arch option. \returns empty StringRef if the 2555 /// option is invalid. 2556 virtual StringRef getCanonicalOffloadArch(StringRef Arch) = 0; 2557 2558 virtual llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>> 2559 getConflictOffloadArchCombination(const std::set<StringRef> &GpuArchs) = 0; 2560 2561 bool initialize() override { 2562 assert(AssociatedOffloadKind == Action::OFK_Cuda || 2563 AssociatedOffloadKind == Action::OFK_HIP); 2564 2565 // We don't need to support CUDA. 2566 if (AssociatedOffloadKind == Action::OFK_Cuda && 2567 !C.hasOffloadToolChain<Action::OFK_Cuda>()) 2568 return false; 2569 2570 // We don't need to support HIP. 2571 if (AssociatedOffloadKind == Action::OFK_HIP && 2572 !C.hasOffloadToolChain<Action::OFK_HIP>()) 2573 return false; 2574 2575 Relocatable = Args.hasFlag(options::OPT_fgpu_rdc, 2576 options::OPT_fno_gpu_rdc, /*Default=*/false); 2577 2578 const ToolChain *HostTC = C.getSingleOffloadToolChain<Action::OFK_Host>(); 2579 assert(HostTC && "No toolchain for host compilation."); 2580 if (HostTC->getTriple().isNVPTX() || 2581 HostTC->getTriple().getArch() == llvm::Triple::amdgcn) { 2582 // We do not support targeting NVPTX/AMDGCN for host compilation. Throw 2583 // an error and abort pipeline construction early so we don't trip 2584 // asserts that assume device-side compilation. 2585 C.getDriver().Diag(diag::err_drv_cuda_host_arch) 2586 << HostTC->getTriple().getArchName(); 2587 return true; 2588 } 2589 2590 ToolChains.push_back( 2591 AssociatedOffloadKind == Action::OFK_Cuda 2592 ? C.getSingleOffloadToolChain<Action::OFK_Cuda>() 2593 : C.getSingleOffloadToolChain<Action::OFK_HIP>()); 2594 2595 Arg *PartialCompilationArg = Args.getLastArg( 2596 options::OPT_cuda_host_only, options::OPT_cuda_device_only, 2597 options::OPT_cuda_compile_host_device); 2598 CompileHostOnly = PartialCompilationArg && 2599 PartialCompilationArg->getOption().matches( 2600 options::OPT_cuda_host_only); 2601 CompileDeviceOnly = PartialCompilationArg && 2602 PartialCompilationArg->getOption().matches( 2603 options::OPT_cuda_device_only); 2604 EmitLLVM = Args.getLastArg(options::OPT_emit_llvm); 2605 EmitAsm = Args.getLastArg(options::OPT_S); 2606 2607 // Collect all cuda_gpu_arch parameters, removing duplicates. 2608 std::set<StringRef> GpuArchs; 2609 bool Error = false; 2610 for (Arg *A : Args) { 2611 if (!(A->getOption().matches(options::OPT_offload_arch_EQ) || 2612 A->getOption().matches(options::OPT_no_offload_arch_EQ))) 2613 continue; 2614 A->claim(); 2615 2616 StringRef ArchStr = A->getValue(); 2617 if (A->getOption().matches(options::OPT_no_offload_arch_EQ) && 2618 ArchStr == "all") { 2619 GpuArchs.clear(); 2620 continue; 2621 } 2622 ArchStr = getCanonicalOffloadArch(ArchStr); 2623 if (ArchStr.empty()) { 2624 Error = true; 2625 } else if (A->getOption().matches(options::OPT_offload_arch_EQ)) 2626 GpuArchs.insert(ArchStr); 2627 else if (A->getOption().matches(options::OPT_no_offload_arch_EQ)) 2628 GpuArchs.erase(ArchStr); 2629 else 2630 llvm_unreachable("Unexpected option."); 2631 } 2632 2633 auto &&ConflictingArchs = getConflictOffloadArchCombination(GpuArchs); 2634 if (ConflictingArchs) { 2635 C.getDriver().Diag(clang::diag::err_drv_bad_offload_arch_combo) 2636 << ConflictingArchs.getValue().first 2637 << ConflictingArchs.getValue().second; 2638 C.setContainsError(); 2639 return true; 2640 } 2641 2642 // Collect list of GPUs remaining in the set. 2643 for (auto Arch : GpuArchs) 2644 GpuArchList.push_back(Arch.data()); 2645 2646 // Default to sm_20 which is the lowest common denominator for 2647 // supported GPUs. sm_20 code should work correctly, if 2648 // suboptimally, on all newer GPUs. 2649 if (GpuArchList.empty()) 2650 GpuArchList.push_back(DefaultCudaArch); 2651 2652 return Error; 2653 } 2654 }; 2655 2656 /// \brief CUDA action builder. It injects device code in the host backend 2657 /// action. 2658 class CudaActionBuilder final : public CudaActionBuilderBase { 2659 public: 2660 CudaActionBuilder(Compilation &C, DerivedArgList &Args, 2661 const Driver::InputList &Inputs) 2662 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_Cuda) { 2663 DefaultCudaArch = CudaArch::SM_20; 2664 } 2665 2666 StringRef getCanonicalOffloadArch(StringRef ArchStr) override { 2667 CudaArch Arch = StringToCudaArch(ArchStr); 2668 if (Arch == CudaArch::UNKNOWN) { 2669 C.getDriver().Diag(clang::diag::err_drv_cuda_bad_gpu_arch) << ArchStr; 2670 return StringRef(); 2671 } 2672 return CudaArchToString(Arch); 2673 } 2674 2675 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>> 2676 getConflictOffloadArchCombination( 2677 const std::set<StringRef> &GpuArchs) override { 2678 return llvm::None; 2679 } 2680 2681 ActionBuilderReturnCode 2682 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2683 phases::ID CurPhase, phases::ID FinalPhase, 2684 PhasesTy &Phases) override { 2685 if (!IsActive) 2686 return ABRT_Inactive; 2687 2688 // If we don't have more CUDA actions, we don't have any dependences to 2689 // create for the host. 2690 if (CudaDeviceActions.empty()) 2691 return ABRT_Success; 2692 2693 assert(CudaDeviceActions.size() == GpuArchList.size() && 2694 "Expecting one action per GPU architecture."); 2695 assert(!CompileHostOnly && 2696 "Not expecting CUDA actions in host-only compilation."); 2697 2698 // If we are generating code for the device or we are in a backend phase, 2699 // we attempt to generate the fat binary. We compile each arch to ptx and 2700 // assemble to cubin, then feed the cubin *and* the ptx into a device 2701 // "link" action, which uses fatbinary to combine these cubins into one 2702 // fatbin. The fatbin is then an input to the host action if not in 2703 // device-only mode. 2704 if (CompileDeviceOnly || CurPhase == phases::Backend) { 2705 ActionList DeviceActions; 2706 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2707 // Produce the device action from the current phase up to the assemble 2708 // phase. 2709 for (auto Ph : Phases) { 2710 // Skip the phases that were already dealt with. 2711 if (Ph < CurPhase) 2712 continue; 2713 // We have to be consistent with the host final phase. 2714 if (Ph > FinalPhase) 2715 break; 2716 2717 CudaDeviceActions[I] = C.getDriver().ConstructPhaseAction( 2718 C, Args, Ph, CudaDeviceActions[I], Action::OFK_Cuda); 2719 2720 if (Ph == phases::Assemble) 2721 break; 2722 } 2723 2724 // If we didn't reach the assemble phase, we can't generate the fat 2725 // binary. We don't need to generate the fat binary if we are not in 2726 // device-only mode. 2727 if (!isa<AssembleJobAction>(CudaDeviceActions[I]) || 2728 CompileDeviceOnly) 2729 continue; 2730 2731 Action *AssembleAction = CudaDeviceActions[I]; 2732 assert(AssembleAction->getType() == types::TY_Object); 2733 assert(AssembleAction->getInputs().size() == 1); 2734 2735 Action *BackendAction = AssembleAction->getInputs()[0]; 2736 assert(BackendAction->getType() == types::TY_PP_Asm); 2737 2738 for (auto &A : {AssembleAction, BackendAction}) { 2739 OffloadAction::DeviceDependences DDep; 2740 DDep.add(*A, *ToolChains.front(), GpuArchList[I], Action::OFK_Cuda); 2741 DeviceActions.push_back( 2742 C.MakeAction<OffloadAction>(DDep, A->getType())); 2743 } 2744 } 2745 2746 // We generate the fat binary if we have device input actions. 2747 if (!DeviceActions.empty()) { 2748 CudaFatBinary = 2749 C.MakeAction<LinkJobAction>(DeviceActions, types::TY_CUDA_FATBIN); 2750 2751 if (!CompileDeviceOnly) { 2752 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2753 Action::OFK_Cuda); 2754 // Clear the fat binary, it is already a dependence to an host 2755 // action. 2756 CudaFatBinary = nullptr; 2757 } 2758 2759 // Remove the CUDA actions as they are already connected to an host 2760 // action or fat binary. 2761 CudaDeviceActions.clear(); 2762 } 2763 2764 // We avoid creating host action in device-only mode. 2765 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2766 } else if (CurPhase > phases::Backend) { 2767 // If we are past the backend phase and still have a device action, we 2768 // don't have to do anything as this action is already a device 2769 // top-level action. 2770 return ABRT_Success; 2771 } 2772 2773 assert(CurPhase < phases::Backend && "Generating single CUDA " 2774 "instructions should only occur " 2775 "before the backend phase!"); 2776 2777 // By default, we produce an action for each device arch. 2778 for (Action *&A : CudaDeviceActions) 2779 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2780 2781 return ABRT_Success; 2782 } 2783 }; 2784 /// \brief HIP action builder. It injects device code in the host backend 2785 /// action. 2786 class HIPActionBuilder final : public CudaActionBuilderBase { 2787 /// The linker inputs obtained for each device arch. 2788 SmallVector<ActionList, 8> DeviceLinkerInputs; 2789 2790 public: 2791 HIPActionBuilder(Compilation &C, DerivedArgList &Args, 2792 const Driver::InputList &Inputs) 2793 : CudaActionBuilderBase(C, Args, Inputs, Action::OFK_HIP) { 2794 DefaultCudaArch = CudaArch::GFX803; 2795 } 2796 2797 bool canUseBundlerUnbundler() const override { return true; } 2798 2799 StringRef getCanonicalOffloadArch(StringRef IdStr) override { 2800 llvm::StringMap<bool> Features; 2801 auto ArchStr = 2802 parseTargetID(getHIPOffloadTargetTriple(), IdStr, &Features); 2803 if (!ArchStr) { 2804 C.getDriver().Diag(clang::diag::err_drv_bad_target_id) << IdStr; 2805 C.setContainsError(); 2806 return StringRef(); 2807 } 2808 auto CanId = getCanonicalTargetID(ArchStr.getValue(), Features); 2809 return Args.MakeArgStringRef(CanId); 2810 }; 2811 2812 llvm::Optional<std::pair<llvm::StringRef, llvm::StringRef>> 2813 getConflictOffloadArchCombination( 2814 const std::set<StringRef> &GpuArchs) override { 2815 return getConflictTargetIDCombination(GpuArchs); 2816 } 2817 2818 ActionBuilderReturnCode 2819 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2820 phases::ID CurPhase, phases::ID FinalPhase, 2821 PhasesTy &Phases) override { 2822 // amdgcn does not support linking of object files, therefore we skip 2823 // backend and assemble phases to output LLVM IR. Except for generating 2824 // non-relocatable device coee, where we generate fat binary for device 2825 // code and pass to host in Backend phase. 2826 if (CudaDeviceActions.empty()) 2827 return ABRT_Success; 2828 2829 assert(((CurPhase == phases::Link && Relocatable) || 2830 CudaDeviceActions.size() == GpuArchList.size()) && 2831 "Expecting one action per GPU architecture."); 2832 assert(!CompileHostOnly && 2833 "Not expecting CUDA actions in host-only compilation."); 2834 2835 if (!Relocatable && CurPhase == phases::Backend && !EmitLLVM && 2836 !EmitAsm) { 2837 // If we are in backend phase, we attempt to generate the fat binary. 2838 // We compile each arch to IR and use a link action to generate code 2839 // object containing ISA. Then we use a special "link" action to create 2840 // a fat binary containing all the code objects for different GPU's. 2841 // The fat binary is then an input to the host action. 2842 for (unsigned I = 0, E = GpuArchList.size(); I != E; ++I) { 2843 auto BackendAction = C.getDriver().ConstructPhaseAction( 2844 C, Args, phases::Backend, CudaDeviceActions[I], 2845 AssociatedOffloadKind); 2846 auto AssembleAction = C.getDriver().ConstructPhaseAction( 2847 C, Args, phases::Assemble, BackendAction, AssociatedOffloadKind); 2848 // Create a link action to link device IR with device library 2849 // and generate ISA. 2850 ActionList AL; 2851 AL.push_back(AssembleAction); 2852 CudaDeviceActions[I] = 2853 C.MakeAction<LinkJobAction>(AL, types::TY_Image); 2854 2855 // OffloadingActionBuilder propagates device arch until an offload 2856 // action. Since the next action for creating fatbin does 2857 // not have device arch, whereas the above link action and its input 2858 // have device arch, an offload action is needed to stop the null 2859 // device arch of the next action being propagated to the above link 2860 // action. 2861 OffloadAction::DeviceDependences DDep; 2862 DDep.add(*CudaDeviceActions[I], *ToolChains.front(), GpuArchList[I], 2863 AssociatedOffloadKind); 2864 CudaDeviceActions[I] = C.MakeAction<OffloadAction>( 2865 DDep, CudaDeviceActions[I]->getType()); 2866 } 2867 // Create HIP fat binary with a special "link" action. 2868 CudaFatBinary = 2869 C.MakeAction<LinkJobAction>(CudaDeviceActions, 2870 types::TY_HIP_FATBIN); 2871 2872 if (!CompileDeviceOnly) { 2873 DA.add(*CudaFatBinary, *ToolChains.front(), /*BoundArch=*/nullptr, 2874 AssociatedOffloadKind); 2875 // Clear the fat binary, it is already a dependence to an host 2876 // action. 2877 CudaFatBinary = nullptr; 2878 } 2879 2880 // Remove the CUDA actions as they are already connected to an host 2881 // action or fat binary. 2882 CudaDeviceActions.clear(); 2883 2884 return CompileDeviceOnly ? ABRT_Ignore_Host : ABRT_Success; 2885 } else if (CurPhase == phases::Link) { 2886 // Save CudaDeviceActions to DeviceLinkerInputs for each GPU subarch. 2887 // This happens to each device action originated from each input file. 2888 // Later on, device actions in DeviceLinkerInputs are used to create 2889 // device link actions in appendLinkDependences and the created device 2890 // link actions are passed to the offload action as device dependence. 2891 DeviceLinkerInputs.resize(CudaDeviceActions.size()); 2892 auto LI = DeviceLinkerInputs.begin(); 2893 for (auto *A : CudaDeviceActions) { 2894 LI->push_back(A); 2895 ++LI; 2896 } 2897 2898 // We will pass the device action as a host dependence, so we don't 2899 // need to do anything else with them. 2900 CudaDeviceActions.clear(); 2901 return ABRT_Success; 2902 } 2903 2904 // By default, we produce an action for each device arch. 2905 for (Action *&A : CudaDeviceActions) 2906 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A, 2907 AssociatedOffloadKind); 2908 2909 return (CompileDeviceOnly && CurPhase == FinalPhase) ? ABRT_Ignore_Host 2910 : ABRT_Success; 2911 } 2912 2913 void appendLinkDeviceActions(ActionList &AL) override { 2914 if (DeviceLinkerInputs.size() == 0) 2915 return; 2916 2917 assert(DeviceLinkerInputs.size() == GpuArchList.size() && 2918 "Linker inputs and GPU arch list sizes do not match."); 2919 2920 // Append a new link action for each device. 2921 unsigned I = 0; 2922 for (auto &LI : DeviceLinkerInputs) { 2923 // Each entry in DeviceLinkerInputs corresponds to a GPU arch. 2924 auto *DeviceLinkAction = 2925 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 2926 // Linking all inputs for the current GPU arch. 2927 // LI contains all the inputs for the linker. 2928 OffloadAction::DeviceDependences DeviceLinkDeps; 2929 DeviceLinkDeps.add(*DeviceLinkAction, *ToolChains[0], 2930 GpuArchList[I], AssociatedOffloadKind); 2931 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps, 2932 DeviceLinkAction->getType())); 2933 ++I; 2934 } 2935 DeviceLinkerInputs.clear(); 2936 2937 // Create a host object from all the device images by embedding them 2938 // in a fat binary. 2939 OffloadAction::DeviceDependences DDeps; 2940 auto *TopDeviceLinkAction = 2941 C.MakeAction<LinkJobAction>(AL, types::TY_Object); 2942 DDeps.add(*TopDeviceLinkAction, *ToolChains[0], 2943 nullptr, AssociatedOffloadKind); 2944 2945 // Offload the host object to the host linker. 2946 AL.push_back(C.MakeAction<OffloadAction>(DDeps, TopDeviceLinkAction->getType())); 2947 } 2948 2949 Action* appendLinkHostActions(ActionList &AL) override { return AL.back(); } 2950 2951 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} 2952 }; 2953 2954 /// OpenMP action builder. The host bitcode is passed to the device frontend 2955 /// and all the device linked images are passed to the host link phase. 2956 class OpenMPActionBuilder final : public DeviceActionBuilder { 2957 /// The OpenMP actions for the current input. 2958 ActionList OpenMPDeviceActions; 2959 2960 /// The linker inputs obtained for each toolchain. 2961 SmallVector<ActionList, 8> DeviceLinkerInputs; 2962 2963 public: 2964 OpenMPActionBuilder(Compilation &C, DerivedArgList &Args, 2965 const Driver::InputList &Inputs) 2966 : DeviceActionBuilder(C, Args, Inputs, Action::OFK_OpenMP) {} 2967 2968 ActionBuilderReturnCode 2969 getDeviceDependences(OffloadAction::DeviceDependences &DA, 2970 phases::ID CurPhase, phases::ID FinalPhase, 2971 PhasesTy &Phases) override { 2972 if (OpenMPDeviceActions.empty()) 2973 return ABRT_Inactive; 2974 2975 // We should always have an action for each input. 2976 assert(OpenMPDeviceActions.size() == ToolChains.size() && 2977 "Number of OpenMP actions and toolchains do not match."); 2978 2979 // The host only depends on device action in the linking phase, when all 2980 // the device images have to be embedded in the host image. 2981 if (CurPhase == phases::Link) { 2982 assert(ToolChains.size() == DeviceLinkerInputs.size() && 2983 "Toolchains and linker inputs sizes do not match."); 2984 auto LI = DeviceLinkerInputs.begin(); 2985 for (auto *A : OpenMPDeviceActions) { 2986 LI->push_back(A); 2987 ++LI; 2988 } 2989 2990 // We passed the device action as a host dependence, so we don't need to 2991 // do anything else with them. 2992 OpenMPDeviceActions.clear(); 2993 return ABRT_Success; 2994 } 2995 2996 // By default, we produce an action for each device arch. 2997 for (Action *&A : OpenMPDeviceActions) 2998 A = C.getDriver().ConstructPhaseAction(C, Args, CurPhase, A); 2999 3000 return ABRT_Success; 3001 } 3002 3003 ActionBuilderReturnCode addDeviceDepences(Action *HostAction) override { 3004 3005 // If this is an input action replicate it for each OpenMP toolchain. 3006 if (auto *IA = dyn_cast<InputAction>(HostAction)) { 3007 OpenMPDeviceActions.clear(); 3008 for (unsigned I = 0; I < ToolChains.size(); ++I) 3009 OpenMPDeviceActions.push_back( 3010 C.MakeAction<InputAction>(IA->getInputArg(), IA->getType())); 3011 return ABRT_Success; 3012 } 3013 3014 // If this is an unbundling action use it as is for each OpenMP toolchain. 3015 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) { 3016 OpenMPDeviceActions.clear(); 3017 auto *IA = cast<InputAction>(UA->getInputs().back()); 3018 std::string FileName = IA->getInputArg().getAsString(Args); 3019 // Check if the type of the file is the same as the action. Do not 3020 // unbundle it if it is not. Do not unbundle .so files, for example, 3021 // which are not object files. 3022 if (IA->getType() == types::TY_Object && 3023 (!llvm::sys::path::has_extension(FileName) || 3024 types::lookupTypeForExtension( 3025 llvm::sys::path::extension(FileName).drop_front()) != 3026 types::TY_Object)) 3027 return ABRT_Inactive; 3028 for (unsigned I = 0; I < ToolChains.size(); ++I) { 3029 OpenMPDeviceActions.push_back(UA); 3030 UA->registerDependentActionInfo( 3031 ToolChains[I], /*BoundArch=*/StringRef(), Action::OFK_OpenMP); 3032 } 3033 return ABRT_Success; 3034 } 3035 3036 // When generating code for OpenMP we use the host compile phase result as 3037 // a dependence to the device compile phase so that it can learn what 3038 // declarations should be emitted. However, this is not the only use for 3039 // the host action, so we prevent it from being collapsed. 3040 if (isa<CompileJobAction>(HostAction)) { 3041 HostAction->setCannotBeCollapsedWithNextDependentAction(); 3042 assert(ToolChains.size() == OpenMPDeviceActions.size() && 3043 "Toolchains and device action sizes do not match."); 3044 OffloadAction::HostDependence HDep( 3045 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3046 /*BoundArch=*/nullptr, Action::OFK_OpenMP); 3047 auto TC = ToolChains.begin(); 3048 for (Action *&A : OpenMPDeviceActions) { 3049 assert(isa<CompileJobAction>(A)); 3050 OffloadAction::DeviceDependences DDep; 3051 DDep.add(*A, **TC, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 3052 A = C.MakeAction<OffloadAction>(HDep, DDep); 3053 ++TC; 3054 } 3055 } 3056 return ABRT_Success; 3057 } 3058 3059 void appendTopLevelActions(ActionList &AL) override { 3060 if (OpenMPDeviceActions.empty()) 3061 return; 3062 3063 // We should always have an action for each input. 3064 assert(OpenMPDeviceActions.size() == ToolChains.size() && 3065 "Number of OpenMP actions and toolchains do not match."); 3066 3067 // Append all device actions followed by the proper offload action. 3068 auto TI = ToolChains.begin(); 3069 for (auto *A : OpenMPDeviceActions) { 3070 OffloadAction::DeviceDependences Dep; 3071 Dep.add(*A, **TI, /*BoundArch=*/nullptr, Action::OFK_OpenMP); 3072 AL.push_back(C.MakeAction<OffloadAction>(Dep, A->getType())); 3073 ++TI; 3074 } 3075 // We no longer need the action stored in this builder. 3076 OpenMPDeviceActions.clear(); 3077 } 3078 3079 void appendLinkDeviceActions(ActionList &AL) override { 3080 assert(ToolChains.size() == DeviceLinkerInputs.size() && 3081 "Toolchains and linker inputs sizes do not match."); 3082 3083 // Append a new link action for each device. 3084 auto TC = ToolChains.begin(); 3085 for (auto &LI : DeviceLinkerInputs) { 3086 auto *DeviceLinkAction = 3087 C.MakeAction<LinkJobAction>(LI, types::TY_Image); 3088 OffloadAction::DeviceDependences DeviceLinkDeps; 3089 DeviceLinkDeps.add(*DeviceLinkAction, **TC, /*BoundArch=*/nullptr, 3090 Action::OFK_OpenMP); 3091 AL.push_back(C.MakeAction<OffloadAction>(DeviceLinkDeps, 3092 DeviceLinkAction->getType())); 3093 ++TC; 3094 } 3095 DeviceLinkerInputs.clear(); 3096 } 3097 3098 Action* appendLinkHostActions(ActionList &AL) override { 3099 // Create wrapper bitcode from the result of device link actions and compile 3100 // it to an object which will be added to the host link command. 3101 auto *BC = C.MakeAction<OffloadWrapperJobAction>(AL, types::TY_LLVM_BC); 3102 auto *ASM = C.MakeAction<BackendJobAction>(BC, types::TY_PP_Asm); 3103 return C.MakeAction<AssembleJobAction>(ASM, types::TY_Object); 3104 } 3105 3106 void appendLinkDependences(OffloadAction::DeviceDependences &DA) override {} 3107 3108 bool initialize() override { 3109 // Get the OpenMP toolchains. If we don't get any, the action builder will 3110 // know there is nothing to do related to OpenMP offloading. 3111 auto OpenMPTCRange = C.getOffloadToolChains<Action::OFK_OpenMP>(); 3112 for (auto TI = OpenMPTCRange.first, TE = OpenMPTCRange.second; TI != TE; 3113 ++TI) 3114 ToolChains.push_back(TI->second); 3115 3116 DeviceLinkerInputs.resize(ToolChains.size()); 3117 return false; 3118 } 3119 3120 bool canUseBundlerUnbundler() const override { 3121 // OpenMP should use bundled files whenever possible. 3122 return true; 3123 } 3124 }; 3125 3126 /// 3127 /// TODO: Add the implementation for other specialized builders here. 3128 /// 3129 3130 /// Specialized builders being used by this offloading action builder. 3131 SmallVector<DeviceActionBuilder *, 4> SpecializedBuilders; 3132 3133 /// Flag set to true if all valid builders allow file bundling/unbundling. 3134 bool CanUseBundler; 3135 3136 public: 3137 OffloadingActionBuilder(Compilation &C, DerivedArgList &Args, 3138 const Driver::InputList &Inputs) 3139 : C(C) { 3140 // Create a specialized builder for each device toolchain. 3141 3142 IsValid = true; 3143 3144 // Create a specialized builder for CUDA. 3145 SpecializedBuilders.push_back(new CudaActionBuilder(C, Args, Inputs)); 3146 3147 // Create a specialized builder for HIP. 3148 SpecializedBuilders.push_back(new HIPActionBuilder(C, Args, Inputs)); 3149 3150 // Create a specialized builder for OpenMP. 3151 SpecializedBuilders.push_back(new OpenMPActionBuilder(C, Args, Inputs)); 3152 3153 // 3154 // TODO: Build other specialized builders here. 3155 // 3156 3157 // Initialize all the builders, keeping track of errors. If all valid 3158 // builders agree that we can use bundling, set the flag to true. 3159 unsigned ValidBuilders = 0u; 3160 unsigned ValidBuildersSupportingBundling = 0u; 3161 for (auto *SB : SpecializedBuilders) { 3162 IsValid = IsValid && !SB->initialize(); 3163 3164 // Update the counters if the builder is valid. 3165 if (SB->isValid()) { 3166 ++ValidBuilders; 3167 if (SB->canUseBundlerUnbundler()) 3168 ++ValidBuildersSupportingBundling; 3169 } 3170 } 3171 CanUseBundler = 3172 ValidBuilders && ValidBuilders == ValidBuildersSupportingBundling; 3173 } 3174 3175 ~OffloadingActionBuilder() { 3176 for (auto *SB : SpecializedBuilders) 3177 delete SB; 3178 } 3179 3180 /// Generate an action that adds device dependences (if any) to a host action. 3181 /// If no device dependence actions exist, just return the host action \a 3182 /// HostAction. If an error is found or if no builder requires the host action 3183 /// to be generated, return nullptr. 3184 Action * 3185 addDeviceDependencesToHostAction(Action *HostAction, const Arg *InputArg, 3186 phases::ID CurPhase, phases::ID FinalPhase, 3187 DeviceActionBuilder::PhasesTy &Phases) { 3188 if (!IsValid) 3189 return nullptr; 3190 3191 if (SpecializedBuilders.empty()) 3192 return HostAction; 3193 3194 assert(HostAction && "Invalid host action!"); 3195 3196 OffloadAction::DeviceDependences DDeps; 3197 // Check if all the programming models agree we should not emit the host 3198 // action. Also, keep track of the offloading kinds employed. 3199 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3200 unsigned InactiveBuilders = 0u; 3201 unsigned IgnoringBuilders = 0u; 3202 for (auto *SB : SpecializedBuilders) { 3203 if (!SB->isValid()) { 3204 ++InactiveBuilders; 3205 continue; 3206 } 3207 3208 auto RetCode = 3209 SB->getDeviceDependences(DDeps, CurPhase, FinalPhase, Phases); 3210 3211 // If the builder explicitly says the host action should be ignored, 3212 // we need to increment the variable that tracks the builders that request 3213 // the host object to be ignored. 3214 if (RetCode == DeviceActionBuilder::ABRT_Ignore_Host) 3215 ++IgnoringBuilders; 3216 3217 // Unless the builder was inactive for this action, we have to record the 3218 // offload kind because the host will have to use it. 3219 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3220 OffloadKind |= SB->getAssociatedOffloadKind(); 3221 } 3222 3223 // If all builders agree that the host object should be ignored, just return 3224 // nullptr. 3225 if (IgnoringBuilders && 3226 SpecializedBuilders.size() == (InactiveBuilders + IgnoringBuilders)) 3227 return nullptr; 3228 3229 if (DDeps.getActions().empty()) 3230 return HostAction; 3231 3232 // We have dependences we need to bundle together. We use an offload action 3233 // for that. 3234 OffloadAction::HostDependence HDep( 3235 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3236 /*BoundArch=*/nullptr, DDeps); 3237 return C.MakeAction<OffloadAction>(HDep, DDeps); 3238 } 3239 3240 /// Generate an action that adds a host dependence to a device action. The 3241 /// results will be kept in this action builder. Return true if an error was 3242 /// found. 3243 bool addHostDependenceToDeviceActions(Action *&HostAction, 3244 const Arg *InputArg) { 3245 if (!IsValid) 3246 return true; 3247 3248 // If we are supporting bundling/unbundling and the current action is an 3249 // input action of non-source file, we replace the host action by the 3250 // unbundling action. The bundler tool has the logic to detect if an input 3251 // is a bundle or not and if the input is not a bundle it assumes it is a 3252 // host file. Therefore it is safe to create an unbundling action even if 3253 // the input is not a bundle. 3254 if (CanUseBundler && isa<InputAction>(HostAction) && 3255 InputArg->getOption().getKind() == llvm::opt::Option::InputClass && 3256 (!types::isSrcFile(HostAction->getType()) || 3257 HostAction->getType() == types::TY_PP_HIP)) { 3258 auto UnbundlingHostAction = 3259 C.MakeAction<OffloadUnbundlingJobAction>(HostAction); 3260 UnbundlingHostAction->registerDependentActionInfo( 3261 C.getSingleOffloadToolChain<Action::OFK_Host>(), 3262 /*BoundArch=*/StringRef(), Action::OFK_Host); 3263 HostAction = UnbundlingHostAction; 3264 } 3265 3266 assert(HostAction && "Invalid host action!"); 3267 3268 // Register the offload kinds that are used. 3269 auto &OffloadKind = InputArgToOffloadKindMap[InputArg]; 3270 for (auto *SB : SpecializedBuilders) { 3271 if (!SB->isValid()) 3272 continue; 3273 3274 auto RetCode = SB->addDeviceDepences(HostAction); 3275 3276 // Host dependences for device actions are not compatible with that same 3277 // action being ignored. 3278 assert(RetCode != DeviceActionBuilder::ABRT_Ignore_Host && 3279 "Host dependence not expected to be ignored.!"); 3280 3281 // Unless the builder was inactive for this action, we have to record the 3282 // offload kind because the host will have to use it. 3283 if (RetCode != DeviceActionBuilder::ABRT_Inactive) 3284 OffloadKind |= SB->getAssociatedOffloadKind(); 3285 } 3286 3287 // Do not use unbundler if the Host does not depend on device action. 3288 if (OffloadKind == Action::OFK_None && CanUseBundler) 3289 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(HostAction)) 3290 HostAction = UA->getInputs().back(); 3291 3292 return false; 3293 } 3294 3295 /// Add the offloading top level actions to the provided action list. This 3296 /// function can replace the host action by a bundling action if the 3297 /// programming models allow it. 3298 bool appendTopLevelActions(ActionList &AL, Action *HostAction, 3299 const Arg *InputArg) { 3300 // Get the device actions to be appended. 3301 ActionList OffloadAL; 3302 for (auto *SB : SpecializedBuilders) { 3303 if (!SB->isValid()) 3304 continue; 3305 SB->appendTopLevelActions(OffloadAL); 3306 } 3307 3308 // If we can use the bundler, replace the host action by the bundling one in 3309 // the resulting list. Otherwise, just append the device actions. For 3310 // device only compilation, HostAction is a null pointer, therefore only do 3311 // this when HostAction is not a null pointer. 3312 if (CanUseBundler && HostAction && 3313 HostAction->getType() != types::TY_Nothing && !OffloadAL.empty()) { 3314 // Add the host action to the list in order to create the bundling action. 3315 OffloadAL.push_back(HostAction); 3316 3317 // We expect that the host action was just appended to the action list 3318 // before this method was called. 3319 assert(HostAction == AL.back() && "Host action not in the list??"); 3320 HostAction = C.MakeAction<OffloadBundlingJobAction>(OffloadAL); 3321 AL.back() = HostAction; 3322 } else 3323 AL.append(OffloadAL.begin(), OffloadAL.end()); 3324 3325 // Propagate to the current host action (if any) the offload information 3326 // associated with the current input. 3327 if (HostAction) 3328 HostAction->propagateHostOffloadInfo(InputArgToOffloadKindMap[InputArg], 3329 /*BoundArch=*/nullptr); 3330 return false; 3331 } 3332 3333 Action* makeHostLinkAction() { 3334 // Build a list of device linking actions. 3335 ActionList DeviceAL; 3336 for (DeviceActionBuilder *SB : SpecializedBuilders) { 3337 if (!SB->isValid()) 3338 continue; 3339 SB->appendLinkDeviceActions(DeviceAL); 3340 } 3341 3342 if (DeviceAL.empty()) 3343 return nullptr; 3344 3345 // Let builders add host linking actions. 3346 Action* HA; 3347 for (DeviceActionBuilder *SB : SpecializedBuilders) { 3348 if (!SB->isValid()) 3349 continue; 3350 HA = SB->appendLinkHostActions(DeviceAL); 3351 } 3352 return HA; 3353 } 3354 3355 /// Processes the host linker action. This currently consists of replacing it 3356 /// with an offload action if there are device link objects and propagate to 3357 /// the host action all the offload kinds used in the current compilation. The 3358 /// resulting action is returned. 3359 Action *processHostLinkAction(Action *HostAction) { 3360 // Add all the dependences from the device linking actions. 3361 OffloadAction::DeviceDependences DDeps; 3362 for (auto *SB : SpecializedBuilders) { 3363 if (!SB->isValid()) 3364 continue; 3365 3366 SB->appendLinkDependences(DDeps); 3367 } 3368 3369 // Calculate all the offload kinds used in the current compilation. 3370 unsigned ActiveOffloadKinds = 0u; 3371 for (auto &I : InputArgToOffloadKindMap) 3372 ActiveOffloadKinds |= I.second; 3373 3374 // If we don't have device dependencies, we don't have to create an offload 3375 // action. 3376 if (DDeps.getActions().empty()) { 3377 // Propagate all the active kinds to host action. Given that it is a link 3378 // action it is assumed to depend on all actions generated so far. 3379 HostAction->propagateHostOffloadInfo(ActiveOffloadKinds, 3380 /*BoundArch=*/nullptr); 3381 return HostAction; 3382 } 3383 3384 // Create the offload action with all dependences. When an offload action 3385 // is created the kinds are propagated to the host action, so we don't have 3386 // to do that explicitly here. 3387 OffloadAction::HostDependence HDep( 3388 *HostAction, *C.getSingleOffloadToolChain<Action::OFK_Host>(), 3389 /*BoundArch*/ nullptr, ActiveOffloadKinds); 3390 return C.MakeAction<OffloadAction>(HDep, DDeps); 3391 } 3392 }; 3393 } // anonymous namespace. 3394 3395 void Driver::handleArguments(Compilation &C, DerivedArgList &Args, 3396 const InputList &Inputs, 3397 ActionList &Actions) const { 3398 3399 // Ignore /Yc/Yu if both /Yc and /Yu passed but with different filenames. 3400 Arg *YcArg = Args.getLastArg(options::OPT__SLASH_Yc); 3401 Arg *YuArg = Args.getLastArg(options::OPT__SLASH_Yu); 3402 if (YcArg && YuArg && strcmp(YcArg->getValue(), YuArg->getValue()) != 0) { 3403 Diag(clang::diag::warn_drv_ycyu_different_arg_clang_cl); 3404 Args.eraseArg(options::OPT__SLASH_Yc); 3405 Args.eraseArg(options::OPT__SLASH_Yu); 3406 YcArg = YuArg = nullptr; 3407 } 3408 if (YcArg && Inputs.size() > 1) { 3409 Diag(clang::diag::warn_drv_yc_multiple_inputs_clang_cl); 3410 Args.eraseArg(options::OPT__SLASH_Yc); 3411 YcArg = nullptr; 3412 } 3413 3414 Arg *FinalPhaseArg; 3415 phases::ID FinalPhase = getFinalPhase(Args, &FinalPhaseArg); 3416 3417 if (FinalPhase == phases::Link) { 3418 if (Args.hasArg(options::OPT_emit_llvm)) 3419 Diag(clang::diag::err_drv_emit_llvm_link); 3420 if (IsCLMode() && LTOMode != LTOK_None && 3421 !Args.getLastArgValue(options::OPT_fuse_ld_EQ).equals_lower("lld")) 3422 Diag(clang::diag::err_drv_lto_without_lld); 3423 } 3424 3425 if (FinalPhase == phases::Preprocess || Args.hasArg(options::OPT__SLASH_Y_)) { 3426 // If only preprocessing or /Y- is used, all pch handling is disabled. 3427 // Rather than check for it everywhere, just remove clang-cl pch-related 3428 // flags here. 3429 Args.eraseArg(options::OPT__SLASH_Fp); 3430 Args.eraseArg(options::OPT__SLASH_Yc); 3431 Args.eraseArg(options::OPT__SLASH_Yu); 3432 YcArg = YuArg = nullptr; 3433 } 3434 3435 unsigned LastPLSize = 0; 3436 for (auto &I : Inputs) { 3437 types::ID InputType = I.first; 3438 const Arg *InputArg = I.second; 3439 3440 auto PL = types::getCompilationPhases(InputType); 3441 LastPLSize = PL.size(); 3442 3443 // If the first step comes after the final phase we are doing as part of 3444 // this compilation, warn the user about it. 3445 phases::ID InitialPhase = PL[0]; 3446 if (InitialPhase > FinalPhase) { 3447 if (InputArg->isClaimed()) 3448 continue; 3449 3450 // Claim here to avoid the more general unused warning. 3451 InputArg->claim(); 3452 3453 // Suppress all unused style warnings with -Qunused-arguments 3454 if (Args.hasArg(options::OPT_Qunused_arguments)) 3455 continue; 3456 3457 // Special case when final phase determined by binary name, rather than 3458 // by a command-line argument with a corresponding Arg. 3459 if (CCCIsCPP()) 3460 Diag(clang::diag::warn_drv_input_file_unused_by_cpp) 3461 << InputArg->getAsString(Args) << getPhaseName(InitialPhase); 3462 // Special case '-E' warning on a previously preprocessed file to make 3463 // more sense. 3464 else if (InitialPhase == phases::Compile && 3465 (Args.getLastArg(options::OPT__SLASH_EP, 3466 options::OPT__SLASH_P) || 3467 Args.getLastArg(options::OPT_E) || 3468 Args.getLastArg(options::OPT_M, options::OPT_MM)) && 3469 getPreprocessedType(InputType) == types::TY_INVALID) 3470 Diag(clang::diag::warn_drv_preprocessed_input_file_unused) 3471 << InputArg->getAsString(Args) << !!FinalPhaseArg 3472 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3473 else 3474 Diag(clang::diag::warn_drv_input_file_unused) 3475 << InputArg->getAsString(Args) << getPhaseName(InitialPhase) 3476 << !!FinalPhaseArg 3477 << (FinalPhaseArg ? FinalPhaseArg->getOption().getName() : ""); 3478 continue; 3479 } 3480 3481 if (YcArg) { 3482 // Add a separate precompile phase for the compile phase. 3483 if (FinalPhase >= phases::Compile) { 3484 const types::ID HeaderType = lookupHeaderTypeForSourceType(InputType); 3485 // Build the pipeline for the pch file. 3486 Action *ClangClPch = C.MakeAction<InputAction>(*InputArg, HeaderType); 3487 for (phases::ID Phase : types::getCompilationPhases(HeaderType)) 3488 ClangClPch = ConstructPhaseAction(C, Args, Phase, ClangClPch); 3489 assert(ClangClPch); 3490 Actions.push_back(ClangClPch); 3491 // The driver currently exits after the first failed command. This 3492 // relies on that behavior, to make sure if the pch generation fails, 3493 // the main compilation won't run. 3494 // FIXME: If the main compilation fails, the PCH generation should 3495 // probably not be considered successful either. 3496 } 3497 } 3498 } 3499 3500 // If we are linking, claim any options which are obviously only used for 3501 // compilation. 3502 // FIXME: Understand why the last Phase List length is used here. 3503 if (FinalPhase == phases::Link && LastPLSize == 1) { 3504 Args.ClaimAllArgs(options::OPT_CompileOnly_Group); 3505 Args.ClaimAllArgs(options::OPT_cl_compile_Group); 3506 } 3507 } 3508 3509 void Driver::BuildActions(Compilation &C, DerivedArgList &Args, 3510 const InputList &Inputs, ActionList &Actions) const { 3511 llvm::PrettyStackTraceString CrashInfo("Building compilation actions"); 3512 3513 if (!SuppressMissingInputWarning && Inputs.empty()) { 3514 Diag(clang::diag::err_drv_no_input_files); 3515 return; 3516 } 3517 3518 // Reject -Z* at the top level, these options should never have been exposed 3519 // by gcc. 3520 if (Arg *A = Args.getLastArg(options::OPT_Z_Joined)) 3521 Diag(clang::diag::err_drv_use_of_Z_option) << A->getAsString(Args); 3522 3523 // Diagnose misuse of /Fo. 3524 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fo)) { 3525 StringRef V = A->getValue(); 3526 if (Inputs.size() > 1 && !V.empty() && 3527 !llvm::sys::path::is_separator(V.back())) { 3528 // Check whether /Fo tries to name an output file for multiple inputs. 3529 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3530 << A->getSpelling() << V; 3531 Args.eraseArg(options::OPT__SLASH_Fo); 3532 } 3533 } 3534 3535 // Diagnose misuse of /Fa. 3536 if (Arg *A = Args.getLastArg(options::OPT__SLASH_Fa)) { 3537 StringRef V = A->getValue(); 3538 if (Inputs.size() > 1 && !V.empty() && 3539 !llvm::sys::path::is_separator(V.back())) { 3540 // Check whether /Fa tries to name an asm file for multiple inputs. 3541 Diag(clang::diag::err_drv_out_file_argument_with_multiple_sources) 3542 << A->getSpelling() << V; 3543 Args.eraseArg(options::OPT__SLASH_Fa); 3544 } 3545 } 3546 3547 // Diagnose misuse of /o. 3548 if (Arg *A = Args.getLastArg(options::OPT__SLASH_o)) { 3549 if (A->getValue()[0] == '\0') { 3550 // It has to have a value. 3551 Diag(clang::diag::err_drv_missing_argument) << A->getSpelling() << 1; 3552 Args.eraseArg(options::OPT__SLASH_o); 3553 } 3554 } 3555 3556 handleArguments(C, Args, Inputs, Actions); 3557 3558 // Builder to be used to build offloading actions. 3559 OffloadingActionBuilder OffloadBuilder(C, Args, Inputs); 3560 3561 // Construct the actions to perform. 3562 HeaderModulePrecompileJobAction *HeaderModuleAction = nullptr; 3563 ActionList LinkerInputs; 3564 ActionList MergerInputs; 3565 3566 for (auto &I : Inputs) { 3567 types::ID InputType = I.first; 3568 const Arg *InputArg = I.second; 3569 3570 auto PL = types::getCompilationPhases(*this, Args, InputType); 3571 if (PL.empty()) 3572 continue; 3573 3574 auto FullPL = types::getCompilationPhases(InputType); 3575 3576 // Build the pipeline for this file. 3577 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3578 3579 // Use the current host action in any of the offloading actions, if 3580 // required. 3581 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3582 break; 3583 3584 for (phases::ID Phase : PL) { 3585 3586 // Add any offload action the host action depends on. 3587 Current = OffloadBuilder.addDeviceDependencesToHostAction( 3588 Current, InputArg, Phase, PL.back(), FullPL); 3589 if (!Current) 3590 break; 3591 3592 // Queue linker inputs. 3593 if (Phase == phases::Link) { 3594 assert(Phase == PL.back() && "linking must be final compilation step."); 3595 LinkerInputs.push_back(Current); 3596 Current = nullptr; 3597 break; 3598 } 3599 3600 // TODO: Consider removing this because the merged may not end up being 3601 // the final Phase in the pipeline. Perhaps the merged could just merge 3602 // and then pass an artifact of some sort to the Link Phase. 3603 // Queue merger inputs. 3604 if (Phase == phases::IfsMerge) { 3605 assert(Phase == PL.back() && "merging must be final compilation step."); 3606 MergerInputs.push_back(Current); 3607 Current = nullptr; 3608 break; 3609 } 3610 3611 // Each precompiled header file after a module file action is a module 3612 // header of that same module file, rather than being compiled to a 3613 // separate PCH. 3614 if (Phase == phases::Precompile && HeaderModuleAction && 3615 getPrecompiledType(InputType) == types::TY_PCH) { 3616 HeaderModuleAction->addModuleHeaderInput(Current); 3617 Current = nullptr; 3618 break; 3619 } 3620 3621 // FIXME: Should we include any prior module file outputs as inputs of 3622 // later actions in the same command line? 3623 3624 // Otherwise construct the appropriate action. 3625 Action *NewCurrent = ConstructPhaseAction(C, Args, Phase, Current); 3626 3627 // We didn't create a new action, so we will just move to the next phase. 3628 if (NewCurrent == Current) 3629 continue; 3630 3631 if (auto *HMA = dyn_cast<HeaderModulePrecompileJobAction>(NewCurrent)) 3632 HeaderModuleAction = HMA; 3633 3634 Current = NewCurrent; 3635 3636 // Use the current host action in any of the offloading actions, if 3637 // required. 3638 if (OffloadBuilder.addHostDependenceToDeviceActions(Current, InputArg)) 3639 break; 3640 3641 if (Current->getType() == types::TY_Nothing) 3642 break; 3643 } 3644 3645 // If we ended with something, add to the output list. 3646 if (Current) 3647 Actions.push_back(Current); 3648 3649 // Add any top level actions generated for offloading. 3650 OffloadBuilder.appendTopLevelActions(Actions, Current, InputArg); 3651 } 3652 3653 // Add a link action if necessary. 3654 if (!LinkerInputs.empty()) { 3655 if (Action *Wrapper = OffloadBuilder.makeHostLinkAction()) 3656 LinkerInputs.push_back(Wrapper); 3657 Action *LA; 3658 // Check if this Linker Job should emit a static library. 3659 if (ShouldEmitStaticLibrary(Args)) { 3660 LA = C.MakeAction<StaticLibJobAction>(LinkerInputs, types::TY_Image); 3661 } else { 3662 LA = C.MakeAction<LinkJobAction>(LinkerInputs, types::TY_Image); 3663 } 3664 LA = OffloadBuilder.processHostLinkAction(LA); 3665 Actions.push_back(LA); 3666 } 3667 3668 // Add an interface stubs merge action if necessary. 3669 if (!MergerInputs.empty()) 3670 Actions.push_back( 3671 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); 3672 3673 if (Args.hasArg(options::OPT_emit_interface_stubs)) { 3674 auto PhaseList = types::getCompilationPhases( 3675 types::TY_IFS_CPP, 3676 Args.hasArg(options::OPT_c) ? phases::Compile : phases::LastPhase); 3677 3678 ActionList MergerInputs; 3679 3680 for (auto &I : Inputs) { 3681 types::ID InputType = I.first; 3682 const Arg *InputArg = I.second; 3683 3684 // Currently clang and the llvm assembler do not support generating symbol 3685 // stubs from assembly, so we skip the input on asm files. For ifs files 3686 // we rely on the normal pipeline setup in the pipeline setup code above. 3687 if (InputType == types::TY_IFS || InputType == types::TY_PP_Asm || 3688 InputType == types::TY_Asm) 3689 continue; 3690 3691 Action *Current = C.MakeAction<InputAction>(*InputArg, InputType); 3692 3693 for (auto Phase : PhaseList) { 3694 switch (Phase) { 3695 default: 3696 llvm_unreachable( 3697 "IFS Pipeline can only consist of Compile followed by IfsMerge."); 3698 case phases::Compile: { 3699 // Only IfsMerge (llvm-ifs) can handle .o files by looking for ifs 3700 // files where the .o file is located. The compile action can not 3701 // handle this. 3702 if (InputType == types::TY_Object) 3703 break; 3704 3705 Current = C.MakeAction<CompileJobAction>(Current, types::TY_IFS_CPP); 3706 break; 3707 } 3708 case phases::IfsMerge: { 3709 assert(Phase == PhaseList.back() && 3710 "merging must be final compilation step."); 3711 MergerInputs.push_back(Current); 3712 Current = nullptr; 3713 break; 3714 } 3715 } 3716 } 3717 3718 // If we ended with something, add to the output list. 3719 if (Current) 3720 Actions.push_back(Current); 3721 } 3722 3723 // Add an interface stubs merge action if necessary. 3724 if (!MergerInputs.empty()) 3725 Actions.push_back( 3726 C.MakeAction<IfsMergeJobAction>(MergerInputs, types::TY_Image)); 3727 } 3728 3729 // If --print-supported-cpus, -mcpu=? or -mtune=? is specified, build a custom 3730 // Compile phase that prints out supported cpu models and quits. 3731 if (Arg *A = Args.getLastArg(options::OPT_print_supported_cpus)) { 3732 // Use the -mcpu=? flag as the dummy input to cc1. 3733 Actions.clear(); 3734 Action *InputAc = C.MakeAction<InputAction>(*A, types::TY_C); 3735 Actions.push_back( 3736 C.MakeAction<PrecompileJobAction>(InputAc, types::TY_Nothing)); 3737 for (auto &I : Inputs) 3738 I.second->claim(); 3739 } 3740 3741 // Claim ignored clang-cl options. 3742 Args.ClaimAllArgs(options::OPT_cl_ignored_Group); 3743 3744 // Claim --cuda-host-only and --cuda-compile-host-device, which may be passed 3745 // to non-CUDA compilations and should not trigger warnings there. 3746 Args.ClaimAllArgs(options::OPT_cuda_host_only); 3747 Args.ClaimAllArgs(options::OPT_cuda_compile_host_device); 3748 } 3749 3750 Action *Driver::ConstructPhaseAction( 3751 Compilation &C, const ArgList &Args, phases::ID Phase, Action *Input, 3752 Action::OffloadKind TargetDeviceOffloadKind) const { 3753 llvm::PrettyStackTraceString CrashInfo("Constructing phase actions"); 3754 3755 // Some types skip the assembler phase (e.g., llvm-bc), but we can't 3756 // encode this in the steps because the intermediate type depends on 3757 // arguments. Just special case here. 3758 if (Phase == phases::Assemble && Input->getType() != types::TY_PP_Asm) 3759 return Input; 3760 3761 // Build the appropriate action. 3762 switch (Phase) { 3763 case phases::Link: 3764 llvm_unreachable("link action invalid here."); 3765 case phases::IfsMerge: 3766 llvm_unreachable("ifsmerge action invalid here."); 3767 case phases::Preprocess: { 3768 types::ID OutputTy; 3769 // -M and -MM specify the dependency file name by altering the output type, 3770 // -if -MD and -MMD are not specified. 3771 if (Args.hasArg(options::OPT_M, options::OPT_MM) && 3772 !Args.hasArg(options::OPT_MD, options::OPT_MMD)) { 3773 OutputTy = types::TY_Dependencies; 3774 } else { 3775 OutputTy = Input->getType(); 3776 if (!Args.hasFlag(options::OPT_frewrite_includes, 3777 options::OPT_fno_rewrite_includes, false) && 3778 !Args.hasFlag(options::OPT_frewrite_imports, 3779 options::OPT_fno_rewrite_imports, false) && 3780 !CCGenDiagnostics) 3781 OutputTy = types::getPreprocessedType(OutputTy); 3782 assert(OutputTy != types::TY_INVALID && 3783 "Cannot preprocess this input type!"); 3784 } 3785 return C.MakeAction<PreprocessJobAction>(Input, OutputTy); 3786 } 3787 case phases::Precompile: { 3788 types::ID OutputTy = getPrecompiledType(Input->getType()); 3789 assert(OutputTy != types::TY_INVALID && 3790 "Cannot precompile this input type!"); 3791 3792 // If we're given a module name, precompile header file inputs as a 3793 // module, not as a precompiled header. 3794 const char *ModName = nullptr; 3795 if (OutputTy == types::TY_PCH) { 3796 if (Arg *A = Args.getLastArg(options::OPT_fmodule_name_EQ)) 3797 ModName = A->getValue(); 3798 if (ModName) 3799 OutputTy = types::TY_ModuleFile; 3800 } 3801 3802 if (Args.hasArg(options::OPT_fsyntax_only)) { 3803 // Syntax checks should not emit a PCH file 3804 OutputTy = types::TY_Nothing; 3805 } 3806 3807 if (ModName) 3808 return C.MakeAction<HeaderModulePrecompileJobAction>(Input, OutputTy, 3809 ModName); 3810 return C.MakeAction<PrecompileJobAction>(Input, OutputTy); 3811 } 3812 case phases::Compile: { 3813 if (Args.hasArg(options::OPT_fsyntax_only)) 3814 return C.MakeAction<CompileJobAction>(Input, types::TY_Nothing); 3815 if (Args.hasArg(options::OPT_rewrite_objc)) 3816 return C.MakeAction<CompileJobAction>(Input, types::TY_RewrittenObjC); 3817 if (Args.hasArg(options::OPT_rewrite_legacy_objc)) 3818 return C.MakeAction<CompileJobAction>(Input, 3819 types::TY_RewrittenLegacyObjC); 3820 if (Args.hasArg(options::OPT__analyze)) 3821 return C.MakeAction<AnalyzeJobAction>(Input, types::TY_Plist); 3822 if (Args.hasArg(options::OPT__migrate)) 3823 return C.MakeAction<MigrateJobAction>(Input, types::TY_Remap); 3824 if (Args.hasArg(options::OPT_emit_ast)) 3825 return C.MakeAction<CompileJobAction>(Input, types::TY_AST); 3826 if (Args.hasArg(options::OPT_module_file_info)) 3827 return C.MakeAction<CompileJobAction>(Input, types::TY_ModuleFile); 3828 if (Args.hasArg(options::OPT_verify_pch)) 3829 return C.MakeAction<VerifyPCHJobAction>(Input, types::TY_Nothing); 3830 return C.MakeAction<CompileJobAction>(Input, types::TY_LLVM_BC); 3831 } 3832 case phases::Backend: { 3833 if (isUsingLTO() && TargetDeviceOffloadKind == Action::OFK_None) { 3834 types::ID Output = 3835 Args.hasArg(options::OPT_S) ? types::TY_LTO_IR : types::TY_LTO_BC; 3836 return C.MakeAction<BackendJobAction>(Input, Output); 3837 } 3838 if (Args.hasArg(options::OPT_emit_llvm) || 3839 (TargetDeviceOffloadKind == Action::OFK_HIP && 3840 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, 3841 false))) { 3842 types::ID Output = 3843 Args.hasArg(options::OPT_S) ? types::TY_LLVM_IR : types::TY_LLVM_BC; 3844 return C.MakeAction<BackendJobAction>(Input, Output); 3845 } 3846 return C.MakeAction<BackendJobAction>(Input, types::TY_PP_Asm); 3847 } 3848 case phases::Assemble: 3849 return C.MakeAction<AssembleJobAction>(std::move(Input), types::TY_Object); 3850 } 3851 3852 llvm_unreachable("invalid phase in ConstructPhaseAction"); 3853 } 3854 3855 void Driver::BuildJobs(Compilation &C) const { 3856 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 3857 3858 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 3859 3860 // It is an error to provide a -o option if we are making multiple output 3861 // files. There are exceptions: 3862 // 3863 // IfsMergeJob: when generating interface stubs enabled we want to be able to 3864 // generate the stub file at the same time that we generate the real 3865 // library/a.out. So when a .o, .so, etc are the output, with clang interface 3866 // stubs there will also be a .ifs and .ifso at the same location. 3867 // 3868 // CompileJob of type TY_IFS_CPP: when generating interface stubs is enabled 3869 // and -c is passed, we still want to be able to generate a .ifs file while 3870 // we are also generating .o files. So we allow more than one output file in 3871 // this case as well. 3872 // 3873 if (FinalOutput) { 3874 unsigned NumOutputs = 0; 3875 unsigned NumIfsOutputs = 0; 3876 for (const Action *A : C.getActions()) 3877 if (A->getType() != types::TY_Nothing && 3878 !(A->getKind() == Action::IfsMergeJobClass || 3879 (A->getType() == clang::driver::types::TY_IFS_CPP && 3880 A->getKind() == clang::driver::Action::CompileJobClass && 3881 0 == NumIfsOutputs++) || 3882 (A->getKind() == Action::BindArchClass && A->getInputs().size() && 3883 A->getInputs().front()->getKind() == Action::IfsMergeJobClass))) 3884 ++NumOutputs; 3885 3886 if (NumOutputs > 1) { 3887 Diag(clang::diag::err_drv_output_argument_with_multiple_files); 3888 FinalOutput = nullptr; 3889 } 3890 } 3891 3892 const llvm::Triple &RawTriple = C.getDefaultToolChain().getTriple(); 3893 if (RawTriple.isOSAIX()) 3894 if (Arg *A = C.getArgs().getLastArg(options::OPT_G)) 3895 Diag(diag::err_drv_unsupported_opt_for_target) 3896 << A->getSpelling() << RawTriple.str(); 3897 3898 // Collect the list of architectures. 3899 llvm::StringSet<> ArchNames; 3900 if (RawTriple.isOSBinFormatMachO()) 3901 for (const Arg *A : C.getArgs()) 3902 if (A->getOption().matches(options::OPT_arch)) 3903 ArchNames.insert(A->getValue()); 3904 3905 // Set of (Action, canonical ToolChain triple) pairs we've built jobs for. 3906 std::map<std::pair<const Action *, std::string>, InputInfo> CachedResults; 3907 for (Action *A : C.getActions()) { 3908 // If we are linking an image for multiple archs then the linker wants 3909 // -arch_multiple and -final_output <final image name>. Unfortunately, this 3910 // doesn't fit in cleanly because we have to pass this information down. 3911 // 3912 // FIXME: This is a hack; find a cleaner way to integrate this into the 3913 // process. 3914 const char *LinkingOutput = nullptr; 3915 if (isa<LipoJobAction>(A)) { 3916 if (FinalOutput) 3917 LinkingOutput = FinalOutput->getValue(); 3918 else 3919 LinkingOutput = getDefaultImageName(); 3920 } 3921 3922 BuildJobsForAction(C, A, &C.getDefaultToolChain(), 3923 /*BoundArch*/ StringRef(), 3924 /*AtTopLevel*/ true, 3925 /*MultipleArchs*/ ArchNames.size() > 1, 3926 /*LinkingOutput*/ LinkingOutput, CachedResults, 3927 /*TargetDeviceOffloadKind*/ Action::OFK_None); 3928 } 3929 3930 StringRef StatReportFile; 3931 bool PrintProcessStat = false; 3932 if (const Arg *A = C.getArgs().getLastArg(options::OPT_fproc_stat_report_EQ)) 3933 StatReportFile = A->getValue(); 3934 if (C.getArgs().hasArg(options::OPT_fproc_stat_report)) 3935 PrintProcessStat = true; 3936 3937 // If we have more than one job, then disable integrated-cc1 for now. Do this 3938 // also when we need to report process execution statistics. 3939 if (C.getJobs().size() > 1 || !StatReportFile.empty() || PrintProcessStat) 3940 for (auto &J : C.getJobs()) 3941 J.InProcess = false; 3942 3943 if (!StatReportFile.empty() || PrintProcessStat) { 3944 C.setPostCallback([=](const Command &Cmd, int Res) { 3945 Optional<llvm::sys::ProcessStatistics> ProcStat = 3946 Cmd.getProcessStatistics(); 3947 if (!ProcStat) 3948 return; 3949 if (PrintProcessStat) { 3950 using namespace llvm; 3951 // Human readable output. 3952 outs() << sys::path::filename(Cmd.getExecutable()) << ": " 3953 << "output="; 3954 if (Cmd.getOutputFilenames().empty()) 3955 outs() << "\"\""; 3956 else 3957 outs() << Cmd.getOutputFilenames().front(); 3958 outs() << ", total=" 3959 << format("%.3f", ProcStat->TotalTime.count() / 1000.) << " ms" 3960 << ", user=" 3961 << format("%.3f", ProcStat->UserTime.count() / 1000.) << " ms" 3962 << ", mem=" << ProcStat->PeakMemory << " Kb\n"; 3963 } 3964 if (!StatReportFile.empty()) { 3965 // CSV format. 3966 std::string Buffer; 3967 llvm::raw_string_ostream Out(Buffer); 3968 llvm::sys::printArg(Out, llvm::sys::path::filename(Cmd.getExecutable()), 3969 /*Quote*/ true); 3970 Out << ','; 3971 if (Cmd.getOutputFilenames().empty()) 3972 Out << "\"\""; 3973 else 3974 llvm::sys::printArg(Out, Cmd.getOutputFilenames().front(), true); 3975 Out << ',' << ProcStat->TotalTime.count() << ',' 3976 << ProcStat->UserTime.count() << ',' << ProcStat->PeakMemory 3977 << '\n'; 3978 Out.flush(); 3979 std::error_code EC; 3980 llvm::raw_fd_ostream OS(StatReportFile, EC, llvm::sys::fs::OF_Append); 3981 if (EC) 3982 return; 3983 auto L = OS.lock(); 3984 if (!L) { 3985 llvm::errs() << "ERROR: Cannot lock file " << StatReportFile << ": " 3986 << toString(L.takeError()) << "\n"; 3987 return; 3988 } 3989 OS << Buffer; 3990 } 3991 }); 3992 } 3993 3994 // If the user passed -Qunused-arguments or there were errors, don't warn 3995 // about any unused arguments. 3996 if (Diags.hasErrorOccurred() || 3997 C.getArgs().hasArg(options::OPT_Qunused_arguments)) 3998 return; 3999 4000 // Claim -### here. 4001 (void)C.getArgs().hasArg(options::OPT__HASH_HASH_HASH); 4002 4003 // Claim --driver-mode, --rsp-quoting, it was handled earlier. 4004 (void)C.getArgs().hasArg(options::OPT_driver_mode); 4005 (void)C.getArgs().hasArg(options::OPT_rsp_quoting); 4006 4007 for (Arg *A : C.getArgs()) { 4008 // FIXME: It would be nice to be able to send the argument to the 4009 // DiagnosticsEngine, so that extra values, position, and so on could be 4010 // printed. 4011 if (!A->isClaimed()) { 4012 if (A->getOption().hasFlag(options::NoArgumentUnused)) 4013 continue; 4014 4015 // Suppress the warning automatically if this is just a flag, and it is an 4016 // instance of an argument we already claimed. 4017 const Option &Opt = A->getOption(); 4018 if (Opt.getKind() == Option::FlagClass) { 4019 bool DuplicateClaimed = false; 4020 4021 for (const Arg *AA : C.getArgs().filtered(&Opt)) { 4022 if (AA->isClaimed()) { 4023 DuplicateClaimed = true; 4024 break; 4025 } 4026 } 4027 4028 if (DuplicateClaimed) 4029 continue; 4030 } 4031 4032 // In clang-cl, don't mention unknown arguments here since they have 4033 // already been warned about. 4034 if (!IsCLMode() || !A->getOption().matches(options::OPT_UNKNOWN)) 4035 Diag(clang::diag::warn_drv_unused_argument) 4036 << A->getAsString(C.getArgs()); 4037 } 4038 } 4039 } 4040 4041 namespace { 4042 /// Utility class to control the collapse of dependent actions and select the 4043 /// tools accordingly. 4044 class ToolSelector final { 4045 /// The tool chain this selector refers to. 4046 const ToolChain &TC; 4047 4048 /// The compilation this selector refers to. 4049 const Compilation &C; 4050 4051 /// The base action this selector refers to. 4052 const JobAction *BaseAction; 4053 4054 /// Set to true if the current toolchain refers to host actions. 4055 bool IsHostSelector; 4056 4057 /// Set to true if save-temps and embed-bitcode functionalities are active. 4058 bool SaveTemps; 4059 bool EmbedBitcode; 4060 4061 /// Get previous dependent action or null if that does not exist. If 4062 /// \a CanBeCollapsed is false, that action must be legal to collapse or 4063 /// null will be returned. 4064 const JobAction *getPrevDependentAction(const ActionList &Inputs, 4065 ActionList &SavedOffloadAction, 4066 bool CanBeCollapsed = true) { 4067 // An option can be collapsed only if it has a single input. 4068 if (Inputs.size() != 1) 4069 return nullptr; 4070 4071 Action *CurAction = *Inputs.begin(); 4072 if (CanBeCollapsed && 4073 !CurAction->isCollapsingWithNextDependentActionLegal()) 4074 return nullptr; 4075 4076 // If the input action is an offload action. Look through it and save any 4077 // offload action that can be dropped in the event of a collapse. 4078 if (auto *OA = dyn_cast<OffloadAction>(CurAction)) { 4079 // If the dependent action is a device action, we will attempt to collapse 4080 // only with other device actions. Otherwise, we would do the same but 4081 // with host actions only. 4082 if (!IsHostSelector) { 4083 if (OA->hasSingleDeviceDependence(/*DoNotConsiderHostActions=*/true)) { 4084 CurAction = 4085 OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true); 4086 if (CanBeCollapsed && 4087 !CurAction->isCollapsingWithNextDependentActionLegal()) 4088 return nullptr; 4089 SavedOffloadAction.push_back(OA); 4090 return dyn_cast<JobAction>(CurAction); 4091 } 4092 } else if (OA->hasHostDependence()) { 4093 CurAction = OA->getHostDependence(); 4094 if (CanBeCollapsed && 4095 !CurAction->isCollapsingWithNextDependentActionLegal()) 4096 return nullptr; 4097 SavedOffloadAction.push_back(OA); 4098 return dyn_cast<JobAction>(CurAction); 4099 } 4100 return nullptr; 4101 } 4102 4103 return dyn_cast<JobAction>(CurAction); 4104 } 4105 4106 /// Return true if an assemble action can be collapsed. 4107 bool canCollapseAssembleAction() const { 4108 return TC.useIntegratedAs() && !SaveTemps && 4109 !C.getArgs().hasArg(options::OPT_via_file_asm) && 4110 !C.getArgs().hasArg(options::OPT__SLASH_FA) && 4111 !C.getArgs().hasArg(options::OPT__SLASH_Fa); 4112 } 4113 4114 /// Return true if a preprocessor action can be collapsed. 4115 bool canCollapsePreprocessorAction() const { 4116 return !C.getArgs().hasArg(options::OPT_no_integrated_cpp) && 4117 !C.getArgs().hasArg(options::OPT_traditional_cpp) && !SaveTemps && 4118 !C.getArgs().hasArg(options::OPT_rewrite_objc); 4119 } 4120 4121 /// Struct that relates an action with the offload actions that would be 4122 /// collapsed with it. 4123 struct JobActionInfo final { 4124 /// The action this info refers to. 4125 const JobAction *JA = nullptr; 4126 /// The offload actions we need to take care off if this action is 4127 /// collapsed. 4128 ActionList SavedOffloadAction; 4129 }; 4130 4131 /// Append collapsed offload actions from the give nnumber of elements in the 4132 /// action info array. 4133 static void AppendCollapsedOffloadAction(ActionList &CollapsedOffloadAction, 4134 ArrayRef<JobActionInfo> &ActionInfo, 4135 unsigned ElementNum) { 4136 assert(ElementNum <= ActionInfo.size() && "Invalid number of elements."); 4137 for (unsigned I = 0; I < ElementNum; ++I) 4138 CollapsedOffloadAction.append(ActionInfo[I].SavedOffloadAction.begin(), 4139 ActionInfo[I].SavedOffloadAction.end()); 4140 } 4141 4142 /// Functions that attempt to perform the combining. They detect if that is 4143 /// legal, and if so they update the inputs \a Inputs and the offload action 4144 /// that were collapsed in \a CollapsedOffloadAction. A tool that deals with 4145 /// the combined action is returned. If the combining is not legal or if the 4146 /// tool does not exist, null is returned. 4147 /// Currently three kinds of collapsing are supported: 4148 /// - Assemble + Backend + Compile; 4149 /// - Assemble + Backend ; 4150 /// - Backend + Compile. 4151 const Tool * 4152 combineAssembleBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 4153 ActionList &Inputs, 4154 ActionList &CollapsedOffloadAction) { 4155 if (ActionInfo.size() < 3 || !canCollapseAssembleAction()) 4156 return nullptr; 4157 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 4158 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 4159 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[2].JA); 4160 if (!AJ || !BJ || !CJ) 4161 return nullptr; 4162 4163 // Get compiler tool. 4164 const Tool *T = TC.SelectTool(*CJ); 4165 if (!T) 4166 return nullptr; 4167 4168 // When using -fembed-bitcode, it is required to have the same tool (clang) 4169 // for both CompilerJA and BackendJA. Otherwise, combine two stages. 4170 if (EmbedBitcode) { 4171 const Tool *BT = TC.SelectTool(*BJ); 4172 if (BT == T) 4173 return nullptr; 4174 } 4175 4176 if (!T->hasIntegratedAssembler()) 4177 return nullptr; 4178 4179 Inputs = CJ->getInputs(); 4180 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 4181 /*NumElements=*/3); 4182 return T; 4183 } 4184 const Tool *combineAssembleBackend(ArrayRef<JobActionInfo> ActionInfo, 4185 ActionList &Inputs, 4186 ActionList &CollapsedOffloadAction) { 4187 if (ActionInfo.size() < 2 || !canCollapseAssembleAction()) 4188 return nullptr; 4189 auto *AJ = dyn_cast<AssembleJobAction>(ActionInfo[0].JA); 4190 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[1].JA); 4191 if (!AJ || !BJ) 4192 return nullptr; 4193 4194 // Get backend tool. 4195 const Tool *T = TC.SelectTool(*BJ); 4196 if (!T) 4197 return nullptr; 4198 4199 if (!T->hasIntegratedAssembler()) 4200 return nullptr; 4201 4202 Inputs = BJ->getInputs(); 4203 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 4204 /*NumElements=*/2); 4205 return T; 4206 } 4207 const Tool *combineBackendCompile(ArrayRef<JobActionInfo> ActionInfo, 4208 ActionList &Inputs, 4209 ActionList &CollapsedOffloadAction) { 4210 if (ActionInfo.size() < 2) 4211 return nullptr; 4212 auto *BJ = dyn_cast<BackendJobAction>(ActionInfo[0].JA); 4213 auto *CJ = dyn_cast<CompileJobAction>(ActionInfo[1].JA); 4214 if (!BJ || !CJ) 4215 return nullptr; 4216 4217 // Check if the initial input (to the compile job or its predessor if one 4218 // exists) is LLVM bitcode. In that case, no preprocessor step is required 4219 // and we can still collapse the compile and backend jobs when we have 4220 // -save-temps. I.e. there is no need for a separate compile job just to 4221 // emit unoptimized bitcode. 4222 bool InputIsBitcode = true; 4223 for (size_t i = 1; i < ActionInfo.size(); i++) 4224 if (ActionInfo[i].JA->getType() != types::TY_LLVM_BC && 4225 ActionInfo[i].JA->getType() != types::TY_LTO_BC) { 4226 InputIsBitcode = false; 4227 break; 4228 } 4229 if (!InputIsBitcode && !canCollapsePreprocessorAction()) 4230 return nullptr; 4231 4232 // Get compiler tool. 4233 const Tool *T = TC.SelectTool(*CJ); 4234 if (!T) 4235 return nullptr; 4236 4237 if (T->canEmitIR() && ((SaveTemps && !InputIsBitcode) || EmbedBitcode)) 4238 return nullptr; 4239 4240 Inputs = CJ->getInputs(); 4241 AppendCollapsedOffloadAction(CollapsedOffloadAction, ActionInfo, 4242 /*NumElements=*/2); 4243 return T; 4244 } 4245 4246 /// Updates the inputs if the obtained tool supports combining with 4247 /// preprocessor action, and the current input is indeed a preprocessor 4248 /// action. If combining results in the collapse of offloading actions, those 4249 /// are appended to \a CollapsedOffloadAction. 4250 void combineWithPreprocessor(const Tool *T, ActionList &Inputs, 4251 ActionList &CollapsedOffloadAction) { 4252 if (!T || !canCollapsePreprocessorAction() || !T->hasIntegratedCPP()) 4253 return; 4254 4255 // Attempt to get a preprocessor action dependence. 4256 ActionList PreprocessJobOffloadActions; 4257 ActionList NewInputs; 4258 for (Action *A : Inputs) { 4259 auto *PJ = getPrevDependentAction({A}, PreprocessJobOffloadActions); 4260 if (!PJ || !isa<PreprocessJobAction>(PJ)) { 4261 NewInputs.push_back(A); 4262 continue; 4263 } 4264 4265 // This is legal to combine. Append any offload action we found and add the 4266 // current input to preprocessor inputs. 4267 CollapsedOffloadAction.append(PreprocessJobOffloadActions.begin(), 4268 PreprocessJobOffloadActions.end()); 4269 NewInputs.append(PJ->input_begin(), PJ->input_end()); 4270 } 4271 Inputs = NewInputs; 4272 } 4273 4274 public: 4275 ToolSelector(const JobAction *BaseAction, const ToolChain &TC, 4276 const Compilation &C, bool SaveTemps, bool EmbedBitcode) 4277 : TC(TC), C(C), BaseAction(BaseAction), SaveTemps(SaveTemps), 4278 EmbedBitcode(EmbedBitcode) { 4279 assert(BaseAction && "Invalid base action."); 4280 IsHostSelector = BaseAction->getOffloadingDeviceKind() == Action::OFK_None; 4281 } 4282 4283 /// Check if a chain of actions can be combined and return the tool that can 4284 /// handle the combination of actions. The pointer to the current inputs \a 4285 /// Inputs and the list of offload actions \a CollapsedOffloadActions 4286 /// connected to collapsed actions are updated accordingly. The latter enables 4287 /// the caller of the selector to process them afterwards instead of just 4288 /// dropping them. If no suitable tool is found, null will be returned. 4289 const Tool *getTool(ActionList &Inputs, 4290 ActionList &CollapsedOffloadAction) { 4291 // 4292 // Get the largest chain of actions that we could combine. 4293 // 4294 4295 SmallVector<JobActionInfo, 5> ActionChain(1); 4296 ActionChain.back().JA = BaseAction; 4297 while (ActionChain.back().JA) { 4298 const Action *CurAction = ActionChain.back().JA; 4299 4300 // Grow the chain by one element. 4301 ActionChain.resize(ActionChain.size() + 1); 4302 JobActionInfo &AI = ActionChain.back(); 4303 4304 // Attempt to fill it with the 4305 AI.JA = 4306 getPrevDependentAction(CurAction->getInputs(), AI.SavedOffloadAction); 4307 } 4308 4309 // Pop the last action info as it could not be filled. 4310 ActionChain.pop_back(); 4311 4312 // 4313 // Attempt to combine actions. If all combining attempts failed, just return 4314 // the tool of the provided action. At the end we attempt to combine the 4315 // action with any preprocessor action it may depend on. 4316 // 4317 4318 const Tool *T = combineAssembleBackendCompile(ActionChain, Inputs, 4319 CollapsedOffloadAction); 4320 if (!T) 4321 T = combineAssembleBackend(ActionChain, Inputs, CollapsedOffloadAction); 4322 if (!T) 4323 T = combineBackendCompile(ActionChain, Inputs, CollapsedOffloadAction); 4324 if (!T) { 4325 Inputs = BaseAction->getInputs(); 4326 T = TC.SelectTool(*BaseAction); 4327 } 4328 4329 combineWithPreprocessor(T, Inputs, CollapsedOffloadAction); 4330 return T; 4331 } 4332 }; 4333 } 4334 4335 /// Return a string that uniquely identifies the result of a job. The bound arch 4336 /// is not necessarily represented in the toolchain's triple -- for example, 4337 /// armv7 and armv7s both map to the same triple -- so we need both in our map. 4338 /// Also, we need to add the offloading device kind, as the same tool chain can 4339 /// be used for host and device for some programming models, e.g. OpenMP. 4340 static std::string GetTriplePlusArchString(const ToolChain *TC, 4341 StringRef BoundArch, 4342 Action::OffloadKind OffloadKind) { 4343 std::string TriplePlusArch = TC->getTriple().normalize(); 4344 if (!BoundArch.empty()) { 4345 TriplePlusArch += "-"; 4346 TriplePlusArch += BoundArch; 4347 } 4348 TriplePlusArch += "-"; 4349 TriplePlusArch += Action::GetOffloadKindName(OffloadKind); 4350 return TriplePlusArch; 4351 } 4352 4353 InputInfo Driver::BuildJobsForAction( 4354 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 4355 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 4356 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 4357 Action::OffloadKind TargetDeviceOffloadKind) const { 4358 std::pair<const Action *, std::string> ActionTC = { 4359 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4360 auto CachedResult = CachedResults.find(ActionTC); 4361 if (CachedResult != CachedResults.end()) { 4362 return CachedResult->second; 4363 } 4364 InputInfo Result = BuildJobsForActionNoCache( 4365 C, A, TC, BoundArch, AtTopLevel, MultipleArchs, LinkingOutput, 4366 CachedResults, TargetDeviceOffloadKind); 4367 CachedResults[ActionTC] = Result; 4368 return Result; 4369 } 4370 4371 InputInfo Driver::BuildJobsForActionNoCache( 4372 Compilation &C, const Action *A, const ToolChain *TC, StringRef BoundArch, 4373 bool AtTopLevel, bool MultipleArchs, const char *LinkingOutput, 4374 std::map<std::pair<const Action *, std::string>, InputInfo> &CachedResults, 4375 Action::OffloadKind TargetDeviceOffloadKind) const { 4376 llvm::PrettyStackTraceString CrashInfo("Building compilation jobs"); 4377 4378 InputInfoList OffloadDependencesInputInfo; 4379 bool BuildingForOffloadDevice = TargetDeviceOffloadKind != Action::OFK_None; 4380 if (const OffloadAction *OA = dyn_cast<OffloadAction>(A)) { 4381 // The 'Darwin' toolchain is initialized only when its arguments are 4382 // computed. Get the default arguments for OFK_None to ensure that 4383 // initialization is performed before processing the offload action. 4384 // FIXME: Remove when darwin's toolchain is initialized during construction. 4385 C.getArgsForToolChain(TC, BoundArch, Action::OFK_None); 4386 4387 // The offload action is expected to be used in four different situations. 4388 // 4389 // a) Set a toolchain/architecture/kind for a host action: 4390 // Host Action 1 -> OffloadAction -> Host Action 2 4391 // 4392 // b) Set a toolchain/architecture/kind for a device action; 4393 // Device Action 1 -> OffloadAction -> Device Action 2 4394 // 4395 // c) Specify a device dependence to a host action; 4396 // Device Action 1 _ 4397 // \ 4398 // Host Action 1 ---> OffloadAction -> Host Action 2 4399 // 4400 // d) Specify a host dependence to a device action. 4401 // Host Action 1 _ 4402 // \ 4403 // Device Action 1 ---> OffloadAction -> Device Action 2 4404 // 4405 // For a) and b), we just return the job generated for the dependence. For 4406 // c) and d) we override the current action with the host/device dependence 4407 // if the current toolchain is host/device and set the offload dependences 4408 // info with the jobs obtained from the device/host dependence(s). 4409 4410 // If there is a single device option, just generate the job for it. 4411 if (OA->hasSingleDeviceDependence()) { 4412 InputInfo DevA; 4413 OA->doOnEachDeviceDependence([&](Action *DepA, const ToolChain *DepTC, 4414 const char *DepBoundArch) { 4415 DevA = 4416 BuildJobsForAction(C, DepA, DepTC, DepBoundArch, AtTopLevel, 4417 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, 4418 CachedResults, DepA->getOffloadingDeviceKind()); 4419 }); 4420 return DevA; 4421 } 4422 4423 // If 'Action 2' is host, we generate jobs for the device dependences and 4424 // override the current action with the host dependence. Otherwise, we 4425 // generate the host dependences and override the action with the device 4426 // dependence. The dependences can't therefore be a top-level action. 4427 OA->doOnEachDependence( 4428 /*IsHostDependence=*/BuildingForOffloadDevice, 4429 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4430 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4431 C, DepA, DepTC, DepBoundArch, /*AtTopLevel=*/false, 4432 /*MultipleArchs*/ !!DepBoundArch, LinkingOutput, CachedResults, 4433 DepA->getOffloadingDeviceKind())); 4434 }); 4435 4436 A = BuildingForOffloadDevice 4437 ? OA->getSingleDeviceDependence(/*DoNotConsiderHostActions=*/true) 4438 : OA->getHostDependence(); 4439 } 4440 4441 if (const InputAction *IA = dyn_cast<InputAction>(A)) { 4442 // FIXME: It would be nice to not claim this here; maybe the old scheme of 4443 // just using Args was better? 4444 const Arg &Input = IA->getInputArg(); 4445 Input.claim(); 4446 if (Input.getOption().matches(options::OPT_INPUT)) { 4447 const char *Name = Input.getValue(); 4448 return InputInfo(A, Name, /* _BaseInput = */ Name); 4449 } 4450 return InputInfo(A, &Input, /* _BaseInput = */ ""); 4451 } 4452 4453 if (const BindArchAction *BAA = dyn_cast<BindArchAction>(A)) { 4454 const ToolChain *TC; 4455 StringRef ArchName = BAA->getArchName(); 4456 4457 if (!ArchName.empty()) 4458 TC = &getToolChain(C.getArgs(), 4459 computeTargetTriple(*this, TargetTriple, 4460 C.getArgs(), ArchName)); 4461 else 4462 TC = &C.getDefaultToolChain(); 4463 4464 return BuildJobsForAction(C, *BAA->input_begin(), TC, ArchName, AtTopLevel, 4465 MultipleArchs, LinkingOutput, CachedResults, 4466 TargetDeviceOffloadKind); 4467 } 4468 4469 4470 ActionList Inputs = A->getInputs(); 4471 4472 const JobAction *JA = cast<JobAction>(A); 4473 ActionList CollapsedOffloadActions; 4474 4475 ToolSelector TS(JA, *TC, C, isSaveTempsEnabled(), 4476 embedBitcodeInObject() && !isUsingLTO()); 4477 const Tool *T = TS.getTool(Inputs, CollapsedOffloadActions); 4478 4479 if (!T) 4480 return InputInfo(); 4481 4482 // If we've collapsed action list that contained OffloadAction we 4483 // need to build jobs for host/device-side inputs it may have held. 4484 for (const auto *OA : CollapsedOffloadActions) 4485 cast<OffloadAction>(OA)->doOnEachDependence( 4486 /*IsHostDependence=*/BuildingForOffloadDevice, 4487 [&](Action *DepA, const ToolChain *DepTC, const char *DepBoundArch) { 4488 OffloadDependencesInputInfo.push_back(BuildJobsForAction( 4489 C, DepA, DepTC, DepBoundArch, /* AtTopLevel */ false, 4490 /*MultipleArchs=*/!!DepBoundArch, LinkingOutput, CachedResults, 4491 DepA->getOffloadingDeviceKind())); 4492 }); 4493 4494 // Only use pipes when there is exactly one input. 4495 InputInfoList InputInfos; 4496 for (const Action *Input : Inputs) { 4497 // Treat dsymutil and verify sub-jobs as being at the top-level too, they 4498 // shouldn't get temporary output names. 4499 // FIXME: Clean this up. 4500 bool SubJobAtTopLevel = 4501 AtTopLevel && (isa<DsymutilJobAction>(A) || isa<VerifyJobAction>(A)); 4502 InputInfos.push_back(BuildJobsForAction( 4503 C, Input, TC, BoundArch, SubJobAtTopLevel, MultipleArchs, LinkingOutput, 4504 CachedResults, A->getOffloadingDeviceKind())); 4505 } 4506 4507 // Always use the first input as the base input. 4508 const char *BaseInput = InputInfos[0].getBaseInput(); 4509 4510 // ... except dsymutil actions, which use their actual input as the base 4511 // input. 4512 if (JA->getType() == types::TY_dSYM) 4513 BaseInput = InputInfos[0].getFilename(); 4514 4515 // ... and in header module compilations, which use the module name. 4516 if (auto *ModuleJA = dyn_cast<HeaderModulePrecompileJobAction>(JA)) 4517 BaseInput = ModuleJA->getModuleName(); 4518 4519 // Append outputs of offload device jobs to the input list 4520 if (!OffloadDependencesInputInfo.empty()) 4521 InputInfos.append(OffloadDependencesInputInfo.begin(), 4522 OffloadDependencesInputInfo.end()); 4523 4524 // Set the effective triple of the toolchain for the duration of this job. 4525 llvm::Triple EffectiveTriple; 4526 const ToolChain &ToolTC = T->getToolChain(); 4527 const ArgList &Args = 4528 C.getArgsForToolChain(TC, BoundArch, A->getOffloadingDeviceKind()); 4529 if (InputInfos.size() != 1) { 4530 EffectiveTriple = llvm::Triple(ToolTC.ComputeEffectiveClangTriple(Args)); 4531 } else { 4532 // Pass along the input type if it can be unambiguously determined. 4533 EffectiveTriple = llvm::Triple( 4534 ToolTC.ComputeEffectiveClangTriple(Args, InputInfos[0].getType())); 4535 } 4536 RegisterEffectiveTriple TripleRAII(ToolTC, EffectiveTriple); 4537 4538 // Determine the place to write output to, if any. 4539 InputInfo Result; 4540 InputInfoList UnbundlingResults; 4541 if (auto *UA = dyn_cast<OffloadUnbundlingJobAction>(JA)) { 4542 // If we have an unbundling job, we need to create results for all the 4543 // outputs. We also update the results cache so that other actions using 4544 // this unbundling action can get the right results. 4545 for (auto &UI : UA->getDependentActionsInfo()) { 4546 assert(UI.DependentOffloadKind != Action::OFK_None && 4547 "Unbundling with no offloading??"); 4548 4549 // Unbundling actions are never at the top level. When we generate the 4550 // offloading prefix, we also do that for the host file because the 4551 // unbundling action does not change the type of the output which can 4552 // cause a overwrite. 4553 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4554 UI.DependentOffloadKind, 4555 UI.DependentToolChain->getTriple().normalize(), 4556 /*CreatePrefixForHost=*/true); 4557 auto CurI = InputInfo( 4558 UA, 4559 GetNamedOutputPath(C, *UA, BaseInput, UI.DependentBoundArch, 4560 /*AtTopLevel=*/false, 4561 MultipleArchs || 4562 UI.DependentOffloadKind == Action::OFK_HIP, 4563 OffloadingPrefix), 4564 BaseInput); 4565 // Save the unbundling result. 4566 UnbundlingResults.push_back(CurI); 4567 4568 // Get the unique string identifier for this dependence and cache the 4569 // result. 4570 StringRef Arch; 4571 if (TargetDeviceOffloadKind == Action::OFK_HIP) { 4572 if (UI.DependentOffloadKind == Action::OFK_Host) 4573 Arch = StringRef(); 4574 else 4575 Arch = UI.DependentBoundArch; 4576 } else 4577 Arch = BoundArch; 4578 4579 CachedResults[{A, GetTriplePlusArchString(UI.DependentToolChain, Arch, 4580 UI.DependentOffloadKind)}] = 4581 CurI; 4582 } 4583 4584 // Now that we have all the results generated, select the one that should be 4585 // returned for the current depending action. 4586 std::pair<const Action *, std::string> ActionTC = { 4587 A, GetTriplePlusArchString(TC, BoundArch, TargetDeviceOffloadKind)}; 4588 assert(CachedResults.find(ActionTC) != CachedResults.end() && 4589 "Result does not exist??"); 4590 Result = CachedResults[ActionTC]; 4591 } else if (JA->getType() == types::TY_Nothing) 4592 Result = InputInfo(A, BaseInput); 4593 else { 4594 // We only have to generate a prefix for the host if this is not a top-level 4595 // action. 4596 std::string OffloadingPrefix = Action::GetOffloadingFileNamePrefix( 4597 A->getOffloadingDeviceKind(), TC->getTriple().normalize(), 4598 /*CreatePrefixForHost=*/!!A->getOffloadingHostActiveKinds() && 4599 !AtTopLevel); 4600 if (isa<OffloadWrapperJobAction>(JA)) { 4601 OffloadingPrefix += "-wrapper"; 4602 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4603 BaseInput = FinalOutput->getValue(); 4604 else 4605 BaseInput = getDefaultImageName(); 4606 } 4607 Result = InputInfo(A, GetNamedOutputPath(C, *JA, BaseInput, BoundArch, 4608 AtTopLevel, MultipleArchs, 4609 OffloadingPrefix), 4610 BaseInput); 4611 } 4612 4613 if (CCCPrintBindings && !CCGenDiagnostics) { 4614 llvm::errs() << "# \"" << T->getToolChain().getTripleString() << '"' 4615 << " - \"" << T->getName() << "\", inputs: ["; 4616 for (unsigned i = 0, e = InputInfos.size(); i != e; ++i) { 4617 llvm::errs() << InputInfos[i].getAsString(); 4618 if (i + 1 != e) 4619 llvm::errs() << ", "; 4620 } 4621 if (UnbundlingResults.empty()) 4622 llvm::errs() << "], output: " << Result.getAsString() << "\n"; 4623 else { 4624 llvm::errs() << "], outputs: ["; 4625 for (unsigned i = 0, e = UnbundlingResults.size(); i != e; ++i) { 4626 llvm::errs() << UnbundlingResults[i].getAsString(); 4627 if (i + 1 != e) 4628 llvm::errs() << ", "; 4629 } 4630 llvm::errs() << "] \n"; 4631 } 4632 } else { 4633 if (UnbundlingResults.empty()) 4634 T->ConstructJob( 4635 C, *JA, Result, InputInfos, 4636 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4637 LinkingOutput); 4638 else 4639 T->ConstructJobMultipleOutputs( 4640 C, *JA, UnbundlingResults, InputInfos, 4641 C.getArgsForToolChain(TC, BoundArch, JA->getOffloadingDeviceKind()), 4642 LinkingOutput); 4643 } 4644 return Result; 4645 } 4646 4647 const char *Driver::getDefaultImageName() const { 4648 llvm::Triple Target(llvm::Triple::normalize(TargetTriple)); 4649 return Target.isOSWindows() ? "a.exe" : "a.out"; 4650 } 4651 4652 /// Create output filename based on ArgValue, which could either be a 4653 /// full filename, filename without extension, or a directory. If ArgValue 4654 /// does not provide a filename, then use BaseName, and use the extension 4655 /// suitable for FileType. 4656 static const char *MakeCLOutputFilename(const ArgList &Args, StringRef ArgValue, 4657 StringRef BaseName, 4658 types::ID FileType) { 4659 SmallString<128> Filename = ArgValue; 4660 4661 if (ArgValue.empty()) { 4662 // If the argument is empty, output to BaseName in the current dir. 4663 Filename = BaseName; 4664 } else if (llvm::sys::path::is_separator(Filename.back())) { 4665 // If the argument is a directory, output to BaseName in that dir. 4666 llvm::sys::path::append(Filename, BaseName); 4667 } 4668 4669 if (!llvm::sys::path::has_extension(ArgValue)) { 4670 // If the argument didn't provide an extension, then set it. 4671 const char *Extension = types::getTypeTempSuffix(FileType, true); 4672 4673 if (FileType == types::TY_Image && 4674 Args.hasArg(options::OPT__SLASH_LD, options::OPT__SLASH_LDd)) { 4675 // The output file is a dll. 4676 Extension = "dll"; 4677 } 4678 4679 llvm::sys::path::replace_extension(Filename, Extension); 4680 } 4681 4682 return Args.MakeArgString(Filename.c_str()); 4683 } 4684 4685 static bool HasPreprocessOutput(const Action &JA) { 4686 if (isa<PreprocessJobAction>(JA)) 4687 return true; 4688 if (isa<OffloadAction>(JA) && isa<PreprocessJobAction>(JA.getInputs()[0])) 4689 return true; 4690 if (isa<OffloadBundlingJobAction>(JA) && 4691 HasPreprocessOutput(*(JA.getInputs()[0]))) 4692 return true; 4693 return false; 4694 } 4695 4696 const char *Driver::GetNamedOutputPath(Compilation &C, const JobAction &JA, 4697 const char *BaseInput, 4698 StringRef OrigBoundArch, bool AtTopLevel, 4699 bool MultipleArchs, 4700 StringRef OffloadingPrefix) const { 4701 std::string BoundArch = OrigBoundArch.str(); 4702 #if defined(_WIN32) 4703 // BoundArch may contains ':', which is invalid in file names on Windows, 4704 // therefore replace it with '%'. 4705 std::replace(BoundArch.begin(), BoundArch.end(), ':', '@'); 4706 #endif 4707 4708 llvm::PrettyStackTraceString CrashInfo("Computing output path"); 4709 // Output to a user requested destination? 4710 if (AtTopLevel && !isa<DsymutilJobAction>(JA) && !isa<VerifyJobAction>(JA)) { 4711 if (Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o)) 4712 return C.addResultFile(FinalOutput->getValue(), &JA); 4713 } 4714 4715 // For /P, preprocess to file named after BaseInput. 4716 if (C.getArgs().hasArg(options::OPT__SLASH_P)) { 4717 assert(AtTopLevel && isa<PreprocessJobAction>(JA)); 4718 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4719 StringRef NameArg; 4720 if (Arg *A = C.getArgs().getLastArg(options::OPT__SLASH_Fi)) 4721 NameArg = A->getValue(); 4722 return C.addResultFile( 4723 MakeCLOutputFilename(C.getArgs(), NameArg, BaseName, types::TY_PP_C), 4724 &JA); 4725 } 4726 4727 // Default to writing to stdout? 4728 if (AtTopLevel && !CCGenDiagnostics && HasPreprocessOutput(JA)) { 4729 return "-"; 4730 } 4731 4732 // Is this the assembly listing for /FA? 4733 if (JA.getType() == types::TY_PP_Asm && 4734 (C.getArgs().hasArg(options::OPT__SLASH_FA) || 4735 C.getArgs().hasArg(options::OPT__SLASH_Fa))) { 4736 // Use /Fa and the input filename to determine the asm file name. 4737 StringRef BaseName = llvm::sys::path::filename(BaseInput); 4738 StringRef FaValue = C.getArgs().getLastArgValue(options::OPT__SLASH_Fa); 4739 return C.addResultFile( 4740 MakeCLOutputFilename(C.getArgs(), FaValue, BaseName, JA.getType()), 4741 &JA); 4742 } 4743 4744 // Output to a temporary file? 4745 if ((!AtTopLevel && !isSaveTempsEnabled() && 4746 !C.getArgs().hasArg(options::OPT__SLASH_Fo)) || 4747 CCGenDiagnostics) { 4748 StringRef Name = llvm::sys::path::filename(BaseInput); 4749 std::pair<StringRef, StringRef> Split = Name.split('.'); 4750 SmallString<128> TmpName; 4751 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4752 Arg *A = C.getArgs().getLastArg(options::OPT_fcrash_diagnostics_dir); 4753 if (CCGenDiagnostics && A) { 4754 SmallString<128> CrashDirectory(A->getValue()); 4755 if (!getVFS().exists(CrashDirectory)) 4756 llvm::sys::fs::create_directories(CrashDirectory); 4757 llvm::sys::path::append(CrashDirectory, Split.first); 4758 const char *Middle = Suffix ? "-%%%%%%." : "-%%%%%%"; 4759 std::error_code EC = llvm::sys::fs::createUniqueFile( 4760 CrashDirectory + Middle + Suffix, TmpName); 4761 if (EC) { 4762 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 4763 return ""; 4764 } 4765 } else { 4766 TmpName = GetTemporaryPath(Split.first, Suffix); 4767 } 4768 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4769 } 4770 4771 SmallString<128> BasePath(BaseInput); 4772 SmallString<128> ExternalPath(""); 4773 StringRef BaseName; 4774 4775 // Dsymutil actions should use the full path. 4776 if (isa<DsymutilJobAction>(JA) && C.getArgs().hasArg(options::OPT_dsym_dir)) { 4777 ExternalPath += C.getArgs().getLastArg(options::OPT_dsym_dir)->getValue(); 4778 // We use posix style here because the tests (specifically 4779 // darwin-dsymutil.c) demonstrate that posix style paths are acceptable 4780 // even on Windows and if we don't then the similar test covering this 4781 // fails. 4782 llvm::sys::path::append(ExternalPath, llvm::sys::path::Style::posix, 4783 llvm::sys::path::filename(BasePath)); 4784 BaseName = ExternalPath; 4785 } else if (isa<DsymutilJobAction>(JA) || isa<VerifyJobAction>(JA)) 4786 BaseName = BasePath; 4787 else 4788 BaseName = llvm::sys::path::filename(BasePath); 4789 4790 // Determine what the derived output name should be. 4791 const char *NamedOutput; 4792 4793 if ((JA.getType() == types::TY_Object || JA.getType() == types::TY_LTO_BC) && 4794 C.getArgs().hasArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o)) { 4795 // The /Fo or /o flag decides the object filename. 4796 StringRef Val = 4797 C.getArgs() 4798 .getLastArg(options::OPT__SLASH_Fo, options::OPT__SLASH_o) 4799 ->getValue(); 4800 NamedOutput = 4801 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Object); 4802 } else if (JA.getType() == types::TY_Image && 4803 C.getArgs().hasArg(options::OPT__SLASH_Fe, 4804 options::OPT__SLASH_o)) { 4805 // The /Fe or /o flag names the linked file. 4806 StringRef Val = 4807 C.getArgs() 4808 .getLastArg(options::OPT__SLASH_Fe, options::OPT__SLASH_o) 4809 ->getValue(); 4810 NamedOutput = 4811 MakeCLOutputFilename(C.getArgs(), Val, BaseName, types::TY_Image); 4812 } else if (JA.getType() == types::TY_Image) { 4813 if (IsCLMode()) { 4814 // clang-cl uses BaseName for the executable name. 4815 NamedOutput = 4816 MakeCLOutputFilename(C.getArgs(), "", BaseName, types::TY_Image); 4817 } else { 4818 SmallString<128> Output(getDefaultImageName()); 4819 // HIP image for device compilation with -fno-gpu-rdc is per compilation 4820 // unit. 4821 bool IsHIPNoRDC = JA.getOffloadingDeviceKind() == Action::OFK_HIP && 4822 !C.getArgs().hasFlag(options::OPT_fgpu_rdc, 4823 options::OPT_fno_gpu_rdc, false); 4824 if (IsHIPNoRDC) { 4825 Output = BaseName; 4826 llvm::sys::path::replace_extension(Output, ""); 4827 } 4828 Output += OffloadingPrefix; 4829 if (MultipleArchs && !BoundArch.empty()) { 4830 Output += "-"; 4831 Output.append(BoundArch); 4832 } 4833 if (IsHIPNoRDC) 4834 Output += ".out"; 4835 NamedOutput = C.getArgs().MakeArgString(Output.c_str()); 4836 } 4837 } else if (JA.getType() == types::TY_PCH && IsCLMode()) { 4838 NamedOutput = C.getArgs().MakeArgString(GetClPchPath(C, BaseName)); 4839 } else { 4840 const char *Suffix = types::getTypeTempSuffix(JA.getType(), IsCLMode()); 4841 assert(Suffix && "All types used for output should have a suffix."); 4842 4843 std::string::size_type End = std::string::npos; 4844 if (!types::appendSuffixForType(JA.getType())) 4845 End = BaseName.rfind('.'); 4846 SmallString<128> Suffixed(BaseName.substr(0, End)); 4847 Suffixed += OffloadingPrefix; 4848 if (MultipleArchs && !BoundArch.empty()) { 4849 Suffixed += "-"; 4850 Suffixed.append(BoundArch); 4851 } 4852 // When using both -save-temps and -emit-llvm, use a ".tmp.bc" suffix for 4853 // the unoptimized bitcode so that it does not get overwritten by the ".bc" 4854 // optimized bitcode output. 4855 auto IsHIPRDCInCompilePhase = [](const JobAction &JA, 4856 const llvm::opt::DerivedArgList &Args) { 4857 // The relocatable compilation in HIP implies -emit-llvm. Similarly, use a 4858 // ".tmp.bc" suffix for the unoptimized bitcode (generated in the compile 4859 // phase.) 4860 return isa<CompileJobAction>(JA) && 4861 JA.getOffloadingDeviceKind() == Action::OFK_HIP && 4862 Args.hasFlag(options::OPT_fgpu_rdc, options::OPT_fno_gpu_rdc, 4863 false); 4864 }; 4865 if (!AtTopLevel && JA.getType() == types::TY_LLVM_BC && 4866 (C.getArgs().hasArg(options::OPT_emit_llvm) || 4867 IsHIPRDCInCompilePhase(JA, C.getArgs()))) 4868 Suffixed += ".tmp"; 4869 Suffixed += '.'; 4870 Suffixed += Suffix; 4871 NamedOutput = C.getArgs().MakeArgString(Suffixed.c_str()); 4872 } 4873 4874 // Prepend object file path if -save-temps=obj 4875 if (!AtTopLevel && isSaveTempsObj() && C.getArgs().hasArg(options::OPT_o) && 4876 JA.getType() != types::TY_PCH) { 4877 Arg *FinalOutput = C.getArgs().getLastArg(options::OPT_o); 4878 SmallString<128> TempPath(FinalOutput->getValue()); 4879 llvm::sys::path::remove_filename(TempPath); 4880 StringRef OutputFileName = llvm::sys::path::filename(NamedOutput); 4881 llvm::sys::path::append(TempPath, OutputFileName); 4882 NamedOutput = C.getArgs().MakeArgString(TempPath.c_str()); 4883 } 4884 4885 // If we're saving temps and the temp file conflicts with the input file, 4886 // then avoid overwriting input file. 4887 if (!AtTopLevel && isSaveTempsEnabled() && NamedOutput == BaseName) { 4888 bool SameFile = false; 4889 SmallString<256> Result; 4890 llvm::sys::fs::current_path(Result); 4891 llvm::sys::path::append(Result, BaseName); 4892 llvm::sys::fs::equivalent(BaseInput, Result.c_str(), SameFile); 4893 // Must share the same path to conflict. 4894 if (SameFile) { 4895 StringRef Name = llvm::sys::path::filename(BaseInput); 4896 std::pair<StringRef, StringRef> Split = Name.split('.'); 4897 std::string TmpName = GetTemporaryPath( 4898 Split.first, types::getTypeTempSuffix(JA.getType(), IsCLMode())); 4899 return C.addTempFile(C.getArgs().MakeArgString(TmpName)); 4900 } 4901 } 4902 4903 // As an annoying special case, PCH generation doesn't strip the pathname. 4904 if (JA.getType() == types::TY_PCH && !IsCLMode()) { 4905 llvm::sys::path::remove_filename(BasePath); 4906 if (BasePath.empty()) 4907 BasePath = NamedOutput; 4908 else 4909 llvm::sys::path::append(BasePath, NamedOutput); 4910 return C.addResultFile(C.getArgs().MakeArgString(BasePath.c_str()), &JA); 4911 } else { 4912 return C.addResultFile(NamedOutput, &JA); 4913 } 4914 } 4915 4916 std::string Driver::GetFilePath(StringRef Name, const ToolChain &TC) const { 4917 // Search for Name in a list of paths. 4918 auto SearchPaths = [&](const llvm::SmallVectorImpl<std::string> &P) 4919 -> llvm::Optional<std::string> { 4920 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4921 // attempting to use this prefix when looking for file paths. 4922 for (const auto &Dir : P) { 4923 if (Dir.empty()) 4924 continue; 4925 SmallString<128> P(Dir[0] == '=' ? SysRoot + Dir.substr(1) : Dir); 4926 llvm::sys::path::append(P, Name); 4927 if (llvm::sys::fs::exists(Twine(P))) 4928 return std::string(P); 4929 } 4930 return None; 4931 }; 4932 4933 if (auto P = SearchPaths(PrefixDirs)) 4934 return *P; 4935 4936 SmallString<128> R(ResourceDir); 4937 llvm::sys::path::append(R, Name); 4938 if (llvm::sys::fs::exists(Twine(R))) 4939 return std::string(R.str()); 4940 4941 SmallString<128> P(TC.getCompilerRTPath()); 4942 llvm::sys::path::append(P, Name); 4943 if (llvm::sys::fs::exists(Twine(P))) 4944 return std::string(P.str()); 4945 4946 SmallString<128> D(Dir); 4947 llvm::sys::path::append(D, "..", Name); 4948 if (llvm::sys::fs::exists(Twine(D))) 4949 return std::string(D.str()); 4950 4951 if (auto P = SearchPaths(TC.getLibraryPaths())) 4952 return *P; 4953 4954 if (auto P = SearchPaths(TC.getFilePaths())) 4955 return *P; 4956 4957 return std::string(Name); 4958 } 4959 4960 void Driver::generatePrefixedToolNames( 4961 StringRef Tool, const ToolChain &TC, 4962 SmallVectorImpl<std::string> &Names) const { 4963 // FIXME: Needs a better variable than TargetTriple 4964 Names.emplace_back((TargetTriple + "-" + Tool).str()); 4965 Names.emplace_back(Tool); 4966 4967 // Allow the discovery of tools prefixed with LLVM's default target triple. 4968 std::string DefaultTargetTriple = llvm::sys::getDefaultTargetTriple(); 4969 if (DefaultTargetTriple != TargetTriple) 4970 Names.emplace_back((DefaultTargetTriple + "-" + Tool).str()); 4971 } 4972 4973 static bool ScanDirForExecutable(SmallString<128> &Dir, StringRef Name) { 4974 llvm::sys::path::append(Dir, Name); 4975 if (llvm::sys::fs::can_execute(Twine(Dir))) 4976 return true; 4977 llvm::sys::path::remove_filename(Dir); 4978 return false; 4979 } 4980 4981 std::string Driver::GetProgramPath(StringRef Name, const ToolChain &TC) const { 4982 SmallVector<std::string, 2> TargetSpecificExecutables; 4983 generatePrefixedToolNames(Name, TC, TargetSpecificExecutables); 4984 4985 // Respect a limited subset of the '-Bprefix' functionality in GCC by 4986 // attempting to use this prefix when looking for program paths. 4987 for (const auto &PrefixDir : PrefixDirs) { 4988 if (llvm::sys::fs::is_directory(PrefixDir)) { 4989 SmallString<128> P(PrefixDir); 4990 if (ScanDirForExecutable(P, Name)) 4991 return std::string(P.str()); 4992 } else { 4993 SmallString<128> P((PrefixDir + Name).str()); 4994 if (llvm::sys::fs::can_execute(Twine(P))) 4995 return std::string(P.str()); 4996 } 4997 } 4998 4999 const ToolChain::path_list &List = TC.getProgramPaths(); 5000 for (const auto &TargetSpecificExecutable : TargetSpecificExecutables) { 5001 // For each possible name of the tool look for it in 5002 // program paths first, then the path. 5003 // Higher priority names will be first, meaning that 5004 // a higher priority name in the path will be found 5005 // instead of a lower priority name in the program path. 5006 // E.g. <triple>-gcc on the path will be found instead 5007 // of gcc in the program path 5008 for (const auto &Path : List) { 5009 SmallString<128> P(Path); 5010 if (ScanDirForExecutable(P, TargetSpecificExecutable)) 5011 return std::string(P.str()); 5012 } 5013 5014 // Fall back to the path 5015 if (llvm::ErrorOr<std::string> P = 5016 llvm::sys::findProgramByName(TargetSpecificExecutable)) 5017 return *P; 5018 } 5019 5020 return std::string(Name); 5021 } 5022 5023 std::string Driver::GetTemporaryPath(StringRef Prefix, StringRef Suffix) const { 5024 SmallString<128> Path; 5025 std::error_code EC = llvm::sys::fs::createTemporaryFile(Prefix, Suffix, Path); 5026 if (EC) { 5027 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 5028 return ""; 5029 } 5030 5031 return std::string(Path.str()); 5032 } 5033 5034 std::string Driver::GetTemporaryDirectory(StringRef Prefix) const { 5035 SmallString<128> Path; 5036 std::error_code EC = llvm::sys::fs::createUniqueDirectory(Prefix, Path); 5037 if (EC) { 5038 Diag(clang::diag::err_unable_to_make_temp) << EC.message(); 5039 return ""; 5040 } 5041 5042 return std::string(Path.str()); 5043 } 5044 5045 std::string Driver::GetClPchPath(Compilation &C, StringRef BaseName) const { 5046 SmallString<128> Output; 5047 if (Arg *FpArg = C.getArgs().getLastArg(options::OPT__SLASH_Fp)) { 5048 // FIXME: If anybody needs it, implement this obscure rule: 5049 // "If you specify a directory without a file name, the default file name 5050 // is VCx0.pch., where x is the major version of Visual C++ in use." 5051 Output = FpArg->getValue(); 5052 5053 // "If you do not specify an extension as part of the path name, an 5054 // extension of .pch is assumed. " 5055 if (!llvm::sys::path::has_extension(Output)) 5056 Output += ".pch"; 5057 } else { 5058 if (Arg *YcArg = C.getArgs().getLastArg(options::OPT__SLASH_Yc)) 5059 Output = YcArg->getValue(); 5060 if (Output.empty()) 5061 Output = BaseName; 5062 llvm::sys::path::replace_extension(Output, ".pch"); 5063 } 5064 return std::string(Output.str()); 5065 } 5066 5067 const ToolChain &Driver::getToolChain(const ArgList &Args, 5068 const llvm::Triple &Target) const { 5069 5070 auto &TC = ToolChains[Target.str()]; 5071 if (!TC) { 5072 switch (Target.getOS()) { 5073 case llvm::Triple::AIX: 5074 TC = std::make_unique<toolchains::AIX>(*this, Target, Args); 5075 break; 5076 case llvm::Triple::Haiku: 5077 TC = std::make_unique<toolchains::Haiku>(*this, Target, Args); 5078 break; 5079 case llvm::Triple::Ananas: 5080 TC = std::make_unique<toolchains::Ananas>(*this, Target, Args); 5081 break; 5082 case llvm::Triple::CloudABI: 5083 TC = std::make_unique<toolchains::CloudABI>(*this, Target, Args); 5084 break; 5085 case llvm::Triple::Darwin: 5086 case llvm::Triple::MacOSX: 5087 case llvm::Triple::IOS: 5088 case llvm::Triple::TvOS: 5089 case llvm::Triple::WatchOS: 5090 TC = std::make_unique<toolchains::DarwinClang>(*this, Target, Args); 5091 break; 5092 case llvm::Triple::DragonFly: 5093 TC = std::make_unique<toolchains::DragonFly>(*this, Target, Args); 5094 break; 5095 case llvm::Triple::OpenBSD: 5096 TC = std::make_unique<toolchains::OpenBSD>(*this, Target, Args); 5097 break; 5098 case llvm::Triple::NetBSD: 5099 TC = std::make_unique<toolchains::NetBSD>(*this, Target, Args); 5100 break; 5101 case llvm::Triple::FreeBSD: 5102 TC = std::make_unique<toolchains::FreeBSD>(*this, Target, Args); 5103 break; 5104 case llvm::Triple::Minix: 5105 TC = std::make_unique<toolchains::Minix>(*this, Target, Args); 5106 break; 5107 case llvm::Triple::Linux: 5108 case llvm::Triple::ELFIAMCU: 5109 if (Target.getArch() == llvm::Triple::hexagon) 5110 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 5111 Args); 5112 else if ((Target.getVendor() == llvm::Triple::MipsTechnologies) && 5113 !Target.hasEnvironment()) 5114 TC = std::make_unique<toolchains::MipsLLVMToolChain>(*this, Target, 5115 Args); 5116 else if (Target.isPPC()) 5117 TC = std::make_unique<toolchains::PPCLinuxToolChain>(*this, Target, 5118 Args); 5119 else if (Target.getArch() == llvm::Triple::ve) 5120 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args); 5121 5122 else 5123 TC = std::make_unique<toolchains::Linux>(*this, Target, Args); 5124 break; 5125 case llvm::Triple::NaCl: 5126 TC = std::make_unique<toolchains::NaClToolChain>(*this, Target, Args); 5127 break; 5128 case llvm::Triple::Fuchsia: 5129 TC = std::make_unique<toolchains::Fuchsia>(*this, Target, Args); 5130 break; 5131 case llvm::Triple::Solaris: 5132 TC = std::make_unique<toolchains::Solaris>(*this, Target, Args); 5133 break; 5134 case llvm::Triple::AMDHSA: 5135 TC = std::make_unique<toolchains::ROCMToolChain>(*this, Target, Args); 5136 break; 5137 case llvm::Triple::AMDPAL: 5138 case llvm::Triple::Mesa3D: 5139 TC = std::make_unique<toolchains::AMDGPUToolChain>(*this, Target, Args); 5140 break; 5141 case llvm::Triple::Win32: 5142 switch (Target.getEnvironment()) { 5143 default: 5144 if (Target.isOSBinFormatELF()) 5145 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 5146 else if (Target.isOSBinFormatMachO()) 5147 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 5148 else 5149 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 5150 break; 5151 case llvm::Triple::GNU: 5152 TC = std::make_unique<toolchains::MinGW>(*this, Target, Args); 5153 break; 5154 case llvm::Triple::Itanium: 5155 TC = std::make_unique<toolchains::CrossWindowsToolChain>(*this, Target, 5156 Args); 5157 break; 5158 case llvm::Triple::MSVC: 5159 case llvm::Triple::UnknownEnvironment: 5160 if (Args.getLastArgValue(options::OPT_fuse_ld_EQ) 5161 .startswith_lower("bfd")) 5162 TC = std::make_unique<toolchains::CrossWindowsToolChain>( 5163 *this, Target, Args); 5164 else 5165 TC = 5166 std::make_unique<toolchains::MSVCToolChain>(*this, Target, Args); 5167 break; 5168 } 5169 break; 5170 case llvm::Triple::PS4: 5171 TC = std::make_unique<toolchains::PS4CPU>(*this, Target, Args); 5172 break; 5173 case llvm::Triple::Contiki: 5174 TC = std::make_unique<toolchains::Contiki>(*this, Target, Args); 5175 break; 5176 case llvm::Triple::Hurd: 5177 TC = std::make_unique<toolchains::Hurd>(*this, Target, Args); 5178 break; 5179 case llvm::Triple::ZOS: 5180 TC = std::make_unique<toolchains::ZOS>(*this, Target, Args); 5181 break; 5182 default: 5183 // Of these targets, Hexagon is the only one that might have 5184 // an OS of Linux, in which case it got handled above already. 5185 switch (Target.getArch()) { 5186 case llvm::Triple::tce: 5187 TC = std::make_unique<toolchains::TCEToolChain>(*this, Target, Args); 5188 break; 5189 case llvm::Triple::tcele: 5190 TC = std::make_unique<toolchains::TCELEToolChain>(*this, Target, Args); 5191 break; 5192 case llvm::Triple::hexagon: 5193 TC = std::make_unique<toolchains::HexagonToolChain>(*this, Target, 5194 Args); 5195 break; 5196 case llvm::Triple::lanai: 5197 TC = std::make_unique<toolchains::LanaiToolChain>(*this, Target, Args); 5198 break; 5199 case llvm::Triple::xcore: 5200 TC = std::make_unique<toolchains::XCoreToolChain>(*this, Target, Args); 5201 break; 5202 case llvm::Triple::wasm32: 5203 case llvm::Triple::wasm64: 5204 TC = std::make_unique<toolchains::WebAssembly>(*this, Target, Args); 5205 break; 5206 case llvm::Triple::avr: 5207 TC = std::make_unique<toolchains::AVRToolChain>(*this, Target, Args); 5208 break; 5209 case llvm::Triple::msp430: 5210 TC = 5211 std::make_unique<toolchains::MSP430ToolChain>(*this, Target, Args); 5212 break; 5213 case llvm::Triple::riscv32: 5214 case llvm::Triple::riscv64: 5215 if (toolchains::RISCVToolChain::hasGCCToolchain(*this, Args)) 5216 TC = 5217 std::make_unique<toolchains::RISCVToolChain>(*this, Target, Args); 5218 else 5219 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); 5220 break; 5221 case llvm::Triple::ve: 5222 TC = std::make_unique<toolchains::VEToolChain>(*this, Target, Args); 5223 break; 5224 default: 5225 if (Target.getVendor() == llvm::Triple::Myriad) 5226 TC = std::make_unique<toolchains::MyriadToolChain>(*this, Target, 5227 Args); 5228 else if (toolchains::BareMetal::handlesTarget(Target)) 5229 TC = std::make_unique<toolchains::BareMetal>(*this, Target, Args); 5230 else if (Target.isOSBinFormatELF()) 5231 TC = std::make_unique<toolchains::Generic_ELF>(*this, Target, Args); 5232 else if (Target.isOSBinFormatMachO()) 5233 TC = std::make_unique<toolchains::MachO>(*this, Target, Args); 5234 else 5235 TC = std::make_unique<toolchains::Generic_GCC>(*this, Target, Args); 5236 } 5237 } 5238 } 5239 5240 // Intentionally omitted from the switch above: llvm::Triple::CUDA. CUDA 5241 // compiles always need two toolchains, the CUDA toolchain and the host 5242 // toolchain. So the only valid way to create a CUDA toolchain is via 5243 // CreateOffloadingDeviceToolChains. 5244 5245 return *TC; 5246 } 5247 5248 bool Driver::ShouldUseClangCompiler(const JobAction &JA) const { 5249 // Say "no" if there is not exactly one input of a type clang understands. 5250 if (JA.size() != 1 || 5251 !types::isAcceptedByClang((*JA.input_begin())->getType())) 5252 return false; 5253 5254 // And say "no" if this is not a kind of action clang understands. 5255 if (!isa<PreprocessJobAction>(JA) && !isa<PrecompileJobAction>(JA) && 5256 !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 5257 return false; 5258 5259 return true; 5260 } 5261 5262 bool Driver::ShouldUseFlangCompiler(const JobAction &JA) const { 5263 // Say "no" if there is not exactly one input of a type flang understands. 5264 if (JA.size() != 1 || 5265 !types::isFortran((*JA.input_begin())->getType())) 5266 return false; 5267 5268 // And say "no" if this is not a kind of action flang understands. 5269 if (!isa<PreprocessJobAction>(JA) && !isa<CompileJobAction>(JA) && !isa<BackendJobAction>(JA)) 5270 return false; 5271 5272 return true; 5273 } 5274 5275 bool Driver::ShouldEmitStaticLibrary(const ArgList &Args) const { 5276 // Only emit static library if the flag is set explicitly. 5277 if (Args.hasArg(options::OPT_emit_static_lib)) 5278 return true; 5279 return false; 5280 } 5281 5282 /// GetReleaseVersion - Parse (([0-9]+)(.([0-9]+)(.([0-9]+)?))?)? and return the 5283 /// grouped values as integers. Numbers which are not provided are set to 0. 5284 /// 5285 /// \return True if the entire string was parsed (9.2), or all groups were 5286 /// parsed (10.3.5extrastuff). 5287 bool Driver::GetReleaseVersion(StringRef Str, unsigned &Major, unsigned &Minor, 5288 unsigned &Micro, bool &HadExtra) { 5289 HadExtra = false; 5290 5291 Major = Minor = Micro = 0; 5292 if (Str.empty()) 5293 return false; 5294 5295 if (Str.consumeInteger(10, Major)) 5296 return false; 5297 if (Str.empty()) 5298 return true; 5299 if (Str[0] != '.') 5300 return false; 5301 5302 Str = Str.drop_front(1); 5303 5304 if (Str.consumeInteger(10, Minor)) 5305 return false; 5306 if (Str.empty()) 5307 return true; 5308 if (Str[0] != '.') 5309 return false; 5310 Str = Str.drop_front(1); 5311 5312 if (Str.consumeInteger(10, Micro)) 5313 return false; 5314 if (!Str.empty()) 5315 HadExtra = true; 5316 return true; 5317 } 5318 5319 /// Parse digits from a string \p Str and fulfill \p Digits with 5320 /// the parsed numbers. This method assumes that the max number of 5321 /// digits to look for is equal to Digits.size(). 5322 /// 5323 /// \return True if the entire string was parsed and there are 5324 /// no extra characters remaining at the end. 5325 bool Driver::GetReleaseVersion(StringRef Str, 5326 MutableArrayRef<unsigned> Digits) { 5327 if (Str.empty()) 5328 return false; 5329 5330 unsigned CurDigit = 0; 5331 while (CurDigit < Digits.size()) { 5332 unsigned Digit; 5333 if (Str.consumeInteger(10, Digit)) 5334 return false; 5335 Digits[CurDigit] = Digit; 5336 if (Str.empty()) 5337 return true; 5338 if (Str[0] != '.') 5339 return false; 5340 Str = Str.drop_front(1); 5341 CurDigit++; 5342 } 5343 5344 // More digits than requested, bail out... 5345 return false; 5346 } 5347 5348 std::pair<unsigned, unsigned> 5349 Driver::getIncludeExcludeOptionFlagMasks(bool IsClCompatMode) const { 5350 unsigned IncludedFlagsBitmask = 0; 5351 unsigned ExcludedFlagsBitmask = options::NoDriverOption; 5352 5353 if (IsClCompatMode) { 5354 // Include CL and Core options. 5355 IncludedFlagsBitmask |= options::CLOption; 5356 IncludedFlagsBitmask |= options::CoreOption; 5357 } else { 5358 ExcludedFlagsBitmask |= options::CLOption; 5359 } 5360 5361 return std::make_pair(IncludedFlagsBitmask, ExcludedFlagsBitmask); 5362 } 5363 5364 bool clang::driver::isOptimizationLevelFast(const ArgList &Args) { 5365 return Args.hasFlag(options::OPT_Ofast, options::OPT_O_Group, false); 5366 } 5367 5368 bool clang::driver::willEmitRemarks(const ArgList &Args) { 5369 // -fsave-optimization-record enables it. 5370 if (Args.hasFlag(options::OPT_fsave_optimization_record, 5371 options::OPT_fno_save_optimization_record, false)) 5372 return true; 5373 5374 // -fsave-optimization-record=<format> enables it as well. 5375 if (Args.hasFlag(options::OPT_fsave_optimization_record_EQ, 5376 options::OPT_fno_save_optimization_record, false)) 5377 return true; 5378 5379 // -foptimization-record-file alone enables it too. 5380 if (Args.hasFlag(options::OPT_foptimization_record_file_EQ, 5381 options::OPT_fno_save_optimization_record, false)) 5382 return true; 5383 5384 // -foptimization-record-passes alone enables it too. 5385 if (Args.hasFlag(options::OPT_foptimization_record_passes_EQ, 5386 options::OPT_fno_save_optimization_record, false)) 5387 return true; 5388 return false; 5389 } 5390