1 //===- X86.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ABIInfoImpl.h" 10 #include "TargetInfo.h" 11 #include "clang/Basic/DiagnosticFrontend.h" 12 #include "llvm/ADT/SmallBitVector.h" 13 14 using namespace clang; 15 using namespace clang::CodeGen; 16 17 namespace { 18 19 /// IsX86_MMXType - Return true if this is an MMX type. 20 bool IsX86_MMXType(llvm::Type *IRType) { 21 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 22 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 23 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 24 IRType->getScalarSizeInBits() != 64; 25 } 26 27 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 28 StringRef Constraint, 29 llvm::Type* Ty) { 30 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 31 .Cases("y", "&y", "^Ym", true) 32 .Default(false); 33 if (IsMMXCons && Ty->isVectorTy()) { 34 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() != 35 64) { 36 // Invalid MMX constraint 37 return nullptr; 38 } 39 40 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 41 } 42 43 if (Constraint == "k") { 44 llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext()); 45 return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits()); 46 } 47 48 // No operation needed 49 return Ty; 50 } 51 52 /// Returns true if this type can be passed in SSE registers with the 53 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 54 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 55 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 56 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 57 if (BT->getKind() == BuiltinType::LongDouble) { 58 if (&Context.getTargetInfo().getLongDoubleFormat() == 59 &llvm::APFloat::x87DoubleExtended()) 60 return false; 61 } 62 return true; 63 } 64 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 65 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 66 // registers specially. 67 unsigned VecSize = Context.getTypeSize(VT); 68 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 69 return true; 70 } 71 return false; 72 } 73 74 /// Returns true if this aggregate is small enough to be passed in SSE registers 75 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 76 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 77 return NumMembers <= 4; 78 } 79 80 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 81 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 82 auto AI = ABIArgInfo::getDirect(T); 83 AI.setInReg(true); 84 AI.setCanBeFlattened(false); 85 return AI; 86 } 87 88 //===----------------------------------------------------------------------===// 89 // X86-32 ABI Implementation 90 //===----------------------------------------------------------------------===// 91 92 /// Similar to llvm::CCState, but for Clang. 93 struct CCState { 94 CCState(CGFunctionInfo &FI) 95 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()), 96 Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {} 97 98 llvm::SmallBitVector IsPreassigned; 99 unsigned CC = CallingConv::CC_C; 100 unsigned FreeRegs = 0; 101 unsigned FreeSSERegs = 0; 102 RequiredArgs Required; 103 bool IsDelegateCall = false; 104 }; 105 106 /// X86_32ABIInfo - The X86-32 ABI information. 107 class X86_32ABIInfo : public ABIInfo { 108 enum Class { 109 Integer, 110 Float 111 }; 112 113 static const unsigned MinABIStackAlignInBytes = 4; 114 115 bool IsDarwinVectorABI; 116 bool IsRetSmallStructInRegABI; 117 bool IsWin32StructABI; 118 bool IsSoftFloatABI; 119 bool IsMCUABI; 120 bool IsLinuxABI; 121 unsigned DefaultNumRegisterParameters; 122 123 static bool isRegisterSize(unsigned Size) { 124 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 125 } 126 127 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 128 // FIXME: Assumes vectorcall is in use. 129 return isX86VectorTypeForVectorCall(getContext(), Ty); 130 } 131 132 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 133 uint64_t NumMembers) const override { 134 // FIXME: Assumes vectorcall is in use. 135 return isX86VectorCallAggregateSmallEnough(NumMembers); 136 } 137 138 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 139 140 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 141 /// such that the argument will be passed in memory. 142 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 143 144 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 145 146 /// Return the alignment to use for the given type on the stack. 147 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 148 149 Class classify(QualType Ty) const; 150 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 151 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State, 152 unsigned ArgIndex) const; 153 154 /// Updates the number of available free registers, returns 155 /// true if any registers were allocated. 156 bool updateFreeRegs(QualType Ty, CCState &State) const; 157 158 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 159 bool &NeedsPadding) const; 160 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 161 162 bool canExpandIndirectArgument(QualType Ty) const; 163 164 /// Rewrite the function info so that all memory arguments use 165 /// inalloca. 166 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 167 168 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 169 CharUnits &StackOffset, ABIArgInfo &Info, 170 QualType Type) const; 171 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 172 173 public: 174 175 void computeInfo(CGFunctionInfo &FI) const override; 176 RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 177 AggValueSlot Slot) const override; 178 179 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 180 bool RetSmallStructInRegABI, bool Win32StructABI, 181 unsigned NumRegisterParameters, bool SoftFloatABI) 182 : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 183 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 184 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 185 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 186 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 187 CGT.getTarget().getTriple().isOSCygMing()), 188 DefaultNumRegisterParameters(NumRegisterParameters) {} 189 }; 190 191 class X86_32SwiftABIInfo : public SwiftABIInfo { 192 public: 193 explicit X86_32SwiftABIInfo(CodeGenTypes &CGT) 194 : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {} 195 196 bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys, 197 bool AsReturnValue) const override { 198 // LLVM's x86-32 lowering currently only assigns up to three 199 // integer registers and three fp registers. Oddly, it'll use up to 200 // four vector registers for vectors, but those can overlap with the 201 // scalar registers. 202 return occupiesMoreThan(ComponentTys, /*total=*/3); 203 } 204 }; 205 206 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 207 public: 208 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 209 bool RetSmallStructInRegABI, bool Win32StructABI, 210 unsigned NumRegisterParameters, bool SoftFloatABI) 211 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 212 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 213 NumRegisterParameters, SoftFloatABI)) { 214 SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT); 215 } 216 217 static bool isStructReturnInRegABI( 218 const llvm::Triple &Triple, const CodeGenOptions &Opts); 219 220 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 221 CodeGen::CodeGenModule &CGM) const override; 222 223 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 224 // Darwin uses different dwarf register numbers for EH. 225 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 226 return 4; 227 } 228 229 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 230 llvm::Value *Address) const override; 231 232 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 233 StringRef Constraint, 234 llvm::Type* Ty) const override { 235 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 236 } 237 238 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 239 std::string &Constraints, 240 std::vector<llvm::Type *> &ResultRegTypes, 241 std::vector<llvm::Type *> &ResultTruncRegTypes, 242 std::vector<LValue> &ResultRegDests, 243 std::string &AsmString, 244 unsigned NumOutputs) const override; 245 246 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 247 return "movl\t%ebp, %ebp" 248 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 249 } 250 }; 251 252 } 253 254 /// Rewrite input constraint references after adding some output constraints. 255 /// In the case where there is one output and one input and we add one output, 256 /// we need to replace all operand references greater than or equal to 1: 257 /// mov $0, $1 258 /// mov eax, $1 259 /// The result will be: 260 /// mov $0, $2 261 /// mov eax, $2 262 static void rewriteInputConstraintReferences(unsigned FirstIn, 263 unsigned NumNewOuts, 264 std::string &AsmString) { 265 std::string Buf; 266 llvm::raw_string_ostream OS(Buf); 267 size_t Pos = 0; 268 while (Pos < AsmString.size()) { 269 size_t DollarStart = AsmString.find('$', Pos); 270 if (DollarStart == std::string::npos) 271 DollarStart = AsmString.size(); 272 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 273 if (DollarEnd == std::string::npos) 274 DollarEnd = AsmString.size(); 275 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 276 Pos = DollarEnd; 277 size_t NumDollars = DollarEnd - DollarStart; 278 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 279 // We have an operand reference. 280 size_t DigitStart = Pos; 281 if (AsmString[DigitStart] == '{') { 282 OS << '{'; 283 ++DigitStart; 284 } 285 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 286 if (DigitEnd == std::string::npos) 287 DigitEnd = AsmString.size(); 288 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 289 unsigned OperandIndex; 290 if (!OperandStr.getAsInteger(10, OperandIndex)) { 291 if (OperandIndex >= FirstIn) 292 OperandIndex += NumNewOuts; 293 OS << OperandIndex; 294 } else { 295 OS << OperandStr; 296 } 297 Pos = DigitEnd; 298 } 299 } 300 AsmString = std::move(OS.str()); 301 } 302 303 /// Add output constraints for EAX:EDX because they are return registers. 304 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 305 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 306 std::vector<llvm::Type *> &ResultRegTypes, 307 std::vector<llvm::Type *> &ResultTruncRegTypes, 308 std::vector<LValue> &ResultRegDests, std::string &AsmString, 309 unsigned NumOutputs) const { 310 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 311 312 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 313 // larger. 314 if (!Constraints.empty()) 315 Constraints += ','; 316 if (RetWidth <= 32) { 317 Constraints += "={eax}"; 318 ResultRegTypes.push_back(CGF.Int32Ty); 319 } else { 320 // Use the 'A' constraint for EAX:EDX. 321 Constraints += "=A"; 322 ResultRegTypes.push_back(CGF.Int64Ty); 323 } 324 325 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 326 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 327 ResultTruncRegTypes.push_back(CoerceTy); 328 329 // Coerce the integer by bitcasting the return slot pointer. 330 ReturnSlot.setAddress(ReturnSlot.getAddress().withElementType(CoerceTy)); 331 ResultRegDests.push_back(ReturnSlot); 332 333 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 334 } 335 336 /// shouldReturnTypeInRegister - Determine if the given type should be 337 /// returned in a register (for the Darwin and MCU ABI). 338 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 339 ASTContext &Context) const { 340 uint64_t Size = Context.getTypeSize(Ty); 341 342 // For i386, type must be register sized. 343 // For the MCU ABI, it only needs to be <= 8-byte 344 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 345 return false; 346 347 if (Ty->isVectorType()) { 348 // 64- and 128- bit vectors inside structures are not returned in 349 // registers. 350 if (Size == 64 || Size == 128) 351 return false; 352 353 return true; 354 } 355 356 // If this is a builtin, pointer, enum, complex type, member pointer, or 357 // member function pointer it is ok. 358 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 359 Ty->isAnyComplexType() || Ty->isEnumeralType() || 360 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 361 return true; 362 363 // Arrays are treated like records. 364 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 365 return shouldReturnTypeInRegister(AT->getElementType(), Context); 366 367 // Otherwise, it must be a record type. 368 const RecordType *RT = Ty->getAs<RecordType>(); 369 if (!RT) return false; 370 371 // FIXME: Traverse bases here too. 372 373 // Structure types are passed in register if all fields would be 374 // passed in a register. 375 for (const auto *FD : RT->getDecl()->fields()) { 376 // Empty fields are ignored. 377 if (isEmptyField(Context, FD, true)) 378 continue; 379 380 // Check fields recursively. 381 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 382 return false; 383 } 384 return true; 385 } 386 387 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 388 // Treat complex types as the element type. 389 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 390 Ty = CTy->getElementType(); 391 392 // Check for a type which we know has a simple scalar argument-passing 393 // convention without any padding. (We're specifically looking for 32 394 // and 64-bit integer and integer-equivalents, float, and double.) 395 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 396 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 397 return false; 398 399 uint64_t Size = Context.getTypeSize(Ty); 400 return Size == 32 || Size == 64; 401 } 402 403 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 404 uint64_t &Size) { 405 for (const auto *FD : RD->fields()) { 406 // Scalar arguments on the stack get 4 byte alignment on x86. If the 407 // argument is smaller than 32-bits, expanding the struct will create 408 // alignment padding. 409 if (!is32Or64BitBasicType(FD->getType(), Context)) 410 return false; 411 412 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 413 // how to expand them yet, and the predicate for telling if a bitfield still 414 // counts as "basic" is more complicated than what we were doing previously. 415 if (FD->isBitField()) 416 return false; 417 418 Size += Context.getTypeSize(FD->getType()); 419 } 420 return true; 421 } 422 423 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 424 uint64_t &Size) { 425 // Don't do this if there are any non-empty bases. 426 for (const CXXBaseSpecifier &Base : RD->bases()) { 427 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 428 Size)) 429 return false; 430 } 431 if (!addFieldSizes(Context, RD, Size)) 432 return false; 433 return true; 434 } 435 436 /// Test whether an argument type which is to be passed indirectly (on the 437 /// stack) would have the equivalent layout if it was expanded into separate 438 /// arguments. If so, we prefer to do the latter to avoid inhibiting 439 /// optimizations. 440 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 441 // We can only expand structure types. 442 const RecordType *RT = Ty->getAs<RecordType>(); 443 if (!RT) 444 return false; 445 const RecordDecl *RD = RT->getDecl(); 446 uint64_t Size = 0; 447 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 448 if (!IsWin32StructABI) { 449 // On non-Windows, we have to conservatively match our old bitcode 450 // prototypes in order to be ABI-compatible at the bitcode level. 451 if (!CXXRD->isCLike()) 452 return false; 453 } else { 454 // Don't do this for dynamic classes. 455 if (CXXRD->isDynamicClass()) 456 return false; 457 } 458 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 459 return false; 460 } else { 461 if (!addFieldSizes(getContext(), RD, Size)) 462 return false; 463 } 464 465 // We can do this if there was no alignment padding. 466 return Size == getContext().getTypeSize(Ty); 467 } 468 469 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 470 // If the return value is indirect, then the hidden argument is consuming one 471 // integer register. 472 if (State.CC != llvm::CallingConv::X86_FastCall && 473 State.CC != llvm::CallingConv::X86_VectorCall && State.FreeRegs) { 474 --State.FreeRegs; 475 if (!IsMCUABI) 476 return getNaturalAlignIndirectInReg(RetTy); 477 } 478 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 479 } 480 481 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 482 CCState &State) const { 483 if (RetTy->isVoidType()) 484 return ABIArgInfo::getIgnore(); 485 486 const Type *Base = nullptr; 487 uint64_t NumElts = 0; 488 if ((State.CC == llvm::CallingConv::X86_VectorCall || 489 State.CC == llvm::CallingConv::X86_RegCall) && 490 isHomogeneousAggregate(RetTy, Base, NumElts)) { 491 // The LLVM struct type for such an aggregate should lower properly. 492 return ABIArgInfo::getDirect(); 493 } 494 495 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 496 // On Darwin, some vectors are returned in registers. 497 if (IsDarwinVectorABI) { 498 uint64_t Size = getContext().getTypeSize(RetTy); 499 500 // 128-bit vectors are a special case; they are returned in 501 // registers and we need to make sure to pick a type the LLVM 502 // backend will like. 503 if (Size == 128) 504 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 505 llvm::Type::getInt64Ty(getVMContext()), 2)); 506 507 // Always return in register if it fits in a general purpose 508 // register, or if it is 64 bits and has a single element. 509 if ((Size == 8 || Size == 16 || Size == 32) || 510 (Size == 64 && VT->getNumElements() == 1)) 511 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 512 Size)); 513 514 return getIndirectReturnResult(RetTy, State); 515 } 516 517 return ABIArgInfo::getDirect(); 518 } 519 520 if (isAggregateTypeForABI(RetTy)) { 521 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 522 // Structures with flexible arrays are always indirect. 523 if (RT->getDecl()->hasFlexibleArrayMember()) 524 return getIndirectReturnResult(RetTy, State); 525 } 526 527 // If specified, structs and unions are always indirect. 528 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 529 return getIndirectReturnResult(RetTy, State); 530 531 // Ignore empty structs/unions. 532 if (isEmptyRecord(getContext(), RetTy, true)) 533 return ABIArgInfo::getIgnore(); 534 535 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 536 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 537 QualType ET = getContext().getCanonicalType(CT->getElementType()); 538 if (ET->isFloat16Type()) 539 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 540 llvm::Type::getHalfTy(getVMContext()), 2)); 541 } 542 543 // Small structures which are register sized are generally returned 544 // in a register. 545 if (shouldReturnTypeInRegister(RetTy, getContext())) { 546 uint64_t Size = getContext().getTypeSize(RetTy); 547 548 // As a special-case, if the struct is a "single-element" struct, and 549 // the field is of type "float" or "double", return it in a 550 // floating-point register. (MSVC does not apply this special case.) 551 // We apply a similar transformation for pointer types to improve the 552 // quality of the generated IR. 553 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 554 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 555 || SeltTy->hasPointerRepresentation()) 556 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 557 558 // FIXME: We should be able to narrow this integer in cases with dead 559 // padding. 560 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 561 } 562 563 return getIndirectReturnResult(RetTy, State); 564 } 565 566 // Treat an enum type as its underlying type. 567 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 568 RetTy = EnumTy->getDecl()->getIntegerType(); 569 570 if (const auto *EIT = RetTy->getAs<BitIntType>()) 571 if (EIT->getNumBits() > 64) 572 return getIndirectReturnResult(RetTy, State); 573 574 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 575 : ABIArgInfo::getDirect()); 576 } 577 578 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 579 unsigned Align) const { 580 // Otherwise, if the alignment is less than or equal to the minimum ABI 581 // alignment, just use the default; the backend will handle this. 582 if (Align <= MinABIStackAlignInBytes) 583 return 0; // Use default alignment. 584 585 if (IsLinuxABI) { 586 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 587 // want to spend any effort dealing with the ramifications of ABI breaks. 588 // 589 // If the vector type is __m128/__m256/__m512, return the default alignment. 590 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 591 return Align; 592 } 593 // On non-Darwin, the stack type alignment is always 4. 594 if (!IsDarwinVectorABI) { 595 // Set explicit alignment, since we may need to realign the top. 596 return MinABIStackAlignInBytes; 597 } 598 599 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 600 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 601 isRecordWithSIMDVectorType(getContext(), Ty))) 602 return 16; 603 604 return MinABIStackAlignInBytes; 605 } 606 607 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 608 CCState &State) const { 609 if (!ByVal) { 610 if (State.FreeRegs) { 611 --State.FreeRegs; // Non-byval indirects just use one pointer. 612 if (!IsMCUABI) 613 return getNaturalAlignIndirectInReg(Ty); 614 } 615 return getNaturalAlignIndirect(Ty, false); 616 } 617 618 // Compute the byval alignment. 619 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 620 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 621 if (StackAlign == 0) 622 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 623 624 // If the stack alignment is less than the type alignment, realign the 625 // argument. 626 bool Realign = TypeAlign > StackAlign; 627 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 628 /*ByVal=*/true, Realign); 629 } 630 631 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 632 const Type *T = isSingleElementStruct(Ty, getContext()); 633 if (!T) 634 T = Ty.getTypePtr(); 635 636 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 637 BuiltinType::Kind K = BT->getKind(); 638 if (K == BuiltinType::Float || K == BuiltinType::Double) 639 return Float; 640 } 641 return Integer; 642 } 643 644 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 645 if (!IsSoftFloatABI) { 646 Class C = classify(Ty); 647 if (C == Float) 648 return false; 649 } 650 651 unsigned Size = getContext().getTypeSize(Ty); 652 unsigned SizeInRegs = (Size + 31) / 32; 653 654 if (SizeInRegs == 0) 655 return false; 656 657 if (!IsMCUABI) { 658 if (SizeInRegs > State.FreeRegs) { 659 State.FreeRegs = 0; 660 return false; 661 } 662 } else { 663 // The MCU psABI allows passing parameters in-reg even if there are 664 // earlier parameters that are passed on the stack. Also, 665 // it does not allow passing >8-byte structs in-register, 666 // even if there are 3 free registers available. 667 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 668 return false; 669 } 670 671 State.FreeRegs -= SizeInRegs; 672 return true; 673 } 674 675 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 676 bool &InReg, 677 bool &NeedsPadding) const { 678 // On Windows, aggregates other than HFAs are never passed in registers, and 679 // they do not consume register slots. Homogenous floating-point aggregates 680 // (HFAs) have already been dealt with at this point. 681 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 682 return false; 683 684 NeedsPadding = false; 685 InReg = !IsMCUABI; 686 687 if (!updateFreeRegs(Ty, State)) 688 return false; 689 690 if (IsMCUABI) 691 return true; 692 693 if (State.CC == llvm::CallingConv::X86_FastCall || 694 State.CC == llvm::CallingConv::X86_VectorCall || 695 State.CC == llvm::CallingConv::X86_RegCall) { 696 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 697 NeedsPadding = true; 698 699 return false; 700 } 701 702 return true; 703 } 704 705 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 706 bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) && 707 (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 708 Ty->isReferenceType()); 709 710 if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall || 711 State.CC == llvm::CallingConv::X86_VectorCall)) 712 return false; 713 714 if (!updateFreeRegs(Ty, State)) 715 return false; 716 717 if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall) 718 return false; 719 720 // Return true to apply inreg to all legal parameters except for MCU targets. 721 return !IsMCUABI; 722 } 723 724 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 725 // Vectorcall x86 works subtly different than in x64, so the format is 726 // a bit different than the x64 version. First, all vector types (not HVAs) 727 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 728 // This differs from the x64 implementation, where the first 6 by INDEX get 729 // registers. 730 // In the second pass over the arguments, HVAs are passed in the remaining 731 // vector registers if possible, or indirectly by address. The address will be 732 // passed in ECX/EDX if available. Any other arguments are passed according to 733 // the usual fastcall rules. 734 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 735 for (int I = 0, E = Args.size(); I < E; ++I) { 736 const Type *Base = nullptr; 737 uint64_t NumElts = 0; 738 const QualType &Ty = Args[I].type; 739 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 740 isHomogeneousAggregate(Ty, Base, NumElts)) { 741 if (State.FreeSSERegs >= NumElts) { 742 State.FreeSSERegs -= NumElts; 743 Args[I].info = ABIArgInfo::getDirectInReg(); 744 State.IsPreassigned.set(I); 745 } 746 } 747 } 748 } 749 750 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State, 751 unsigned ArgIndex) const { 752 // FIXME: Set alignment on indirect arguments. 753 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 754 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 755 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 756 757 Ty = useFirstFieldIfTransparentUnion(Ty); 758 TypeInfo TI = getContext().getTypeInfo(Ty); 759 760 // Check with the C++ ABI first. 761 const RecordType *RT = Ty->getAs<RecordType>(); 762 if (RT) { 763 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 764 if (RAA == CGCXXABI::RAA_Indirect) { 765 return getIndirectResult(Ty, false, State); 766 } else if (State.IsDelegateCall) { 767 // Avoid having different alignments on delegate call args by always 768 // setting the alignment to 4, which is what we do for inallocas. 769 ABIArgInfo Res = getIndirectResult(Ty, false, State); 770 Res.setIndirectAlign(CharUnits::fromQuantity(4)); 771 return Res; 772 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 773 // The field index doesn't matter, we'll fix it up later. 774 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 775 } 776 } 777 778 // Regcall uses the concept of a homogenous vector aggregate, similar 779 // to other targets. 780 const Type *Base = nullptr; 781 uint64_t NumElts = 0; 782 if ((IsRegCall || IsVectorCall) && 783 isHomogeneousAggregate(Ty, Base, NumElts)) { 784 if (State.FreeSSERegs >= NumElts) { 785 State.FreeSSERegs -= NumElts; 786 787 // Vectorcall passes HVAs directly and does not flatten them, but regcall 788 // does. 789 if (IsVectorCall) 790 return getDirectX86Hva(); 791 792 if (Ty->isBuiltinType() || Ty->isVectorType()) 793 return ABIArgInfo::getDirect(); 794 return ABIArgInfo::getExpand(); 795 } 796 if (IsVectorCall && Ty->isBuiltinType()) 797 return ABIArgInfo::getDirect(); 798 return getIndirectResult(Ty, /*ByVal=*/false, State); 799 } 800 801 if (isAggregateTypeForABI(Ty)) { 802 // Structures with flexible arrays are always indirect. 803 // FIXME: This should not be byval! 804 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 805 return getIndirectResult(Ty, true, State); 806 807 // Ignore empty structs/unions on non-Windows. 808 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 809 return ABIArgInfo::getIgnore(); 810 811 llvm::LLVMContext &LLVMContext = getVMContext(); 812 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 813 bool NeedsPadding = false; 814 bool InReg; 815 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 816 unsigned SizeInRegs = (TI.Width + 31) / 32; 817 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 818 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 819 if (InReg) 820 return ABIArgInfo::getDirectInReg(Result); 821 else 822 return ABIArgInfo::getDirect(Result); 823 } 824 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 825 826 // Pass over-aligned aggregates to non-variadic functions on Windows 827 // indirectly. This behavior was added in MSVC 2015. Use the required 828 // alignment from the record layout, since that may be less than the 829 // regular type alignment, and types with required alignment of less than 4 830 // bytes are not passed indirectly. 831 if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) { 832 unsigned AlignInBits = 0; 833 if (RT) { 834 const ASTRecordLayout &Layout = 835 getContext().getASTRecordLayout(RT->getDecl()); 836 AlignInBits = getContext().toBits(Layout.getRequiredAlignment()); 837 } else if (TI.isAlignRequired()) { 838 AlignInBits = TI.Align; 839 } 840 if (AlignInBits > 32) 841 return getIndirectResult(Ty, /*ByVal=*/false, State); 842 } 843 844 // Expand small (<= 128-bit) record types when we know that the stack layout 845 // of those arguments will match the struct. This is important because the 846 // LLVM backend isn't smart enough to remove byval, which inhibits many 847 // optimizations. 848 // Don't do this for the MCU if there are still free integer registers 849 // (see X86_64 ABI for full explanation). 850 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 851 canExpandIndirectArgument(Ty)) 852 return ABIArgInfo::getExpandWithPadding( 853 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 854 855 return getIndirectResult(Ty, true, State); 856 } 857 858 if (const VectorType *VT = Ty->getAs<VectorType>()) { 859 // On Windows, vectors are passed directly if registers are available, or 860 // indirectly if not. This avoids the need to align argument memory. Pass 861 // user-defined vector types larger than 512 bits indirectly for simplicity. 862 if (IsWin32StructABI) { 863 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 864 --State.FreeSSERegs; 865 return ABIArgInfo::getDirectInReg(); 866 } 867 return getIndirectResult(Ty, /*ByVal=*/false, State); 868 } 869 870 // On Darwin, some vectors are passed in memory, we handle this by passing 871 // it as an i8/i16/i32/i64. 872 if (IsDarwinVectorABI) { 873 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 874 (TI.Width == 64 && VT->getNumElements() == 1)) 875 return ABIArgInfo::getDirect( 876 llvm::IntegerType::get(getVMContext(), TI.Width)); 877 } 878 879 if (IsX86_MMXType(CGT.ConvertType(Ty))) 880 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 881 882 return ABIArgInfo::getDirect(); 883 } 884 885 886 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 887 Ty = EnumTy->getDecl()->getIntegerType(); 888 889 bool InReg = shouldPrimitiveUseInReg(Ty, State); 890 891 if (isPromotableIntegerTypeForABI(Ty)) { 892 if (InReg) 893 return ABIArgInfo::getExtendInReg(Ty); 894 return ABIArgInfo::getExtend(Ty); 895 } 896 897 if (const auto *EIT = Ty->getAs<BitIntType>()) { 898 if (EIT->getNumBits() <= 64) { 899 if (InReg) 900 return ABIArgInfo::getDirectInReg(); 901 return ABIArgInfo::getDirect(); 902 } 903 return getIndirectResult(Ty, /*ByVal=*/false, State); 904 } 905 906 if (InReg) 907 return ABIArgInfo::getDirectInReg(); 908 return ABIArgInfo::getDirect(); 909 } 910 911 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 912 CCState State(FI); 913 if (IsMCUABI) 914 State.FreeRegs = 3; 915 else if (State.CC == llvm::CallingConv::X86_FastCall) { 916 State.FreeRegs = 2; 917 State.FreeSSERegs = 3; 918 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 919 State.FreeRegs = 2; 920 State.FreeSSERegs = 6; 921 } else if (FI.getHasRegParm()) 922 State.FreeRegs = FI.getRegParm(); 923 else if (State.CC == llvm::CallingConv::X86_RegCall) { 924 State.FreeRegs = 5; 925 State.FreeSSERegs = 8; 926 } else if (IsWin32StructABI) { 927 // Since MSVC 2015, the first three SSE vectors have been passed in 928 // registers. The rest are passed indirectly. 929 State.FreeRegs = DefaultNumRegisterParameters; 930 State.FreeSSERegs = 3; 931 } else 932 State.FreeRegs = DefaultNumRegisterParameters; 933 934 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 935 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 936 } else if (FI.getReturnInfo().isIndirect()) { 937 // The C++ ABI is not aware of register usage, so we have to check if the 938 // return value was sret and put it in a register ourselves if appropriate. 939 if (State.FreeRegs) { 940 --State.FreeRegs; // The sret parameter consumes a register. 941 if (!IsMCUABI) 942 FI.getReturnInfo().setInReg(true); 943 } 944 } 945 946 // The chain argument effectively gives us another free register. 947 if (FI.isChainCall()) 948 ++State.FreeRegs; 949 950 // For vectorcall, do a first pass over the arguments, assigning FP and vector 951 // arguments to XMM registers as available. 952 if (State.CC == llvm::CallingConv::X86_VectorCall) 953 runVectorCallFirstPass(FI, State); 954 955 bool UsedInAlloca = false; 956 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 957 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 958 // Skip arguments that have already been assigned. 959 if (State.IsPreassigned.test(I)) 960 continue; 961 962 Args[I].info = 963 classifyArgumentType(Args[I].type, State, I); 964 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 965 } 966 967 // If we needed to use inalloca for any argument, do a second pass and rewrite 968 // all the memory arguments to use inalloca. 969 if (UsedInAlloca) 970 rewriteWithInAlloca(FI); 971 } 972 973 void 974 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 975 CharUnits &StackOffset, ABIArgInfo &Info, 976 QualType Type) const { 977 // Arguments are always 4-byte-aligned. 978 CharUnits WordSize = CharUnits::fromQuantity(4); 979 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 980 981 // sret pointers and indirect things will require an extra pointer 982 // indirection, unless they are byval. Most things are byval, and will not 983 // require this indirection. 984 bool IsIndirect = false; 985 if (Info.isIndirect() && !Info.getIndirectByVal()) 986 IsIndirect = true; 987 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 988 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 989 if (IsIndirect) 990 LLTy = llvm::PointerType::getUnqual(getVMContext()); 991 FrameFields.push_back(LLTy); 992 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 993 994 // Insert padding bytes to respect alignment. 995 CharUnits FieldEnd = StackOffset; 996 StackOffset = FieldEnd.alignTo(WordSize); 997 if (StackOffset != FieldEnd) { 998 CharUnits NumBytes = StackOffset - FieldEnd; 999 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1000 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1001 FrameFields.push_back(Ty); 1002 } 1003 } 1004 1005 static bool isArgInAlloca(const ABIArgInfo &Info) { 1006 // Leave ignored and inreg arguments alone. 1007 switch (Info.getKind()) { 1008 case ABIArgInfo::InAlloca: 1009 return true; 1010 case ABIArgInfo::Ignore: 1011 case ABIArgInfo::IndirectAliased: 1012 return false; 1013 case ABIArgInfo::Indirect: 1014 case ABIArgInfo::Direct: 1015 case ABIArgInfo::Extend: 1016 return !Info.getInReg(); 1017 case ABIArgInfo::Expand: 1018 case ABIArgInfo::CoerceAndExpand: 1019 // These are aggregate types which are never passed in registers when 1020 // inalloca is involved. 1021 return true; 1022 } 1023 llvm_unreachable("invalid enum"); 1024 } 1025 1026 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1027 assert(IsWin32StructABI && "inalloca only supported on win32"); 1028 1029 // Build a packed struct type for all of the arguments in memory. 1030 SmallVector<llvm::Type *, 6> FrameFields; 1031 1032 // The stack alignment is always 4. 1033 CharUnits StackAlign = CharUnits::fromQuantity(4); 1034 1035 CharUnits StackOffset; 1036 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1037 1038 // Put 'this' into the struct before 'sret', if necessary. 1039 bool IsThisCall = 1040 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1041 ABIArgInfo &Ret = FI.getReturnInfo(); 1042 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1043 isArgInAlloca(I->info)) { 1044 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1045 ++I; 1046 } 1047 1048 // Put the sret parameter into the inalloca struct if it's in memory. 1049 if (Ret.isIndirect() && !Ret.getInReg()) { 1050 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 1051 // On Windows, the hidden sret parameter is always returned in eax. 1052 Ret.setInAllocaSRet(IsWin32StructABI); 1053 } 1054 1055 // Skip the 'this' parameter in ecx. 1056 if (IsThisCall) 1057 ++I; 1058 1059 // Put arguments passed in memory into the struct. 1060 for (; I != E; ++I) { 1061 if (isArgInAlloca(I->info)) 1062 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1063 } 1064 1065 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1066 /*isPacked=*/true), 1067 StackAlign); 1068 } 1069 1070 RValue X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1071 QualType Ty, AggValueSlot Slot) const { 1072 1073 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1074 1075 CCState State(*const_cast<CGFunctionInfo *>(CGF.CurFnInfo)); 1076 ABIArgInfo AI = classifyArgumentType(Ty, State, /*ArgIndex*/ 0); 1077 // Empty records are ignored for parameter passing purposes. 1078 if (AI.isIgnore()) 1079 return Slot.asRValue(); 1080 1081 // x86-32 changes the alignment of certain arguments on the stack. 1082 // 1083 // Just messing with TypeInfo like this works because we never pass 1084 // anything indirectly. 1085 TypeInfo.Align = CharUnits::fromQuantity( 1086 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 1087 1088 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 1089 CharUnits::fromQuantity(4), 1090 /*AllowHigherAlign*/ true, Slot); 1091 } 1092 1093 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1094 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1095 assert(Triple.getArch() == llvm::Triple::x86); 1096 1097 switch (Opts.getStructReturnConvention()) { 1098 case CodeGenOptions::SRCK_Default: 1099 break; 1100 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1101 return false; 1102 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1103 return true; 1104 } 1105 1106 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1107 return true; 1108 1109 switch (Triple.getOS()) { 1110 case llvm::Triple::DragonFly: 1111 case llvm::Triple::FreeBSD: 1112 case llvm::Triple::OpenBSD: 1113 case llvm::Triple::Win32: 1114 return true; 1115 default: 1116 return false; 1117 } 1118 } 1119 1120 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 1121 CodeGen::CodeGenModule &CGM) { 1122 if (!FD->hasAttr<AnyX86InterruptAttr>()) 1123 return; 1124 1125 llvm::Function *Fn = cast<llvm::Function>(GV); 1126 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1127 if (FD->getNumParams() == 0) 1128 return; 1129 1130 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 1131 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 1132 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 1133 Fn->getContext(), ByValTy); 1134 Fn->addParamAttr(0, NewAttr); 1135 } 1136 1137 void X86_32TargetCodeGenInfo::setTargetAttributes( 1138 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1139 if (GV->isDeclaration()) 1140 return; 1141 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1142 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1143 llvm::Function *Fn = cast<llvm::Function>(GV); 1144 Fn->addFnAttr("stackrealign"); 1145 } 1146 1147 addX86InterruptAttrs(FD, GV, CGM); 1148 } 1149 } 1150 1151 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1152 CodeGen::CodeGenFunction &CGF, 1153 llvm::Value *Address) const { 1154 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1155 1156 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1157 1158 // 0-7 are the eight integer registers; the order is different 1159 // on Darwin (for EH), but the range is the same. 1160 // 8 is %eip. 1161 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1162 1163 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1164 // 12-16 are st(0..4). Not sure why we stop at 4. 1165 // These have size 16, which is sizeof(long double) on 1166 // platforms with 8-byte alignment for that type. 1167 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1168 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1169 1170 } else { 1171 // 9 is %eflags, which doesn't get a size on Darwin for some 1172 // reason. 1173 Builder.CreateAlignedStore( 1174 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1175 CharUnits::One()); 1176 1177 // 11-16 are st(0..5). Not sure why we stop at 5. 1178 // These have size 12, which is sizeof(long double) on 1179 // platforms with 4-byte alignment for that type. 1180 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1181 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1182 } 1183 1184 return false; 1185 } 1186 1187 //===----------------------------------------------------------------------===// 1188 // X86-64 ABI Implementation 1189 //===----------------------------------------------------------------------===// 1190 1191 1192 namespace { 1193 1194 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1195 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1196 switch (AVXLevel) { 1197 case X86AVXABILevel::AVX512: 1198 return 512; 1199 case X86AVXABILevel::AVX: 1200 return 256; 1201 case X86AVXABILevel::None: 1202 return 128; 1203 } 1204 llvm_unreachable("Unknown AVXLevel"); 1205 } 1206 1207 /// X86_64ABIInfo - The X86_64 ABI information. 1208 class X86_64ABIInfo : public ABIInfo { 1209 enum Class { 1210 Integer = 0, 1211 SSE, 1212 SSEUp, 1213 X87, 1214 X87Up, 1215 ComplexX87, 1216 NoClass, 1217 Memory 1218 }; 1219 1220 /// merge - Implement the X86_64 ABI merging algorithm. 1221 /// 1222 /// Merge an accumulating classification \arg Accum with a field 1223 /// classification \arg Field. 1224 /// 1225 /// \param Accum - The accumulating classification. This should 1226 /// always be either NoClass or the result of a previous merge 1227 /// call. In addition, this should never be Memory (the caller 1228 /// should just return Memory for the aggregate). 1229 static Class merge(Class Accum, Class Field); 1230 1231 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1232 /// 1233 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1234 /// final MEMORY or SSE classes when necessary. 1235 /// 1236 /// \param AggregateSize - The size of the current aggregate in 1237 /// the classification process. 1238 /// 1239 /// \param Lo - The classification for the parts of the type 1240 /// residing in the low word of the containing object. 1241 /// 1242 /// \param Hi - The classification for the parts of the type 1243 /// residing in the higher words of the containing object. 1244 /// 1245 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1246 1247 /// classify - Determine the x86_64 register classes in which the 1248 /// given type T should be passed. 1249 /// 1250 /// \param Lo - The classification for the parts of the type 1251 /// residing in the low word of the containing object. 1252 /// 1253 /// \param Hi - The classification for the parts of the type 1254 /// residing in the high word of the containing object. 1255 /// 1256 /// \param OffsetBase - The bit offset of this type in the 1257 /// containing object. Some parameters are classified different 1258 /// depending on whether they straddle an eightbyte boundary. 1259 /// 1260 /// \param isNamedArg - Whether the argument in question is a "named" 1261 /// argument, as used in AMD64-ABI 3.5.7. 1262 /// 1263 /// \param IsRegCall - Whether the calling conversion is regcall. 1264 /// 1265 /// If a word is unused its result will be NoClass; if a type should 1266 /// be passed in Memory then at least the classification of \arg Lo 1267 /// will be Memory. 1268 /// 1269 /// The \arg Lo class will be NoClass iff the argument is ignored. 1270 /// 1271 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1272 /// also be ComplexX87. 1273 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1274 bool isNamedArg, bool IsRegCall = false) const; 1275 1276 llvm::Type *GetByteVectorType(QualType Ty) const; 1277 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1278 unsigned IROffset, QualType SourceTy, 1279 unsigned SourceOffset) const; 1280 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1281 unsigned IROffset, QualType SourceTy, 1282 unsigned SourceOffset) const; 1283 1284 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1285 /// such that the argument will be returned in memory. 1286 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1287 1288 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1289 /// such that the argument will be passed in memory. 1290 /// 1291 /// \param freeIntRegs - The number of free integer registers remaining 1292 /// available. 1293 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1294 1295 ABIArgInfo classifyReturnType(QualType RetTy) const; 1296 1297 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 1298 unsigned &neededInt, unsigned &neededSSE, 1299 bool isNamedArg, 1300 bool IsRegCall = false) const; 1301 1302 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 1303 unsigned &NeededSSE, 1304 unsigned &MaxVectorWidth) const; 1305 1306 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 1307 unsigned &NeededSSE, 1308 unsigned &MaxVectorWidth) const; 1309 1310 bool IsIllegalVectorType(QualType Ty) const; 1311 1312 /// The 0.98 ABI revision clarified a lot of ambiguities, 1313 /// unfortunately in ways that were not always consistent with 1314 /// certain previous compilers. In particular, platforms which 1315 /// required strict binary compatibility with older versions of GCC 1316 /// may need to exempt themselves. 1317 bool honorsRevision0_98() const { 1318 return !getTarget().getTriple().isOSDarwin(); 1319 } 1320 1321 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 1322 /// classify it as INTEGER (for compatibility with older clang compilers). 1323 bool classifyIntegerMMXAsSSE() const { 1324 // Clang <= 3.8 did not do this. 1325 if (getContext().getLangOpts().getClangABICompat() <= 1326 LangOptions::ClangABI::Ver3_8) 1327 return false; 1328 1329 const llvm::Triple &Triple = getTarget().getTriple(); 1330 if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD()) 1331 return false; 1332 return true; 1333 } 1334 1335 // GCC classifies vectors of __int128 as memory. 1336 bool passInt128VectorsInMem() const { 1337 // Clang <= 9.0 did not do this. 1338 if (getContext().getLangOpts().getClangABICompat() <= 1339 LangOptions::ClangABI::Ver9) 1340 return false; 1341 1342 const llvm::Triple &T = getTarget().getTriple(); 1343 return T.isOSLinux() || T.isOSNetBSD(); 1344 } 1345 1346 X86AVXABILevel AVXLevel; 1347 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1348 // 64-bit hardware. 1349 bool Has64BitPointers; 1350 1351 public: 1352 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1353 : ABIInfo(CGT), AVXLevel(AVXLevel), 1354 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {} 1355 1356 bool isPassedUsingAVXType(QualType type) const { 1357 unsigned neededInt, neededSSE; 1358 // The freeIntRegs argument doesn't matter here. 1359 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1360 /*isNamedArg*/true); 1361 if (info.isDirect()) { 1362 llvm::Type *ty = info.getCoerceToType(); 1363 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1364 return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128; 1365 } 1366 return false; 1367 } 1368 1369 void computeInfo(CGFunctionInfo &FI) const override; 1370 1371 RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 1372 AggValueSlot Slot) const override; 1373 RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 1374 AggValueSlot Slot) const override; 1375 1376 bool has64BitPointers() const { 1377 return Has64BitPointers; 1378 } 1379 }; 1380 1381 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1382 class WinX86_64ABIInfo : public ABIInfo { 1383 public: 1384 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1385 : ABIInfo(CGT), AVXLevel(AVXLevel), 1386 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 1387 1388 void computeInfo(CGFunctionInfo &FI) const override; 1389 1390 RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 1391 AggValueSlot Slot) const override; 1392 1393 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1394 // FIXME: Assumes vectorcall is in use. 1395 return isX86VectorTypeForVectorCall(getContext(), Ty); 1396 } 1397 1398 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1399 uint64_t NumMembers) const override { 1400 // FIXME: Assumes vectorcall is in use. 1401 return isX86VectorCallAggregateSmallEnough(NumMembers); 1402 } 1403 1404 private: 1405 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 1406 bool IsVectorCall, bool IsRegCall) const; 1407 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 1408 const ABIArgInfo ¤t) const; 1409 1410 X86AVXABILevel AVXLevel; 1411 1412 bool IsMingw64; 1413 }; 1414 1415 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1416 public: 1417 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1418 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) { 1419 SwiftInfo = 1420 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); 1421 } 1422 1423 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 1424 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 1425 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 1426 1427 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1428 return 7; 1429 } 1430 1431 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1432 llvm::Value *Address) const override { 1433 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1434 1435 // 0-15 are the 16 integer registers. 1436 // 16 is %rip. 1437 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1438 return false; 1439 } 1440 1441 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1442 StringRef Constraint, 1443 llvm::Type* Ty) const override { 1444 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1445 } 1446 1447 bool isNoProtoCallVariadic(const CallArgList &args, 1448 const FunctionNoProtoType *fnType) const override { 1449 // The default CC on x86-64 sets %al to the number of SSA 1450 // registers used, and GCC sets this when calling an unprototyped 1451 // function, so we override the default behavior. However, don't do 1452 // that when AVX types are involved: the ABI explicitly states it is 1453 // undefined, and it doesn't work in practice because of how the ABI 1454 // defines varargs anyway. 1455 if (fnType->getCallConv() == CC_C) { 1456 bool HasAVXType = false; 1457 for (CallArgList::const_iterator 1458 it = args.begin(), ie = args.end(); it != ie; ++it) { 1459 if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) { 1460 HasAVXType = true; 1461 break; 1462 } 1463 } 1464 1465 if (!HasAVXType) 1466 return true; 1467 } 1468 1469 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1470 } 1471 1472 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1473 CodeGen::CodeGenModule &CGM) const override { 1474 if (GV->isDeclaration()) 1475 return; 1476 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1477 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1478 llvm::Function *Fn = cast<llvm::Function>(GV); 1479 Fn->addFnAttr("stackrealign"); 1480 } 1481 1482 addX86InterruptAttrs(FD, GV, CGM); 1483 } 1484 } 1485 1486 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 1487 const FunctionDecl *Caller, 1488 const FunctionDecl *Callee, const CallArgList &Args, 1489 QualType ReturnType) const override; 1490 }; 1491 } // namespace 1492 1493 static void initFeatureMaps(const ASTContext &Ctx, 1494 llvm::StringMap<bool> &CallerMap, 1495 const FunctionDecl *Caller, 1496 llvm::StringMap<bool> &CalleeMap, 1497 const FunctionDecl *Callee) { 1498 if (CalleeMap.empty() && CallerMap.empty()) { 1499 // The caller is potentially nullptr in the case where the call isn't in a 1500 // function. In this case, the getFunctionFeatureMap ensures we just get 1501 // the TU level setting (since it cannot be modified by 'target'.. 1502 Ctx.getFunctionFeatureMap(CallerMap, Caller); 1503 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 1504 } 1505 } 1506 1507 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 1508 SourceLocation CallLoc, 1509 const llvm::StringMap<bool> &CallerMap, 1510 const llvm::StringMap<bool> &CalleeMap, 1511 QualType Ty, StringRef Feature, 1512 bool IsArgument) { 1513 bool CallerHasFeat = CallerMap.lookup(Feature); 1514 bool CalleeHasFeat = CalleeMap.lookup(Feature); 1515 if (!CallerHasFeat && !CalleeHasFeat) 1516 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 1517 << IsArgument << Ty << Feature; 1518 1519 // Mixing calling conventions here is very clearly an error. 1520 if (!CallerHasFeat || !CalleeHasFeat) 1521 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 1522 << IsArgument << Ty << Feature; 1523 1524 // Else, both caller and callee have the required feature, so there is no need 1525 // to diagnose. 1526 return false; 1527 } 1528 1529 static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag, 1530 SourceLocation CallLoc, 1531 const llvm::StringMap<bool> &CallerMap, 1532 const llvm::StringMap<bool> &CalleeMap, 1533 QualType Ty, bool IsArgument) { 1534 bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512"); 1535 bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512"); 1536 1537 // Forbid 512-bit or larger vector pass or return when we disabled ZMM 1538 // instructions. 1539 if (Caller256 || Callee256) 1540 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 1541 << IsArgument << Ty << "evex512"; 1542 1543 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 1544 "avx512f", IsArgument); 1545 } 1546 1547 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 1548 SourceLocation CallLoc, 1549 const llvm::StringMap<bool> &CallerMap, 1550 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 1551 bool IsArgument) { 1552 uint64_t Size = Ctx.getTypeSize(Ty); 1553 if (Size > 256) 1554 return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 1555 IsArgument); 1556 1557 if (Size > 128) 1558 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 1559 IsArgument); 1560 1561 return false; 1562 } 1563 1564 void X86_64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM, 1565 SourceLocation CallLoc, 1566 const FunctionDecl *Caller, 1567 const FunctionDecl *Callee, 1568 const CallArgList &Args, 1569 QualType ReturnType) const { 1570 if (!Callee) 1571 return; 1572 1573 llvm::StringMap<bool> CallerMap; 1574 llvm::StringMap<bool> CalleeMap; 1575 unsigned ArgIndex = 0; 1576 1577 // We need to loop through the actual call arguments rather than the 1578 // function's parameters, in case this variadic. 1579 for (const CallArg &Arg : Args) { 1580 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 1581 // additionally changes how vectors >256 in size are passed. Like GCC, we 1582 // warn when a function is called with an argument where this will change. 1583 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 1584 // the caller and callee features are mismatched. 1585 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 1586 // change its ABI with attribute-target after this call. 1587 if (Arg.getType()->isVectorType() && 1588 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 1589 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 1590 QualType Ty = Arg.getType(); 1591 // The CallArg seems to have desugared the type already, so for clearer 1592 // diagnostics, replace it with the type in the FunctionDecl if possible. 1593 if (ArgIndex < Callee->getNumParams()) 1594 Ty = Callee->getParamDecl(ArgIndex)->getType(); 1595 1596 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 1597 CalleeMap, Ty, /*IsArgument*/ true)) 1598 return; 1599 } 1600 ++ArgIndex; 1601 } 1602 1603 // Check return always, as we don't have a good way of knowing in codegen 1604 // whether this value is used, tail-called, etc. 1605 if (Callee->getReturnType()->isVectorType() && 1606 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 1607 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 1608 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 1609 CalleeMap, Callee->getReturnType(), 1610 /*IsArgument*/ false); 1611 } 1612 } 1613 1614 std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) { 1615 // If the argument does not end in .lib, automatically add the suffix. 1616 // If the argument contains a space, enclose it in quotes. 1617 // This matches the behavior of MSVC. 1618 bool Quote = Lib.contains(' '); 1619 std::string ArgStr = Quote ? "\"" : ""; 1620 ArgStr += Lib; 1621 if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a")) 1622 ArgStr += ".lib"; 1623 ArgStr += Quote ? "\"" : ""; 1624 return ArgStr; 1625 } 1626 1627 namespace { 1628 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1629 public: 1630 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1631 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 1632 unsigned NumRegisterParameters) 1633 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 1634 Win32StructABI, NumRegisterParameters, false) {} 1635 1636 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1637 CodeGen::CodeGenModule &CGM) const override; 1638 1639 void getDependentLibraryOption(llvm::StringRef Lib, 1640 llvm::SmallString<24> &Opt) const override { 1641 Opt = "/DEFAULTLIB:"; 1642 Opt += qualifyWindowsLibrary(Lib); 1643 } 1644 1645 void getDetectMismatchOption(llvm::StringRef Name, 1646 llvm::StringRef Value, 1647 llvm::SmallString<32> &Opt) const override { 1648 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1649 } 1650 }; 1651 } // namespace 1652 1653 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 1654 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1655 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1656 if (GV->isDeclaration()) 1657 return; 1658 addStackProbeTargetAttributes(D, GV, CGM); 1659 } 1660 1661 namespace { 1662 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1663 public: 1664 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1665 X86AVXABILevel AVXLevel) 1666 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) { 1667 SwiftInfo = 1668 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); 1669 } 1670 1671 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1672 CodeGen::CodeGenModule &CGM) const override; 1673 1674 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1675 return 7; 1676 } 1677 1678 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1679 llvm::Value *Address) const override { 1680 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1681 1682 // 0-15 are the 16 integer registers. 1683 // 16 is %rip. 1684 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1685 return false; 1686 } 1687 1688 void getDependentLibraryOption(llvm::StringRef Lib, 1689 llvm::SmallString<24> &Opt) const override { 1690 Opt = "/DEFAULTLIB:"; 1691 Opt += qualifyWindowsLibrary(Lib); 1692 } 1693 1694 void getDetectMismatchOption(llvm::StringRef Name, 1695 llvm::StringRef Value, 1696 llvm::SmallString<32> &Opt) const override { 1697 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1698 } 1699 }; 1700 } // namespace 1701 1702 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 1703 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1704 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1705 if (GV->isDeclaration()) 1706 return; 1707 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1708 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1709 llvm::Function *Fn = cast<llvm::Function>(GV); 1710 Fn->addFnAttr("stackrealign"); 1711 } 1712 1713 addX86InterruptAttrs(FD, GV, CGM); 1714 } 1715 1716 addStackProbeTargetAttributes(D, GV, CGM); 1717 } 1718 1719 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1720 Class &Hi) const { 1721 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1722 // 1723 // (a) If one of the classes is Memory, the whole argument is passed in 1724 // memory. 1725 // 1726 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1727 // memory. 1728 // 1729 // (c) If the size of the aggregate exceeds two eightbytes and the first 1730 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1731 // argument is passed in memory. NOTE: This is necessary to keep the 1732 // ABI working for processors that don't support the __m256 type. 1733 // 1734 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1735 // 1736 // Some of these are enforced by the merging logic. Others can arise 1737 // only with unions; for example: 1738 // union { _Complex double; unsigned; } 1739 // 1740 // Note that clauses (b) and (c) were added in 0.98. 1741 // 1742 if (Hi == Memory) 1743 Lo = Memory; 1744 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1745 Lo = Memory; 1746 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1747 Lo = Memory; 1748 if (Hi == SSEUp && Lo != SSE) 1749 Hi = SSE; 1750 } 1751 1752 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1753 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1754 // classified recursively so that always two fields are 1755 // considered. The resulting class is calculated according to 1756 // the classes of the fields in the eightbyte: 1757 // 1758 // (a) If both classes are equal, this is the resulting class. 1759 // 1760 // (b) If one of the classes is NO_CLASS, the resulting class is 1761 // the other class. 1762 // 1763 // (c) If one of the classes is MEMORY, the result is the MEMORY 1764 // class. 1765 // 1766 // (d) If one of the classes is INTEGER, the result is the 1767 // INTEGER. 1768 // 1769 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1770 // MEMORY is used as class. 1771 // 1772 // (f) Otherwise class SSE is used. 1773 1774 // Accum should never be memory (we should have returned) or 1775 // ComplexX87 (because this cannot be passed in a structure). 1776 assert((Accum != Memory && Accum != ComplexX87) && 1777 "Invalid accumulated classification during merge."); 1778 if (Accum == Field || Field == NoClass) 1779 return Accum; 1780 if (Field == Memory) 1781 return Memory; 1782 if (Accum == NoClass) 1783 return Field; 1784 if (Accum == Integer || Field == Integer) 1785 return Integer; 1786 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1787 Accum == X87 || Accum == X87Up) 1788 return Memory; 1789 return SSE; 1790 } 1791 1792 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, 1793 Class &Hi, bool isNamedArg, bool IsRegCall) const { 1794 // FIXME: This code can be simplified by introducing a simple value class for 1795 // Class pairs with appropriate constructor methods for the various 1796 // situations. 1797 1798 // FIXME: Some of the split computations are wrong; unaligned vectors 1799 // shouldn't be passed in registers for example, so there is no chance they 1800 // can straddle an eightbyte. Verify & simplify. 1801 1802 Lo = Hi = NoClass; 1803 1804 Class &Current = OffsetBase < 64 ? Lo : Hi; 1805 Current = Memory; 1806 1807 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1808 BuiltinType::Kind k = BT->getKind(); 1809 1810 if (k == BuiltinType::Void) { 1811 Current = NoClass; 1812 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1813 Lo = Integer; 1814 Hi = Integer; 1815 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1816 Current = Integer; 1817 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 1818 k == BuiltinType::Float16 || k == BuiltinType::BFloat16) { 1819 Current = SSE; 1820 } else if (k == BuiltinType::Float128) { 1821 Lo = SSE; 1822 Hi = SSEUp; 1823 } else if (k == BuiltinType::LongDouble) { 1824 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 1825 if (LDF == &llvm::APFloat::IEEEquad()) { 1826 Lo = SSE; 1827 Hi = SSEUp; 1828 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 1829 Lo = X87; 1830 Hi = X87Up; 1831 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 1832 Current = SSE; 1833 } else 1834 llvm_unreachable("unexpected long double representation!"); 1835 } 1836 // FIXME: _Decimal32 and _Decimal64 are SSE. 1837 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1838 return; 1839 } 1840 1841 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1842 // Classify the underlying integer type. 1843 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1844 return; 1845 } 1846 1847 if (Ty->hasPointerRepresentation()) { 1848 Current = Integer; 1849 return; 1850 } 1851 1852 if (Ty->isMemberPointerType()) { 1853 if (Ty->isMemberFunctionPointerType()) { 1854 if (Has64BitPointers) { 1855 // If Has64BitPointers, this is an {i64, i64}, so classify both 1856 // Lo and Hi now. 1857 Lo = Hi = Integer; 1858 } else { 1859 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1860 // straddles an eightbyte boundary, Hi should be classified as well. 1861 uint64_t EB_FuncPtr = (OffsetBase) / 64; 1862 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1863 if (EB_FuncPtr != EB_ThisAdj) { 1864 Lo = Hi = Integer; 1865 } else { 1866 Current = Integer; 1867 } 1868 } 1869 } else { 1870 Current = Integer; 1871 } 1872 return; 1873 } 1874 1875 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1876 uint64_t Size = getContext().getTypeSize(VT); 1877 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 1878 // gcc passes the following as integer: 1879 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 1880 // 2 bytes - <2 x char>, <1 x short> 1881 // 1 byte - <1 x char> 1882 Current = Integer; 1883 1884 // If this type crosses an eightbyte boundary, it should be 1885 // split. 1886 uint64_t EB_Lo = (OffsetBase) / 64; 1887 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 1888 if (EB_Lo != EB_Hi) 1889 Hi = Lo; 1890 } else if (Size == 64) { 1891 QualType ElementType = VT->getElementType(); 1892 1893 // gcc passes <1 x double> in memory. :( 1894 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 1895 return; 1896 1897 // gcc passes <1 x long long> as SSE but clang used to unconditionally 1898 // pass them as integer. For platforms where clang is the de facto 1899 // platform compiler, we must continue to use integer. 1900 if (!classifyIntegerMMXAsSSE() && 1901 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 1902 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 1903 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 1904 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 1905 Current = Integer; 1906 else 1907 Current = SSE; 1908 1909 // If this type crosses an eightbyte boundary, it should be 1910 // split. 1911 if (OffsetBase && OffsetBase != 64) 1912 Hi = Lo; 1913 } else if (Size == 128 || 1914 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 1915 QualType ElementType = VT->getElementType(); 1916 1917 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 1918 if (passInt128VectorsInMem() && Size != 128 && 1919 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 1920 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 1921 return; 1922 1923 // Arguments of 256-bits are split into four eightbyte chunks. The 1924 // least significant one belongs to class SSE and all the others to class 1925 // SSEUP. The original Lo and Hi design considers that types can't be 1926 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1927 // This design isn't correct for 256-bits, but since there're no cases 1928 // where the upper parts would need to be inspected, avoid adding 1929 // complexity and just consider Hi to match the 64-256 part. 1930 // 1931 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1932 // registers if they are "named", i.e. not part of the "..." of a 1933 // variadic function. 1934 // 1935 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 1936 // split into eight eightbyte chunks, one SSE and seven SSEUP. 1937 Lo = SSE; 1938 Hi = SSEUp; 1939 } 1940 return; 1941 } 1942 1943 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1944 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1945 1946 uint64_t Size = getContext().getTypeSize(Ty); 1947 if (ET->isIntegralOrEnumerationType()) { 1948 if (Size <= 64) 1949 Current = Integer; 1950 else if (Size <= 128) 1951 Lo = Hi = Integer; 1952 } else if (ET->isFloat16Type() || ET == getContext().FloatTy || 1953 ET->isBFloat16Type()) { 1954 Current = SSE; 1955 } else if (ET == getContext().DoubleTy) { 1956 Lo = Hi = SSE; 1957 } else if (ET == getContext().LongDoubleTy) { 1958 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 1959 if (LDF == &llvm::APFloat::IEEEquad()) 1960 Current = Memory; 1961 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 1962 Current = ComplexX87; 1963 else if (LDF == &llvm::APFloat::IEEEdouble()) 1964 Lo = Hi = SSE; 1965 else 1966 llvm_unreachable("unexpected long double representation!"); 1967 } 1968 1969 // If this complex type crosses an eightbyte boundary then it 1970 // should be split. 1971 uint64_t EB_Real = (OffsetBase) / 64; 1972 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1973 if (Hi == NoClass && EB_Real != EB_Imag) 1974 Hi = Lo; 1975 1976 return; 1977 } 1978 1979 if (const auto *EITy = Ty->getAs<BitIntType>()) { 1980 if (EITy->getNumBits() <= 64) 1981 Current = Integer; 1982 else if (EITy->getNumBits() <= 128) 1983 Lo = Hi = Integer; 1984 // Larger values need to get passed in memory. 1985 return; 1986 } 1987 1988 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1989 // Arrays are treated like structures. 1990 1991 uint64_t Size = getContext().getTypeSize(Ty); 1992 1993 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1994 // than eight eightbytes, ..., it has class MEMORY. 1995 // regcall ABI doesn't have limitation to an object. The only limitation 1996 // is the free registers, which will be checked in computeInfo. 1997 if (!IsRegCall && Size > 512) 1998 return; 1999 2000 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2001 // fields, it has class MEMORY. 2002 // 2003 // Only need to check alignment of array base. 2004 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2005 return; 2006 2007 // Otherwise implement simplified merge. We could be smarter about 2008 // this, but it isn't worth it and would be harder to verify. 2009 Current = NoClass; 2010 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2011 uint64_t ArraySize = AT->getZExtSize(); 2012 2013 // The only case a 256-bit wide vector could be used is when the array 2014 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2015 // to work for sizes wider than 128, early check and fallback to memory. 2016 // 2017 if (Size > 128 && 2018 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2019 return; 2020 2021 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2022 Class FieldLo, FieldHi; 2023 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2024 Lo = merge(Lo, FieldLo); 2025 Hi = merge(Hi, FieldHi); 2026 if (Lo == Memory || Hi == Memory) 2027 break; 2028 } 2029 2030 postMerge(Size, Lo, Hi); 2031 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2032 return; 2033 } 2034 2035 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2036 uint64_t Size = getContext().getTypeSize(Ty); 2037 2038 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2039 // than eight eightbytes, ..., it has class MEMORY. 2040 if (Size > 512) 2041 return; 2042 2043 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2044 // copy constructor or a non-trivial destructor, it is passed by invisible 2045 // reference. 2046 if (getRecordArgABI(RT, getCXXABI())) 2047 return; 2048 2049 const RecordDecl *RD = RT->getDecl(); 2050 2051 // Assume variable sized types are passed in memory. 2052 if (RD->hasFlexibleArrayMember()) 2053 return; 2054 2055 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2056 2057 // Reset Lo class, this will be recomputed. 2058 Current = NoClass; 2059 2060 // If this is a C++ record, classify the bases first. 2061 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2062 for (const auto &I : CXXRD->bases()) { 2063 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2064 "Unexpected base class!"); 2065 const auto *Base = 2066 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2067 2068 // Classify this field. 2069 // 2070 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2071 // single eightbyte, each is classified separately. Each eightbyte gets 2072 // initialized to class NO_CLASS. 2073 Class FieldLo, FieldHi; 2074 uint64_t Offset = 2075 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2076 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2077 Lo = merge(Lo, FieldLo); 2078 Hi = merge(Hi, FieldHi); 2079 if (Lo == Memory || Hi == Memory) { 2080 postMerge(Size, Lo, Hi); 2081 return; 2082 } 2083 } 2084 } 2085 2086 // Classify the fields one at a time, merging the results. 2087 unsigned idx = 0; 2088 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 2089 LangOptions::ClangABI::Ver11 || 2090 getContext().getTargetInfo().getTriple().isPS(); 2091 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 2092 2093 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2094 i != e; ++i, ++idx) { 2095 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2096 bool BitField = i->isBitField(); 2097 2098 // Ignore padding bit-fields. 2099 if (BitField && i->isUnnamedBitField()) 2100 continue; 2101 2102 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2103 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 2104 // 2105 // The only case a 256-bit or a 512-bit wide vector could be used is when 2106 // the struct contains a single 256-bit or 512-bit element. Early check 2107 // and fallback to memory. 2108 // 2109 // FIXME: Extended the Lo and Hi logic properly to work for size wider 2110 // than 128. 2111 if (Size > 128 && 2112 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 2113 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2114 Lo = Memory; 2115 postMerge(Size, Lo, Hi); 2116 return; 2117 } 2118 2119 bool IsInMemory = 2120 Offset % getContext().getTypeAlign(i->getType().getCanonicalType()); 2121 // Note, skip this test for bit-fields, see below. 2122 if (!BitField && IsInMemory) { 2123 Lo = Memory; 2124 postMerge(Size, Lo, Hi); 2125 return; 2126 } 2127 2128 // Classify this field. 2129 // 2130 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2131 // exceeds a single eightbyte, each is classified 2132 // separately. Each eightbyte gets initialized to class 2133 // NO_CLASS. 2134 Class FieldLo, FieldHi; 2135 2136 // Bit-fields require special handling, they do not force the 2137 // structure to be passed in memory even if unaligned, and 2138 // therefore they can straddle an eightbyte. 2139 if (BitField) { 2140 assert(!i->isUnnamedBitField()); 2141 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2142 uint64_t Size = i->getBitWidthValue(getContext()); 2143 2144 uint64_t EB_Lo = Offset / 64; 2145 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2146 2147 if (EB_Lo) { 2148 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2149 FieldLo = NoClass; 2150 FieldHi = Integer; 2151 } else { 2152 FieldLo = Integer; 2153 FieldHi = EB_Hi ? Integer : NoClass; 2154 } 2155 } else 2156 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2157 Lo = merge(Lo, FieldLo); 2158 Hi = merge(Hi, FieldHi); 2159 if (Lo == Memory || Hi == Memory) 2160 break; 2161 } 2162 2163 postMerge(Size, Lo, Hi); 2164 } 2165 } 2166 2167 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2168 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2169 // place naturally. 2170 if (!isAggregateTypeForABI(Ty)) { 2171 // Treat an enum type as its underlying type. 2172 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2173 Ty = EnumTy->getDecl()->getIntegerType(); 2174 2175 if (Ty->isBitIntType()) 2176 return getNaturalAlignIndirect(Ty); 2177 2178 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 2179 : ABIArgInfo::getDirect()); 2180 } 2181 2182 return getNaturalAlignIndirect(Ty); 2183 } 2184 2185 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2186 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2187 uint64_t Size = getContext().getTypeSize(VecTy); 2188 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2189 if (Size <= 64 || Size > LargestVector) 2190 return true; 2191 QualType EltTy = VecTy->getElementType(); 2192 if (passInt128VectorsInMem() && 2193 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 2194 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 2195 return true; 2196 } 2197 2198 return false; 2199 } 2200 2201 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2202 unsigned freeIntRegs) const { 2203 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2204 // place naturally. 2205 // 2206 // This assumption is optimistic, as there could be free registers available 2207 // when we need to pass this argument in memory, and LLVM could try to pass 2208 // the argument in the free register. This does not seem to happen currently, 2209 // but this code would be much safer if we could mark the argument with 2210 // 'onstack'. See PR12193. 2211 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 2212 !Ty->isBitIntType()) { 2213 // Treat an enum type as its underlying type. 2214 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2215 Ty = EnumTy->getDecl()->getIntegerType(); 2216 2217 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 2218 : ABIArgInfo::getDirect()); 2219 } 2220 2221 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2222 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2223 2224 // Compute the byval alignment. We specify the alignment of the byval in all 2225 // cases so that the mid-level optimizer knows the alignment of the byval. 2226 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2227 2228 // Attempt to avoid passing indirect results using byval when possible. This 2229 // is important for good codegen. 2230 // 2231 // We do this by coercing the value into a scalar type which the backend can 2232 // handle naturally (i.e., without using byval). 2233 // 2234 // For simplicity, we currently only do this when we have exhausted all of the 2235 // free integer registers. Doing this when there are free integer registers 2236 // would require more care, as we would have to ensure that the coerced value 2237 // did not claim the unused register. That would require either reording the 2238 // arguments to the function (so that any subsequent inreg values came first), 2239 // or only doing this optimization when there were no following arguments that 2240 // might be inreg. 2241 // 2242 // We currently expect it to be rare (particularly in well written code) for 2243 // arguments to be passed on the stack when there are still free integer 2244 // registers available (this would typically imply large structs being passed 2245 // by value), so this seems like a fair tradeoff for now. 2246 // 2247 // We can revisit this if the backend grows support for 'onstack' parameter 2248 // attributes. See PR12193. 2249 if (freeIntRegs == 0) { 2250 uint64_t Size = getContext().getTypeSize(Ty); 2251 2252 // If this type fits in an eightbyte, coerce it into the matching integral 2253 // type, which will end up on the stack (with alignment 8). 2254 if (Align == 8 && Size <= 64) 2255 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2256 Size)); 2257 } 2258 2259 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2260 } 2261 2262 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2263 /// register. Pick an LLVM IR type that will be passed as a vector register. 2264 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2265 // Wrapper structs/arrays that only contain vectors are passed just like 2266 // vectors; strip them off if present. 2267 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2268 Ty = QualType(InnerTy, 0); 2269 2270 llvm::Type *IRType = CGT.ConvertType(Ty); 2271 if (isa<llvm::VectorType>(IRType)) { 2272 // Don't pass vXi128 vectors in their native type, the backend can't 2273 // legalize them. 2274 if (passInt128VectorsInMem() && 2275 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 2276 // Use a vXi64 vector. 2277 uint64_t Size = getContext().getTypeSize(Ty); 2278 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2279 Size / 64); 2280 } 2281 2282 return IRType; 2283 } 2284 2285 if (IRType->getTypeID() == llvm::Type::FP128TyID) 2286 return IRType; 2287 2288 // We couldn't find the preferred IR vector type for 'Ty'. 2289 uint64_t Size = getContext().getTypeSize(Ty); 2290 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2291 2292 2293 // Return a LLVM IR vector type based on the size of 'Ty'. 2294 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2295 Size / 64); 2296 } 2297 2298 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2299 /// is known to either be off the end of the specified type or being in 2300 /// alignment padding. The user type specified is known to be at most 128 bits 2301 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2302 /// classification that put one of the two halves in the INTEGER class. 2303 /// 2304 /// It is conservatively correct to return false. 2305 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2306 unsigned EndBit, ASTContext &Context) { 2307 // If the bytes being queried are off the end of the type, there is no user 2308 // data hiding here. This handles analysis of builtins, vectors and other 2309 // types that don't contain interesting padding. 2310 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2311 if (TySize <= StartBit) 2312 return true; 2313 2314 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2315 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2316 unsigned NumElts = (unsigned)AT->getZExtSize(); 2317 2318 // Check each element to see if the element overlaps with the queried range. 2319 for (unsigned i = 0; i != NumElts; ++i) { 2320 // If the element is after the span we care about, then we're done.. 2321 unsigned EltOffset = i*EltSize; 2322 if (EltOffset >= EndBit) break; 2323 2324 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2325 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2326 EndBit-EltOffset, Context)) 2327 return false; 2328 } 2329 // If it overlaps no elements, then it is safe to process as padding. 2330 return true; 2331 } 2332 2333 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2334 const RecordDecl *RD = RT->getDecl(); 2335 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2336 2337 // If this is a C++ record, check the bases first. 2338 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2339 for (const auto &I : CXXRD->bases()) { 2340 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2341 "Unexpected base class!"); 2342 const auto *Base = 2343 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2344 2345 // If the base is after the span we care about, ignore it. 2346 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2347 if (BaseOffset >= EndBit) continue; 2348 2349 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2350 if (!BitsContainNoUserData(I.getType(), BaseStart, 2351 EndBit-BaseOffset, Context)) 2352 return false; 2353 } 2354 } 2355 2356 // Verify that no field has data that overlaps the region of interest. Yes 2357 // this could be sped up a lot by being smarter about queried fields, 2358 // however we're only looking at structs up to 16 bytes, so we don't care 2359 // much. 2360 unsigned idx = 0; 2361 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2362 i != e; ++i, ++idx) { 2363 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2364 2365 // If we found a field after the region we care about, then we're done. 2366 if (FieldOffset >= EndBit) break; 2367 2368 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2369 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2370 Context)) 2371 return false; 2372 } 2373 2374 // If nothing in this record overlapped the area of interest, then we're 2375 // clean. 2376 return true; 2377 } 2378 2379 return false; 2380 } 2381 2382 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 2383 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2384 const llvm::DataLayout &TD) { 2385 if (IROffset == 0 && IRType->isFloatingPointTy()) 2386 return IRType; 2387 2388 // If this is a struct, recurse into the field at the specified offset. 2389 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2390 if (!STy->getNumContainedTypes()) 2391 return nullptr; 2392 2393 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2394 unsigned Elt = SL->getElementContainingOffset(IROffset); 2395 IROffset -= SL->getElementOffset(Elt); 2396 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 2397 } 2398 2399 // If this is an array, recurse into the field at the specified offset. 2400 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2401 llvm::Type *EltTy = ATy->getElementType(); 2402 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2403 IROffset -= IROffset / EltSize * EltSize; 2404 return getFPTypeAtOffset(EltTy, IROffset, TD); 2405 } 2406 2407 return nullptr; 2408 } 2409 2410 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2411 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2412 llvm::Type *X86_64ABIInfo:: 2413 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2414 QualType SourceTy, unsigned SourceOffset) const { 2415 const llvm::DataLayout &TD = getDataLayout(); 2416 unsigned SourceSize = 2417 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 2418 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 2419 if (!T0 || T0->isDoubleTy()) 2420 return llvm::Type::getDoubleTy(getVMContext()); 2421 2422 // Get the adjacent FP type. 2423 llvm::Type *T1 = nullptr; 2424 unsigned T0Size = TD.getTypeAllocSize(T0); 2425 if (SourceSize > T0Size) 2426 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 2427 if (T1 == nullptr) { 2428 // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due 2429 // to its alignment. 2430 if (T0->is16bitFPTy() && SourceSize > 4) 2431 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 2432 // If we can't get a second FP type, return a simple half or float. 2433 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 2434 // {float, i8} too. 2435 if (T1 == nullptr) 2436 return T0; 2437 } 2438 2439 if (T0->isFloatTy() && T1->isFloatTy()) 2440 return llvm::FixedVectorType::get(T0, 2); 2441 2442 if (T0->is16bitFPTy() && T1->is16bitFPTy()) { 2443 llvm::Type *T2 = nullptr; 2444 if (SourceSize > 4) 2445 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 2446 if (T2 == nullptr) 2447 return llvm::FixedVectorType::get(T0, 2); 2448 return llvm::FixedVectorType::get(T0, 4); 2449 } 2450 2451 if (T0->is16bitFPTy() || T1->is16bitFPTy()) 2452 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 2453 2454 return llvm::Type::getDoubleTy(getVMContext()); 2455 } 2456 2457 2458 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2459 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2460 /// about the high or low part of an up-to-16-byte struct. This routine picks 2461 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2462 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2463 /// etc). 2464 /// 2465 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2466 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2467 /// the 8-byte value references. PrefType may be null. 2468 /// 2469 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2470 /// an offset into this that we're processing (which is always either 0 or 8). 2471 /// 2472 llvm::Type *X86_64ABIInfo:: 2473 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2474 QualType SourceTy, unsigned SourceOffset) const { 2475 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2476 // returning an 8-byte unit starting with it. See if we can safely use it. 2477 if (IROffset == 0) { 2478 // Pointers and int64's always fill the 8-byte unit. 2479 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2480 IRType->isIntegerTy(64)) 2481 return IRType; 2482 2483 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2484 // goodness in the source type is just tail padding. This is allowed to 2485 // kick in for struct {double,int} on the int, but not on 2486 // struct{double,int,int} because we wouldn't return the second int. We 2487 // have to do this analysis on the source type because we can't depend on 2488 // unions being lowered a specific way etc. 2489 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2490 IRType->isIntegerTy(32) || 2491 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2492 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2493 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2494 2495 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2496 SourceOffset*8+64, getContext())) 2497 return IRType; 2498 } 2499 } 2500 2501 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2502 // If this is a struct, recurse into the field at the specified offset. 2503 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2504 if (IROffset < SL->getSizeInBytes()) { 2505 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2506 IROffset -= SL->getElementOffset(FieldIdx); 2507 2508 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2509 SourceTy, SourceOffset); 2510 } 2511 } 2512 2513 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2514 llvm::Type *EltTy = ATy->getElementType(); 2515 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2516 unsigned EltOffset = IROffset/EltSize*EltSize; 2517 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2518 SourceOffset); 2519 } 2520 2521 // Okay, we don't have any better idea of what to pass, so we pass this in an 2522 // integer register that isn't too big to fit the rest of the struct. 2523 unsigned TySizeInBytes = 2524 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2525 2526 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2527 2528 // It is always safe to classify this as an integer type up to i64 that 2529 // isn't larger than the structure. 2530 return llvm::IntegerType::get(getVMContext(), 2531 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2532 } 2533 2534 2535 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2536 /// be used as elements of a two register pair to pass or return, return a 2537 /// first class aggregate to represent them. For example, if the low part of 2538 /// a by-value argument should be passed as i32* and the high part as float, 2539 /// return {i32*, float}. 2540 static llvm::Type * 2541 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2542 const llvm::DataLayout &TD) { 2543 // In order to correctly satisfy the ABI, we need to the high part to start 2544 // at offset 8. If the high and low parts we inferred are both 4-byte types 2545 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2546 // the second element at offset 8. Check for this: 2547 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2548 llvm::Align HiAlign = TD.getABITypeAlign(Hi); 2549 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 2550 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2551 2552 // To handle this, we have to increase the size of the low part so that the 2553 // second element will start at an 8 byte offset. We can't increase the size 2554 // of the second element because it might make us access off the end of the 2555 // struct. 2556 if (HiStart != 8) { 2557 // There are usually two sorts of types the ABI generation code can produce 2558 // for the low part of a pair that aren't 8 bytes in size: half, float or 2559 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2560 // NaCl). 2561 // Promote these to a larger type. 2562 if (Lo->isHalfTy() || Lo->isFloatTy()) 2563 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2564 else { 2565 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2566 && "Invalid/unknown lo type"); 2567 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2568 } 2569 } 2570 2571 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 2572 2573 // Verify that the second element is at an 8-byte offset. 2574 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2575 "Invalid x86-64 argument pair!"); 2576 return Result; 2577 } 2578 2579 ABIArgInfo X86_64ABIInfo:: 2580 classifyReturnType(QualType RetTy) const { 2581 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2582 // classification algorithm. 2583 X86_64ABIInfo::Class Lo, Hi; 2584 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2585 2586 // Check some invariants. 2587 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2588 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2589 2590 llvm::Type *ResType = nullptr; 2591 switch (Lo) { 2592 case NoClass: 2593 if (Hi == NoClass) 2594 return ABIArgInfo::getIgnore(); 2595 // If the low part is just padding, it takes no register, leave ResType 2596 // null. 2597 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2598 "Unknown missing lo part"); 2599 break; 2600 2601 case SSEUp: 2602 case X87Up: 2603 llvm_unreachable("Invalid classification for lo word."); 2604 2605 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2606 // hidden argument. 2607 case Memory: 2608 return getIndirectReturnResult(RetTy); 2609 2610 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2611 // available register of the sequence %rax, %rdx is used. 2612 case Integer: 2613 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2614 2615 // If we have a sign or zero extended integer, make sure to return Extend 2616 // so that the parameter gets the right LLVM IR attributes. 2617 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2618 // Treat an enum type as its underlying type. 2619 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2620 RetTy = EnumTy->getDecl()->getIntegerType(); 2621 2622 if (RetTy->isIntegralOrEnumerationType() && 2623 isPromotableIntegerTypeForABI(RetTy)) 2624 return ABIArgInfo::getExtend(RetTy); 2625 } 2626 break; 2627 2628 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2629 // available SSE register of the sequence %xmm0, %xmm1 is used. 2630 case SSE: 2631 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2632 break; 2633 2634 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2635 // returned on the X87 stack in %st0 as 80-bit x87 number. 2636 case X87: 2637 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2638 break; 2639 2640 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2641 // part of the value is returned in %st0 and the imaginary part in 2642 // %st1. 2643 case ComplexX87: 2644 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2645 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2646 llvm::Type::getX86_FP80Ty(getVMContext())); 2647 break; 2648 } 2649 2650 llvm::Type *HighPart = nullptr; 2651 switch (Hi) { 2652 // Memory was handled previously and X87 should 2653 // never occur as a hi class. 2654 case Memory: 2655 case X87: 2656 llvm_unreachable("Invalid classification for hi word."); 2657 2658 case ComplexX87: // Previously handled. 2659 case NoClass: 2660 break; 2661 2662 case Integer: 2663 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2664 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2665 return ABIArgInfo::getDirect(HighPart, 8); 2666 break; 2667 case SSE: 2668 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2669 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2670 return ABIArgInfo::getDirect(HighPart, 8); 2671 break; 2672 2673 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2674 // is passed in the next available eightbyte chunk if the last used 2675 // vector register. 2676 // 2677 // SSEUP should always be preceded by SSE, just widen. 2678 case SSEUp: 2679 assert(Lo == SSE && "Unexpected SSEUp classification."); 2680 ResType = GetByteVectorType(RetTy); 2681 break; 2682 2683 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2684 // returned together with the previous X87 value in %st0. 2685 case X87Up: 2686 // If X87Up is preceded by X87, we don't need to do 2687 // anything. However, in some cases with unions it may not be 2688 // preceded by X87. In such situations we follow gcc and pass the 2689 // extra bits in an SSE reg. 2690 if (Lo != X87) { 2691 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2692 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2693 return ABIArgInfo::getDirect(HighPart, 8); 2694 } 2695 break; 2696 } 2697 2698 // If a high part was specified, merge it together with the low part. It is 2699 // known to pass in the high eightbyte of the result. We do this by forming a 2700 // first class struct aggregate with the high and low part: {low, high} 2701 if (HighPart) 2702 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2703 2704 return ABIArgInfo::getDirect(ResType); 2705 } 2706 2707 ABIArgInfo 2708 X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2709 unsigned &neededInt, unsigned &neededSSE, 2710 bool isNamedArg, bool IsRegCall) const { 2711 Ty = useFirstFieldIfTransparentUnion(Ty); 2712 2713 X86_64ABIInfo::Class Lo, Hi; 2714 classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall); 2715 2716 // Check some invariants. 2717 // FIXME: Enforce these by construction. 2718 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2719 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2720 2721 neededInt = 0; 2722 neededSSE = 0; 2723 llvm::Type *ResType = nullptr; 2724 switch (Lo) { 2725 case NoClass: 2726 if (Hi == NoClass) 2727 return ABIArgInfo::getIgnore(); 2728 // If the low part is just padding, it takes no register, leave ResType 2729 // null. 2730 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2731 "Unknown missing lo part"); 2732 break; 2733 2734 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2735 // on the stack. 2736 case Memory: 2737 2738 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2739 // COMPLEX_X87, it is passed in memory. 2740 case X87: 2741 case ComplexX87: 2742 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2743 ++neededInt; 2744 return getIndirectResult(Ty, freeIntRegs); 2745 2746 case SSEUp: 2747 case X87Up: 2748 llvm_unreachable("Invalid classification for lo word."); 2749 2750 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2751 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2752 // and %r9 is used. 2753 case Integer: 2754 ++neededInt; 2755 2756 // Pick an 8-byte type based on the preferred type. 2757 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2758 2759 // If we have a sign or zero extended integer, make sure to return Extend 2760 // so that the parameter gets the right LLVM IR attributes. 2761 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2762 // Treat an enum type as its underlying type. 2763 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2764 Ty = EnumTy->getDecl()->getIntegerType(); 2765 2766 if (Ty->isIntegralOrEnumerationType() && 2767 isPromotableIntegerTypeForABI(Ty)) 2768 return ABIArgInfo::getExtend(Ty); 2769 } 2770 2771 break; 2772 2773 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2774 // available SSE register is used, the registers are taken in the 2775 // order from %xmm0 to %xmm7. 2776 case SSE: { 2777 llvm::Type *IRType = CGT.ConvertType(Ty); 2778 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2779 ++neededSSE; 2780 break; 2781 } 2782 } 2783 2784 llvm::Type *HighPart = nullptr; 2785 switch (Hi) { 2786 // Memory was handled previously, ComplexX87 and X87 should 2787 // never occur as hi classes, and X87Up must be preceded by X87, 2788 // which is passed in memory. 2789 case Memory: 2790 case X87: 2791 case ComplexX87: 2792 llvm_unreachable("Invalid classification for hi word."); 2793 2794 case NoClass: break; 2795 2796 case Integer: 2797 ++neededInt; 2798 // Pick an 8-byte type based on the preferred type. 2799 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2800 2801 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2802 return ABIArgInfo::getDirect(HighPart, 8); 2803 break; 2804 2805 // X87Up generally doesn't occur here (long double is passed in 2806 // memory), except in situations involving unions. 2807 case X87Up: 2808 case SSE: 2809 ++neededSSE; 2810 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2811 2812 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2813 return ABIArgInfo::getDirect(HighPart, 8); 2814 break; 2815 2816 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2817 // eightbyte is passed in the upper half of the last used SSE 2818 // register. This only happens when 128-bit vectors are passed. 2819 case SSEUp: 2820 assert(Lo == SSE && "Unexpected SSEUp classification"); 2821 ResType = GetByteVectorType(Ty); 2822 break; 2823 } 2824 2825 // If a high part was specified, merge it together with the low part. It is 2826 // known to pass in the high eightbyte of the result. We do this by forming a 2827 // first class struct aggregate with the high and low part: {low, high} 2828 if (HighPart) 2829 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2830 2831 return ABIArgInfo::getDirect(ResType); 2832 } 2833 2834 ABIArgInfo 2835 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2836 unsigned &NeededSSE, 2837 unsigned &MaxVectorWidth) const { 2838 auto RT = Ty->getAs<RecordType>(); 2839 assert(RT && "classifyRegCallStructType only valid with struct types"); 2840 2841 if (RT->getDecl()->hasFlexibleArrayMember()) 2842 return getIndirectReturnResult(Ty); 2843 2844 // Sum up bases 2845 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 2846 if (CXXRD->isDynamicClass()) { 2847 NeededInt = NeededSSE = 0; 2848 return getIndirectReturnResult(Ty); 2849 } 2850 2851 for (const auto &I : CXXRD->bases()) 2852 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE, 2853 MaxVectorWidth) 2854 .isIndirect()) { 2855 NeededInt = NeededSSE = 0; 2856 return getIndirectReturnResult(Ty); 2857 } 2858 } 2859 2860 // Sum up members 2861 for (const auto *FD : RT->getDecl()->fields()) { 2862 QualType MTy = FD->getType(); 2863 if (MTy->isRecordType() && !MTy->isUnionType()) { 2864 if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE, 2865 MaxVectorWidth) 2866 .isIndirect()) { 2867 NeededInt = NeededSSE = 0; 2868 return getIndirectReturnResult(Ty); 2869 } 2870 } else { 2871 unsigned LocalNeededInt, LocalNeededSSE; 2872 if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE, 2873 true, true) 2874 .isIndirect()) { 2875 NeededInt = NeededSSE = 0; 2876 return getIndirectReturnResult(Ty); 2877 } 2878 if (const auto *AT = getContext().getAsConstantArrayType(MTy)) 2879 MTy = AT->getElementType(); 2880 if (const auto *VT = MTy->getAs<VectorType>()) 2881 if (getContext().getTypeSize(VT) > MaxVectorWidth) 2882 MaxVectorWidth = getContext().getTypeSize(VT); 2883 NeededInt += LocalNeededInt; 2884 NeededSSE += LocalNeededSSE; 2885 } 2886 } 2887 2888 return ABIArgInfo::getDirect(); 2889 } 2890 2891 ABIArgInfo 2892 X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2893 unsigned &NeededSSE, 2894 unsigned &MaxVectorWidth) const { 2895 2896 NeededInt = 0; 2897 NeededSSE = 0; 2898 MaxVectorWidth = 0; 2899 2900 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE, 2901 MaxVectorWidth); 2902 } 2903 2904 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2905 2906 const unsigned CallingConv = FI.getCallingConvention(); 2907 // It is possible to force Win64 calling convention on any x86_64 target by 2908 // using __attribute__((ms_abi)). In such case to correctly emit Win64 2909 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 2910 if (CallingConv == llvm::CallingConv::Win64) { 2911 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 2912 Win64ABIInfo.computeInfo(FI); 2913 return; 2914 } 2915 2916 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 2917 2918 // Keep track of the number of assigned registers. 2919 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 2920 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 2921 unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0; 2922 2923 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 2924 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 2925 !FI.getReturnType()->getTypePtr()->isUnionType()) { 2926 FI.getReturnInfo() = classifyRegCallStructType( 2927 FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth); 2928 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 2929 FreeIntRegs -= NeededInt; 2930 FreeSSERegs -= NeededSSE; 2931 } else { 2932 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 2933 } 2934 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 2935 getContext().getCanonicalType(FI.getReturnType() 2936 ->getAs<ComplexType>() 2937 ->getElementType()) == 2938 getContext().LongDoubleTy) 2939 // Complex Long Double Type is passed in Memory when Regcall 2940 // calling convention is used. 2941 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 2942 else 2943 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2944 } 2945 2946 // If the return value is indirect, then the hidden argument is consuming one 2947 // integer register. 2948 if (FI.getReturnInfo().isIndirect()) 2949 --FreeIntRegs; 2950 else if (NeededSSE && MaxVectorWidth > 0) 2951 FI.setMaxVectorWidth(MaxVectorWidth); 2952 2953 // The chain argument effectively gives us another free register. 2954 if (FI.isChainCall()) 2955 ++FreeIntRegs; 2956 2957 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2958 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2959 // get assigned (in left-to-right order) for passing as follows... 2960 unsigned ArgNo = 0; 2961 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2962 it != ie; ++it, ++ArgNo) { 2963 bool IsNamedArg = ArgNo < NumRequiredArgs; 2964 2965 if (IsRegCall && it->type->isStructureOrClassType()) 2966 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE, 2967 MaxVectorWidth); 2968 else 2969 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 2970 NeededSSE, IsNamedArg); 2971 2972 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2973 // eightbyte of an argument, the whole argument is passed on the 2974 // stack. If registers have already been assigned for some 2975 // eightbytes of such an argument, the assignments get reverted. 2976 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 2977 FreeIntRegs -= NeededInt; 2978 FreeSSERegs -= NeededSSE; 2979 if (MaxVectorWidth > FI.getMaxVectorWidth()) 2980 FI.setMaxVectorWidth(MaxVectorWidth); 2981 } else { 2982 it->info = getIndirectResult(it->type, FreeIntRegs); 2983 } 2984 } 2985 } 2986 2987 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 2988 Address VAListAddr, QualType Ty) { 2989 Address overflow_arg_area_p = 2990 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2991 llvm::Value *overflow_arg_area = 2992 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2993 2994 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2995 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2996 // It isn't stated explicitly in the standard, but in practice we use 2997 // alignment greater than 16 where necessary. 2998 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 2999 if (Align > CharUnits::fromQuantity(8)) { 3000 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3001 Align); 3002 } 3003 3004 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3005 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3006 llvm::Value *Res = overflow_arg_area; 3007 3008 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3009 // l->overflow_arg_area + sizeof(type). 3010 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3011 // an 8 byte boundary. 3012 3013 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3014 llvm::Value *Offset = 3015 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3016 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 3017 Offset, "overflow_arg_area.next"); 3018 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3019 3020 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3021 return Address(Res, LTy, Align); 3022 } 3023 3024 RValue X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3025 QualType Ty, AggValueSlot Slot) const { 3026 // Assume that va_list type is correct; should be pointer to LLVM type: 3027 // struct { 3028 // i32 gp_offset; 3029 // i32 fp_offset; 3030 // i8* overflow_arg_area; 3031 // i8* reg_save_area; 3032 // }; 3033 unsigned neededInt, neededSSE; 3034 3035 Ty = getContext().getCanonicalType(Ty); 3036 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3037 /*isNamedArg*/false); 3038 3039 // Empty records are ignored for parameter passing purposes. 3040 if (AI.isIgnore()) 3041 return Slot.asRValue(); 3042 3043 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3044 // in the registers. If not go to step 7. 3045 if (!neededInt && !neededSSE) 3046 return CGF.EmitLoadOfAnyValue( 3047 CGF.MakeAddrLValue(EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty), Ty), 3048 Slot); 3049 3050 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3051 // general purpose registers needed to pass type and num_fp to hold 3052 // the number of floating point registers needed. 3053 3054 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3055 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3056 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3057 // 3058 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3059 // register save space). 3060 3061 llvm::Value *InRegs = nullptr; 3062 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3063 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3064 if (neededInt) { 3065 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3066 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3067 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3068 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3069 } 3070 3071 if (neededSSE) { 3072 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3073 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3074 llvm::Value *FitsInFP = 3075 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3076 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3077 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3078 } 3079 3080 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3081 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3082 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3083 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3084 3085 // Emit code to load the value if it was passed in registers. 3086 3087 CGF.EmitBlock(InRegBlock); 3088 3089 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3090 // an offset of l->gp_offset and/or l->fp_offset. This may require 3091 // copying to a temporary location in case the parameter is passed 3092 // in different register classes or requires an alignment greater 3093 // than 8 for general purpose registers and 16 for XMM registers. 3094 // 3095 // FIXME: This really results in shameful code when we end up needing to 3096 // collect arguments from different places; often what should result in a 3097 // simple assembling of a structure from scattered addresses has many more 3098 // loads than necessary. Can we clean this up? 3099 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3100 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3101 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3102 3103 Address RegAddr = Address::invalid(); 3104 if (neededInt && neededSSE) { 3105 // FIXME: Cleanup. 3106 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3107 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3108 Address Tmp = CGF.CreateMemTemp(Ty); 3109 Tmp = Tmp.withElementType(ST); 3110 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3111 llvm::Type *TyLo = ST->getElementType(0); 3112 llvm::Type *TyHi = ST->getElementType(1); 3113 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3114 "Unexpected ABI info for mixed regs"); 3115 llvm::Value *GPAddr = 3116 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 3117 llvm::Value *FPAddr = 3118 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 3119 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3120 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3121 3122 // Copy the first element. 3123 // FIXME: Our choice of alignment here and below is probably pessimistic. 3124 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3125 TyLo, RegLoAddr, 3126 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo))); 3127 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3128 3129 // Copy the second element. 3130 V = CGF.Builder.CreateAlignedLoad( 3131 TyHi, RegHiAddr, 3132 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi))); 3133 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3134 3135 RegAddr = Tmp.withElementType(LTy); 3136 } else if (neededInt) { 3137 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 3138 LTy, CharUnits::fromQuantity(8)); 3139 3140 // Copy to a temporary if necessary to ensure the appropriate alignment. 3141 auto TInfo = getContext().getTypeInfoInChars(Ty); 3142 uint64_t TySize = TInfo.Width.getQuantity(); 3143 CharUnits TyAlign = TInfo.Align; 3144 3145 // Copy into a temporary if the type is more aligned than the 3146 // register save area. 3147 if (TyAlign.getQuantity() > 8) { 3148 Address Tmp = CGF.CreateMemTemp(Ty); 3149 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3150 RegAddr = Tmp; 3151 } 3152 3153 } else if (neededSSE == 1) { 3154 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 3155 LTy, CharUnits::fromQuantity(16)); 3156 } else { 3157 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3158 // SSE registers are spaced 16 bytes apart in the register save 3159 // area, we need to collect the two eightbytes together. 3160 // The ABI isn't explicit about this, but it seems reasonable 3161 // to assume that the slots are 16-byte aligned, since the stack is 3162 // naturally 16-byte aligned and the prologue is expected to store 3163 // all the SSE registers to the RSA. 3164 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 3165 fp_offset), 3166 CGF.Int8Ty, CharUnits::fromQuantity(16)); 3167 Address RegAddrHi = 3168 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3169 CharUnits::fromQuantity(16)); 3170 llvm::Type *ST = AI.canHaveCoerceToType() 3171 ? AI.getCoerceToType() 3172 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3173 llvm::Value *V; 3174 Address Tmp = CGF.CreateMemTemp(Ty); 3175 Tmp = Tmp.withElementType(ST); 3176 V = CGF.Builder.CreateLoad( 3177 RegAddrLo.withElementType(ST->getStructElementType(0))); 3178 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3179 V = CGF.Builder.CreateLoad( 3180 RegAddrHi.withElementType(ST->getStructElementType(1))); 3181 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3182 3183 RegAddr = Tmp.withElementType(LTy); 3184 } 3185 3186 // AMD64-ABI 3.5.7p5: Step 5. Set: 3187 // l->gp_offset = l->gp_offset + num_gp * 8 3188 // l->fp_offset = l->fp_offset + num_fp * 16. 3189 if (neededInt) { 3190 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3191 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3192 gp_offset_p); 3193 } 3194 if (neededSSE) { 3195 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3196 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3197 fp_offset_p); 3198 } 3199 CGF.EmitBranch(ContBlock); 3200 3201 // Emit code to load the value if it was passed in memory. 3202 3203 CGF.EmitBlock(InMemBlock); 3204 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3205 3206 // Return the appropriate result. 3207 3208 CGF.EmitBlock(ContBlock); 3209 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3210 "vaarg.addr"); 3211 return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot); 3212 } 3213 3214 RValue X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3215 QualType Ty, AggValueSlot Slot) const { 3216 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3217 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3218 uint64_t Width = getContext().getTypeSize(Ty); 3219 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3220 3221 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3222 CGF.getContext().getTypeInfoInChars(Ty), 3223 CharUnits::fromQuantity(8), 3224 /*allowHigherAlign*/ false, Slot); 3225 } 3226 3227 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 3228 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 3229 const Type *Base = nullptr; 3230 uint64_t NumElts = 0; 3231 3232 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3233 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3234 FreeSSERegs -= NumElts; 3235 return getDirectX86Hva(); 3236 } 3237 return current; 3238 } 3239 3240 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3241 bool IsReturnType, bool IsVectorCall, 3242 bool IsRegCall) const { 3243 3244 if (Ty->isVoidType()) 3245 return ABIArgInfo::getIgnore(); 3246 3247 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3248 Ty = EnumTy->getDecl()->getIntegerType(); 3249 3250 TypeInfo Info = getContext().getTypeInfo(Ty); 3251 uint64_t Width = Info.Width; 3252 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3253 3254 const RecordType *RT = Ty->getAs<RecordType>(); 3255 if (RT) { 3256 if (!IsReturnType) { 3257 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3258 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3259 } 3260 3261 if (RT->getDecl()->hasFlexibleArrayMember()) 3262 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3263 3264 } 3265 3266 const Type *Base = nullptr; 3267 uint64_t NumElts = 0; 3268 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3269 // other targets. 3270 if ((IsVectorCall || IsRegCall) && 3271 isHomogeneousAggregate(Ty, Base, NumElts)) { 3272 if (IsRegCall) { 3273 if (FreeSSERegs >= NumElts) { 3274 FreeSSERegs -= NumElts; 3275 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3276 return ABIArgInfo::getDirect(); 3277 return ABIArgInfo::getExpand(); 3278 } 3279 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3280 } else if (IsVectorCall) { 3281 if (FreeSSERegs >= NumElts && 3282 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3283 FreeSSERegs -= NumElts; 3284 return ABIArgInfo::getDirect(); 3285 } else if (IsReturnType) { 3286 return ABIArgInfo::getExpand(); 3287 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3288 // HVAs are delayed and reclassified in the 2nd step. 3289 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3290 } 3291 } 3292 } 3293 3294 if (Ty->isMemberPointerType()) { 3295 // If the member pointer is represented by an LLVM int or ptr, pass it 3296 // directly. 3297 llvm::Type *LLTy = CGT.ConvertType(Ty); 3298 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3299 return ABIArgInfo::getDirect(); 3300 } 3301 3302 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3303 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3304 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3305 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3306 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3307 3308 // Otherwise, coerce it to a small integer. 3309 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3310 } 3311 3312 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3313 switch (BT->getKind()) { 3314 case BuiltinType::Bool: 3315 // Bool type is always extended to the ABI, other builtin types are not 3316 // extended. 3317 return ABIArgInfo::getExtend(Ty); 3318 3319 case BuiltinType::LongDouble: 3320 // Mingw64 GCC uses the old 80 bit extended precision floating point 3321 // unit. It passes them indirectly through memory. 3322 if (IsMingw64) { 3323 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3324 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3325 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3326 } 3327 break; 3328 3329 case BuiltinType::Int128: 3330 case BuiltinType::UInt128: 3331 // If it's a parameter type, the normal ABI rule is that arguments larger 3332 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3333 // even though it isn't particularly efficient. 3334 if (!IsReturnType) 3335 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3336 3337 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3338 // Clang matches them for compatibility. 3339 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 3340 llvm::Type::getInt64Ty(getVMContext()), 2)); 3341 3342 default: 3343 break; 3344 } 3345 } 3346 3347 if (Ty->isBitIntType()) { 3348 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3349 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3350 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, 3351 // or 8 bytes anyway as long is it fits in them, so we don't have to check 3352 // the power of 2. 3353 if (Width <= 64) 3354 return ABIArgInfo::getDirect(); 3355 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3356 } 3357 3358 return ABIArgInfo::getDirect(); 3359 } 3360 3361 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3362 const unsigned CC = FI.getCallingConvention(); 3363 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 3364 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 3365 3366 // If __attribute__((sysv_abi)) is in use, use the SysV argument 3367 // classification rules. 3368 if (CC == llvm::CallingConv::X86_64_SysV) { 3369 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 3370 SysVABIInfo.computeInfo(FI); 3371 return; 3372 } 3373 3374 unsigned FreeSSERegs = 0; 3375 if (IsVectorCall) { 3376 // We can use up to 4 SSE return registers with vectorcall. 3377 FreeSSERegs = 4; 3378 } else if (IsRegCall) { 3379 // RegCall gives us 16 SSE registers. 3380 FreeSSERegs = 16; 3381 } 3382 3383 if (!getCXXABI().classifyReturnType(FI)) 3384 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3385 IsVectorCall, IsRegCall); 3386 3387 if (IsVectorCall) { 3388 // We can use up to 6 SSE register parameters with vectorcall. 3389 FreeSSERegs = 6; 3390 } else if (IsRegCall) { 3391 // RegCall gives us 16 SSE registers, we can reuse the return registers. 3392 FreeSSERegs = 16; 3393 } 3394 3395 unsigned ArgNum = 0; 3396 unsigned ZeroSSERegs = 0; 3397 for (auto &I : FI.arguments()) { 3398 // Vectorcall in x64 only permits the first 6 arguments to be passed as 3399 // XMM/YMM registers. After the sixth argument, pretend no vector 3400 // registers are left. 3401 unsigned *MaybeFreeSSERegs = 3402 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 3403 I.info = 3404 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 3405 ++ArgNum; 3406 } 3407 3408 if (IsVectorCall) { 3409 // For vectorcall, assign aggregate HVAs to any free vector registers in a 3410 // second pass. 3411 for (auto &I : FI.arguments()) 3412 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 3413 } 3414 } 3415 3416 RValue WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3417 QualType Ty, AggValueSlot Slot) const { 3418 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3419 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3420 uint64_t Width = getContext().getTypeSize(Ty); 3421 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3422 3423 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3424 CGF.getContext().getTypeInfoInChars(Ty), 3425 CharUnits::fromQuantity(8), 3426 /*allowHigherAlign*/ false, Slot); 3427 } 3428 3429 std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo( 3430 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, 3431 unsigned NumRegisterParameters, bool SoftFloatABI) { 3432 bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( 3433 CGM.getTriple(), CGM.getCodeGenOpts()); 3434 return std::make_unique<X86_32TargetCodeGenInfo>( 3435 CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 3436 NumRegisterParameters, SoftFloatABI); 3437 } 3438 3439 std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo( 3440 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, 3441 unsigned NumRegisterParameters) { 3442 bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( 3443 CGM.getTriple(), CGM.getCodeGenOpts()); 3444 return std::make_unique<WinX86_32TargetCodeGenInfo>( 3445 CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 3446 NumRegisterParameters); 3447 } 3448 3449 std::unique_ptr<TargetCodeGenInfo> 3450 CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM, 3451 X86AVXABILevel AVXLevel) { 3452 return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel); 3453 } 3454 3455 std::unique_ptr<TargetCodeGenInfo> 3456 CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, 3457 X86AVXABILevel AVXLevel) { 3458 return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel); 3459 } 3460