1 //===- X86.cpp ------------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "ABIInfoImpl.h" 10 #include "TargetInfo.h" 11 #include "clang/Basic/DiagnosticFrontend.h" 12 #include "llvm/ADT/SmallBitVector.h" 13 14 using namespace clang; 15 using namespace clang::CodeGen; 16 17 namespace { 18 19 /// IsX86_MMXType - Return true if this is an MMX type. 20 bool IsX86_MMXType(llvm::Type *IRType) { 21 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 22 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 23 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 24 IRType->getScalarSizeInBits() != 64; 25 } 26 27 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 28 StringRef Constraint, 29 llvm::Type* Ty) { 30 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 31 .Cases("y", "&y", "^Ym", true) 32 .Default(false); 33 if (IsMMXCons && Ty->isVectorTy()) { 34 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() != 35 64) { 36 // Invalid MMX constraint 37 return nullptr; 38 } 39 40 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 41 } 42 43 if (Constraint == "k") { 44 llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext()); 45 return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits()); 46 } 47 48 // No operation needed 49 return Ty; 50 } 51 52 /// Returns true if this type can be passed in SSE registers with the 53 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 54 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 55 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 56 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 57 if (BT->getKind() == BuiltinType::LongDouble) { 58 if (&Context.getTargetInfo().getLongDoubleFormat() == 59 &llvm::APFloat::x87DoubleExtended()) 60 return false; 61 } 62 return true; 63 } 64 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 65 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 66 // registers specially. 67 unsigned VecSize = Context.getTypeSize(VT); 68 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 69 return true; 70 } 71 return false; 72 } 73 74 /// Returns true if this aggregate is small enough to be passed in SSE registers 75 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 76 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 77 return NumMembers <= 4; 78 } 79 80 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 81 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 82 auto AI = ABIArgInfo::getDirect(T); 83 AI.setInReg(true); 84 AI.setCanBeFlattened(false); 85 return AI; 86 } 87 88 //===----------------------------------------------------------------------===// 89 // X86-32 ABI Implementation 90 //===----------------------------------------------------------------------===// 91 92 /// Similar to llvm::CCState, but for Clang. 93 struct CCState { 94 CCState(CGFunctionInfo &FI) 95 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()), 96 Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {} 97 98 llvm::SmallBitVector IsPreassigned; 99 unsigned CC = CallingConv::CC_C; 100 unsigned FreeRegs = 0; 101 unsigned FreeSSERegs = 0; 102 RequiredArgs Required; 103 bool IsDelegateCall = false; 104 }; 105 106 /// X86_32ABIInfo - The X86-32 ABI information. 107 class X86_32ABIInfo : public ABIInfo { 108 enum Class { 109 Integer, 110 Float 111 }; 112 113 static const unsigned MinABIStackAlignInBytes = 4; 114 115 bool IsDarwinVectorABI; 116 bool IsRetSmallStructInRegABI; 117 bool IsWin32StructABI; 118 bool IsSoftFloatABI; 119 bool IsMCUABI; 120 bool IsLinuxABI; 121 unsigned DefaultNumRegisterParameters; 122 123 static bool isRegisterSize(unsigned Size) { 124 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 125 } 126 127 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 128 // FIXME: Assumes vectorcall is in use. 129 return isX86VectorTypeForVectorCall(getContext(), Ty); 130 } 131 132 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 133 uint64_t NumMembers) const override { 134 // FIXME: Assumes vectorcall is in use. 135 return isX86VectorCallAggregateSmallEnough(NumMembers); 136 } 137 138 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 139 140 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 141 /// such that the argument will be passed in memory. 142 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 143 144 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 145 146 /// Return the alignment to use for the given type on the stack. 147 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 148 149 Class classify(QualType Ty) const; 150 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 151 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State, 152 unsigned ArgIndex) const; 153 154 /// Updates the number of available free registers, returns 155 /// true if any registers were allocated. 156 bool updateFreeRegs(QualType Ty, CCState &State) const; 157 158 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 159 bool &NeedsPadding) const; 160 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 161 162 bool canExpandIndirectArgument(QualType Ty) const; 163 164 /// Rewrite the function info so that all memory arguments use 165 /// inalloca. 166 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 167 168 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 169 CharUnits &StackOffset, ABIArgInfo &Info, 170 QualType Type) const; 171 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 172 173 public: 174 175 void computeInfo(CGFunctionInfo &FI) const override; 176 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 177 QualType Ty) const override; 178 179 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 180 bool RetSmallStructInRegABI, bool Win32StructABI, 181 unsigned NumRegisterParameters, bool SoftFloatABI) 182 : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 183 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 184 IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI), 185 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 186 IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() || 187 CGT.getTarget().getTriple().isOSCygMing()), 188 DefaultNumRegisterParameters(NumRegisterParameters) {} 189 }; 190 191 class X86_32SwiftABIInfo : public SwiftABIInfo { 192 public: 193 explicit X86_32SwiftABIInfo(CodeGenTypes &CGT) 194 : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {} 195 196 bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys, 197 bool AsReturnValue) const override { 198 // LLVM's x86-32 lowering currently only assigns up to three 199 // integer registers and three fp registers. Oddly, it'll use up to 200 // four vector registers for vectors, but those can overlap with the 201 // scalar registers. 202 return occupiesMoreThan(ComponentTys, /*total=*/3); 203 } 204 }; 205 206 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 207 public: 208 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 209 bool RetSmallStructInRegABI, bool Win32StructABI, 210 unsigned NumRegisterParameters, bool SoftFloatABI) 211 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 212 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 213 NumRegisterParameters, SoftFloatABI)) { 214 SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT); 215 } 216 217 static bool isStructReturnInRegABI( 218 const llvm::Triple &Triple, const CodeGenOptions &Opts); 219 220 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 221 CodeGen::CodeGenModule &CGM) const override; 222 223 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 224 // Darwin uses different dwarf register numbers for EH. 225 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 226 return 4; 227 } 228 229 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 230 llvm::Value *Address) const override; 231 232 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 233 StringRef Constraint, 234 llvm::Type* Ty) const override { 235 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 236 } 237 238 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 239 std::string &Constraints, 240 std::vector<llvm::Type *> &ResultRegTypes, 241 std::vector<llvm::Type *> &ResultTruncRegTypes, 242 std::vector<LValue> &ResultRegDests, 243 std::string &AsmString, 244 unsigned NumOutputs) const override; 245 246 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 247 return "movl\t%ebp, %ebp" 248 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 249 } 250 }; 251 252 } 253 254 /// Rewrite input constraint references after adding some output constraints. 255 /// In the case where there is one output and one input and we add one output, 256 /// we need to replace all operand references greater than or equal to 1: 257 /// mov $0, $1 258 /// mov eax, $1 259 /// The result will be: 260 /// mov $0, $2 261 /// mov eax, $2 262 static void rewriteInputConstraintReferences(unsigned FirstIn, 263 unsigned NumNewOuts, 264 std::string &AsmString) { 265 std::string Buf; 266 llvm::raw_string_ostream OS(Buf); 267 size_t Pos = 0; 268 while (Pos < AsmString.size()) { 269 size_t DollarStart = AsmString.find('$', Pos); 270 if (DollarStart == std::string::npos) 271 DollarStart = AsmString.size(); 272 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 273 if (DollarEnd == std::string::npos) 274 DollarEnd = AsmString.size(); 275 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 276 Pos = DollarEnd; 277 size_t NumDollars = DollarEnd - DollarStart; 278 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 279 // We have an operand reference. 280 size_t DigitStart = Pos; 281 if (AsmString[DigitStart] == '{') { 282 OS << '{'; 283 ++DigitStart; 284 } 285 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 286 if (DigitEnd == std::string::npos) 287 DigitEnd = AsmString.size(); 288 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 289 unsigned OperandIndex; 290 if (!OperandStr.getAsInteger(10, OperandIndex)) { 291 if (OperandIndex >= FirstIn) 292 OperandIndex += NumNewOuts; 293 OS << OperandIndex; 294 } else { 295 OS << OperandStr; 296 } 297 Pos = DigitEnd; 298 } 299 } 300 AsmString = std::move(OS.str()); 301 } 302 303 /// Add output constraints for EAX:EDX because they are return registers. 304 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 305 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 306 std::vector<llvm::Type *> &ResultRegTypes, 307 std::vector<llvm::Type *> &ResultTruncRegTypes, 308 std::vector<LValue> &ResultRegDests, std::string &AsmString, 309 unsigned NumOutputs) const { 310 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 311 312 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 313 // larger. 314 if (!Constraints.empty()) 315 Constraints += ','; 316 if (RetWidth <= 32) { 317 Constraints += "={eax}"; 318 ResultRegTypes.push_back(CGF.Int32Ty); 319 } else { 320 // Use the 'A' constraint for EAX:EDX. 321 Constraints += "=A"; 322 ResultRegTypes.push_back(CGF.Int64Ty); 323 } 324 325 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 326 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 327 ResultTruncRegTypes.push_back(CoerceTy); 328 329 // Coerce the integer by bitcasting the return slot pointer. 330 ReturnSlot.setAddress(ReturnSlot.getAddress(CGF).withElementType(CoerceTy)); 331 ResultRegDests.push_back(ReturnSlot); 332 333 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 334 } 335 336 /// shouldReturnTypeInRegister - Determine if the given type should be 337 /// returned in a register (for the Darwin and MCU ABI). 338 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 339 ASTContext &Context) const { 340 uint64_t Size = Context.getTypeSize(Ty); 341 342 // For i386, type must be register sized. 343 // For the MCU ABI, it only needs to be <= 8-byte 344 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 345 return false; 346 347 if (Ty->isVectorType()) { 348 // 64- and 128- bit vectors inside structures are not returned in 349 // registers. 350 if (Size == 64 || Size == 128) 351 return false; 352 353 return true; 354 } 355 356 // If this is a builtin, pointer, enum, complex type, member pointer, or 357 // member function pointer it is ok. 358 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 359 Ty->isAnyComplexType() || Ty->isEnumeralType() || 360 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 361 return true; 362 363 // Arrays are treated like records. 364 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 365 return shouldReturnTypeInRegister(AT->getElementType(), Context); 366 367 // Otherwise, it must be a record type. 368 const RecordType *RT = Ty->getAs<RecordType>(); 369 if (!RT) return false; 370 371 // FIXME: Traverse bases here too. 372 373 // Structure types are passed in register if all fields would be 374 // passed in a register. 375 for (const auto *FD : RT->getDecl()->fields()) { 376 // Empty fields are ignored. 377 if (isEmptyField(Context, FD, true)) 378 continue; 379 380 // Check fields recursively. 381 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 382 return false; 383 } 384 return true; 385 } 386 387 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 388 // Treat complex types as the element type. 389 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 390 Ty = CTy->getElementType(); 391 392 // Check for a type which we know has a simple scalar argument-passing 393 // convention without any padding. (We're specifically looking for 32 394 // and 64-bit integer and integer-equivalents, float, and double.) 395 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 396 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 397 return false; 398 399 uint64_t Size = Context.getTypeSize(Ty); 400 return Size == 32 || Size == 64; 401 } 402 403 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 404 uint64_t &Size) { 405 for (const auto *FD : RD->fields()) { 406 // Scalar arguments on the stack get 4 byte alignment on x86. If the 407 // argument is smaller than 32-bits, expanding the struct will create 408 // alignment padding. 409 if (!is32Or64BitBasicType(FD->getType(), Context)) 410 return false; 411 412 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 413 // how to expand them yet, and the predicate for telling if a bitfield still 414 // counts as "basic" is more complicated than what we were doing previously. 415 if (FD->isBitField()) 416 return false; 417 418 Size += Context.getTypeSize(FD->getType()); 419 } 420 return true; 421 } 422 423 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 424 uint64_t &Size) { 425 // Don't do this if there are any non-empty bases. 426 for (const CXXBaseSpecifier &Base : RD->bases()) { 427 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 428 Size)) 429 return false; 430 } 431 if (!addFieldSizes(Context, RD, Size)) 432 return false; 433 return true; 434 } 435 436 /// Test whether an argument type which is to be passed indirectly (on the 437 /// stack) would have the equivalent layout if it was expanded into separate 438 /// arguments. If so, we prefer to do the latter to avoid inhibiting 439 /// optimizations. 440 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 441 // We can only expand structure types. 442 const RecordType *RT = Ty->getAs<RecordType>(); 443 if (!RT) 444 return false; 445 const RecordDecl *RD = RT->getDecl(); 446 uint64_t Size = 0; 447 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 448 if (!IsWin32StructABI) { 449 // On non-Windows, we have to conservatively match our old bitcode 450 // prototypes in order to be ABI-compatible at the bitcode level. 451 if (!CXXRD->isCLike()) 452 return false; 453 } else { 454 // Don't do this for dynamic classes. 455 if (CXXRD->isDynamicClass()) 456 return false; 457 } 458 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 459 return false; 460 } else { 461 if (!addFieldSizes(getContext(), RD, Size)) 462 return false; 463 } 464 465 // We can do this if there was no alignment padding. 466 return Size == getContext().getTypeSize(Ty); 467 } 468 469 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 470 // If the return value is indirect, then the hidden argument is consuming one 471 // integer register. 472 if (State.FreeRegs) { 473 --State.FreeRegs; 474 if (!IsMCUABI) 475 return getNaturalAlignIndirectInReg(RetTy); 476 } 477 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 478 } 479 480 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 481 CCState &State) const { 482 if (RetTy->isVoidType()) 483 return ABIArgInfo::getIgnore(); 484 485 const Type *Base = nullptr; 486 uint64_t NumElts = 0; 487 if ((State.CC == llvm::CallingConv::X86_VectorCall || 488 State.CC == llvm::CallingConv::X86_RegCall) && 489 isHomogeneousAggregate(RetTy, Base, NumElts)) { 490 // The LLVM struct type for such an aggregate should lower properly. 491 return ABIArgInfo::getDirect(); 492 } 493 494 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 495 // On Darwin, some vectors are returned in registers. 496 if (IsDarwinVectorABI) { 497 uint64_t Size = getContext().getTypeSize(RetTy); 498 499 // 128-bit vectors are a special case; they are returned in 500 // registers and we need to make sure to pick a type the LLVM 501 // backend will like. 502 if (Size == 128) 503 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 504 llvm::Type::getInt64Ty(getVMContext()), 2)); 505 506 // Always return in register if it fits in a general purpose 507 // register, or if it is 64 bits and has a single element. 508 if ((Size == 8 || Size == 16 || Size == 32) || 509 (Size == 64 && VT->getNumElements() == 1)) 510 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 511 Size)); 512 513 return getIndirectReturnResult(RetTy, State); 514 } 515 516 return ABIArgInfo::getDirect(); 517 } 518 519 if (isAggregateTypeForABI(RetTy)) { 520 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 521 // Structures with flexible arrays are always indirect. 522 if (RT->getDecl()->hasFlexibleArrayMember()) 523 return getIndirectReturnResult(RetTy, State); 524 } 525 526 // If specified, structs and unions are always indirect. 527 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 528 return getIndirectReturnResult(RetTy, State); 529 530 // Ignore empty structs/unions. 531 if (isEmptyRecord(getContext(), RetTy, true)) 532 return ABIArgInfo::getIgnore(); 533 534 // Return complex of _Float16 as <2 x half> so the backend will use xmm0. 535 if (const ComplexType *CT = RetTy->getAs<ComplexType>()) { 536 QualType ET = getContext().getCanonicalType(CT->getElementType()); 537 if (ET->isFloat16Type()) 538 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 539 llvm::Type::getHalfTy(getVMContext()), 2)); 540 } 541 542 // Small structures which are register sized are generally returned 543 // in a register. 544 if (shouldReturnTypeInRegister(RetTy, getContext())) { 545 uint64_t Size = getContext().getTypeSize(RetTy); 546 547 // As a special-case, if the struct is a "single-element" struct, and 548 // the field is of type "float" or "double", return it in a 549 // floating-point register. (MSVC does not apply this special case.) 550 // We apply a similar transformation for pointer types to improve the 551 // quality of the generated IR. 552 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 553 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 554 || SeltTy->hasPointerRepresentation()) 555 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 556 557 // FIXME: We should be able to narrow this integer in cases with dead 558 // padding. 559 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 560 } 561 562 return getIndirectReturnResult(RetTy, State); 563 } 564 565 // Treat an enum type as its underlying type. 566 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 567 RetTy = EnumTy->getDecl()->getIntegerType(); 568 569 if (const auto *EIT = RetTy->getAs<BitIntType>()) 570 if (EIT->getNumBits() > 64) 571 return getIndirectReturnResult(RetTy, State); 572 573 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 574 : ABIArgInfo::getDirect()); 575 } 576 577 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 578 unsigned Align) const { 579 // Otherwise, if the alignment is less than or equal to the minimum ABI 580 // alignment, just use the default; the backend will handle this. 581 if (Align <= MinABIStackAlignInBytes) 582 return 0; // Use default alignment. 583 584 if (IsLinuxABI) { 585 // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't 586 // want to spend any effort dealing with the ramifications of ABI breaks. 587 // 588 // If the vector type is __m128/__m256/__m512, return the default alignment. 589 if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64)) 590 return Align; 591 } 592 // On non-Darwin, the stack type alignment is always 4. 593 if (!IsDarwinVectorABI) { 594 // Set explicit alignment, since we may need to realign the top. 595 return MinABIStackAlignInBytes; 596 } 597 598 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 599 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 600 isRecordWithSIMDVectorType(getContext(), Ty))) 601 return 16; 602 603 return MinABIStackAlignInBytes; 604 } 605 606 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 607 CCState &State) const { 608 if (!ByVal) { 609 if (State.FreeRegs) { 610 --State.FreeRegs; // Non-byval indirects just use one pointer. 611 if (!IsMCUABI) 612 return getNaturalAlignIndirectInReg(Ty); 613 } 614 return getNaturalAlignIndirect(Ty, false); 615 } 616 617 // Compute the byval alignment. 618 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 619 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 620 if (StackAlign == 0) 621 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 622 623 // If the stack alignment is less than the type alignment, realign the 624 // argument. 625 bool Realign = TypeAlign > StackAlign; 626 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 627 /*ByVal=*/true, Realign); 628 } 629 630 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 631 const Type *T = isSingleElementStruct(Ty, getContext()); 632 if (!T) 633 T = Ty.getTypePtr(); 634 635 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 636 BuiltinType::Kind K = BT->getKind(); 637 if (K == BuiltinType::Float || K == BuiltinType::Double) 638 return Float; 639 } 640 return Integer; 641 } 642 643 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 644 if (!IsSoftFloatABI) { 645 Class C = classify(Ty); 646 if (C == Float) 647 return false; 648 } 649 650 unsigned Size = getContext().getTypeSize(Ty); 651 unsigned SizeInRegs = (Size + 31) / 32; 652 653 if (SizeInRegs == 0) 654 return false; 655 656 if (!IsMCUABI) { 657 if (SizeInRegs > State.FreeRegs) { 658 State.FreeRegs = 0; 659 return false; 660 } 661 } else { 662 // The MCU psABI allows passing parameters in-reg even if there are 663 // earlier parameters that are passed on the stack. Also, 664 // it does not allow passing >8-byte structs in-register, 665 // even if there are 3 free registers available. 666 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 667 return false; 668 } 669 670 State.FreeRegs -= SizeInRegs; 671 return true; 672 } 673 674 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 675 bool &InReg, 676 bool &NeedsPadding) const { 677 // On Windows, aggregates other than HFAs are never passed in registers, and 678 // they do not consume register slots. Homogenous floating-point aggregates 679 // (HFAs) have already been dealt with at this point. 680 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 681 return false; 682 683 NeedsPadding = false; 684 InReg = !IsMCUABI; 685 686 if (!updateFreeRegs(Ty, State)) 687 return false; 688 689 if (IsMCUABI) 690 return true; 691 692 if (State.CC == llvm::CallingConv::X86_FastCall || 693 State.CC == llvm::CallingConv::X86_VectorCall || 694 State.CC == llvm::CallingConv::X86_RegCall) { 695 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 696 NeedsPadding = true; 697 698 return false; 699 } 700 701 return true; 702 } 703 704 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 705 bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) && 706 (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 707 Ty->isReferenceType()); 708 709 if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall || 710 State.CC == llvm::CallingConv::X86_VectorCall)) 711 return false; 712 713 if (!updateFreeRegs(Ty, State)) 714 return false; 715 716 if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall) 717 return false; 718 719 // Return true to apply inreg to all legal parameters except for MCU targets. 720 return !IsMCUABI; 721 } 722 723 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 724 // Vectorcall x86 works subtly different than in x64, so the format is 725 // a bit different than the x64 version. First, all vector types (not HVAs) 726 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 727 // This differs from the x64 implementation, where the first 6 by INDEX get 728 // registers. 729 // In the second pass over the arguments, HVAs are passed in the remaining 730 // vector registers if possible, or indirectly by address. The address will be 731 // passed in ECX/EDX if available. Any other arguments are passed according to 732 // the usual fastcall rules. 733 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 734 for (int I = 0, E = Args.size(); I < E; ++I) { 735 const Type *Base = nullptr; 736 uint64_t NumElts = 0; 737 const QualType &Ty = Args[I].type; 738 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 739 isHomogeneousAggregate(Ty, Base, NumElts)) { 740 if (State.FreeSSERegs >= NumElts) { 741 State.FreeSSERegs -= NumElts; 742 Args[I].info = ABIArgInfo::getDirectInReg(); 743 State.IsPreassigned.set(I); 744 } 745 } 746 } 747 } 748 749 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State, 750 unsigned ArgIndex) const { 751 // FIXME: Set alignment on indirect arguments. 752 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 753 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 754 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 755 756 Ty = useFirstFieldIfTransparentUnion(Ty); 757 TypeInfo TI = getContext().getTypeInfo(Ty); 758 759 // Check with the C++ ABI first. 760 const RecordType *RT = Ty->getAs<RecordType>(); 761 if (RT) { 762 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 763 if (RAA == CGCXXABI::RAA_Indirect) { 764 return getIndirectResult(Ty, false, State); 765 } else if (State.IsDelegateCall) { 766 // Avoid having different alignments on delegate call args by always 767 // setting the alignment to 4, which is what we do for inallocas. 768 ABIArgInfo Res = getIndirectResult(Ty, false, State); 769 Res.setIndirectAlign(CharUnits::fromQuantity(4)); 770 return Res; 771 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 772 // The field index doesn't matter, we'll fix it up later. 773 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 774 } 775 } 776 777 // Regcall uses the concept of a homogenous vector aggregate, similar 778 // to other targets. 779 const Type *Base = nullptr; 780 uint64_t NumElts = 0; 781 if ((IsRegCall || IsVectorCall) && 782 isHomogeneousAggregate(Ty, Base, NumElts)) { 783 if (State.FreeSSERegs >= NumElts) { 784 State.FreeSSERegs -= NumElts; 785 786 // Vectorcall passes HVAs directly and does not flatten them, but regcall 787 // does. 788 if (IsVectorCall) 789 return getDirectX86Hva(); 790 791 if (Ty->isBuiltinType() || Ty->isVectorType()) 792 return ABIArgInfo::getDirect(); 793 return ABIArgInfo::getExpand(); 794 } 795 return getIndirectResult(Ty, /*ByVal=*/false, State); 796 } 797 798 if (isAggregateTypeForABI(Ty)) { 799 // Structures with flexible arrays are always indirect. 800 // FIXME: This should not be byval! 801 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 802 return getIndirectResult(Ty, true, State); 803 804 // Ignore empty structs/unions on non-Windows. 805 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 806 return ABIArgInfo::getIgnore(); 807 808 llvm::LLVMContext &LLVMContext = getVMContext(); 809 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 810 bool NeedsPadding = false; 811 bool InReg; 812 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 813 unsigned SizeInRegs = (TI.Width + 31) / 32; 814 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 815 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 816 if (InReg) 817 return ABIArgInfo::getDirectInReg(Result); 818 else 819 return ABIArgInfo::getDirect(Result); 820 } 821 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 822 823 // Pass over-aligned aggregates to non-variadic functions on Windows 824 // indirectly. This behavior was added in MSVC 2015. Use the required 825 // alignment from the record layout, since that may be less than the 826 // regular type alignment, and types with required alignment of less than 4 827 // bytes are not passed indirectly. 828 if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) { 829 unsigned AlignInBits = 0; 830 if (RT) { 831 const ASTRecordLayout &Layout = 832 getContext().getASTRecordLayout(RT->getDecl()); 833 AlignInBits = getContext().toBits(Layout.getRequiredAlignment()); 834 } else if (TI.isAlignRequired()) { 835 AlignInBits = TI.Align; 836 } 837 if (AlignInBits > 32) 838 return getIndirectResult(Ty, /*ByVal=*/false, State); 839 } 840 841 // Expand small (<= 128-bit) record types when we know that the stack layout 842 // of those arguments will match the struct. This is important because the 843 // LLVM backend isn't smart enough to remove byval, which inhibits many 844 // optimizations. 845 // Don't do this for the MCU if there are still free integer registers 846 // (see X86_64 ABI for full explanation). 847 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 848 canExpandIndirectArgument(Ty)) 849 return ABIArgInfo::getExpandWithPadding( 850 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 851 852 return getIndirectResult(Ty, true, State); 853 } 854 855 if (const VectorType *VT = Ty->getAs<VectorType>()) { 856 // On Windows, vectors are passed directly if registers are available, or 857 // indirectly if not. This avoids the need to align argument memory. Pass 858 // user-defined vector types larger than 512 bits indirectly for simplicity. 859 if (IsWin32StructABI) { 860 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 861 --State.FreeSSERegs; 862 return ABIArgInfo::getDirectInReg(); 863 } 864 return getIndirectResult(Ty, /*ByVal=*/false, State); 865 } 866 867 // On Darwin, some vectors are passed in memory, we handle this by passing 868 // it as an i8/i16/i32/i64. 869 if (IsDarwinVectorABI) { 870 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 871 (TI.Width == 64 && VT->getNumElements() == 1)) 872 return ABIArgInfo::getDirect( 873 llvm::IntegerType::get(getVMContext(), TI.Width)); 874 } 875 876 if (IsX86_MMXType(CGT.ConvertType(Ty))) 877 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 878 879 return ABIArgInfo::getDirect(); 880 } 881 882 883 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 884 Ty = EnumTy->getDecl()->getIntegerType(); 885 886 bool InReg = shouldPrimitiveUseInReg(Ty, State); 887 888 if (isPromotableIntegerTypeForABI(Ty)) { 889 if (InReg) 890 return ABIArgInfo::getExtendInReg(Ty); 891 return ABIArgInfo::getExtend(Ty); 892 } 893 894 if (const auto *EIT = Ty->getAs<BitIntType>()) { 895 if (EIT->getNumBits() <= 64) { 896 if (InReg) 897 return ABIArgInfo::getDirectInReg(); 898 return ABIArgInfo::getDirect(); 899 } 900 return getIndirectResult(Ty, /*ByVal=*/false, State); 901 } 902 903 if (InReg) 904 return ABIArgInfo::getDirectInReg(); 905 return ABIArgInfo::getDirect(); 906 } 907 908 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 909 CCState State(FI); 910 if (IsMCUABI) 911 State.FreeRegs = 3; 912 else if (State.CC == llvm::CallingConv::X86_FastCall) { 913 State.FreeRegs = 2; 914 State.FreeSSERegs = 3; 915 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 916 State.FreeRegs = 2; 917 State.FreeSSERegs = 6; 918 } else if (FI.getHasRegParm()) 919 State.FreeRegs = FI.getRegParm(); 920 else if (State.CC == llvm::CallingConv::X86_RegCall) { 921 State.FreeRegs = 5; 922 State.FreeSSERegs = 8; 923 } else if (IsWin32StructABI) { 924 // Since MSVC 2015, the first three SSE vectors have been passed in 925 // registers. The rest are passed indirectly. 926 State.FreeRegs = DefaultNumRegisterParameters; 927 State.FreeSSERegs = 3; 928 } else 929 State.FreeRegs = DefaultNumRegisterParameters; 930 931 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 932 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 933 } else if (FI.getReturnInfo().isIndirect()) { 934 // The C++ ABI is not aware of register usage, so we have to check if the 935 // return value was sret and put it in a register ourselves if appropriate. 936 if (State.FreeRegs) { 937 --State.FreeRegs; // The sret parameter consumes a register. 938 if (!IsMCUABI) 939 FI.getReturnInfo().setInReg(true); 940 } 941 } 942 943 // The chain argument effectively gives us another free register. 944 if (FI.isChainCall()) 945 ++State.FreeRegs; 946 947 // For vectorcall, do a first pass over the arguments, assigning FP and vector 948 // arguments to XMM registers as available. 949 if (State.CC == llvm::CallingConv::X86_VectorCall) 950 runVectorCallFirstPass(FI, State); 951 952 bool UsedInAlloca = false; 953 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 954 for (unsigned I = 0, E = Args.size(); I < E; ++I) { 955 // Skip arguments that have already been assigned. 956 if (State.IsPreassigned.test(I)) 957 continue; 958 959 Args[I].info = 960 classifyArgumentType(Args[I].type, State, I); 961 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 962 } 963 964 // If we needed to use inalloca for any argument, do a second pass and rewrite 965 // all the memory arguments to use inalloca. 966 if (UsedInAlloca) 967 rewriteWithInAlloca(FI); 968 } 969 970 void 971 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 972 CharUnits &StackOffset, ABIArgInfo &Info, 973 QualType Type) const { 974 // Arguments are always 4-byte-aligned. 975 CharUnits WordSize = CharUnits::fromQuantity(4); 976 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 977 978 // sret pointers and indirect things will require an extra pointer 979 // indirection, unless they are byval. Most things are byval, and will not 980 // require this indirection. 981 bool IsIndirect = false; 982 if (Info.isIndirect() && !Info.getIndirectByVal()) 983 IsIndirect = true; 984 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 985 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 986 if (IsIndirect) 987 LLTy = llvm::PointerType::getUnqual(getVMContext()); 988 FrameFields.push_back(LLTy); 989 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 990 991 // Insert padding bytes to respect alignment. 992 CharUnits FieldEnd = StackOffset; 993 StackOffset = FieldEnd.alignTo(WordSize); 994 if (StackOffset != FieldEnd) { 995 CharUnits NumBytes = StackOffset - FieldEnd; 996 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 997 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 998 FrameFields.push_back(Ty); 999 } 1000 } 1001 1002 static bool isArgInAlloca(const ABIArgInfo &Info) { 1003 // Leave ignored and inreg arguments alone. 1004 switch (Info.getKind()) { 1005 case ABIArgInfo::InAlloca: 1006 return true; 1007 case ABIArgInfo::Ignore: 1008 case ABIArgInfo::IndirectAliased: 1009 return false; 1010 case ABIArgInfo::Indirect: 1011 case ABIArgInfo::Direct: 1012 case ABIArgInfo::Extend: 1013 return !Info.getInReg(); 1014 case ABIArgInfo::Expand: 1015 case ABIArgInfo::CoerceAndExpand: 1016 // These are aggregate types which are never passed in registers when 1017 // inalloca is involved. 1018 return true; 1019 } 1020 llvm_unreachable("invalid enum"); 1021 } 1022 1023 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1024 assert(IsWin32StructABI && "inalloca only supported on win32"); 1025 1026 // Build a packed struct type for all of the arguments in memory. 1027 SmallVector<llvm::Type *, 6> FrameFields; 1028 1029 // The stack alignment is always 4. 1030 CharUnits StackAlign = CharUnits::fromQuantity(4); 1031 1032 CharUnits StackOffset; 1033 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1034 1035 // Put 'this' into the struct before 'sret', if necessary. 1036 bool IsThisCall = 1037 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1038 ABIArgInfo &Ret = FI.getReturnInfo(); 1039 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1040 isArgInAlloca(I->info)) { 1041 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1042 ++I; 1043 } 1044 1045 // Put the sret parameter into the inalloca struct if it's in memory. 1046 if (Ret.isIndirect() && !Ret.getInReg()) { 1047 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 1048 // On Windows, the hidden sret parameter is always returned in eax. 1049 Ret.setInAllocaSRet(IsWin32StructABI); 1050 } 1051 1052 // Skip the 'this' parameter in ecx. 1053 if (IsThisCall) 1054 ++I; 1055 1056 // Put arguments passed in memory into the struct. 1057 for (; I != E; ++I) { 1058 if (isArgInAlloca(I->info)) 1059 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1060 } 1061 1062 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1063 /*isPacked=*/true), 1064 StackAlign); 1065 } 1066 1067 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1068 Address VAListAddr, QualType Ty) const { 1069 1070 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1071 1072 // x86-32 changes the alignment of certain arguments on the stack. 1073 // 1074 // Just messing with TypeInfo like this works because we never pass 1075 // anything indirectly. 1076 TypeInfo.Align = CharUnits::fromQuantity( 1077 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity())); 1078 1079 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1080 TypeInfo, CharUnits::fromQuantity(4), 1081 /*AllowHigherAlign*/ true); 1082 } 1083 1084 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1085 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1086 assert(Triple.getArch() == llvm::Triple::x86); 1087 1088 switch (Opts.getStructReturnConvention()) { 1089 case CodeGenOptions::SRCK_Default: 1090 break; 1091 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1092 return false; 1093 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1094 return true; 1095 } 1096 1097 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1098 return true; 1099 1100 switch (Triple.getOS()) { 1101 case llvm::Triple::DragonFly: 1102 case llvm::Triple::FreeBSD: 1103 case llvm::Triple::OpenBSD: 1104 case llvm::Triple::Win32: 1105 return true; 1106 default: 1107 return false; 1108 } 1109 } 1110 1111 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV, 1112 CodeGen::CodeGenModule &CGM) { 1113 if (!FD->hasAttr<AnyX86InterruptAttr>()) 1114 return; 1115 1116 llvm::Function *Fn = cast<llvm::Function>(GV); 1117 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1118 if (FD->getNumParams() == 0) 1119 return; 1120 1121 auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType()); 1122 llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType()); 1123 llvm::Attribute NewAttr = llvm::Attribute::getWithByValType( 1124 Fn->getContext(), ByValTy); 1125 Fn->addParamAttr(0, NewAttr); 1126 } 1127 1128 void X86_32TargetCodeGenInfo::setTargetAttributes( 1129 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1130 if (GV->isDeclaration()) 1131 return; 1132 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1133 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1134 llvm::Function *Fn = cast<llvm::Function>(GV); 1135 Fn->addFnAttr("stackrealign"); 1136 } 1137 1138 addX86InterruptAttrs(FD, GV, CGM); 1139 } 1140 } 1141 1142 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1143 CodeGen::CodeGenFunction &CGF, 1144 llvm::Value *Address) const { 1145 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1146 1147 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1148 1149 // 0-7 are the eight integer registers; the order is different 1150 // on Darwin (for EH), but the range is the same. 1151 // 8 is %eip. 1152 AssignToArrayRange(Builder, Address, Four8, 0, 8); 1153 1154 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 1155 // 12-16 are st(0..4). Not sure why we stop at 4. 1156 // These have size 16, which is sizeof(long double) on 1157 // platforms with 8-byte alignment for that type. 1158 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 1159 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 1160 1161 } else { 1162 // 9 is %eflags, which doesn't get a size on Darwin for some 1163 // reason. 1164 Builder.CreateAlignedStore( 1165 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 1166 CharUnits::One()); 1167 1168 // 11-16 are st(0..5). Not sure why we stop at 5. 1169 // These have size 12, which is sizeof(long double) on 1170 // platforms with 4-byte alignment for that type. 1171 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 1172 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 1173 } 1174 1175 return false; 1176 } 1177 1178 //===----------------------------------------------------------------------===// 1179 // X86-64 ABI Implementation 1180 //===----------------------------------------------------------------------===// 1181 1182 1183 namespace { 1184 1185 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 1186 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 1187 switch (AVXLevel) { 1188 case X86AVXABILevel::AVX512: 1189 return 512; 1190 case X86AVXABILevel::AVX: 1191 return 256; 1192 case X86AVXABILevel::None: 1193 return 128; 1194 } 1195 llvm_unreachable("Unknown AVXLevel"); 1196 } 1197 1198 /// X86_64ABIInfo - The X86_64 ABI information. 1199 class X86_64ABIInfo : public ABIInfo { 1200 enum Class { 1201 Integer = 0, 1202 SSE, 1203 SSEUp, 1204 X87, 1205 X87Up, 1206 ComplexX87, 1207 NoClass, 1208 Memory 1209 }; 1210 1211 /// merge - Implement the X86_64 ABI merging algorithm. 1212 /// 1213 /// Merge an accumulating classification \arg Accum with a field 1214 /// classification \arg Field. 1215 /// 1216 /// \param Accum - The accumulating classification. This should 1217 /// always be either NoClass or the result of a previous merge 1218 /// call. In addition, this should never be Memory (the caller 1219 /// should just return Memory for the aggregate). 1220 static Class merge(Class Accum, Class Field); 1221 1222 /// postMerge - Implement the X86_64 ABI post merging algorithm. 1223 /// 1224 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 1225 /// final MEMORY or SSE classes when necessary. 1226 /// 1227 /// \param AggregateSize - The size of the current aggregate in 1228 /// the classification process. 1229 /// 1230 /// \param Lo - The classification for the parts of the type 1231 /// residing in the low word of the containing object. 1232 /// 1233 /// \param Hi - The classification for the parts of the type 1234 /// residing in the higher words of the containing object. 1235 /// 1236 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 1237 1238 /// classify - Determine the x86_64 register classes in which the 1239 /// given type T should be passed. 1240 /// 1241 /// \param Lo - The classification for the parts of the type 1242 /// residing in the low word of the containing object. 1243 /// 1244 /// \param Hi - The classification for the parts of the type 1245 /// residing in the high word of the containing object. 1246 /// 1247 /// \param OffsetBase - The bit offset of this type in the 1248 /// containing object. Some parameters are classified different 1249 /// depending on whether they straddle an eightbyte boundary. 1250 /// 1251 /// \param isNamedArg - Whether the argument in question is a "named" 1252 /// argument, as used in AMD64-ABI 3.5.7. 1253 /// 1254 /// \param IsRegCall - Whether the calling conversion is regcall. 1255 /// 1256 /// If a word is unused its result will be NoClass; if a type should 1257 /// be passed in Memory then at least the classification of \arg Lo 1258 /// will be Memory. 1259 /// 1260 /// The \arg Lo class will be NoClass iff the argument is ignored. 1261 /// 1262 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 1263 /// also be ComplexX87. 1264 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 1265 bool isNamedArg, bool IsRegCall = false) const; 1266 1267 llvm::Type *GetByteVectorType(QualType Ty) const; 1268 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 1269 unsigned IROffset, QualType SourceTy, 1270 unsigned SourceOffset) const; 1271 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 1272 unsigned IROffset, QualType SourceTy, 1273 unsigned SourceOffset) const; 1274 1275 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1276 /// such that the argument will be returned in memory. 1277 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 1278 1279 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1280 /// such that the argument will be passed in memory. 1281 /// 1282 /// \param freeIntRegs - The number of free integer registers remaining 1283 /// available. 1284 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 1285 1286 ABIArgInfo classifyReturnType(QualType RetTy) const; 1287 1288 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 1289 unsigned &neededInt, unsigned &neededSSE, 1290 bool isNamedArg, 1291 bool IsRegCall = false) const; 1292 1293 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 1294 unsigned &NeededSSE, 1295 unsigned &MaxVectorWidth) const; 1296 1297 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 1298 unsigned &NeededSSE, 1299 unsigned &MaxVectorWidth) const; 1300 1301 bool IsIllegalVectorType(QualType Ty) const; 1302 1303 /// The 0.98 ABI revision clarified a lot of ambiguities, 1304 /// unfortunately in ways that were not always consistent with 1305 /// certain previous compilers. In particular, platforms which 1306 /// required strict binary compatibility with older versions of GCC 1307 /// may need to exempt themselves. 1308 bool honorsRevision0_98() const { 1309 return !getTarget().getTriple().isOSDarwin(); 1310 } 1311 1312 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 1313 /// classify it as INTEGER (for compatibility with older clang compilers). 1314 bool classifyIntegerMMXAsSSE() const { 1315 // Clang <= 3.8 did not do this. 1316 if (getContext().getLangOpts().getClangABICompat() <= 1317 LangOptions::ClangABI::Ver3_8) 1318 return false; 1319 1320 const llvm::Triple &Triple = getTarget().getTriple(); 1321 if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD()) 1322 return false; 1323 return true; 1324 } 1325 1326 // GCC classifies vectors of __int128 as memory. 1327 bool passInt128VectorsInMem() const { 1328 // Clang <= 9.0 did not do this. 1329 if (getContext().getLangOpts().getClangABICompat() <= 1330 LangOptions::ClangABI::Ver9) 1331 return false; 1332 1333 const llvm::Triple &T = getTarget().getTriple(); 1334 return T.isOSLinux() || T.isOSNetBSD(); 1335 } 1336 1337 X86AVXABILevel AVXLevel; 1338 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 1339 // 64-bit hardware. 1340 bool Has64BitPointers; 1341 1342 public: 1343 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1344 : ABIInfo(CGT), AVXLevel(AVXLevel), 1345 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {} 1346 1347 bool isPassedUsingAVXType(QualType type) const { 1348 unsigned neededInt, neededSSE; 1349 // The freeIntRegs argument doesn't matter here. 1350 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 1351 /*isNamedArg*/true); 1352 if (info.isDirect()) { 1353 llvm::Type *ty = info.getCoerceToType(); 1354 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 1355 return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128; 1356 } 1357 return false; 1358 } 1359 1360 void computeInfo(CGFunctionInfo &FI) const override; 1361 1362 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1363 QualType Ty) const override; 1364 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 1365 QualType Ty) const override; 1366 1367 bool has64BitPointers() const { 1368 return Has64BitPointers; 1369 } 1370 }; 1371 1372 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 1373 class WinX86_64ABIInfo : public ABIInfo { 1374 public: 1375 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1376 : ABIInfo(CGT), AVXLevel(AVXLevel), 1377 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 1378 1379 void computeInfo(CGFunctionInfo &FI) const override; 1380 1381 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1382 QualType Ty) const override; 1383 1384 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1385 // FIXME: Assumes vectorcall is in use. 1386 return isX86VectorTypeForVectorCall(getContext(), Ty); 1387 } 1388 1389 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1390 uint64_t NumMembers) const override { 1391 // FIXME: Assumes vectorcall is in use. 1392 return isX86VectorCallAggregateSmallEnough(NumMembers); 1393 } 1394 1395 private: 1396 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 1397 bool IsVectorCall, bool IsRegCall) const; 1398 ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs, 1399 const ABIArgInfo ¤t) const; 1400 1401 X86AVXABILevel AVXLevel; 1402 1403 bool IsMingw64; 1404 }; 1405 1406 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1407 public: 1408 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 1409 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) { 1410 SwiftInfo = 1411 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); 1412 } 1413 1414 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 1415 /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations. 1416 bool markARCOptimizedReturnCallsAsNoTail() const override { return true; } 1417 1418 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1419 return 7; 1420 } 1421 1422 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1423 llvm::Value *Address) const override { 1424 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1425 1426 // 0-15 are the 16 integer registers. 1427 // 16 is %rip. 1428 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1429 return false; 1430 } 1431 1432 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1433 StringRef Constraint, 1434 llvm::Type* Ty) const override { 1435 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1436 } 1437 1438 bool isNoProtoCallVariadic(const CallArgList &args, 1439 const FunctionNoProtoType *fnType) const override { 1440 // The default CC on x86-64 sets %al to the number of SSA 1441 // registers used, and GCC sets this when calling an unprototyped 1442 // function, so we override the default behavior. However, don't do 1443 // that when AVX types are involved: the ABI explicitly states it is 1444 // undefined, and it doesn't work in practice because of how the ABI 1445 // defines varargs anyway. 1446 if (fnType->getCallConv() == CC_C) { 1447 bool HasAVXType = false; 1448 for (CallArgList::const_iterator 1449 it = args.begin(), ie = args.end(); it != ie; ++it) { 1450 if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) { 1451 HasAVXType = true; 1452 break; 1453 } 1454 } 1455 1456 if (!HasAVXType) 1457 return true; 1458 } 1459 1460 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 1461 } 1462 1463 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1464 CodeGen::CodeGenModule &CGM) const override { 1465 if (GV->isDeclaration()) 1466 return; 1467 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1468 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1469 llvm::Function *Fn = cast<llvm::Function>(GV); 1470 Fn->addFnAttr("stackrealign"); 1471 } 1472 1473 addX86InterruptAttrs(FD, GV, CGM); 1474 } 1475 } 1476 1477 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 1478 const FunctionDecl *Caller, 1479 const FunctionDecl *Callee, 1480 const CallArgList &Args) const override; 1481 }; 1482 } // namespace 1483 1484 static void initFeatureMaps(const ASTContext &Ctx, 1485 llvm::StringMap<bool> &CallerMap, 1486 const FunctionDecl *Caller, 1487 llvm::StringMap<bool> &CalleeMap, 1488 const FunctionDecl *Callee) { 1489 if (CalleeMap.empty() && CallerMap.empty()) { 1490 // The caller is potentially nullptr in the case where the call isn't in a 1491 // function. In this case, the getFunctionFeatureMap ensures we just get 1492 // the TU level setting (since it cannot be modified by 'target'.. 1493 Ctx.getFunctionFeatureMap(CallerMap, Caller); 1494 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 1495 } 1496 } 1497 1498 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 1499 SourceLocation CallLoc, 1500 const llvm::StringMap<bool> &CallerMap, 1501 const llvm::StringMap<bool> &CalleeMap, 1502 QualType Ty, StringRef Feature, 1503 bool IsArgument) { 1504 bool CallerHasFeat = CallerMap.lookup(Feature); 1505 bool CalleeHasFeat = CalleeMap.lookup(Feature); 1506 if (!CallerHasFeat && !CalleeHasFeat) 1507 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 1508 << IsArgument << Ty << Feature; 1509 1510 // Mixing calling conventions here is very clearly an error. 1511 if (!CallerHasFeat || !CalleeHasFeat) 1512 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 1513 << IsArgument << Ty << Feature; 1514 1515 // Else, both caller and callee have the required feature, so there is no need 1516 // to diagnose. 1517 return false; 1518 } 1519 1520 static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag, 1521 SourceLocation CallLoc, 1522 const llvm::StringMap<bool> &CallerMap, 1523 const llvm::StringMap<bool> &CalleeMap, 1524 QualType Ty, bool IsArgument) { 1525 bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512"); 1526 bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512"); 1527 1528 // Forbid 512-bit or larger vector pass or return when we disabled ZMM 1529 // instructions. 1530 if (Caller256 || Callee256) 1531 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 1532 << IsArgument << Ty << "evex512"; 1533 1534 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 1535 "avx512f", IsArgument); 1536 } 1537 1538 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 1539 SourceLocation CallLoc, 1540 const llvm::StringMap<bool> &CallerMap, 1541 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 1542 bool IsArgument) { 1543 uint64_t Size = Ctx.getTypeSize(Ty); 1544 if (Size > 256) 1545 return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 1546 IsArgument); 1547 1548 if (Size > 128) 1549 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 1550 IsArgument); 1551 1552 return false; 1553 } 1554 1555 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 1556 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 1557 const FunctionDecl *Callee, const CallArgList &Args) const { 1558 llvm::StringMap<bool> CallerMap; 1559 llvm::StringMap<bool> CalleeMap; 1560 unsigned ArgIndex = 0; 1561 1562 // We need to loop through the actual call arguments rather than the 1563 // function's parameters, in case this variadic. 1564 for (const CallArg &Arg : Args) { 1565 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 1566 // additionally changes how vectors >256 in size are passed. Like GCC, we 1567 // warn when a function is called with an argument where this will change. 1568 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 1569 // the caller and callee features are mismatched. 1570 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 1571 // change its ABI with attribute-target after this call. 1572 if (Arg.getType()->isVectorType() && 1573 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 1574 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 1575 QualType Ty = Arg.getType(); 1576 // The CallArg seems to have desugared the type already, so for clearer 1577 // diagnostics, replace it with the type in the FunctionDecl if possible. 1578 if (ArgIndex < Callee->getNumParams()) 1579 Ty = Callee->getParamDecl(ArgIndex)->getType(); 1580 1581 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 1582 CalleeMap, Ty, /*IsArgument*/ true)) 1583 return; 1584 } 1585 ++ArgIndex; 1586 } 1587 1588 // Check return always, as we don't have a good way of knowing in codegen 1589 // whether this value is used, tail-called, etc. 1590 if (Callee->getReturnType()->isVectorType() && 1591 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 1592 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 1593 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 1594 CalleeMap, Callee->getReturnType(), 1595 /*IsArgument*/ false); 1596 } 1597 } 1598 1599 std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) { 1600 // If the argument does not end in .lib, automatically add the suffix. 1601 // If the argument contains a space, enclose it in quotes. 1602 // This matches the behavior of MSVC. 1603 bool Quote = Lib.contains(' '); 1604 std::string ArgStr = Quote ? "\"" : ""; 1605 ArgStr += Lib; 1606 if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a")) 1607 ArgStr += ".lib"; 1608 ArgStr += Quote ? "\"" : ""; 1609 return ArgStr; 1610 } 1611 1612 namespace { 1613 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 1614 public: 1615 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1616 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 1617 unsigned NumRegisterParameters) 1618 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 1619 Win32StructABI, NumRegisterParameters, false) {} 1620 1621 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1622 CodeGen::CodeGenModule &CGM) const override; 1623 1624 void getDependentLibraryOption(llvm::StringRef Lib, 1625 llvm::SmallString<24> &Opt) const override { 1626 Opt = "/DEFAULTLIB:"; 1627 Opt += qualifyWindowsLibrary(Lib); 1628 } 1629 1630 void getDetectMismatchOption(llvm::StringRef Name, 1631 llvm::StringRef Value, 1632 llvm::SmallString<32> &Opt) const override { 1633 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1634 } 1635 }; 1636 } // namespace 1637 1638 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 1639 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1640 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1641 if (GV->isDeclaration()) 1642 return; 1643 addStackProbeTargetAttributes(D, GV, CGM); 1644 } 1645 1646 namespace { 1647 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 1648 public: 1649 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 1650 X86AVXABILevel AVXLevel) 1651 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) { 1652 SwiftInfo = 1653 std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true); 1654 } 1655 1656 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1657 CodeGen::CodeGenModule &CGM) const override; 1658 1659 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1660 return 7; 1661 } 1662 1663 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1664 llvm::Value *Address) const override { 1665 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 1666 1667 // 0-15 are the 16 integer registers. 1668 // 16 is %rip. 1669 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 1670 return false; 1671 } 1672 1673 void getDependentLibraryOption(llvm::StringRef Lib, 1674 llvm::SmallString<24> &Opt) const override { 1675 Opt = "/DEFAULTLIB:"; 1676 Opt += qualifyWindowsLibrary(Lib); 1677 } 1678 1679 void getDetectMismatchOption(llvm::StringRef Name, 1680 llvm::StringRef Value, 1681 llvm::SmallString<32> &Opt) const override { 1682 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 1683 } 1684 }; 1685 } // namespace 1686 1687 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 1688 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1689 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 1690 if (GV->isDeclaration()) 1691 return; 1692 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1693 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1694 llvm::Function *Fn = cast<llvm::Function>(GV); 1695 Fn->addFnAttr("stackrealign"); 1696 } 1697 1698 addX86InterruptAttrs(FD, GV, CGM); 1699 } 1700 1701 addStackProbeTargetAttributes(D, GV, CGM); 1702 } 1703 1704 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 1705 Class &Hi) const { 1706 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 1707 // 1708 // (a) If one of the classes is Memory, the whole argument is passed in 1709 // memory. 1710 // 1711 // (b) If X87UP is not preceded by X87, the whole argument is passed in 1712 // memory. 1713 // 1714 // (c) If the size of the aggregate exceeds two eightbytes and the first 1715 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 1716 // argument is passed in memory. NOTE: This is necessary to keep the 1717 // ABI working for processors that don't support the __m256 type. 1718 // 1719 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 1720 // 1721 // Some of these are enforced by the merging logic. Others can arise 1722 // only with unions; for example: 1723 // union { _Complex double; unsigned; } 1724 // 1725 // Note that clauses (b) and (c) were added in 0.98. 1726 // 1727 if (Hi == Memory) 1728 Lo = Memory; 1729 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 1730 Lo = Memory; 1731 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 1732 Lo = Memory; 1733 if (Hi == SSEUp && Lo != SSE) 1734 Hi = SSE; 1735 } 1736 1737 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 1738 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 1739 // classified recursively so that always two fields are 1740 // considered. The resulting class is calculated according to 1741 // the classes of the fields in the eightbyte: 1742 // 1743 // (a) If both classes are equal, this is the resulting class. 1744 // 1745 // (b) If one of the classes is NO_CLASS, the resulting class is 1746 // the other class. 1747 // 1748 // (c) If one of the classes is MEMORY, the result is the MEMORY 1749 // class. 1750 // 1751 // (d) If one of the classes is INTEGER, the result is the 1752 // INTEGER. 1753 // 1754 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 1755 // MEMORY is used as class. 1756 // 1757 // (f) Otherwise class SSE is used. 1758 1759 // Accum should never be memory (we should have returned) or 1760 // ComplexX87 (because this cannot be passed in a structure). 1761 assert((Accum != Memory && Accum != ComplexX87) && 1762 "Invalid accumulated classification during merge."); 1763 if (Accum == Field || Field == NoClass) 1764 return Accum; 1765 if (Field == Memory) 1766 return Memory; 1767 if (Accum == NoClass) 1768 return Field; 1769 if (Accum == Integer || Field == Integer) 1770 return Integer; 1771 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 1772 Accum == X87 || Accum == X87Up) 1773 return Memory; 1774 return SSE; 1775 } 1776 1777 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo, 1778 Class &Hi, bool isNamedArg, bool IsRegCall) const { 1779 // FIXME: This code can be simplified by introducing a simple value class for 1780 // Class pairs with appropriate constructor methods for the various 1781 // situations. 1782 1783 // FIXME: Some of the split computations are wrong; unaligned vectors 1784 // shouldn't be passed in registers for example, so there is no chance they 1785 // can straddle an eightbyte. Verify & simplify. 1786 1787 Lo = Hi = NoClass; 1788 1789 Class &Current = OffsetBase < 64 ? Lo : Hi; 1790 Current = Memory; 1791 1792 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1793 BuiltinType::Kind k = BT->getKind(); 1794 1795 if (k == BuiltinType::Void) { 1796 Current = NoClass; 1797 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 1798 Lo = Integer; 1799 Hi = Integer; 1800 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 1801 Current = Integer; 1802 } else if (k == BuiltinType::Float || k == BuiltinType::Double || 1803 k == BuiltinType::Float16 || k == BuiltinType::BFloat16) { 1804 Current = SSE; 1805 } else if (k == BuiltinType::Float128) { 1806 Lo = SSE; 1807 Hi = SSEUp; 1808 } else if (k == BuiltinType::LongDouble) { 1809 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 1810 if (LDF == &llvm::APFloat::IEEEquad()) { 1811 Lo = SSE; 1812 Hi = SSEUp; 1813 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 1814 Lo = X87; 1815 Hi = X87Up; 1816 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 1817 Current = SSE; 1818 } else 1819 llvm_unreachable("unexpected long double representation!"); 1820 } 1821 // FIXME: _Decimal32 and _Decimal64 are SSE. 1822 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 1823 return; 1824 } 1825 1826 if (const EnumType *ET = Ty->getAs<EnumType>()) { 1827 // Classify the underlying integer type. 1828 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 1829 return; 1830 } 1831 1832 if (Ty->hasPointerRepresentation()) { 1833 Current = Integer; 1834 return; 1835 } 1836 1837 if (Ty->isMemberPointerType()) { 1838 if (Ty->isMemberFunctionPointerType()) { 1839 if (Has64BitPointers) { 1840 // If Has64BitPointers, this is an {i64, i64}, so classify both 1841 // Lo and Hi now. 1842 Lo = Hi = Integer; 1843 } else { 1844 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 1845 // straddles an eightbyte boundary, Hi should be classified as well. 1846 uint64_t EB_FuncPtr = (OffsetBase) / 64; 1847 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 1848 if (EB_FuncPtr != EB_ThisAdj) { 1849 Lo = Hi = Integer; 1850 } else { 1851 Current = Integer; 1852 } 1853 } 1854 } else { 1855 Current = Integer; 1856 } 1857 return; 1858 } 1859 1860 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1861 uint64_t Size = getContext().getTypeSize(VT); 1862 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 1863 // gcc passes the following as integer: 1864 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 1865 // 2 bytes - <2 x char>, <1 x short> 1866 // 1 byte - <1 x char> 1867 Current = Integer; 1868 1869 // If this type crosses an eightbyte boundary, it should be 1870 // split. 1871 uint64_t EB_Lo = (OffsetBase) / 64; 1872 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 1873 if (EB_Lo != EB_Hi) 1874 Hi = Lo; 1875 } else if (Size == 64) { 1876 QualType ElementType = VT->getElementType(); 1877 1878 // gcc passes <1 x double> in memory. :( 1879 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 1880 return; 1881 1882 // gcc passes <1 x long long> as SSE but clang used to unconditionally 1883 // pass them as integer. For platforms where clang is the de facto 1884 // platform compiler, we must continue to use integer. 1885 if (!classifyIntegerMMXAsSSE() && 1886 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 1887 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 1888 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 1889 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 1890 Current = Integer; 1891 else 1892 Current = SSE; 1893 1894 // If this type crosses an eightbyte boundary, it should be 1895 // split. 1896 if (OffsetBase && OffsetBase != 64) 1897 Hi = Lo; 1898 } else if (Size == 128 || 1899 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 1900 QualType ElementType = VT->getElementType(); 1901 1902 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 1903 if (passInt128VectorsInMem() && Size != 128 && 1904 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 1905 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 1906 return; 1907 1908 // Arguments of 256-bits are split into four eightbyte chunks. The 1909 // least significant one belongs to class SSE and all the others to class 1910 // SSEUP. The original Lo and Hi design considers that types can't be 1911 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 1912 // This design isn't correct for 256-bits, but since there're no cases 1913 // where the upper parts would need to be inspected, avoid adding 1914 // complexity and just consider Hi to match the 64-256 part. 1915 // 1916 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 1917 // registers if they are "named", i.e. not part of the "..." of a 1918 // variadic function. 1919 // 1920 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 1921 // split into eight eightbyte chunks, one SSE and seven SSEUP. 1922 Lo = SSE; 1923 Hi = SSEUp; 1924 } 1925 return; 1926 } 1927 1928 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 1929 QualType ET = getContext().getCanonicalType(CT->getElementType()); 1930 1931 uint64_t Size = getContext().getTypeSize(Ty); 1932 if (ET->isIntegralOrEnumerationType()) { 1933 if (Size <= 64) 1934 Current = Integer; 1935 else if (Size <= 128) 1936 Lo = Hi = Integer; 1937 } else if (ET->isFloat16Type() || ET == getContext().FloatTy || 1938 ET->isBFloat16Type()) { 1939 Current = SSE; 1940 } else if (ET == getContext().DoubleTy) { 1941 Lo = Hi = SSE; 1942 } else if (ET == getContext().LongDoubleTy) { 1943 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 1944 if (LDF == &llvm::APFloat::IEEEquad()) 1945 Current = Memory; 1946 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 1947 Current = ComplexX87; 1948 else if (LDF == &llvm::APFloat::IEEEdouble()) 1949 Lo = Hi = SSE; 1950 else 1951 llvm_unreachable("unexpected long double representation!"); 1952 } 1953 1954 // If this complex type crosses an eightbyte boundary then it 1955 // should be split. 1956 uint64_t EB_Real = (OffsetBase) / 64; 1957 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 1958 if (Hi == NoClass && EB_Real != EB_Imag) 1959 Hi = Lo; 1960 1961 return; 1962 } 1963 1964 if (const auto *EITy = Ty->getAs<BitIntType>()) { 1965 if (EITy->getNumBits() <= 64) 1966 Current = Integer; 1967 else if (EITy->getNumBits() <= 128) 1968 Lo = Hi = Integer; 1969 // Larger values need to get passed in memory. 1970 return; 1971 } 1972 1973 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 1974 // Arrays are treated like structures. 1975 1976 uint64_t Size = getContext().getTypeSize(Ty); 1977 1978 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 1979 // than eight eightbytes, ..., it has class MEMORY. 1980 // regcall ABI doesn't have limitation to an object. The only limitation 1981 // is the free registers, which will be checked in computeInfo. 1982 if (!IsRegCall && Size > 512) 1983 return; 1984 1985 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 1986 // fields, it has class MEMORY. 1987 // 1988 // Only need to check alignment of array base. 1989 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 1990 return; 1991 1992 // Otherwise implement simplified merge. We could be smarter about 1993 // this, but it isn't worth it and would be harder to verify. 1994 Current = NoClass; 1995 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 1996 uint64_t ArraySize = AT->getSize().getZExtValue(); 1997 1998 // The only case a 256-bit wide vector could be used is when the array 1999 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2000 // to work for sizes wider than 128, early check and fallback to memory. 2001 // 2002 if (Size > 128 && 2003 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2004 return; 2005 2006 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2007 Class FieldLo, FieldHi; 2008 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2009 Lo = merge(Lo, FieldLo); 2010 Hi = merge(Hi, FieldHi); 2011 if (Lo == Memory || Hi == Memory) 2012 break; 2013 } 2014 2015 postMerge(Size, Lo, Hi); 2016 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2017 return; 2018 } 2019 2020 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2021 uint64_t Size = getContext().getTypeSize(Ty); 2022 2023 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2024 // than eight eightbytes, ..., it has class MEMORY. 2025 if (Size > 512) 2026 return; 2027 2028 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2029 // copy constructor or a non-trivial destructor, it is passed by invisible 2030 // reference. 2031 if (getRecordArgABI(RT, getCXXABI())) 2032 return; 2033 2034 const RecordDecl *RD = RT->getDecl(); 2035 2036 // Assume variable sized types are passed in memory. 2037 if (RD->hasFlexibleArrayMember()) 2038 return; 2039 2040 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2041 2042 // Reset Lo class, this will be recomputed. 2043 Current = NoClass; 2044 2045 // If this is a C++ record, classify the bases first. 2046 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2047 for (const auto &I : CXXRD->bases()) { 2048 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2049 "Unexpected base class!"); 2050 const auto *Base = 2051 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2052 2053 // Classify this field. 2054 // 2055 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2056 // single eightbyte, each is classified separately. Each eightbyte gets 2057 // initialized to class NO_CLASS. 2058 Class FieldLo, FieldHi; 2059 uint64_t Offset = 2060 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2061 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2062 Lo = merge(Lo, FieldLo); 2063 Hi = merge(Hi, FieldHi); 2064 if (Lo == Memory || Hi == Memory) { 2065 postMerge(Size, Lo, Hi); 2066 return; 2067 } 2068 } 2069 } 2070 2071 // Classify the fields one at a time, merging the results. 2072 unsigned idx = 0; 2073 bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <= 2074 LangOptions::ClangABI::Ver11 || 2075 getContext().getTargetInfo().getTriple().isPS(); 2076 bool IsUnion = RT->isUnionType() && !UseClang11Compat; 2077 2078 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2079 i != e; ++i, ++idx) { 2080 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2081 bool BitField = i->isBitField(); 2082 2083 // Ignore padding bit-fields. 2084 if (BitField && i->isUnnamedBitfield()) 2085 continue; 2086 2087 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2088 // eight eightbytes, or it contains unaligned fields, it has class MEMORY. 2089 // 2090 // The only case a 256-bit or a 512-bit wide vector could be used is when 2091 // the struct contains a single 256-bit or 512-bit element. Early check 2092 // and fallback to memory. 2093 // 2094 // FIXME: Extended the Lo and Hi logic properly to work for size wider 2095 // than 128. 2096 if (Size > 128 && 2097 ((!IsUnion && Size != getContext().getTypeSize(i->getType())) || 2098 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2099 Lo = Memory; 2100 postMerge(Size, Lo, Hi); 2101 return; 2102 } 2103 // Note, skip this test for bit-fields, see below. 2104 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2105 Lo = Memory; 2106 postMerge(Size, Lo, Hi); 2107 return; 2108 } 2109 2110 // Classify this field. 2111 // 2112 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2113 // exceeds a single eightbyte, each is classified 2114 // separately. Each eightbyte gets initialized to class 2115 // NO_CLASS. 2116 Class FieldLo, FieldHi; 2117 2118 // Bit-fields require special handling, they do not force the 2119 // structure to be passed in memory even if unaligned, and 2120 // therefore they can straddle an eightbyte. 2121 if (BitField) { 2122 assert(!i->isUnnamedBitfield()); 2123 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2124 uint64_t Size = i->getBitWidthValue(getContext()); 2125 2126 uint64_t EB_Lo = Offset / 64; 2127 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2128 2129 if (EB_Lo) { 2130 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2131 FieldLo = NoClass; 2132 FieldHi = Integer; 2133 } else { 2134 FieldLo = Integer; 2135 FieldHi = EB_Hi ? Integer : NoClass; 2136 } 2137 } else 2138 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2139 Lo = merge(Lo, FieldLo); 2140 Hi = merge(Hi, FieldHi); 2141 if (Lo == Memory || Hi == Memory) 2142 break; 2143 } 2144 2145 postMerge(Size, Lo, Hi); 2146 } 2147 } 2148 2149 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2150 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2151 // place naturally. 2152 if (!isAggregateTypeForABI(Ty)) { 2153 // Treat an enum type as its underlying type. 2154 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2155 Ty = EnumTy->getDecl()->getIntegerType(); 2156 2157 if (Ty->isBitIntType()) 2158 return getNaturalAlignIndirect(Ty); 2159 2160 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 2161 : ABIArgInfo::getDirect()); 2162 } 2163 2164 return getNaturalAlignIndirect(Ty); 2165 } 2166 2167 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2168 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2169 uint64_t Size = getContext().getTypeSize(VecTy); 2170 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2171 if (Size <= 64 || Size > LargestVector) 2172 return true; 2173 QualType EltTy = VecTy->getElementType(); 2174 if (passInt128VectorsInMem() && 2175 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 2176 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 2177 return true; 2178 } 2179 2180 return false; 2181 } 2182 2183 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2184 unsigned freeIntRegs) const { 2185 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2186 // place naturally. 2187 // 2188 // This assumption is optimistic, as there could be free registers available 2189 // when we need to pass this argument in memory, and LLVM could try to pass 2190 // the argument in the free register. This does not seem to happen currently, 2191 // but this code would be much safer if we could mark the argument with 2192 // 'onstack'. See PR12193. 2193 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 2194 !Ty->isBitIntType()) { 2195 // Treat an enum type as its underlying type. 2196 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2197 Ty = EnumTy->getDecl()->getIntegerType(); 2198 2199 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 2200 : ABIArgInfo::getDirect()); 2201 } 2202 2203 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2204 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2205 2206 // Compute the byval alignment. We specify the alignment of the byval in all 2207 // cases so that the mid-level optimizer knows the alignment of the byval. 2208 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2209 2210 // Attempt to avoid passing indirect results using byval when possible. This 2211 // is important for good codegen. 2212 // 2213 // We do this by coercing the value into a scalar type which the backend can 2214 // handle naturally (i.e., without using byval). 2215 // 2216 // For simplicity, we currently only do this when we have exhausted all of the 2217 // free integer registers. Doing this when there are free integer registers 2218 // would require more care, as we would have to ensure that the coerced value 2219 // did not claim the unused register. That would require either reording the 2220 // arguments to the function (so that any subsequent inreg values came first), 2221 // or only doing this optimization when there were no following arguments that 2222 // might be inreg. 2223 // 2224 // We currently expect it to be rare (particularly in well written code) for 2225 // arguments to be passed on the stack when there are still free integer 2226 // registers available (this would typically imply large structs being passed 2227 // by value), so this seems like a fair tradeoff for now. 2228 // 2229 // We can revisit this if the backend grows support for 'onstack' parameter 2230 // attributes. See PR12193. 2231 if (freeIntRegs == 0) { 2232 uint64_t Size = getContext().getTypeSize(Ty); 2233 2234 // If this type fits in an eightbyte, coerce it into the matching integral 2235 // type, which will end up on the stack (with alignment 8). 2236 if (Align == 8 && Size <= 64) 2237 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2238 Size)); 2239 } 2240 2241 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2242 } 2243 2244 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2245 /// register. Pick an LLVM IR type that will be passed as a vector register. 2246 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2247 // Wrapper structs/arrays that only contain vectors are passed just like 2248 // vectors; strip them off if present. 2249 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2250 Ty = QualType(InnerTy, 0); 2251 2252 llvm::Type *IRType = CGT.ConvertType(Ty); 2253 if (isa<llvm::VectorType>(IRType)) { 2254 // Don't pass vXi128 vectors in their native type, the backend can't 2255 // legalize them. 2256 if (passInt128VectorsInMem() && 2257 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 2258 // Use a vXi64 vector. 2259 uint64_t Size = getContext().getTypeSize(Ty); 2260 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2261 Size / 64); 2262 } 2263 2264 return IRType; 2265 } 2266 2267 if (IRType->getTypeID() == llvm::Type::FP128TyID) 2268 return IRType; 2269 2270 // We couldn't find the preferred IR vector type for 'Ty'. 2271 uint64_t Size = getContext().getTypeSize(Ty); 2272 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 2273 2274 2275 // Return a LLVM IR vector type based on the size of 'Ty'. 2276 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 2277 Size / 64); 2278 } 2279 2280 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 2281 /// is known to either be off the end of the specified type or being in 2282 /// alignment padding. The user type specified is known to be at most 128 bits 2283 /// in size, and have passed through X86_64ABIInfo::classify with a successful 2284 /// classification that put one of the two halves in the INTEGER class. 2285 /// 2286 /// It is conservatively correct to return false. 2287 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 2288 unsigned EndBit, ASTContext &Context) { 2289 // If the bytes being queried are off the end of the type, there is no user 2290 // data hiding here. This handles analysis of builtins, vectors and other 2291 // types that don't contain interesting padding. 2292 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 2293 if (TySize <= StartBit) 2294 return true; 2295 2296 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 2297 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 2298 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 2299 2300 // Check each element to see if the element overlaps with the queried range. 2301 for (unsigned i = 0; i != NumElts; ++i) { 2302 // If the element is after the span we care about, then we're done.. 2303 unsigned EltOffset = i*EltSize; 2304 if (EltOffset >= EndBit) break; 2305 2306 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 2307 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 2308 EndBit-EltOffset, Context)) 2309 return false; 2310 } 2311 // If it overlaps no elements, then it is safe to process as padding. 2312 return true; 2313 } 2314 2315 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2316 const RecordDecl *RD = RT->getDecl(); 2317 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 2318 2319 // If this is a C++ record, check the bases first. 2320 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2321 for (const auto &I : CXXRD->bases()) { 2322 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2323 "Unexpected base class!"); 2324 const auto *Base = 2325 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2326 2327 // If the base is after the span we care about, ignore it. 2328 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 2329 if (BaseOffset >= EndBit) continue; 2330 2331 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 2332 if (!BitsContainNoUserData(I.getType(), BaseStart, 2333 EndBit-BaseOffset, Context)) 2334 return false; 2335 } 2336 } 2337 2338 // Verify that no field has data that overlaps the region of interest. Yes 2339 // this could be sped up a lot by being smarter about queried fields, 2340 // however we're only looking at structs up to 16 bytes, so we don't care 2341 // much. 2342 unsigned idx = 0; 2343 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2344 i != e; ++i, ++idx) { 2345 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 2346 2347 // If we found a field after the region we care about, then we're done. 2348 if (FieldOffset >= EndBit) break; 2349 2350 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 2351 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 2352 Context)) 2353 return false; 2354 } 2355 2356 // If nothing in this record overlapped the area of interest, then we're 2357 // clean. 2358 return true; 2359 } 2360 2361 return false; 2362 } 2363 2364 /// getFPTypeAtOffset - Return a floating point type at the specified offset. 2365 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2366 const llvm::DataLayout &TD) { 2367 if (IROffset == 0 && IRType->isFloatingPointTy()) 2368 return IRType; 2369 2370 // If this is a struct, recurse into the field at the specified offset. 2371 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2372 if (!STy->getNumContainedTypes()) 2373 return nullptr; 2374 2375 const llvm::StructLayout *SL = TD.getStructLayout(STy); 2376 unsigned Elt = SL->getElementContainingOffset(IROffset); 2377 IROffset -= SL->getElementOffset(Elt); 2378 return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD); 2379 } 2380 2381 // If this is an array, recurse into the field at the specified offset. 2382 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2383 llvm::Type *EltTy = ATy->getElementType(); 2384 unsigned EltSize = TD.getTypeAllocSize(EltTy); 2385 IROffset -= IROffset / EltSize * EltSize; 2386 return getFPTypeAtOffset(EltTy, IROffset, TD); 2387 } 2388 2389 return nullptr; 2390 } 2391 2392 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 2393 /// low 8 bytes of an XMM register, corresponding to the SSE class. 2394 llvm::Type *X86_64ABIInfo:: 2395 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2396 QualType SourceTy, unsigned SourceOffset) const { 2397 const llvm::DataLayout &TD = getDataLayout(); 2398 unsigned SourceSize = 2399 (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset; 2400 llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD); 2401 if (!T0 || T0->isDoubleTy()) 2402 return llvm::Type::getDoubleTy(getVMContext()); 2403 2404 // Get the adjacent FP type. 2405 llvm::Type *T1 = nullptr; 2406 unsigned T0Size = TD.getTypeAllocSize(T0); 2407 if (SourceSize > T0Size) 2408 T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD); 2409 if (T1 == nullptr) { 2410 // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due 2411 // to its alignment. 2412 if (T0->is16bitFPTy() && SourceSize > 4) 2413 T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 2414 // If we can't get a second FP type, return a simple half or float. 2415 // avx512fp16-abi.c:pr51813_2 shows it works to return float for 2416 // {float, i8} too. 2417 if (T1 == nullptr) 2418 return T0; 2419 } 2420 2421 if (T0->isFloatTy() && T1->isFloatTy()) 2422 return llvm::FixedVectorType::get(T0, 2); 2423 2424 if (T0->is16bitFPTy() && T1->is16bitFPTy()) { 2425 llvm::Type *T2 = nullptr; 2426 if (SourceSize > 4) 2427 T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD); 2428 if (T2 == nullptr) 2429 return llvm::FixedVectorType::get(T0, 2); 2430 return llvm::FixedVectorType::get(T0, 4); 2431 } 2432 2433 if (T0->is16bitFPTy() || T1->is16bitFPTy()) 2434 return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4); 2435 2436 return llvm::Type::getDoubleTy(getVMContext()); 2437 } 2438 2439 2440 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 2441 /// an 8-byte GPR. This means that we either have a scalar or we are talking 2442 /// about the high or low part of an up-to-16-byte struct. This routine picks 2443 /// the best LLVM IR type to represent this, which may be i64 or may be anything 2444 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 2445 /// etc). 2446 /// 2447 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 2448 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 2449 /// the 8-byte value references. PrefType may be null. 2450 /// 2451 /// SourceTy is the source-level type for the entire argument. SourceOffset is 2452 /// an offset into this that we're processing (which is always either 0 or 8). 2453 /// 2454 llvm::Type *X86_64ABIInfo:: 2455 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 2456 QualType SourceTy, unsigned SourceOffset) const { 2457 // If we're dealing with an un-offset LLVM IR type, then it means that we're 2458 // returning an 8-byte unit starting with it. See if we can safely use it. 2459 if (IROffset == 0) { 2460 // Pointers and int64's always fill the 8-byte unit. 2461 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 2462 IRType->isIntegerTy(64)) 2463 return IRType; 2464 2465 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 2466 // goodness in the source type is just tail padding. This is allowed to 2467 // kick in for struct {double,int} on the int, but not on 2468 // struct{double,int,int} because we wouldn't return the second int. We 2469 // have to do this analysis on the source type because we can't depend on 2470 // unions being lowered a specific way etc. 2471 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 2472 IRType->isIntegerTy(32) || 2473 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 2474 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 2475 cast<llvm::IntegerType>(IRType)->getBitWidth(); 2476 2477 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 2478 SourceOffset*8+64, getContext())) 2479 return IRType; 2480 } 2481 } 2482 2483 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 2484 // If this is a struct, recurse into the field at the specified offset. 2485 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 2486 if (IROffset < SL->getSizeInBytes()) { 2487 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 2488 IROffset -= SL->getElementOffset(FieldIdx); 2489 2490 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 2491 SourceTy, SourceOffset); 2492 } 2493 } 2494 2495 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 2496 llvm::Type *EltTy = ATy->getElementType(); 2497 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 2498 unsigned EltOffset = IROffset/EltSize*EltSize; 2499 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 2500 SourceOffset); 2501 } 2502 2503 // Okay, we don't have any better idea of what to pass, so we pass this in an 2504 // integer register that isn't too big to fit the rest of the struct. 2505 unsigned TySizeInBytes = 2506 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 2507 2508 assert(TySizeInBytes != SourceOffset && "Empty field?"); 2509 2510 // It is always safe to classify this as an integer type up to i64 that 2511 // isn't larger than the structure. 2512 return llvm::IntegerType::get(getVMContext(), 2513 std::min(TySizeInBytes-SourceOffset, 8U)*8); 2514 } 2515 2516 2517 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 2518 /// be used as elements of a two register pair to pass or return, return a 2519 /// first class aggregate to represent them. For example, if the low part of 2520 /// a by-value argument should be passed as i32* and the high part as float, 2521 /// return {i32*, float}. 2522 static llvm::Type * 2523 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 2524 const llvm::DataLayout &TD) { 2525 // In order to correctly satisfy the ABI, we need to the high part to start 2526 // at offset 8. If the high and low parts we inferred are both 4-byte types 2527 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 2528 // the second element at offset 8. Check for this: 2529 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 2530 llvm::Align HiAlign = TD.getABITypeAlign(Hi); 2531 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 2532 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 2533 2534 // To handle this, we have to increase the size of the low part so that the 2535 // second element will start at an 8 byte offset. We can't increase the size 2536 // of the second element because it might make us access off the end of the 2537 // struct. 2538 if (HiStart != 8) { 2539 // There are usually two sorts of types the ABI generation code can produce 2540 // for the low part of a pair that aren't 8 bytes in size: half, float or 2541 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 2542 // NaCl). 2543 // Promote these to a larger type. 2544 if (Lo->isHalfTy() || Lo->isFloatTy()) 2545 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 2546 else { 2547 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 2548 && "Invalid/unknown lo type"); 2549 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 2550 } 2551 } 2552 2553 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 2554 2555 // Verify that the second element is at an 8-byte offset. 2556 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 2557 "Invalid x86-64 argument pair!"); 2558 return Result; 2559 } 2560 2561 ABIArgInfo X86_64ABIInfo:: 2562 classifyReturnType(QualType RetTy) const { 2563 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 2564 // classification algorithm. 2565 X86_64ABIInfo::Class Lo, Hi; 2566 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 2567 2568 // Check some invariants. 2569 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2570 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2571 2572 llvm::Type *ResType = nullptr; 2573 switch (Lo) { 2574 case NoClass: 2575 if (Hi == NoClass) 2576 return ABIArgInfo::getIgnore(); 2577 // If the low part is just padding, it takes no register, leave ResType 2578 // null. 2579 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2580 "Unknown missing lo part"); 2581 break; 2582 2583 case SSEUp: 2584 case X87Up: 2585 llvm_unreachable("Invalid classification for lo word."); 2586 2587 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 2588 // hidden argument. 2589 case Memory: 2590 return getIndirectReturnResult(RetTy); 2591 2592 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 2593 // available register of the sequence %rax, %rdx is used. 2594 case Integer: 2595 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2596 2597 // If we have a sign or zero extended integer, make sure to return Extend 2598 // so that the parameter gets the right LLVM IR attributes. 2599 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2600 // Treat an enum type as its underlying type. 2601 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 2602 RetTy = EnumTy->getDecl()->getIntegerType(); 2603 2604 if (RetTy->isIntegralOrEnumerationType() && 2605 isPromotableIntegerTypeForABI(RetTy)) 2606 return ABIArgInfo::getExtend(RetTy); 2607 } 2608 break; 2609 2610 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 2611 // available SSE register of the sequence %xmm0, %xmm1 is used. 2612 case SSE: 2613 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 2614 break; 2615 2616 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 2617 // returned on the X87 stack in %st0 as 80-bit x87 number. 2618 case X87: 2619 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 2620 break; 2621 2622 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 2623 // part of the value is returned in %st0 and the imaginary part in 2624 // %st1. 2625 case ComplexX87: 2626 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 2627 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 2628 llvm::Type::getX86_FP80Ty(getVMContext())); 2629 break; 2630 } 2631 2632 llvm::Type *HighPart = nullptr; 2633 switch (Hi) { 2634 // Memory was handled previously and X87 should 2635 // never occur as a hi class. 2636 case Memory: 2637 case X87: 2638 llvm_unreachable("Invalid classification for hi word."); 2639 2640 case ComplexX87: // Previously handled. 2641 case NoClass: 2642 break; 2643 2644 case Integer: 2645 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2646 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2647 return ABIArgInfo::getDirect(HighPart, 8); 2648 break; 2649 case SSE: 2650 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2651 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2652 return ABIArgInfo::getDirect(HighPart, 8); 2653 break; 2654 2655 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 2656 // is passed in the next available eightbyte chunk if the last used 2657 // vector register. 2658 // 2659 // SSEUP should always be preceded by SSE, just widen. 2660 case SSEUp: 2661 assert(Lo == SSE && "Unexpected SSEUp classification."); 2662 ResType = GetByteVectorType(RetTy); 2663 break; 2664 2665 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 2666 // returned together with the previous X87 value in %st0. 2667 case X87Up: 2668 // If X87Up is preceded by X87, we don't need to do 2669 // anything. However, in some cases with unions it may not be 2670 // preceded by X87. In such situations we follow gcc and pass the 2671 // extra bits in an SSE reg. 2672 if (Lo != X87) { 2673 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 2674 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 2675 return ABIArgInfo::getDirect(HighPart, 8); 2676 } 2677 break; 2678 } 2679 2680 // If a high part was specified, merge it together with the low part. It is 2681 // known to pass in the high eightbyte of the result. We do this by forming a 2682 // first class struct aggregate with the high and low part: {low, high} 2683 if (HighPart) 2684 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2685 2686 return ABIArgInfo::getDirect(ResType); 2687 } 2688 2689 ABIArgInfo 2690 X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2691 unsigned &neededInt, unsigned &neededSSE, 2692 bool isNamedArg, bool IsRegCall) const { 2693 Ty = useFirstFieldIfTransparentUnion(Ty); 2694 2695 X86_64ABIInfo::Class Lo, Hi; 2696 classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall); 2697 2698 // Check some invariants. 2699 // FIXME: Enforce these by construction. 2700 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 2701 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 2702 2703 neededInt = 0; 2704 neededSSE = 0; 2705 llvm::Type *ResType = nullptr; 2706 switch (Lo) { 2707 case NoClass: 2708 if (Hi == NoClass) 2709 return ABIArgInfo::getIgnore(); 2710 // If the low part is just padding, it takes no register, leave ResType 2711 // null. 2712 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 2713 "Unknown missing lo part"); 2714 break; 2715 2716 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 2717 // on the stack. 2718 case Memory: 2719 2720 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 2721 // COMPLEX_X87, it is passed in memory. 2722 case X87: 2723 case ComplexX87: 2724 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 2725 ++neededInt; 2726 return getIndirectResult(Ty, freeIntRegs); 2727 2728 case SSEUp: 2729 case X87Up: 2730 llvm_unreachable("Invalid classification for lo word."); 2731 2732 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 2733 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 2734 // and %r9 is used. 2735 case Integer: 2736 ++neededInt; 2737 2738 // Pick an 8-byte type based on the preferred type. 2739 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 2740 2741 // If we have a sign or zero extended integer, make sure to return Extend 2742 // so that the parameter gets the right LLVM IR attributes. 2743 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 2744 // Treat an enum type as its underlying type. 2745 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2746 Ty = EnumTy->getDecl()->getIntegerType(); 2747 2748 if (Ty->isIntegralOrEnumerationType() && 2749 isPromotableIntegerTypeForABI(Ty)) 2750 return ABIArgInfo::getExtend(Ty); 2751 } 2752 2753 break; 2754 2755 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 2756 // available SSE register is used, the registers are taken in the 2757 // order from %xmm0 to %xmm7. 2758 case SSE: { 2759 llvm::Type *IRType = CGT.ConvertType(Ty); 2760 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 2761 ++neededSSE; 2762 break; 2763 } 2764 } 2765 2766 llvm::Type *HighPart = nullptr; 2767 switch (Hi) { 2768 // Memory was handled previously, ComplexX87 and X87 should 2769 // never occur as hi classes, and X87Up must be preceded by X87, 2770 // which is passed in memory. 2771 case Memory: 2772 case X87: 2773 case ComplexX87: 2774 llvm_unreachable("Invalid classification for hi word."); 2775 2776 case NoClass: break; 2777 2778 case Integer: 2779 ++neededInt; 2780 // Pick an 8-byte type based on the preferred type. 2781 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2782 2783 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2784 return ABIArgInfo::getDirect(HighPart, 8); 2785 break; 2786 2787 // X87Up generally doesn't occur here (long double is passed in 2788 // memory), except in situations involving unions. 2789 case X87Up: 2790 case SSE: 2791 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 2792 2793 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 2794 return ABIArgInfo::getDirect(HighPart, 8); 2795 2796 ++neededSSE; 2797 break; 2798 2799 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 2800 // eightbyte is passed in the upper half of the last used SSE 2801 // register. This only happens when 128-bit vectors are passed. 2802 case SSEUp: 2803 assert(Lo == SSE && "Unexpected SSEUp classification"); 2804 ResType = GetByteVectorType(Ty); 2805 break; 2806 } 2807 2808 // If a high part was specified, merge it together with the low part. It is 2809 // known to pass in the high eightbyte of the result. We do this by forming a 2810 // first class struct aggregate with the high and low part: {low, high} 2811 if (HighPart) 2812 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 2813 2814 return ABIArgInfo::getDirect(ResType); 2815 } 2816 2817 ABIArgInfo 2818 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2819 unsigned &NeededSSE, 2820 unsigned &MaxVectorWidth) const { 2821 auto RT = Ty->getAs<RecordType>(); 2822 assert(RT && "classifyRegCallStructType only valid with struct types"); 2823 2824 if (RT->getDecl()->hasFlexibleArrayMember()) 2825 return getIndirectReturnResult(Ty); 2826 2827 // Sum up bases 2828 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 2829 if (CXXRD->isDynamicClass()) { 2830 NeededInt = NeededSSE = 0; 2831 return getIndirectReturnResult(Ty); 2832 } 2833 2834 for (const auto &I : CXXRD->bases()) 2835 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE, 2836 MaxVectorWidth) 2837 .isIndirect()) { 2838 NeededInt = NeededSSE = 0; 2839 return getIndirectReturnResult(Ty); 2840 } 2841 } 2842 2843 // Sum up members 2844 for (const auto *FD : RT->getDecl()->fields()) { 2845 QualType MTy = FD->getType(); 2846 if (MTy->isRecordType() && !MTy->isUnionType()) { 2847 if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE, 2848 MaxVectorWidth) 2849 .isIndirect()) { 2850 NeededInt = NeededSSE = 0; 2851 return getIndirectReturnResult(Ty); 2852 } 2853 } else { 2854 unsigned LocalNeededInt, LocalNeededSSE; 2855 if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE, 2856 true, true) 2857 .isIndirect()) { 2858 NeededInt = NeededSSE = 0; 2859 return getIndirectReturnResult(Ty); 2860 } 2861 if (const auto *AT = getContext().getAsConstantArrayType(MTy)) 2862 MTy = AT->getElementType(); 2863 if (const auto *VT = MTy->getAs<VectorType>()) 2864 if (getContext().getTypeSize(VT) > MaxVectorWidth) 2865 MaxVectorWidth = getContext().getTypeSize(VT); 2866 NeededInt += LocalNeededInt; 2867 NeededSSE += LocalNeededSSE; 2868 } 2869 } 2870 2871 return ABIArgInfo::getDirect(); 2872 } 2873 2874 ABIArgInfo 2875 X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2876 unsigned &NeededSSE, 2877 unsigned &MaxVectorWidth) const { 2878 2879 NeededInt = 0; 2880 NeededSSE = 0; 2881 MaxVectorWidth = 0; 2882 2883 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE, 2884 MaxVectorWidth); 2885 } 2886 2887 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 2888 2889 const unsigned CallingConv = FI.getCallingConvention(); 2890 // It is possible to force Win64 calling convention on any x86_64 target by 2891 // using __attribute__((ms_abi)). In such case to correctly emit Win64 2892 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 2893 if (CallingConv == llvm::CallingConv::Win64) { 2894 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 2895 Win64ABIInfo.computeInfo(FI); 2896 return; 2897 } 2898 2899 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 2900 2901 // Keep track of the number of assigned registers. 2902 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 2903 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 2904 unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0; 2905 2906 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 2907 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 2908 !FI.getReturnType()->getTypePtr()->isUnionType()) { 2909 FI.getReturnInfo() = classifyRegCallStructType( 2910 FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth); 2911 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 2912 FreeIntRegs -= NeededInt; 2913 FreeSSERegs -= NeededSSE; 2914 } else { 2915 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 2916 } 2917 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 2918 getContext().getCanonicalType(FI.getReturnType() 2919 ->getAs<ComplexType>() 2920 ->getElementType()) == 2921 getContext().LongDoubleTy) 2922 // Complex Long Double Type is passed in Memory when Regcall 2923 // calling convention is used. 2924 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 2925 else 2926 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 2927 } 2928 2929 // If the return value is indirect, then the hidden argument is consuming one 2930 // integer register. 2931 if (FI.getReturnInfo().isIndirect()) 2932 --FreeIntRegs; 2933 else if (NeededSSE && MaxVectorWidth > 0) 2934 FI.setMaxVectorWidth(MaxVectorWidth); 2935 2936 // The chain argument effectively gives us another free register. 2937 if (FI.isChainCall()) 2938 ++FreeIntRegs; 2939 2940 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 2941 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 2942 // get assigned (in left-to-right order) for passing as follows... 2943 unsigned ArgNo = 0; 2944 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 2945 it != ie; ++it, ++ArgNo) { 2946 bool IsNamedArg = ArgNo < NumRequiredArgs; 2947 2948 if (IsRegCall && it->type->isStructureOrClassType()) 2949 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE, 2950 MaxVectorWidth); 2951 else 2952 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 2953 NeededSSE, IsNamedArg); 2954 2955 // AMD64-ABI 3.2.3p3: If there are no registers available for any 2956 // eightbyte of an argument, the whole argument is passed on the 2957 // stack. If registers have already been assigned for some 2958 // eightbytes of such an argument, the assignments get reverted. 2959 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 2960 FreeIntRegs -= NeededInt; 2961 FreeSSERegs -= NeededSSE; 2962 if (MaxVectorWidth > FI.getMaxVectorWidth()) 2963 FI.setMaxVectorWidth(MaxVectorWidth); 2964 } else { 2965 it->info = getIndirectResult(it->type, FreeIntRegs); 2966 } 2967 } 2968 } 2969 2970 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 2971 Address VAListAddr, QualType Ty) { 2972 Address overflow_arg_area_p = 2973 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 2974 llvm::Value *overflow_arg_area = 2975 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 2976 2977 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 2978 // byte boundary if alignment needed by type exceeds 8 byte boundary. 2979 // It isn't stated explicitly in the standard, but in practice we use 2980 // alignment greater than 16 where necessary. 2981 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 2982 if (Align > CharUnits::fromQuantity(8)) { 2983 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 2984 Align); 2985 } 2986 2987 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 2988 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 2989 llvm::Value *Res = overflow_arg_area; 2990 2991 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 2992 // l->overflow_arg_area + sizeof(type). 2993 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 2994 // an 8 byte boundary. 2995 2996 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 2997 llvm::Value *Offset = 2998 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 2999 overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area, 3000 Offset, "overflow_arg_area.next"); 3001 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3002 3003 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3004 return Address(Res, LTy, Align); 3005 } 3006 3007 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3008 QualType Ty) const { 3009 // Assume that va_list type is correct; should be pointer to LLVM type: 3010 // struct { 3011 // i32 gp_offset; 3012 // i32 fp_offset; 3013 // i8* overflow_arg_area; 3014 // i8* reg_save_area; 3015 // }; 3016 unsigned neededInt, neededSSE; 3017 3018 Ty = getContext().getCanonicalType(Ty); 3019 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3020 /*isNamedArg*/false); 3021 3022 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3023 // in the registers. If not go to step 7. 3024 if (!neededInt && !neededSSE) 3025 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3026 3027 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3028 // general purpose registers needed to pass type and num_fp to hold 3029 // the number of floating point registers needed. 3030 3031 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3032 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3033 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3034 // 3035 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3036 // register save space). 3037 3038 llvm::Value *InRegs = nullptr; 3039 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3040 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3041 if (neededInt) { 3042 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3043 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3044 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3045 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3046 } 3047 3048 if (neededSSE) { 3049 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3050 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3051 llvm::Value *FitsInFP = 3052 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3053 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3054 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3055 } 3056 3057 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3058 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3059 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3060 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3061 3062 // Emit code to load the value if it was passed in registers. 3063 3064 CGF.EmitBlock(InRegBlock); 3065 3066 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3067 // an offset of l->gp_offset and/or l->fp_offset. This may require 3068 // copying to a temporary location in case the parameter is passed 3069 // in different register classes or requires an alignment greater 3070 // than 8 for general purpose registers and 16 for XMM registers. 3071 // 3072 // FIXME: This really results in shameful code when we end up needing to 3073 // collect arguments from different places; often what should result in a 3074 // simple assembling of a structure from scattered addresses has many more 3075 // loads than necessary. Can we clean this up? 3076 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3077 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3078 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3079 3080 Address RegAddr = Address::invalid(); 3081 if (neededInt && neededSSE) { 3082 // FIXME: Cleanup. 3083 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3084 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3085 Address Tmp = CGF.CreateMemTemp(Ty); 3086 Tmp = Tmp.withElementType(ST); 3087 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3088 llvm::Type *TyLo = ST->getElementType(0); 3089 llvm::Type *TyHi = ST->getElementType(1); 3090 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3091 "Unexpected ABI info for mixed regs"); 3092 llvm::Value *GPAddr = 3093 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset); 3094 llvm::Value *FPAddr = 3095 CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset); 3096 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3097 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3098 3099 // Copy the first element. 3100 // FIXME: Our choice of alignment here and below is probably pessimistic. 3101 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3102 TyLo, RegLoAddr, 3103 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo))); 3104 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3105 3106 // Copy the second element. 3107 V = CGF.Builder.CreateAlignedLoad( 3108 TyHi, RegHiAddr, 3109 CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi))); 3110 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3111 3112 RegAddr = Tmp.withElementType(LTy); 3113 } else if (neededInt) { 3114 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset), 3115 LTy, CharUnits::fromQuantity(8)); 3116 3117 // Copy to a temporary if necessary to ensure the appropriate alignment. 3118 auto TInfo = getContext().getTypeInfoInChars(Ty); 3119 uint64_t TySize = TInfo.Width.getQuantity(); 3120 CharUnits TyAlign = TInfo.Align; 3121 3122 // Copy into a temporary if the type is more aligned than the 3123 // register save area. 3124 if (TyAlign.getQuantity() > 8) { 3125 Address Tmp = CGF.CreateMemTemp(Ty); 3126 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3127 RegAddr = Tmp; 3128 } 3129 3130 } else if (neededSSE == 1) { 3131 RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset), 3132 LTy, CharUnits::fromQuantity(16)); 3133 } else { 3134 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3135 // SSE registers are spaced 16 bytes apart in the register save 3136 // area, we need to collect the two eightbytes together. 3137 // The ABI isn't explicit about this, but it seems reasonable 3138 // to assume that the slots are 16-byte aligned, since the stack is 3139 // naturally 16-byte aligned and the prologue is expected to store 3140 // all the SSE registers to the RSA. 3141 Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, 3142 fp_offset), 3143 CGF.Int8Ty, CharUnits::fromQuantity(16)); 3144 Address RegAddrHi = 3145 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3146 CharUnits::fromQuantity(16)); 3147 llvm::Type *ST = AI.canHaveCoerceToType() 3148 ? AI.getCoerceToType() 3149 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3150 llvm::Value *V; 3151 Address Tmp = CGF.CreateMemTemp(Ty); 3152 Tmp = Tmp.withElementType(ST); 3153 V = CGF.Builder.CreateLoad( 3154 RegAddrLo.withElementType(ST->getStructElementType(0))); 3155 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3156 V = CGF.Builder.CreateLoad( 3157 RegAddrHi.withElementType(ST->getStructElementType(1))); 3158 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3159 3160 RegAddr = Tmp.withElementType(LTy); 3161 } 3162 3163 // AMD64-ABI 3.5.7p5: Step 5. Set: 3164 // l->gp_offset = l->gp_offset + num_gp * 8 3165 // l->fp_offset = l->fp_offset + num_fp * 16. 3166 if (neededInt) { 3167 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3168 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3169 gp_offset_p); 3170 } 3171 if (neededSSE) { 3172 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3173 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3174 fp_offset_p); 3175 } 3176 CGF.EmitBranch(ContBlock); 3177 3178 // Emit code to load the value if it was passed in memory. 3179 3180 CGF.EmitBlock(InMemBlock); 3181 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3182 3183 // Return the appropriate result. 3184 3185 CGF.EmitBlock(ContBlock); 3186 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3187 "vaarg.addr"); 3188 return ResAddr; 3189 } 3190 3191 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3192 QualType Ty) const { 3193 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3194 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3195 uint64_t Width = getContext().getTypeSize(Ty); 3196 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3197 3198 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3199 CGF.getContext().getTypeInfoInChars(Ty), 3200 CharUnits::fromQuantity(8), 3201 /*allowHigherAlign*/ false); 3202 } 3203 3204 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall( 3205 QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const { 3206 const Type *Base = nullptr; 3207 uint64_t NumElts = 0; 3208 3209 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3210 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3211 FreeSSERegs -= NumElts; 3212 return getDirectX86Hva(); 3213 } 3214 return current; 3215 } 3216 3217 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3218 bool IsReturnType, bool IsVectorCall, 3219 bool IsRegCall) const { 3220 3221 if (Ty->isVoidType()) 3222 return ABIArgInfo::getIgnore(); 3223 3224 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3225 Ty = EnumTy->getDecl()->getIntegerType(); 3226 3227 TypeInfo Info = getContext().getTypeInfo(Ty); 3228 uint64_t Width = Info.Width; 3229 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3230 3231 const RecordType *RT = Ty->getAs<RecordType>(); 3232 if (RT) { 3233 if (!IsReturnType) { 3234 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3235 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3236 } 3237 3238 if (RT->getDecl()->hasFlexibleArrayMember()) 3239 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3240 3241 } 3242 3243 const Type *Base = nullptr; 3244 uint64_t NumElts = 0; 3245 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3246 // other targets. 3247 if ((IsVectorCall || IsRegCall) && 3248 isHomogeneousAggregate(Ty, Base, NumElts)) { 3249 if (IsRegCall) { 3250 if (FreeSSERegs >= NumElts) { 3251 FreeSSERegs -= NumElts; 3252 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3253 return ABIArgInfo::getDirect(); 3254 return ABIArgInfo::getExpand(); 3255 } 3256 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3257 } else if (IsVectorCall) { 3258 if (FreeSSERegs >= NumElts && 3259 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3260 FreeSSERegs -= NumElts; 3261 return ABIArgInfo::getDirect(); 3262 } else if (IsReturnType) { 3263 return ABIArgInfo::getExpand(); 3264 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3265 // HVAs are delayed and reclassified in the 2nd step. 3266 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3267 } 3268 } 3269 } 3270 3271 if (Ty->isMemberPointerType()) { 3272 // If the member pointer is represented by an LLVM int or ptr, pass it 3273 // directly. 3274 llvm::Type *LLTy = CGT.ConvertType(Ty); 3275 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3276 return ABIArgInfo::getDirect(); 3277 } 3278 3279 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3280 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3281 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3282 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3283 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3284 3285 // Otherwise, coerce it to a small integer. 3286 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3287 } 3288 3289 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3290 switch (BT->getKind()) { 3291 case BuiltinType::Bool: 3292 // Bool type is always extended to the ABI, other builtin types are not 3293 // extended. 3294 return ABIArgInfo::getExtend(Ty); 3295 3296 case BuiltinType::LongDouble: 3297 // Mingw64 GCC uses the old 80 bit extended precision floating point 3298 // unit. It passes them indirectly through memory. 3299 if (IsMingw64) { 3300 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 3301 if (LDF == &llvm::APFloat::x87DoubleExtended()) 3302 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3303 } 3304 break; 3305 3306 case BuiltinType::Int128: 3307 case BuiltinType::UInt128: 3308 // If it's a parameter type, the normal ABI rule is that arguments larger 3309 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 3310 // even though it isn't particularly efficient. 3311 if (!IsReturnType) 3312 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3313 3314 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 3315 // Clang matches them for compatibility. 3316 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 3317 llvm::Type::getInt64Ty(getVMContext()), 2)); 3318 3319 default: 3320 break; 3321 } 3322 } 3323 3324 if (Ty->isBitIntType()) { 3325 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3326 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3327 // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4, 3328 // or 8 bytes anyway as long is it fits in them, so we don't have to check 3329 // the power of 2. 3330 if (Width <= 64) 3331 return ABIArgInfo::getDirect(); 3332 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3333 } 3334 3335 return ABIArgInfo::getDirect(); 3336 } 3337 3338 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3339 const unsigned CC = FI.getCallingConvention(); 3340 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 3341 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 3342 3343 // If __attribute__((sysv_abi)) is in use, use the SysV argument 3344 // classification rules. 3345 if (CC == llvm::CallingConv::X86_64_SysV) { 3346 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 3347 SysVABIInfo.computeInfo(FI); 3348 return; 3349 } 3350 3351 unsigned FreeSSERegs = 0; 3352 if (IsVectorCall) { 3353 // We can use up to 4 SSE return registers with vectorcall. 3354 FreeSSERegs = 4; 3355 } else if (IsRegCall) { 3356 // RegCall gives us 16 SSE registers. 3357 FreeSSERegs = 16; 3358 } 3359 3360 if (!getCXXABI().classifyReturnType(FI)) 3361 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 3362 IsVectorCall, IsRegCall); 3363 3364 if (IsVectorCall) { 3365 // We can use up to 6 SSE register parameters with vectorcall. 3366 FreeSSERegs = 6; 3367 } else if (IsRegCall) { 3368 // RegCall gives us 16 SSE registers, we can reuse the return registers. 3369 FreeSSERegs = 16; 3370 } 3371 3372 unsigned ArgNum = 0; 3373 unsigned ZeroSSERegs = 0; 3374 for (auto &I : FI.arguments()) { 3375 // Vectorcall in x64 only permits the first 6 arguments to be passed as 3376 // XMM/YMM registers. After the sixth argument, pretend no vector 3377 // registers are left. 3378 unsigned *MaybeFreeSSERegs = 3379 (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs; 3380 I.info = 3381 classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall); 3382 ++ArgNum; 3383 } 3384 3385 if (IsVectorCall) { 3386 // For vectorcall, assign aggregate HVAs to any free vector registers in a 3387 // second pass. 3388 for (auto &I : FI.arguments()) 3389 I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info); 3390 } 3391 } 3392 3393 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3394 QualType Ty) const { 3395 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3396 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3397 uint64_t Width = getContext().getTypeSize(Ty); 3398 bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 3399 3400 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 3401 CGF.getContext().getTypeInfoInChars(Ty), 3402 CharUnits::fromQuantity(8), 3403 /*allowHigherAlign*/ false); 3404 } 3405 3406 std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo( 3407 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, 3408 unsigned NumRegisterParameters, bool SoftFloatABI) { 3409 bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( 3410 CGM.getTriple(), CGM.getCodeGenOpts()); 3411 return std::make_unique<X86_32TargetCodeGenInfo>( 3412 CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 3413 NumRegisterParameters, SoftFloatABI); 3414 } 3415 3416 std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo( 3417 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, 3418 unsigned NumRegisterParameters) { 3419 bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI( 3420 CGM.getTriple(), CGM.getCodeGenOpts()); 3421 return std::make_unique<WinX86_32TargetCodeGenInfo>( 3422 CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 3423 NumRegisterParameters); 3424 } 3425 3426 std::unique_ptr<TargetCodeGenInfo> 3427 CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM, 3428 X86AVXABILevel AVXLevel) { 3429 return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel); 3430 } 3431 3432 std::unique_ptr<TargetCodeGenInfo> 3433 CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, 3434 X86AVXABILevel AVXLevel) { 3435 return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel); 3436 } 3437