xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp (revision b64c5a0ace59af62eff52bfe110a521dc73c937b)
1 //===- X86.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ABIInfoImpl.h"
10 #include "TargetInfo.h"
11 #include "clang/Basic/DiagnosticFrontend.h"
12 #include "llvm/ADT/SmallBitVector.h"
13 
14 using namespace clang;
15 using namespace clang::CodeGen;
16 
17 namespace {
18 
19 /// IsX86_MMXType - Return true if this is an MMX type.
20 bool IsX86_MMXType(llvm::Type *IRType) {
21   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
22   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
23     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
24     IRType->getScalarSizeInBits() != 64;
25 }
26 
27 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
28                                           StringRef Constraint,
29                                           llvm::Type* Ty) {
30   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
31                      .Cases("y", "&y", "^Ym", true)
32                      .Default(false);
33   if (IsMMXCons && Ty->isVectorTy()) {
34     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
35         64) {
36       // Invalid MMX constraint
37       return nullptr;
38     }
39 
40     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
41   }
42 
43   if (Constraint == "k") {
44     llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext());
45     return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits());
46   }
47 
48   // No operation needed
49   return Ty;
50 }
51 
52 /// Returns true if this type can be passed in SSE registers with the
53 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
54 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
55   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
56     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
57       if (BT->getKind() == BuiltinType::LongDouble) {
58         if (&Context.getTargetInfo().getLongDoubleFormat() ==
59             &llvm::APFloat::x87DoubleExtended())
60           return false;
61       }
62       return true;
63     }
64   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
65     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
66     // registers specially.
67     unsigned VecSize = Context.getTypeSize(VT);
68     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
69       return true;
70   }
71   return false;
72 }
73 
74 /// Returns true if this aggregate is small enough to be passed in SSE registers
75 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
76 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
77   return NumMembers <= 4;
78 }
79 
80 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
81 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
82   auto AI = ABIArgInfo::getDirect(T);
83   AI.setInReg(true);
84   AI.setCanBeFlattened(false);
85   return AI;
86 }
87 
88 //===----------------------------------------------------------------------===//
89 // X86-32 ABI Implementation
90 //===----------------------------------------------------------------------===//
91 
92 /// Similar to llvm::CCState, but for Clang.
93 struct CCState {
94   CCState(CGFunctionInfo &FI)
95       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()),
96 	Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {}
97 
98   llvm::SmallBitVector IsPreassigned;
99   unsigned CC = CallingConv::CC_C;
100   unsigned FreeRegs = 0;
101   unsigned FreeSSERegs = 0;
102   RequiredArgs Required;
103   bool IsDelegateCall = false;
104 };
105 
106 /// X86_32ABIInfo - The X86-32 ABI information.
107 class X86_32ABIInfo : public ABIInfo {
108   enum Class {
109     Integer,
110     Float
111   };
112 
113   static const unsigned MinABIStackAlignInBytes = 4;
114 
115   bool IsDarwinVectorABI;
116   bool IsRetSmallStructInRegABI;
117   bool IsWin32StructABI;
118   bool IsSoftFloatABI;
119   bool IsMCUABI;
120   bool IsLinuxABI;
121   unsigned DefaultNumRegisterParameters;
122 
123   static bool isRegisterSize(unsigned Size) {
124     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
125   }
126 
127   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
128     // FIXME: Assumes vectorcall is in use.
129     return isX86VectorTypeForVectorCall(getContext(), Ty);
130   }
131 
132   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
133                                          uint64_t NumMembers) const override {
134     // FIXME: Assumes vectorcall is in use.
135     return isX86VectorCallAggregateSmallEnough(NumMembers);
136   }
137 
138   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
139 
140   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
141   /// such that the argument will be passed in memory.
142   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
143 
144   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
145 
146   /// Return the alignment to use for the given type on the stack.
147   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
148 
149   Class classify(QualType Ty) const;
150   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
151   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
152                                   unsigned ArgIndex) const;
153 
154   /// Updates the number of available free registers, returns
155   /// true if any registers were allocated.
156   bool updateFreeRegs(QualType Ty, CCState &State) const;
157 
158   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
159                                 bool &NeedsPadding) const;
160   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
161 
162   bool canExpandIndirectArgument(QualType Ty) const;
163 
164   /// Rewrite the function info so that all memory arguments use
165   /// inalloca.
166   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
167 
168   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
169                            CharUnits &StackOffset, ABIArgInfo &Info,
170                            QualType Type) const;
171   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
172 
173 public:
174 
175   void computeInfo(CGFunctionInfo &FI) const override;
176   RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
177                    AggValueSlot Slot) const override;
178 
179   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
180                 bool RetSmallStructInRegABI, bool Win32StructABI,
181                 unsigned NumRegisterParameters, bool SoftFloatABI)
182       : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
183         IsRetSmallStructInRegABI(RetSmallStructInRegABI),
184         IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
185         IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
186         IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
187                    CGT.getTarget().getTriple().isOSCygMing()),
188         DefaultNumRegisterParameters(NumRegisterParameters) {}
189 };
190 
191 class X86_32SwiftABIInfo : public SwiftABIInfo {
192 public:
193   explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
194       : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
195 
196   bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
197                             bool AsReturnValue) const override {
198     // LLVM's x86-32 lowering currently only assigns up to three
199     // integer registers and three fp registers.  Oddly, it'll use up to
200     // four vector registers for vectors, but those can overlap with the
201     // scalar registers.
202     return occupiesMoreThan(ComponentTys, /*total=*/3);
203   }
204 };
205 
206 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
207 public:
208   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
209                           bool RetSmallStructInRegABI, bool Win32StructABI,
210                           unsigned NumRegisterParameters, bool SoftFloatABI)
211       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
212             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
213             NumRegisterParameters, SoftFloatABI)) {
214     SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
215   }
216 
217   static bool isStructReturnInRegABI(
218       const llvm::Triple &Triple, const CodeGenOptions &Opts);
219 
220   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
221                            CodeGen::CodeGenModule &CGM) const override;
222 
223   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
224     // Darwin uses different dwarf register numbers for EH.
225     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
226     return 4;
227   }
228 
229   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
230                                llvm::Value *Address) const override;
231 
232   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
233                                   StringRef Constraint,
234                                   llvm::Type* Ty) const override {
235     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
236   }
237 
238   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
239                                 std::string &Constraints,
240                                 std::vector<llvm::Type *> &ResultRegTypes,
241                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
242                                 std::vector<LValue> &ResultRegDests,
243                                 std::string &AsmString,
244                                 unsigned NumOutputs) const override;
245 
246   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
247     return "movl\t%ebp, %ebp"
248            "\t\t// marker for objc_retainAutoreleaseReturnValue";
249   }
250 };
251 
252 }
253 
254 /// Rewrite input constraint references after adding some output constraints.
255 /// In the case where there is one output and one input and we add one output,
256 /// we need to replace all operand references greater than or equal to 1:
257 ///     mov $0, $1
258 ///     mov eax, $1
259 /// The result will be:
260 ///     mov $0, $2
261 ///     mov eax, $2
262 static void rewriteInputConstraintReferences(unsigned FirstIn,
263                                              unsigned NumNewOuts,
264                                              std::string &AsmString) {
265   std::string Buf;
266   llvm::raw_string_ostream OS(Buf);
267   size_t Pos = 0;
268   while (Pos < AsmString.size()) {
269     size_t DollarStart = AsmString.find('$', Pos);
270     if (DollarStart == std::string::npos)
271       DollarStart = AsmString.size();
272     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
273     if (DollarEnd == std::string::npos)
274       DollarEnd = AsmString.size();
275     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
276     Pos = DollarEnd;
277     size_t NumDollars = DollarEnd - DollarStart;
278     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
279       // We have an operand reference.
280       size_t DigitStart = Pos;
281       if (AsmString[DigitStart] == '{') {
282         OS << '{';
283         ++DigitStart;
284       }
285       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
286       if (DigitEnd == std::string::npos)
287         DigitEnd = AsmString.size();
288       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
289       unsigned OperandIndex;
290       if (!OperandStr.getAsInteger(10, OperandIndex)) {
291         if (OperandIndex >= FirstIn)
292           OperandIndex += NumNewOuts;
293         OS << OperandIndex;
294       } else {
295         OS << OperandStr;
296       }
297       Pos = DigitEnd;
298     }
299   }
300   AsmString = std::move(OS.str());
301 }
302 
303 /// Add output constraints for EAX:EDX because they are return registers.
304 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
305     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
306     std::vector<llvm::Type *> &ResultRegTypes,
307     std::vector<llvm::Type *> &ResultTruncRegTypes,
308     std::vector<LValue> &ResultRegDests, std::string &AsmString,
309     unsigned NumOutputs) const {
310   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
311 
312   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
313   // larger.
314   if (!Constraints.empty())
315     Constraints += ',';
316   if (RetWidth <= 32) {
317     Constraints += "={eax}";
318     ResultRegTypes.push_back(CGF.Int32Ty);
319   } else {
320     // Use the 'A' constraint for EAX:EDX.
321     Constraints += "=A";
322     ResultRegTypes.push_back(CGF.Int64Ty);
323   }
324 
325   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
326   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
327   ResultTruncRegTypes.push_back(CoerceTy);
328 
329   // Coerce the integer by bitcasting the return slot pointer.
330   ReturnSlot.setAddress(ReturnSlot.getAddress().withElementType(CoerceTy));
331   ResultRegDests.push_back(ReturnSlot);
332 
333   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
334 }
335 
336 /// shouldReturnTypeInRegister - Determine if the given type should be
337 /// returned in a register (for the Darwin and MCU ABI).
338 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
339                                                ASTContext &Context) const {
340   uint64_t Size = Context.getTypeSize(Ty);
341 
342   // For i386, type must be register sized.
343   // For the MCU ABI, it only needs to be <= 8-byte
344   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
345    return false;
346 
347   if (Ty->isVectorType()) {
348     // 64- and 128- bit vectors inside structures are not returned in
349     // registers.
350     if (Size == 64 || Size == 128)
351       return false;
352 
353     return true;
354   }
355 
356   // If this is a builtin, pointer, enum, complex type, member pointer, or
357   // member function pointer it is ok.
358   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
359       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
360       Ty->isBlockPointerType() || Ty->isMemberPointerType())
361     return true;
362 
363   // Arrays are treated like records.
364   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
365     return shouldReturnTypeInRegister(AT->getElementType(), Context);
366 
367   // Otherwise, it must be a record type.
368   const RecordType *RT = Ty->getAs<RecordType>();
369   if (!RT) return false;
370 
371   // FIXME: Traverse bases here too.
372 
373   // Structure types are passed in register if all fields would be
374   // passed in a register.
375   for (const auto *FD : RT->getDecl()->fields()) {
376     // Empty fields are ignored.
377     if (isEmptyField(Context, FD, true))
378       continue;
379 
380     // Check fields recursively.
381     if (!shouldReturnTypeInRegister(FD->getType(), Context))
382       return false;
383   }
384   return true;
385 }
386 
387 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
388   // Treat complex types as the element type.
389   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
390     Ty = CTy->getElementType();
391 
392   // Check for a type which we know has a simple scalar argument-passing
393   // convention without any padding.  (We're specifically looking for 32
394   // and 64-bit integer and integer-equivalents, float, and double.)
395   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
396       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
397     return false;
398 
399   uint64_t Size = Context.getTypeSize(Ty);
400   return Size == 32 || Size == 64;
401 }
402 
403 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
404                           uint64_t &Size) {
405   for (const auto *FD : RD->fields()) {
406     // Scalar arguments on the stack get 4 byte alignment on x86. If the
407     // argument is smaller than 32-bits, expanding the struct will create
408     // alignment padding.
409     if (!is32Or64BitBasicType(FD->getType(), Context))
410       return false;
411 
412     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
413     // how to expand them yet, and the predicate for telling if a bitfield still
414     // counts as "basic" is more complicated than what we were doing previously.
415     if (FD->isBitField())
416       return false;
417 
418     Size += Context.getTypeSize(FD->getType());
419   }
420   return true;
421 }
422 
423 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
424                                  uint64_t &Size) {
425   // Don't do this if there are any non-empty bases.
426   for (const CXXBaseSpecifier &Base : RD->bases()) {
427     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
428                               Size))
429       return false;
430   }
431   if (!addFieldSizes(Context, RD, Size))
432     return false;
433   return true;
434 }
435 
436 /// Test whether an argument type which is to be passed indirectly (on the
437 /// stack) would have the equivalent layout if it was expanded into separate
438 /// arguments. If so, we prefer to do the latter to avoid inhibiting
439 /// optimizations.
440 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
441   // We can only expand structure types.
442   const RecordType *RT = Ty->getAs<RecordType>();
443   if (!RT)
444     return false;
445   const RecordDecl *RD = RT->getDecl();
446   uint64_t Size = 0;
447   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
448     if (!IsWin32StructABI) {
449       // On non-Windows, we have to conservatively match our old bitcode
450       // prototypes in order to be ABI-compatible at the bitcode level.
451       if (!CXXRD->isCLike())
452         return false;
453     } else {
454       // Don't do this for dynamic classes.
455       if (CXXRD->isDynamicClass())
456         return false;
457     }
458     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
459       return false;
460   } else {
461     if (!addFieldSizes(getContext(), RD, Size))
462       return false;
463   }
464 
465   // We can do this if there was no alignment padding.
466   return Size == getContext().getTypeSize(Ty);
467 }
468 
469 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
470   // If the return value is indirect, then the hidden argument is consuming one
471   // integer register.
472   if (State.CC != llvm::CallingConv::X86_FastCall &&
473       State.CC != llvm::CallingConv::X86_VectorCall && State.FreeRegs) {
474     --State.FreeRegs;
475     if (!IsMCUABI)
476       return getNaturalAlignIndirectInReg(RetTy);
477   }
478   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
479 }
480 
481 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
482                                              CCState &State) const {
483   if (RetTy->isVoidType())
484     return ABIArgInfo::getIgnore();
485 
486   const Type *Base = nullptr;
487   uint64_t NumElts = 0;
488   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
489        State.CC == llvm::CallingConv::X86_RegCall) &&
490       isHomogeneousAggregate(RetTy, Base, NumElts)) {
491     // The LLVM struct type for such an aggregate should lower properly.
492     return ABIArgInfo::getDirect();
493   }
494 
495   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
496     // On Darwin, some vectors are returned in registers.
497     if (IsDarwinVectorABI) {
498       uint64_t Size = getContext().getTypeSize(RetTy);
499 
500       // 128-bit vectors are a special case; they are returned in
501       // registers and we need to make sure to pick a type the LLVM
502       // backend will like.
503       if (Size == 128)
504         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
505             llvm::Type::getInt64Ty(getVMContext()), 2));
506 
507       // Always return in register if it fits in a general purpose
508       // register, or if it is 64 bits and has a single element.
509       if ((Size == 8 || Size == 16 || Size == 32) ||
510           (Size == 64 && VT->getNumElements() == 1))
511         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
512                                                             Size));
513 
514       return getIndirectReturnResult(RetTy, State);
515     }
516 
517     return ABIArgInfo::getDirect();
518   }
519 
520   if (isAggregateTypeForABI(RetTy)) {
521     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
522       // Structures with flexible arrays are always indirect.
523       if (RT->getDecl()->hasFlexibleArrayMember())
524         return getIndirectReturnResult(RetTy, State);
525     }
526 
527     // If specified, structs and unions are always indirect.
528     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
529       return getIndirectReturnResult(RetTy, State);
530 
531     // Ignore empty structs/unions.
532     if (isEmptyRecord(getContext(), RetTy, true))
533       return ABIArgInfo::getIgnore();
534 
535     // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
536     if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
537       QualType ET = getContext().getCanonicalType(CT->getElementType());
538       if (ET->isFloat16Type())
539         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
540             llvm::Type::getHalfTy(getVMContext()), 2));
541     }
542 
543     // Small structures which are register sized are generally returned
544     // in a register.
545     if (shouldReturnTypeInRegister(RetTy, getContext())) {
546       uint64_t Size = getContext().getTypeSize(RetTy);
547 
548       // As a special-case, if the struct is a "single-element" struct, and
549       // the field is of type "float" or "double", return it in a
550       // floating-point register. (MSVC does not apply this special case.)
551       // We apply a similar transformation for pointer types to improve the
552       // quality of the generated IR.
553       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
554         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
555             || SeltTy->hasPointerRepresentation())
556           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
557 
558       // FIXME: We should be able to narrow this integer in cases with dead
559       // padding.
560       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
561     }
562 
563     return getIndirectReturnResult(RetTy, State);
564   }
565 
566   // Treat an enum type as its underlying type.
567   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
568     RetTy = EnumTy->getDecl()->getIntegerType();
569 
570   if (const auto *EIT = RetTy->getAs<BitIntType>())
571     if (EIT->getNumBits() > 64)
572       return getIndirectReturnResult(RetTy, State);
573 
574   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
575                                                : ABIArgInfo::getDirect());
576 }
577 
578 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
579                                                  unsigned Align) const {
580   // Otherwise, if the alignment is less than or equal to the minimum ABI
581   // alignment, just use the default; the backend will handle this.
582   if (Align <= MinABIStackAlignInBytes)
583     return 0; // Use default alignment.
584 
585   if (IsLinuxABI) {
586     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
587     // want to spend any effort dealing with the ramifications of ABI breaks.
588     //
589     // If the vector type is __m128/__m256/__m512, return the default alignment.
590     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
591       return Align;
592   }
593   // On non-Darwin, the stack type alignment is always 4.
594   if (!IsDarwinVectorABI) {
595     // Set explicit alignment, since we may need to realign the top.
596     return MinABIStackAlignInBytes;
597   }
598 
599   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
600   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
601                       isRecordWithSIMDVectorType(getContext(), Ty)))
602     return 16;
603 
604   return MinABIStackAlignInBytes;
605 }
606 
607 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
608                                             CCState &State) const {
609   if (!ByVal) {
610     if (State.FreeRegs) {
611       --State.FreeRegs; // Non-byval indirects just use one pointer.
612       if (!IsMCUABI)
613         return getNaturalAlignIndirectInReg(Ty);
614     }
615     return getNaturalAlignIndirect(Ty, false);
616   }
617 
618   // Compute the byval alignment.
619   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
620   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
621   if (StackAlign == 0)
622     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
623 
624   // If the stack alignment is less than the type alignment, realign the
625   // argument.
626   bool Realign = TypeAlign > StackAlign;
627   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
628                                  /*ByVal=*/true, Realign);
629 }
630 
631 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
632   const Type *T = isSingleElementStruct(Ty, getContext());
633   if (!T)
634     T = Ty.getTypePtr();
635 
636   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
637     BuiltinType::Kind K = BT->getKind();
638     if (K == BuiltinType::Float || K == BuiltinType::Double)
639       return Float;
640   }
641   return Integer;
642 }
643 
644 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
645   if (!IsSoftFloatABI) {
646     Class C = classify(Ty);
647     if (C == Float)
648       return false;
649   }
650 
651   unsigned Size = getContext().getTypeSize(Ty);
652   unsigned SizeInRegs = (Size + 31) / 32;
653 
654   if (SizeInRegs == 0)
655     return false;
656 
657   if (!IsMCUABI) {
658     if (SizeInRegs > State.FreeRegs) {
659       State.FreeRegs = 0;
660       return false;
661     }
662   } else {
663     // The MCU psABI allows passing parameters in-reg even if there are
664     // earlier parameters that are passed on the stack. Also,
665     // it does not allow passing >8-byte structs in-register,
666     // even if there are 3 free registers available.
667     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
668       return false;
669   }
670 
671   State.FreeRegs -= SizeInRegs;
672   return true;
673 }
674 
675 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
676                                              bool &InReg,
677                                              bool &NeedsPadding) const {
678   // On Windows, aggregates other than HFAs are never passed in registers, and
679   // they do not consume register slots. Homogenous floating-point aggregates
680   // (HFAs) have already been dealt with at this point.
681   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
682     return false;
683 
684   NeedsPadding = false;
685   InReg = !IsMCUABI;
686 
687   if (!updateFreeRegs(Ty, State))
688     return false;
689 
690   if (IsMCUABI)
691     return true;
692 
693   if (State.CC == llvm::CallingConv::X86_FastCall ||
694       State.CC == llvm::CallingConv::X86_VectorCall ||
695       State.CC == llvm::CallingConv::X86_RegCall) {
696     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
697       NeedsPadding = true;
698 
699     return false;
700   }
701 
702   return true;
703 }
704 
705 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
706   bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
707                     (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
708                      Ty->isReferenceType());
709 
710   if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
711                       State.CC == llvm::CallingConv::X86_VectorCall))
712     return false;
713 
714   if (!updateFreeRegs(Ty, State))
715     return false;
716 
717   if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
718     return false;
719 
720   // Return true to apply inreg to all legal parameters except for MCU targets.
721   return !IsMCUABI;
722 }
723 
724 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
725   // Vectorcall x86 works subtly different than in x64, so the format is
726   // a bit different than the x64 version.  First, all vector types (not HVAs)
727   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
728   // This differs from the x64 implementation, where the first 6 by INDEX get
729   // registers.
730   // In the second pass over the arguments, HVAs are passed in the remaining
731   // vector registers if possible, or indirectly by address. The address will be
732   // passed in ECX/EDX if available. Any other arguments are passed according to
733   // the usual fastcall rules.
734   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
735   for (int I = 0, E = Args.size(); I < E; ++I) {
736     const Type *Base = nullptr;
737     uint64_t NumElts = 0;
738     const QualType &Ty = Args[I].type;
739     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
740         isHomogeneousAggregate(Ty, Base, NumElts)) {
741       if (State.FreeSSERegs >= NumElts) {
742         State.FreeSSERegs -= NumElts;
743         Args[I].info = ABIArgInfo::getDirectInReg();
744         State.IsPreassigned.set(I);
745       }
746     }
747   }
748 }
749 
750 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
751                                                unsigned ArgIndex) const {
752   // FIXME: Set alignment on indirect arguments.
753   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
754   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
755   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
756 
757   Ty = useFirstFieldIfTransparentUnion(Ty);
758   TypeInfo TI = getContext().getTypeInfo(Ty);
759 
760   // Check with the C++ ABI first.
761   const RecordType *RT = Ty->getAs<RecordType>();
762   if (RT) {
763     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
764     if (RAA == CGCXXABI::RAA_Indirect) {
765       return getIndirectResult(Ty, false, State);
766     } else if (State.IsDelegateCall) {
767       // Avoid having different alignments on delegate call args by always
768       // setting the alignment to 4, which is what we do for inallocas.
769       ABIArgInfo Res = getIndirectResult(Ty, false, State);
770       Res.setIndirectAlign(CharUnits::fromQuantity(4));
771       return Res;
772     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
773       // The field index doesn't matter, we'll fix it up later.
774       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
775     }
776   }
777 
778   // Regcall uses the concept of a homogenous vector aggregate, similar
779   // to other targets.
780   const Type *Base = nullptr;
781   uint64_t NumElts = 0;
782   if ((IsRegCall || IsVectorCall) &&
783       isHomogeneousAggregate(Ty, Base, NumElts)) {
784     if (State.FreeSSERegs >= NumElts) {
785       State.FreeSSERegs -= NumElts;
786 
787       // Vectorcall passes HVAs directly and does not flatten them, but regcall
788       // does.
789       if (IsVectorCall)
790         return getDirectX86Hva();
791 
792       if (Ty->isBuiltinType() || Ty->isVectorType())
793         return ABIArgInfo::getDirect();
794       return ABIArgInfo::getExpand();
795     }
796     if (IsVectorCall && Ty->isBuiltinType())
797       return ABIArgInfo::getDirect();
798     return getIndirectResult(Ty, /*ByVal=*/false, State);
799   }
800 
801   if (isAggregateTypeForABI(Ty)) {
802     // Structures with flexible arrays are always indirect.
803     // FIXME: This should not be byval!
804     if (RT && RT->getDecl()->hasFlexibleArrayMember())
805       return getIndirectResult(Ty, true, State);
806 
807     // Ignore empty structs/unions on non-Windows.
808     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
809       return ABIArgInfo::getIgnore();
810 
811     llvm::LLVMContext &LLVMContext = getVMContext();
812     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
813     bool NeedsPadding = false;
814     bool InReg;
815     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
816       unsigned SizeInRegs = (TI.Width + 31) / 32;
817       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
818       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
819       if (InReg)
820         return ABIArgInfo::getDirectInReg(Result);
821       else
822         return ABIArgInfo::getDirect(Result);
823     }
824     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
825 
826     // Pass over-aligned aggregates to non-variadic functions on Windows
827     // indirectly. This behavior was added in MSVC 2015. Use the required
828     // alignment from the record layout, since that may be less than the
829     // regular type alignment, and types with required alignment of less than 4
830     // bytes are not passed indirectly.
831     if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) {
832       unsigned AlignInBits = 0;
833       if (RT) {
834         const ASTRecordLayout &Layout =
835           getContext().getASTRecordLayout(RT->getDecl());
836         AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
837       } else if (TI.isAlignRequired()) {
838         AlignInBits = TI.Align;
839       }
840       if (AlignInBits > 32)
841         return getIndirectResult(Ty, /*ByVal=*/false, State);
842     }
843 
844     // Expand small (<= 128-bit) record types when we know that the stack layout
845     // of those arguments will match the struct. This is important because the
846     // LLVM backend isn't smart enough to remove byval, which inhibits many
847     // optimizations.
848     // Don't do this for the MCU if there are still free integer registers
849     // (see X86_64 ABI for full explanation).
850     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
851         canExpandIndirectArgument(Ty))
852       return ABIArgInfo::getExpandWithPadding(
853           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
854 
855     return getIndirectResult(Ty, true, State);
856   }
857 
858   if (const VectorType *VT = Ty->getAs<VectorType>()) {
859     // On Windows, vectors are passed directly if registers are available, or
860     // indirectly if not. This avoids the need to align argument memory. Pass
861     // user-defined vector types larger than 512 bits indirectly for simplicity.
862     if (IsWin32StructABI) {
863       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
864         --State.FreeSSERegs;
865         return ABIArgInfo::getDirectInReg();
866       }
867       return getIndirectResult(Ty, /*ByVal=*/false, State);
868     }
869 
870     // On Darwin, some vectors are passed in memory, we handle this by passing
871     // it as an i8/i16/i32/i64.
872     if (IsDarwinVectorABI) {
873       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
874           (TI.Width == 64 && VT->getNumElements() == 1))
875         return ABIArgInfo::getDirect(
876             llvm::IntegerType::get(getVMContext(), TI.Width));
877     }
878 
879     if (IsX86_MMXType(CGT.ConvertType(Ty)))
880       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
881 
882     return ABIArgInfo::getDirect();
883   }
884 
885 
886   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
887     Ty = EnumTy->getDecl()->getIntegerType();
888 
889   bool InReg = shouldPrimitiveUseInReg(Ty, State);
890 
891   if (isPromotableIntegerTypeForABI(Ty)) {
892     if (InReg)
893       return ABIArgInfo::getExtendInReg(Ty);
894     return ABIArgInfo::getExtend(Ty);
895   }
896 
897   if (const auto *EIT = Ty->getAs<BitIntType>()) {
898     if (EIT->getNumBits() <= 64) {
899       if (InReg)
900         return ABIArgInfo::getDirectInReg();
901       return ABIArgInfo::getDirect();
902     }
903     return getIndirectResult(Ty, /*ByVal=*/false, State);
904   }
905 
906   if (InReg)
907     return ABIArgInfo::getDirectInReg();
908   return ABIArgInfo::getDirect();
909 }
910 
911 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
912   CCState State(FI);
913   if (IsMCUABI)
914     State.FreeRegs = 3;
915   else if (State.CC == llvm::CallingConv::X86_FastCall) {
916     State.FreeRegs = 2;
917     State.FreeSSERegs = 3;
918   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
919     State.FreeRegs = 2;
920     State.FreeSSERegs = 6;
921   } else if (FI.getHasRegParm())
922     State.FreeRegs = FI.getRegParm();
923   else if (State.CC == llvm::CallingConv::X86_RegCall) {
924     State.FreeRegs = 5;
925     State.FreeSSERegs = 8;
926   } else if (IsWin32StructABI) {
927     // Since MSVC 2015, the first three SSE vectors have been passed in
928     // registers. The rest are passed indirectly.
929     State.FreeRegs = DefaultNumRegisterParameters;
930     State.FreeSSERegs = 3;
931   } else
932     State.FreeRegs = DefaultNumRegisterParameters;
933 
934   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
935     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
936   } else if (FI.getReturnInfo().isIndirect()) {
937     // The C++ ABI is not aware of register usage, so we have to check if the
938     // return value was sret and put it in a register ourselves if appropriate.
939     if (State.FreeRegs) {
940       --State.FreeRegs;  // The sret parameter consumes a register.
941       if (!IsMCUABI)
942         FI.getReturnInfo().setInReg(true);
943     }
944   }
945 
946   // The chain argument effectively gives us another free register.
947   if (FI.isChainCall())
948     ++State.FreeRegs;
949 
950   // For vectorcall, do a first pass over the arguments, assigning FP and vector
951   // arguments to XMM registers as available.
952   if (State.CC == llvm::CallingConv::X86_VectorCall)
953     runVectorCallFirstPass(FI, State);
954 
955   bool UsedInAlloca = false;
956   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
957   for (unsigned I = 0, E = Args.size(); I < E; ++I) {
958     // Skip arguments that have already been assigned.
959     if (State.IsPreassigned.test(I))
960       continue;
961 
962     Args[I].info =
963         classifyArgumentType(Args[I].type, State, I);
964     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
965   }
966 
967   // If we needed to use inalloca for any argument, do a second pass and rewrite
968   // all the memory arguments to use inalloca.
969   if (UsedInAlloca)
970     rewriteWithInAlloca(FI);
971 }
972 
973 void
974 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
975                                    CharUnits &StackOffset, ABIArgInfo &Info,
976                                    QualType Type) const {
977   // Arguments are always 4-byte-aligned.
978   CharUnits WordSize = CharUnits::fromQuantity(4);
979   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
980 
981   // sret pointers and indirect things will require an extra pointer
982   // indirection, unless they are byval. Most things are byval, and will not
983   // require this indirection.
984   bool IsIndirect = false;
985   if (Info.isIndirect() && !Info.getIndirectByVal())
986     IsIndirect = true;
987   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
988   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
989   if (IsIndirect)
990     LLTy = llvm::PointerType::getUnqual(getVMContext());
991   FrameFields.push_back(LLTy);
992   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
993 
994   // Insert padding bytes to respect alignment.
995   CharUnits FieldEnd = StackOffset;
996   StackOffset = FieldEnd.alignTo(WordSize);
997   if (StackOffset != FieldEnd) {
998     CharUnits NumBytes = StackOffset - FieldEnd;
999     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1000     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1001     FrameFields.push_back(Ty);
1002   }
1003 }
1004 
1005 static bool isArgInAlloca(const ABIArgInfo &Info) {
1006   // Leave ignored and inreg arguments alone.
1007   switch (Info.getKind()) {
1008   case ABIArgInfo::InAlloca:
1009     return true;
1010   case ABIArgInfo::Ignore:
1011   case ABIArgInfo::IndirectAliased:
1012     return false;
1013   case ABIArgInfo::Indirect:
1014   case ABIArgInfo::Direct:
1015   case ABIArgInfo::Extend:
1016     return !Info.getInReg();
1017   case ABIArgInfo::Expand:
1018   case ABIArgInfo::CoerceAndExpand:
1019     // These are aggregate types which are never passed in registers when
1020     // inalloca is involved.
1021     return true;
1022   }
1023   llvm_unreachable("invalid enum");
1024 }
1025 
1026 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1027   assert(IsWin32StructABI && "inalloca only supported on win32");
1028 
1029   // Build a packed struct type for all of the arguments in memory.
1030   SmallVector<llvm::Type *, 6> FrameFields;
1031 
1032   // The stack alignment is always 4.
1033   CharUnits StackAlign = CharUnits::fromQuantity(4);
1034 
1035   CharUnits StackOffset;
1036   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1037 
1038   // Put 'this' into the struct before 'sret', if necessary.
1039   bool IsThisCall =
1040       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1041   ABIArgInfo &Ret = FI.getReturnInfo();
1042   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1043       isArgInAlloca(I->info)) {
1044     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1045     ++I;
1046   }
1047 
1048   // Put the sret parameter into the inalloca struct if it's in memory.
1049   if (Ret.isIndirect() && !Ret.getInReg()) {
1050     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
1051     // On Windows, the hidden sret parameter is always returned in eax.
1052     Ret.setInAllocaSRet(IsWin32StructABI);
1053   }
1054 
1055   // Skip the 'this' parameter in ecx.
1056   if (IsThisCall)
1057     ++I;
1058 
1059   // Put arguments passed in memory into the struct.
1060   for (; I != E; ++I) {
1061     if (isArgInAlloca(I->info))
1062       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1063   }
1064 
1065   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1066                                         /*isPacked=*/true),
1067                   StackAlign);
1068 }
1069 
1070 RValue X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1071                                 QualType Ty, AggValueSlot Slot) const {
1072 
1073   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1074 
1075   CCState State(*const_cast<CGFunctionInfo *>(CGF.CurFnInfo));
1076   ABIArgInfo AI = classifyArgumentType(Ty, State, /*ArgIndex*/ 0);
1077   // Empty records are ignored for parameter passing purposes.
1078   if (AI.isIgnore())
1079     return Slot.asRValue();
1080 
1081   // x86-32 changes the alignment of certain arguments on the stack.
1082   //
1083   // Just messing with TypeInfo like this works because we never pass
1084   // anything indirectly.
1085   TypeInfo.Align = CharUnits::fromQuantity(
1086                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
1087 
1088   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
1089                           CharUnits::fromQuantity(4),
1090                           /*AllowHigherAlign*/ true, Slot);
1091 }
1092 
1093 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1094     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1095   assert(Triple.getArch() == llvm::Triple::x86);
1096 
1097   switch (Opts.getStructReturnConvention()) {
1098   case CodeGenOptions::SRCK_Default:
1099     break;
1100   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1101     return false;
1102   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1103     return true;
1104   }
1105 
1106   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1107     return true;
1108 
1109   switch (Triple.getOS()) {
1110   case llvm::Triple::DragonFly:
1111   case llvm::Triple::FreeBSD:
1112   case llvm::Triple::OpenBSD:
1113   case llvm::Triple::Win32:
1114     return true;
1115   default:
1116     return false;
1117   }
1118 }
1119 
1120 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
1121                                  CodeGen::CodeGenModule &CGM) {
1122   if (!FD->hasAttr<AnyX86InterruptAttr>())
1123     return;
1124 
1125   llvm::Function *Fn = cast<llvm::Function>(GV);
1126   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1127   if (FD->getNumParams() == 0)
1128     return;
1129 
1130   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
1131   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
1132   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
1133     Fn->getContext(), ByValTy);
1134   Fn->addParamAttr(0, NewAttr);
1135 }
1136 
1137 void X86_32TargetCodeGenInfo::setTargetAttributes(
1138     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1139   if (GV->isDeclaration())
1140     return;
1141   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1142     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1143       llvm::Function *Fn = cast<llvm::Function>(GV);
1144       Fn->addFnAttr("stackrealign");
1145     }
1146 
1147     addX86InterruptAttrs(FD, GV, CGM);
1148   }
1149 }
1150 
1151 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1152                                                CodeGen::CodeGenFunction &CGF,
1153                                                llvm::Value *Address) const {
1154   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1155 
1156   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1157 
1158   // 0-7 are the eight integer registers;  the order is different
1159   //   on Darwin (for EH), but the range is the same.
1160   // 8 is %eip.
1161   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1162 
1163   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1164     // 12-16 are st(0..4).  Not sure why we stop at 4.
1165     // These have size 16, which is sizeof(long double) on
1166     // platforms with 8-byte alignment for that type.
1167     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1168     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1169 
1170   } else {
1171     // 9 is %eflags, which doesn't get a size on Darwin for some
1172     // reason.
1173     Builder.CreateAlignedStore(
1174         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1175                                CharUnits::One());
1176 
1177     // 11-16 are st(0..5).  Not sure why we stop at 5.
1178     // These have size 12, which is sizeof(long double) on
1179     // platforms with 4-byte alignment for that type.
1180     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1181     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1182   }
1183 
1184   return false;
1185 }
1186 
1187 //===----------------------------------------------------------------------===//
1188 // X86-64 ABI Implementation
1189 //===----------------------------------------------------------------------===//
1190 
1191 
1192 namespace {
1193 
1194 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1195 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1196   switch (AVXLevel) {
1197   case X86AVXABILevel::AVX512:
1198     return 512;
1199   case X86AVXABILevel::AVX:
1200     return 256;
1201   case X86AVXABILevel::None:
1202     return 128;
1203   }
1204   llvm_unreachable("Unknown AVXLevel");
1205 }
1206 
1207 /// X86_64ABIInfo - The X86_64 ABI information.
1208 class X86_64ABIInfo : public ABIInfo {
1209   enum Class {
1210     Integer = 0,
1211     SSE,
1212     SSEUp,
1213     X87,
1214     X87Up,
1215     ComplexX87,
1216     NoClass,
1217     Memory
1218   };
1219 
1220   /// merge - Implement the X86_64 ABI merging algorithm.
1221   ///
1222   /// Merge an accumulating classification \arg Accum with a field
1223   /// classification \arg Field.
1224   ///
1225   /// \param Accum - The accumulating classification. This should
1226   /// always be either NoClass or the result of a previous merge
1227   /// call. In addition, this should never be Memory (the caller
1228   /// should just return Memory for the aggregate).
1229   static Class merge(Class Accum, Class Field);
1230 
1231   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1232   ///
1233   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1234   /// final MEMORY or SSE classes when necessary.
1235   ///
1236   /// \param AggregateSize - The size of the current aggregate in
1237   /// the classification process.
1238   ///
1239   /// \param Lo - The classification for the parts of the type
1240   /// residing in the low word of the containing object.
1241   ///
1242   /// \param Hi - The classification for the parts of the type
1243   /// residing in the higher words of the containing object.
1244   ///
1245   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1246 
1247   /// classify - Determine the x86_64 register classes in which the
1248   /// given type T should be passed.
1249   ///
1250   /// \param Lo - The classification for the parts of the type
1251   /// residing in the low word of the containing object.
1252   ///
1253   /// \param Hi - The classification for the parts of the type
1254   /// residing in the high word of the containing object.
1255   ///
1256   /// \param OffsetBase - The bit offset of this type in the
1257   /// containing object.  Some parameters are classified different
1258   /// depending on whether they straddle an eightbyte boundary.
1259   ///
1260   /// \param isNamedArg - Whether the argument in question is a "named"
1261   /// argument, as used in AMD64-ABI 3.5.7.
1262   ///
1263   /// \param IsRegCall - Whether the calling conversion is regcall.
1264   ///
1265   /// If a word is unused its result will be NoClass; if a type should
1266   /// be passed in Memory then at least the classification of \arg Lo
1267   /// will be Memory.
1268   ///
1269   /// The \arg Lo class will be NoClass iff the argument is ignored.
1270   ///
1271   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1272   /// also be ComplexX87.
1273   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1274                 bool isNamedArg, bool IsRegCall = false) const;
1275 
1276   llvm::Type *GetByteVectorType(QualType Ty) const;
1277   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1278                                  unsigned IROffset, QualType SourceTy,
1279                                  unsigned SourceOffset) const;
1280   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1281                                      unsigned IROffset, QualType SourceTy,
1282                                      unsigned SourceOffset) const;
1283 
1284   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1285   /// such that the argument will be returned in memory.
1286   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1287 
1288   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1289   /// such that the argument will be passed in memory.
1290   ///
1291   /// \param freeIntRegs - The number of free integer registers remaining
1292   /// available.
1293   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1294 
1295   ABIArgInfo classifyReturnType(QualType RetTy) const;
1296 
1297   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
1298                                   unsigned &neededInt, unsigned &neededSSE,
1299                                   bool isNamedArg,
1300                                   bool IsRegCall = false) const;
1301 
1302   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
1303                                        unsigned &NeededSSE,
1304                                        unsigned &MaxVectorWidth) const;
1305 
1306   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
1307                                            unsigned &NeededSSE,
1308                                            unsigned &MaxVectorWidth) const;
1309 
1310   bool IsIllegalVectorType(QualType Ty) const;
1311 
1312   /// The 0.98 ABI revision clarified a lot of ambiguities,
1313   /// unfortunately in ways that were not always consistent with
1314   /// certain previous compilers.  In particular, platforms which
1315   /// required strict binary compatibility with older versions of GCC
1316   /// may need to exempt themselves.
1317   bool honorsRevision0_98() const {
1318     return !getTarget().getTriple().isOSDarwin();
1319   }
1320 
1321   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
1322   /// classify it as INTEGER (for compatibility with older clang compilers).
1323   bool classifyIntegerMMXAsSSE() const {
1324     // Clang <= 3.8 did not do this.
1325     if (getContext().getLangOpts().getClangABICompat() <=
1326         LangOptions::ClangABI::Ver3_8)
1327       return false;
1328 
1329     const llvm::Triple &Triple = getTarget().getTriple();
1330     if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
1331       return false;
1332     return true;
1333   }
1334 
1335   // GCC classifies vectors of __int128 as memory.
1336   bool passInt128VectorsInMem() const {
1337     // Clang <= 9.0 did not do this.
1338     if (getContext().getLangOpts().getClangABICompat() <=
1339         LangOptions::ClangABI::Ver9)
1340       return false;
1341 
1342     const llvm::Triple &T = getTarget().getTriple();
1343     return T.isOSLinux() || T.isOSNetBSD();
1344   }
1345 
1346   X86AVXABILevel AVXLevel;
1347   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1348   // 64-bit hardware.
1349   bool Has64BitPointers;
1350 
1351 public:
1352   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1353       : ABIInfo(CGT), AVXLevel(AVXLevel),
1354         Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
1355 
1356   bool isPassedUsingAVXType(QualType type) const {
1357     unsigned neededInt, neededSSE;
1358     // The freeIntRegs argument doesn't matter here.
1359     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1360                                            /*isNamedArg*/true);
1361     if (info.isDirect()) {
1362       llvm::Type *ty = info.getCoerceToType();
1363       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1364         return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
1365     }
1366     return false;
1367   }
1368 
1369   void computeInfo(CGFunctionInfo &FI) const override;
1370 
1371   RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1372                    AggValueSlot Slot) const override;
1373   RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1374                      AggValueSlot Slot) const override;
1375 
1376   bool has64BitPointers() const {
1377     return Has64BitPointers;
1378   }
1379 };
1380 
1381 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1382 class WinX86_64ABIInfo : public ABIInfo {
1383 public:
1384   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1385       : ABIInfo(CGT), AVXLevel(AVXLevel),
1386         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1387 
1388   void computeInfo(CGFunctionInfo &FI) const override;
1389 
1390   RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1391                    AggValueSlot Slot) const override;
1392 
1393   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1394     // FIXME: Assumes vectorcall is in use.
1395     return isX86VectorTypeForVectorCall(getContext(), Ty);
1396   }
1397 
1398   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1399                                          uint64_t NumMembers) const override {
1400     // FIXME: Assumes vectorcall is in use.
1401     return isX86VectorCallAggregateSmallEnough(NumMembers);
1402   }
1403 
1404 private:
1405   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
1406                       bool IsVectorCall, bool IsRegCall) const;
1407   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
1408                                            const ABIArgInfo &current) const;
1409 
1410   X86AVXABILevel AVXLevel;
1411 
1412   bool IsMingw64;
1413 };
1414 
1415 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1416 public:
1417   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1418       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
1419     SwiftInfo =
1420         std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1421   }
1422 
1423   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
1424   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
1425   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
1426 
1427   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1428     return 7;
1429   }
1430 
1431   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1432                                llvm::Value *Address) const override {
1433     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1434 
1435     // 0-15 are the 16 integer registers.
1436     // 16 is %rip.
1437     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1438     return false;
1439   }
1440 
1441   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1442                                   StringRef Constraint,
1443                                   llvm::Type* Ty) const override {
1444     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1445   }
1446 
1447   bool isNoProtoCallVariadic(const CallArgList &args,
1448                              const FunctionNoProtoType *fnType) const override {
1449     // The default CC on x86-64 sets %al to the number of SSA
1450     // registers used, and GCC sets this when calling an unprototyped
1451     // function, so we override the default behavior.  However, don't do
1452     // that when AVX types are involved: the ABI explicitly states it is
1453     // undefined, and it doesn't work in practice because of how the ABI
1454     // defines varargs anyway.
1455     if (fnType->getCallConv() == CC_C) {
1456       bool HasAVXType = false;
1457       for (CallArgList::const_iterator
1458              it = args.begin(), ie = args.end(); it != ie; ++it) {
1459         if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
1460           HasAVXType = true;
1461           break;
1462         }
1463       }
1464 
1465       if (!HasAVXType)
1466         return true;
1467     }
1468 
1469     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1470   }
1471 
1472   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1473                            CodeGen::CodeGenModule &CGM) const override {
1474     if (GV->isDeclaration())
1475       return;
1476     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1477       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1478         llvm::Function *Fn = cast<llvm::Function>(GV);
1479         Fn->addFnAttr("stackrealign");
1480       }
1481 
1482       addX86InterruptAttrs(FD, GV, CGM);
1483     }
1484   }
1485 
1486   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
1487                             const FunctionDecl *Caller,
1488                             const FunctionDecl *Callee, const CallArgList &Args,
1489                             QualType ReturnType) const override;
1490 };
1491 } // namespace
1492 
1493 static void initFeatureMaps(const ASTContext &Ctx,
1494                             llvm::StringMap<bool> &CallerMap,
1495                             const FunctionDecl *Caller,
1496                             llvm::StringMap<bool> &CalleeMap,
1497                             const FunctionDecl *Callee) {
1498   if (CalleeMap.empty() && CallerMap.empty()) {
1499     // The caller is potentially nullptr in the case where the call isn't in a
1500     // function.  In this case, the getFunctionFeatureMap ensures we just get
1501     // the TU level setting (since it cannot be modified by 'target'..
1502     Ctx.getFunctionFeatureMap(CallerMap, Caller);
1503     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
1504   }
1505 }
1506 
1507 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
1508                                  SourceLocation CallLoc,
1509                                  const llvm::StringMap<bool> &CallerMap,
1510                                  const llvm::StringMap<bool> &CalleeMap,
1511                                  QualType Ty, StringRef Feature,
1512                                  bool IsArgument) {
1513   bool CallerHasFeat = CallerMap.lookup(Feature);
1514   bool CalleeHasFeat = CalleeMap.lookup(Feature);
1515   if (!CallerHasFeat && !CalleeHasFeat)
1516     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
1517            << IsArgument << Ty << Feature;
1518 
1519   // Mixing calling conventions here is very clearly an error.
1520   if (!CallerHasFeat || !CalleeHasFeat)
1521     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
1522            << IsArgument << Ty << Feature;
1523 
1524   // Else, both caller and callee have the required feature, so there is no need
1525   // to diagnose.
1526   return false;
1527 }
1528 
1529 static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag,
1530                                     SourceLocation CallLoc,
1531                                     const llvm::StringMap<bool> &CallerMap,
1532                                     const llvm::StringMap<bool> &CalleeMap,
1533                                     QualType Ty, bool IsArgument) {
1534   bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512");
1535   bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512");
1536 
1537   // Forbid 512-bit or larger vector pass or return when we disabled ZMM
1538   // instructions.
1539   if (Caller256 || Callee256)
1540     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
1541            << IsArgument << Ty << "evex512";
1542 
1543   return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
1544                               "avx512f", IsArgument);
1545 }
1546 
1547 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
1548                           SourceLocation CallLoc,
1549                           const llvm::StringMap<bool> &CallerMap,
1550                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
1551                           bool IsArgument) {
1552   uint64_t Size = Ctx.getTypeSize(Ty);
1553   if (Size > 256)
1554     return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
1555                                    IsArgument);
1556 
1557   if (Size > 128)
1558     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
1559                                 IsArgument);
1560 
1561   return false;
1562 }
1563 
1564 void X86_64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM,
1565                                                    SourceLocation CallLoc,
1566                                                    const FunctionDecl *Caller,
1567                                                    const FunctionDecl *Callee,
1568                                                    const CallArgList &Args,
1569                                                    QualType ReturnType) const {
1570   if (!Callee)
1571     return;
1572 
1573   llvm::StringMap<bool> CallerMap;
1574   llvm::StringMap<bool> CalleeMap;
1575   unsigned ArgIndex = 0;
1576 
1577   // We need to loop through the actual call arguments rather than the
1578   // function's parameters, in case this variadic.
1579   for (const CallArg &Arg : Args) {
1580     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
1581     // additionally changes how vectors >256 in size are passed. Like GCC, we
1582     // warn when a function is called with an argument where this will change.
1583     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
1584     // the caller and callee features are mismatched.
1585     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
1586     // change its ABI with attribute-target after this call.
1587     if (Arg.getType()->isVectorType() &&
1588         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
1589       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1590       QualType Ty = Arg.getType();
1591       // The CallArg seems to have desugared the type already, so for clearer
1592       // diagnostics, replace it with the type in the FunctionDecl if possible.
1593       if (ArgIndex < Callee->getNumParams())
1594         Ty = Callee->getParamDecl(ArgIndex)->getType();
1595 
1596       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
1597                         CalleeMap, Ty, /*IsArgument*/ true))
1598         return;
1599     }
1600     ++ArgIndex;
1601   }
1602 
1603   // Check return always, as we don't have a good way of knowing in codegen
1604   // whether this value is used, tail-called, etc.
1605   if (Callee->getReturnType()->isVectorType() &&
1606       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
1607     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1608     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
1609                   CalleeMap, Callee->getReturnType(),
1610                   /*IsArgument*/ false);
1611   }
1612 }
1613 
1614 std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
1615   // If the argument does not end in .lib, automatically add the suffix.
1616   // If the argument contains a space, enclose it in quotes.
1617   // This matches the behavior of MSVC.
1618   bool Quote = Lib.contains(' ');
1619   std::string ArgStr = Quote ? "\"" : "";
1620   ArgStr += Lib;
1621   if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
1622     ArgStr += ".lib";
1623   ArgStr += Quote ? "\"" : "";
1624   return ArgStr;
1625 }
1626 
1627 namespace {
1628 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1629 public:
1630   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1631         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1632         unsigned NumRegisterParameters)
1633     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1634         Win32StructABI, NumRegisterParameters, false) {}
1635 
1636   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1637                            CodeGen::CodeGenModule &CGM) const override;
1638 
1639   void getDependentLibraryOption(llvm::StringRef Lib,
1640                                  llvm::SmallString<24> &Opt) const override {
1641     Opt = "/DEFAULTLIB:";
1642     Opt += qualifyWindowsLibrary(Lib);
1643   }
1644 
1645   void getDetectMismatchOption(llvm::StringRef Name,
1646                                llvm::StringRef Value,
1647                                llvm::SmallString<32> &Opt) const override {
1648     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1649   }
1650 };
1651 } // namespace
1652 
1653 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
1654     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1655   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1656   if (GV->isDeclaration())
1657     return;
1658   addStackProbeTargetAttributes(D, GV, CGM);
1659 }
1660 
1661 namespace {
1662 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1663 public:
1664   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1665                              X86AVXABILevel AVXLevel)
1666       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
1667     SwiftInfo =
1668         std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1669   }
1670 
1671   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1672                            CodeGen::CodeGenModule &CGM) const override;
1673 
1674   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1675     return 7;
1676   }
1677 
1678   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1679                                llvm::Value *Address) const override {
1680     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1681 
1682     // 0-15 are the 16 integer registers.
1683     // 16 is %rip.
1684     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1685     return false;
1686   }
1687 
1688   void getDependentLibraryOption(llvm::StringRef Lib,
1689                                  llvm::SmallString<24> &Opt) const override {
1690     Opt = "/DEFAULTLIB:";
1691     Opt += qualifyWindowsLibrary(Lib);
1692   }
1693 
1694   void getDetectMismatchOption(llvm::StringRef Name,
1695                                llvm::StringRef Value,
1696                                llvm::SmallString<32> &Opt) const override {
1697     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1698   }
1699 };
1700 } // namespace
1701 
1702 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
1703     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1704   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1705   if (GV->isDeclaration())
1706     return;
1707   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1708     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1709       llvm::Function *Fn = cast<llvm::Function>(GV);
1710       Fn->addFnAttr("stackrealign");
1711     }
1712 
1713     addX86InterruptAttrs(FD, GV, CGM);
1714   }
1715 
1716   addStackProbeTargetAttributes(D, GV, CGM);
1717 }
1718 
1719 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1720                               Class &Hi) const {
1721   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1722   //
1723   // (a) If one of the classes is Memory, the whole argument is passed in
1724   //     memory.
1725   //
1726   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1727   //     memory.
1728   //
1729   // (c) If the size of the aggregate exceeds two eightbytes and the first
1730   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1731   //     argument is passed in memory. NOTE: This is necessary to keep the
1732   //     ABI working for processors that don't support the __m256 type.
1733   //
1734   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1735   //
1736   // Some of these are enforced by the merging logic.  Others can arise
1737   // only with unions; for example:
1738   //   union { _Complex double; unsigned; }
1739   //
1740   // Note that clauses (b) and (c) were added in 0.98.
1741   //
1742   if (Hi == Memory)
1743     Lo = Memory;
1744   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1745     Lo = Memory;
1746   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1747     Lo = Memory;
1748   if (Hi == SSEUp && Lo != SSE)
1749     Hi = SSE;
1750 }
1751 
1752 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1753   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1754   // classified recursively so that always two fields are
1755   // considered. The resulting class is calculated according to
1756   // the classes of the fields in the eightbyte:
1757   //
1758   // (a) If both classes are equal, this is the resulting class.
1759   //
1760   // (b) If one of the classes is NO_CLASS, the resulting class is
1761   // the other class.
1762   //
1763   // (c) If one of the classes is MEMORY, the result is the MEMORY
1764   // class.
1765   //
1766   // (d) If one of the classes is INTEGER, the result is the
1767   // INTEGER.
1768   //
1769   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1770   // MEMORY is used as class.
1771   //
1772   // (f) Otherwise class SSE is used.
1773 
1774   // Accum should never be memory (we should have returned) or
1775   // ComplexX87 (because this cannot be passed in a structure).
1776   assert((Accum != Memory && Accum != ComplexX87) &&
1777          "Invalid accumulated classification during merge.");
1778   if (Accum == Field || Field == NoClass)
1779     return Accum;
1780   if (Field == Memory)
1781     return Memory;
1782   if (Accum == NoClass)
1783     return Field;
1784   if (Accum == Integer || Field == Integer)
1785     return Integer;
1786   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1787       Accum == X87 || Accum == X87Up)
1788     return Memory;
1789   return SSE;
1790 }
1791 
1792 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
1793                              Class &Hi, bool isNamedArg, bool IsRegCall) const {
1794   // FIXME: This code can be simplified by introducing a simple value class for
1795   // Class pairs with appropriate constructor methods for the various
1796   // situations.
1797 
1798   // FIXME: Some of the split computations are wrong; unaligned vectors
1799   // shouldn't be passed in registers for example, so there is no chance they
1800   // can straddle an eightbyte. Verify & simplify.
1801 
1802   Lo = Hi = NoClass;
1803 
1804   Class &Current = OffsetBase < 64 ? Lo : Hi;
1805   Current = Memory;
1806 
1807   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1808     BuiltinType::Kind k = BT->getKind();
1809 
1810     if (k == BuiltinType::Void) {
1811       Current = NoClass;
1812     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1813       Lo = Integer;
1814       Hi = Integer;
1815     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1816       Current = Integer;
1817     } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
1818                k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
1819       Current = SSE;
1820     } else if (k == BuiltinType::Float128) {
1821       Lo = SSE;
1822       Hi = SSEUp;
1823     } else if (k == BuiltinType::LongDouble) {
1824       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1825       if (LDF == &llvm::APFloat::IEEEquad()) {
1826         Lo = SSE;
1827         Hi = SSEUp;
1828       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
1829         Lo = X87;
1830         Hi = X87Up;
1831       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
1832         Current = SSE;
1833       } else
1834         llvm_unreachable("unexpected long double representation!");
1835     }
1836     // FIXME: _Decimal32 and _Decimal64 are SSE.
1837     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1838     return;
1839   }
1840 
1841   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1842     // Classify the underlying integer type.
1843     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1844     return;
1845   }
1846 
1847   if (Ty->hasPointerRepresentation()) {
1848     Current = Integer;
1849     return;
1850   }
1851 
1852   if (Ty->isMemberPointerType()) {
1853     if (Ty->isMemberFunctionPointerType()) {
1854       if (Has64BitPointers) {
1855         // If Has64BitPointers, this is an {i64, i64}, so classify both
1856         // Lo and Hi now.
1857         Lo = Hi = Integer;
1858       } else {
1859         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1860         // straddles an eightbyte boundary, Hi should be classified as well.
1861         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1862         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1863         if (EB_FuncPtr != EB_ThisAdj) {
1864           Lo = Hi = Integer;
1865         } else {
1866           Current = Integer;
1867         }
1868       }
1869     } else {
1870       Current = Integer;
1871     }
1872     return;
1873   }
1874 
1875   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1876     uint64_t Size = getContext().getTypeSize(VT);
1877     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
1878       // gcc passes the following as integer:
1879       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
1880       // 2 bytes - <2 x char>, <1 x short>
1881       // 1 byte  - <1 x char>
1882       Current = Integer;
1883 
1884       // If this type crosses an eightbyte boundary, it should be
1885       // split.
1886       uint64_t EB_Lo = (OffsetBase) / 64;
1887       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
1888       if (EB_Lo != EB_Hi)
1889         Hi = Lo;
1890     } else if (Size == 64) {
1891       QualType ElementType = VT->getElementType();
1892 
1893       // gcc passes <1 x double> in memory. :(
1894       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
1895         return;
1896 
1897       // gcc passes <1 x long long> as SSE but clang used to unconditionally
1898       // pass them as integer.  For platforms where clang is the de facto
1899       // platform compiler, we must continue to use integer.
1900       if (!classifyIntegerMMXAsSSE() &&
1901           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
1902            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1903            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
1904            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
1905         Current = Integer;
1906       else
1907         Current = SSE;
1908 
1909       // If this type crosses an eightbyte boundary, it should be
1910       // split.
1911       if (OffsetBase && OffsetBase != 64)
1912         Hi = Lo;
1913     } else if (Size == 128 ||
1914                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
1915       QualType ElementType = VT->getElementType();
1916 
1917       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
1918       if (passInt128VectorsInMem() && Size != 128 &&
1919           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
1920            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
1921         return;
1922 
1923       // Arguments of 256-bits are split into four eightbyte chunks. The
1924       // least significant one belongs to class SSE and all the others to class
1925       // SSEUP. The original Lo and Hi design considers that types can't be
1926       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1927       // This design isn't correct for 256-bits, but since there're no cases
1928       // where the upper parts would need to be inspected, avoid adding
1929       // complexity and just consider Hi to match the 64-256 part.
1930       //
1931       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1932       // registers if they are "named", i.e. not part of the "..." of a
1933       // variadic function.
1934       //
1935       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
1936       // split into eight eightbyte chunks, one SSE and seven SSEUP.
1937       Lo = SSE;
1938       Hi = SSEUp;
1939     }
1940     return;
1941   }
1942 
1943   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1944     QualType ET = getContext().getCanonicalType(CT->getElementType());
1945 
1946     uint64_t Size = getContext().getTypeSize(Ty);
1947     if (ET->isIntegralOrEnumerationType()) {
1948       if (Size <= 64)
1949         Current = Integer;
1950       else if (Size <= 128)
1951         Lo = Hi = Integer;
1952     } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
1953                ET->isBFloat16Type()) {
1954       Current = SSE;
1955     } else if (ET == getContext().DoubleTy) {
1956       Lo = Hi = SSE;
1957     } else if (ET == getContext().LongDoubleTy) {
1958       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1959       if (LDF == &llvm::APFloat::IEEEquad())
1960         Current = Memory;
1961       else if (LDF == &llvm::APFloat::x87DoubleExtended())
1962         Current = ComplexX87;
1963       else if (LDF == &llvm::APFloat::IEEEdouble())
1964         Lo = Hi = SSE;
1965       else
1966         llvm_unreachable("unexpected long double representation!");
1967     }
1968 
1969     // If this complex type crosses an eightbyte boundary then it
1970     // should be split.
1971     uint64_t EB_Real = (OffsetBase) / 64;
1972     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1973     if (Hi == NoClass && EB_Real != EB_Imag)
1974       Hi = Lo;
1975 
1976     return;
1977   }
1978 
1979   if (const auto *EITy = Ty->getAs<BitIntType>()) {
1980     if (EITy->getNumBits() <= 64)
1981       Current = Integer;
1982     else if (EITy->getNumBits() <= 128)
1983       Lo = Hi = Integer;
1984     // Larger values need to get passed in memory.
1985     return;
1986   }
1987 
1988   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1989     // Arrays are treated like structures.
1990 
1991     uint64_t Size = getContext().getTypeSize(Ty);
1992 
1993     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1994     // than eight eightbytes, ..., it has class MEMORY.
1995     // regcall ABI doesn't have limitation to an object. The only limitation
1996     // is the free registers, which will be checked in computeInfo.
1997     if (!IsRegCall && Size > 512)
1998       return;
1999 
2000     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2001     // fields, it has class MEMORY.
2002     //
2003     // Only need to check alignment of array base.
2004     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2005       return;
2006 
2007     // Otherwise implement simplified merge. We could be smarter about
2008     // this, but it isn't worth it and would be harder to verify.
2009     Current = NoClass;
2010     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2011     uint64_t ArraySize = AT->getZExtSize();
2012 
2013     // The only case a 256-bit wide vector could be used is when the array
2014     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2015     // to work for sizes wider than 128, early check and fallback to memory.
2016     //
2017     if (Size > 128 &&
2018         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2019       return;
2020 
2021     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2022       Class FieldLo, FieldHi;
2023       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2024       Lo = merge(Lo, FieldLo);
2025       Hi = merge(Hi, FieldHi);
2026       if (Lo == Memory || Hi == Memory)
2027         break;
2028     }
2029 
2030     postMerge(Size, Lo, Hi);
2031     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
2032     return;
2033   }
2034 
2035   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2036     uint64_t Size = getContext().getTypeSize(Ty);
2037 
2038     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2039     // than eight eightbytes, ..., it has class MEMORY.
2040     if (Size > 512)
2041       return;
2042 
2043     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
2044     // copy constructor or a non-trivial destructor, it is passed by invisible
2045     // reference.
2046     if (getRecordArgABI(RT, getCXXABI()))
2047       return;
2048 
2049     const RecordDecl *RD = RT->getDecl();
2050 
2051     // Assume variable sized types are passed in memory.
2052     if (RD->hasFlexibleArrayMember())
2053       return;
2054 
2055     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2056 
2057     // Reset Lo class, this will be recomputed.
2058     Current = NoClass;
2059 
2060     // If this is a C++ record, classify the bases first.
2061     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2062       for (const auto &I : CXXRD->bases()) {
2063         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2064                "Unexpected base class!");
2065         const auto *Base =
2066             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2067 
2068         // Classify this field.
2069         //
2070         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2071         // single eightbyte, each is classified separately. Each eightbyte gets
2072         // initialized to class NO_CLASS.
2073         Class FieldLo, FieldHi;
2074         uint64_t Offset =
2075           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2076         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2077         Lo = merge(Lo, FieldLo);
2078         Hi = merge(Hi, FieldHi);
2079         if (Lo == Memory || Hi == Memory) {
2080           postMerge(Size, Lo, Hi);
2081           return;
2082         }
2083       }
2084     }
2085 
2086     // Classify the fields one at a time, merging the results.
2087     unsigned idx = 0;
2088     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
2089                                 LangOptions::ClangABI::Ver11 ||
2090                             getContext().getTargetInfo().getTriple().isPS();
2091     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
2092 
2093     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2094            i != e; ++i, ++idx) {
2095       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2096       bool BitField = i->isBitField();
2097 
2098       // Ignore padding bit-fields.
2099       if (BitField && i->isUnnamedBitField())
2100         continue;
2101 
2102       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2103       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
2104       //
2105       // The only case a 256-bit or a 512-bit wide vector could be used is when
2106       // the struct contains a single 256-bit or 512-bit element. Early check
2107       // and fallback to memory.
2108       //
2109       // FIXME: Extended the Lo and Hi logic properly to work for size wider
2110       // than 128.
2111       if (Size > 128 &&
2112           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
2113            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2114         Lo = Memory;
2115         postMerge(Size, Lo, Hi);
2116         return;
2117       }
2118 
2119       bool IsInMemory =
2120           Offset % getContext().getTypeAlign(i->getType().getCanonicalType());
2121       // Note, skip this test for bit-fields, see below.
2122       if (!BitField && IsInMemory) {
2123         Lo = Memory;
2124         postMerge(Size, Lo, Hi);
2125         return;
2126       }
2127 
2128       // Classify this field.
2129       //
2130       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2131       // exceeds a single eightbyte, each is classified
2132       // separately. Each eightbyte gets initialized to class
2133       // NO_CLASS.
2134       Class FieldLo, FieldHi;
2135 
2136       // Bit-fields require special handling, they do not force the
2137       // structure to be passed in memory even if unaligned, and
2138       // therefore they can straddle an eightbyte.
2139       if (BitField) {
2140         assert(!i->isUnnamedBitField());
2141         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2142         uint64_t Size = i->getBitWidthValue(getContext());
2143 
2144         uint64_t EB_Lo = Offset / 64;
2145         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2146 
2147         if (EB_Lo) {
2148           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2149           FieldLo = NoClass;
2150           FieldHi = Integer;
2151         } else {
2152           FieldLo = Integer;
2153           FieldHi = EB_Hi ? Integer : NoClass;
2154         }
2155       } else
2156         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2157       Lo = merge(Lo, FieldLo);
2158       Hi = merge(Hi, FieldHi);
2159       if (Lo == Memory || Hi == Memory)
2160         break;
2161     }
2162 
2163     postMerge(Size, Lo, Hi);
2164   }
2165 }
2166 
2167 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2168   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2169   // place naturally.
2170   if (!isAggregateTypeForABI(Ty)) {
2171     // Treat an enum type as its underlying type.
2172     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2173       Ty = EnumTy->getDecl()->getIntegerType();
2174 
2175     if (Ty->isBitIntType())
2176       return getNaturalAlignIndirect(Ty);
2177 
2178     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2179                                               : ABIArgInfo::getDirect());
2180   }
2181 
2182   return getNaturalAlignIndirect(Ty);
2183 }
2184 
2185 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2186   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2187     uint64_t Size = getContext().getTypeSize(VecTy);
2188     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2189     if (Size <= 64 || Size > LargestVector)
2190       return true;
2191     QualType EltTy = VecTy->getElementType();
2192     if (passInt128VectorsInMem() &&
2193         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2194          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2195       return true;
2196   }
2197 
2198   return false;
2199 }
2200 
2201 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2202                                             unsigned freeIntRegs) const {
2203   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2204   // place naturally.
2205   //
2206   // This assumption is optimistic, as there could be free registers available
2207   // when we need to pass this argument in memory, and LLVM could try to pass
2208   // the argument in the free register. This does not seem to happen currently,
2209   // but this code would be much safer if we could mark the argument with
2210   // 'onstack'. See PR12193.
2211   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
2212       !Ty->isBitIntType()) {
2213     // Treat an enum type as its underlying type.
2214     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2215       Ty = EnumTy->getDecl()->getIntegerType();
2216 
2217     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2218                                               : ABIArgInfo::getDirect());
2219   }
2220 
2221   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2222     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2223 
2224   // Compute the byval alignment. We specify the alignment of the byval in all
2225   // cases so that the mid-level optimizer knows the alignment of the byval.
2226   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2227 
2228   // Attempt to avoid passing indirect results using byval when possible. This
2229   // is important for good codegen.
2230   //
2231   // We do this by coercing the value into a scalar type which the backend can
2232   // handle naturally (i.e., without using byval).
2233   //
2234   // For simplicity, we currently only do this when we have exhausted all of the
2235   // free integer registers. Doing this when there are free integer registers
2236   // would require more care, as we would have to ensure that the coerced value
2237   // did not claim the unused register. That would require either reording the
2238   // arguments to the function (so that any subsequent inreg values came first),
2239   // or only doing this optimization when there were no following arguments that
2240   // might be inreg.
2241   //
2242   // We currently expect it to be rare (particularly in well written code) for
2243   // arguments to be passed on the stack when there are still free integer
2244   // registers available (this would typically imply large structs being passed
2245   // by value), so this seems like a fair tradeoff for now.
2246   //
2247   // We can revisit this if the backend grows support for 'onstack' parameter
2248   // attributes. See PR12193.
2249   if (freeIntRegs == 0) {
2250     uint64_t Size = getContext().getTypeSize(Ty);
2251 
2252     // If this type fits in an eightbyte, coerce it into the matching integral
2253     // type, which will end up on the stack (with alignment 8).
2254     if (Align == 8 && Size <= 64)
2255       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2256                                                           Size));
2257   }
2258 
2259   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2260 }
2261 
2262 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2263 /// register. Pick an LLVM IR type that will be passed as a vector register.
2264 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2265   // Wrapper structs/arrays that only contain vectors are passed just like
2266   // vectors; strip them off if present.
2267   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2268     Ty = QualType(InnerTy, 0);
2269 
2270   llvm::Type *IRType = CGT.ConvertType(Ty);
2271   if (isa<llvm::VectorType>(IRType)) {
2272     // Don't pass vXi128 vectors in their native type, the backend can't
2273     // legalize them.
2274     if (passInt128VectorsInMem() &&
2275         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
2276       // Use a vXi64 vector.
2277       uint64_t Size = getContext().getTypeSize(Ty);
2278       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
2279                                         Size / 64);
2280     }
2281 
2282     return IRType;
2283   }
2284 
2285   if (IRType->getTypeID() == llvm::Type::FP128TyID)
2286     return IRType;
2287 
2288   // We couldn't find the preferred IR vector type for 'Ty'.
2289   uint64_t Size = getContext().getTypeSize(Ty);
2290   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2291 
2292 
2293   // Return a LLVM IR vector type based on the size of 'Ty'.
2294   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2295                                     Size / 64);
2296 }
2297 
2298 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2299 /// is known to either be off the end of the specified type or being in
2300 /// alignment padding.  The user type specified is known to be at most 128 bits
2301 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2302 /// classification that put one of the two halves in the INTEGER class.
2303 ///
2304 /// It is conservatively correct to return false.
2305 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2306                                   unsigned EndBit, ASTContext &Context) {
2307   // If the bytes being queried are off the end of the type, there is no user
2308   // data hiding here.  This handles analysis of builtins, vectors and other
2309   // types that don't contain interesting padding.
2310   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2311   if (TySize <= StartBit)
2312     return true;
2313 
2314   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2315     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2316     unsigned NumElts = (unsigned)AT->getZExtSize();
2317 
2318     // Check each element to see if the element overlaps with the queried range.
2319     for (unsigned i = 0; i != NumElts; ++i) {
2320       // If the element is after the span we care about, then we're done..
2321       unsigned EltOffset = i*EltSize;
2322       if (EltOffset >= EndBit) break;
2323 
2324       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2325       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2326                                  EndBit-EltOffset, Context))
2327         return false;
2328     }
2329     // If it overlaps no elements, then it is safe to process as padding.
2330     return true;
2331   }
2332 
2333   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2334     const RecordDecl *RD = RT->getDecl();
2335     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2336 
2337     // If this is a C++ record, check the bases first.
2338     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2339       for (const auto &I : CXXRD->bases()) {
2340         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2341                "Unexpected base class!");
2342         const auto *Base =
2343             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2344 
2345         // If the base is after the span we care about, ignore it.
2346         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2347         if (BaseOffset >= EndBit) continue;
2348 
2349         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2350         if (!BitsContainNoUserData(I.getType(), BaseStart,
2351                                    EndBit-BaseOffset, Context))
2352           return false;
2353       }
2354     }
2355 
2356     // Verify that no field has data that overlaps the region of interest.  Yes
2357     // this could be sped up a lot by being smarter about queried fields,
2358     // however we're only looking at structs up to 16 bytes, so we don't care
2359     // much.
2360     unsigned idx = 0;
2361     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2362          i != e; ++i, ++idx) {
2363       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2364 
2365       // If we found a field after the region we care about, then we're done.
2366       if (FieldOffset >= EndBit) break;
2367 
2368       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2369       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2370                                  Context))
2371         return false;
2372     }
2373 
2374     // If nothing in this record overlapped the area of interest, then we're
2375     // clean.
2376     return true;
2377   }
2378 
2379   return false;
2380 }
2381 
2382 /// getFPTypeAtOffset - Return a floating point type at the specified offset.
2383 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2384                                      const llvm::DataLayout &TD) {
2385   if (IROffset == 0 && IRType->isFloatingPointTy())
2386     return IRType;
2387 
2388   // If this is a struct, recurse into the field at the specified offset.
2389   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2390     if (!STy->getNumContainedTypes())
2391       return nullptr;
2392 
2393     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2394     unsigned Elt = SL->getElementContainingOffset(IROffset);
2395     IROffset -= SL->getElementOffset(Elt);
2396     return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
2397   }
2398 
2399   // If this is an array, recurse into the field at the specified offset.
2400   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2401     llvm::Type *EltTy = ATy->getElementType();
2402     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2403     IROffset -= IROffset / EltSize * EltSize;
2404     return getFPTypeAtOffset(EltTy, IROffset, TD);
2405   }
2406 
2407   return nullptr;
2408 }
2409 
2410 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2411 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2412 llvm::Type *X86_64ABIInfo::
2413 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2414                    QualType SourceTy, unsigned SourceOffset) const {
2415   const llvm::DataLayout &TD = getDataLayout();
2416   unsigned SourceSize =
2417       (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
2418   llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
2419   if (!T0 || T0->isDoubleTy())
2420     return llvm::Type::getDoubleTy(getVMContext());
2421 
2422   // Get the adjacent FP type.
2423   llvm::Type *T1 = nullptr;
2424   unsigned T0Size = TD.getTypeAllocSize(T0);
2425   if (SourceSize > T0Size)
2426       T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
2427   if (T1 == nullptr) {
2428     // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
2429     // to its alignment.
2430     if (T0->is16bitFPTy() && SourceSize > 4)
2431       T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2432     // If we can't get a second FP type, return a simple half or float.
2433     // avx512fp16-abi.c:pr51813_2 shows it works to return float for
2434     // {float, i8} too.
2435     if (T1 == nullptr)
2436       return T0;
2437   }
2438 
2439   if (T0->isFloatTy() && T1->isFloatTy())
2440     return llvm::FixedVectorType::get(T0, 2);
2441 
2442   if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
2443     llvm::Type *T2 = nullptr;
2444     if (SourceSize > 4)
2445       T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2446     if (T2 == nullptr)
2447       return llvm::FixedVectorType::get(T0, 2);
2448     return llvm::FixedVectorType::get(T0, 4);
2449   }
2450 
2451   if (T0->is16bitFPTy() || T1->is16bitFPTy())
2452     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
2453 
2454   return llvm::Type::getDoubleTy(getVMContext());
2455 }
2456 
2457 
2458 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2459 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2460 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2461 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2462 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2463 /// etc).
2464 ///
2465 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2466 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2467 /// the 8-byte value references.  PrefType may be null.
2468 ///
2469 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2470 /// an offset into this that we're processing (which is always either 0 or 8).
2471 ///
2472 llvm::Type *X86_64ABIInfo::
2473 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2474                        QualType SourceTy, unsigned SourceOffset) const {
2475   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2476   // returning an 8-byte unit starting with it.  See if we can safely use it.
2477   if (IROffset == 0) {
2478     // Pointers and int64's always fill the 8-byte unit.
2479     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2480         IRType->isIntegerTy(64))
2481       return IRType;
2482 
2483     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2484     // goodness in the source type is just tail padding.  This is allowed to
2485     // kick in for struct {double,int} on the int, but not on
2486     // struct{double,int,int} because we wouldn't return the second int.  We
2487     // have to do this analysis on the source type because we can't depend on
2488     // unions being lowered a specific way etc.
2489     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2490         IRType->isIntegerTy(32) ||
2491         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2492       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2493           cast<llvm::IntegerType>(IRType)->getBitWidth();
2494 
2495       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2496                                 SourceOffset*8+64, getContext()))
2497         return IRType;
2498     }
2499   }
2500 
2501   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2502     // If this is a struct, recurse into the field at the specified offset.
2503     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2504     if (IROffset < SL->getSizeInBytes()) {
2505       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2506       IROffset -= SL->getElementOffset(FieldIdx);
2507 
2508       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2509                                     SourceTy, SourceOffset);
2510     }
2511   }
2512 
2513   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2514     llvm::Type *EltTy = ATy->getElementType();
2515     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2516     unsigned EltOffset = IROffset/EltSize*EltSize;
2517     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2518                                   SourceOffset);
2519   }
2520 
2521   // Okay, we don't have any better idea of what to pass, so we pass this in an
2522   // integer register that isn't too big to fit the rest of the struct.
2523   unsigned TySizeInBytes =
2524     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2525 
2526   assert(TySizeInBytes != SourceOffset && "Empty field?");
2527 
2528   // It is always safe to classify this as an integer type up to i64 that
2529   // isn't larger than the structure.
2530   return llvm::IntegerType::get(getVMContext(),
2531                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2532 }
2533 
2534 
2535 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2536 /// be used as elements of a two register pair to pass or return, return a
2537 /// first class aggregate to represent them.  For example, if the low part of
2538 /// a by-value argument should be passed as i32* and the high part as float,
2539 /// return {i32*, float}.
2540 static llvm::Type *
2541 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2542                            const llvm::DataLayout &TD) {
2543   // In order to correctly satisfy the ABI, we need to the high part to start
2544   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2545   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2546   // the second element at offset 8.  Check for this:
2547   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2548   llvm::Align HiAlign = TD.getABITypeAlign(Hi);
2549   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2550   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2551 
2552   // To handle this, we have to increase the size of the low part so that the
2553   // second element will start at an 8 byte offset.  We can't increase the size
2554   // of the second element because it might make us access off the end of the
2555   // struct.
2556   if (HiStart != 8) {
2557     // There are usually two sorts of types the ABI generation code can produce
2558     // for the low part of a pair that aren't 8 bytes in size: half, float or
2559     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2560     // NaCl).
2561     // Promote these to a larger type.
2562     if (Lo->isHalfTy() || Lo->isFloatTy())
2563       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2564     else {
2565       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2566              && "Invalid/unknown lo type");
2567       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2568     }
2569   }
2570 
2571   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
2572 
2573   // Verify that the second element is at an 8-byte offset.
2574   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2575          "Invalid x86-64 argument pair!");
2576   return Result;
2577 }
2578 
2579 ABIArgInfo X86_64ABIInfo::
2580 classifyReturnType(QualType RetTy) const {
2581   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2582   // classification algorithm.
2583   X86_64ABIInfo::Class Lo, Hi;
2584   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2585 
2586   // Check some invariants.
2587   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2588   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2589 
2590   llvm::Type *ResType = nullptr;
2591   switch (Lo) {
2592   case NoClass:
2593     if (Hi == NoClass)
2594       return ABIArgInfo::getIgnore();
2595     // If the low part is just padding, it takes no register, leave ResType
2596     // null.
2597     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2598            "Unknown missing lo part");
2599     break;
2600 
2601   case SSEUp:
2602   case X87Up:
2603     llvm_unreachable("Invalid classification for lo word.");
2604 
2605     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2606     // hidden argument.
2607   case Memory:
2608     return getIndirectReturnResult(RetTy);
2609 
2610     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2611     // available register of the sequence %rax, %rdx is used.
2612   case Integer:
2613     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2614 
2615     // If we have a sign or zero extended integer, make sure to return Extend
2616     // so that the parameter gets the right LLVM IR attributes.
2617     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2618       // Treat an enum type as its underlying type.
2619       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2620         RetTy = EnumTy->getDecl()->getIntegerType();
2621 
2622       if (RetTy->isIntegralOrEnumerationType() &&
2623           isPromotableIntegerTypeForABI(RetTy))
2624         return ABIArgInfo::getExtend(RetTy);
2625     }
2626     break;
2627 
2628     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2629     // available SSE register of the sequence %xmm0, %xmm1 is used.
2630   case SSE:
2631     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2632     break;
2633 
2634     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2635     // returned on the X87 stack in %st0 as 80-bit x87 number.
2636   case X87:
2637     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2638     break;
2639 
2640     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2641     // part of the value is returned in %st0 and the imaginary part in
2642     // %st1.
2643   case ComplexX87:
2644     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2645     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2646                                     llvm::Type::getX86_FP80Ty(getVMContext()));
2647     break;
2648   }
2649 
2650   llvm::Type *HighPart = nullptr;
2651   switch (Hi) {
2652     // Memory was handled previously and X87 should
2653     // never occur as a hi class.
2654   case Memory:
2655   case X87:
2656     llvm_unreachable("Invalid classification for hi word.");
2657 
2658   case ComplexX87: // Previously handled.
2659   case NoClass:
2660     break;
2661 
2662   case Integer:
2663     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2664     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2665       return ABIArgInfo::getDirect(HighPart, 8);
2666     break;
2667   case SSE:
2668     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2669     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2670       return ABIArgInfo::getDirect(HighPart, 8);
2671     break;
2672 
2673     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2674     // is passed in the next available eightbyte chunk if the last used
2675     // vector register.
2676     //
2677     // SSEUP should always be preceded by SSE, just widen.
2678   case SSEUp:
2679     assert(Lo == SSE && "Unexpected SSEUp classification.");
2680     ResType = GetByteVectorType(RetTy);
2681     break;
2682 
2683     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2684     // returned together with the previous X87 value in %st0.
2685   case X87Up:
2686     // If X87Up is preceded by X87, we don't need to do
2687     // anything. However, in some cases with unions it may not be
2688     // preceded by X87. In such situations we follow gcc and pass the
2689     // extra bits in an SSE reg.
2690     if (Lo != X87) {
2691       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2692       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2693         return ABIArgInfo::getDirect(HighPart, 8);
2694     }
2695     break;
2696   }
2697 
2698   // If a high part was specified, merge it together with the low part.  It is
2699   // known to pass in the high eightbyte of the result.  We do this by forming a
2700   // first class struct aggregate with the high and low part: {low, high}
2701   if (HighPart)
2702     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2703 
2704   return ABIArgInfo::getDirect(ResType);
2705 }
2706 
2707 ABIArgInfo
2708 X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2709                                     unsigned &neededInt, unsigned &neededSSE,
2710                                     bool isNamedArg, bool IsRegCall) const {
2711   Ty = useFirstFieldIfTransparentUnion(Ty);
2712 
2713   X86_64ABIInfo::Class Lo, Hi;
2714   classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
2715 
2716   // Check some invariants.
2717   // FIXME: Enforce these by construction.
2718   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2719   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2720 
2721   neededInt = 0;
2722   neededSSE = 0;
2723   llvm::Type *ResType = nullptr;
2724   switch (Lo) {
2725   case NoClass:
2726     if (Hi == NoClass)
2727       return ABIArgInfo::getIgnore();
2728     // If the low part is just padding, it takes no register, leave ResType
2729     // null.
2730     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2731            "Unknown missing lo part");
2732     break;
2733 
2734     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2735     // on the stack.
2736   case Memory:
2737 
2738     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2739     // COMPLEX_X87, it is passed in memory.
2740   case X87:
2741   case ComplexX87:
2742     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2743       ++neededInt;
2744     return getIndirectResult(Ty, freeIntRegs);
2745 
2746   case SSEUp:
2747   case X87Up:
2748     llvm_unreachable("Invalid classification for lo word.");
2749 
2750     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2751     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2752     // and %r9 is used.
2753   case Integer:
2754     ++neededInt;
2755 
2756     // Pick an 8-byte type based on the preferred type.
2757     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2758 
2759     // If we have a sign or zero extended integer, make sure to return Extend
2760     // so that the parameter gets the right LLVM IR attributes.
2761     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2762       // Treat an enum type as its underlying type.
2763       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2764         Ty = EnumTy->getDecl()->getIntegerType();
2765 
2766       if (Ty->isIntegralOrEnumerationType() &&
2767           isPromotableIntegerTypeForABI(Ty))
2768         return ABIArgInfo::getExtend(Ty);
2769     }
2770 
2771     break;
2772 
2773     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2774     // available SSE register is used, the registers are taken in the
2775     // order from %xmm0 to %xmm7.
2776   case SSE: {
2777     llvm::Type *IRType = CGT.ConvertType(Ty);
2778     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2779     ++neededSSE;
2780     break;
2781   }
2782   }
2783 
2784   llvm::Type *HighPart = nullptr;
2785   switch (Hi) {
2786     // Memory was handled previously, ComplexX87 and X87 should
2787     // never occur as hi classes, and X87Up must be preceded by X87,
2788     // which is passed in memory.
2789   case Memory:
2790   case X87:
2791   case ComplexX87:
2792     llvm_unreachable("Invalid classification for hi word.");
2793 
2794   case NoClass: break;
2795 
2796   case Integer:
2797     ++neededInt;
2798     // Pick an 8-byte type based on the preferred type.
2799     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2800 
2801     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2802       return ABIArgInfo::getDirect(HighPart, 8);
2803     break;
2804 
2805     // X87Up generally doesn't occur here (long double is passed in
2806     // memory), except in situations involving unions.
2807   case X87Up:
2808   case SSE:
2809     ++neededSSE;
2810     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2811 
2812     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2813       return ABIArgInfo::getDirect(HighPart, 8);
2814     break;
2815 
2816     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2817     // eightbyte is passed in the upper half of the last used SSE
2818     // register.  This only happens when 128-bit vectors are passed.
2819   case SSEUp:
2820     assert(Lo == SSE && "Unexpected SSEUp classification");
2821     ResType = GetByteVectorType(Ty);
2822     break;
2823   }
2824 
2825   // If a high part was specified, merge it together with the low part.  It is
2826   // known to pass in the high eightbyte of the result.  We do this by forming a
2827   // first class struct aggregate with the high and low part: {low, high}
2828   if (HighPart)
2829     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2830 
2831   return ABIArgInfo::getDirect(ResType);
2832 }
2833 
2834 ABIArgInfo
2835 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2836                                              unsigned &NeededSSE,
2837                                              unsigned &MaxVectorWidth) const {
2838   auto RT = Ty->getAs<RecordType>();
2839   assert(RT && "classifyRegCallStructType only valid with struct types");
2840 
2841   if (RT->getDecl()->hasFlexibleArrayMember())
2842     return getIndirectReturnResult(Ty);
2843 
2844   // Sum up bases
2845   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2846     if (CXXRD->isDynamicClass()) {
2847       NeededInt = NeededSSE = 0;
2848       return getIndirectReturnResult(Ty);
2849     }
2850 
2851     for (const auto &I : CXXRD->bases())
2852       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
2853                                         MaxVectorWidth)
2854               .isIndirect()) {
2855         NeededInt = NeededSSE = 0;
2856         return getIndirectReturnResult(Ty);
2857       }
2858   }
2859 
2860   // Sum up members
2861   for (const auto *FD : RT->getDecl()->fields()) {
2862     QualType MTy = FD->getType();
2863     if (MTy->isRecordType() && !MTy->isUnionType()) {
2864       if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
2865                                         MaxVectorWidth)
2866               .isIndirect()) {
2867         NeededInt = NeededSSE = 0;
2868         return getIndirectReturnResult(Ty);
2869       }
2870     } else {
2871       unsigned LocalNeededInt, LocalNeededSSE;
2872       if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
2873                                true, true)
2874               .isIndirect()) {
2875         NeededInt = NeededSSE = 0;
2876         return getIndirectReturnResult(Ty);
2877       }
2878       if (const auto *AT = getContext().getAsConstantArrayType(MTy))
2879         MTy = AT->getElementType();
2880       if (const auto *VT = MTy->getAs<VectorType>())
2881         if (getContext().getTypeSize(VT) > MaxVectorWidth)
2882           MaxVectorWidth = getContext().getTypeSize(VT);
2883       NeededInt += LocalNeededInt;
2884       NeededSSE += LocalNeededSSE;
2885     }
2886   }
2887 
2888   return ABIArgInfo::getDirect();
2889 }
2890 
2891 ABIArgInfo
2892 X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2893                                          unsigned &NeededSSE,
2894                                          unsigned &MaxVectorWidth) const {
2895 
2896   NeededInt = 0;
2897   NeededSSE = 0;
2898   MaxVectorWidth = 0;
2899 
2900   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
2901                                        MaxVectorWidth);
2902 }
2903 
2904 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2905 
2906   const unsigned CallingConv = FI.getCallingConvention();
2907   // It is possible to force Win64 calling convention on any x86_64 target by
2908   // using __attribute__((ms_abi)). In such case to correctly emit Win64
2909   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
2910   if (CallingConv == llvm::CallingConv::Win64) {
2911     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
2912     Win64ABIInfo.computeInfo(FI);
2913     return;
2914   }
2915 
2916   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
2917 
2918   // Keep track of the number of assigned registers.
2919   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
2920   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
2921   unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
2922 
2923   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
2924     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
2925         !FI.getReturnType()->getTypePtr()->isUnionType()) {
2926       FI.getReturnInfo() = classifyRegCallStructType(
2927           FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
2928       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2929         FreeIntRegs -= NeededInt;
2930         FreeSSERegs -= NeededSSE;
2931       } else {
2932         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2933       }
2934     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
2935                getContext().getCanonicalType(FI.getReturnType()
2936                                                  ->getAs<ComplexType>()
2937                                                  ->getElementType()) ==
2938                    getContext().LongDoubleTy)
2939       // Complex Long Double Type is passed in Memory when Regcall
2940       // calling convention is used.
2941       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2942     else
2943       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2944   }
2945 
2946   // If the return value is indirect, then the hidden argument is consuming one
2947   // integer register.
2948   if (FI.getReturnInfo().isIndirect())
2949     --FreeIntRegs;
2950   else if (NeededSSE && MaxVectorWidth > 0)
2951     FI.setMaxVectorWidth(MaxVectorWidth);
2952 
2953   // The chain argument effectively gives us another free register.
2954   if (FI.isChainCall())
2955     ++FreeIntRegs;
2956 
2957   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2958   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2959   // get assigned (in left-to-right order) for passing as follows...
2960   unsigned ArgNo = 0;
2961   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2962        it != ie; ++it, ++ArgNo) {
2963     bool IsNamedArg = ArgNo < NumRequiredArgs;
2964 
2965     if (IsRegCall && it->type->isStructureOrClassType())
2966       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
2967                                            MaxVectorWidth);
2968     else
2969       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
2970                                       NeededSSE, IsNamedArg);
2971 
2972     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2973     // eightbyte of an argument, the whole argument is passed on the
2974     // stack. If registers have already been assigned for some
2975     // eightbytes of such an argument, the assignments get reverted.
2976     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2977       FreeIntRegs -= NeededInt;
2978       FreeSSERegs -= NeededSSE;
2979       if (MaxVectorWidth > FI.getMaxVectorWidth())
2980         FI.setMaxVectorWidth(MaxVectorWidth);
2981     } else {
2982       it->info = getIndirectResult(it->type, FreeIntRegs);
2983     }
2984   }
2985 }
2986 
2987 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
2988                                          Address VAListAddr, QualType Ty) {
2989   Address overflow_arg_area_p =
2990       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2991   llvm::Value *overflow_arg_area =
2992     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2993 
2994   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2995   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2996   // It isn't stated explicitly in the standard, but in practice we use
2997   // alignment greater than 16 where necessary.
2998   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
2999   if (Align > CharUnits::fromQuantity(8)) {
3000     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3001                                                       Align);
3002   }
3003 
3004   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3005   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3006   llvm::Value *Res = overflow_arg_area;
3007 
3008   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3009   // l->overflow_arg_area + sizeof(type).
3010   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3011   // an 8 byte boundary.
3012 
3013   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3014   llvm::Value *Offset =
3015       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3016   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
3017                                             Offset, "overflow_arg_area.next");
3018   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3019 
3020   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3021   return Address(Res, LTy, Align);
3022 }
3023 
3024 RValue X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3025                                 QualType Ty, AggValueSlot Slot) const {
3026   // Assume that va_list type is correct; should be pointer to LLVM type:
3027   // struct {
3028   //   i32 gp_offset;
3029   //   i32 fp_offset;
3030   //   i8* overflow_arg_area;
3031   //   i8* reg_save_area;
3032   // };
3033   unsigned neededInt, neededSSE;
3034 
3035   Ty = getContext().getCanonicalType(Ty);
3036   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3037                                        /*isNamedArg*/false);
3038 
3039   // Empty records are ignored for parameter passing purposes.
3040   if (AI.isIgnore())
3041     return Slot.asRValue();
3042 
3043   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3044   // in the registers. If not go to step 7.
3045   if (!neededInt && !neededSSE)
3046     return CGF.EmitLoadOfAnyValue(
3047         CGF.MakeAddrLValue(EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty), Ty),
3048         Slot);
3049 
3050   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3051   // general purpose registers needed to pass type and num_fp to hold
3052   // the number of floating point registers needed.
3053 
3054   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3055   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3056   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3057   //
3058   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3059   // register save space).
3060 
3061   llvm::Value *InRegs = nullptr;
3062   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3063   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3064   if (neededInt) {
3065     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3066     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3067     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3068     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3069   }
3070 
3071   if (neededSSE) {
3072     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3073     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3074     llvm::Value *FitsInFP =
3075       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3076     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3077     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3078   }
3079 
3080   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3081   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3082   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3083   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3084 
3085   // Emit code to load the value if it was passed in registers.
3086 
3087   CGF.EmitBlock(InRegBlock);
3088 
3089   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3090   // an offset of l->gp_offset and/or l->fp_offset. This may require
3091   // copying to a temporary location in case the parameter is passed
3092   // in different register classes or requires an alignment greater
3093   // than 8 for general purpose registers and 16 for XMM registers.
3094   //
3095   // FIXME: This really results in shameful code when we end up needing to
3096   // collect arguments from different places; often what should result in a
3097   // simple assembling of a structure from scattered addresses has many more
3098   // loads than necessary. Can we clean this up?
3099   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3100   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3101       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3102 
3103   Address RegAddr = Address::invalid();
3104   if (neededInt && neededSSE) {
3105     // FIXME: Cleanup.
3106     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3107     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3108     Address Tmp = CGF.CreateMemTemp(Ty);
3109     Tmp = Tmp.withElementType(ST);
3110     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3111     llvm::Type *TyLo = ST->getElementType(0);
3112     llvm::Type *TyHi = ST->getElementType(1);
3113     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3114            "Unexpected ABI info for mixed regs");
3115     llvm::Value *GPAddr =
3116         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
3117     llvm::Value *FPAddr =
3118         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
3119     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3120     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3121 
3122     // Copy the first element.
3123     // FIXME: Our choice of alignment here and below is probably pessimistic.
3124     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3125         TyLo, RegLoAddr,
3126         CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
3127     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3128 
3129     // Copy the second element.
3130     V = CGF.Builder.CreateAlignedLoad(
3131         TyHi, RegHiAddr,
3132         CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
3133     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3134 
3135     RegAddr = Tmp.withElementType(LTy);
3136   } else if (neededInt) {
3137     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
3138                       LTy, CharUnits::fromQuantity(8));
3139 
3140     // Copy to a temporary if necessary to ensure the appropriate alignment.
3141     auto TInfo = getContext().getTypeInfoInChars(Ty);
3142     uint64_t TySize = TInfo.Width.getQuantity();
3143     CharUnits TyAlign = TInfo.Align;
3144 
3145     // Copy into a temporary if the type is more aligned than the
3146     // register save area.
3147     if (TyAlign.getQuantity() > 8) {
3148       Address Tmp = CGF.CreateMemTemp(Ty);
3149       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3150       RegAddr = Tmp;
3151     }
3152 
3153   } else if (neededSSE == 1) {
3154     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
3155                       LTy, CharUnits::fromQuantity(16));
3156   } else {
3157     assert(neededSSE == 2 && "Invalid number of needed registers!");
3158     // SSE registers are spaced 16 bytes apart in the register save
3159     // area, we need to collect the two eightbytes together.
3160     // The ABI isn't explicit about this, but it seems reasonable
3161     // to assume that the slots are 16-byte aligned, since the stack is
3162     // naturally 16-byte aligned and the prologue is expected to store
3163     // all the SSE registers to the RSA.
3164     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
3165                                                       fp_offset),
3166                                 CGF.Int8Ty, CharUnits::fromQuantity(16));
3167     Address RegAddrHi =
3168       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3169                                              CharUnits::fromQuantity(16));
3170     llvm::Type *ST = AI.canHaveCoerceToType()
3171                          ? AI.getCoerceToType()
3172                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3173     llvm::Value *V;
3174     Address Tmp = CGF.CreateMemTemp(Ty);
3175     Tmp = Tmp.withElementType(ST);
3176     V = CGF.Builder.CreateLoad(
3177         RegAddrLo.withElementType(ST->getStructElementType(0)));
3178     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3179     V = CGF.Builder.CreateLoad(
3180         RegAddrHi.withElementType(ST->getStructElementType(1)));
3181     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3182 
3183     RegAddr = Tmp.withElementType(LTy);
3184   }
3185 
3186   // AMD64-ABI 3.5.7p5: Step 5. Set:
3187   // l->gp_offset = l->gp_offset + num_gp * 8
3188   // l->fp_offset = l->fp_offset + num_fp * 16.
3189   if (neededInt) {
3190     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3191     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3192                             gp_offset_p);
3193   }
3194   if (neededSSE) {
3195     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3196     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3197                             fp_offset_p);
3198   }
3199   CGF.EmitBranch(ContBlock);
3200 
3201   // Emit code to load the value if it was passed in memory.
3202 
3203   CGF.EmitBlock(InMemBlock);
3204   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3205 
3206   // Return the appropriate result.
3207 
3208   CGF.EmitBlock(ContBlock);
3209   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3210                                  "vaarg.addr");
3211   return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
3212 }
3213 
3214 RValue X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3215                                   QualType Ty, AggValueSlot Slot) const {
3216   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3217   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3218   uint64_t Width = getContext().getTypeSize(Ty);
3219   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3220 
3221   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3222                           CGF.getContext().getTypeInfoInChars(Ty),
3223                           CharUnits::fromQuantity(8),
3224                           /*allowHigherAlign*/ false, Slot);
3225 }
3226 
3227 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
3228     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
3229   const Type *Base = nullptr;
3230   uint64_t NumElts = 0;
3231 
3232   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3233       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3234     FreeSSERegs -= NumElts;
3235     return getDirectX86Hva();
3236   }
3237   return current;
3238 }
3239 
3240 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3241                                       bool IsReturnType, bool IsVectorCall,
3242                                       bool IsRegCall) const {
3243 
3244   if (Ty->isVoidType())
3245     return ABIArgInfo::getIgnore();
3246 
3247   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3248     Ty = EnumTy->getDecl()->getIntegerType();
3249 
3250   TypeInfo Info = getContext().getTypeInfo(Ty);
3251   uint64_t Width = Info.Width;
3252   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3253 
3254   const RecordType *RT = Ty->getAs<RecordType>();
3255   if (RT) {
3256     if (!IsReturnType) {
3257       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3258         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3259     }
3260 
3261     if (RT->getDecl()->hasFlexibleArrayMember())
3262       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3263 
3264   }
3265 
3266   const Type *Base = nullptr;
3267   uint64_t NumElts = 0;
3268   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3269   // other targets.
3270   if ((IsVectorCall || IsRegCall) &&
3271       isHomogeneousAggregate(Ty, Base, NumElts)) {
3272     if (IsRegCall) {
3273       if (FreeSSERegs >= NumElts) {
3274         FreeSSERegs -= NumElts;
3275         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3276           return ABIArgInfo::getDirect();
3277         return ABIArgInfo::getExpand();
3278       }
3279       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3280     } else if (IsVectorCall) {
3281       if (FreeSSERegs >= NumElts &&
3282           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3283         FreeSSERegs -= NumElts;
3284         return ABIArgInfo::getDirect();
3285       } else if (IsReturnType) {
3286         return ABIArgInfo::getExpand();
3287       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3288         // HVAs are delayed and reclassified in the 2nd step.
3289         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3290       }
3291     }
3292   }
3293 
3294   if (Ty->isMemberPointerType()) {
3295     // If the member pointer is represented by an LLVM int or ptr, pass it
3296     // directly.
3297     llvm::Type *LLTy = CGT.ConvertType(Ty);
3298     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3299       return ABIArgInfo::getDirect();
3300   }
3301 
3302   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3303     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3304     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3305     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3306       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3307 
3308     // Otherwise, coerce it to a small integer.
3309     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3310   }
3311 
3312   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3313     switch (BT->getKind()) {
3314     case BuiltinType::Bool:
3315       // Bool type is always extended to the ABI, other builtin types are not
3316       // extended.
3317       return ABIArgInfo::getExtend(Ty);
3318 
3319     case BuiltinType::LongDouble:
3320       // Mingw64 GCC uses the old 80 bit extended precision floating point
3321       // unit. It passes them indirectly through memory.
3322       if (IsMingw64) {
3323         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3324         if (LDF == &llvm::APFloat::x87DoubleExtended())
3325           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3326       }
3327       break;
3328 
3329     case BuiltinType::Int128:
3330     case BuiltinType::UInt128:
3331       // If it's a parameter type, the normal ABI rule is that arguments larger
3332       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3333       // even though it isn't particularly efficient.
3334       if (!IsReturnType)
3335         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3336 
3337       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3338       // Clang matches them for compatibility.
3339       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
3340           llvm::Type::getInt64Ty(getVMContext()), 2));
3341 
3342     default:
3343       break;
3344     }
3345   }
3346 
3347   if (Ty->isBitIntType()) {
3348     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3349     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3350     // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
3351     // or 8 bytes anyway as long is it fits in them, so we don't have to check
3352     // the power of 2.
3353     if (Width <= 64)
3354       return ABIArgInfo::getDirect();
3355     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3356   }
3357 
3358   return ABIArgInfo::getDirect();
3359 }
3360 
3361 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3362   const unsigned CC = FI.getCallingConvention();
3363   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
3364   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
3365 
3366   // If __attribute__((sysv_abi)) is in use, use the SysV argument
3367   // classification rules.
3368   if (CC == llvm::CallingConv::X86_64_SysV) {
3369     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
3370     SysVABIInfo.computeInfo(FI);
3371     return;
3372   }
3373 
3374   unsigned FreeSSERegs = 0;
3375   if (IsVectorCall) {
3376     // We can use up to 4 SSE return registers with vectorcall.
3377     FreeSSERegs = 4;
3378   } else if (IsRegCall) {
3379     // RegCall gives us 16 SSE registers.
3380     FreeSSERegs = 16;
3381   }
3382 
3383   if (!getCXXABI().classifyReturnType(FI))
3384     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3385                                   IsVectorCall, IsRegCall);
3386 
3387   if (IsVectorCall) {
3388     // We can use up to 6 SSE register parameters with vectorcall.
3389     FreeSSERegs = 6;
3390   } else if (IsRegCall) {
3391     // RegCall gives us 16 SSE registers, we can reuse the return registers.
3392     FreeSSERegs = 16;
3393   }
3394 
3395   unsigned ArgNum = 0;
3396   unsigned ZeroSSERegs = 0;
3397   for (auto &I : FI.arguments()) {
3398     // Vectorcall in x64 only permits the first 6 arguments to be passed as
3399     // XMM/YMM registers. After the sixth argument, pretend no vector
3400     // registers are left.
3401     unsigned *MaybeFreeSSERegs =
3402         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
3403     I.info =
3404         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
3405     ++ArgNum;
3406   }
3407 
3408   if (IsVectorCall) {
3409     // For vectorcall, assign aggregate HVAs to any free vector registers in a
3410     // second pass.
3411     for (auto &I : FI.arguments())
3412       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
3413   }
3414 }
3415 
3416 RValue WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3417                                    QualType Ty, AggValueSlot Slot) const {
3418   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3419   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3420   uint64_t Width = getContext().getTypeSize(Ty);
3421   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3422 
3423   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3424                           CGF.getContext().getTypeInfoInChars(Ty),
3425                           CharUnits::fromQuantity(8),
3426                           /*allowHigherAlign*/ false, Slot);
3427 }
3428 
3429 std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
3430     CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3431     unsigned NumRegisterParameters, bool SoftFloatABI) {
3432   bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3433       CGM.getTriple(), CGM.getCodeGenOpts());
3434   return std::make_unique<X86_32TargetCodeGenInfo>(
3435       CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3436       NumRegisterParameters, SoftFloatABI);
3437 }
3438 
3439 std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
3440     CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3441     unsigned NumRegisterParameters) {
3442   bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3443       CGM.getTriple(), CGM.getCodeGenOpts());
3444   return std::make_unique<WinX86_32TargetCodeGenInfo>(
3445       CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3446       NumRegisterParameters);
3447 }
3448 
3449 std::unique_ptr<TargetCodeGenInfo>
3450 CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
3451                                        X86AVXABILevel AVXLevel) {
3452   return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3453 }
3454 
3455 std::unique_ptr<TargetCodeGenInfo>
3456 CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
3457                                           X86AVXABILevel AVXLevel) {
3458   return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3459 }
3460