xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/Targets/X86.cpp (revision 06c3fb2749bda94cb5201f81ffdb8fa6c3161b2e)
1 //===- X86.cpp ------------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "ABIInfoImpl.h"
10 #include "TargetInfo.h"
11 #include "clang/Basic/DiagnosticFrontend.h"
12 #include "llvm/ADT/SmallBitVector.h"
13 
14 using namespace clang;
15 using namespace clang::CodeGen;
16 
17 namespace {
18 
19 /// IsX86_MMXType - Return true if this is an MMX type.
20 bool IsX86_MMXType(llvm::Type *IRType) {
21   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
22   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
23     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
24     IRType->getScalarSizeInBits() != 64;
25 }
26 
27 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
28                                           StringRef Constraint,
29                                           llvm::Type* Ty) {
30   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
31                      .Cases("y", "&y", "^Ym", true)
32                      .Default(false);
33   if (IsMMXCons && Ty->isVectorTy()) {
34     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
35         64) {
36       // Invalid MMX constraint
37       return nullptr;
38     }
39 
40     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
41   }
42 
43   // No operation needed
44   return Ty;
45 }
46 
47 /// Returns true if this type can be passed in SSE registers with the
48 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
49 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
50   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
51     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
52       if (BT->getKind() == BuiltinType::LongDouble) {
53         if (&Context.getTargetInfo().getLongDoubleFormat() ==
54             &llvm::APFloat::x87DoubleExtended())
55           return false;
56       }
57       return true;
58     }
59   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
60     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
61     // registers specially.
62     unsigned VecSize = Context.getTypeSize(VT);
63     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
64       return true;
65   }
66   return false;
67 }
68 
69 /// Returns true if this aggregate is small enough to be passed in SSE registers
70 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
71 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
72   return NumMembers <= 4;
73 }
74 
75 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
76 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
77   auto AI = ABIArgInfo::getDirect(T);
78   AI.setInReg(true);
79   AI.setCanBeFlattened(false);
80   return AI;
81 }
82 
83 //===----------------------------------------------------------------------===//
84 // X86-32 ABI Implementation
85 //===----------------------------------------------------------------------===//
86 
87 /// Similar to llvm::CCState, but for Clang.
88 struct CCState {
89   CCState(CGFunctionInfo &FI)
90       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
91 
92   llvm::SmallBitVector IsPreassigned;
93   unsigned CC = CallingConv::CC_C;
94   unsigned FreeRegs = 0;
95   unsigned FreeSSERegs = 0;
96 };
97 
98 /// X86_32ABIInfo - The X86-32 ABI information.
99 class X86_32ABIInfo : public ABIInfo {
100   enum Class {
101     Integer,
102     Float
103   };
104 
105   static const unsigned MinABIStackAlignInBytes = 4;
106 
107   bool IsDarwinVectorABI;
108   bool IsRetSmallStructInRegABI;
109   bool IsWin32StructABI;
110   bool IsSoftFloatABI;
111   bool IsMCUABI;
112   bool IsLinuxABI;
113   unsigned DefaultNumRegisterParameters;
114 
115   static bool isRegisterSize(unsigned Size) {
116     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
117   }
118 
119   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
120     // FIXME: Assumes vectorcall is in use.
121     return isX86VectorTypeForVectorCall(getContext(), Ty);
122   }
123 
124   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
125                                          uint64_t NumMembers) const override {
126     // FIXME: Assumes vectorcall is in use.
127     return isX86VectorCallAggregateSmallEnough(NumMembers);
128   }
129 
130   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
131 
132   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
133   /// such that the argument will be passed in memory.
134   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
135 
136   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
137 
138   /// Return the alignment to use for the given type on the stack.
139   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
140 
141   Class classify(QualType Ty) const;
142   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
143   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
144 
145   /// Updates the number of available free registers, returns
146   /// true if any registers were allocated.
147   bool updateFreeRegs(QualType Ty, CCState &State) const;
148 
149   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
150                                 bool &NeedsPadding) const;
151   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
152 
153   bool canExpandIndirectArgument(QualType Ty) const;
154 
155   /// Rewrite the function info so that all memory arguments use
156   /// inalloca.
157   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
158 
159   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
160                            CharUnits &StackOffset, ABIArgInfo &Info,
161                            QualType Type) const;
162   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
163 
164 public:
165 
166   void computeInfo(CGFunctionInfo &FI) const override;
167   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
168                     QualType Ty) const override;
169 
170   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
171                 bool RetSmallStructInRegABI, bool Win32StructABI,
172                 unsigned NumRegisterParameters, bool SoftFloatABI)
173       : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
174         IsRetSmallStructInRegABI(RetSmallStructInRegABI),
175         IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
176         IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
177         IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
178                    CGT.getTarget().getTriple().isOSCygMing()),
179         DefaultNumRegisterParameters(NumRegisterParameters) {}
180 };
181 
182 class X86_32SwiftABIInfo : public SwiftABIInfo {
183 public:
184   explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
185       : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
186 
187   bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
188                             bool AsReturnValue) const override {
189     // LLVM's x86-32 lowering currently only assigns up to three
190     // integer registers and three fp registers.  Oddly, it'll use up to
191     // four vector registers for vectors, but those can overlap with the
192     // scalar registers.
193     return occupiesMoreThan(ComponentTys, /*total=*/3);
194   }
195 };
196 
197 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
198 public:
199   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
200                           bool RetSmallStructInRegABI, bool Win32StructABI,
201                           unsigned NumRegisterParameters, bool SoftFloatABI)
202       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
203             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
204             NumRegisterParameters, SoftFloatABI)) {
205     SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
206   }
207 
208   static bool isStructReturnInRegABI(
209       const llvm::Triple &Triple, const CodeGenOptions &Opts);
210 
211   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
212                            CodeGen::CodeGenModule &CGM) const override;
213 
214   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
215     // Darwin uses different dwarf register numbers for EH.
216     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
217     return 4;
218   }
219 
220   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
221                                llvm::Value *Address) const override;
222 
223   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
224                                   StringRef Constraint,
225                                   llvm::Type* Ty) const override {
226     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
227   }
228 
229   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
230                                 std::string &Constraints,
231                                 std::vector<llvm::Type *> &ResultRegTypes,
232                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
233                                 std::vector<LValue> &ResultRegDests,
234                                 std::string &AsmString,
235                                 unsigned NumOutputs) const override;
236 
237   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
238     return "movl\t%ebp, %ebp"
239            "\t\t// marker for objc_retainAutoreleaseReturnValue";
240   }
241 };
242 
243 }
244 
245 /// Rewrite input constraint references after adding some output constraints.
246 /// In the case where there is one output and one input and we add one output,
247 /// we need to replace all operand references greater than or equal to 1:
248 ///     mov $0, $1
249 ///     mov eax, $1
250 /// The result will be:
251 ///     mov $0, $2
252 ///     mov eax, $2
253 static void rewriteInputConstraintReferences(unsigned FirstIn,
254                                              unsigned NumNewOuts,
255                                              std::string &AsmString) {
256   std::string Buf;
257   llvm::raw_string_ostream OS(Buf);
258   size_t Pos = 0;
259   while (Pos < AsmString.size()) {
260     size_t DollarStart = AsmString.find('$', Pos);
261     if (DollarStart == std::string::npos)
262       DollarStart = AsmString.size();
263     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
264     if (DollarEnd == std::string::npos)
265       DollarEnd = AsmString.size();
266     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
267     Pos = DollarEnd;
268     size_t NumDollars = DollarEnd - DollarStart;
269     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
270       // We have an operand reference.
271       size_t DigitStart = Pos;
272       if (AsmString[DigitStart] == '{') {
273         OS << '{';
274         ++DigitStart;
275       }
276       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
277       if (DigitEnd == std::string::npos)
278         DigitEnd = AsmString.size();
279       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
280       unsigned OperandIndex;
281       if (!OperandStr.getAsInteger(10, OperandIndex)) {
282         if (OperandIndex >= FirstIn)
283           OperandIndex += NumNewOuts;
284         OS << OperandIndex;
285       } else {
286         OS << OperandStr;
287       }
288       Pos = DigitEnd;
289     }
290   }
291   AsmString = std::move(OS.str());
292 }
293 
294 /// Add output constraints for EAX:EDX because they are return registers.
295 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
296     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
297     std::vector<llvm::Type *> &ResultRegTypes,
298     std::vector<llvm::Type *> &ResultTruncRegTypes,
299     std::vector<LValue> &ResultRegDests, std::string &AsmString,
300     unsigned NumOutputs) const {
301   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
302 
303   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
304   // larger.
305   if (!Constraints.empty())
306     Constraints += ',';
307   if (RetWidth <= 32) {
308     Constraints += "={eax}";
309     ResultRegTypes.push_back(CGF.Int32Ty);
310   } else {
311     // Use the 'A' constraint for EAX:EDX.
312     Constraints += "=A";
313     ResultRegTypes.push_back(CGF.Int64Ty);
314   }
315 
316   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
317   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
318   ResultTruncRegTypes.push_back(CoerceTy);
319 
320   // Coerce the integer by bitcasting the return slot pointer.
321   ReturnSlot.setAddress(ReturnSlot.getAddress(CGF).withElementType(CoerceTy));
322   ResultRegDests.push_back(ReturnSlot);
323 
324   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
325 }
326 
327 /// shouldReturnTypeInRegister - Determine if the given type should be
328 /// returned in a register (for the Darwin and MCU ABI).
329 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
330                                                ASTContext &Context) const {
331   uint64_t Size = Context.getTypeSize(Ty);
332 
333   // For i386, type must be register sized.
334   // For the MCU ABI, it only needs to be <= 8-byte
335   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
336    return false;
337 
338   if (Ty->isVectorType()) {
339     // 64- and 128- bit vectors inside structures are not returned in
340     // registers.
341     if (Size == 64 || Size == 128)
342       return false;
343 
344     return true;
345   }
346 
347   // If this is a builtin, pointer, enum, complex type, member pointer, or
348   // member function pointer it is ok.
349   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
350       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
351       Ty->isBlockPointerType() || Ty->isMemberPointerType())
352     return true;
353 
354   // Arrays are treated like records.
355   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
356     return shouldReturnTypeInRegister(AT->getElementType(), Context);
357 
358   // Otherwise, it must be a record type.
359   const RecordType *RT = Ty->getAs<RecordType>();
360   if (!RT) return false;
361 
362   // FIXME: Traverse bases here too.
363 
364   // Structure types are passed in register if all fields would be
365   // passed in a register.
366   for (const auto *FD : RT->getDecl()->fields()) {
367     // Empty fields are ignored.
368     if (isEmptyField(Context, FD, true))
369       continue;
370 
371     // Check fields recursively.
372     if (!shouldReturnTypeInRegister(FD->getType(), Context))
373       return false;
374   }
375   return true;
376 }
377 
378 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
379   // Treat complex types as the element type.
380   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
381     Ty = CTy->getElementType();
382 
383   // Check for a type which we know has a simple scalar argument-passing
384   // convention without any padding.  (We're specifically looking for 32
385   // and 64-bit integer and integer-equivalents, float, and double.)
386   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
387       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
388     return false;
389 
390   uint64_t Size = Context.getTypeSize(Ty);
391   return Size == 32 || Size == 64;
392 }
393 
394 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
395                           uint64_t &Size) {
396   for (const auto *FD : RD->fields()) {
397     // Scalar arguments on the stack get 4 byte alignment on x86. If the
398     // argument is smaller than 32-bits, expanding the struct will create
399     // alignment padding.
400     if (!is32Or64BitBasicType(FD->getType(), Context))
401       return false;
402 
403     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
404     // how to expand them yet, and the predicate for telling if a bitfield still
405     // counts as "basic" is more complicated than what we were doing previously.
406     if (FD->isBitField())
407       return false;
408 
409     Size += Context.getTypeSize(FD->getType());
410   }
411   return true;
412 }
413 
414 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
415                                  uint64_t &Size) {
416   // Don't do this if there are any non-empty bases.
417   for (const CXXBaseSpecifier &Base : RD->bases()) {
418     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
419                               Size))
420       return false;
421   }
422   if (!addFieldSizes(Context, RD, Size))
423     return false;
424   return true;
425 }
426 
427 /// Test whether an argument type which is to be passed indirectly (on the
428 /// stack) would have the equivalent layout if it was expanded into separate
429 /// arguments. If so, we prefer to do the latter to avoid inhibiting
430 /// optimizations.
431 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
432   // We can only expand structure types.
433   const RecordType *RT = Ty->getAs<RecordType>();
434   if (!RT)
435     return false;
436   const RecordDecl *RD = RT->getDecl();
437   uint64_t Size = 0;
438   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
439     if (!IsWin32StructABI) {
440       // On non-Windows, we have to conservatively match our old bitcode
441       // prototypes in order to be ABI-compatible at the bitcode level.
442       if (!CXXRD->isCLike())
443         return false;
444     } else {
445       // Don't do this for dynamic classes.
446       if (CXXRD->isDynamicClass())
447         return false;
448     }
449     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
450       return false;
451   } else {
452     if (!addFieldSizes(getContext(), RD, Size))
453       return false;
454   }
455 
456   // We can do this if there was no alignment padding.
457   return Size == getContext().getTypeSize(Ty);
458 }
459 
460 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
461   // If the return value is indirect, then the hidden argument is consuming one
462   // integer register.
463   if (State.FreeRegs) {
464     --State.FreeRegs;
465     if (!IsMCUABI)
466       return getNaturalAlignIndirectInReg(RetTy);
467   }
468   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
469 }
470 
471 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
472                                              CCState &State) const {
473   if (RetTy->isVoidType())
474     return ABIArgInfo::getIgnore();
475 
476   const Type *Base = nullptr;
477   uint64_t NumElts = 0;
478   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
479        State.CC == llvm::CallingConv::X86_RegCall) &&
480       isHomogeneousAggregate(RetTy, Base, NumElts)) {
481     // The LLVM struct type for such an aggregate should lower properly.
482     return ABIArgInfo::getDirect();
483   }
484 
485   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
486     // On Darwin, some vectors are returned in registers.
487     if (IsDarwinVectorABI) {
488       uint64_t Size = getContext().getTypeSize(RetTy);
489 
490       // 128-bit vectors are a special case; they are returned in
491       // registers and we need to make sure to pick a type the LLVM
492       // backend will like.
493       if (Size == 128)
494         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
495             llvm::Type::getInt64Ty(getVMContext()), 2));
496 
497       // Always return in register if it fits in a general purpose
498       // register, or if it is 64 bits and has a single element.
499       if ((Size == 8 || Size == 16 || Size == 32) ||
500           (Size == 64 && VT->getNumElements() == 1))
501         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
502                                                             Size));
503 
504       return getIndirectReturnResult(RetTy, State);
505     }
506 
507     return ABIArgInfo::getDirect();
508   }
509 
510   if (isAggregateTypeForABI(RetTy)) {
511     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
512       // Structures with flexible arrays are always indirect.
513       if (RT->getDecl()->hasFlexibleArrayMember())
514         return getIndirectReturnResult(RetTy, State);
515     }
516 
517     // If specified, structs and unions are always indirect.
518     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
519       return getIndirectReturnResult(RetTy, State);
520 
521     // Ignore empty structs/unions.
522     if (isEmptyRecord(getContext(), RetTy, true))
523       return ABIArgInfo::getIgnore();
524 
525     // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
526     if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
527       QualType ET = getContext().getCanonicalType(CT->getElementType());
528       if (ET->isFloat16Type())
529         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
530             llvm::Type::getHalfTy(getVMContext()), 2));
531     }
532 
533     // Small structures which are register sized are generally returned
534     // in a register.
535     if (shouldReturnTypeInRegister(RetTy, getContext())) {
536       uint64_t Size = getContext().getTypeSize(RetTy);
537 
538       // As a special-case, if the struct is a "single-element" struct, and
539       // the field is of type "float" or "double", return it in a
540       // floating-point register. (MSVC does not apply this special case.)
541       // We apply a similar transformation for pointer types to improve the
542       // quality of the generated IR.
543       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
544         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
545             || SeltTy->hasPointerRepresentation())
546           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
547 
548       // FIXME: We should be able to narrow this integer in cases with dead
549       // padding.
550       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
551     }
552 
553     return getIndirectReturnResult(RetTy, State);
554   }
555 
556   // Treat an enum type as its underlying type.
557   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
558     RetTy = EnumTy->getDecl()->getIntegerType();
559 
560   if (const auto *EIT = RetTy->getAs<BitIntType>())
561     if (EIT->getNumBits() > 64)
562       return getIndirectReturnResult(RetTy, State);
563 
564   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
565                                                : ABIArgInfo::getDirect());
566 }
567 
568 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
569                                                  unsigned Align) const {
570   // Otherwise, if the alignment is less than or equal to the minimum ABI
571   // alignment, just use the default; the backend will handle this.
572   if (Align <= MinABIStackAlignInBytes)
573     return 0; // Use default alignment.
574 
575   if (IsLinuxABI) {
576     // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
577     // want to spend any effort dealing with the ramifications of ABI breaks.
578     //
579     // If the vector type is __m128/__m256/__m512, return the default alignment.
580     if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
581       return Align;
582   }
583   // On non-Darwin, the stack type alignment is always 4.
584   if (!IsDarwinVectorABI) {
585     // Set explicit alignment, since we may need to realign the top.
586     return MinABIStackAlignInBytes;
587   }
588 
589   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
590   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
591                       isRecordWithSIMDVectorType(getContext(), Ty)))
592     return 16;
593 
594   return MinABIStackAlignInBytes;
595 }
596 
597 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
598                                             CCState &State) const {
599   if (!ByVal) {
600     if (State.FreeRegs) {
601       --State.FreeRegs; // Non-byval indirects just use one pointer.
602       if (!IsMCUABI)
603         return getNaturalAlignIndirectInReg(Ty);
604     }
605     return getNaturalAlignIndirect(Ty, false);
606   }
607 
608   // Compute the byval alignment.
609   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
610   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
611   if (StackAlign == 0)
612     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
613 
614   // If the stack alignment is less than the type alignment, realign the
615   // argument.
616   bool Realign = TypeAlign > StackAlign;
617   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
618                                  /*ByVal=*/true, Realign);
619 }
620 
621 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
622   const Type *T = isSingleElementStruct(Ty, getContext());
623   if (!T)
624     T = Ty.getTypePtr();
625 
626   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
627     BuiltinType::Kind K = BT->getKind();
628     if (K == BuiltinType::Float || K == BuiltinType::Double)
629       return Float;
630   }
631   return Integer;
632 }
633 
634 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
635   if (!IsSoftFloatABI) {
636     Class C = classify(Ty);
637     if (C == Float)
638       return false;
639   }
640 
641   unsigned Size = getContext().getTypeSize(Ty);
642   unsigned SizeInRegs = (Size + 31) / 32;
643 
644   if (SizeInRegs == 0)
645     return false;
646 
647   if (!IsMCUABI) {
648     if (SizeInRegs > State.FreeRegs) {
649       State.FreeRegs = 0;
650       return false;
651     }
652   } else {
653     // The MCU psABI allows passing parameters in-reg even if there are
654     // earlier parameters that are passed on the stack. Also,
655     // it does not allow passing >8-byte structs in-register,
656     // even if there are 3 free registers available.
657     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
658       return false;
659   }
660 
661   State.FreeRegs -= SizeInRegs;
662   return true;
663 }
664 
665 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
666                                              bool &InReg,
667                                              bool &NeedsPadding) const {
668   // On Windows, aggregates other than HFAs are never passed in registers, and
669   // they do not consume register slots. Homogenous floating-point aggregates
670   // (HFAs) have already been dealt with at this point.
671   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
672     return false;
673 
674   NeedsPadding = false;
675   InReg = !IsMCUABI;
676 
677   if (!updateFreeRegs(Ty, State))
678     return false;
679 
680   if (IsMCUABI)
681     return true;
682 
683   if (State.CC == llvm::CallingConv::X86_FastCall ||
684       State.CC == llvm::CallingConv::X86_VectorCall ||
685       State.CC == llvm::CallingConv::X86_RegCall) {
686     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
687       NeedsPadding = true;
688 
689     return false;
690   }
691 
692   return true;
693 }
694 
695 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
696   bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
697                     (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
698                      Ty->isReferenceType());
699 
700   if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
701                       State.CC == llvm::CallingConv::X86_VectorCall))
702     return false;
703 
704   if (!updateFreeRegs(Ty, State))
705     return false;
706 
707   if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
708     return false;
709 
710   // Return true to apply inreg to all legal parameters except for MCU targets.
711   return !IsMCUABI;
712 }
713 
714 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
715   // Vectorcall x86 works subtly different than in x64, so the format is
716   // a bit different than the x64 version.  First, all vector types (not HVAs)
717   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
718   // This differs from the x64 implementation, where the first 6 by INDEX get
719   // registers.
720   // In the second pass over the arguments, HVAs are passed in the remaining
721   // vector registers if possible, or indirectly by address. The address will be
722   // passed in ECX/EDX if available. Any other arguments are passed according to
723   // the usual fastcall rules.
724   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
725   for (int I = 0, E = Args.size(); I < E; ++I) {
726     const Type *Base = nullptr;
727     uint64_t NumElts = 0;
728     const QualType &Ty = Args[I].type;
729     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
730         isHomogeneousAggregate(Ty, Base, NumElts)) {
731       if (State.FreeSSERegs >= NumElts) {
732         State.FreeSSERegs -= NumElts;
733         Args[I].info = ABIArgInfo::getDirectInReg();
734         State.IsPreassigned.set(I);
735       }
736     }
737   }
738 }
739 
740 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
741                                                CCState &State) const {
742   // FIXME: Set alignment on indirect arguments.
743   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
744   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
745   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
746 
747   Ty = useFirstFieldIfTransparentUnion(Ty);
748   TypeInfo TI = getContext().getTypeInfo(Ty);
749 
750   // Check with the C++ ABI first.
751   const RecordType *RT = Ty->getAs<RecordType>();
752   if (RT) {
753     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
754     if (RAA == CGCXXABI::RAA_Indirect) {
755       return getIndirectResult(Ty, false, State);
756     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
757       // The field index doesn't matter, we'll fix it up later.
758       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
759     }
760   }
761 
762   // Regcall uses the concept of a homogenous vector aggregate, similar
763   // to other targets.
764   const Type *Base = nullptr;
765   uint64_t NumElts = 0;
766   if ((IsRegCall || IsVectorCall) &&
767       isHomogeneousAggregate(Ty, Base, NumElts)) {
768     if (State.FreeSSERegs >= NumElts) {
769       State.FreeSSERegs -= NumElts;
770 
771       // Vectorcall passes HVAs directly and does not flatten them, but regcall
772       // does.
773       if (IsVectorCall)
774         return getDirectX86Hva();
775 
776       if (Ty->isBuiltinType() || Ty->isVectorType())
777         return ABIArgInfo::getDirect();
778       return ABIArgInfo::getExpand();
779     }
780     return getIndirectResult(Ty, /*ByVal=*/false, State);
781   }
782 
783   if (isAggregateTypeForABI(Ty)) {
784     // Structures with flexible arrays are always indirect.
785     // FIXME: This should not be byval!
786     if (RT && RT->getDecl()->hasFlexibleArrayMember())
787       return getIndirectResult(Ty, true, State);
788 
789     // Ignore empty structs/unions on non-Windows.
790     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
791       return ABIArgInfo::getIgnore();
792 
793     llvm::LLVMContext &LLVMContext = getVMContext();
794     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
795     bool NeedsPadding = false;
796     bool InReg;
797     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
798       unsigned SizeInRegs = (TI.Width + 31) / 32;
799       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
800       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
801       if (InReg)
802         return ABIArgInfo::getDirectInReg(Result);
803       else
804         return ABIArgInfo::getDirect(Result);
805     }
806     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
807 
808     // Pass over-aligned aggregates on Windows indirectly. This behavior was
809     // added in MSVC 2015. Use the required alignment from the record layout,
810     // since that may be less than the regular type alignment, and types with
811     // required alignment of less than 4 bytes are not passed indirectly.
812     if (IsWin32StructABI) {
813       unsigned AlignInBits = 0;
814       if (RT) {
815         const ASTRecordLayout &Layout =
816           getContext().getASTRecordLayout(RT->getDecl());
817         AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
818       } else if (TI.isAlignRequired()) {
819         AlignInBits = TI.Align;
820       }
821       if (AlignInBits > 32)
822         return getIndirectResult(Ty, /*ByVal=*/false, State);
823     }
824 
825     // Expand small (<= 128-bit) record types when we know that the stack layout
826     // of those arguments will match the struct. This is important because the
827     // LLVM backend isn't smart enough to remove byval, which inhibits many
828     // optimizations.
829     // Don't do this for the MCU if there are still free integer registers
830     // (see X86_64 ABI for full explanation).
831     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
832         canExpandIndirectArgument(Ty))
833       return ABIArgInfo::getExpandWithPadding(
834           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
835 
836     return getIndirectResult(Ty, true, State);
837   }
838 
839   if (const VectorType *VT = Ty->getAs<VectorType>()) {
840     // On Windows, vectors are passed directly if registers are available, or
841     // indirectly if not. This avoids the need to align argument memory. Pass
842     // user-defined vector types larger than 512 bits indirectly for simplicity.
843     if (IsWin32StructABI) {
844       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
845         --State.FreeSSERegs;
846         return ABIArgInfo::getDirectInReg();
847       }
848       return getIndirectResult(Ty, /*ByVal=*/false, State);
849     }
850 
851     // On Darwin, some vectors are passed in memory, we handle this by passing
852     // it as an i8/i16/i32/i64.
853     if (IsDarwinVectorABI) {
854       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
855           (TI.Width == 64 && VT->getNumElements() == 1))
856         return ABIArgInfo::getDirect(
857             llvm::IntegerType::get(getVMContext(), TI.Width));
858     }
859 
860     if (IsX86_MMXType(CGT.ConvertType(Ty)))
861       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
862 
863     return ABIArgInfo::getDirect();
864   }
865 
866 
867   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
868     Ty = EnumTy->getDecl()->getIntegerType();
869 
870   bool InReg = shouldPrimitiveUseInReg(Ty, State);
871 
872   if (isPromotableIntegerTypeForABI(Ty)) {
873     if (InReg)
874       return ABIArgInfo::getExtendInReg(Ty);
875     return ABIArgInfo::getExtend(Ty);
876   }
877 
878   if (const auto *EIT = Ty->getAs<BitIntType>()) {
879     if (EIT->getNumBits() <= 64) {
880       if (InReg)
881         return ABIArgInfo::getDirectInReg();
882       return ABIArgInfo::getDirect();
883     }
884     return getIndirectResult(Ty, /*ByVal=*/false, State);
885   }
886 
887   if (InReg)
888     return ABIArgInfo::getDirectInReg();
889   return ABIArgInfo::getDirect();
890 }
891 
892 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
893   CCState State(FI);
894   if (IsMCUABI)
895     State.FreeRegs = 3;
896   else if (State.CC == llvm::CallingConv::X86_FastCall) {
897     State.FreeRegs = 2;
898     State.FreeSSERegs = 3;
899   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
900     State.FreeRegs = 2;
901     State.FreeSSERegs = 6;
902   } else if (FI.getHasRegParm())
903     State.FreeRegs = FI.getRegParm();
904   else if (State.CC == llvm::CallingConv::X86_RegCall) {
905     State.FreeRegs = 5;
906     State.FreeSSERegs = 8;
907   } else if (IsWin32StructABI) {
908     // Since MSVC 2015, the first three SSE vectors have been passed in
909     // registers. The rest are passed indirectly.
910     State.FreeRegs = DefaultNumRegisterParameters;
911     State.FreeSSERegs = 3;
912   } else
913     State.FreeRegs = DefaultNumRegisterParameters;
914 
915   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
916     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
917   } else if (FI.getReturnInfo().isIndirect()) {
918     // The C++ ABI is not aware of register usage, so we have to check if the
919     // return value was sret and put it in a register ourselves if appropriate.
920     if (State.FreeRegs) {
921       --State.FreeRegs;  // The sret parameter consumes a register.
922       if (!IsMCUABI)
923         FI.getReturnInfo().setInReg(true);
924     }
925   }
926 
927   // The chain argument effectively gives us another free register.
928   if (FI.isChainCall())
929     ++State.FreeRegs;
930 
931   // For vectorcall, do a first pass over the arguments, assigning FP and vector
932   // arguments to XMM registers as available.
933   if (State.CC == llvm::CallingConv::X86_VectorCall)
934     runVectorCallFirstPass(FI, State);
935 
936   bool UsedInAlloca = false;
937   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
938   for (int I = 0, E = Args.size(); I < E; ++I) {
939     // Skip arguments that have already been assigned.
940     if (State.IsPreassigned.test(I))
941       continue;
942 
943     Args[I].info = classifyArgumentType(Args[I].type, State);
944     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
945   }
946 
947   // If we needed to use inalloca for any argument, do a second pass and rewrite
948   // all the memory arguments to use inalloca.
949   if (UsedInAlloca)
950     rewriteWithInAlloca(FI);
951 }
952 
953 void
954 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
955                                    CharUnits &StackOffset, ABIArgInfo &Info,
956                                    QualType Type) const {
957   // Arguments are always 4-byte-aligned.
958   CharUnits WordSize = CharUnits::fromQuantity(4);
959   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
960 
961   // sret pointers and indirect things will require an extra pointer
962   // indirection, unless they are byval. Most things are byval, and will not
963   // require this indirection.
964   bool IsIndirect = false;
965   if (Info.isIndirect() && !Info.getIndirectByVal())
966     IsIndirect = true;
967   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
968   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
969   if (IsIndirect)
970     LLTy = llvm::PointerType::getUnqual(getVMContext());
971   FrameFields.push_back(LLTy);
972   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
973 
974   // Insert padding bytes to respect alignment.
975   CharUnits FieldEnd = StackOffset;
976   StackOffset = FieldEnd.alignTo(WordSize);
977   if (StackOffset != FieldEnd) {
978     CharUnits NumBytes = StackOffset - FieldEnd;
979     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
980     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
981     FrameFields.push_back(Ty);
982   }
983 }
984 
985 static bool isArgInAlloca(const ABIArgInfo &Info) {
986   // Leave ignored and inreg arguments alone.
987   switch (Info.getKind()) {
988   case ABIArgInfo::InAlloca:
989     return true;
990   case ABIArgInfo::Ignore:
991   case ABIArgInfo::IndirectAliased:
992     return false;
993   case ABIArgInfo::Indirect:
994   case ABIArgInfo::Direct:
995   case ABIArgInfo::Extend:
996     return !Info.getInReg();
997   case ABIArgInfo::Expand:
998   case ABIArgInfo::CoerceAndExpand:
999     // These are aggregate types which are never passed in registers when
1000     // inalloca is involved.
1001     return true;
1002   }
1003   llvm_unreachable("invalid enum");
1004 }
1005 
1006 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
1007   assert(IsWin32StructABI && "inalloca only supported on win32");
1008 
1009   // Build a packed struct type for all of the arguments in memory.
1010   SmallVector<llvm::Type *, 6> FrameFields;
1011 
1012   // The stack alignment is always 4.
1013   CharUnits StackAlign = CharUnits::fromQuantity(4);
1014 
1015   CharUnits StackOffset;
1016   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
1017 
1018   // Put 'this' into the struct before 'sret', if necessary.
1019   bool IsThisCall =
1020       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
1021   ABIArgInfo &Ret = FI.getReturnInfo();
1022   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
1023       isArgInAlloca(I->info)) {
1024     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1025     ++I;
1026   }
1027 
1028   // Put the sret parameter into the inalloca struct if it's in memory.
1029   if (Ret.isIndirect() && !Ret.getInReg()) {
1030     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
1031     // On Windows, the hidden sret parameter is always returned in eax.
1032     Ret.setInAllocaSRet(IsWin32StructABI);
1033   }
1034 
1035   // Skip the 'this' parameter in ecx.
1036   if (IsThisCall)
1037     ++I;
1038 
1039   // Put arguments passed in memory into the struct.
1040   for (; I != E; ++I) {
1041     if (isArgInAlloca(I->info))
1042       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
1043   }
1044 
1045   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
1046                                         /*isPacked=*/true),
1047                   StackAlign);
1048 }
1049 
1050 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
1051                                  Address VAListAddr, QualType Ty) const {
1052 
1053   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
1054 
1055   // x86-32 changes the alignment of certain arguments on the stack.
1056   //
1057   // Just messing with TypeInfo like this works because we never pass
1058   // anything indirectly.
1059   TypeInfo.Align = CharUnits::fromQuantity(
1060                 getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
1061 
1062   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
1063                           TypeInfo, CharUnits::fromQuantity(4),
1064                           /*AllowHigherAlign*/ true);
1065 }
1066 
1067 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
1068     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
1069   assert(Triple.getArch() == llvm::Triple::x86);
1070 
1071   switch (Opts.getStructReturnConvention()) {
1072   case CodeGenOptions::SRCK_Default:
1073     break;
1074   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
1075     return false;
1076   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
1077     return true;
1078   }
1079 
1080   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
1081     return true;
1082 
1083   switch (Triple.getOS()) {
1084   case llvm::Triple::DragonFly:
1085   case llvm::Triple::FreeBSD:
1086   case llvm::Triple::OpenBSD:
1087   case llvm::Triple::Win32:
1088     return true;
1089   default:
1090     return false;
1091   }
1092 }
1093 
1094 static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
1095                                  CodeGen::CodeGenModule &CGM) {
1096   if (!FD->hasAttr<AnyX86InterruptAttr>())
1097     return;
1098 
1099   llvm::Function *Fn = cast<llvm::Function>(GV);
1100   Fn->setCallingConv(llvm::CallingConv::X86_INTR);
1101   if (FD->getNumParams() == 0)
1102     return;
1103 
1104   auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
1105   llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
1106   llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
1107     Fn->getContext(), ByValTy);
1108   Fn->addParamAttr(0, NewAttr);
1109 }
1110 
1111 void X86_32TargetCodeGenInfo::setTargetAttributes(
1112     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1113   if (GV->isDeclaration())
1114     return;
1115   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1116     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1117       llvm::Function *Fn = cast<llvm::Function>(GV);
1118       Fn->addFnAttr("stackrealign");
1119     }
1120 
1121     addX86InterruptAttrs(FD, GV, CGM);
1122   }
1123 }
1124 
1125 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
1126                                                CodeGen::CodeGenFunction &CGF,
1127                                                llvm::Value *Address) const {
1128   CodeGen::CGBuilderTy &Builder = CGF.Builder;
1129 
1130   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
1131 
1132   // 0-7 are the eight integer registers;  the order is different
1133   //   on Darwin (for EH), but the range is the same.
1134   // 8 is %eip.
1135   AssignToArrayRange(Builder, Address, Four8, 0, 8);
1136 
1137   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
1138     // 12-16 are st(0..4).  Not sure why we stop at 4.
1139     // These have size 16, which is sizeof(long double) on
1140     // platforms with 8-byte alignment for that type.
1141     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
1142     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
1143 
1144   } else {
1145     // 9 is %eflags, which doesn't get a size on Darwin for some
1146     // reason.
1147     Builder.CreateAlignedStore(
1148         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
1149                                CharUnits::One());
1150 
1151     // 11-16 are st(0..5).  Not sure why we stop at 5.
1152     // These have size 12, which is sizeof(long double) on
1153     // platforms with 4-byte alignment for that type.
1154     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
1155     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
1156   }
1157 
1158   return false;
1159 }
1160 
1161 //===----------------------------------------------------------------------===//
1162 // X86-64 ABI Implementation
1163 //===----------------------------------------------------------------------===//
1164 
1165 
1166 namespace {
1167 
1168 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
1169 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
1170   switch (AVXLevel) {
1171   case X86AVXABILevel::AVX512:
1172     return 512;
1173   case X86AVXABILevel::AVX:
1174     return 256;
1175   case X86AVXABILevel::None:
1176     return 128;
1177   }
1178   llvm_unreachable("Unknown AVXLevel");
1179 }
1180 
1181 /// X86_64ABIInfo - The X86_64 ABI information.
1182 class X86_64ABIInfo : public ABIInfo {
1183   enum Class {
1184     Integer = 0,
1185     SSE,
1186     SSEUp,
1187     X87,
1188     X87Up,
1189     ComplexX87,
1190     NoClass,
1191     Memory
1192   };
1193 
1194   /// merge - Implement the X86_64 ABI merging algorithm.
1195   ///
1196   /// Merge an accumulating classification \arg Accum with a field
1197   /// classification \arg Field.
1198   ///
1199   /// \param Accum - The accumulating classification. This should
1200   /// always be either NoClass or the result of a previous merge
1201   /// call. In addition, this should never be Memory (the caller
1202   /// should just return Memory for the aggregate).
1203   static Class merge(Class Accum, Class Field);
1204 
1205   /// postMerge - Implement the X86_64 ABI post merging algorithm.
1206   ///
1207   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
1208   /// final MEMORY or SSE classes when necessary.
1209   ///
1210   /// \param AggregateSize - The size of the current aggregate in
1211   /// the classification process.
1212   ///
1213   /// \param Lo - The classification for the parts of the type
1214   /// residing in the low word of the containing object.
1215   ///
1216   /// \param Hi - The classification for the parts of the type
1217   /// residing in the higher words of the containing object.
1218   ///
1219   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
1220 
1221   /// classify - Determine the x86_64 register classes in which the
1222   /// given type T should be passed.
1223   ///
1224   /// \param Lo - The classification for the parts of the type
1225   /// residing in the low word of the containing object.
1226   ///
1227   /// \param Hi - The classification for the parts of the type
1228   /// residing in the high word of the containing object.
1229   ///
1230   /// \param OffsetBase - The bit offset of this type in the
1231   /// containing object.  Some parameters are classified different
1232   /// depending on whether they straddle an eightbyte boundary.
1233   ///
1234   /// \param isNamedArg - Whether the argument in question is a "named"
1235   /// argument, as used in AMD64-ABI 3.5.7.
1236   ///
1237   /// \param IsRegCall - Whether the calling conversion is regcall.
1238   ///
1239   /// If a word is unused its result will be NoClass; if a type should
1240   /// be passed in Memory then at least the classification of \arg Lo
1241   /// will be Memory.
1242   ///
1243   /// The \arg Lo class will be NoClass iff the argument is ignored.
1244   ///
1245   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
1246   /// also be ComplexX87.
1247   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
1248                 bool isNamedArg, bool IsRegCall = false) const;
1249 
1250   llvm::Type *GetByteVectorType(QualType Ty) const;
1251   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
1252                                  unsigned IROffset, QualType SourceTy,
1253                                  unsigned SourceOffset) const;
1254   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
1255                                      unsigned IROffset, QualType SourceTy,
1256                                      unsigned SourceOffset) const;
1257 
1258   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1259   /// such that the argument will be returned in memory.
1260   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
1261 
1262   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1263   /// such that the argument will be passed in memory.
1264   ///
1265   /// \param freeIntRegs - The number of free integer registers remaining
1266   /// available.
1267   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
1268 
1269   ABIArgInfo classifyReturnType(QualType RetTy) const;
1270 
1271   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
1272                                   unsigned &neededInt, unsigned &neededSSE,
1273                                   bool isNamedArg,
1274                                   bool IsRegCall = false) const;
1275 
1276   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
1277                                        unsigned &NeededSSE,
1278                                        unsigned &MaxVectorWidth) const;
1279 
1280   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
1281                                            unsigned &NeededSSE,
1282                                            unsigned &MaxVectorWidth) const;
1283 
1284   bool IsIllegalVectorType(QualType Ty) const;
1285 
1286   /// The 0.98 ABI revision clarified a lot of ambiguities,
1287   /// unfortunately in ways that were not always consistent with
1288   /// certain previous compilers.  In particular, platforms which
1289   /// required strict binary compatibility with older versions of GCC
1290   /// may need to exempt themselves.
1291   bool honorsRevision0_98() const {
1292     return !getTarget().getTriple().isOSDarwin();
1293   }
1294 
1295   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
1296   /// classify it as INTEGER (for compatibility with older clang compilers).
1297   bool classifyIntegerMMXAsSSE() const {
1298     // Clang <= 3.8 did not do this.
1299     if (getContext().getLangOpts().getClangABICompat() <=
1300         LangOptions::ClangABI::Ver3_8)
1301       return false;
1302 
1303     const llvm::Triple &Triple = getTarget().getTriple();
1304     if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
1305       return false;
1306     return true;
1307   }
1308 
1309   // GCC classifies vectors of __int128 as memory.
1310   bool passInt128VectorsInMem() const {
1311     // Clang <= 9.0 did not do this.
1312     if (getContext().getLangOpts().getClangABICompat() <=
1313         LangOptions::ClangABI::Ver9)
1314       return false;
1315 
1316     const llvm::Triple &T = getTarget().getTriple();
1317     return T.isOSLinux() || T.isOSNetBSD();
1318   }
1319 
1320   X86AVXABILevel AVXLevel;
1321   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
1322   // 64-bit hardware.
1323   bool Has64BitPointers;
1324 
1325 public:
1326   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1327       : ABIInfo(CGT), AVXLevel(AVXLevel),
1328         Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
1329 
1330   bool isPassedUsingAVXType(QualType type) const {
1331     unsigned neededInt, neededSSE;
1332     // The freeIntRegs argument doesn't matter here.
1333     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
1334                                            /*isNamedArg*/true);
1335     if (info.isDirect()) {
1336       llvm::Type *ty = info.getCoerceToType();
1337       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
1338         return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
1339     }
1340     return false;
1341   }
1342 
1343   void computeInfo(CGFunctionInfo &FI) const override;
1344 
1345   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1346                     QualType Ty) const override;
1347   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
1348                       QualType Ty) const override;
1349 
1350   bool has64BitPointers() const {
1351     return Has64BitPointers;
1352   }
1353 };
1354 
1355 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
1356 class WinX86_64ABIInfo : public ABIInfo {
1357 public:
1358   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1359       : ABIInfo(CGT), AVXLevel(AVXLevel),
1360         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
1361 
1362   void computeInfo(CGFunctionInfo &FI) const override;
1363 
1364   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1365                     QualType Ty) const override;
1366 
1367   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1368     // FIXME: Assumes vectorcall is in use.
1369     return isX86VectorTypeForVectorCall(getContext(), Ty);
1370   }
1371 
1372   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1373                                          uint64_t NumMembers) const override {
1374     // FIXME: Assumes vectorcall is in use.
1375     return isX86VectorCallAggregateSmallEnough(NumMembers);
1376   }
1377 
1378 private:
1379   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
1380                       bool IsVectorCall, bool IsRegCall) const;
1381   ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
1382                                            const ABIArgInfo &current) const;
1383 
1384   X86AVXABILevel AVXLevel;
1385 
1386   bool IsMingw64;
1387 };
1388 
1389 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1390 public:
1391   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
1392       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
1393     SwiftInfo =
1394         std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1395   }
1396 
1397   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
1398   /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
1399   bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
1400 
1401   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1402     return 7;
1403   }
1404 
1405   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1406                                llvm::Value *Address) const override {
1407     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1408 
1409     // 0-15 are the 16 integer registers.
1410     // 16 is %rip.
1411     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1412     return false;
1413   }
1414 
1415   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1416                                   StringRef Constraint,
1417                                   llvm::Type* Ty) const override {
1418     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1419   }
1420 
1421   bool isNoProtoCallVariadic(const CallArgList &args,
1422                              const FunctionNoProtoType *fnType) const override {
1423     // The default CC on x86-64 sets %al to the number of SSA
1424     // registers used, and GCC sets this when calling an unprototyped
1425     // function, so we override the default behavior.  However, don't do
1426     // that when AVX types are involved: the ABI explicitly states it is
1427     // undefined, and it doesn't work in practice because of how the ABI
1428     // defines varargs anyway.
1429     if (fnType->getCallConv() == CC_C) {
1430       bool HasAVXType = false;
1431       for (CallArgList::const_iterator
1432              it = args.begin(), ie = args.end(); it != ie; ++it) {
1433         if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
1434           HasAVXType = true;
1435           break;
1436         }
1437       }
1438 
1439       if (!HasAVXType)
1440         return true;
1441     }
1442 
1443     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
1444   }
1445 
1446   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1447                            CodeGen::CodeGenModule &CGM) const override {
1448     if (GV->isDeclaration())
1449       return;
1450     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1451       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1452         llvm::Function *Fn = cast<llvm::Function>(GV);
1453         Fn->addFnAttr("stackrealign");
1454       }
1455 
1456       addX86InterruptAttrs(FD, GV, CGM);
1457     }
1458   }
1459 
1460   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
1461                             const FunctionDecl *Caller,
1462                             const FunctionDecl *Callee,
1463                             const CallArgList &Args) const override;
1464 };
1465 } // namespace
1466 
1467 static void initFeatureMaps(const ASTContext &Ctx,
1468                             llvm::StringMap<bool> &CallerMap,
1469                             const FunctionDecl *Caller,
1470                             llvm::StringMap<bool> &CalleeMap,
1471                             const FunctionDecl *Callee) {
1472   if (CalleeMap.empty() && CallerMap.empty()) {
1473     // The caller is potentially nullptr in the case where the call isn't in a
1474     // function.  In this case, the getFunctionFeatureMap ensures we just get
1475     // the TU level setting (since it cannot be modified by 'target'..
1476     Ctx.getFunctionFeatureMap(CallerMap, Caller);
1477     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
1478   }
1479 }
1480 
1481 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
1482                                  SourceLocation CallLoc,
1483                                  const llvm::StringMap<bool> &CallerMap,
1484                                  const llvm::StringMap<bool> &CalleeMap,
1485                                  QualType Ty, StringRef Feature,
1486                                  bool IsArgument) {
1487   bool CallerHasFeat = CallerMap.lookup(Feature);
1488   bool CalleeHasFeat = CalleeMap.lookup(Feature);
1489   if (!CallerHasFeat && !CalleeHasFeat)
1490     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
1491            << IsArgument << Ty << Feature;
1492 
1493   // Mixing calling conventions here is very clearly an error.
1494   if (!CallerHasFeat || !CalleeHasFeat)
1495     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
1496            << IsArgument << Ty << Feature;
1497 
1498   // Else, both caller and callee have the required feature, so there is no need
1499   // to diagnose.
1500   return false;
1501 }
1502 
1503 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
1504                           SourceLocation CallLoc,
1505                           const llvm::StringMap<bool> &CallerMap,
1506                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
1507                           bool IsArgument) {
1508   uint64_t Size = Ctx.getTypeSize(Ty);
1509   if (Size > 256)
1510     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
1511                                 "avx512f", IsArgument);
1512 
1513   if (Size > 128)
1514     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
1515                                 IsArgument);
1516 
1517   return false;
1518 }
1519 
1520 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
1521     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
1522     const FunctionDecl *Callee, const CallArgList &Args) const {
1523   llvm::StringMap<bool> CallerMap;
1524   llvm::StringMap<bool> CalleeMap;
1525   unsigned ArgIndex = 0;
1526 
1527   // We need to loop through the actual call arguments rather than the
1528   // function's parameters, in case this variadic.
1529   for (const CallArg &Arg : Args) {
1530     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
1531     // additionally changes how vectors >256 in size are passed. Like GCC, we
1532     // warn when a function is called with an argument where this will change.
1533     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
1534     // the caller and callee features are mismatched.
1535     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
1536     // change its ABI with attribute-target after this call.
1537     if (Arg.getType()->isVectorType() &&
1538         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
1539       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1540       QualType Ty = Arg.getType();
1541       // The CallArg seems to have desugared the type already, so for clearer
1542       // diagnostics, replace it with the type in the FunctionDecl if possible.
1543       if (ArgIndex < Callee->getNumParams())
1544         Ty = Callee->getParamDecl(ArgIndex)->getType();
1545 
1546       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
1547                         CalleeMap, Ty, /*IsArgument*/ true))
1548         return;
1549     }
1550     ++ArgIndex;
1551   }
1552 
1553   // Check return always, as we don't have a good way of knowing in codegen
1554   // whether this value is used, tail-called, etc.
1555   if (Callee->getReturnType()->isVectorType() &&
1556       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
1557     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
1558     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
1559                   CalleeMap, Callee->getReturnType(),
1560                   /*IsArgument*/ false);
1561   }
1562 }
1563 
1564 std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
1565   // If the argument does not end in .lib, automatically add the suffix.
1566   // If the argument contains a space, enclose it in quotes.
1567   // This matches the behavior of MSVC.
1568   bool Quote = Lib.contains(' ');
1569   std::string ArgStr = Quote ? "\"" : "";
1570   ArgStr += Lib;
1571   if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
1572     ArgStr += ".lib";
1573   ArgStr += Quote ? "\"" : "";
1574   return ArgStr;
1575 }
1576 
1577 namespace {
1578 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
1579 public:
1580   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1581         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
1582         unsigned NumRegisterParameters)
1583     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
1584         Win32StructABI, NumRegisterParameters, false) {}
1585 
1586   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1587                            CodeGen::CodeGenModule &CGM) const override;
1588 
1589   void getDependentLibraryOption(llvm::StringRef Lib,
1590                                  llvm::SmallString<24> &Opt) const override {
1591     Opt = "/DEFAULTLIB:";
1592     Opt += qualifyWindowsLibrary(Lib);
1593   }
1594 
1595   void getDetectMismatchOption(llvm::StringRef Name,
1596                                llvm::StringRef Value,
1597                                llvm::SmallString<32> &Opt) const override {
1598     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1599   }
1600 };
1601 } // namespace
1602 
1603 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
1604     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1605   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1606   if (GV->isDeclaration())
1607     return;
1608   addStackProbeTargetAttributes(D, GV, CGM);
1609 }
1610 
1611 namespace {
1612 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
1613 public:
1614   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
1615                              X86AVXABILevel AVXLevel)
1616       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
1617     SwiftInfo =
1618         std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
1619   }
1620 
1621   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1622                            CodeGen::CodeGenModule &CGM) const override;
1623 
1624   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1625     return 7;
1626   }
1627 
1628   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1629                                llvm::Value *Address) const override {
1630     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
1631 
1632     // 0-15 are the 16 integer registers.
1633     // 16 is %rip.
1634     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
1635     return false;
1636   }
1637 
1638   void getDependentLibraryOption(llvm::StringRef Lib,
1639                                  llvm::SmallString<24> &Opt) const override {
1640     Opt = "/DEFAULTLIB:";
1641     Opt += qualifyWindowsLibrary(Lib);
1642   }
1643 
1644   void getDetectMismatchOption(llvm::StringRef Name,
1645                                llvm::StringRef Value,
1646                                llvm::SmallString<32> &Opt) const override {
1647     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
1648   }
1649 };
1650 } // namespace
1651 
1652 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
1653     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
1654   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
1655   if (GV->isDeclaration())
1656     return;
1657   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
1658     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
1659       llvm::Function *Fn = cast<llvm::Function>(GV);
1660       Fn->addFnAttr("stackrealign");
1661     }
1662 
1663     addX86InterruptAttrs(FD, GV, CGM);
1664   }
1665 
1666   addStackProbeTargetAttributes(D, GV, CGM);
1667 }
1668 
1669 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
1670                               Class &Hi) const {
1671   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
1672   //
1673   // (a) If one of the classes is Memory, the whole argument is passed in
1674   //     memory.
1675   //
1676   // (b) If X87UP is not preceded by X87, the whole argument is passed in
1677   //     memory.
1678   //
1679   // (c) If the size of the aggregate exceeds two eightbytes and the first
1680   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
1681   //     argument is passed in memory. NOTE: This is necessary to keep the
1682   //     ABI working for processors that don't support the __m256 type.
1683   //
1684   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
1685   //
1686   // Some of these are enforced by the merging logic.  Others can arise
1687   // only with unions; for example:
1688   //   union { _Complex double; unsigned; }
1689   //
1690   // Note that clauses (b) and (c) were added in 0.98.
1691   //
1692   if (Hi == Memory)
1693     Lo = Memory;
1694   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
1695     Lo = Memory;
1696   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
1697     Lo = Memory;
1698   if (Hi == SSEUp && Lo != SSE)
1699     Hi = SSE;
1700 }
1701 
1702 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
1703   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
1704   // classified recursively so that always two fields are
1705   // considered. The resulting class is calculated according to
1706   // the classes of the fields in the eightbyte:
1707   //
1708   // (a) If both classes are equal, this is the resulting class.
1709   //
1710   // (b) If one of the classes is NO_CLASS, the resulting class is
1711   // the other class.
1712   //
1713   // (c) If one of the classes is MEMORY, the result is the MEMORY
1714   // class.
1715   //
1716   // (d) If one of the classes is INTEGER, the result is the
1717   // INTEGER.
1718   //
1719   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
1720   // MEMORY is used as class.
1721   //
1722   // (f) Otherwise class SSE is used.
1723 
1724   // Accum should never be memory (we should have returned) or
1725   // ComplexX87 (because this cannot be passed in a structure).
1726   assert((Accum != Memory && Accum != ComplexX87) &&
1727          "Invalid accumulated classification during merge.");
1728   if (Accum == Field || Field == NoClass)
1729     return Accum;
1730   if (Field == Memory)
1731     return Memory;
1732   if (Accum == NoClass)
1733     return Field;
1734   if (Accum == Integer || Field == Integer)
1735     return Integer;
1736   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
1737       Accum == X87 || Accum == X87Up)
1738     return Memory;
1739   return SSE;
1740 }
1741 
1742 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
1743                              Class &Hi, bool isNamedArg, bool IsRegCall) const {
1744   // FIXME: This code can be simplified by introducing a simple value class for
1745   // Class pairs with appropriate constructor methods for the various
1746   // situations.
1747 
1748   // FIXME: Some of the split computations are wrong; unaligned vectors
1749   // shouldn't be passed in registers for example, so there is no chance they
1750   // can straddle an eightbyte. Verify & simplify.
1751 
1752   Lo = Hi = NoClass;
1753 
1754   Class &Current = OffsetBase < 64 ? Lo : Hi;
1755   Current = Memory;
1756 
1757   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1758     BuiltinType::Kind k = BT->getKind();
1759 
1760     if (k == BuiltinType::Void) {
1761       Current = NoClass;
1762     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
1763       Lo = Integer;
1764       Hi = Integer;
1765     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
1766       Current = Integer;
1767     } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
1768                k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
1769       Current = SSE;
1770     } else if (k == BuiltinType::LongDouble) {
1771       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1772       if (LDF == &llvm::APFloat::IEEEquad()) {
1773         Lo = SSE;
1774         Hi = SSEUp;
1775       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
1776         Lo = X87;
1777         Hi = X87Up;
1778       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
1779         Current = SSE;
1780       } else
1781         llvm_unreachable("unexpected long double representation!");
1782     }
1783     // FIXME: _Decimal32 and _Decimal64 are SSE.
1784     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
1785     return;
1786   }
1787 
1788   if (const EnumType *ET = Ty->getAs<EnumType>()) {
1789     // Classify the underlying integer type.
1790     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
1791     return;
1792   }
1793 
1794   if (Ty->hasPointerRepresentation()) {
1795     Current = Integer;
1796     return;
1797   }
1798 
1799   if (Ty->isMemberPointerType()) {
1800     if (Ty->isMemberFunctionPointerType()) {
1801       if (Has64BitPointers) {
1802         // If Has64BitPointers, this is an {i64, i64}, so classify both
1803         // Lo and Hi now.
1804         Lo = Hi = Integer;
1805       } else {
1806         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
1807         // straddles an eightbyte boundary, Hi should be classified as well.
1808         uint64_t EB_FuncPtr = (OffsetBase) / 64;
1809         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
1810         if (EB_FuncPtr != EB_ThisAdj) {
1811           Lo = Hi = Integer;
1812         } else {
1813           Current = Integer;
1814         }
1815       }
1816     } else {
1817       Current = Integer;
1818     }
1819     return;
1820   }
1821 
1822   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1823     uint64_t Size = getContext().getTypeSize(VT);
1824     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
1825       // gcc passes the following as integer:
1826       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
1827       // 2 bytes - <2 x char>, <1 x short>
1828       // 1 byte  - <1 x char>
1829       Current = Integer;
1830 
1831       // If this type crosses an eightbyte boundary, it should be
1832       // split.
1833       uint64_t EB_Lo = (OffsetBase) / 64;
1834       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
1835       if (EB_Lo != EB_Hi)
1836         Hi = Lo;
1837     } else if (Size == 64) {
1838       QualType ElementType = VT->getElementType();
1839 
1840       // gcc passes <1 x double> in memory. :(
1841       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
1842         return;
1843 
1844       // gcc passes <1 x long long> as SSE but clang used to unconditionally
1845       // pass them as integer.  For platforms where clang is the de facto
1846       // platform compiler, we must continue to use integer.
1847       if (!classifyIntegerMMXAsSSE() &&
1848           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
1849            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
1850            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
1851            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
1852         Current = Integer;
1853       else
1854         Current = SSE;
1855 
1856       // If this type crosses an eightbyte boundary, it should be
1857       // split.
1858       if (OffsetBase && OffsetBase != 64)
1859         Hi = Lo;
1860     } else if (Size == 128 ||
1861                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
1862       QualType ElementType = VT->getElementType();
1863 
1864       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
1865       if (passInt128VectorsInMem() && Size != 128 &&
1866           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
1867            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
1868         return;
1869 
1870       // Arguments of 256-bits are split into four eightbyte chunks. The
1871       // least significant one belongs to class SSE and all the others to class
1872       // SSEUP. The original Lo and Hi design considers that types can't be
1873       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
1874       // This design isn't correct for 256-bits, but since there're no cases
1875       // where the upper parts would need to be inspected, avoid adding
1876       // complexity and just consider Hi to match the 64-256 part.
1877       //
1878       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
1879       // registers if they are "named", i.e. not part of the "..." of a
1880       // variadic function.
1881       //
1882       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
1883       // split into eight eightbyte chunks, one SSE and seven SSEUP.
1884       Lo = SSE;
1885       Hi = SSEUp;
1886     }
1887     return;
1888   }
1889 
1890   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
1891     QualType ET = getContext().getCanonicalType(CT->getElementType());
1892 
1893     uint64_t Size = getContext().getTypeSize(Ty);
1894     if (ET->isIntegralOrEnumerationType()) {
1895       if (Size <= 64)
1896         Current = Integer;
1897       else if (Size <= 128)
1898         Lo = Hi = Integer;
1899     } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
1900                ET->isBFloat16Type()) {
1901       Current = SSE;
1902     } else if (ET == getContext().DoubleTy) {
1903       Lo = Hi = SSE;
1904     } else if (ET == getContext().LongDoubleTy) {
1905       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
1906       if (LDF == &llvm::APFloat::IEEEquad())
1907         Current = Memory;
1908       else if (LDF == &llvm::APFloat::x87DoubleExtended())
1909         Current = ComplexX87;
1910       else if (LDF == &llvm::APFloat::IEEEdouble())
1911         Lo = Hi = SSE;
1912       else
1913         llvm_unreachable("unexpected long double representation!");
1914     }
1915 
1916     // If this complex type crosses an eightbyte boundary then it
1917     // should be split.
1918     uint64_t EB_Real = (OffsetBase) / 64;
1919     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
1920     if (Hi == NoClass && EB_Real != EB_Imag)
1921       Hi = Lo;
1922 
1923     return;
1924   }
1925 
1926   if (const auto *EITy = Ty->getAs<BitIntType>()) {
1927     if (EITy->getNumBits() <= 64)
1928       Current = Integer;
1929     else if (EITy->getNumBits() <= 128)
1930       Lo = Hi = Integer;
1931     // Larger values need to get passed in memory.
1932     return;
1933   }
1934 
1935   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
1936     // Arrays are treated like structures.
1937 
1938     uint64_t Size = getContext().getTypeSize(Ty);
1939 
1940     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1941     // than eight eightbytes, ..., it has class MEMORY.
1942     // regcall ABI doesn't have limitation to an object. The only limitation
1943     // is the free registers, which will be checked in computeInfo.
1944     if (!IsRegCall && Size > 512)
1945       return;
1946 
1947     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
1948     // fields, it has class MEMORY.
1949     //
1950     // Only need to check alignment of array base.
1951     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
1952       return;
1953 
1954     // Otherwise implement simplified merge. We could be smarter about
1955     // this, but it isn't worth it and would be harder to verify.
1956     Current = NoClass;
1957     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
1958     uint64_t ArraySize = AT->getSize().getZExtValue();
1959 
1960     // The only case a 256-bit wide vector could be used is when the array
1961     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
1962     // to work for sizes wider than 128, early check and fallback to memory.
1963     //
1964     if (Size > 128 &&
1965         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
1966       return;
1967 
1968     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
1969       Class FieldLo, FieldHi;
1970       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
1971       Lo = merge(Lo, FieldLo);
1972       Hi = merge(Hi, FieldHi);
1973       if (Lo == Memory || Hi == Memory)
1974         break;
1975     }
1976 
1977     postMerge(Size, Lo, Hi);
1978     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
1979     return;
1980   }
1981 
1982   if (const RecordType *RT = Ty->getAs<RecordType>()) {
1983     uint64_t Size = getContext().getTypeSize(Ty);
1984 
1985     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
1986     // than eight eightbytes, ..., it has class MEMORY.
1987     if (Size > 512)
1988       return;
1989 
1990     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
1991     // copy constructor or a non-trivial destructor, it is passed by invisible
1992     // reference.
1993     if (getRecordArgABI(RT, getCXXABI()))
1994       return;
1995 
1996     const RecordDecl *RD = RT->getDecl();
1997 
1998     // Assume variable sized types are passed in memory.
1999     if (RD->hasFlexibleArrayMember())
2000       return;
2001 
2002     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
2003 
2004     // Reset Lo class, this will be recomputed.
2005     Current = NoClass;
2006 
2007     // If this is a C++ record, classify the bases first.
2008     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2009       for (const auto &I : CXXRD->bases()) {
2010         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2011                "Unexpected base class!");
2012         const auto *Base =
2013             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2014 
2015         // Classify this field.
2016         //
2017         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
2018         // single eightbyte, each is classified separately. Each eightbyte gets
2019         // initialized to class NO_CLASS.
2020         Class FieldLo, FieldHi;
2021         uint64_t Offset =
2022           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
2023         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
2024         Lo = merge(Lo, FieldLo);
2025         Hi = merge(Hi, FieldHi);
2026         if (Lo == Memory || Hi == Memory) {
2027           postMerge(Size, Lo, Hi);
2028           return;
2029         }
2030       }
2031     }
2032 
2033     // Classify the fields one at a time, merging the results.
2034     unsigned idx = 0;
2035     bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
2036                                 LangOptions::ClangABI::Ver11 ||
2037                             getContext().getTargetInfo().getTriple().isPS();
2038     bool IsUnion = RT->isUnionType() && !UseClang11Compat;
2039 
2040     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2041            i != e; ++i, ++idx) {
2042       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2043       bool BitField = i->isBitField();
2044 
2045       // Ignore padding bit-fields.
2046       if (BitField && i->isUnnamedBitfield())
2047         continue;
2048 
2049       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
2050       // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
2051       //
2052       // The only case a 256-bit or a 512-bit wide vector could be used is when
2053       // the struct contains a single 256-bit or 512-bit element. Early check
2054       // and fallback to memory.
2055       //
2056       // FIXME: Extended the Lo and Hi logic properly to work for size wider
2057       // than 128.
2058       if (Size > 128 &&
2059           ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
2060            Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
2061         Lo = Memory;
2062         postMerge(Size, Lo, Hi);
2063         return;
2064       }
2065       // Note, skip this test for bit-fields, see below.
2066       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
2067         Lo = Memory;
2068         postMerge(Size, Lo, Hi);
2069         return;
2070       }
2071 
2072       // Classify this field.
2073       //
2074       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
2075       // exceeds a single eightbyte, each is classified
2076       // separately. Each eightbyte gets initialized to class
2077       // NO_CLASS.
2078       Class FieldLo, FieldHi;
2079 
2080       // Bit-fields require special handling, they do not force the
2081       // structure to be passed in memory even if unaligned, and
2082       // therefore they can straddle an eightbyte.
2083       if (BitField) {
2084         assert(!i->isUnnamedBitfield());
2085         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
2086         uint64_t Size = i->getBitWidthValue(getContext());
2087 
2088         uint64_t EB_Lo = Offset / 64;
2089         uint64_t EB_Hi = (Offset + Size - 1) / 64;
2090 
2091         if (EB_Lo) {
2092           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
2093           FieldLo = NoClass;
2094           FieldHi = Integer;
2095         } else {
2096           FieldLo = Integer;
2097           FieldHi = EB_Hi ? Integer : NoClass;
2098         }
2099       } else
2100         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
2101       Lo = merge(Lo, FieldLo);
2102       Hi = merge(Hi, FieldHi);
2103       if (Lo == Memory || Hi == Memory)
2104         break;
2105     }
2106 
2107     postMerge(Size, Lo, Hi);
2108   }
2109 }
2110 
2111 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
2112   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2113   // place naturally.
2114   if (!isAggregateTypeForABI(Ty)) {
2115     // Treat an enum type as its underlying type.
2116     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2117       Ty = EnumTy->getDecl()->getIntegerType();
2118 
2119     if (Ty->isBitIntType())
2120       return getNaturalAlignIndirect(Ty);
2121 
2122     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2123                                               : ABIArgInfo::getDirect());
2124   }
2125 
2126   return getNaturalAlignIndirect(Ty);
2127 }
2128 
2129 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
2130   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
2131     uint64_t Size = getContext().getTypeSize(VecTy);
2132     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
2133     if (Size <= 64 || Size > LargestVector)
2134       return true;
2135     QualType EltTy = VecTy->getElementType();
2136     if (passInt128VectorsInMem() &&
2137         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
2138          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
2139       return true;
2140   }
2141 
2142   return false;
2143 }
2144 
2145 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
2146                                             unsigned freeIntRegs) const {
2147   // If this is a scalar LLVM value then assume LLVM will pass it in the right
2148   // place naturally.
2149   //
2150   // This assumption is optimistic, as there could be free registers available
2151   // when we need to pass this argument in memory, and LLVM could try to pass
2152   // the argument in the free register. This does not seem to happen currently,
2153   // but this code would be much safer if we could mark the argument with
2154   // 'onstack'. See PR12193.
2155   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
2156       !Ty->isBitIntType()) {
2157     // Treat an enum type as its underlying type.
2158     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2159       Ty = EnumTy->getDecl()->getIntegerType();
2160 
2161     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
2162                                               : ABIArgInfo::getDirect());
2163   }
2164 
2165   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
2166     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
2167 
2168   // Compute the byval alignment. We specify the alignment of the byval in all
2169   // cases so that the mid-level optimizer knows the alignment of the byval.
2170   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
2171 
2172   // Attempt to avoid passing indirect results using byval when possible. This
2173   // is important for good codegen.
2174   //
2175   // We do this by coercing the value into a scalar type which the backend can
2176   // handle naturally (i.e., without using byval).
2177   //
2178   // For simplicity, we currently only do this when we have exhausted all of the
2179   // free integer registers. Doing this when there are free integer registers
2180   // would require more care, as we would have to ensure that the coerced value
2181   // did not claim the unused register. That would require either reording the
2182   // arguments to the function (so that any subsequent inreg values came first),
2183   // or only doing this optimization when there were no following arguments that
2184   // might be inreg.
2185   //
2186   // We currently expect it to be rare (particularly in well written code) for
2187   // arguments to be passed on the stack when there are still free integer
2188   // registers available (this would typically imply large structs being passed
2189   // by value), so this seems like a fair tradeoff for now.
2190   //
2191   // We can revisit this if the backend grows support for 'onstack' parameter
2192   // attributes. See PR12193.
2193   if (freeIntRegs == 0) {
2194     uint64_t Size = getContext().getTypeSize(Ty);
2195 
2196     // If this type fits in an eightbyte, coerce it into the matching integral
2197     // type, which will end up on the stack (with alignment 8).
2198     if (Align == 8 && Size <= 64)
2199       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
2200                                                           Size));
2201   }
2202 
2203   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
2204 }
2205 
2206 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
2207 /// register. Pick an LLVM IR type that will be passed as a vector register.
2208 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
2209   // Wrapper structs/arrays that only contain vectors are passed just like
2210   // vectors; strip them off if present.
2211   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
2212     Ty = QualType(InnerTy, 0);
2213 
2214   llvm::Type *IRType = CGT.ConvertType(Ty);
2215   if (isa<llvm::VectorType>(IRType)) {
2216     // Don't pass vXi128 vectors in their native type, the backend can't
2217     // legalize them.
2218     if (passInt128VectorsInMem() &&
2219         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
2220       // Use a vXi64 vector.
2221       uint64_t Size = getContext().getTypeSize(Ty);
2222       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
2223                                         Size / 64);
2224     }
2225 
2226     return IRType;
2227   }
2228 
2229   if (IRType->getTypeID() == llvm::Type::FP128TyID)
2230     return IRType;
2231 
2232   // We couldn't find the preferred IR vector type for 'Ty'.
2233   uint64_t Size = getContext().getTypeSize(Ty);
2234   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
2235 
2236 
2237   // Return a LLVM IR vector type based on the size of 'Ty'.
2238   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
2239                                     Size / 64);
2240 }
2241 
2242 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
2243 /// is known to either be off the end of the specified type or being in
2244 /// alignment padding.  The user type specified is known to be at most 128 bits
2245 /// in size, and have passed through X86_64ABIInfo::classify with a successful
2246 /// classification that put one of the two halves in the INTEGER class.
2247 ///
2248 /// It is conservatively correct to return false.
2249 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
2250                                   unsigned EndBit, ASTContext &Context) {
2251   // If the bytes being queried are off the end of the type, there is no user
2252   // data hiding here.  This handles analysis of builtins, vectors and other
2253   // types that don't contain interesting padding.
2254   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
2255   if (TySize <= StartBit)
2256     return true;
2257 
2258   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
2259     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2260     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
2261 
2262     // Check each element to see if the element overlaps with the queried range.
2263     for (unsigned i = 0; i != NumElts; ++i) {
2264       // If the element is after the span we care about, then we're done..
2265       unsigned EltOffset = i*EltSize;
2266       if (EltOffset >= EndBit) break;
2267 
2268       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
2269       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
2270                                  EndBit-EltOffset, Context))
2271         return false;
2272     }
2273     // If it overlaps no elements, then it is safe to process as padding.
2274     return true;
2275   }
2276 
2277   if (const RecordType *RT = Ty->getAs<RecordType>()) {
2278     const RecordDecl *RD = RT->getDecl();
2279     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
2280 
2281     // If this is a C++ record, check the bases first.
2282     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
2283       for (const auto &I : CXXRD->bases()) {
2284         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
2285                "Unexpected base class!");
2286         const auto *Base =
2287             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
2288 
2289         // If the base is after the span we care about, ignore it.
2290         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
2291         if (BaseOffset >= EndBit) continue;
2292 
2293         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
2294         if (!BitsContainNoUserData(I.getType(), BaseStart,
2295                                    EndBit-BaseOffset, Context))
2296           return false;
2297       }
2298     }
2299 
2300     // Verify that no field has data that overlaps the region of interest.  Yes
2301     // this could be sped up a lot by being smarter about queried fields,
2302     // however we're only looking at structs up to 16 bytes, so we don't care
2303     // much.
2304     unsigned idx = 0;
2305     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
2306          i != e; ++i, ++idx) {
2307       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
2308 
2309       // If we found a field after the region we care about, then we're done.
2310       if (FieldOffset >= EndBit) break;
2311 
2312       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
2313       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
2314                                  Context))
2315         return false;
2316     }
2317 
2318     // If nothing in this record overlapped the area of interest, then we're
2319     // clean.
2320     return true;
2321   }
2322 
2323   return false;
2324 }
2325 
2326 /// getFPTypeAtOffset - Return a floating point type at the specified offset.
2327 static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2328                                      const llvm::DataLayout &TD) {
2329   if (IROffset == 0 && IRType->isFloatingPointTy())
2330     return IRType;
2331 
2332   // If this is a struct, recurse into the field at the specified offset.
2333   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2334     if (!STy->getNumContainedTypes())
2335       return nullptr;
2336 
2337     const llvm::StructLayout *SL = TD.getStructLayout(STy);
2338     unsigned Elt = SL->getElementContainingOffset(IROffset);
2339     IROffset -= SL->getElementOffset(Elt);
2340     return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
2341   }
2342 
2343   // If this is an array, recurse into the field at the specified offset.
2344   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2345     llvm::Type *EltTy = ATy->getElementType();
2346     unsigned EltSize = TD.getTypeAllocSize(EltTy);
2347     IROffset -= IROffset / EltSize * EltSize;
2348     return getFPTypeAtOffset(EltTy, IROffset, TD);
2349   }
2350 
2351   return nullptr;
2352 }
2353 
2354 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
2355 /// low 8 bytes of an XMM register, corresponding to the SSE class.
2356 llvm::Type *X86_64ABIInfo::
2357 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2358                    QualType SourceTy, unsigned SourceOffset) const {
2359   const llvm::DataLayout &TD = getDataLayout();
2360   unsigned SourceSize =
2361       (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
2362   llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
2363   if (!T0 || T0->isDoubleTy())
2364     return llvm::Type::getDoubleTy(getVMContext());
2365 
2366   // Get the adjacent FP type.
2367   llvm::Type *T1 = nullptr;
2368   unsigned T0Size = TD.getTypeAllocSize(T0);
2369   if (SourceSize > T0Size)
2370       T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
2371   if (T1 == nullptr) {
2372     // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
2373     // to its alignment.
2374     if (T0->is16bitFPTy() && SourceSize > 4)
2375       T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2376     // If we can't get a second FP type, return a simple half or float.
2377     // avx512fp16-abi.c:pr51813_2 shows it works to return float for
2378     // {float, i8} too.
2379     if (T1 == nullptr)
2380       return T0;
2381   }
2382 
2383   if (T0->isFloatTy() && T1->isFloatTy())
2384     return llvm::FixedVectorType::get(T0, 2);
2385 
2386   if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
2387     llvm::Type *T2 = nullptr;
2388     if (SourceSize > 4)
2389       T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
2390     if (T2 == nullptr)
2391       return llvm::FixedVectorType::get(T0, 2);
2392     return llvm::FixedVectorType::get(T0, 4);
2393   }
2394 
2395   if (T0->is16bitFPTy() || T1->is16bitFPTy())
2396     return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
2397 
2398   return llvm::Type::getDoubleTy(getVMContext());
2399 }
2400 
2401 
2402 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
2403 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
2404 /// about the high or low part of an up-to-16-byte struct.  This routine picks
2405 /// the best LLVM IR type to represent this, which may be i64 or may be anything
2406 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
2407 /// etc).
2408 ///
2409 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
2410 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
2411 /// the 8-byte value references.  PrefType may be null.
2412 ///
2413 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
2414 /// an offset into this that we're processing (which is always either 0 or 8).
2415 ///
2416 llvm::Type *X86_64ABIInfo::
2417 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
2418                        QualType SourceTy, unsigned SourceOffset) const {
2419   // If we're dealing with an un-offset LLVM IR type, then it means that we're
2420   // returning an 8-byte unit starting with it.  See if we can safely use it.
2421   if (IROffset == 0) {
2422     // Pointers and int64's always fill the 8-byte unit.
2423     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
2424         IRType->isIntegerTy(64))
2425       return IRType;
2426 
2427     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
2428     // goodness in the source type is just tail padding.  This is allowed to
2429     // kick in for struct {double,int} on the int, but not on
2430     // struct{double,int,int} because we wouldn't return the second int.  We
2431     // have to do this analysis on the source type because we can't depend on
2432     // unions being lowered a specific way etc.
2433     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
2434         IRType->isIntegerTy(32) ||
2435         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
2436       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
2437           cast<llvm::IntegerType>(IRType)->getBitWidth();
2438 
2439       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
2440                                 SourceOffset*8+64, getContext()))
2441         return IRType;
2442     }
2443   }
2444 
2445   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
2446     // If this is a struct, recurse into the field at the specified offset.
2447     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
2448     if (IROffset < SL->getSizeInBytes()) {
2449       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
2450       IROffset -= SL->getElementOffset(FieldIdx);
2451 
2452       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
2453                                     SourceTy, SourceOffset);
2454     }
2455   }
2456 
2457   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
2458     llvm::Type *EltTy = ATy->getElementType();
2459     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
2460     unsigned EltOffset = IROffset/EltSize*EltSize;
2461     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
2462                                   SourceOffset);
2463   }
2464 
2465   // Okay, we don't have any better idea of what to pass, so we pass this in an
2466   // integer register that isn't too big to fit the rest of the struct.
2467   unsigned TySizeInBytes =
2468     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
2469 
2470   assert(TySizeInBytes != SourceOffset && "Empty field?");
2471 
2472   // It is always safe to classify this as an integer type up to i64 that
2473   // isn't larger than the structure.
2474   return llvm::IntegerType::get(getVMContext(),
2475                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
2476 }
2477 
2478 
2479 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
2480 /// be used as elements of a two register pair to pass or return, return a
2481 /// first class aggregate to represent them.  For example, if the low part of
2482 /// a by-value argument should be passed as i32* and the high part as float,
2483 /// return {i32*, float}.
2484 static llvm::Type *
2485 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
2486                            const llvm::DataLayout &TD) {
2487   // In order to correctly satisfy the ABI, we need to the high part to start
2488   // at offset 8.  If the high and low parts we inferred are both 4-byte types
2489   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
2490   // the second element at offset 8.  Check for this:
2491   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
2492   llvm::Align HiAlign = TD.getABITypeAlign(Hi);
2493   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
2494   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
2495 
2496   // To handle this, we have to increase the size of the low part so that the
2497   // second element will start at an 8 byte offset.  We can't increase the size
2498   // of the second element because it might make us access off the end of the
2499   // struct.
2500   if (HiStart != 8) {
2501     // There are usually two sorts of types the ABI generation code can produce
2502     // for the low part of a pair that aren't 8 bytes in size: half, float or
2503     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
2504     // NaCl).
2505     // Promote these to a larger type.
2506     if (Lo->isHalfTy() || Lo->isFloatTy())
2507       Lo = llvm::Type::getDoubleTy(Lo->getContext());
2508     else {
2509       assert((Lo->isIntegerTy() || Lo->isPointerTy())
2510              && "Invalid/unknown lo type");
2511       Lo = llvm::Type::getInt64Ty(Lo->getContext());
2512     }
2513   }
2514 
2515   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
2516 
2517   // Verify that the second element is at an 8-byte offset.
2518   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
2519          "Invalid x86-64 argument pair!");
2520   return Result;
2521 }
2522 
2523 ABIArgInfo X86_64ABIInfo::
2524 classifyReturnType(QualType RetTy) const {
2525   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
2526   // classification algorithm.
2527   X86_64ABIInfo::Class Lo, Hi;
2528   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
2529 
2530   // Check some invariants.
2531   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2532   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2533 
2534   llvm::Type *ResType = nullptr;
2535   switch (Lo) {
2536   case NoClass:
2537     if (Hi == NoClass)
2538       return ABIArgInfo::getIgnore();
2539     // If the low part is just padding, it takes no register, leave ResType
2540     // null.
2541     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2542            "Unknown missing lo part");
2543     break;
2544 
2545   case SSEUp:
2546   case X87Up:
2547     llvm_unreachable("Invalid classification for lo word.");
2548 
2549     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
2550     // hidden argument.
2551   case Memory:
2552     return getIndirectReturnResult(RetTy);
2553 
2554     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
2555     // available register of the sequence %rax, %rdx is used.
2556   case Integer:
2557     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2558 
2559     // If we have a sign or zero extended integer, make sure to return Extend
2560     // so that the parameter gets the right LLVM IR attributes.
2561     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2562       // Treat an enum type as its underlying type.
2563       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
2564         RetTy = EnumTy->getDecl()->getIntegerType();
2565 
2566       if (RetTy->isIntegralOrEnumerationType() &&
2567           isPromotableIntegerTypeForABI(RetTy))
2568         return ABIArgInfo::getExtend(RetTy);
2569     }
2570     break;
2571 
2572     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
2573     // available SSE register of the sequence %xmm0, %xmm1 is used.
2574   case SSE:
2575     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
2576     break;
2577 
2578     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
2579     // returned on the X87 stack in %st0 as 80-bit x87 number.
2580   case X87:
2581     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
2582     break;
2583 
2584     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
2585     // part of the value is returned in %st0 and the imaginary part in
2586     // %st1.
2587   case ComplexX87:
2588     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
2589     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
2590                                     llvm::Type::getX86_FP80Ty(getVMContext()));
2591     break;
2592   }
2593 
2594   llvm::Type *HighPart = nullptr;
2595   switch (Hi) {
2596     // Memory was handled previously and X87 should
2597     // never occur as a hi class.
2598   case Memory:
2599   case X87:
2600     llvm_unreachable("Invalid classification for hi word.");
2601 
2602   case ComplexX87: // Previously handled.
2603   case NoClass:
2604     break;
2605 
2606   case Integer:
2607     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2608     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2609       return ABIArgInfo::getDirect(HighPart, 8);
2610     break;
2611   case SSE:
2612     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2613     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2614       return ABIArgInfo::getDirect(HighPart, 8);
2615     break;
2616 
2617     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
2618     // is passed in the next available eightbyte chunk if the last used
2619     // vector register.
2620     //
2621     // SSEUP should always be preceded by SSE, just widen.
2622   case SSEUp:
2623     assert(Lo == SSE && "Unexpected SSEUp classification.");
2624     ResType = GetByteVectorType(RetTy);
2625     break;
2626 
2627     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
2628     // returned together with the previous X87 value in %st0.
2629   case X87Up:
2630     // If X87Up is preceded by X87, we don't need to do
2631     // anything. However, in some cases with unions it may not be
2632     // preceded by X87. In such situations we follow gcc and pass the
2633     // extra bits in an SSE reg.
2634     if (Lo != X87) {
2635       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
2636       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
2637         return ABIArgInfo::getDirect(HighPart, 8);
2638     }
2639     break;
2640   }
2641 
2642   // If a high part was specified, merge it together with the low part.  It is
2643   // known to pass in the high eightbyte of the result.  We do this by forming a
2644   // first class struct aggregate with the high and low part: {low, high}
2645   if (HighPart)
2646     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2647 
2648   return ABIArgInfo::getDirect(ResType);
2649 }
2650 
2651 ABIArgInfo
2652 X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2653                                     unsigned &neededInt, unsigned &neededSSE,
2654                                     bool isNamedArg, bool IsRegCall) const {
2655   Ty = useFirstFieldIfTransparentUnion(Ty);
2656 
2657   X86_64ABIInfo::Class Lo, Hi;
2658   classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
2659 
2660   // Check some invariants.
2661   // FIXME: Enforce these by construction.
2662   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
2663   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
2664 
2665   neededInt = 0;
2666   neededSSE = 0;
2667   llvm::Type *ResType = nullptr;
2668   switch (Lo) {
2669   case NoClass:
2670     if (Hi == NoClass)
2671       return ABIArgInfo::getIgnore();
2672     // If the low part is just padding, it takes no register, leave ResType
2673     // null.
2674     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
2675            "Unknown missing lo part");
2676     break;
2677 
2678     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
2679     // on the stack.
2680   case Memory:
2681 
2682     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
2683     // COMPLEX_X87, it is passed in memory.
2684   case X87:
2685   case ComplexX87:
2686     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
2687       ++neededInt;
2688     return getIndirectResult(Ty, freeIntRegs);
2689 
2690   case SSEUp:
2691   case X87Up:
2692     llvm_unreachable("Invalid classification for lo word.");
2693 
2694     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
2695     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
2696     // and %r9 is used.
2697   case Integer:
2698     ++neededInt;
2699 
2700     // Pick an 8-byte type based on the preferred type.
2701     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
2702 
2703     // If we have a sign or zero extended integer, make sure to return Extend
2704     // so that the parameter gets the right LLVM IR attributes.
2705     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
2706       // Treat an enum type as its underlying type.
2707       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
2708         Ty = EnumTy->getDecl()->getIntegerType();
2709 
2710       if (Ty->isIntegralOrEnumerationType() &&
2711           isPromotableIntegerTypeForABI(Ty))
2712         return ABIArgInfo::getExtend(Ty);
2713     }
2714 
2715     break;
2716 
2717     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
2718     // available SSE register is used, the registers are taken in the
2719     // order from %xmm0 to %xmm7.
2720   case SSE: {
2721     llvm::Type *IRType = CGT.ConvertType(Ty);
2722     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
2723     ++neededSSE;
2724     break;
2725   }
2726   }
2727 
2728   llvm::Type *HighPart = nullptr;
2729   switch (Hi) {
2730     // Memory was handled previously, ComplexX87 and X87 should
2731     // never occur as hi classes, and X87Up must be preceded by X87,
2732     // which is passed in memory.
2733   case Memory:
2734   case X87:
2735   case ComplexX87:
2736     llvm_unreachable("Invalid classification for hi word.");
2737 
2738   case NoClass: break;
2739 
2740   case Integer:
2741     ++neededInt;
2742     // Pick an 8-byte type based on the preferred type.
2743     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2744 
2745     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2746       return ABIArgInfo::getDirect(HighPart, 8);
2747     break;
2748 
2749     // X87Up generally doesn't occur here (long double is passed in
2750     // memory), except in situations involving unions.
2751   case X87Up:
2752   case SSE:
2753     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
2754 
2755     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
2756       return ABIArgInfo::getDirect(HighPart, 8);
2757 
2758     ++neededSSE;
2759     break;
2760 
2761     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
2762     // eightbyte is passed in the upper half of the last used SSE
2763     // register.  This only happens when 128-bit vectors are passed.
2764   case SSEUp:
2765     assert(Lo == SSE && "Unexpected SSEUp classification");
2766     ResType = GetByteVectorType(Ty);
2767     break;
2768   }
2769 
2770   // If a high part was specified, merge it together with the low part.  It is
2771   // known to pass in the high eightbyte of the result.  We do this by forming a
2772   // first class struct aggregate with the high and low part: {low, high}
2773   if (HighPart)
2774     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
2775 
2776   return ABIArgInfo::getDirect(ResType);
2777 }
2778 
2779 ABIArgInfo
2780 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2781                                              unsigned &NeededSSE,
2782                                              unsigned &MaxVectorWidth) const {
2783   auto RT = Ty->getAs<RecordType>();
2784   assert(RT && "classifyRegCallStructType only valid with struct types");
2785 
2786   if (RT->getDecl()->hasFlexibleArrayMember())
2787     return getIndirectReturnResult(Ty);
2788 
2789   // Sum up bases
2790   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
2791     if (CXXRD->isDynamicClass()) {
2792       NeededInt = NeededSSE = 0;
2793       return getIndirectReturnResult(Ty);
2794     }
2795 
2796     for (const auto &I : CXXRD->bases())
2797       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
2798                                         MaxVectorWidth)
2799               .isIndirect()) {
2800         NeededInt = NeededSSE = 0;
2801         return getIndirectReturnResult(Ty);
2802       }
2803   }
2804 
2805   // Sum up members
2806   for (const auto *FD : RT->getDecl()->fields()) {
2807     QualType MTy = FD->getType();
2808     if (MTy->isRecordType() && !MTy->isUnionType()) {
2809       if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
2810                                         MaxVectorWidth)
2811               .isIndirect()) {
2812         NeededInt = NeededSSE = 0;
2813         return getIndirectReturnResult(Ty);
2814       }
2815     } else {
2816       unsigned LocalNeededInt, LocalNeededSSE;
2817       if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
2818                                true, true)
2819               .isIndirect()) {
2820         NeededInt = NeededSSE = 0;
2821         return getIndirectReturnResult(Ty);
2822       }
2823       if (const auto *AT = getContext().getAsConstantArrayType(MTy))
2824         MTy = AT->getElementType();
2825       if (const auto *VT = MTy->getAs<VectorType>())
2826         if (getContext().getTypeSize(VT) > MaxVectorWidth)
2827           MaxVectorWidth = getContext().getTypeSize(VT);
2828       NeededInt += LocalNeededInt;
2829       NeededSSE += LocalNeededSSE;
2830     }
2831   }
2832 
2833   return ABIArgInfo::getDirect();
2834 }
2835 
2836 ABIArgInfo
2837 X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2838                                          unsigned &NeededSSE,
2839                                          unsigned &MaxVectorWidth) const {
2840 
2841   NeededInt = 0;
2842   NeededSSE = 0;
2843   MaxVectorWidth = 0;
2844 
2845   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
2846                                        MaxVectorWidth);
2847 }
2848 
2849 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
2850 
2851   const unsigned CallingConv = FI.getCallingConvention();
2852   // It is possible to force Win64 calling convention on any x86_64 target by
2853   // using __attribute__((ms_abi)). In such case to correctly emit Win64
2854   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
2855   if (CallingConv == llvm::CallingConv::Win64) {
2856     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
2857     Win64ABIInfo.computeInfo(FI);
2858     return;
2859   }
2860 
2861   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
2862 
2863   // Keep track of the number of assigned registers.
2864   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
2865   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
2866   unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
2867 
2868   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
2869     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
2870         !FI.getReturnType()->getTypePtr()->isUnionType()) {
2871       FI.getReturnInfo() = classifyRegCallStructType(
2872           FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
2873       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2874         FreeIntRegs -= NeededInt;
2875         FreeSSERegs -= NeededSSE;
2876       } else {
2877         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2878       }
2879     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
2880                getContext().getCanonicalType(FI.getReturnType()
2881                                                  ->getAs<ComplexType>()
2882                                                  ->getElementType()) ==
2883                    getContext().LongDoubleTy)
2884       // Complex Long Double Type is passed in Memory when Regcall
2885       // calling convention is used.
2886       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
2887     else
2888       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
2889   }
2890 
2891   // If the return value is indirect, then the hidden argument is consuming one
2892   // integer register.
2893   if (FI.getReturnInfo().isIndirect())
2894     --FreeIntRegs;
2895   else if (NeededSSE && MaxVectorWidth > 0)
2896     FI.setMaxVectorWidth(MaxVectorWidth);
2897 
2898   // The chain argument effectively gives us another free register.
2899   if (FI.isChainCall())
2900     ++FreeIntRegs;
2901 
2902   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
2903   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
2904   // get assigned (in left-to-right order) for passing as follows...
2905   unsigned ArgNo = 0;
2906   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
2907        it != ie; ++it, ++ArgNo) {
2908     bool IsNamedArg = ArgNo < NumRequiredArgs;
2909 
2910     if (IsRegCall && it->type->isStructureOrClassType())
2911       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
2912                                            MaxVectorWidth);
2913     else
2914       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
2915                                       NeededSSE, IsNamedArg);
2916 
2917     // AMD64-ABI 3.2.3p3: If there are no registers available for any
2918     // eightbyte of an argument, the whole argument is passed on the
2919     // stack. If registers have already been assigned for some
2920     // eightbytes of such an argument, the assignments get reverted.
2921     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
2922       FreeIntRegs -= NeededInt;
2923       FreeSSERegs -= NeededSSE;
2924       if (MaxVectorWidth > FI.getMaxVectorWidth())
2925         FI.setMaxVectorWidth(MaxVectorWidth);
2926     } else {
2927       it->info = getIndirectResult(it->type, FreeIntRegs);
2928     }
2929   }
2930 }
2931 
2932 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
2933                                          Address VAListAddr, QualType Ty) {
2934   Address overflow_arg_area_p =
2935       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
2936   llvm::Value *overflow_arg_area =
2937     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
2938 
2939   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
2940   // byte boundary if alignment needed by type exceeds 8 byte boundary.
2941   // It isn't stated explicitly in the standard, but in practice we use
2942   // alignment greater than 16 where necessary.
2943   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
2944   if (Align > CharUnits::fromQuantity(8)) {
2945     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
2946                                                       Align);
2947   }
2948 
2949   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
2950   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
2951   llvm::Value *Res =
2952     CGF.Builder.CreateBitCast(overflow_arg_area,
2953                               llvm::PointerType::getUnqual(LTy));
2954 
2955   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
2956   // l->overflow_arg_area + sizeof(type).
2957   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
2958   // an 8 byte boundary.
2959 
2960   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
2961   llvm::Value *Offset =
2962       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
2963   overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
2964                                             Offset, "overflow_arg_area.next");
2965   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
2966 
2967   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
2968   return Address(Res, LTy, Align);
2969 }
2970 
2971 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2972                                  QualType Ty) const {
2973   // Assume that va_list type is correct; should be pointer to LLVM type:
2974   // struct {
2975   //   i32 gp_offset;
2976   //   i32 fp_offset;
2977   //   i8* overflow_arg_area;
2978   //   i8* reg_save_area;
2979   // };
2980   unsigned neededInt, neededSSE;
2981 
2982   Ty = getContext().getCanonicalType(Ty);
2983   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
2984                                        /*isNamedArg*/false);
2985 
2986   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
2987   // in the registers. If not go to step 7.
2988   if (!neededInt && !neededSSE)
2989     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
2990 
2991   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
2992   // general purpose registers needed to pass type and num_fp to hold
2993   // the number of floating point registers needed.
2994 
2995   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
2996   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
2997   // l->fp_offset > 304 - num_fp * 16 go to step 7.
2998   //
2999   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3000   // register save space).
3001 
3002   llvm::Value *InRegs = nullptr;
3003   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3004   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3005   if (neededInt) {
3006     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3007     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3008     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3009     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3010   }
3011 
3012   if (neededSSE) {
3013     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3014     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3015     llvm::Value *FitsInFP =
3016       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3017     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3018     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3019   }
3020 
3021   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
3022   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
3023   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
3024   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
3025 
3026   // Emit code to load the value if it was passed in registers.
3027 
3028   CGF.EmitBlock(InRegBlock);
3029 
3030   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
3031   // an offset of l->gp_offset and/or l->fp_offset. This may require
3032   // copying to a temporary location in case the parameter is passed
3033   // in different register classes or requires an alignment greater
3034   // than 8 for general purpose registers and 16 for XMM registers.
3035   //
3036   // FIXME: This really results in shameful code when we end up needing to
3037   // collect arguments from different places; often what should result in a
3038   // simple assembling of a structure from scattered addresses has many more
3039   // loads than necessary. Can we clean this up?
3040   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3041   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
3042       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
3043 
3044   Address RegAddr = Address::invalid();
3045   if (neededInt && neededSSE) {
3046     // FIXME: Cleanup.
3047     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
3048     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
3049     Address Tmp = CGF.CreateMemTemp(Ty);
3050     Tmp = Tmp.withElementType(ST);
3051     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
3052     llvm::Type *TyLo = ST->getElementType(0);
3053     llvm::Type *TyHi = ST->getElementType(1);
3054     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
3055            "Unexpected ABI info for mixed regs");
3056     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
3057     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
3058     llvm::Value *GPAddr =
3059         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
3060     llvm::Value *FPAddr =
3061         CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
3062     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
3063     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
3064 
3065     // Copy the first element.
3066     // FIXME: Our choice of alignment here and below is probably pessimistic.
3067     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
3068         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
3069         CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
3070     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3071 
3072     // Copy the second element.
3073     V = CGF.Builder.CreateAlignedLoad(
3074         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
3075         CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
3076     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3077 
3078     RegAddr = Tmp.withElementType(LTy);
3079   } else if (neededInt) {
3080     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
3081                       LTy, CharUnits::fromQuantity(8));
3082 
3083     // Copy to a temporary if necessary to ensure the appropriate alignment.
3084     auto TInfo = getContext().getTypeInfoInChars(Ty);
3085     uint64_t TySize = TInfo.Width.getQuantity();
3086     CharUnits TyAlign = TInfo.Align;
3087 
3088     // Copy into a temporary if the type is more aligned than the
3089     // register save area.
3090     if (TyAlign.getQuantity() > 8) {
3091       Address Tmp = CGF.CreateMemTemp(Ty);
3092       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
3093       RegAddr = Tmp;
3094     }
3095 
3096   } else if (neededSSE == 1) {
3097     RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
3098                       LTy, CharUnits::fromQuantity(16));
3099   } else {
3100     assert(neededSSE == 2 && "Invalid number of needed registers!");
3101     // SSE registers are spaced 16 bytes apart in the register save
3102     // area, we need to collect the two eightbytes together.
3103     // The ABI isn't explicit about this, but it seems reasonable
3104     // to assume that the slots are 16-byte aligned, since the stack is
3105     // naturally 16-byte aligned and the prologue is expected to store
3106     // all the SSE registers to the RSA.
3107     Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
3108                                                       fp_offset),
3109                                 CGF.Int8Ty, CharUnits::fromQuantity(16));
3110     Address RegAddrHi =
3111       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
3112                                              CharUnits::fromQuantity(16));
3113     llvm::Type *ST = AI.canHaveCoerceToType()
3114                          ? AI.getCoerceToType()
3115                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
3116     llvm::Value *V;
3117     Address Tmp = CGF.CreateMemTemp(Ty);
3118     Tmp = Tmp.withElementType(ST);
3119     V = CGF.Builder.CreateLoad(
3120         RegAddrLo.withElementType(ST->getStructElementType(0)));
3121     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
3122     V = CGF.Builder.CreateLoad(
3123         RegAddrHi.withElementType(ST->getStructElementType(1)));
3124     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
3125 
3126     RegAddr = Tmp.withElementType(LTy);
3127   }
3128 
3129   // AMD64-ABI 3.5.7p5: Step 5. Set:
3130   // l->gp_offset = l->gp_offset + num_gp * 8
3131   // l->fp_offset = l->fp_offset + num_fp * 16.
3132   if (neededInt) {
3133     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
3134     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
3135                             gp_offset_p);
3136   }
3137   if (neededSSE) {
3138     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
3139     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
3140                             fp_offset_p);
3141   }
3142   CGF.EmitBranch(ContBlock);
3143 
3144   // Emit code to load the value if it was passed in memory.
3145 
3146   CGF.EmitBlock(InMemBlock);
3147   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3148 
3149   // Return the appropriate result.
3150 
3151   CGF.EmitBlock(ContBlock);
3152   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
3153                                  "vaarg.addr");
3154   return ResAddr;
3155 }
3156 
3157 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3158                                    QualType Ty) const {
3159   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3160   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3161   uint64_t Width = getContext().getTypeSize(Ty);
3162   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3163 
3164   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3165                           CGF.getContext().getTypeInfoInChars(Ty),
3166                           CharUnits::fromQuantity(8),
3167                           /*allowHigherAlign*/ false);
3168 }
3169 
3170 ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
3171     QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo &current) const {
3172   const Type *Base = nullptr;
3173   uint64_t NumElts = 0;
3174 
3175   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
3176       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
3177     FreeSSERegs -= NumElts;
3178     return getDirectX86Hva();
3179   }
3180   return current;
3181 }
3182 
3183 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
3184                                       bool IsReturnType, bool IsVectorCall,
3185                                       bool IsRegCall) const {
3186 
3187   if (Ty->isVoidType())
3188     return ABIArgInfo::getIgnore();
3189 
3190   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3191     Ty = EnumTy->getDecl()->getIntegerType();
3192 
3193   TypeInfo Info = getContext().getTypeInfo(Ty);
3194   uint64_t Width = Info.Width;
3195   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
3196 
3197   const RecordType *RT = Ty->getAs<RecordType>();
3198   if (RT) {
3199     if (!IsReturnType) {
3200       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
3201         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3202     }
3203 
3204     if (RT->getDecl()->hasFlexibleArrayMember())
3205       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3206 
3207   }
3208 
3209   const Type *Base = nullptr;
3210   uint64_t NumElts = 0;
3211   // vectorcall adds the concept of a homogenous vector aggregate, similar to
3212   // other targets.
3213   if ((IsVectorCall || IsRegCall) &&
3214       isHomogeneousAggregate(Ty, Base, NumElts)) {
3215     if (IsRegCall) {
3216       if (FreeSSERegs >= NumElts) {
3217         FreeSSERegs -= NumElts;
3218         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
3219           return ABIArgInfo::getDirect();
3220         return ABIArgInfo::getExpand();
3221       }
3222       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3223     } else if (IsVectorCall) {
3224       if (FreeSSERegs >= NumElts &&
3225           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
3226         FreeSSERegs -= NumElts;
3227         return ABIArgInfo::getDirect();
3228       } else if (IsReturnType) {
3229         return ABIArgInfo::getExpand();
3230       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
3231         // HVAs are delayed and reclassified in the 2nd step.
3232         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3233       }
3234     }
3235   }
3236 
3237   if (Ty->isMemberPointerType()) {
3238     // If the member pointer is represented by an LLVM int or ptr, pass it
3239     // directly.
3240     llvm::Type *LLTy = CGT.ConvertType(Ty);
3241     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
3242       return ABIArgInfo::getDirect();
3243   }
3244 
3245   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
3246     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3247     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3248     if (Width > 64 || !llvm::isPowerOf2_64(Width))
3249       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
3250 
3251     // Otherwise, coerce it to a small integer.
3252     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
3253   }
3254 
3255   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
3256     switch (BT->getKind()) {
3257     case BuiltinType::Bool:
3258       // Bool type is always extended to the ABI, other builtin types are not
3259       // extended.
3260       return ABIArgInfo::getExtend(Ty);
3261 
3262     case BuiltinType::LongDouble:
3263       // Mingw64 GCC uses the old 80 bit extended precision floating point
3264       // unit. It passes them indirectly through memory.
3265       if (IsMingw64) {
3266         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
3267         if (LDF == &llvm::APFloat::x87DoubleExtended())
3268           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3269       }
3270       break;
3271 
3272     case BuiltinType::Int128:
3273     case BuiltinType::UInt128:
3274       // If it's a parameter type, the normal ABI rule is that arguments larger
3275       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
3276       // even though it isn't particularly efficient.
3277       if (!IsReturnType)
3278         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3279 
3280       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
3281       // Clang matches them for compatibility.
3282       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
3283           llvm::Type::getInt64Ty(getVMContext()), 2));
3284 
3285     default:
3286       break;
3287     }
3288   }
3289 
3290   if (Ty->isBitIntType()) {
3291     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3292     // not 1, 2, 4, or 8 bytes, must be passed by reference."
3293     // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
3294     // or 8 bytes anyway as long is it fits in them, so we don't have to check
3295     // the power of 2.
3296     if (Width <= 64)
3297       return ABIArgInfo::getDirect();
3298     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
3299   }
3300 
3301   return ABIArgInfo::getDirect();
3302 }
3303 
3304 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3305   const unsigned CC = FI.getCallingConvention();
3306   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
3307   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
3308 
3309   // If __attribute__((sysv_abi)) is in use, use the SysV argument
3310   // classification rules.
3311   if (CC == llvm::CallingConv::X86_64_SysV) {
3312     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
3313     SysVABIInfo.computeInfo(FI);
3314     return;
3315   }
3316 
3317   unsigned FreeSSERegs = 0;
3318   if (IsVectorCall) {
3319     // We can use up to 4 SSE return registers with vectorcall.
3320     FreeSSERegs = 4;
3321   } else if (IsRegCall) {
3322     // RegCall gives us 16 SSE registers.
3323     FreeSSERegs = 16;
3324   }
3325 
3326   if (!getCXXABI().classifyReturnType(FI))
3327     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
3328                                   IsVectorCall, IsRegCall);
3329 
3330   if (IsVectorCall) {
3331     // We can use up to 6 SSE register parameters with vectorcall.
3332     FreeSSERegs = 6;
3333   } else if (IsRegCall) {
3334     // RegCall gives us 16 SSE registers, we can reuse the return registers.
3335     FreeSSERegs = 16;
3336   }
3337 
3338   unsigned ArgNum = 0;
3339   unsigned ZeroSSERegs = 0;
3340   for (auto &I : FI.arguments()) {
3341     // Vectorcall in x64 only permits the first 6 arguments to be passed as
3342     // XMM/YMM registers. After the sixth argument, pretend no vector
3343     // registers are left.
3344     unsigned *MaybeFreeSSERegs =
3345         (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
3346     I.info =
3347         classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
3348     ++ArgNum;
3349   }
3350 
3351   if (IsVectorCall) {
3352     // For vectorcall, assign aggregate HVAs to any free vector registers in a
3353     // second pass.
3354     for (auto &I : FI.arguments())
3355       I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
3356   }
3357 }
3358 
3359 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3360                                     QualType Ty) const {
3361   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
3362   // not 1, 2, 4, or 8 bytes, must be passed by reference."
3363   uint64_t Width = getContext().getTypeSize(Ty);
3364   bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
3365 
3366   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
3367                           CGF.getContext().getTypeInfoInChars(Ty),
3368                           CharUnits::fromQuantity(8),
3369                           /*allowHigherAlign*/ false);
3370 }
3371 
3372 std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
3373     CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3374     unsigned NumRegisterParameters, bool SoftFloatABI) {
3375   bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3376       CGM.getTriple(), CGM.getCodeGenOpts());
3377   return std::make_unique<X86_32TargetCodeGenInfo>(
3378       CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3379       NumRegisterParameters, SoftFloatABI);
3380 }
3381 
3382 std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
3383     CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
3384     unsigned NumRegisterParameters) {
3385   bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
3386       CGM.getTriple(), CGM.getCodeGenOpts());
3387   return std::make_unique<WinX86_32TargetCodeGenInfo>(
3388       CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
3389       NumRegisterParameters);
3390 }
3391 
3392 std::unique_ptr<TargetCodeGenInfo>
3393 CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
3394                                        X86AVXABILevel AVXLevel) {
3395   return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3396 }
3397 
3398 std::unique_ptr<TargetCodeGenInfo>
3399 CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
3400                                           X86AVXABILevel AVXLevel) {
3401   return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
3402 }
3403