xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp (revision 78cd75393ec79565c63927bf200f06f839a1dc05)
1 //===- X86.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ABIInfoImpl.h"
10 #include "TargetInfo.h"
11 #include "clang/Basic/DiagnosticFrontend.h"
12 #include "llvm/ADT/SmallBitVector.h"
13 
14 using namespace clang;
15 using namespace clang::CodeGen;
16 
17 namespace {
18 
19 /// IsX86_MMXType - Return true if this is an MMX type.
20 bool IsX86_MMXType(llvm::Type *IRType) {
21   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
22   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
23     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
24     IRType->getScalarSizeInBits() != 64;
25 }
26 
27 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
28                                           StringRef Constraint,
29                                           llvm::Type* Ty) {
30   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
31                      .Cases("y", "&y", "^Ym", true)
32                      .Default(false);
33   if (IsMMXCons && Ty->isVectorTy()) {
34     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
35         64) {
36       // Invalid MMX constraint
37       return nullptr;
38     }
39 
40     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
41   }
42 
43   // No operation needed
44   return Ty;
45 }
46 
47 /// Returns true if this type can be passed in SSE registers with the
48 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
49 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
50   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
51     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
52       if (BT->getKind() == BuiltinType::LongDouble) {
53         if (&Context.getTargetInfo().getLongDoubleFormat() ==
54             &llvm::APFloat::x87DoubleExtended())
55           return false;
56       }
57       return true;
58     }
59   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
60     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
61     // registers specially.
62     unsigned VecSize = Context.getTypeSize(VT);
63     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
64       return true;
65   }
66   return false;
67 }
68 
69 /// Returns true if this aggregate is small enough to be passed in SSE registers
70 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
71 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
72   return NumMembers <= 4;
73 }
74 
75 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
76 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
77   auto AI = ABIArgInfo::getDirect(T);
78   AI.setInReg(true);
79   AI.setCanBeFlattened(false);
80   return AI;
81 }
82 
83 //===----------------------------------------------------------------------===//
84 // X86-32 ABI Implementation
85 //===----------------------------------------------------------------------===//
86 
87 /// Similar to llvm::CCState, but for Clang.
88 struct CCState {
89   CCState(CGFunctionInfo &FI)
90       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
91 
92   llvm::SmallBitVector IsPreassigned;
93   unsigned CC = CallingConv::CC_C;
94   unsigned FreeRegs = 0;
95   unsigned FreeSSERegs = 0;
96 };
97 
98 /// X86_32ABIInfo - The X86-32 ABI information.
99 class X86_32ABIInfo : public ABIInfo {
100   enum Class {
101     Integer,
102     Float
103   };
104 
105   static const unsigned MinABIStackAlignInBytes = 4;
106 
107   bool IsDarwinVectorABI;
108   bool IsRetSmallStructInRegABI;
109   bool IsWin32StructABI;
110   bool IsSoftFloatABI;
111   bool IsMCUABI;
112   bool IsLinuxABI;
113   unsigned DefaultNumRegisterParameters;
114 
115   static bool isRegisterSize(unsigned Size) {
116     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
117   }
118 
119   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
120     // FIXME: Assumes vectorcall is in use.
121     return isX86VectorTypeForVectorCall(getContext(), Ty);
122   }
123 
124   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
125                                          uint64_t NumMembers) const override {
126     // FIXME: Assumes vectorcall is in use.
127     return isX86VectorCallAggregateSmallEnough(NumMembers);
128   }
129 
130   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
131 
132   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
133   /// such that the argument will be passed in memory.
134   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
135 
136   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
137 
138   /// Return the alignment to use for the given type on the stack.
139   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
140 
141   Class classify(QualType Ty) const;
142   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
143   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
144                                   bool isDelegateCall) const;
145 
146   /// Updates the number of available free registers, returns
147   /// true if any registers were allocated.
148   bool updateFreeRegs(QualType Ty, CCState &State) const;
149 
150   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
151                                 bool &NeedsPadding) const;
152   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
153 
154   bool canExpandIndirectArgument(QualType Ty) const;
155 
156   /// Rewrite the function info so that all memory arguments use
157   /// inalloca.
158   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
159 
160   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
161                            CharUnits &StackOffset, ABIArgInfo &Info,
162                            QualType Type) const;
163   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
164 
165 public:
166 
167   void computeInfo(CGFunctionInfo &FI) const override;
168   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
169                     QualType Ty) const override;
170 
171   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
172                 bool RetSmallStructInRegABI, bool Win32StructABI,
173                 unsigned NumRegisterParameters, bool SoftFloatABI)
174       : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
175         IsRetSmallStructInRegABI(RetSmallStructInRegABI),
176         IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
177         IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
178         IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
179                    CGT.getTarget().getTriple().isOSCygMing()),
180         DefaultNumRegisterParameters(NumRegisterParameters) {}
181 };
182 
183 class X86_32SwiftABIInfo : public SwiftABIInfo {
184 public:
185   explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
186       : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
187 
188   bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
189                             bool AsReturnValue) const override {
190     // LLVM's x86-32 lowering currently only assigns up to three
191     // integer registers and three fp registers.  Oddly, it'll use up to
192     // four vector registers for vectors, but those can overlap with the
193     // scalar registers.
194     return occupiesMoreThan(ComponentTys, /*total=*/3);
195   }
196 };
197 
198 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
199 public:
200   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
201                           bool RetSmallStructInRegABI, bool Win32StructABI,
202                           unsigned NumRegisterParameters, bool SoftFloatABI)
203       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
204             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
205             NumRegisterParameters, SoftFloatABI)) {
206     SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
207   }
208 
209   static bool isStructReturnInRegABI(
210       const llvm::Triple &Triple, const CodeGenOptions &Opts);
211 
212   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
213                            CodeGen::CodeGenModule &CGM) const override;
214 
215   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
216     // Darwin uses different dwarf register numbers for EH.
217     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
218     return 4;
219   }
220 
221   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
222                                llvm::Value *Address) const override;
223 
224   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
225                                   StringRef Constraint,
226                                   llvm::Type* Ty) const override {
227     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
228   }
229 
230   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
231                                 std::string &Constraints,
232                                 std::vector<llvm::Type *> &ResultRegTypes,
233                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
234                                 std::vector<LValue> &ResultRegDests,
235                                 std::string &AsmString,
236                                 unsigned NumOutputs) const override;
237 
238   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
239     return "movl\t%ebp, %ebp"
240            "\t\t// marker for objc_retainAutoreleaseReturnValue";
241   }
242 };
243 
244 }
245 
246 /// Rewrite input constraint references after adding some output constraints.
247 /// In the case where there is one output and one input and we add one output,
248 /// we need to replace all operand references greater than or equal to 1:
249 ///     mov $0, $1
250 ///     mov eax, $1
251 /// The result will be:
252 ///     mov $0, $2
253 ///     mov eax, $2
254 static void rewriteInputConstraintReferences(unsigned FirstIn,
255                                              unsigned NumNewOuts,
256                                              std::string &AsmString) {
257   std::string Buf;
258   llvm::raw_string_ostream OS(Buf);
259   size_t Pos = 0;
260   while (Pos < AsmString.size()) {
261     size_t DollarStart = AsmString.find('$', Pos);
262     if (DollarStart == std::string::npos)
263       DollarStart = AsmString.size();
264     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
265     if (DollarEnd == std::string::npos)
266       DollarEnd = AsmString.size();
267     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
268     Pos = DollarEnd;
269     size_t NumDollars = DollarEnd - DollarStart;
270     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
271       // We have an operand reference.
272       size_t DigitStart = Pos;
273       if (AsmString[DigitStart] == '{') {
274         OS << '{';
275         ++DigitStart;
276       }
277       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
278       if (DigitEnd == std::string::npos)
279         DigitEnd = AsmString.size();
280       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
281       unsigned OperandIndex;
282       if (!OperandStr.getAsInteger(10, OperandIndex)) {
283         if (OperandIndex >= FirstIn)
284           OperandIndex += NumNewOuts;
285         OS << OperandIndex;
286       } else {
287         OS << OperandStr;
288       }
289       Pos = DigitEnd;
290     }
291   }
292   AsmString = std::move(OS.str());
293 }
294 
295 /// Add output constraints for EAX:EDX because they are return registers.
296 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
297     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
298     std::vector<llvm::Type *> &ResultRegTypes,
299     std::vector<llvm::Type *> &ResultTruncRegTypes,
300     std::vector<LValue> &ResultRegDests, std::string &AsmString,
301     unsigned NumOutputs) const {
302   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
303 
304   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
305   // larger.
306   if (!Constraints.empty())
307     Constraints += ',';
308   if (RetWidth <= 32) {
309     Constraints += "={eax}";
310     ResultRegTypes.push_back(CGF.Int32Ty);
311   } else {
312     // Use the 'A' constraint for EAX:EDX.
313     Constraints += "=A";
314     ResultRegTypes.push_back(CGF.Int64Ty);
315   }
316 
317   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
318   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
319   ResultTruncRegTypes.push_back(CoerceTy);
320 
321   // Coerce the integer by bitcasting the return slot pointer.
322   ReturnSlot.setAddress(ReturnSlot.getAddress(CGF).withElementType(CoerceTy));
323   ResultRegDests.push_back(ReturnSlot);
324 
325   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
326 }
327 
328 /// shouldReturnTypeInRegister - Determine if the given type should be
329 /// returned in a register (for the Darwin and MCU ABI).
330 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
331                                                ASTContext &Context) const {
332   uint64_t Size = Context.getTypeSize(Ty);
333 
334   // For i386, type must be register sized.
335   // For the MCU ABI, it only needs to be <= 8-byte
336   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
337    return false;
338 
339   if (Ty->isVectorType()) {
340     // 64- and 128- bit vectors inside structures are not returned in
341     // registers.
342     if (Size == 64 || Size == 128)
343       return false;
344 
345     return true;
346   }
347 
348   // If this is a builtin, pointer, enum, complex type, member pointer, or
349   // member function pointer it is ok.
350   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
351       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
352       Ty->isBlockPointerType() || Ty->isMemberPointerType())
353     return true;
354 
355   // Arrays are treated like records.
356   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
357     return shouldReturnTypeInRegister(AT->getElementType(), Context);
358 
359   // Otherwise, it must be a record type.
360   const RecordType *RT = Ty->getAs<RecordType>();
361   if (!RT) return false;
362 
363   // FIXME: Traverse bases here too.
364 
365   // Structure types are passed in register if all fields would be
366   // passed in a register.
367   for (const auto *FD : RT->getDecl()->fields()) {
368     // Empty fields are ignored.
369     if (isEmptyField(Context, FD, true))
370       continue;
371 
372     // Check fields recursively.
373     if (!shouldReturnTypeInRegister(FD->getType(), Context))
374       return false;
375   }
376   return true;
377 }
378 
379 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
380   // Treat complex types as the element type.
381   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
382     Ty = CTy->getElementType();
383 
384   // Check for a type which we know has a simple scalar argument-passing
385   // convention without any padding.  (We're specifically looking for 32
386   // and 64-bit integer and integer-equivalents, float, and double.)
387   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
388       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
389     return false;
390 
391   uint64_t Size = Context.getTypeSize(Ty);
392   return Size == 32 || Size == 64;
393 }
394 
395 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
396                           uint64_t &Size) {
397   for (const auto *FD : RD->fields()) {
398     // Scalar arguments on the stack get 4 byte alignment on x86. If the
399     // argument is smaller than 32-bits, expanding the struct will create
400     // alignment padding.
401     if (!is32Or64BitBasicType(FD->getType(), Context))
402       return false;
403 
404     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
405     // how to expand them yet, and the predicate for telling if a bitfield still
406     // counts as "basic" is more complicated than what we were doing previously.
407     if (FD->isBitField())
408       return false;
409 
410     Size += Context.getTypeSize(FD->getType());
411   }
412   return true;
413 }
414 
415 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
416                                  uint64_t &Size) {
417   // Don't do this if there are any non-empty bases.
418   for (const CXXBaseSpecifier &Base : RD->bases()) {
419     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
420                               Size))
421       return false;
422   }
423   if (!addFieldSizes(Context, RD, Size))
424     return false;
425   return true;
426 }
427 
428 /// Test whether an argument type which is to be passed indirectly (on the
429 /// stack) would have the equivalent layout if it was expanded into separate
430 /// arguments. If so, we prefer to do the latter to avoid inhibiting
431 /// optimizations.
432 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
433   // We can only expand structure types.
434   const RecordType *RT = Ty->getAs<RecordType>();
435   if (!RT)
436     return false;
437   const RecordDecl *RD = RT->getDecl();
438   uint64_t Size = 0;
439   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
440     if (!IsWin32StructABI) {
441       // On non-Windows, we have to conservatively match our old bitcode
442       // prototypes in order to be ABI-compatible at the bitcode level.
443       if (!CXXRD->isCLike())
444         return false;
445     } else {
446       // Don't do this for dynamic classes.
447       if (CXXRD->isDynamicClass())
448         return false;
449     }
450     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
451       return false;
452   } else {
453     if (!addFieldSizes(getContext(), RD, Size))
454       return false;
455   }
456 
457   // We can do this if there was no alignment padding.
458   return Size == getContext().getTypeSize(Ty);
459 }
460 
461 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
462   // If the return value is indirect, then the hidden argument is consuming one
463   // integer register.
464   if (State.FreeRegs) {
465     --State.FreeRegs;
466     if (!IsMCUABI)
467       return getNaturalAlignIndirectInReg(RetTy);
468   }
469   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
470 }
471 
472 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
473                                              CCState &State) const {
474   if (RetTy->isVoidType())
475     return ABIArgInfo::getIgnore();
476 
477   const Type *Base = nullptr;
478   uint64_t NumElts = 0;
479   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
480        State.CC == llvm::CallingConv::X86_RegCall) &&
481       isHomogeneousAggregate(RetTy, Base, NumElts)) {
482     // The LLVM struct type for such an aggregate should lower properly.
483     return ABIArgInfo::getDirect();
484   }
485 
486   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
487     // On Darwin, some vectors are returned in registers.
488     if (IsDarwinVectorABI) {
489       uint64_t Size = getContext().getTypeSize(RetTy);
490 
491       // 128-bit vectors are a special case; they are returned in
492       // registers and we need to make sure to pick a type the LLVM
493       // backend will like.
494       if (Size == 128)
495         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
496             llvm::Type::getInt64Ty(getVMContext()), 2));
497 
498       // Always return in register if it fits in a general purpose
499       // register, or if it is 64 bits and has a single element.
500       if ((Size == 8 || Size == 16 || Size == 32) ||
501           (Size == 64 && VT->getNumElements() == 1))
502         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
503                                                             Size));
504 
505       return getIndirectReturnResult(RetTy, State);
506     }
507 
508     return ABIArgInfo::getDirect();
509   }
510 
511   if (isAggregateTypeForABI(RetTy)) {
512     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
513       // Structures with flexible arrays are always indirect.
514       if (RT->getDecl()->hasFlexibleArrayMember())
515         return getIndirectReturnResult(RetTy, State);
516     }
517 
518     // If specified, structs and unions are always indirect.
519     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
520       return getIndirectReturnResult(RetTy, State);
521 
522     // Ignore empty structs/unions.
523     if (isEmptyRecord(getContext(), RetTy, true))
524       return ABIArgInfo::getIgnore();
525 
526     // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
527     if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
528       QualType ET = getContext().getCanonicalType(CT->getElementType());
529       if (ET->isFloat16Type())
530         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
531             llvm::Type::getHalfTy(getVMContext()), 2));
532     }
533 
534     // Small structures which are register sized are generally returned
535     // in a register.
536     if (shouldReturnTypeInRegister(RetTy, getContext())) {
537       uint64_t Size = getContext().getTypeSize(RetTy);
538 
539       // As a special-case, if the struct is a "single-element" struct, and
540       // the field is of type "float" or "double", return it in a
541       // floating-point register. (MSVC does not apply this special case.)
542       // We apply a similar transformation for pointer types to improve the
543       // quality of the generated IR.
544       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
545         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
546             || SeltTy->hasPointerRepresentation())
547           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
548 
549       // FIXME: We should be able to narrow this integer in cases with dead
550       // padding.
551       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
552     }
553 
554     return getIndirectReturnResult(RetTy, State);
555   }
556 
557   // Treat an enum type as its underlying type.
558   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
559     RetTy = EnumTy->getDecl()->getIntegerType();
560 
561   if (const auto *EIT = RetTy->getAs<BitIntType>())
562     if (EIT->getNumBits() > 64)
563       return getIndirectReturnResult(RetTy, State);
564 
565   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
566                                                : ABIArgInfo::getDirect());
567 }
568 
569 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
570                                                  unsigned Align) const {
571   // Otherwise, if the alignment is less than or equal to the minimum ABI
572   // alignment, just use the default; the backend will handle this.
573   if (Align <= MinABIStackAlignInBytes)
574     return 0; // Use default alignment.
575 
576   if (IsLinuxABI) {
577     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
578     // want to spend any effort dealing with the ramifications of ABI breaks.
579     //
580     // If the vector type is __m128/__m256/__m512, return the default alignment.
581     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
582       return Align;
583   }
584   // On non-Darwin, the stack type alignment is always 4.
585   if (!IsDarwinVectorABI) {
586     // Set explicit alignment, since we may need to realign the top.
587     return MinABIStackAlignInBytes;
588   }
589 
590   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
591   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
592                       isRecordWithSIMDVectorType(getContext(), Ty)))
593     return 16;
594 
595   return MinABIStackAlignInBytes;
596 }
597 
598 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
599                                             CCState &State) const {
600   if (!ByVal) {
601     if (State.FreeRegs) {
602       --State.FreeRegs; // Non-byval indirects just use one pointer.
603       if (!IsMCUABI)
604         return getNaturalAlignIndirectInReg(Ty);
605     }
606     return getNaturalAlignIndirect(Ty, false);
607   }
608 
609   // Compute the byval alignment.
610   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
611   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
612   if (StackAlign == 0)
613     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
614 
615   // If the stack alignment is less than the type alignment, realign the
616   // argument.
617   bool Realign = TypeAlign > StackAlign;
618   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
619                                  /*ByVal=*/true, Realign);
620 }
621 
622 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
623   const Type *T = isSingleElementStruct(Ty, getContext());
624   if (!T)
625     T = Ty.getTypePtr();
626 
627   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
628     BuiltinType::Kind K = BT->getKind();
629     if (K == BuiltinType::Float || K == BuiltinType::Double)
630       return Float;
631   }
632   return Integer;
633 }
634 
635 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
636   if (!IsSoftFloatABI) {
637     Class C = classify(Ty);
638     if (C == Float)
639       return false;
640   }
641 
642   unsigned Size = getContext().getTypeSize(Ty);
643   unsigned SizeInRegs = (Size + 31) / 32;
644 
645   if (SizeInRegs == 0)
646     return false;
647 
648   if (!IsMCUABI) {
649     if (SizeInRegs > State.FreeRegs) {
650       State.FreeRegs = 0;
651       return false;
652     }
653   } else {
654     // The MCU psABI allows passing parameters in-reg even if there are
655     // earlier parameters that are passed on the stack. Also,
656     // it does not allow passing >8-byte structs in-register,
657     // even if there are 3 free registers available.
658     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
659       return false;
660   }
661 
662   State.FreeRegs -= SizeInRegs;
663   return true;
664 }
665 
666 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
667                                              bool &InReg,
668                                              bool &NeedsPadding) const {
669   // On Windows, aggregates other than HFAs are never passed in registers, and
670   // they do not consume register slots. Homogenous floating-point aggregates
671   // (HFAs) have already been dealt with at this point.
672   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
673     return false;
674 
675   NeedsPadding = false;
676   InReg = !IsMCUABI;
677 
678   if (!updateFreeRegs(Ty, State))
679     return false;
680 
681   if (IsMCUABI)
682     return true;
683 
684   if (State.CC == llvm::CallingConv::X86_FastCall ||
685       State.CC == llvm::CallingConv::X86_VectorCall ||
686       State.CC == llvm::CallingConv::X86_RegCall) {
687     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
688       NeedsPadding = true;
689 
690     return false;
691   }
692 
693   return true;
694 }
695 
696 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
697   bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
698                     (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
699                      Ty->isReferenceType());
700 
701   if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
702                       State.CC == llvm::CallingConv::X86_VectorCall))
703     return false;
704 
705   if (!updateFreeRegs(Ty, State))
706     return false;
707 
708   if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
709     return false;
710 
711   // Return true to apply inreg to all legal parameters except for MCU targets.
712   return !IsMCUABI;
713 }
714 
715 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
716   // Vectorcall x86 works subtly different than in x64, so the format is
717   // a bit different than the x64 version.  First, all vector types (not HVAs)
718   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
719   // This differs from the x64 implementation, where the first 6 by INDEX get
720   // registers.
721   // In the second pass over the arguments, HVAs are passed in the remaining
722   // vector registers if possible, or indirectly by address. The address will be
723   // passed in ECX/EDX if available. Any other arguments are passed according to
724   // the usual fastcall rules.
725   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
726   for (int I = 0, E = Args.size(); I < E; ++I) {
727     const Type *Base = nullptr;
728     uint64_t NumElts = 0;
729     const QualType &Ty = Args[I].type;
730     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
731         isHomogeneousAggregate(Ty, Base, NumElts)) {
732       if (State.FreeSSERegs >= NumElts) {
733         State.FreeSSERegs -= NumElts;
734         Args[I].info = ABIArgInfo::getDirectInReg();
735         State.IsPreassigned.set(I);
736       }
737     }
738   }
739 }
740 
741 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
742                                                bool isDelegateCall) const {
743   // FIXME: Set alignment on indirect arguments.
744   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
745   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
746   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
747 
748   Ty = useFirstFieldIfTransparentUnion(Ty);
749   TypeInfo TI = getContext().getTypeInfo(Ty);
750 
751   // Check with the C++ ABI first.
752   const RecordType *RT = Ty->getAs<RecordType>();
753   if (RT) {
754     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
755     if (RAA == CGCXXABI::RAA_Indirect) {
756       return getIndirectResult(Ty, false, State);
757     } else if (isDelegateCall) {
758       // Avoid having different alignments on delegate call args by always
759       // setting the alignment to 4, which is what we do for inallocas.
760       ABIArgInfo Res = getIndirectResult(Ty, false, State);
761       Res.setIndirectAlign(CharUnits::fromQuantity(4));
762       return Res;
763     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
764       // The field index doesn't matter, we'll fix it up later.
765       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
766     }
767   }
768 
769   // Regcall uses the concept of a homogenous vector aggregate, similar
770   // to other targets.
771   const Type *Base = nullptr;
772   uint64_t NumElts = 0;
773   if ((IsRegCall || IsVectorCall) &&
774       isHomogeneousAggregate(Ty, Base, NumElts)) {
775     if (State.FreeSSERegs >= NumElts) {
776       State.FreeSSERegs -= NumElts;
777 
778       // Vectorcall passes HVAs directly and does not flatten them, but regcall
779       // does.
780       if (IsVectorCall)
781         return getDirectX86Hva();
782 
783       if (Ty->isBuiltinType() || Ty->isVectorType())
784         return ABIArgInfo::getDirect();
785       return ABIArgInfo::getExpand();
786     }
787     return getIndirectResult(Ty, /*ByVal=*/false, State);
788   }
789 
790   if (isAggregateTypeForABI(Ty)) {
791     // Structures with flexible arrays are always indirect.
792     // FIXME: This should not be byval!
793     if (RT && RT->getDecl()->hasFlexibleArrayMember())
794       return getIndirectResult(Ty, true, State);
795 
796     // Ignore empty structs/unions on non-Windows.
797     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
798       return ABIArgInfo::getIgnore();
799 
800     llvm::LLVMContext &LLVMContext = getVMContext();
801     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
802     bool NeedsPadding = false;
803     bool InReg;
804     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
805       unsigned SizeInRegs = (TI.Width + 31) / 32;
806       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
807       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
808       if (InReg)
809         return ABIArgInfo::getDirectInReg(Result);
810       else
811         return ABIArgInfo::getDirect(Result);
812     }
813     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
814 
815     // Pass over-aligned aggregates on Windows indirectly. This behavior was
816     // added in MSVC 2015. Use the required alignment from the record layout,
817     // since that may be less than the regular type alignment, and types with
818     // required alignment of less than 4 bytes are not passed indirectly.
819     if (IsWin32StructABI) {
820       unsigned AlignInBits = 0;
821       if (RT) {
822         const ASTRecordLayout &Layout =
823           getContext().getASTRecordLayout(RT->getDecl());
824         AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
825       } else if (TI.isAlignRequired()) {
826         AlignInBits = TI.Align;
827       }
828       if (AlignInBits > 32)
829         return getIndirectResult(Ty, /*ByVal=*/false, State);
830     }
831 
832     // Expand small (<= 128-bit) record types when we know that the stack layout
833     // of those arguments will match the struct. This is important because the
834     // LLVM backend isn't smart enough to remove byval, which inhibits many
835     // optimizations.
836     // Don't do this for the MCU if there are still free integer registers
837     // (see X86_64 ABI for full explanation).
838     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
839         canExpandIndirectArgument(Ty))
840       return ABIArgInfo::getExpandWithPadding(
841           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
842 
843     return getIndirectResult(Ty, true, State);
844   }
845 
846   if (const VectorType *VT = Ty->getAs<VectorType>()) {
847     // On Windows, vectors are passed directly if registers are available, or
848     // indirectly if not. This avoids the need to align argument memory. Pass
849     // user-defined vector types larger than 512 bits indirectly for simplicity.
850     if (IsWin32StructABI) {
851       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
852         --State.FreeSSERegs;
853         return ABIArgInfo::getDirectInReg();
854       }
855       return getIndirectResult(Ty, /*ByVal=*/false, State);
856     }
857 
858     // On Darwin, some vectors are passed in memory, we handle this by passing
859     // it as an i8/i16/i32/i64.
860     if (IsDarwinVectorABI) {
861       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
862           (TI.Width == 64 && VT->getNumElements() == 1))
863         return ABIArgInfo::getDirect(
864             llvm::IntegerType::get(getVMContext(), TI.Width));
865     }
866 
867     if (IsX86_MMXType(CGT.ConvertType(Ty)))
868       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
869 
870     return ABIArgInfo::getDirect();
871   }
872 
873 
874   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
875     Ty = EnumTy->getDecl()->getIntegerType();
876 
877   bool InReg = shouldPrimitiveUseInReg(Ty, State);
878 
879   if (isPromotableIntegerTypeForABI(Ty)) {
880     if (InReg)
881       return ABIArgInfo::getExtendInReg(Ty);
882     return ABIArgInfo::getExtend(Ty);
883   }
884 
885   if (const auto *EIT = Ty->getAs<BitIntType>()) {
886     if (EIT->getNumBits() <= 64) {
887       if (InReg)
888         return ABIArgInfo::getDirectInReg();
889       return ABIArgInfo::getDirect();
890     }
891     return getIndirectResult(Ty, /*ByVal=*/false, State);
892   }
893 
894   if (InReg)
895     return ABIArgInfo::getDirectInReg();
896   return ABIArgInfo::getDirect();
897 }
898 
899 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
900   CCState State(FI);
901   if (IsMCUABI)
902     State.FreeRegs = 3;
903   else if (State.CC == llvm::CallingConv::X86_FastCall) {
904     State.FreeRegs = 2;
905     State.FreeSSERegs = 3;
906   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
907     State.FreeRegs = 2;
908     State.FreeSSERegs = 6;
909   } else if (FI.getHasRegParm())
910     State.FreeRegs = FI.getRegParm();
911   else if (State.CC == llvm::CallingConv::X86_RegCall) {
912     State.FreeRegs = 5;
913     State.FreeSSERegs = 8;
914   } else if (IsWin32StructABI) {
915     // Since MSVC 2015, the first three SSE vectors have been passed in
916     // registers. The rest are passed indirectly.
917     State.FreeRegs = DefaultNumRegisterParameters;
918     State.FreeSSERegs = 3;
919   } else
920     State.FreeRegs = DefaultNumRegisterParameters;
921 
922   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
923     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
924   } else if (FI.getReturnInfo().isIndirect()) {
925     // The C++ ABI is not aware of register usage, so we have to check if the
926     // return value was sret and put it in a register ourselves if appropriate.
927     if (State.FreeRegs) {
928       --State.FreeRegs;  // The sret parameter consumes a register.
929       if (!IsMCUABI)
930         FI.getReturnInfo().setInReg(true);
931     }
932   }
933 
934   // The chain argument effectively gives us another free register.
935   if (FI.isChainCall())
936     ++State.FreeRegs;
937 
938   // For vectorcall, do a first pass over the arguments, assigning FP and vector
939   // arguments to XMM registers as available.
940   if (State.CC == llvm::CallingConv::X86_VectorCall)
941     runVectorCallFirstPass(FI, State);
942 
943   bool UsedInAlloca = false;
944   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
945   for (int I = 0, E = Args.size(); I < E; ++I) {
946     // Skip arguments that have already been assigned.
947     if (State.IsPreassigned.test(I))
948       continue;
949 
950     Args[I].info =
951         classifyArgumentType(Args[I].type, State, FI.isDelegateCall());
952     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
953   }
954 
955   // If we needed to use inalloca for any argument, do a second pass and rewrite
956   // all the memory arguments to use inalloca.
957   if (UsedInAlloca)
958     rewriteWithInAlloca(FI);
959 }
960 
961 void
962 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
963                                    CharUnits &StackOffset, ABIArgInfo &Info,
964                                    QualType Type) const {
965   // Arguments are always 4-byte-aligned.
966   CharUnits WordSize = CharUnits::fromQuantity(4);
967   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
968 
969   // sret pointers and indirect things will require an extra pointer
970   // indirection, unless they are byval. Most things are byval, and will not
971   // require this indirection.
972   bool IsIndirect = false;
973   if (Info.isIndirect() && !Info.getIndirectByVal())
974     IsIndirect = true;
975   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
976   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
977   if (IsIndirect)
978     LLTy = llvm::PointerType::getUnqual(getVMContext());
979   FrameFields.push_back(LLTy);
980   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
981 
982   // Insert padding bytes to respect alignment.
983   CharUnits FieldEnd = StackOffset;
984   StackOffset = FieldEnd.alignTo(WordSize);
985   if (StackOffset != FieldEnd) {
986     CharUnits NumBytes = StackOffset - FieldEnd;
987     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
988     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
989     FrameFields.push_back(Ty);
990   }
991 }
992 
993 static bool isArgInAlloca(const ABIArgInfo &Info) {
994   // Leave ignored and inreg arguments alone.
995   switch (Info.getKind()) {
996   case ABIArgInfo::InAlloca:
997     return true;
998   case ABIArgInfo::Ignore:
999   case ABIArgInfo::IndirectAliased:
1000     return false;
1001   case ABIArgInfo::Indirect:
1002   case ABIArgInfo::Direct:
1003   case ABIArgInfo::Extend:
1004     return !Info.getInReg();
1005   case ABIArgInfo::Expand:
1006   case ABIArgInfo::CoerceAndExpand:
1007     // These are aggregate types which are never passed in registers when
1008     // inalloca is involved.
1009     return true;
1010   }
1011   llvm_unreachable("invalid enum");
1012 }
1013 
1014 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1015   assert(IsWin32StructABI && "inalloca only supported on win32");
1016 
1017   // Build a packed struct type for all of the arguments in memory.
1018   SmallVector<llvm::Type *, 6> FrameFields;
1019 
1020   // The stack alignment is always 4.
1021   CharUnits StackAlign = CharUnits::fromQuantity(4);
1022 
1023   CharUnits StackOffset;
1024   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1025 
1026   // Put 'this' into the struct before 'sret', if necessary.
1027   bool IsThisCall =
1028       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1029   ABIArgInfo &Ret = FI.getReturnInfo();
1030   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1031       isArgInAlloca(I->info)) {
1032     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1033     ++I;
1034   }
1035 
1036   // Put the sret parameter into the inalloca struct if it's in memory.
1037   if (Ret.isIndirect() && !Ret.getInReg()) {
1038     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
1039     // On Windows, the hidden sret parameter is always returned in eax.
1040     Ret.setInAllocaSRet(IsWin32StructABI);
1041   }
1042 
1043   // Skip the 'this' parameter in ecx.
1044   if (IsThisCall)
1045     ++I;
1046 
1047   // Put arguments passed in memory into the struct.
1048   for (; I != E; ++I) {
1049     if (isArgInAlloca(I->info))
1050       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1051   }
1052 
1053   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1054                                         /*isPacked=*/true),
1055                   StackAlign);
1056 }
1057 
1058 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1059                                  Address VAListAddr, QualType Ty) const {
1060 
1061   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1062 
1063   // x86-32 changes the alignment of certain arguments on the stack.
1064   //
1065   // Just messing with TypeInfo like this works because we never pass
1066   // anything indirectly.
1067   TypeInfo.Align = CharUnits::fromQuantity(
1068                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
1069 
1070   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1071                           TypeInfo, CharUnits::fromQuantity(4),
1072                           /*AllowHigherAlign*/ true);
1073 }
1074 
1075 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1076     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1077   assert(Triple.getArch() == llvm::Triple::x86);
1078 
1079   switch (Opts.getStructReturnConvention()) {
1080   case CodeGenOptions::SRCK_Default:
1081     break;
1082   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1083     return false;
1084   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1085     return true;
1086   }
1087 
1088   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1089     return true;
1090 
1091   switch (Triple.getOS()) {
1092   case llvm::Triple::DragonFly:
1093   case llvm::Triple::FreeBSD:
1094   case llvm::Triple::OpenBSD:
1095   case llvm::Triple::Win32:
1096     return true;
1097   default:
1098     return false;
1099   }
1100 }
1101 
1102 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
1103                                  CodeGen::CodeGenModule &CGM) {
1104   if (!FD->hasAttr<AnyX86InterruptAttr>())
1105     return;
1106 
1107   llvm::Function *Fn = cast<llvm::Function>(GV);
1108   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1109   if (FD->getNumParams() == 0)
1110     return;
1111 
1112   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
1113   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
1114   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
1115     Fn->getContext(), ByValTy);
1116   Fn->addParamAttr(0, NewAttr);
1117 }
1118 
1119 void X86_32TargetCodeGenInfo::setTargetAttributes(
1120     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1121   if (GV->isDeclaration())
1122     return;
1123   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1124     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1125       llvm::Function *Fn = cast<llvm::Function>(GV);
1126       Fn->addFnAttr("stackrealign");
1127     }
1128 
1129     addX86InterruptAttrs(FD, GV, CGM);
1130   }
1131 }
1132 
1133 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1134                                                CodeGen::CodeGenFunction &CGF,
1135                                                llvm::Value *Address) const {
1136   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1137 
1138   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1139 
1140   // 0-7 are the eight integer registers;  the order is different
1141   //   on Darwin (for EH), but the range is the same.
1142   // 8 is %eip.
1143   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1144 
1145   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1146     // 12-16 are st(0..4).  Not sure why we stop at 4.
1147     // These have size 16, which is sizeof(long double) on
1148     // platforms with 8-byte alignment for that type.
1149     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1150     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1151 
1152   } else {
1153     // 9 is %eflags, which doesn't get a size on Darwin for some
1154     // reason.
1155     Builder.CreateAlignedStore(
1156         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1157                                CharUnits::One());
1158 
1159     // 11-16 are st(0..5).  Not sure why we stop at 5.
1160     // These have size 12, which is sizeof(long double) on
1161     // platforms with 4-byte alignment for that type.
1162     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1163     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1164   }
1165 
1166   return false;
1167 }
1168 
1169 //===----------------------------------------------------------------------===//
1170 // X86-64 ABI Implementation
1171 //===----------------------------------------------------------------------===//
1172 
1173 
1174 namespace {
1175 
1176 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1177 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1178   switch (AVXLevel) {
1179   case X86AVXABILevel::AVX512:
1180     return 512;
1181   case X86AVXABILevel::AVX:
1182     return 256;
1183   case X86AVXABILevel::None:
1184     return 128;
1185   }
1186   llvm_unreachable("Unknown AVXLevel");
1187 }
1188 
1189 /// X86_64ABIInfo - The X86_64 ABI information.
1190 class X86_64ABIInfo : public ABIInfo {
1191   enum Class {
1192     Integer = 0,
1193     SSE,
1194     SSEUp,
1195     X87,
1196     X87Up,
1197     ComplexX87,
1198     NoClass,
1199     Memory
1200   };
1201 
1202   /// merge - Implement the X86_64 ABI merging algorithm.
1203   ///
1204   /// Merge an accumulating classification \arg Accum with a field
1205   /// classification \arg Field.
1206   ///
1207   /// \param Accum - The accumulating classification. This should
1208   /// always be either NoClass or the result of a previous merge
1209   /// call. In addition, this should never be Memory (the caller
1210   /// should just return Memory for the aggregate).
1211   static Class merge(Class Accum, Class Field);
1212 
1213   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1214   ///
1215   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1216   /// final MEMORY or SSE classes when necessary.
1217   ///
1218   /// \param AggregateSize - The size of the current aggregate in
1219   /// the classification process.
1220   ///
1221   /// \param Lo - The classification for the parts of the type
1222   /// residing in the low word of the containing object.
1223   ///
1224   /// \param Hi - The classification for the parts of the type
1225   /// residing in the higher words of the containing object.
1226   ///
1227   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1228 
1229   /// classify - Determine the x86_64 register classes in which the
1230   /// given type T should be passed.
1231   ///
1232   /// \param Lo - The classification for the parts of the type
1233   /// residing in the low word of the containing object.
1234   ///
1235   /// \param Hi - The classification for the parts of the type
1236   /// residing in the high word of the containing object.
1237   ///
1238   /// \param OffsetBase - The bit offset of this type in the
1239   /// containing object.  Some parameters are classified different
1240   /// depending on whether they straddle an eightbyte boundary.
1241   ///
1242   /// \param isNamedArg - Whether the argument in question is a "named"
1243   /// argument, as used in AMD64-ABI 3.5.7.
1244   ///
1245   /// \param IsRegCall - Whether the calling conversion is regcall.
1246   ///
1247   /// If a word is unused its result will be NoClass; if a type should
1248   /// be passed in Memory then at least the classification of \arg Lo
1249   /// will be Memory.
1250   ///
1251   /// The \arg Lo class will be NoClass iff the argument is ignored.
1252   ///
1253   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1254   /// also be ComplexX87.
1255   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1256                 bool isNamedArg, bool IsRegCall = false) const;
1257 
1258   llvm::Type *GetByteVectorType(QualType Ty) const;
1259   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1260                                  unsigned IROffset, QualType SourceTy,
1261                                  unsigned SourceOffset) const;
1262   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1263                                      unsigned IROffset, QualType SourceTy,
1264                                      unsigned SourceOffset) const;
1265 
1266   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1267   /// such that the argument will be returned in memory.
1268   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1269 
1270   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1271   /// such that the argument will be passed in memory.
1272   ///
1273   /// \param freeIntRegs - The number of free integer registers remaining
1274   /// available.
1275   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1276 
1277   ABIArgInfo classifyReturnType(QualType RetTy) const;
1278 
1279   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
1280                                   unsigned &neededInt, unsigned &neededSSE,
1281                                   bool isNamedArg,
1282                                   bool IsRegCall = false) const;
1283 
1284   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
1285                                        unsigned &NeededSSE,
1286                                        unsigned &MaxVectorWidth) const;
1287 
1288   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
1289                                            unsigned &NeededSSE,
1290                                            unsigned &MaxVectorWidth) const;
1291 
1292   bool IsIllegalVectorType(QualType Ty) const;
1293 
1294   /// The 0.98 ABI revision clarified a lot of ambiguities,
1295   /// unfortunately in ways that were not always consistent with
1296   /// certain previous compilers.  In particular, platforms which
1297   /// required strict binary compatibility with older versions of GCC
1298   /// may need to exempt themselves.
1299   bool honorsRevision0_98() const {
1300     return !getTarget().getTriple().isOSDarwin();
1301   }
1302 
1303   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
1304   /// classify it as INTEGER (for compatibility with older clang compilers).
1305   bool classifyIntegerMMXAsSSE() const {
1306     // Clang <= 3.8 did not do this.
1307     if (getContext().getLangOpts().getClangABICompat() <=
1308         LangOptions::ClangABI::Ver3_8)
1309       return false;
1310 
1311     const llvm::Triple &Triple = getTarget().getTriple();
1312     if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
1313       return false;
1314     return true;
1315   }
1316 
1317   // GCC classifies vectors of __int128 as memory.
1318   bool passInt128VectorsInMem() const {
1319     // Clang <= 9.0 did not do this.
1320     if (getContext().getLangOpts().getClangABICompat() <=
1321         LangOptions::ClangABI::Ver9)
1322       return false;
1323 
1324     const llvm::Triple &T = getTarget().getTriple();
1325     return T.isOSLinux() || T.isOSNetBSD();
1326   }
1327 
1328   X86AVXABILevel AVXLevel;
1329   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1330   // 64-bit hardware.
1331   bool Has64BitPointers;
1332 
1333 public:
1334   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1335       : ABIInfo(CGT), AVXLevel(AVXLevel),
1336         Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
1337 
1338   bool isPassedUsingAVXType(QualType type) const {
1339     unsigned neededInt, neededSSE;
1340     // The freeIntRegs argument doesn't matter here.
1341     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1342                                            /*isNamedArg*/true);
1343     if (info.isDirect()) {
1344       llvm::Type *ty = info.getCoerceToType();
1345       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1346         return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
1347     }
1348     return false;
1349   }
1350 
1351   void computeInfo(CGFunctionInfo &FI) const override;
1352 
1353   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1354                     QualType Ty) const override;
1355   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1356                       QualType Ty) const override;
1357 
1358   bool has64BitPointers() const {
1359     return Has64BitPointers;
1360   }
1361 };
1362 
1363 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1364 class WinX86_64ABIInfo : public ABIInfo {
1365 public:
1366   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1367       : ABIInfo(CGT), AVXLevel(AVXLevel),
1368         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1369 
1370   void computeInfo(CGFunctionInfo &FI) const override;
1371 
1372   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1373                     QualType Ty) const override;
1374 
1375   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1376     // FIXME: Assumes vectorcall is in use.
1377     return isX86VectorTypeForVectorCall(getContext(), Ty);
1378   }
1379 
1380   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1381                                          uint64_t NumMembers) const override {
1382     // FIXME: Assumes vectorcall is in use.
1383     return isX86VectorCallAggregateSmallEnough(NumMembers);
1384   }
1385 
1386 private:
1387   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
1388                       bool IsVectorCall, bool IsRegCall) const;
1389   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
1390                                            const ABIArgInfo &current) const;
1391 
1392   X86AVXABILevel AVXLevel;
1393 
1394   bool IsMingw64;
1395 };
1396 
1397 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1398 public:
1399   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1400       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
1401     SwiftInfo =
1402         std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1403   }
1404 
1405   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
1406   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
1407   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
1408 
1409   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1410     return 7;
1411   }
1412 
1413   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1414                                llvm::Value *Address) const override {
1415     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1416 
1417     // 0-15 are the 16 integer registers.
1418     // 16 is %rip.
1419     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1420     return false;
1421   }
1422 
1423   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1424                                   StringRef Constraint,
1425                                   llvm::Type* Ty) const override {
1426     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1427   }
1428 
1429   bool isNoProtoCallVariadic(const CallArgList &args,
1430                              const FunctionNoProtoType *fnType) const override {
1431     // The default CC on x86-64 sets %al to the number of SSA
1432     // registers used, and GCC sets this when calling an unprototyped
1433     // function, so we override the default behavior.  However, don't do
1434     // that when AVX types are involved: the ABI explicitly states it is
1435     // undefined, and it doesn't work in practice because of how the ABI
1436     // defines varargs anyway.
1437     if (fnType->getCallConv() == CC_C) {
1438       bool HasAVXType = false;
1439       for (CallArgList::const_iterator
1440              it = args.begin(), ie = args.end(); it != ie; ++it) {
1441         if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
1442           HasAVXType = true;
1443           break;
1444         }
1445       }
1446 
1447       if (!HasAVXType)
1448         return true;
1449     }
1450 
1451     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1452   }
1453 
1454   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1455                            CodeGen::CodeGenModule &CGM) const override {
1456     if (GV->isDeclaration())
1457       return;
1458     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1459       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1460         llvm::Function *Fn = cast<llvm::Function>(GV);
1461         Fn->addFnAttr("stackrealign");
1462       }
1463 
1464       addX86InterruptAttrs(FD, GV, CGM);
1465     }
1466   }
1467 
1468   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
1469                             const FunctionDecl *Caller,
1470                             const FunctionDecl *Callee,
1471                             const CallArgList &Args) const override;
1472 };
1473 } // namespace
1474 
1475 static void initFeatureMaps(const ASTContext &Ctx,
1476                             llvm::StringMap<bool> &CallerMap,
1477                             const FunctionDecl *Caller,
1478                             llvm::StringMap<bool> &CalleeMap,
1479                             const FunctionDecl *Callee) {
1480   if (CalleeMap.empty() && CallerMap.empty()) {
1481     // The caller is potentially nullptr in the case where the call isn't in a
1482     // function.  In this case, the getFunctionFeatureMap ensures we just get
1483     // the TU level setting (since it cannot be modified by 'target'..
1484     Ctx.getFunctionFeatureMap(CallerMap, Caller);
1485     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
1486   }
1487 }
1488 
1489 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
1490                                  SourceLocation CallLoc,
1491                                  const llvm::StringMap<bool> &CallerMap,
1492                                  const llvm::StringMap<bool> &CalleeMap,
1493                                  QualType Ty, StringRef Feature,
1494                                  bool IsArgument) {
1495   bool CallerHasFeat = CallerMap.lookup(Feature);
1496   bool CalleeHasFeat = CalleeMap.lookup(Feature);
1497   if (!CallerHasFeat && !CalleeHasFeat)
1498     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
1499            << IsArgument << Ty << Feature;
1500 
1501   // Mixing calling conventions here is very clearly an error.
1502   if (!CallerHasFeat || !CalleeHasFeat)
1503     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
1504            << IsArgument << Ty << Feature;
1505 
1506   // Else, both caller and callee have the required feature, so there is no need
1507   // to diagnose.
1508   return false;
1509 }
1510 
1511 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
1512                           SourceLocation CallLoc,
1513                           const llvm::StringMap<bool> &CallerMap,
1514                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
1515                           bool IsArgument) {
1516   uint64_t Size = Ctx.getTypeSize(Ty);
1517   if (Size > 256)
1518     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
1519                                 "avx512f", IsArgument);
1520 
1521   if (Size > 128)
1522     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
1523                                 IsArgument);
1524 
1525   return false;
1526 }
1527 
1528 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
1529     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
1530     const FunctionDecl *Callee, const CallArgList &Args) const {
1531   llvm::StringMap<bool> CallerMap;
1532   llvm::StringMap<bool> CalleeMap;
1533   unsigned ArgIndex = 0;
1534 
1535   // We need to loop through the actual call arguments rather than the
1536   // function's parameters, in case this variadic.
1537   for (const CallArg &Arg : Args) {
1538     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
1539     // additionally changes how vectors >256 in size are passed. Like GCC, we
1540     // warn when a function is called with an argument where this will change.
1541     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
1542     // the caller and callee features are mismatched.
1543     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
1544     // change its ABI with attribute-target after this call.
1545     if (Arg.getType()->isVectorType() &&
1546         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
1547       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1548       QualType Ty = Arg.getType();
1549       // The CallArg seems to have desugared the type already, so for clearer
1550       // diagnostics, replace it with the type in the FunctionDecl if possible.
1551       if (ArgIndex < Callee->getNumParams())
1552         Ty = Callee->getParamDecl(ArgIndex)->getType();
1553 
1554       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
1555                         CalleeMap, Ty, /*IsArgument*/ true))
1556         return;
1557     }
1558     ++ArgIndex;
1559   }
1560 
1561   // Check return always, as we don't have a good way of knowing in codegen
1562   // whether this value is used, tail-called, etc.
1563   if (Callee->getReturnType()->isVectorType() &&
1564       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
1565     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1566     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
1567                   CalleeMap, Callee->getReturnType(),
1568                   /*IsArgument*/ false);
1569   }
1570 }
1571 
1572 std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
1573   // If the argument does not end in .lib, automatically add the suffix.
1574   // If the argument contains a space, enclose it in quotes.
1575   // This matches the behavior of MSVC.
1576   bool Quote = Lib.contains(' ');
1577   std::string ArgStr = Quote ? "\"" : "";
1578   ArgStr += Lib;
1579   if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
1580     ArgStr += ".lib";
1581   ArgStr += Quote ? "\"" : "";
1582   return ArgStr;
1583 }
1584 
1585 namespace {
1586 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1587 public:
1588   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1589         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1590         unsigned NumRegisterParameters)
1591     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1592         Win32StructABI, NumRegisterParameters, false) {}
1593 
1594   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1595                            CodeGen::CodeGenModule &CGM) const override;
1596 
1597   void getDependentLibraryOption(llvm::StringRef Lib,
1598                                  llvm::SmallString<24> &Opt) const override {
1599     Opt = "/DEFAULTLIB:";
1600     Opt += qualifyWindowsLibrary(Lib);
1601   }
1602 
1603   void getDetectMismatchOption(llvm::StringRef Name,
1604                                llvm::StringRef Value,
1605                                llvm::SmallString<32> &Opt) const override {
1606     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1607   }
1608 };
1609 } // namespace
1610 
1611 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
1612     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1613   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1614   if (GV->isDeclaration())
1615     return;
1616   addStackProbeTargetAttributes(D, GV, CGM);
1617 }
1618 
1619 namespace {
1620 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1621 public:
1622   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1623                              X86AVXABILevel AVXLevel)
1624       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
1625     SwiftInfo =
1626         std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1627   }
1628 
1629   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1630                            CodeGen::CodeGenModule &CGM) const override;
1631 
1632   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1633     return 7;
1634   }
1635 
1636   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1637                                llvm::Value *Address) const override {
1638     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1639 
1640     // 0-15 are the 16 integer registers.
1641     // 16 is %rip.
1642     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1643     return false;
1644   }
1645 
1646   void getDependentLibraryOption(llvm::StringRef Lib,
1647                                  llvm::SmallString<24> &Opt) const override {
1648     Opt = "/DEFAULTLIB:";
1649     Opt += qualifyWindowsLibrary(Lib);
1650   }
1651 
1652   void getDetectMismatchOption(llvm::StringRef Name,
1653                                llvm::StringRef Value,
1654                                llvm::SmallString<32> &Opt) const override {
1655     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1656   }
1657 };
1658 } // namespace
1659 
1660 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
1661     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1662   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1663   if (GV->isDeclaration())
1664     return;
1665   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1666     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1667       llvm::Function *Fn = cast<llvm::Function>(GV);
1668       Fn->addFnAttr("stackrealign");
1669     }
1670 
1671     addX86InterruptAttrs(FD, GV, CGM);
1672   }
1673 
1674   addStackProbeTargetAttributes(D, GV, CGM);
1675 }
1676 
1677 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1678                               Class &Hi) const {
1679   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1680   //
1681   // (a) If one of the classes is Memory, the whole argument is passed in
1682   //     memory.
1683   //
1684   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1685   //     memory.
1686   //
1687   // (c) If the size of the aggregate exceeds two eightbytes and the first
1688   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1689   //     argument is passed in memory. NOTE: This is necessary to keep the
1690   //     ABI working for processors that don't support the __m256 type.
1691   //
1692   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1693   //
1694   // Some of these are enforced by the merging logic.  Others can arise
1695   // only with unions; for example:
1696   //   union { _Complex double; unsigned; }
1697   //
1698   // Note that clauses (b) and (c) were added in 0.98.
1699   //
1700   if (Hi == Memory)
1701     Lo = Memory;
1702   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1703     Lo = Memory;
1704   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1705     Lo = Memory;
1706   if (Hi == SSEUp && Lo != SSE)
1707     Hi = SSE;
1708 }
1709 
1710 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1711   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1712   // classified recursively so that always two fields are
1713   // considered. The resulting class is calculated according to
1714   // the classes of the fields in the eightbyte:
1715   //
1716   // (a) If both classes are equal, this is the resulting class.
1717   //
1718   // (b) If one of the classes is NO_CLASS, the resulting class is
1719   // the other class.
1720   //
1721   // (c) If one of the classes is MEMORY, the result is the MEMORY
1722   // class.
1723   //
1724   // (d) If one of the classes is INTEGER, the result is the
1725   // INTEGER.
1726   //
1727   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1728   // MEMORY is used as class.
1729   //
1730   // (f) Otherwise class SSE is used.
1731 
1732   // Accum should never be memory (we should have returned) or
1733   // ComplexX87 (because this cannot be passed in a structure).
1734   assert((Accum != Memory && Accum != ComplexX87) &&
1735          "Invalid accumulated classification during merge.");
1736   if (Accum == Field || Field == NoClass)
1737     return Accum;
1738   if (Field == Memory)
1739     return Memory;
1740   if (Accum == NoClass)
1741     return Field;
1742   if (Accum == Integer || Field == Integer)
1743     return Integer;
1744   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1745       Accum == X87 || Accum == X87Up)
1746     return Memory;
1747   return SSE;
1748 }
1749 
1750 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
1751                              Class &Hi, bool isNamedArg, bool IsRegCall) const {
1752   // FIXME: This code can be simplified by introducing a simple value class for
1753   // Class pairs with appropriate constructor methods for the various
1754   // situations.
1755 
1756   // FIXME: Some of the split computations are wrong; unaligned vectors
1757   // shouldn't be passed in registers for example, so there is no chance they
1758   // can straddle an eightbyte. Verify & simplify.
1759 
1760   Lo = Hi = NoClass;
1761 
1762   Class &Current = OffsetBase < 64 ? Lo : Hi;
1763   Current = Memory;
1764 
1765   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1766     BuiltinType::Kind k = BT->getKind();
1767 
1768     if (k == BuiltinType::Void) {
1769       Current = NoClass;
1770     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1771       Lo = Integer;
1772       Hi = Integer;
1773     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1774       Current = Integer;
1775     } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
1776                k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
1777       Current = SSE;
1778     } else if (k == BuiltinType::LongDouble) {
1779       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1780       if (LDF == &llvm::APFloat::IEEEquad()) {
1781         Lo = SSE;
1782         Hi = SSEUp;
1783       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
1784         Lo = X87;
1785         Hi = X87Up;
1786       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
1787         Current = SSE;
1788       } else
1789         llvm_unreachable("unexpected long double representation!");
1790     }
1791     // FIXME: _Decimal32 and _Decimal64 are SSE.
1792     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1793     return;
1794   }
1795 
1796   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1797     // Classify the underlying integer type.
1798     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1799     return;
1800   }
1801 
1802   if (Ty->hasPointerRepresentation()) {
1803     Current = Integer;
1804     return;
1805   }
1806 
1807   if (Ty->isMemberPointerType()) {
1808     if (Ty->isMemberFunctionPointerType()) {
1809       if (Has64BitPointers) {
1810         // If Has64BitPointers, this is an {i64, i64}, so classify both
1811         // Lo and Hi now.
1812         Lo = Hi = Integer;
1813       } else {
1814         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1815         // straddles an eightbyte boundary, Hi should be classified as well.
1816         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1817         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1818         if (EB_FuncPtr != EB_ThisAdj) {
1819           Lo = Hi = Integer;
1820         } else {
1821           Current = Integer;
1822         }
1823       }
1824     } else {
1825       Current = Integer;
1826     }
1827     return;
1828   }
1829 
1830   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1831     uint64_t Size = getContext().getTypeSize(VT);
1832     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
1833       // gcc passes the following as integer:
1834       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
1835       // 2 bytes - <2 x char>, <1 x short>
1836       // 1 byte  - <1 x char>
1837       Current = Integer;
1838 
1839       // If this type crosses an eightbyte boundary, it should be
1840       // split.
1841       uint64_t EB_Lo = (OffsetBase) / 64;
1842       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
1843       if (EB_Lo != EB_Hi)
1844         Hi = Lo;
1845     } else if (Size == 64) {
1846       QualType ElementType = VT->getElementType();
1847 
1848       // gcc passes <1 x double> in memory. :(
1849       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
1850         return;
1851 
1852       // gcc passes <1 x long long> as SSE but clang used to unconditionally
1853       // pass them as integer.  For platforms where clang is the de facto
1854       // platform compiler, we must continue to use integer.
1855       if (!classifyIntegerMMXAsSSE() &&
1856           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
1857            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1858            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
1859            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
1860         Current = Integer;
1861       else
1862         Current = SSE;
1863 
1864       // If this type crosses an eightbyte boundary, it should be
1865       // split.
1866       if (OffsetBase && OffsetBase != 64)
1867         Hi = Lo;
1868     } else if (Size == 128 ||
1869                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
1870       QualType ElementType = VT->getElementType();
1871 
1872       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
1873       if (passInt128VectorsInMem() && Size != 128 &&
1874           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
1875            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
1876         return;
1877 
1878       // Arguments of 256-bits are split into four eightbyte chunks. The
1879       // least significant one belongs to class SSE and all the others to class
1880       // SSEUP. The original Lo and Hi design considers that types can't be
1881       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1882       // This design isn't correct for 256-bits, but since there're no cases
1883       // where the upper parts would need to be inspected, avoid adding
1884       // complexity and just consider Hi to match the 64-256 part.
1885       //
1886       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1887       // registers if they are "named", i.e. not part of the "..." of a
1888       // variadic function.
1889       //
1890       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
1891       // split into eight eightbyte chunks, one SSE and seven SSEUP.
1892       Lo = SSE;
1893       Hi = SSEUp;
1894     }
1895     return;
1896   }
1897 
1898   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1899     QualType ET = getContext().getCanonicalType(CT->getElementType());
1900 
1901     uint64_t Size = getContext().getTypeSize(Ty);
1902     if (ET->isIntegralOrEnumerationType()) {
1903       if (Size <= 64)
1904         Current = Integer;
1905       else if (Size <= 128)
1906         Lo = Hi = Integer;
1907     } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
1908                ET->isBFloat16Type()) {
1909       Current = SSE;
1910     } else if (ET == getContext().DoubleTy) {
1911       Lo = Hi = SSE;
1912     } else if (ET == getContext().LongDoubleTy) {
1913       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1914       if (LDF == &llvm::APFloat::IEEEquad())
1915         Current = Memory;
1916       else if (LDF == &llvm::APFloat::x87DoubleExtended())
1917         Current = ComplexX87;
1918       else if (LDF == &llvm::APFloat::IEEEdouble())
1919         Lo = Hi = SSE;
1920       else
1921         llvm_unreachable("unexpected long double representation!");
1922     }
1923 
1924     // If this complex type crosses an eightbyte boundary then it
1925     // should be split.
1926     uint64_t EB_Real = (OffsetBase) / 64;
1927     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1928     if (Hi == NoClass && EB_Real != EB_Imag)
1929       Hi = Lo;
1930 
1931     return;
1932   }
1933 
1934   if (const auto *EITy = Ty->getAs<BitIntType>()) {
1935     if (EITy->getNumBits() <= 64)
1936       Current = Integer;
1937     else if (EITy->getNumBits() <= 128)
1938       Lo = Hi = Integer;
1939     // Larger values need to get passed in memory.
1940     return;
1941   }
1942 
1943   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1944     // Arrays are treated like structures.
1945 
1946     uint64_t Size = getContext().getTypeSize(Ty);
1947 
1948     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1949     // than eight eightbytes, ..., it has class MEMORY.
1950     // regcall ABI doesn't have limitation to an object. The only limitation
1951     // is the free registers, which will be checked in computeInfo.
1952     if (!IsRegCall && Size > 512)
1953       return;
1954 
1955     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1956     // fields, it has class MEMORY.
1957     //
1958     // Only need to check alignment of array base.
1959     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1960       return;
1961 
1962     // Otherwise implement simplified merge. We could be smarter about
1963     // this, but it isn't worth it and would be harder to verify.
1964     Current = NoClass;
1965     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1966     uint64_t ArraySize = AT->getSize().getZExtValue();
1967 
1968     // The only case a 256-bit wide vector could be used is when the array
1969     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1970     // to work for sizes wider than 128, early check and fallback to memory.
1971     //
1972     if (Size > 128 &&
1973         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
1974       return;
1975 
1976     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1977       Class FieldLo, FieldHi;
1978       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1979       Lo = merge(Lo, FieldLo);
1980       Hi = merge(Hi, FieldHi);
1981       if (Lo == Memory || Hi == Memory)
1982         break;
1983     }
1984 
1985     postMerge(Size, Lo, Hi);
1986     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1987     return;
1988   }
1989 
1990   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1991     uint64_t Size = getContext().getTypeSize(Ty);
1992 
1993     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1994     // than eight eightbytes, ..., it has class MEMORY.
1995     if (Size > 512)
1996       return;
1997 
1998     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1999     // copy constructor or a non-trivial destructor, it is passed by invisible
2000     // reference.
2001     if (getRecordArgABI(RT, getCXXABI()))
2002       return;
2003 
2004     const RecordDecl *RD = RT->getDecl();
2005 
2006     // Assume variable sized types are passed in memory.
2007     if (RD->hasFlexibleArrayMember())
2008       return;
2009 
2010     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2011 
2012     // Reset Lo class, this will be recomputed.
2013     Current = NoClass;
2014 
2015     // If this is a C++ record, classify the bases first.
2016     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2017       for (const auto &I : CXXRD->bases()) {
2018         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2019                "Unexpected base class!");
2020         const auto *Base =
2021             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2022 
2023         // Classify this field.
2024         //
2025         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2026         // single eightbyte, each is classified separately. Each eightbyte gets
2027         // initialized to class NO_CLASS.
2028         Class FieldLo, FieldHi;
2029         uint64_t Offset =
2030           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2031         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2032         Lo = merge(Lo, FieldLo);
2033         Hi = merge(Hi, FieldHi);
2034         if (Lo == Memory || Hi == Memory) {
2035           postMerge(Size, Lo, Hi);
2036           return;
2037         }
2038       }
2039     }
2040 
2041     // Classify the fields one at a time, merging the results.
2042     unsigned idx = 0;
2043     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
2044                                 LangOptions::ClangABI::Ver11 ||
2045                             getContext().getTargetInfo().getTriple().isPS();
2046     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
2047 
2048     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2049            i != e; ++i, ++idx) {
2050       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2051       bool BitField = i->isBitField();
2052 
2053       // Ignore padding bit-fields.
2054       if (BitField && i->isUnnamedBitfield())
2055         continue;
2056 
2057       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2058       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
2059       //
2060       // The only case a 256-bit or a 512-bit wide vector could be used is when
2061       // the struct contains a single 256-bit or 512-bit element. Early check
2062       // and fallback to memory.
2063       //
2064       // FIXME: Extended the Lo and Hi logic properly to work for size wider
2065       // than 128.
2066       if (Size > 128 &&
2067           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
2068            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2069         Lo = Memory;
2070         postMerge(Size, Lo, Hi);
2071         return;
2072       }
2073       // Note, skip this test for bit-fields, see below.
2074       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2075         Lo = Memory;
2076         postMerge(Size, Lo, Hi);
2077         return;
2078       }
2079 
2080       // Classify this field.
2081       //
2082       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2083       // exceeds a single eightbyte, each is classified
2084       // separately. Each eightbyte gets initialized to class
2085       // NO_CLASS.
2086       Class FieldLo, FieldHi;
2087 
2088       // Bit-fields require special handling, they do not force the
2089       // structure to be passed in memory even if unaligned, and
2090       // therefore they can straddle an eightbyte.
2091       if (BitField) {
2092         assert(!i->isUnnamedBitfield());
2093         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2094         uint64_t Size = i->getBitWidthValue(getContext());
2095 
2096         uint64_t EB_Lo = Offset / 64;
2097         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2098 
2099         if (EB_Lo) {
2100           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2101           FieldLo = NoClass;
2102           FieldHi = Integer;
2103         } else {
2104           FieldLo = Integer;
2105           FieldHi = EB_Hi ? Integer : NoClass;
2106         }
2107       } else
2108         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2109       Lo = merge(Lo, FieldLo);
2110       Hi = merge(Hi, FieldHi);
2111       if (Lo == Memory || Hi == Memory)
2112         break;
2113     }
2114 
2115     postMerge(Size, Lo, Hi);
2116   }
2117 }
2118 
2119 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2120   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2121   // place naturally.
2122   if (!isAggregateTypeForABI(Ty)) {
2123     // Treat an enum type as its underlying type.
2124     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2125       Ty = EnumTy->getDecl()->getIntegerType();
2126 
2127     if (Ty->isBitIntType())
2128       return getNaturalAlignIndirect(Ty);
2129 
2130     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2131                                               : ABIArgInfo::getDirect());
2132   }
2133 
2134   return getNaturalAlignIndirect(Ty);
2135 }
2136 
2137 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2138   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2139     uint64_t Size = getContext().getTypeSize(VecTy);
2140     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2141     if (Size <= 64 || Size > LargestVector)
2142       return true;
2143     QualType EltTy = VecTy->getElementType();
2144     if (passInt128VectorsInMem() &&
2145         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2146          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2147       return true;
2148   }
2149 
2150   return false;
2151 }
2152 
2153 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2154                                             unsigned freeIntRegs) const {
2155   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2156   // place naturally.
2157   //
2158   // This assumption is optimistic, as there could be free registers available
2159   // when we need to pass this argument in memory, and LLVM could try to pass
2160   // the argument in the free register. This does not seem to happen currently,
2161   // but this code would be much safer if we could mark the argument with
2162   // 'onstack'. See PR12193.
2163   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
2164       !Ty->isBitIntType()) {
2165     // Treat an enum type as its underlying type.
2166     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2167       Ty = EnumTy->getDecl()->getIntegerType();
2168 
2169     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2170                                               : ABIArgInfo::getDirect());
2171   }
2172 
2173   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2174     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2175 
2176   // Compute the byval alignment. We specify the alignment of the byval in all
2177   // cases so that the mid-level optimizer knows the alignment of the byval.
2178   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2179 
2180   // Attempt to avoid passing indirect results using byval when possible. This
2181   // is important for good codegen.
2182   //
2183   // We do this by coercing the value into a scalar type which the backend can
2184   // handle naturally (i.e., without using byval).
2185   //
2186   // For simplicity, we currently only do this when we have exhausted all of the
2187   // free integer registers. Doing this when there are free integer registers
2188   // would require more care, as we would have to ensure that the coerced value
2189   // did not claim the unused register. That would require either reording the
2190   // arguments to the function (so that any subsequent inreg values came first),
2191   // or only doing this optimization when there were no following arguments that
2192   // might be inreg.
2193   //
2194   // We currently expect it to be rare (particularly in well written code) for
2195   // arguments to be passed on the stack when there are still free integer
2196   // registers available (this would typically imply large structs being passed
2197   // by value), so this seems like a fair tradeoff for now.
2198   //
2199   // We can revisit this if the backend grows support for 'onstack' parameter
2200   // attributes. See PR12193.
2201   if (freeIntRegs == 0) {
2202     uint64_t Size = getContext().getTypeSize(Ty);
2203 
2204     // If this type fits in an eightbyte, coerce it into the matching integral
2205     // type, which will end up on the stack (with alignment 8).
2206     if (Align == 8 && Size <= 64)
2207       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2208                                                           Size));
2209   }
2210 
2211   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2212 }
2213 
2214 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2215 /// register. Pick an LLVM IR type that will be passed as a vector register.
2216 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2217   // Wrapper structs/arrays that only contain vectors are passed just like
2218   // vectors; strip them off if present.
2219   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2220     Ty = QualType(InnerTy, 0);
2221 
2222   llvm::Type *IRType = CGT.ConvertType(Ty);
2223   if (isa<llvm::VectorType>(IRType)) {
2224     // Don't pass vXi128 vectors in their native type, the backend can't
2225     // legalize them.
2226     if (passInt128VectorsInMem() &&
2227         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
2228       // Use a vXi64 vector.
2229       uint64_t Size = getContext().getTypeSize(Ty);
2230       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
2231                                         Size / 64);
2232     }
2233 
2234     return IRType;
2235   }
2236 
2237   if (IRType->getTypeID() == llvm::Type::FP128TyID)
2238     return IRType;
2239 
2240   // We couldn't find the preferred IR vector type for 'Ty'.
2241   uint64_t Size = getContext().getTypeSize(Ty);
2242   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2243 
2244 
2245   // Return a LLVM IR vector type based on the size of 'Ty'.
2246   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2247                                     Size / 64);
2248 }
2249 
2250 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2251 /// is known to either be off the end of the specified type or being in
2252 /// alignment padding.  The user type specified is known to be at most 128 bits
2253 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2254 /// classification that put one of the two halves in the INTEGER class.
2255 ///
2256 /// It is conservatively correct to return false.
2257 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2258                                   unsigned EndBit, ASTContext &Context) {
2259   // If the bytes being queried are off the end of the type, there is no user
2260   // data hiding here.  This handles analysis of builtins, vectors and other
2261   // types that don't contain interesting padding.
2262   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2263   if (TySize <= StartBit)
2264     return true;
2265 
2266   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2267     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2268     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2269 
2270     // Check each element to see if the element overlaps with the queried range.
2271     for (unsigned i = 0; i != NumElts; ++i) {
2272       // If the element is after the span we care about, then we're done..
2273       unsigned EltOffset = i*EltSize;
2274       if (EltOffset >= EndBit) break;
2275 
2276       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2277       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2278                                  EndBit-EltOffset, Context))
2279         return false;
2280     }
2281     // If it overlaps no elements, then it is safe to process as padding.
2282     return true;
2283   }
2284 
2285   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2286     const RecordDecl *RD = RT->getDecl();
2287     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2288 
2289     // If this is a C++ record, check the bases first.
2290     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2291       for (const auto &I : CXXRD->bases()) {
2292         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2293                "Unexpected base class!");
2294         const auto *Base =
2295             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2296 
2297         // If the base is after the span we care about, ignore it.
2298         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2299         if (BaseOffset >= EndBit) continue;
2300 
2301         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2302         if (!BitsContainNoUserData(I.getType(), BaseStart,
2303                                    EndBit-BaseOffset, Context))
2304           return false;
2305       }
2306     }
2307 
2308     // Verify that no field has data that overlaps the region of interest.  Yes
2309     // this could be sped up a lot by being smarter about queried fields,
2310     // however we're only looking at structs up to 16 bytes, so we don't care
2311     // much.
2312     unsigned idx = 0;
2313     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2314          i != e; ++i, ++idx) {
2315       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2316 
2317       // If we found a field after the region we care about, then we're done.
2318       if (FieldOffset >= EndBit) break;
2319 
2320       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2321       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2322                                  Context))
2323         return false;
2324     }
2325 
2326     // If nothing in this record overlapped the area of interest, then we're
2327     // clean.
2328     return true;
2329   }
2330 
2331   return false;
2332 }
2333 
2334 /// getFPTypeAtOffset - Return a floating point type at the specified offset.
2335 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2336                                      const llvm::DataLayout &TD) {
2337   if (IROffset == 0 && IRType->isFloatingPointTy())
2338     return IRType;
2339 
2340   // If this is a struct, recurse into the field at the specified offset.
2341   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2342     if (!STy->getNumContainedTypes())
2343       return nullptr;
2344 
2345     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2346     unsigned Elt = SL->getElementContainingOffset(IROffset);
2347     IROffset -= SL->getElementOffset(Elt);
2348     return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
2349   }
2350 
2351   // If this is an array, recurse into the field at the specified offset.
2352   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2353     llvm::Type *EltTy = ATy->getElementType();
2354     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2355     IROffset -= IROffset / EltSize * EltSize;
2356     return getFPTypeAtOffset(EltTy, IROffset, TD);
2357   }
2358 
2359   return nullptr;
2360 }
2361 
2362 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2363 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2364 llvm::Type *X86_64ABIInfo::
2365 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2366                    QualType SourceTy, unsigned SourceOffset) const {
2367   const llvm::DataLayout &TD = getDataLayout();
2368   unsigned SourceSize =
2369       (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
2370   llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
2371   if (!T0 || T0->isDoubleTy())
2372     return llvm::Type::getDoubleTy(getVMContext());
2373 
2374   // Get the adjacent FP type.
2375   llvm::Type *T1 = nullptr;
2376   unsigned T0Size = TD.getTypeAllocSize(T0);
2377   if (SourceSize > T0Size)
2378       T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
2379   if (T1 == nullptr) {
2380     // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
2381     // to its alignment.
2382     if (T0->is16bitFPTy() && SourceSize > 4)
2383       T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2384     // If we can't get a second FP type, return a simple half or float.
2385     // avx512fp16-abi.c:pr51813_2 shows it works to return float for
2386     // {float, i8} too.
2387     if (T1 == nullptr)
2388       return T0;
2389   }
2390 
2391   if (T0->isFloatTy() && T1->isFloatTy())
2392     return llvm::FixedVectorType::get(T0, 2);
2393 
2394   if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
2395     llvm::Type *T2 = nullptr;
2396     if (SourceSize > 4)
2397       T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2398     if (T2 == nullptr)
2399       return llvm::FixedVectorType::get(T0, 2);
2400     return llvm::FixedVectorType::get(T0, 4);
2401   }
2402 
2403   if (T0->is16bitFPTy() || T1->is16bitFPTy())
2404     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
2405 
2406   return llvm::Type::getDoubleTy(getVMContext());
2407 }
2408 
2409 
2410 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2411 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2412 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2413 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2414 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2415 /// etc).
2416 ///
2417 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2418 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2419 /// the 8-byte value references.  PrefType may be null.
2420 ///
2421 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2422 /// an offset into this that we're processing (which is always either 0 or 8).
2423 ///
2424 llvm::Type *X86_64ABIInfo::
2425 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2426                        QualType SourceTy, unsigned SourceOffset) const {
2427   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2428   // returning an 8-byte unit starting with it.  See if we can safely use it.
2429   if (IROffset == 0) {
2430     // Pointers and int64's always fill the 8-byte unit.
2431     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2432         IRType->isIntegerTy(64))
2433       return IRType;
2434 
2435     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2436     // goodness in the source type is just tail padding.  This is allowed to
2437     // kick in for struct {double,int} on the int, but not on
2438     // struct{double,int,int} because we wouldn't return the second int.  We
2439     // have to do this analysis on the source type because we can't depend on
2440     // unions being lowered a specific way etc.
2441     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2442         IRType->isIntegerTy(32) ||
2443         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2444       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2445           cast<llvm::IntegerType>(IRType)->getBitWidth();
2446 
2447       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2448                                 SourceOffset*8+64, getContext()))
2449         return IRType;
2450     }
2451   }
2452 
2453   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2454     // If this is a struct, recurse into the field at the specified offset.
2455     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2456     if (IROffset < SL->getSizeInBytes()) {
2457       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2458       IROffset -= SL->getElementOffset(FieldIdx);
2459 
2460       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2461                                     SourceTy, SourceOffset);
2462     }
2463   }
2464 
2465   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2466     llvm::Type *EltTy = ATy->getElementType();
2467     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2468     unsigned EltOffset = IROffset/EltSize*EltSize;
2469     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2470                                   SourceOffset);
2471   }
2472 
2473   // Okay, we don't have any better idea of what to pass, so we pass this in an
2474   // integer register that isn't too big to fit the rest of the struct.
2475   unsigned TySizeInBytes =
2476     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2477 
2478   assert(TySizeInBytes != SourceOffset && "Empty field?");
2479 
2480   // It is always safe to classify this as an integer type up to i64 that
2481   // isn't larger than the structure.
2482   return llvm::IntegerType::get(getVMContext(),
2483                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2484 }
2485 
2486 
2487 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2488 /// be used as elements of a two register pair to pass or return, return a
2489 /// first class aggregate to represent them.  For example, if the low part of
2490 /// a by-value argument should be passed as i32* and the high part as float,
2491 /// return {i32*, float}.
2492 static llvm::Type *
2493 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2494                            const llvm::DataLayout &TD) {
2495   // In order to correctly satisfy the ABI, we need to the high part to start
2496   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2497   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2498   // the second element at offset 8.  Check for this:
2499   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2500   llvm::Align HiAlign = TD.getABITypeAlign(Hi);
2501   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2502   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2503 
2504   // To handle this, we have to increase the size of the low part so that the
2505   // second element will start at an 8 byte offset.  We can't increase the size
2506   // of the second element because it might make us access off the end of the
2507   // struct.
2508   if (HiStart != 8) {
2509     // There are usually two sorts of types the ABI generation code can produce
2510     // for the low part of a pair that aren't 8 bytes in size: half, float or
2511     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2512     // NaCl).
2513     // Promote these to a larger type.
2514     if (Lo->isHalfTy() || Lo->isFloatTy())
2515       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2516     else {
2517       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2518              && "Invalid/unknown lo type");
2519       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2520     }
2521   }
2522 
2523   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
2524 
2525   // Verify that the second element is at an 8-byte offset.
2526   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2527          "Invalid x86-64 argument pair!");
2528   return Result;
2529 }
2530 
2531 ABIArgInfo X86_64ABIInfo::
2532 classifyReturnType(QualType RetTy) const {
2533   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2534   // classification algorithm.
2535   X86_64ABIInfo::Class Lo, Hi;
2536   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2537 
2538   // Check some invariants.
2539   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2540   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2541 
2542   llvm::Type *ResType = nullptr;
2543   switch (Lo) {
2544   case NoClass:
2545     if (Hi == NoClass)
2546       return ABIArgInfo::getIgnore();
2547     // If the low part is just padding, it takes no register, leave ResType
2548     // null.
2549     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2550            "Unknown missing lo part");
2551     break;
2552 
2553   case SSEUp:
2554   case X87Up:
2555     llvm_unreachable("Invalid classification for lo word.");
2556 
2557     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2558     // hidden argument.
2559   case Memory:
2560     return getIndirectReturnResult(RetTy);
2561 
2562     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2563     // available register of the sequence %rax, %rdx is used.
2564   case Integer:
2565     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2566 
2567     // If we have a sign or zero extended integer, make sure to return Extend
2568     // so that the parameter gets the right LLVM IR attributes.
2569     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2570       // Treat an enum type as its underlying type.
2571       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2572         RetTy = EnumTy->getDecl()->getIntegerType();
2573 
2574       if (RetTy->isIntegralOrEnumerationType() &&
2575           isPromotableIntegerTypeForABI(RetTy))
2576         return ABIArgInfo::getExtend(RetTy);
2577     }
2578     break;
2579 
2580     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2581     // available SSE register of the sequence %xmm0, %xmm1 is used.
2582   case SSE:
2583     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2584     break;
2585 
2586     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2587     // returned on the X87 stack in %st0 as 80-bit x87 number.
2588   case X87:
2589     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2590     break;
2591 
2592     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2593     // part of the value is returned in %st0 and the imaginary part in
2594     // %st1.
2595   case ComplexX87:
2596     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2597     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2598                                     llvm::Type::getX86_FP80Ty(getVMContext()));
2599     break;
2600   }
2601 
2602   llvm::Type *HighPart = nullptr;
2603   switch (Hi) {
2604     // Memory was handled previously and X87 should
2605     // never occur as a hi class.
2606   case Memory:
2607   case X87:
2608     llvm_unreachable("Invalid classification for hi word.");
2609 
2610   case ComplexX87: // Previously handled.
2611   case NoClass:
2612     break;
2613 
2614   case Integer:
2615     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2616     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2617       return ABIArgInfo::getDirect(HighPart, 8);
2618     break;
2619   case SSE:
2620     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2621     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2622       return ABIArgInfo::getDirect(HighPart, 8);
2623     break;
2624 
2625     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2626     // is passed in the next available eightbyte chunk if the last used
2627     // vector register.
2628     //
2629     // SSEUP should always be preceded by SSE, just widen.
2630   case SSEUp:
2631     assert(Lo == SSE && "Unexpected SSEUp classification.");
2632     ResType = GetByteVectorType(RetTy);
2633     break;
2634 
2635     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2636     // returned together with the previous X87 value in %st0.
2637   case X87Up:
2638     // If X87Up is preceded by X87, we don't need to do
2639     // anything. However, in some cases with unions it may not be
2640     // preceded by X87. In such situations we follow gcc and pass the
2641     // extra bits in an SSE reg.
2642     if (Lo != X87) {
2643       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2644       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2645         return ABIArgInfo::getDirect(HighPart, 8);
2646     }
2647     break;
2648   }
2649 
2650   // If a high part was specified, merge it together with the low part.  It is
2651   // known to pass in the high eightbyte of the result.  We do this by forming a
2652   // first class struct aggregate with the high and low part: {low, high}
2653   if (HighPart)
2654     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2655 
2656   return ABIArgInfo::getDirect(ResType);
2657 }
2658 
2659 ABIArgInfo
2660 X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2661                                     unsigned &neededInt, unsigned &neededSSE,
2662                                     bool isNamedArg, bool IsRegCall) const {
2663   Ty = useFirstFieldIfTransparentUnion(Ty);
2664 
2665   X86_64ABIInfo::Class Lo, Hi;
2666   classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
2667 
2668   // Check some invariants.
2669   // FIXME: Enforce these by construction.
2670   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2671   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2672 
2673   neededInt = 0;
2674   neededSSE = 0;
2675   llvm::Type *ResType = nullptr;
2676   switch (Lo) {
2677   case NoClass:
2678     if (Hi == NoClass)
2679       return ABIArgInfo::getIgnore();
2680     // If the low part is just padding, it takes no register, leave ResType
2681     // null.
2682     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2683            "Unknown missing lo part");
2684     break;
2685 
2686     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2687     // on the stack.
2688   case Memory:
2689 
2690     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2691     // COMPLEX_X87, it is passed in memory.
2692   case X87:
2693   case ComplexX87:
2694     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2695       ++neededInt;
2696     return getIndirectResult(Ty, freeIntRegs);
2697 
2698   case SSEUp:
2699   case X87Up:
2700     llvm_unreachable("Invalid classification for lo word.");
2701 
2702     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2703     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2704     // and %r9 is used.
2705   case Integer:
2706     ++neededInt;
2707 
2708     // Pick an 8-byte type based on the preferred type.
2709     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2710 
2711     // If we have a sign or zero extended integer, make sure to return Extend
2712     // so that the parameter gets the right LLVM IR attributes.
2713     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2714       // Treat an enum type as its underlying type.
2715       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2716         Ty = EnumTy->getDecl()->getIntegerType();
2717 
2718       if (Ty->isIntegralOrEnumerationType() &&
2719           isPromotableIntegerTypeForABI(Ty))
2720         return ABIArgInfo::getExtend(Ty);
2721     }
2722 
2723     break;
2724 
2725     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2726     // available SSE register is used, the registers are taken in the
2727     // order from %xmm0 to %xmm7.
2728   case SSE: {
2729     llvm::Type *IRType = CGT.ConvertType(Ty);
2730     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2731     ++neededSSE;
2732     break;
2733   }
2734   }
2735 
2736   llvm::Type *HighPart = nullptr;
2737   switch (Hi) {
2738     // Memory was handled previously, ComplexX87 and X87 should
2739     // never occur as hi classes, and X87Up must be preceded by X87,
2740     // which is passed in memory.
2741   case Memory:
2742   case X87:
2743   case ComplexX87:
2744     llvm_unreachable("Invalid classification for hi word.");
2745 
2746   case NoClass: break;
2747 
2748   case Integer:
2749     ++neededInt;
2750     // Pick an 8-byte type based on the preferred type.
2751     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2752 
2753     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2754       return ABIArgInfo::getDirect(HighPart, 8);
2755     break;
2756 
2757     // X87Up generally doesn't occur here (long double is passed in
2758     // memory), except in situations involving unions.
2759   case X87Up:
2760   case SSE:
2761     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2762 
2763     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2764       return ABIArgInfo::getDirect(HighPart, 8);
2765 
2766     ++neededSSE;
2767     break;
2768 
2769     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2770     // eightbyte is passed in the upper half of the last used SSE
2771     // register.  This only happens when 128-bit vectors are passed.
2772   case SSEUp:
2773     assert(Lo == SSE && "Unexpected SSEUp classification");
2774     ResType = GetByteVectorType(Ty);
2775     break;
2776   }
2777 
2778   // If a high part was specified, merge it together with the low part.  It is
2779   // known to pass in the high eightbyte of the result.  We do this by forming a
2780   // first class struct aggregate with the high and low part: {low, high}
2781   if (HighPart)
2782     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2783 
2784   return ABIArgInfo::getDirect(ResType);
2785 }
2786 
2787 ABIArgInfo
2788 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2789                                              unsigned &NeededSSE,
2790                                              unsigned &MaxVectorWidth) const {
2791   auto RT = Ty->getAs<RecordType>();
2792   assert(RT && "classifyRegCallStructType only valid with struct types");
2793 
2794   if (RT->getDecl()->hasFlexibleArrayMember())
2795     return getIndirectReturnResult(Ty);
2796 
2797   // Sum up bases
2798   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2799     if (CXXRD->isDynamicClass()) {
2800       NeededInt = NeededSSE = 0;
2801       return getIndirectReturnResult(Ty);
2802     }
2803 
2804     for (const auto &I : CXXRD->bases())
2805       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
2806                                         MaxVectorWidth)
2807               .isIndirect()) {
2808         NeededInt = NeededSSE = 0;
2809         return getIndirectReturnResult(Ty);
2810       }
2811   }
2812 
2813   // Sum up members
2814   for (const auto *FD : RT->getDecl()->fields()) {
2815     QualType MTy = FD->getType();
2816     if (MTy->isRecordType() && !MTy->isUnionType()) {
2817       if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
2818                                         MaxVectorWidth)
2819               .isIndirect()) {
2820         NeededInt = NeededSSE = 0;
2821         return getIndirectReturnResult(Ty);
2822       }
2823     } else {
2824       unsigned LocalNeededInt, LocalNeededSSE;
2825       if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
2826                                true, true)
2827               .isIndirect()) {
2828         NeededInt = NeededSSE = 0;
2829         return getIndirectReturnResult(Ty);
2830       }
2831       if (const auto *AT = getContext().getAsConstantArrayType(MTy))
2832         MTy = AT->getElementType();
2833       if (const auto *VT = MTy->getAs<VectorType>())
2834         if (getContext().getTypeSize(VT) > MaxVectorWidth)
2835           MaxVectorWidth = getContext().getTypeSize(VT);
2836       NeededInt += LocalNeededInt;
2837       NeededSSE += LocalNeededSSE;
2838     }
2839   }
2840 
2841   return ABIArgInfo::getDirect();
2842 }
2843 
2844 ABIArgInfo
2845 X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2846                                          unsigned &NeededSSE,
2847                                          unsigned &MaxVectorWidth) const {
2848 
2849   NeededInt = 0;
2850   NeededSSE = 0;
2851   MaxVectorWidth = 0;
2852 
2853   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
2854                                        MaxVectorWidth);
2855 }
2856 
2857 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2858 
2859   const unsigned CallingConv = FI.getCallingConvention();
2860   // It is possible to force Win64 calling convention on any x86_64 target by
2861   // using __attribute__((ms_abi)). In such case to correctly emit Win64
2862   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
2863   if (CallingConv == llvm::CallingConv::Win64) {
2864     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
2865     Win64ABIInfo.computeInfo(FI);
2866     return;
2867   }
2868 
2869   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
2870 
2871   // Keep track of the number of assigned registers.
2872   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
2873   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
2874   unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
2875 
2876   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
2877     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
2878         !FI.getReturnType()->getTypePtr()->isUnionType()) {
2879       FI.getReturnInfo() = classifyRegCallStructType(
2880           FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
2881       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2882         FreeIntRegs -= NeededInt;
2883         FreeSSERegs -= NeededSSE;
2884       } else {
2885         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2886       }
2887     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
2888                getContext().getCanonicalType(FI.getReturnType()
2889                                                  ->getAs<ComplexType>()
2890                                                  ->getElementType()) ==
2891                    getContext().LongDoubleTy)
2892       // Complex Long Double Type is passed in Memory when Regcall
2893       // calling convention is used.
2894       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2895     else
2896       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2897   }
2898 
2899   // If the return value is indirect, then the hidden argument is consuming one
2900   // integer register.
2901   if (FI.getReturnInfo().isIndirect())
2902     --FreeIntRegs;
2903   else if (NeededSSE && MaxVectorWidth > 0)
2904     FI.setMaxVectorWidth(MaxVectorWidth);
2905 
2906   // The chain argument effectively gives us another free register.
2907   if (FI.isChainCall())
2908     ++FreeIntRegs;
2909 
2910   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2911   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2912   // get assigned (in left-to-right order) for passing as follows...
2913   unsigned ArgNo = 0;
2914   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2915        it != ie; ++it, ++ArgNo) {
2916     bool IsNamedArg = ArgNo < NumRequiredArgs;
2917 
2918     if (IsRegCall && it->type->isStructureOrClassType())
2919       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
2920                                            MaxVectorWidth);
2921     else
2922       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
2923                                       NeededSSE, IsNamedArg);
2924 
2925     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2926     // eightbyte of an argument, the whole argument is passed on the
2927     // stack. If registers have already been assigned for some
2928     // eightbytes of such an argument, the assignments get reverted.
2929     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2930       FreeIntRegs -= NeededInt;
2931       FreeSSERegs -= NeededSSE;
2932       if (MaxVectorWidth > FI.getMaxVectorWidth())
2933         FI.setMaxVectorWidth(MaxVectorWidth);
2934     } else {
2935       it->info = getIndirectResult(it->type, FreeIntRegs);
2936     }
2937   }
2938 }
2939 
2940 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
2941                                          Address VAListAddr, QualType Ty) {
2942   Address overflow_arg_area_p =
2943       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2944   llvm::Value *overflow_arg_area =
2945     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2946 
2947   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2948   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2949   // It isn't stated explicitly in the standard, but in practice we use
2950   // alignment greater than 16 where necessary.
2951   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
2952   if (Align > CharUnits::fromQuantity(8)) {
2953     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
2954                                                       Align);
2955   }
2956 
2957   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2958   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2959   llvm::Value *Res =
2960     CGF.Builder.CreateBitCast(overflow_arg_area,
2961                               llvm::PointerType::getUnqual(LTy));
2962 
2963   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2964   // l->overflow_arg_area + sizeof(type).
2965   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2966   // an 8 byte boundary.
2967 
2968   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2969   llvm::Value *Offset =
2970       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2971   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
2972                                             Offset, "overflow_arg_area.next");
2973   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2974 
2975   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2976   return Address(Res, LTy, Align);
2977 }
2978 
2979 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2980                                  QualType Ty) const {
2981   // Assume that va_list type is correct; should be pointer to LLVM type:
2982   // struct {
2983   //   i32 gp_offset;
2984   //   i32 fp_offset;
2985   //   i8* overflow_arg_area;
2986   //   i8* reg_save_area;
2987   // };
2988   unsigned neededInt, neededSSE;
2989 
2990   Ty = getContext().getCanonicalType(Ty);
2991   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2992                                        /*isNamedArg*/false);
2993 
2994   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2995   // in the registers. If not go to step 7.
2996   if (!neededInt && !neededSSE)
2997     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
2998 
2999   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3000   // general purpose registers needed to pass type and num_fp to hold
3001   // the number of floating point registers needed.
3002 
3003   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3004   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3005   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3006   //
3007   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3008   // register save space).
3009 
3010   llvm::Value *InRegs = nullptr;
3011   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3012   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3013   if (neededInt) {
3014     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3015     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3016     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3017     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3018   }
3019 
3020   if (neededSSE) {
3021     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3022     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3023     llvm::Value *FitsInFP =
3024       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3025     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3026     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3027   }
3028 
3029   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3030   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3031   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3032   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3033 
3034   // Emit code to load the value if it was passed in registers.
3035 
3036   CGF.EmitBlock(InRegBlock);
3037 
3038   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3039   // an offset of l->gp_offset and/or l->fp_offset. This may require
3040   // copying to a temporary location in case the parameter is passed
3041   // in different register classes or requires an alignment greater
3042   // than 8 for general purpose registers and 16 for XMM registers.
3043   //
3044   // FIXME: This really results in shameful code when we end up needing to
3045   // collect arguments from different places; often what should result in a
3046   // simple assembling of a structure from scattered addresses has many more
3047   // loads than necessary. Can we clean this up?
3048   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3049   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3050       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3051 
3052   Address RegAddr = Address::invalid();
3053   if (neededInt && neededSSE) {
3054     // FIXME: Cleanup.
3055     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3056     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3057     Address Tmp = CGF.CreateMemTemp(Ty);
3058     Tmp = Tmp.withElementType(ST);
3059     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3060     llvm::Type *TyLo = ST->getElementType(0);
3061     llvm::Type *TyHi = ST->getElementType(1);
3062     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3063            "Unexpected ABI info for mixed regs");
3064     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3065     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3066     llvm::Value *GPAddr =
3067         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
3068     llvm::Value *FPAddr =
3069         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
3070     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3071     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3072 
3073     // Copy the first element.
3074     // FIXME: Our choice of alignment here and below is probably pessimistic.
3075     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3076         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3077         CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
3078     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3079 
3080     // Copy the second element.
3081     V = CGF.Builder.CreateAlignedLoad(
3082         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3083         CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
3084     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3085 
3086     RegAddr = Tmp.withElementType(LTy);
3087   } else if (neededInt) {
3088     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
3089                       LTy, CharUnits::fromQuantity(8));
3090 
3091     // Copy to a temporary if necessary to ensure the appropriate alignment.
3092     auto TInfo = getContext().getTypeInfoInChars(Ty);
3093     uint64_t TySize = TInfo.Width.getQuantity();
3094     CharUnits TyAlign = TInfo.Align;
3095 
3096     // Copy into a temporary if the type is more aligned than the
3097     // register save area.
3098     if (TyAlign.getQuantity() > 8) {
3099       Address Tmp = CGF.CreateMemTemp(Ty);
3100       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3101       RegAddr = Tmp;
3102     }
3103 
3104   } else if (neededSSE == 1) {
3105     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
3106                       LTy, CharUnits::fromQuantity(16));
3107   } else {
3108     assert(neededSSE == 2 && "Invalid number of needed registers!");
3109     // SSE registers are spaced 16 bytes apart in the register save
3110     // area, we need to collect the two eightbytes together.
3111     // The ABI isn't explicit about this, but it seems reasonable
3112     // to assume that the slots are 16-byte aligned, since the stack is
3113     // naturally 16-byte aligned and the prologue is expected to store
3114     // all the SSE registers to the RSA.
3115     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
3116                                                       fp_offset),
3117                                 CGF.Int8Ty, CharUnits::fromQuantity(16));
3118     Address RegAddrHi =
3119       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3120                                              CharUnits::fromQuantity(16));
3121     llvm::Type *ST = AI.canHaveCoerceToType()
3122                          ? AI.getCoerceToType()
3123                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3124     llvm::Value *V;
3125     Address Tmp = CGF.CreateMemTemp(Ty);
3126     Tmp = Tmp.withElementType(ST);
3127     V = CGF.Builder.CreateLoad(
3128         RegAddrLo.withElementType(ST->getStructElementType(0)));
3129     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3130     V = CGF.Builder.CreateLoad(
3131         RegAddrHi.withElementType(ST->getStructElementType(1)));
3132     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3133 
3134     RegAddr = Tmp.withElementType(LTy);
3135   }
3136 
3137   // AMD64-ABI 3.5.7p5: Step 5. Set:
3138   // l->gp_offset = l->gp_offset + num_gp * 8
3139   // l->fp_offset = l->fp_offset + num_fp * 16.
3140   if (neededInt) {
3141     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3142     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3143                             gp_offset_p);
3144   }
3145   if (neededSSE) {
3146     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3147     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3148                             fp_offset_p);
3149   }
3150   CGF.EmitBranch(ContBlock);
3151 
3152   // Emit code to load the value if it was passed in memory.
3153 
3154   CGF.EmitBlock(InMemBlock);
3155   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3156 
3157   // Return the appropriate result.
3158 
3159   CGF.EmitBlock(ContBlock);
3160   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3161                                  "vaarg.addr");
3162   return ResAddr;
3163 }
3164 
3165 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3166                                    QualType Ty) const {
3167   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3168   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3169   uint64_t Width = getContext().getTypeSize(Ty);
3170   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3171 
3172   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3173                           CGF.getContext().getTypeInfoInChars(Ty),
3174                           CharUnits::fromQuantity(8),
3175                           /*allowHigherAlign*/ false);
3176 }
3177 
3178 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
3179     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
3180   const Type *Base = nullptr;
3181   uint64_t NumElts = 0;
3182 
3183   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3184       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3185     FreeSSERegs -= NumElts;
3186     return getDirectX86Hva();
3187   }
3188   return current;
3189 }
3190 
3191 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3192                                       bool IsReturnType, bool IsVectorCall,
3193                                       bool IsRegCall) const {
3194 
3195   if (Ty->isVoidType())
3196     return ABIArgInfo::getIgnore();
3197 
3198   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3199     Ty = EnumTy->getDecl()->getIntegerType();
3200 
3201   TypeInfo Info = getContext().getTypeInfo(Ty);
3202   uint64_t Width = Info.Width;
3203   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3204 
3205   const RecordType *RT = Ty->getAs<RecordType>();
3206   if (RT) {
3207     if (!IsReturnType) {
3208       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3209         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3210     }
3211 
3212     if (RT->getDecl()->hasFlexibleArrayMember())
3213       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3214 
3215   }
3216 
3217   const Type *Base = nullptr;
3218   uint64_t NumElts = 0;
3219   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3220   // other targets.
3221   if ((IsVectorCall || IsRegCall) &&
3222       isHomogeneousAggregate(Ty, Base, NumElts)) {
3223     if (IsRegCall) {
3224       if (FreeSSERegs >= NumElts) {
3225         FreeSSERegs -= NumElts;
3226         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3227           return ABIArgInfo::getDirect();
3228         return ABIArgInfo::getExpand();
3229       }
3230       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3231     } else if (IsVectorCall) {
3232       if (FreeSSERegs >= NumElts &&
3233           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3234         FreeSSERegs -= NumElts;
3235         return ABIArgInfo::getDirect();
3236       } else if (IsReturnType) {
3237         return ABIArgInfo::getExpand();
3238       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3239         // HVAs are delayed and reclassified in the 2nd step.
3240         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3241       }
3242     }
3243   }
3244 
3245   if (Ty->isMemberPointerType()) {
3246     // If the member pointer is represented by an LLVM int or ptr, pass it
3247     // directly.
3248     llvm::Type *LLTy = CGT.ConvertType(Ty);
3249     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3250       return ABIArgInfo::getDirect();
3251   }
3252 
3253   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3254     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3255     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3256     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3257       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3258 
3259     // Otherwise, coerce it to a small integer.
3260     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3261   }
3262 
3263   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3264     switch (BT->getKind()) {
3265     case BuiltinType::Bool:
3266       // Bool type is always extended to the ABI, other builtin types are not
3267       // extended.
3268       return ABIArgInfo::getExtend(Ty);
3269 
3270     case BuiltinType::LongDouble:
3271       // Mingw64 GCC uses the old 80 bit extended precision floating point
3272       // unit. It passes them indirectly through memory.
3273       if (IsMingw64) {
3274         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3275         if (LDF == &llvm::APFloat::x87DoubleExtended())
3276           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3277       }
3278       break;
3279 
3280     case BuiltinType::Int128:
3281     case BuiltinType::UInt128:
3282       // If it's a parameter type, the normal ABI rule is that arguments larger
3283       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3284       // even though it isn't particularly efficient.
3285       if (!IsReturnType)
3286         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3287 
3288       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3289       // Clang matches them for compatibility.
3290       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
3291           llvm::Type::getInt64Ty(getVMContext()), 2));
3292 
3293     default:
3294       break;
3295     }
3296   }
3297 
3298   if (Ty->isBitIntType()) {
3299     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3300     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3301     // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
3302     // or 8 bytes anyway as long is it fits in them, so we don't have to check
3303     // the power of 2.
3304     if (Width <= 64)
3305       return ABIArgInfo::getDirect();
3306     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3307   }
3308 
3309   return ABIArgInfo::getDirect();
3310 }
3311 
3312 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3313   const unsigned CC = FI.getCallingConvention();
3314   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
3315   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
3316 
3317   // If __attribute__((sysv_abi)) is in use, use the SysV argument
3318   // classification rules.
3319   if (CC == llvm::CallingConv::X86_64_SysV) {
3320     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
3321     SysVABIInfo.computeInfo(FI);
3322     return;
3323   }
3324 
3325   unsigned FreeSSERegs = 0;
3326   if (IsVectorCall) {
3327     // We can use up to 4 SSE return registers with vectorcall.
3328     FreeSSERegs = 4;
3329   } else if (IsRegCall) {
3330     // RegCall gives us 16 SSE registers.
3331     FreeSSERegs = 16;
3332   }
3333 
3334   if (!getCXXABI().classifyReturnType(FI))
3335     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3336                                   IsVectorCall, IsRegCall);
3337 
3338   if (IsVectorCall) {
3339     // We can use up to 6 SSE register parameters with vectorcall.
3340     FreeSSERegs = 6;
3341   } else if (IsRegCall) {
3342     // RegCall gives us 16 SSE registers, we can reuse the return registers.
3343     FreeSSERegs = 16;
3344   }
3345 
3346   unsigned ArgNum = 0;
3347   unsigned ZeroSSERegs = 0;
3348   for (auto &I : FI.arguments()) {
3349     // Vectorcall in x64 only permits the first 6 arguments to be passed as
3350     // XMM/YMM registers. After the sixth argument, pretend no vector
3351     // registers are left.
3352     unsigned *MaybeFreeSSERegs =
3353         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
3354     I.info =
3355         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
3356     ++ArgNum;
3357   }
3358 
3359   if (IsVectorCall) {
3360     // For vectorcall, assign aggregate HVAs to any free vector registers in a
3361     // second pass.
3362     for (auto &I : FI.arguments())
3363       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
3364   }
3365 }
3366 
3367 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3368                                     QualType Ty) const {
3369   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3370   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3371   uint64_t Width = getContext().getTypeSize(Ty);
3372   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3373 
3374   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3375                           CGF.getContext().getTypeInfoInChars(Ty),
3376                           CharUnits::fromQuantity(8),
3377                           /*allowHigherAlign*/ false);
3378 }
3379 
3380 std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
3381     CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3382     unsigned NumRegisterParameters, bool SoftFloatABI) {
3383   bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3384       CGM.getTriple(), CGM.getCodeGenOpts());
3385   return std::make_unique<X86_32TargetCodeGenInfo>(
3386       CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3387       NumRegisterParameters, SoftFloatABI);
3388 }
3389 
3390 std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
3391     CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3392     unsigned NumRegisterParameters) {
3393   bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3394       CGM.getTriple(), CGM.getCodeGenOpts());
3395   return std::make_unique<WinX86_32TargetCodeGenInfo>(
3396       CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3397       NumRegisterParameters);
3398 }
3399 
3400 std::unique_ptr<TargetCodeGenInfo>
3401 CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
3402                                        X86AVXABILevel AVXLevel) {
3403   return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3404 }
3405 
3406 std::unique_ptr<TargetCodeGenInfo>
3407 CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
3408                                           X86AVXABILevel AVXLevel) {
3409   return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3410 }
3411