106c3fb27SDimitry Andric //===- X86.cpp ------------------------------------------------------------===//
206c3fb27SDimitry Andric //
306c3fb27SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
406c3fb27SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
506c3fb27SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
606c3fb27SDimitry Andric //
706c3fb27SDimitry Andric //===----------------------------------------------------------------------===//
806c3fb27SDimitry Andric
906c3fb27SDimitry Andric #include "ABIInfoImpl.h"
1006c3fb27SDimitry Andric #include "TargetInfo.h"
1106c3fb27SDimitry Andric #include "clang/Basic/DiagnosticFrontend.h"
1206c3fb27SDimitry Andric #include "llvm/ADT/SmallBitVector.h"
1306c3fb27SDimitry Andric
1406c3fb27SDimitry Andric using namespace clang;
1506c3fb27SDimitry Andric using namespace clang::CodeGen;
1606c3fb27SDimitry Andric
1706c3fb27SDimitry Andric namespace {
1806c3fb27SDimitry Andric
1906c3fb27SDimitry Andric /// IsX86_MMXType - Return true if this is an MMX type.
IsX86_MMXType(llvm::Type * IRType)2006c3fb27SDimitry Andric bool IsX86_MMXType(llvm::Type *IRType) {
2106c3fb27SDimitry Andric // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
2206c3fb27SDimitry Andric return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
2306c3fb27SDimitry Andric cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
2406c3fb27SDimitry Andric IRType->getScalarSizeInBits() != 64;
2506c3fb27SDimitry Andric }
2606c3fb27SDimitry Andric
X86AdjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty)2706c3fb27SDimitry Andric static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2806c3fb27SDimitry Andric StringRef Constraint,
2906c3fb27SDimitry Andric llvm::Type* Ty) {
3006c3fb27SDimitry Andric bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
3106c3fb27SDimitry Andric .Cases("y", "&y", "^Ym", true)
3206c3fb27SDimitry Andric .Default(false);
3306c3fb27SDimitry Andric if (IsMMXCons && Ty->isVectorTy()) {
3406c3fb27SDimitry Andric if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedValue() !=
3506c3fb27SDimitry Andric 64) {
3606c3fb27SDimitry Andric // Invalid MMX constraint
3706c3fb27SDimitry Andric return nullptr;
3806c3fb27SDimitry Andric }
3906c3fb27SDimitry Andric
4006c3fb27SDimitry Andric return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
4106c3fb27SDimitry Andric }
4206c3fb27SDimitry Andric
437a6dacacSDimitry Andric if (Constraint == "k") {
447a6dacacSDimitry Andric llvm::Type *Int1Ty = llvm::Type::getInt1Ty(CGF.getLLVMContext());
457a6dacacSDimitry Andric return llvm::FixedVectorType::get(Int1Ty, Ty->getScalarSizeInBits());
467a6dacacSDimitry Andric }
477a6dacacSDimitry Andric
4806c3fb27SDimitry Andric // No operation needed
4906c3fb27SDimitry Andric return Ty;
5006c3fb27SDimitry Andric }
5106c3fb27SDimitry Andric
5206c3fb27SDimitry Andric /// Returns true if this type can be passed in SSE registers with the
5306c3fb27SDimitry Andric /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorTypeForVectorCall(ASTContext & Context,QualType Ty)5406c3fb27SDimitry Andric static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
5506c3fb27SDimitry Andric if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5606c3fb27SDimitry Andric if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
5706c3fb27SDimitry Andric if (BT->getKind() == BuiltinType::LongDouble) {
5806c3fb27SDimitry Andric if (&Context.getTargetInfo().getLongDoubleFormat() ==
5906c3fb27SDimitry Andric &llvm::APFloat::x87DoubleExtended())
6006c3fb27SDimitry Andric return false;
6106c3fb27SDimitry Andric }
6206c3fb27SDimitry Andric return true;
6306c3fb27SDimitry Andric }
6406c3fb27SDimitry Andric } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6506c3fb27SDimitry Andric // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
6606c3fb27SDimitry Andric // registers specially.
6706c3fb27SDimitry Andric unsigned VecSize = Context.getTypeSize(VT);
6806c3fb27SDimitry Andric if (VecSize == 128 || VecSize == 256 || VecSize == 512)
6906c3fb27SDimitry Andric return true;
7006c3fb27SDimitry Andric }
7106c3fb27SDimitry Andric return false;
7206c3fb27SDimitry Andric }
7306c3fb27SDimitry Andric
7406c3fb27SDimitry Andric /// Returns true if this aggregate is small enough to be passed in SSE registers
7506c3fb27SDimitry Andric /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
isX86VectorCallAggregateSmallEnough(uint64_t NumMembers)7606c3fb27SDimitry Andric static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
7706c3fb27SDimitry Andric return NumMembers <= 4;
7806c3fb27SDimitry Andric }
7906c3fb27SDimitry Andric
8006c3fb27SDimitry Andric /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
getDirectX86Hva(llvm::Type * T=nullptr)8106c3fb27SDimitry Andric static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
8206c3fb27SDimitry Andric auto AI = ABIArgInfo::getDirect(T);
8306c3fb27SDimitry Andric AI.setInReg(true);
8406c3fb27SDimitry Andric AI.setCanBeFlattened(false);
8506c3fb27SDimitry Andric return AI;
8606c3fb27SDimitry Andric }
8706c3fb27SDimitry Andric
8806c3fb27SDimitry Andric //===----------------------------------------------------------------------===//
8906c3fb27SDimitry Andric // X86-32 ABI Implementation
9006c3fb27SDimitry Andric //===----------------------------------------------------------------------===//
9106c3fb27SDimitry Andric
9206c3fb27SDimitry Andric /// Similar to llvm::CCState, but for Clang.
9306c3fb27SDimitry Andric struct CCState {
CCState__anon8aa8892d0111::CCState9406c3fb27SDimitry Andric CCState(CGFunctionInfo &FI)
955f757f3fSDimitry Andric : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()),
965f757f3fSDimitry Andric Required(FI.getRequiredArgs()), IsDelegateCall(FI.isDelegateCall()) {}
9706c3fb27SDimitry Andric
9806c3fb27SDimitry Andric llvm::SmallBitVector IsPreassigned;
9906c3fb27SDimitry Andric unsigned CC = CallingConv::CC_C;
10006c3fb27SDimitry Andric unsigned FreeRegs = 0;
10106c3fb27SDimitry Andric unsigned FreeSSERegs = 0;
1025f757f3fSDimitry Andric RequiredArgs Required;
1035f757f3fSDimitry Andric bool IsDelegateCall = false;
10406c3fb27SDimitry Andric };
10506c3fb27SDimitry Andric
10606c3fb27SDimitry Andric /// X86_32ABIInfo - The X86-32 ABI information.
10706c3fb27SDimitry Andric class X86_32ABIInfo : public ABIInfo {
10806c3fb27SDimitry Andric enum Class {
10906c3fb27SDimitry Andric Integer,
11006c3fb27SDimitry Andric Float
11106c3fb27SDimitry Andric };
11206c3fb27SDimitry Andric
11306c3fb27SDimitry Andric static const unsigned MinABIStackAlignInBytes = 4;
11406c3fb27SDimitry Andric
11506c3fb27SDimitry Andric bool IsDarwinVectorABI;
11606c3fb27SDimitry Andric bool IsRetSmallStructInRegABI;
11706c3fb27SDimitry Andric bool IsWin32StructABI;
11806c3fb27SDimitry Andric bool IsSoftFloatABI;
11906c3fb27SDimitry Andric bool IsMCUABI;
12006c3fb27SDimitry Andric bool IsLinuxABI;
12106c3fb27SDimitry Andric unsigned DefaultNumRegisterParameters;
12206c3fb27SDimitry Andric
isRegisterSize(unsigned Size)12306c3fb27SDimitry Andric static bool isRegisterSize(unsigned Size) {
12406c3fb27SDimitry Andric return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
12506c3fb27SDimitry Andric }
12606c3fb27SDimitry Andric
isHomogeneousAggregateBaseType(QualType Ty) const12706c3fb27SDimitry Andric bool isHomogeneousAggregateBaseType(QualType Ty) const override {
12806c3fb27SDimitry Andric // FIXME: Assumes vectorcall is in use.
12906c3fb27SDimitry Andric return isX86VectorTypeForVectorCall(getContext(), Ty);
13006c3fb27SDimitry Andric }
13106c3fb27SDimitry Andric
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const13206c3fb27SDimitry Andric bool isHomogeneousAggregateSmallEnough(const Type *Ty,
13306c3fb27SDimitry Andric uint64_t NumMembers) const override {
13406c3fb27SDimitry Andric // FIXME: Assumes vectorcall is in use.
13506c3fb27SDimitry Andric return isX86VectorCallAggregateSmallEnough(NumMembers);
13606c3fb27SDimitry Andric }
13706c3fb27SDimitry Andric
13806c3fb27SDimitry Andric bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
13906c3fb27SDimitry Andric
14006c3fb27SDimitry Andric /// getIndirectResult - Give a source type \arg Ty, return a suitable result
14106c3fb27SDimitry Andric /// such that the argument will be passed in memory.
14206c3fb27SDimitry Andric ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
14306c3fb27SDimitry Andric
14406c3fb27SDimitry Andric ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
14506c3fb27SDimitry Andric
14606c3fb27SDimitry Andric /// Return the alignment to use for the given type on the stack.
14706c3fb27SDimitry Andric unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
14806c3fb27SDimitry Andric
14906c3fb27SDimitry Andric Class classify(QualType Ty) const;
15006c3fb27SDimitry Andric ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1518a4dda33SDimitry Andric ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State,
1525f757f3fSDimitry Andric unsigned ArgIndex) const;
15306c3fb27SDimitry Andric
15406c3fb27SDimitry Andric /// Updates the number of available free registers, returns
15506c3fb27SDimitry Andric /// true if any registers were allocated.
15606c3fb27SDimitry Andric bool updateFreeRegs(QualType Ty, CCState &State) const;
15706c3fb27SDimitry Andric
15806c3fb27SDimitry Andric bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
15906c3fb27SDimitry Andric bool &NeedsPadding) const;
16006c3fb27SDimitry Andric bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
16106c3fb27SDimitry Andric
16206c3fb27SDimitry Andric bool canExpandIndirectArgument(QualType Ty) const;
16306c3fb27SDimitry Andric
16406c3fb27SDimitry Andric /// Rewrite the function info so that all memory arguments use
16506c3fb27SDimitry Andric /// inalloca.
16606c3fb27SDimitry Andric void rewriteWithInAlloca(CGFunctionInfo &FI) const;
16706c3fb27SDimitry Andric
16806c3fb27SDimitry Andric void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
16906c3fb27SDimitry Andric CharUnits &StackOffset, ABIArgInfo &Info,
17006c3fb27SDimitry Andric QualType Type) const;
17106c3fb27SDimitry Andric void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
17206c3fb27SDimitry Andric
17306c3fb27SDimitry Andric public:
17406c3fb27SDimitry Andric
17506c3fb27SDimitry Andric void computeInfo(CGFunctionInfo &FI) const override;
176*0fca6ea1SDimitry Andric RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
177*0fca6ea1SDimitry Andric AggValueSlot Slot) const override;
17806c3fb27SDimitry Andric
X86_32ABIInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)17906c3fb27SDimitry Andric X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
18006c3fb27SDimitry Andric bool RetSmallStructInRegABI, bool Win32StructABI,
18106c3fb27SDimitry Andric unsigned NumRegisterParameters, bool SoftFloatABI)
18206c3fb27SDimitry Andric : ABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
18306c3fb27SDimitry Andric IsRetSmallStructInRegABI(RetSmallStructInRegABI),
18406c3fb27SDimitry Andric IsWin32StructABI(Win32StructABI), IsSoftFloatABI(SoftFloatABI),
18506c3fb27SDimitry Andric IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
18606c3fb27SDimitry Andric IsLinuxABI(CGT.getTarget().getTriple().isOSLinux() ||
18706c3fb27SDimitry Andric CGT.getTarget().getTriple().isOSCygMing()),
18806c3fb27SDimitry Andric DefaultNumRegisterParameters(NumRegisterParameters) {}
18906c3fb27SDimitry Andric };
19006c3fb27SDimitry Andric
19106c3fb27SDimitry Andric class X86_32SwiftABIInfo : public SwiftABIInfo {
19206c3fb27SDimitry Andric public:
X86_32SwiftABIInfo(CodeGenTypes & CGT)19306c3fb27SDimitry Andric explicit X86_32SwiftABIInfo(CodeGenTypes &CGT)
19406c3fb27SDimitry Andric : SwiftABIInfo(CGT, /*SwiftErrorInRegister=*/false) {}
19506c3fb27SDimitry Andric
shouldPassIndirectly(ArrayRef<llvm::Type * > ComponentTys,bool AsReturnValue) const19606c3fb27SDimitry Andric bool shouldPassIndirectly(ArrayRef<llvm::Type *> ComponentTys,
19706c3fb27SDimitry Andric bool AsReturnValue) const override {
19806c3fb27SDimitry Andric // LLVM's x86-32 lowering currently only assigns up to three
19906c3fb27SDimitry Andric // integer registers and three fp registers. Oddly, it'll use up to
20006c3fb27SDimitry Andric // four vector registers for vectors, but those can overlap with the
20106c3fb27SDimitry Andric // scalar registers.
20206c3fb27SDimitry Andric return occupiesMoreThan(ComponentTys, /*total=*/3);
20306c3fb27SDimitry Andric }
20406c3fb27SDimitry Andric };
20506c3fb27SDimitry Andric
20606c3fb27SDimitry Andric class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
20706c3fb27SDimitry Andric public:
X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)20806c3fb27SDimitry Andric X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
20906c3fb27SDimitry Andric bool RetSmallStructInRegABI, bool Win32StructABI,
21006c3fb27SDimitry Andric unsigned NumRegisterParameters, bool SoftFloatABI)
21106c3fb27SDimitry Andric : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
21206c3fb27SDimitry Andric CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
21306c3fb27SDimitry Andric NumRegisterParameters, SoftFloatABI)) {
21406c3fb27SDimitry Andric SwiftInfo = std::make_unique<X86_32SwiftABIInfo>(CGT);
21506c3fb27SDimitry Andric }
21606c3fb27SDimitry Andric
21706c3fb27SDimitry Andric static bool isStructReturnInRegABI(
21806c3fb27SDimitry Andric const llvm::Triple &Triple, const CodeGenOptions &Opts);
21906c3fb27SDimitry Andric
22006c3fb27SDimitry Andric void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
22106c3fb27SDimitry Andric CodeGen::CodeGenModule &CGM) const override;
22206c3fb27SDimitry Andric
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const22306c3fb27SDimitry Andric int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
22406c3fb27SDimitry Andric // Darwin uses different dwarf register numbers for EH.
22506c3fb27SDimitry Andric if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
22606c3fb27SDimitry Andric return 4;
22706c3fb27SDimitry Andric }
22806c3fb27SDimitry Andric
22906c3fb27SDimitry Andric bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
23006c3fb27SDimitry Andric llvm::Value *Address) const override;
23106c3fb27SDimitry Andric
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const23206c3fb27SDimitry Andric llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
23306c3fb27SDimitry Andric StringRef Constraint,
23406c3fb27SDimitry Andric llvm::Type* Ty) const override {
23506c3fb27SDimitry Andric return X86AdjustInlineAsmType(CGF, Constraint, Ty);
23606c3fb27SDimitry Andric }
23706c3fb27SDimitry Andric
23806c3fb27SDimitry Andric void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
23906c3fb27SDimitry Andric std::string &Constraints,
24006c3fb27SDimitry Andric std::vector<llvm::Type *> &ResultRegTypes,
24106c3fb27SDimitry Andric std::vector<llvm::Type *> &ResultTruncRegTypes,
24206c3fb27SDimitry Andric std::vector<LValue> &ResultRegDests,
24306c3fb27SDimitry Andric std::string &AsmString,
24406c3fb27SDimitry Andric unsigned NumOutputs) const override;
24506c3fb27SDimitry Andric
getARCRetainAutoreleasedReturnValueMarker() const24606c3fb27SDimitry Andric StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
24706c3fb27SDimitry Andric return "movl\t%ebp, %ebp"
24806c3fb27SDimitry Andric "\t\t// marker for objc_retainAutoreleaseReturnValue";
24906c3fb27SDimitry Andric }
25006c3fb27SDimitry Andric };
25106c3fb27SDimitry Andric
25206c3fb27SDimitry Andric }
25306c3fb27SDimitry Andric
25406c3fb27SDimitry Andric /// Rewrite input constraint references after adding some output constraints.
25506c3fb27SDimitry Andric /// In the case where there is one output and one input and we add one output,
25606c3fb27SDimitry Andric /// we need to replace all operand references greater than or equal to 1:
25706c3fb27SDimitry Andric /// mov $0, $1
25806c3fb27SDimitry Andric /// mov eax, $1
25906c3fb27SDimitry Andric /// The result will be:
26006c3fb27SDimitry Andric /// mov $0, $2
26106c3fb27SDimitry Andric /// mov eax, $2
rewriteInputConstraintReferences(unsigned FirstIn,unsigned NumNewOuts,std::string & AsmString)26206c3fb27SDimitry Andric static void rewriteInputConstraintReferences(unsigned FirstIn,
26306c3fb27SDimitry Andric unsigned NumNewOuts,
26406c3fb27SDimitry Andric std::string &AsmString) {
26506c3fb27SDimitry Andric std::string Buf;
26606c3fb27SDimitry Andric llvm::raw_string_ostream OS(Buf);
26706c3fb27SDimitry Andric size_t Pos = 0;
26806c3fb27SDimitry Andric while (Pos < AsmString.size()) {
26906c3fb27SDimitry Andric size_t DollarStart = AsmString.find('$', Pos);
27006c3fb27SDimitry Andric if (DollarStart == std::string::npos)
27106c3fb27SDimitry Andric DollarStart = AsmString.size();
27206c3fb27SDimitry Andric size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
27306c3fb27SDimitry Andric if (DollarEnd == std::string::npos)
27406c3fb27SDimitry Andric DollarEnd = AsmString.size();
27506c3fb27SDimitry Andric OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
27606c3fb27SDimitry Andric Pos = DollarEnd;
27706c3fb27SDimitry Andric size_t NumDollars = DollarEnd - DollarStart;
27806c3fb27SDimitry Andric if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
27906c3fb27SDimitry Andric // We have an operand reference.
28006c3fb27SDimitry Andric size_t DigitStart = Pos;
28106c3fb27SDimitry Andric if (AsmString[DigitStart] == '{') {
28206c3fb27SDimitry Andric OS << '{';
28306c3fb27SDimitry Andric ++DigitStart;
28406c3fb27SDimitry Andric }
28506c3fb27SDimitry Andric size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
28606c3fb27SDimitry Andric if (DigitEnd == std::string::npos)
28706c3fb27SDimitry Andric DigitEnd = AsmString.size();
28806c3fb27SDimitry Andric StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
28906c3fb27SDimitry Andric unsigned OperandIndex;
29006c3fb27SDimitry Andric if (!OperandStr.getAsInteger(10, OperandIndex)) {
29106c3fb27SDimitry Andric if (OperandIndex >= FirstIn)
29206c3fb27SDimitry Andric OperandIndex += NumNewOuts;
29306c3fb27SDimitry Andric OS << OperandIndex;
29406c3fb27SDimitry Andric } else {
29506c3fb27SDimitry Andric OS << OperandStr;
29606c3fb27SDimitry Andric }
29706c3fb27SDimitry Andric Pos = DigitEnd;
29806c3fb27SDimitry Andric }
29906c3fb27SDimitry Andric }
30006c3fb27SDimitry Andric AsmString = std::move(OS.str());
30106c3fb27SDimitry Andric }
30206c3fb27SDimitry Andric
30306c3fb27SDimitry Andric /// Add output constraints for EAX:EDX because they are return registers.
addReturnRegisterOutputs(CodeGenFunction & CGF,LValue ReturnSlot,std::string & Constraints,std::vector<llvm::Type * > & ResultRegTypes,std::vector<llvm::Type * > & ResultTruncRegTypes,std::vector<LValue> & ResultRegDests,std::string & AsmString,unsigned NumOutputs) const30406c3fb27SDimitry Andric void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
30506c3fb27SDimitry Andric CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
30606c3fb27SDimitry Andric std::vector<llvm::Type *> &ResultRegTypes,
30706c3fb27SDimitry Andric std::vector<llvm::Type *> &ResultTruncRegTypes,
30806c3fb27SDimitry Andric std::vector<LValue> &ResultRegDests, std::string &AsmString,
30906c3fb27SDimitry Andric unsigned NumOutputs) const {
31006c3fb27SDimitry Andric uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
31106c3fb27SDimitry Andric
31206c3fb27SDimitry Andric // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
31306c3fb27SDimitry Andric // larger.
31406c3fb27SDimitry Andric if (!Constraints.empty())
31506c3fb27SDimitry Andric Constraints += ',';
31606c3fb27SDimitry Andric if (RetWidth <= 32) {
31706c3fb27SDimitry Andric Constraints += "={eax}";
31806c3fb27SDimitry Andric ResultRegTypes.push_back(CGF.Int32Ty);
31906c3fb27SDimitry Andric } else {
32006c3fb27SDimitry Andric // Use the 'A' constraint for EAX:EDX.
32106c3fb27SDimitry Andric Constraints += "=A";
32206c3fb27SDimitry Andric ResultRegTypes.push_back(CGF.Int64Ty);
32306c3fb27SDimitry Andric }
32406c3fb27SDimitry Andric
32506c3fb27SDimitry Andric // Truncate EAX or EAX:EDX to an integer of the appropriate size.
32606c3fb27SDimitry Andric llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
32706c3fb27SDimitry Andric ResultTruncRegTypes.push_back(CoerceTy);
32806c3fb27SDimitry Andric
32906c3fb27SDimitry Andric // Coerce the integer by bitcasting the return slot pointer.
330*0fca6ea1SDimitry Andric ReturnSlot.setAddress(ReturnSlot.getAddress().withElementType(CoerceTy));
33106c3fb27SDimitry Andric ResultRegDests.push_back(ReturnSlot);
33206c3fb27SDimitry Andric
33306c3fb27SDimitry Andric rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
33406c3fb27SDimitry Andric }
33506c3fb27SDimitry Andric
33606c3fb27SDimitry Andric /// shouldReturnTypeInRegister - Determine if the given type should be
33706c3fb27SDimitry Andric /// returned in a register (for the Darwin and MCU ABI).
shouldReturnTypeInRegister(QualType Ty,ASTContext & Context) const33806c3fb27SDimitry Andric bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
33906c3fb27SDimitry Andric ASTContext &Context) const {
34006c3fb27SDimitry Andric uint64_t Size = Context.getTypeSize(Ty);
34106c3fb27SDimitry Andric
34206c3fb27SDimitry Andric // For i386, type must be register sized.
34306c3fb27SDimitry Andric // For the MCU ABI, it only needs to be <= 8-byte
34406c3fb27SDimitry Andric if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
34506c3fb27SDimitry Andric return false;
34606c3fb27SDimitry Andric
34706c3fb27SDimitry Andric if (Ty->isVectorType()) {
34806c3fb27SDimitry Andric // 64- and 128- bit vectors inside structures are not returned in
34906c3fb27SDimitry Andric // registers.
35006c3fb27SDimitry Andric if (Size == 64 || Size == 128)
35106c3fb27SDimitry Andric return false;
35206c3fb27SDimitry Andric
35306c3fb27SDimitry Andric return true;
35406c3fb27SDimitry Andric }
35506c3fb27SDimitry Andric
35606c3fb27SDimitry Andric // If this is a builtin, pointer, enum, complex type, member pointer, or
35706c3fb27SDimitry Andric // member function pointer it is ok.
35806c3fb27SDimitry Andric if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
35906c3fb27SDimitry Andric Ty->isAnyComplexType() || Ty->isEnumeralType() ||
36006c3fb27SDimitry Andric Ty->isBlockPointerType() || Ty->isMemberPointerType())
36106c3fb27SDimitry Andric return true;
36206c3fb27SDimitry Andric
36306c3fb27SDimitry Andric // Arrays are treated like records.
36406c3fb27SDimitry Andric if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
36506c3fb27SDimitry Andric return shouldReturnTypeInRegister(AT->getElementType(), Context);
36606c3fb27SDimitry Andric
36706c3fb27SDimitry Andric // Otherwise, it must be a record type.
36806c3fb27SDimitry Andric const RecordType *RT = Ty->getAs<RecordType>();
36906c3fb27SDimitry Andric if (!RT) return false;
37006c3fb27SDimitry Andric
37106c3fb27SDimitry Andric // FIXME: Traverse bases here too.
37206c3fb27SDimitry Andric
37306c3fb27SDimitry Andric // Structure types are passed in register if all fields would be
37406c3fb27SDimitry Andric // passed in a register.
37506c3fb27SDimitry Andric for (const auto *FD : RT->getDecl()->fields()) {
37606c3fb27SDimitry Andric // Empty fields are ignored.
37706c3fb27SDimitry Andric if (isEmptyField(Context, FD, true))
37806c3fb27SDimitry Andric continue;
37906c3fb27SDimitry Andric
38006c3fb27SDimitry Andric // Check fields recursively.
38106c3fb27SDimitry Andric if (!shouldReturnTypeInRegister(FD->getType(), Context))
38206c3fb27SDimitry Andric return false;
38306c3fb27SDimitry Andric }
38406c3fb27SDimitry Andric return true;
38506c3fb27SDimitry Andric }
38606c3fb27SDimitry Andric
is32Or64BitBasicType(QualType Ty,ASTContext & Context)38706c3fb27SDimitry Andric static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
38806c3fb27SDimitry Andric // Treat complex types as the element type.
38906c3fb27SDimitry Andric if (const ComplexType *CTy = Ty->getAs<ComplexType>())
39006c3fb27SDimitry Andric Ty = CTy->getElementType();
39106c3fb27SDimitry Andric
39206c3fb27SDimitry Andric // Check for a type which we know has a simple scalar argument-passing
39306c3fb27SDimitry Andric // convention without any padding. (We're specifically looking for 32
39406c3fb27SDimitry Andric // and 64-bit integer and integer-equivalents, float, and double.)
39506c3fb27SDimitry Andric if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
39606c3fb27SDimitry Andric !Ty->isEnumeralType() && !Ty->isBlockPointerType())
39706c3fb27SDimitry Andric return false;
39806c3fb27SDimitry Andric
39906c3fb27SDimitry Andric uint64_t Size = Context.getTypeSize(Ty);
40006c3fb27SDimitry Andric return Size == 32 || Size == 64;
40106c3fb27SDimitry Andric }
40206c3fb27SDimitry Andric
addFieldSizes(ASTContext & Context,const RecordDecl * RD,uint64_t & Size)40306c3fb27SDimitry Andric static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
40406c3fb27SDimitry Andric uint64_t &Size) {
40506c3fb27SDimitry Andric for (const auto *FD : RD->fields()) {
40606c3fb27SDimitry Andric // Scalar arguments on the stack get 4 byte alignment on x86. If the
40706c3fb27SDimitry Andric // argument is smaller than 32-bits, expanding the struct will create
40806c3fb27SDimitry Andric // alignment padding.
40906c3fb27SDimitry Andric if (!is32Or64BitBasicType(FD->getType(), Context))
41006c3fb27SDimitry Andric return false;
41106c3fb27SDimitry Andric
41206c3fb27SDimitry Andric // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
41306c3fb27SDimitry Andric // how to expand them yet, and the predicate for telling if a bitfield still
41406c3fb27SDimitry Andric // counts as "basic" is more complicated than what we were doing previously.
41506c3fb27SDimitry Andric if (FD->isBitField())
41606c3fb27SDimitry Andric return false;
41706c3fb27SDimitry Andric
41806c3fb27SDimitry Andric Size += Context.getTypeSize(FD->getType());
41906c3fb27SDimitry Andric }
42006c3fb27SDimitry Andric return true;
42106c3fb27SDimitry Andric }
42206c3fb27SDimitry Andric
addBaseAndFieldSizes(ASTContext & Context,const CXXRecordDecl * RD,uint64_t & Size)42306c3fb27SDimitry Andric static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
42406c3fb27SDimitry Andric uint64_t &Size) {
42506c3fb27SDimitry Andric // Don't do this if there are any non-empty bases.
42606c3fb27SDimitry Andric for (const CXXBaseSpecifier &Base : RD->bases()) {
42706c3fb27SDimitry Andric if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
42806c3fb27SDimitry Andric Size))
42906c3fb27SDimitry Andric return false;
43006c3fb27SDimitry Andric }
43106c3fb27SDimitry Andric if (!addFieldSizes(Context, RD, Size))
43206c3fb27SDimitry Andric return false;
43306c3fb27SDimitry Andric return true;
43406c3fb27SDimitry Andric }
43506c3fb27SDimitry Andric
43606c3fb27SDimitry Andric /// Test whether an argument type which is to be passed indirectly (on the
43706c3fb27SDimitry Andric /// stack) would have the equivalent layout if it was expanded into separate
43806c3fb27SDimitry Andric /// arguments. If so, we prefer to do the latter to avoid inhibiting
43906c3fb27SDimitry Andric /// optimizations.
canExpandIndirectArgument(QualType Ty) const44006c3fb27SDimitry Andric bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
44106c3fb27SDimitry Andric // We can only expand structure types.
44206c3fb27SDimitry Andric const RecordType *RT = Ty->getAs<RecordType>();
44306c3fb27SDimitry Andric if (!RT)
44406c3fb27SDimitry Andric return false;
44506c3fb27SDimitry Andric const RecordDecl *RD = RT->getDecl();
44606c3fb27SDimitry Andric uint64_t Size = 0;
44706c3fb27SDimitry Andric if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
44806c3fb27SDimitry Andric if (!IsWin32StructABI) {
44906c3fb27SDimitry Andric // On non-Windows, we have to conservatively match our old bitcode
45006c3fb27SDimitry Andric // prototypes in order to be ABI-compatible at the bitcode level.
45106c3fb27SDimitry Andric if (!CXXRD->isCLike())
45206c3fb27SDimitry Andric return false;
45306c3fb27SDimitry Andric } else {
45406c3fb27SDimitry Andric // Don't do this for dynamic classes.
45506c3fb27SDimitry Andric if (CXXRD->isDynamicClass())
45606c3fb27SDimitry Andric return false;
45706c3fb27SDimitry Andric }
45806c3fb27SDimitry Andric if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
45906c3fb27SDimitry Andric return false;
46006c3fb27SDimitry Andric } else {
46106c3fb27SDimitry Andric if (!addFieldSizes(getContext(), RD, Size))
46206c3fb27SDimitry Andric return false;
46306c3fb27SDimitry Andric }
46406c3fb27SDimitry Andric
46506c3fb27SDimitry Andric // We can do this if there was no alignment padding.
46606c3fb27SDimitry Andric return Size == getContext().getTypeSize(Ty);
46706c3fb27SDimitry Andric }
46806c3fb27SDimitry Andric
getIndirectReturnResult(QualType RetTy,CCState & State) const46906c3fb27SDimitry Andric ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
47006c3fb27SDimitry Andric // If the return value is indirect, then the hidden argument is consuming one
47106c3fb27SDimitry Andric // integer register.
472*0fca6ea1SDimitry Andric if (State.CC != llvm::CallingConv::X86_FastCall &&
473*0fca6ea1SDimitry Andric State.CC != llvm::CallingConv::X86_VectorCall && State.FreeRegs) {
47406c3fb27SDimitry Andric --State.FreeRegs;
47506c3fb27SDimitry Andric if (!IsMCUABI)
47606c3fb27SDimitry Andric return getNaturalAlignIndirectInReg(RetTy);
47706c3fb27SDimitry Andric }
47806c3fb27SDimitry Andric return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
47906c3fb27SDimitry Andric }
48006c3fb27SDimitry Andric
classifyReturnType(QualType RetTy,CCState & State) const48106c3fb27SDimitry Andric ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
48206c3fb27SDimitry Andric CCState &State) const {
48306c3fb27SDimitry Andric if (RetTy->isVoidType())
48406c3fb27SDimitry Andric return ABIArgInfo::getIgnore();
48506c3fb27SDimitry Andric
48606c3fb27SDimitry Andric const Type *Base = nullptr;
48706c3fb27SDimitry Andric uint64_t NumElts = 0;
48806c3fb27SDimitry Andric if ((State.CC == llvm::CallingConv::X86_VectorCall ||
48906c3fb27SDimitry Andric State.CC == llvm::CallingConv::X86_RegCall) &&
49006c3fb27SDimitry Andric isHomogeneousAggregate(RetTy, Base, NumElts)) {
49106c3fb27SDimitry Andric // The LLVM struct type for such an aggregate should lower properly.
49206c3fb27SDimitry Andric return ABIArgInfo::getDirect();
49306c3fb27SDimitry Andric }
49406c3fb27SDimitry Andric
49506c3fb27SDimitry Andric if (const VectorType *VT = RetTy->getAs<VectorType>()) {
49606c3fb27SDimitry Andric // On Darwin, some vectors are returned in registers.
49706c3fb27SDimitry Andric if (IsDarwinVectorABI) {
49806c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(RetTy);
49906c3fb27SDimitry Andric
50006c3fb27SDimitry Andric // 128-bit vectors are a special case; they are returned in
50106c3fb27SDimitry Andric // registers and we need to make sure to pick a type the LLVM
50206c3fb27SDimitry Andric // backend will like.
50306c3fb27SDimitry Andric if (Size == 128)
50406c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
50506c3fb27SDimitry Andric llvm::Type::getInt64Ty(getVMContext()), 2));
50606c3fb27SDimitry Andric
50706c3fb27SDimitry Andric // Always return in register if it fits in a general purpose
50806c3fb27SDimitry Andric // register, or if it is 64 bits and has a single element.
50906c3fb27SDimitry Andric if ((Size == 8 || Size == 16 || Size == 32) ||
51006c3fb27SDimitry Andric (Size == 64 && VT->getNumElements() == 1))
51106c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
51206c3fb27SDimitry Andric Size));
51306c3fb27SDimitry Andric
51406c3fb27SDimitry Andric return getIndirectReturnResult(RetTy, State);
51506c3fb27SDimitry Andric }
51606c3fb27SDimitry Andric
51706c3fb27SDimitry Andric return ABIArgInfo::getDirect();
51806c3fb27SDimitry Andric }
51906c3fb27SDimitry Andric
52006c3fb27SDimitry Andric if (isAggregateTypeForABI(RetTy)) {
52106c3fb27SDimitry Andric if (const RecordType *RT = RetTy->getAs<RecordType>()) {
52206c3fb27SDimitry Andric // Structures with flexible arrays are always indirect.
52306c3fb27SDimitry Andric if (RT->getDecl()->hasFlexibleArrayMember())
52406c3fb27SDimitry Andric return getIndirectReturnResult(RetTy, State);
52506c3fb27SDimitry Andric }
52606c3fb27SDimitry Andric
52706c3fb27SDimitry Andric // If specified, structs and unions are always indirect.
52806c3fb27SDimitry Andric if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
52906c3fb27SDimitry Andric return getIndirectReturnResult(RetTy, State);
53006c3fb27SDimitry Andric
53106c3fb27SDimitry Andric // Ignore empty structs/unions.
53206c3fb27SDimitry Andric if (isEmptyRecord(getContext(), RetTy, true))
53306c3fb27SDimitry Andric return ABIArgInfo::getIgnore();
53406c3fb27SDimitry Andric
53506c3fb27SDimitry Andric // Return complex of _Float16 as <2 x half> so the backend will use xmm0.
53606c3fb27SDimitry Andric if (const ComplexType *CT = RetTy->getAs<ComplexType>()) {
53706c3fb27SDimitry Andric QualType ET = getContext().getCanonicalType(CT->getElementType());
53806c3fb27SDimitry Andric if (ET->isFloat16Type())
53906c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
54006c3fb27SDimitry Andric llvm::Type::getHalfTy(getVMContext()), 2));
54106c3fb27SDimitry Andric }
54206c3fb27SDimitry Andric
54306c3fb27SDimitry Andric // Small structures which are register sized are generally returned
54406c3fb27SDimitry Andric // in a register.
54506c3fb27SDimitry Andric if (shouldReturnTypeInRegister(RetTy, getContext())) {
54606c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(RetTy);
54706c3fb27SDimitry Andric
54806c3fb27SDimitry Andric // As a special-case, if the struct is a "single-element" struct, and
54906c3fb27SDimitry Andric // the field is of type "float" or "double", return it in a
55006c3fb27SDimitry Andric // floating-point register. (MSVC does not apply this special case.)
55106c3fb27SDimitry Andric // We apply a similar transformation for pointer types to improve the
55206c3fb27SDimitry Andric // quality of the generated IR.
55306c3fb27SDimitry Andric if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
55406c3fb27SDimitry Andric if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
55506c3fb27SDimitry Andric || SeltTy->hasPointerRepresentation())
55606c3fb27SDimitry Andric return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
55706c3fb27SDimitry Andric
55806c3fb27SDimitry Andric // FIXME: We should be able to narrow this integer in cases with dead
55906c3fb27SDimitry Andric // padding.
56006c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
56106c3fb27SDimitry Andric }
56206c3fb27SDimitry Andric
56306c3fb27SDimitry Andric return getIndirectReturnResult(RetTy, State);
56406c3fb27SDimitry Andric }
56506c3fb27SDimitry Andric
56606c3fb27SDimitry Andric // Treat an enum type as its underlying type.
56706c3fb27SDimitry Andric if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
56806c3fb27SDimitry Andric RetTy = EnumTy->getDecl()->getIntegerType();
56906c3fb27SDimitry Andric
57006c3fb27SDimitry Andric if (const auto *EIT = RetTy->getAs<BitIntType>())
57106c3fb27SDimitry Andric if (EIT->getNumBits() > 64)
57206c3fb27SDimitry Andric return getIndirectReturnResult(RetTy, State);
57306c3fb27SDimitry Andric
57406c3fb27SDimitry Andric return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
57506c3fb27SDimitry Andric : ABIArgInfo::getDirect());
57606c3fb27SDimitry Andric }
57706c3fb27SDimitry Andric
getTypeStackAlignInBytes(QualType Ty,unsigned Align) const57806c3fb27SDimitry Andric unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
57906c3fb27SDimitry Andric unsigned Align) const {
58006c3fb27SDimitry Andric // Otherwise, if the alignment is less than or equal to the minimum ABI
58106c3fb27SDimitry Andric // alignment, just use the default; the backend will handle this.
58206c3fb27SDimitry Andric if (Align <= MinABIStackAlignInBytes)
58306c3fb27SDimitry Andric return 0; // Use default alignment.
58406c3fb27SDimitry Andric
58506c3fb27SDimitry Andric if (IsLinuxABI) {
58606c3fb27SDimitry Andric // Exclude other System V OS (e.g Darwin, PS4 and FreeBSD) since we don't
58706c3fb27SDimitry Andric // want to spend any effort dealing with the ramifications of ABI breaks.
58806c3fb27SDimitry Andric //
58906c3fb27SDimitry Andric // If the vector type is __m128/__m256/__m512, return the default alignment.
59006c3fb27SDimitry Andric if (Ty->isVectorType() && (Align == 16 || Align == 32 || Align == 64))
59106c3fb27SDimitry Andric return Align;
59206c3fb27SDimitry Andric }
59306c3fb27SDimitry Andric // On non-Darwin, the stack type alignment is always 4.
59406c3fb27SDimitry Andric if (!IsDarwinVectorABI) {
59506c3fb27SDimitry Andric // Set explicit alignment, since we may need to realign the top.
59606c3fb27SDimitry Andric return MinABIStackAlignInBytes;
59706c3fb27SDimitry Andric }
59806c3fb27SDimitry Andric
59906c3fb27SDimitry Andric // Otherwise, if the type contains an SSE vector type, the alignment is 16.
60006c3fb27SDimitry Andric if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
60106c3fb27SDimitry Andric isRecordWithSIMDVectorType(getContext(), Ty)))
60206c3fb27SDimitry Andric return 16;
60306c3fb27SDimitry Andric
60406c3fb27SDimitry Andric return MinABIStackAlignInBytes;
60506c3fb27SDimitry Andric }
60606c3fb27SDimitry Andric
getIndirectResult(QualType Ty,bool ByVal,CCState & State) const60706c3fb27SDimitry Andric ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
60806c3fb27SDimitry Andric CCState &State) const {
60906c3fb27SDimitry Andric if (!ByVal) {
61006c3fb27SDimitry Andric if (State.FreeRegs) {
61106c3fb27SDimitry Andric --State.FreeRegs; // Non-byval indirects just use one pointer.
61206c3fb27SDimitry Andric if (!IsMCUABI)
61306c3fb27SDimitry Andric return getNaturalAlignIndirectInReg(Ty);
61406c3fb27SDimitry Andric }
61506c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty, false);
61606c3fb27SDimitry Andric }
61706c3fb27SDimitry Andric
61806c3fb27SDimitry Andric // Compute the byval alignment.
61906c3fb27SDimitry Andric unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
62006c3fb27SDimitry Andric unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
62106c3fb27SDimitry Andric if (StackAlign == 0)
62206c3fb27SDimitry Andric return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
62306c3fb27SDimitry Andric
62406c3fb27SDimitry Andric // If the stack alignment is less than the type alignment, realign the
62506c3fb27SDimitry Andric // argument.
62606c3fb27SDimitry Andric bool Realign = TypeAlign > StackAlign;
62706c3fb27SDimitry Andric return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
62806c3fb27SDimitry Andric /*ByVal=*/true, Realign);
62906c3fb27SDimitry Andric }
63006c3fb27SDimitry Andric
classify(QualType Ty) const63106c3fb27SDimitry Andric X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
63206c3fb27SDimitry Andric const Type *T = isSingleElementStruct(Ty, getContext());
63306c3fb27SDimitry Andric if (!T)
63406c3fb27SDimitry Andric T = Ty.getTypePtr();
63506c3fb27SDimitry Andric
63606c3fb27SDimitry Andric if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
63706c3fb27SDimitry Andric BuiltinType::Kind K = BT->getKind();
63806c3fb27SDimitry Andric if (K == BuiltinType::Float || K == BuiltinType::Double)
63906c3fb27SDimitry Andric return Float;
64006c3fb27SDimitry Andric }
64106c3fb27SDimitry Andric return Integer;
64206c3fb27SDimitry Andric }
64306c3fb27SDimitry Andric
updateFreeRegs(QualType Ty,CCState & State) const64406c3fb27SDimitry Andric bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
64506c3fb27SDimitry Andric if (!IsSoftFloatABI) {
64606c3fb27SDimitry Andric Class C = classify(Ty);
64706c3fb27SDimitry Andric if (C == Float)
64806c3fb27SDimitry Andric return false;
64906c3fb27SDimitry Andric }
65006c3fb27SDimitry Andric
65106c3fb27SDimitry Andric unsigned Size = getContext().getTypeSize(Ty);
65206c3fb27SDimitry Andric unsigned SizeInRegs = (Size + 31) / 32;
65306c3fb27SDimitry Andric
65406c3fb27SDimitry Andric if (SizeInRegs == 0)
65506c3fb27SDimitry Andric return false;
65606c3fb27SDimitry Andric
65706c3fb27SDimitry Andric if (!IsMCUABI) {
65806c3fb27SDimitry Andric if (SizeInRegs > State.FreeRegs) {
65906c3fb27SDimitry Andric State.FreeRegs = 0;
66006c3fb27SDimitry Andric return false;
66106c3fb27SDimitry Andric }
66206c3fb27SDimitry Andric } else {
66306c3fb27SDimitry Andric // The MCU psABI allows passing parameters in-reg even if there are
66406c3fb27SDimitry Andric // earlier parameters that are passed on the stack. Also,
66506c3fb27SDimitry Andric // it does not allow passing >8-byte structs in-register,
66606c3fb27SDimitry Andric // even if there are 3 free registers available.
66706c3fb27SDimitry Andric if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
66806c3fb27SDimitry Andric return false;
66906c3fb27SDimitry Andric }
67006c3fb27SDimitry Andric
67106c3fb27SDimitry Andric State.FreeRegs -= SizeInRegs;
67206c3fb27SDimitry Andric return true;
67306c3fb27SDimitry Andric }
67406c3fb27SDimitry Andric
shouldAggregateUseDirect(QualType Ty,CCState & State,bool & InReg,bool & NeedsPadding) const67506c3fb27SDimitry Andric bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
67606c3fb27SDimitry Andric bool &InReg,
67706c3fb27SDimitry Andric bool &NeedsPadding) const {
67806c3fb27SDimitry Andric // On Windows, aggregates other than HFAs are never passed in registers, and
67906c3fb27SDimitry Andric // they do not consume register slots. Homogenous floating-point aggregates
68006c3fb27SDimitry Andric // (HFAs) have already been dealt with at this point.
68106c3fb27SDimitry Andric if (IsWin32StructABI && isAggregateTypeForABI(Ty))
68206c3fb27SDimitry Andric return false;
68306c3fb27SDimitry Andric
68406c3fb27SDimitry Andric NeedsPadding = false;
68506c3fb27SDimitry Andric InReg = !IsMCUABI;
68606c3fb27SDimitry Andric
68706c3fb27SDimitry Andric if (!updateFreeRegs(Ty, State))
68806c3fb27SDimitry Andric return false;
68906c3fb27SDimitry Andric
69006c3fb27SDimitry Andric if (IsMCUABI)
69106c3fb27SDimitry Andric return true;
69206c3fb27SDimitry Andric
69306c3fb27SDimitry Andric if (State.CC == llvm::CallingConv::X86_FastCall ||
69406c3fb27SDimitry Andric State.CC == llvm::CallingConv::X86_VectorCall ||
69506c3fb27SDimitry Andric State.CC == llvm::CallingConv::X86_RegCall) {
69606c3fb27SDimitry Andric if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
69706c3fb27SDimitry Andric NeedsPadding = true;
69806c3fb27SDimitry Andric
69906c3fb27SDimitry Andric return false;
70006c3fb27SDimitry Andric }
70106c3fb27SDimitry Andric
70206c3fb27SDimitry Andric return true;
70306c3fb27SDimitry Andric }
70406c3fb27SDimitry Andric
shouldPrimitiveUseInReg(QualType Ty,CCState & State) const70506c3fb27SDimitry Andric bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
70606c3fb27SDimitry Andric bool IsPtrOrInt = (getContext().getTypeSize(Ty) <= 32) &&
70706c3fb27SDimitry Andric (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
70806c3fb27SDimitry Andric Ty->isReferenceType());
70906c3fb27SDimitry Andric
71006c3fb27SDimitry Andric if (!IsPtrOrInt && (State.CC == llvm::CallingConv::X86_FastCall ||
71106c3fb27SDimitry Andric State.CC == llvm::CallingConv::X86_VectorCall))
71206c3fb27SDimitry Andric return false;
71306c3fb27SDimitry Andric
71406c3fb27SDimitry Andric if (!updateFreeRegs(Ty, State))
71506c3fb27SDimitry Andric return false;
71606c3fb27SDimitry Andric
71706c3fb27SDimitry Andric if (!IsPtrOrInt && State.CC == llvm::CallingConv::X86_RegCall)
71806c3fb27SDimitry Andric return false;
71906c3fb27SDimitry Andric
72006c3fb27SDimitry Andric // Return true to apply inreg to all legal parameters except for MCU targets.
72106c3fb27SDimitry Andric return !IsMCUABI;
72206c3fb27SDimitry Andric }
72306c3fb27SDimitry Andric
runVectorCallFirstPass(CGFunctionInfo & FI,CCState & State) const72406c3fb27SDimitry Andric void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
72506c3fb27SDimitry Andric // Vectorcall x86 works subtly different than in x64, so the format is
72606c3fb27SDimitry Andric // a bit different than the x64 version. First, all vector types (not HVAs)
72706c3fb27SDimitry Andric // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
72806c3fb27SDimitry Andric // This differs from the x64 implementation, where the first 6 by INDEX get
72906c3fb27SDimitry Andric // registers.
73006c3fb27SDimitry Andric // In the second pass over the arguments, HVAs are passed in the remaining
73106c3fb27SDimitry Andric // vector registers if possible, or indirectly by address. The address will be
73206c3fb27SDimitry Andric // passed in ECX/EDX if available. Any other arguments are passed according to
73306c3fb27SDimitry Andric // the usual fastcall rules.
73406c3fb27SDimitry Andric MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
73506c3fb27SDimitry Andric for (int I = 0, E = Args.size(); I < E; ++I) {
73606c3fb27SDimitry Andric const Type *Base = nullptr;
73706c3fb27SDimitry Andric uint64_t NumElts = 0;
73806c3fb27SDimitry Andric const QualType &Ty = Args[I].type;
73906c3fb27SDimitry Andric if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
74006c3fb27SDimitry Andric isHomogeneousAggregate(Ty, Base, NumElts)) {
74106c3fb27SDimitry Andric if (State.FreeSSERegs >= NumElts) {
74206c3fb27SDimitry Andric State.FreeSSERegs -= NumElts;
74306c3fb27SDimitry Andric Args[I].info = ABIArgInfo::getDirectInReg();
74406c3fb27SDimitry Andric State.IsPreassigned.set(I);
74506c3fb27SDimitry Andric }
74606c3fb27SDimitry Andric }
74706c3fb27SDimitry Andric }
74806c3fb27SDimitry Andric }
74906c3fb27SDimitry Andric
classifyArgumentType(QualType Ty,CCState & State,unsigned ArgIndex) const7508a4dda33SDimitry Andric ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, CCState &State,
7515f757f3fSDimitry Andric unsigned ArgIndex) const {
75206c3fb27SDimitry Andric // FIXME: Set alignment on indirect arguments.
75306c3fb27SDimitry Andric bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
75406c3fb27SDimitry Andric bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
75506c3fb27SDimitry Andric bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
75606c3fb27SDimitry Andric
75706c3fb27SDimitry Andric Ty = useFirstFieldIfTransparentUnion(Ty);
75806c3fb27SDimitry Andric TypeInfo TI = getContext().getTypeInfo(Ty);
75906c3fb27SDimitry Andric
76006c3fb27SDimitry Andric // Check with the C++ ABI first.
76106c3fb27SDimitry Andric const RecordType *RT = Ty->getAs<RecordType>();
76206c3fb27SDimitry Andric if (RT) {
76306c3fb27SDimitry Andric CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
76406c3fb27SDimitry Andric if (RAA == CGCXXABI::RAA_Indirect) {
76506c3fb27SDimitry Andric return getIndirectResult(Ty, false, State);
7665f757f3fSDimitry Andric } else if (State.IsDelegateCall) {
7678a4dda33SDimitry Andric // Avoid having different alignments on delegate call args by always
7688a4dda33SDimitry Andric // setting the alignment to 4, which is what we do for inallocas.
7698a4dda33SDimitry Andric ABIArgInfo Res = getIndirectResult(Ty, false, State);
7708a4dda33SDimitry Andric Res.setIndirectAlign(CharUnits::fromQuantity(4));
7718a4dda33SDimitry Andric return Res;
77206c3fb27SDimitry Andric } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
77306c3fb27SDimitry Andric // The field index doesn't matter, we'll fix it up later.
77406c3fb27SDimitry Andric return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
77506c3fb27SDimitry Andric }
77606c3fb27SDimitry Andric }
77706c3fb27SDimitry Andric
77806c3fb27SDimitry Andric // Regcall uses the concept of a homogenous vector aggregate, similar
77906c3fb27SDimitry Andric // to other targets.
78006c3fb27SDimitry Andric const Type *Base = nullptr;
78106c3fb27SDimitry Andric uint64_t NumElts = 0;
78206c3fb27SDimitry Andric if ((IsRegCall || IsVectorCall) &&
78306c3fb27SDimitry Andric isHomogeneousAggregate(Ty, Base, NumElts)) {
78406c3fb27SDimitry Andric if (State.FreeSSERegs >= NumElts) {
78506c3fb27SDimitry Andric State.FreeSSERegs -= NumElts;
78606c3fb27SDimitry Andric
78706c3fb27SDimitry Andric // Vectorcall passes HVAs directly and does not flatten them, but regcall
78806c3fb27SDimitry Andric // does.
78906c3fb27SDimitry Andric if (IsVectorCall)
79006c3fb27SDimitry Andric return getDirectX86Hva();
79106c3fb27SDimitry Andric
79206c3fb27SDimitry Andric if (Ty->isBuiltinType() || Ty->isVectorType())
79306c3fb27SDimitry Andric return ABIArgInfo::getDirect();
79406c3fb27SDimitry Andric return ABIArgInfo::getExpand();
79506c3fb27SDimitry Andric }
796*0fca6ea1SDimitry Andric if (IsVectorCall && Ty->isBuiltinType())
797*0fca6ea1SDimitry Andric return ABIArgInfo::getDirect();
79806c3fb27SDimitry Andric return getIndirectResult(Ty, /*ByVal=*/false, State);
79906c3fb27SDimitry Andric }
80006c3fb27SDimitry Andric
80106c3fb27SDimitry Andric if (isAggregateTypeForABI(Ty)) {
80206c3fb27SDimitry Andric // Structures with flexible arrays are always indirect.
80306c3fb27SDimitry Andric // FIXME: This should not be byval!
80406c3fb27SDimitry Andric if (RT && RT->getDecl()->hasFlexibleArrayMember())
80506c3fb27SDimitry Andric return getIndirectResult(Ty, true, State);
80606c3fb27SDimitry Andric
80706c3fb27SDimitry Andric // Ignore empty structs/unions on non-Windows.
80806c3fb27SDimitry Andric if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
80906c3fb27SDimitry Andric return ABIArgInfo::getIgnore();
81006c3fb27SDimitry Andric
81106c3fb27SDimitry Andric llvm::LLVMContext &LLVMContext = getVMContext();
81206c3fb27SDimitry Andric llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
81306c3fb27SDimitry Andric bool NeedsPadding = false;
81406c3fb27SDimitry Andric bool InReg;
81506c3fb27SDimitry Andric if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
81606c3fb27SDimitry Andric unsigned SizeInRegs = (TI.Width + 31) / 32;
81706c3fb27SDimitry Andric SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
81806c3fb27SDimitry Andric llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
81906c3fb27SDimitry Andric if (InReg)
82006c3fb27SDimitry Andric return ABIArgInfo::getDirectInReg(Result);
82106c3fb27SDimitry Andric else
82206c3fb27SDimitry Andric return ABIArgInfo::getDirect(Result);
82306c3fb27SDimitry Andric }
82406c3fb27SDimitry Andric llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
82506c3fb27SDimitry Andric
8265f757f3fSDimitry Andric // Pass over-aligned aggregates to non-variadic functions on Windows
8275f757f3fSDimitry Andric // indirectly. This behavior was added in MSVC 2015. Use the required
8285f757f3fSDimitry Andric // alignment from the record layout, since that may be less than the
8295f757f3fSDimitry Andric // regular type alignment, and types with required alignment of less than 4
8305f757f3fSDimitry Andric // bytes are not passed indirectly.
8315f757f3fSDimitry Andric if (IsWin32StructABI && State.Required.isRequiredArg(ArgIndex)) {
83206c3fb27SDimitry Andric unsigned AlignInBits = 0;
83306c3fb27SDimitry Andric if (RT) {
83406c3fb27SDimitry Andric const ASTRecordLayout &Layout =
83506c3fb27SDimitry Andric getContext().getASTRecordLayout(RT->getDecl());
83606c3fb27SDimitry Andric AlignInBits = getContext().toBits(Layout.getRequiredAlignment());
83706c3fb27SDimitry Andric } else if (TI.isAlignRequired()) {
83806c3fb27SDimitry Andric AlignInBits = TI.Align;
83906c3fb27SDimitry Andric }
84006c3fb27SDimitry Andric if (AlignInBits > 32)
84106c3fb27SDimitry Andric return getIndirectResult(Ty, /*ByVal=*/false, State);
84206c3fb27SDimitry Andric }
84306c3fb27SDimitry Andric
84406c3fb27SDimitry Andric // Expand small (<= 128-bit) record types when we know that the stack layout
84506c3fb27SDimitry Andric // of those arguments will match the struct. This is important because the
84606c3fb27SDimitry Andric // LLVM backend isn't smart enough to remove byval, which inhibits many
84706c3fb27SDimitry Andric // optimizations.
84806c3fb27SDimitry Andric // Don't do this for the MCU if there are still free integer registers
84906c3fb27SDimitry Andric // (see X86_64 ABI for full explanation).
85006c3fb27SDimitry Andric if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
85106c3fb27SDimitry Andric canExpandIndirectArgument(Ty))
85206c3fb27SDimitry Andric return ABIArgInfo::getExpandWithPadding(
85306c3fb27SDimitry Andric IsFastCall || IsVectorCall || IsRegCall, PaddingType);
85406c3fb27SDimitry Andric
85506c3fb27SDimitry Andric return getIndirectResult(Ty, true, State);
85606c3fb27SDimitry Andric }
85706c3fb27SDimitry Andric
85806c3fb27SDimitry Andric if (const VectorType *VT = Ty->getAs<VectorType>()) {
85906c3fb27SDimitry Andric // On Windows, vectors are passed directly if registers are available, or
86006c3fb27SDimitry Andric // indirectly if not. This avoids the need to align argument memory. Pass
86106c3fb27SDimitry Andric // user-defined vector types larger than 512 bits indirectly for simplicity.
86206c3fb27SDimitry Andric if (IsWin32StructABI) {
86306c3fb27SDimitry Andric if (TI.Width <= 512 && State.FreeSSERegs > 0) {
86406c3fb27SDimitry Andric --State.FreeSSERegs;
86506c3fb27SDimitry Andric return ABIArgInfo::getDirectInReg();
86606c3fb27SDimitry Andric }
86706c3fb27SDimitry Andric return getIndirectResult(Ty, /*ByVal=*/false, State);
86806c3fb27SDimitry Andric }
86906c3fb27SDimitry Andric
87006c3fb27SDimitry Andric // On Darwin, some vectors are passed in memory, we handle this by passing
87106c3fb27SDimitry Andric // it as an i8/i16/i32/i64.
87206c3fb27SDimitry Andric if (IsDarwinVectorABI) {
87306c3fb27SDimitry Andric if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
87406c3fb27SDimitry Andric (TI.Width == 64 && VT->getNumElements() == 1))
87506c3fb27SDimitry Andric return ABIArgInfo::getDirect(
87606c3fb27SDimitry Andric llvm::IntegerType::get(getVMContext(), TI.Width));
87706c3fb27SDimitry Andric }
87806c3fb27SDimitry Andric
87906c3fb27SDimitry Andric if (IsX86_MMXType(CGT.ConvertType(Ty)))
88006c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
88106c3fb27SDimitry Andric
88206c3fb27SDimitry Andric return ABIArgInfo::getDirect();
88306c3fb27SDimitry Andric }
88406c3fb27SDimitry Andric
88506c3fb27SDimitry Andric
88606c3fb27SDimitry Andric if (const EnumType *EnumTy = Ty->getAs<EnumType>())
88706c3fb27SDimitry Andric Ty = EnumTy->getDecl()->getIntegerType();
88806c3fb27SDimitry Andric
88906c3fb27SDimitry Andric bool InReg = shouldPrimitiveUseInReg(Ty, State);
89006c3fb27SDimitry Andric
89106c3fb27SDimitry Andric if (isPromotableIntegerTypeForABI(Ty)) {
89206c3fb27SDimitry Andric if (InReg)
89306c3fb27SDimitry Andric return ABIArgInfo::getExtendInReg(Ty);
89406c3fb27SDimitry Andric return ABIArgInfo::getExtend(Ty);
89506c3fb27SDimitry Andric }
89606c3fb27SDimitry Andric
89706c3fb27SDimitry Andric if (const auto *EIT = Ty->getAs<BitIntType>()) {
89806c3fb27SDimitry Andric if (EIT->getNumBits() <= 64) {
89906c3fb27SDimitry Andric if (InReg)
90006c3fb27SDimitry Andric return ABIArgInfo::getDirectInReg();
90106c3fb27SDimitry Andric return ABIArgInfo::getDirect();
90206c3fb27SDimitry Andric }
90306c3fb27SDimitry Andric return getIndirectResult(Ty, /*ByVal=*/false, State);
90406c3fb27SDimitry Andric }
90506c3fb27SDimitry Andric
90606c3fb27SDimitry Andric if (InReg)
90706c3fb27SDimitry Andric return ABIArgInfo::getDirectInReg();
90806c3fb27SDimitry Andric return ABIArgInfo::getDirect();
90906c3fb27SDimitry Andric }
91006c3fb27SDimitry Andric
computeInfo(CGFunctionInfo & FI) const91106c3fb27SDimitry Andric void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
91206c3fb27SDimitry Andric CCState State(FI);
91306c3fb27SDimitry Andric if (IsMCUABI)
91406c3fb27SDimitry Andric State.FreeRegs = 3;
91506c3fb27SDimitry Andric else if (State.CC == llvm::CallingConv::X86_FastCall) {
91606c3fb27SDimitry Andric State.FreeRegs = 2;
91706c3fb27SDimitry Andric State.FreeSSERegs = 3;
91806c3fb27SDimitry Andric } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
91906c3fb27SDimitry Andric State.FreeRegs = 2;
92006c3fb27SDimitry Andric State.FreeSSERegs = 6;
92106c3fb27SDimitry Andric } else if (FI.getHasRegParm())
92206c3fb27SDimitry Andric State.FreeRegs = FI.getRegParm();
92306c3fb27SDimitry Andric else if (State.CC == llvm::CallingConv::X86_RegCall) {
92406c3fb27SDimitry Andric State.FreeRegs = 5;
92506c3fb27SDimitry Andric State.FreeSSERegs = 8;
92606c3fb27SDimitry Andric } else if (IsWin32StructABI) {
92706c3fb27SDimitry Andric // Since MSVC 2015, the first three SSE vectors have been passed in
92806c3fb27SDimitry Andric // registers. The rest are passed indirectly.
92906c3fb27SDimitry Andric State.FreeRegs = DefaultNumRegisterParameters;
93006c3fb27SDimitry Andric State.FreeSSERegs = 3;
93106c3fb27SDimitry Andric } else
93206c3fb27SDimitry Andric State.FreeRegs = DefaultNumRegisterParameters;
93306c3fb27SDimitry Andric
93406c3fb27SDimitry Andric if (!::classifyReturnType(getCXXABI(), FI, *this)) {
93506c3fb27SDimitry Andric FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
93606c3fb27SDimitry Andric } else if (FI.getReturnInfo().isIndirect()) {
93706c3fb27SDimitry Andric // The C++ ABI is not aware of register usage, so we have to check if the
93806c3fb27SDimitry Andric // return value was sret and put it in a register ourselves if appropriate.
93906c3fb27SDimitry Andric if (State.FreeRegs) {
94006c3fb27SDimitry Andric --State.FreeRegs; // The sret parameter consumes a register.
94106c3fb27SDimitry Andric if (!IsMCUABI)
94206c3fb27SDimitry Andric FI.getReturnInfo().setInReg(true);
94306c3fb27SDimitry Andric }
94406c3fb27SDimitry Andric }
94506c3fb27SDimitry Andric
94606c3fb27SDimitry Andric // The chain argument effectively gives us another free register.
94706c3fb27SDimitry Andric if (FI.isChainCall())
94806c3fb27SDimitry Andric ++State.FreeRegs;
94906c3fb27SDimitry Andric
95006c3fb27SDimitry Andric // For vectorcall, do a first pass over the arguments, assigning FP and vector
95106c3fb27SDimitry Andric // arguments to XMM registers as available.
95206c3fb27SDimitry Andric if (State.CC == llvm::CallingConv::X86_VectorCall)
95306c3fb27SDimitry Andric runVectorCallFirstPass(FI, State);
95406c3fb27SDimitry Andric
95506c3fb27SDimitry Andric bool UsedInAlloca = false;
95606c3fb27SDimitry Andric MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
9575f757f3fSDimitry Andric for (unsigned I = 0, E = Args.size(); I < E; ++I) {
95806c3fb27SDimitry Andric // Skip arguments that have already been assigned.
95906c3fb27SDimitry Andric if (State.IsPreassigned.test(I))
96006c3fb27SDimitry Andric continue;
96106c3fb27SDimitry Andric
9628a4dda33SDimitry Andric Args[I].info =
9635f757f3fSDimitry Andric classifyArgumentType(Args[I].type, State, I);
96406c3fb27SDimitry Andric UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
96506c3fb27SDimitry Andric }
96606c3fb27SDimitry Andric
96706c3fb27SDimitry Andric // If we needed to use inalloca for any argument, do a second pass and rewrite
96806c3fb27SDimitry Andric // all the memory arguments to use inalloca.
96906c3fb27SDimitry Andric if (UsedInAlloca)
97006c3fb27SDimitry Andric rewriteWithInAlloca(FI);
97106c3fb27SDimitry Andric }
97206c3fb27SDimitry Andric
97306c3fb27SDimitry Andric void
addFieldToArgStruct(SmallVector<llvm::Type *,6> & FrameFields,CharUnits & StackOffset,ABIArgInfo & Info,QualType Type) const97406c3fb27SDimitry Andric X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
97506c3fb27SDimitry Andric CharUnits &StackOffset, ABIArgInfo &Info,
97606c3fb27SDimitry Andric QualType Type) const {
97706c3fb27SDimitry Andric // Arguments are always 4-byte-aligned.
97806c3fb27SDimitry Andric CharUnits WordSize = CharUnits::fromQuantity(4);
97906c3fb27SDimitry Andric assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
98006c3fb27SDimitry Andric
98106c3fb27SDimitry Andric // sret pointers and indirect things will require an extra pointer
98206c3fb27SDimitry Andric // indirection, unless they are byval. Most things are byval, and will not
98306c3fb27SDimitry Andric // require this indirection.
98406c3fb27SDimitry Andric bool IsIndirect = false;
98506c3fb27SDimitry Andric if (Info.isIndirect() && !Info.getIndirectByVal())
98606c3fb27SDimitry Andric IsIndirect = true;
98706c3fb27SDimitry Andric Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
98806c3fb27SDimitry Andric llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
98906c3fb27SDimitry Andric if (IsIndirect)
99006c3fb27SDimitry Andric LLTy = llvm::PointerType::getUnqual(getVMContext());
99106c3fb27SDimitry Andric FrameFields.push_back(LLTy);
99206c3fb27SDimitry Andric StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
99306c3fb27SDimitry Andric
99406c3fb27SDimitry Andric // Insert padding bytes to respect alignment.
99506c3fb27SDimitry Andric CharUnits FieldEnd = StackOffset;
99606c3fb27SDimitry Andric StackOffset = FieldEnd.alignTo(WordSize);
99706c3fb27SDimitry Andric if (StackOffset != FieldEnd) {
99806c3fb27SDimitry Andric CharUnits NumBytes = StackOffset - FieldEnd;
99906c3fb27SDimitry Andric llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
100006c3fb27SDimitry Andric Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
100106c3fb27SDimitry Andric FrameFields.push_back(Ty);
100206c3fb27SDimitry Andric }
100306c3fb27SDimitry Andric }
100406c3fb27SDimitry Andric
isArgInAlloca(const ABIArgInfo & Info)100506c3fb27SDimitry Andric static bool isArgInAlloca(const ABIArgInfo &Info) {
100606c3fb27SDimitry Andric // Leave ignored and inreg arguments alone.
100706c3fb27SDimitry Andric switch (Info.getKind()) {
100806c3fb27SDimitry Andric case ABIArgInfo::InAlloca:
100906c3fb27SDimitry Andric return true;
101006c3fb27SDimitry Andric case ABIArgInfo::Ignore:
101106c3fb27SDimitry Andric case ABIArgInfo::IndirectAliased:
101206c3fb27SDimitry Andric return false;
101306c3fb27SDimitry Andric case ABIArgInfo::Indirect:
101406c3fb27SDimitry Andric case ABIArgInfo::Direct:
101506c3fb27SDimitry Andric case ABIArgInfo::Extend:
101606c3fb27SDimitry Andric return !Info.getInReg();
101706c3fb27SDimitry Andric case ABIArgInfo::Expand:
101806c3fb27SDimitry Andric case ABIArgInfo::CoerceAndExpand:
101906c3fb27SDimitry Andric // These are aggregate types which are never passed in registers when
102006c3fb27SDimitry Andric // inalloca is involved.
102106c3fb27SDimitry Andric return true;
102206c3fb27SDimitry Andric }
102306c3fb27SDimitry Andric llvm_unreachable("invalid enum");
102406c3fb27SDimitry Andric }
102506c3fb27SDimitry Andric
rewriteWithInAlloca(CGFunctionInfo & FI) const102606c3fb27SDimitry Andric void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
102706c3fb27SDimitry Andric assert(IsWin32StructABI && "inalloca only supported on win32");
102806c3fb27SDimitry Andric
102906c3fb27SDimitry Andric // Build a packed struct type for all of the arguments in memory.
103006c3fb27SDimitry Andric SmallVector<llvm::Type *, 6> FrameFields;
103106c3fb27SDimitry Andric
103206c3fb27SDimitry Andric // The stack alignment is always 4.
103306c3fb27SDimitry Andric CharUnits StackAlign = CharUnits::fromQuantity(4);
103406c3fb27SDimitry Andric
103506c3fb27SDimitry Andric CharUnits StackOffset;
103606c3fb27SDimitry Andric CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
103706c3fb27SDimitry Andric
103806c3fb27SDimitry Andric // Put 'this' into the struct before 'sret', if necessary.
103906c3fb27SDimitry Andric bool IsThisCall =
104006c3fb27SDimitry Andric FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
104106c3fb27SDimitry Andric ABIArgInfo &Ret = FI.getReturnInfo();
104206c3fb27SDimitry Andric if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
104306c3fb27SDimitry Andric isArgInAlloca(I->info)) {
104406c3fb27SDimitry Andric addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
104506c3fb27SDimitry Andric ++I;
104606c3fb27SDimitry Andric }
104706c3fb27SDimitry Andric
104806c3fb27SDimitry Andric // Put the sret parameter into the inalloca struct if it's in memory.
104906c3fb27SDimitry Andric if (Ret.isIndirect() && !Ret.getInReg()) {
105006c3fb27SDimitry Andric addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
105106c3fb27SDimitry Andric // On Windows, the hidden sret parameter is always returned in eax.
105206c3fb27SDimitry Andric Ret.setInAllocaSRet(IsWin32StructABI);
105306c3fb27SDimitry Andric }
105406c3fb27SDimitry Andric
105506c3fb27SDimitry Andric // Skip the 'this' parameter in ecx.
105606c3fb27SDimitry Andric if (IsThisCall)
105706c3fb27SDimitry Andric ++I;
105806c3fb27SDimitry Andric
105906c3fb27SDimitry Andric // Put arguments passed in memory into the struct.
106006c3fb27SDimitry Andric for (; I != E; ++I) {
106106c3fb27SDimitry Andric if (isArgInAlloca(I->info))
106206c3fb27SDimitry Andric addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
106306c3fb27SDimitry Andric }
106406c3fb27SDimitry Andric
106506c3fb27SDimitry Andric FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
106606c3fb27SDimitry Andric /*isPacked=*/true),
106706c3fb27SDimitry Andric StackAlign);
106806c3fb27SDimitry Andric }
106906c3fb27SDimitry Andric
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty,AggValueSlot Slot) const1070*0fca6ea1SDimitry Andric RValue X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1071*0fca6ea1SDimitry Andric QualType Ty, AggValueSlot Slot) const {
107206c3fb27SDimitry Andric
107306c3fb27SDimitry Andric auto TypeInfo = getContext().getTypeInfoInChars(Ty);
107406c3fb27SDimitry Andric
1075*0fca6ea1SDimitry Andric CCState State(*const_cast<CGFunctionInfo *>(CGF.CurFnInfo));
1076*0fca6ea1SDimitry Andric ABIArgInfo AI = classifyArgumentType(Ty, State, /*ArgIndex*/ 0);
1077*0fca6ea1SDimitry Andric // Empty records are ignored for parameter passing purposes.
1078*0fca6ea1SDimitry Andric if (AI.isIgnore())
1079*0fca6ea1SDimitry Andric return Slot.asRValue();
1080*0fca6ea1SDimitry Andric
108106c3fb27SDimitry Andric // x86-32 changes the alignment of certain arguments on the stack.
108206c3fb27SDimitry Andric //
108306c3fb27SDimitry Andric // Just messing with TypeInfo like this works because we never pass
108406c3fb27SDimitry Andric // anything indirectly.
108506c3fb27SDimitry Andric TypeInfo.Align = CharUnits::fromQuantity(
108606c3fb27SDimitry Andric getTypeStackAlignInBytes(Ty, TypeInfo.Align.getQuantity()));
108706c3fb27SDimitry Andric
1088*0fca6ea1SDimitry Andric return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
1089*0fca6ea1SDimitry Andric CharUnits::fromQuantity(4),
1090*0fca6ea1SDimitry Andric /*AllowHigherAlign*/ true, Slot);
109106c3fb27SDimitry Andric }
109206c3fb27SDimitry Andric
isStructReturnInRegABI(const llvm::Triple & Triple,const CodeGenOptions & Opts)109306c3fb27SDimitry Andric bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
109406c3fb27SDimitry Andric const llvm::Triple &Triple, const CodeGenOptions &Opts) {
109506c3fb27SDimitry Andric assert(Triple.getArch() == llvm::Triple::x86);
109606c3fb27SDimitry Andric
109706c3fb27SDimitry Andric switch (Opts.getStructReturnConvention()) {
109806c3fb27SDimitry Andric case CodeGenOptions::SRCK_Default:
109906c3fb27SDimitry Andric break;
110006c3fb27SDimitry Andric case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return
110106c3fb27SDimitry Andric return false;
110206c3fb27SDimitry Andric case CodeGenOptions::SRCK_InRegs: // -freg-struct-return
110306c3fb27SDimitry Andric return true;
110406c3fb27SDimitry Andric }
110506c3fb27SDimitry Andric
110606c3fb27SDimitry Andric if (Triple.isOSDarwin() || Triple.isOSIAMCU())
110706c3fb27SDimitry Andric return true;
110806c3fb27SDimitry Andric
110906c3fb27SDimitry Andric switch (Triple.getOS()) {
111006c3fb27SDimitry Andric case llvm::Triple::DragonFly:
111106c3fb27SDimitry Andric case llvm::Triple::FreeBSD:
111206c3fb27SDimitry Andric case llvm::Triple::OpenBSD:
111306c3fb27SDimitry Andric case llvm::Triple::Win32:
111406c3fb27SDimitry Andric return true;
111506c3fb27SDimitry Andric default:
111606c3fb27SDimitry Andric return false;
111706c3fb27SDimitry Andric }
111806c3fb27SDimitry Andric }
111906c3fb27SDimitry Andric
addX86InterruptAttrs(const FunctionDecl * FD,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM)112006c3fb27SDimitry Andric static void addX86InterruptAttrs(const FunctionDecl *FD, llvm::GlobalValue *GV,
112106c3fb27SDimitry Andric CodeGen::CodeGenModule &CGM) {
112206c3fb27SDimitry Andric if (!FD->hasAttr<AnyX86InterruptAttr>())
112306c3fb27SDimitry Andric return;
112406c3fb27SDimitry Andric
112506c3fb27SDimitry Andric llvm::Function *Fn = cast<llvm::Function>(GV);
112606c3fb27SDimitry Andric Fn->setCallingConv(llvm::CallingConv::X86_INTR);
112706c3fb27SDimitry Andric if (FD->getNumParams() == 0)
112806c3fb27SDimitry Andric return;
112906c3fb27SDimitry Andric
113006c3fb27SDimitry Andric auto PtrTy = cast<PointerType>(FD->getParamDecl(0)->getType());
113106c3fb27SDimitry Andric llvm::Type *ByValTy = CGM.getTypes().ConvertType(PtrTy->getPointeeType());
113206c3fb27SDimitry Andric llvm::Attribute NewAttr = llvm::Attribute::getWithByValType(
113306c3fb27SDimitry Andric Fn->getContext(), ByValTy);
113406c3fb27SDimitry Andric Fn->addParamAttr(0, NewAttr);
113506c3fb27SDimitry Andric }
113606c3fb27SDimitry Andric
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const113706c3fb27SDimitry Andric void X86_32TargetCodeGenInfo::setTargetAttributes(
113806c3fb27SDimitry Andric const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
113906c3fb27SDimitry Andric if (GV->isDeclaration())
114006c3fb27SDimitry Andric return;
114106c3fb27SDimitry Andric if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
114206c3fb27SDimitry Andric if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
114306c3fb27SDimitry Andric llvm::Function *Fn = cast<llvm::Function>(GV);
114406c3fb27SDimitry Andric Fn->addFnAttr("stackrealign");
114506c3fb27SDimitry Andric }
114606c3fb27SDimitry Andric
114706c3fb27SDimitry Andric addX86InterruptAttrs(FD, GV, CGM);
114806c3fb27SDimitry Andric }
114906c3fb27SDimitry Andric }
115006c3fb27SDimitry Andric
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const115106c3fb27SDimitry Andric bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
115206c3fb27SDimitry Andric CodeGen::CodeGenFunction &CGF,
115306c3fb27SDimitry Andric llvm::Value *Address) const {
115406c3fb27SDimitry Andric CodeGen::CGBuilderTy &Builder = CGF.Builder;
115506c3fb27SDimitry Andric
115606c3fb27SDimitry Andric llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
115706c3fb27SDimitry Andric
115806c3fb27SDimitry Andric // 0-7 are the eight integer registers; the order is different
115906c3fb27SDimitry Andric // on Darwin (for EH), but the range is the same.
116006c3fb27SDimitry Andric // 8 is %eip.
116106c3fb27SDimitry Andric AssignToArrayRange(Builder, Address, Four8, 0, 8);
116206c3fb27SDimitry Andric
116306c3fb27SDimitry Andric if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
116406c3fb27SDimitry Andric // 12-16 are st(0..4). Not sure why we stop at 4.
116506c3fb27SDimitry Andric // These have size 16, which is sizeof(long double) on
116606c3fb27SDimitry Andric // platforms with 8-byte alignment for that type.
116706c3fb27SDimitry Andric llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
116806c3fb27SDimitry Andric AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
116906c3fb27SDimitry Andric
117006c3fb27SDimitry Andric } else {
117106c3fb27SDimitry Andric // 9 is %eflags, which doesn't get a size on Darwin for some
117206c3fb27SDimitry Andric // reason.
117306c3fb27SDimitry Andric Builder.CreateAlignedStore(
117406c3fb27SDimitry Andric Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
117506c3fb27SDimitry Andric CharUnits::One());
117606c3fb27SDimitry Andric
117706c3fb27SDimitry Andric // 11-16 are st(0..5). Not sure why we stop at 5.
117806c3fb27SDimitry Andric // These have size 12, which is sizeof(long double) on
117906c3fb27SDimitry Andric // platforms with 4-byte alignment for that type.
118006c3fb27SDimitry Andric llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
118106c3fb27SDimitry Andric AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
118206c3fb27SDimitry Andric }
118306c3fb27SDimitry Andric
118406c3fb27SDimitry Andric return false;
118506c3fb27SDimitry Andric }
118606c3fb27SDimitry Andric
118706c3fb27SDimitry Andric //===----------------------------------------------------------------------===//
118806c3fb27SDimitry Andric // X86-64 ABI Implementation
118906c3fb27SDimitry Andric //===----------------------------------------------------------------------===//
119006c3fb27SDimitry Andric
119106c3fb27SDimitry Andric
119206c3fb27SDimitry Andric namespace {
119306c3fb27SDimitry Andric
119406c3fb27SDimitry Andric /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel)119506c3fb27SDimitry Andric static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
119606c3fb27SDimitry Andric switch (AVXLevel) {
119706c3fb27SDimitry Andric case X86AVXABILevel::AVX512:
119806c3fb27SDimitry Andric return 512;
119906c3fb27SDimitry Andric case X86AVXABILevel::AVX:
120006c3fb27SDimitry Andric return 256;
120106c3fb27SDimitry Andric case X86AVXABILevel::None:
120206c3fb27SDimitry Andric return 128;
120306c3fb27SDimitry Andric }
120406c3fb27SDimitry Andric llvm_unreachable("Unknown AVXLevel");
120506c3fb27SDimitry Andric }
120606c3fb27SDimitry Andric
120706c3fb27SDimitry Andric /// X86_64ABIInfo - The X86_64 ABI information.
120806c3fb27SDimitry Andric class X86_64ABIInfo : public ABIInfo {
120906c3fb27SDimitry Andric enum Class {
121006c3fb27SDimitry Andric Integer = 0,
121106c3fb27SDimitry Andric SSE,
121206c3fb27SDimitry Andric SSEUp,
121306c3fb27SDimitry Andric X87,
121406c3fb27SDimitry Andric X87Up,
121506c3fb27SDimitry Andric ComplexX87,
121606c3fb27SDimitry Andric NoClass,
121706c3fb27SDimitry Andric Memory
121806c3fb27SDimitry Andric };
121906c3fb27SDimitry Andric
122006c3fb27SDimitry Andric /// merge - Implement the X86_64 ABI merging algorithm.
122106c3fb27SDimitry Andric ///
122206c3fb27SDimitry Andric /// Merge an accumulating classification \arg Accum with a field
122306c3fb27SDimitry Andric /// classification \arg Field.
122406c3fb27SDimitry Andric ///
122506c3fb27SDimitry Andric /// \param Accum - The accumulating classification. This should
122606c3fb27SDimitry Andric /// always be either NoClass or the result of a previous merge
122706c3fb27SDimitry Andric /// call. In addition, this should never be Memory (the caller
122806c3fb27SDimitry Andric /// should just return Memory for the aggregate).
122906c3fb27SDimitry Andric static Class merge(Class Accum, Class Field);
123006c3fb27SDimitry Andric
123106c3fb27SDimitry Andric /// postMerge - Implement the X86_64 ABI post merging algorithm.
123206c3fb27SDimitry Andric ///
123306c3fb27SDimitry Andric /// Post merger cleanup, reduces a malformed Hi and Lo pair to
123406c3fb27SDimitry Andric /// final MEMORY or SSE classes when necessary.
123506c3fb27SDimitry Andric ///
123606c3fb27SDimitry Andric /// \param AggregateSize - The size of the current aggregate in
123706c3fb27SDimitry Andric /// the classification process.
123806c3fb27SDimitry Andric ///
123906c3fb27SDimitry Andric /// \param Lo - The classification for the parts of the type
124006c3fb27SDimitry Andric /// residing in the low word of the containing object.
124106c3fb27SDimitry Andric ///
124206c3fb27SDimitry Andric /// \param Hi - The classification for the parts of the type
124306c3fb27SDimitry Andric /// residing in the higher words of the containing object.
124406c3fb27SDimitry Andric ///
124506c3fb27SDimitry Andric void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
124606c3fb27SDimitry Andric
124706c3fb27SDimitry Andric /// classify - Determine the x86_64 register classes in which the
124806c3fb27SDimitry Andric /// given type T should be passed.
124906c3fb27SDimitry Andric ///
125006c3fb27SDimitry Andric /// \param Lo - The classification for the parts of the type
125106c3fb27SDimitry Andric /// residing in the low word of the containing object.
125206c3fb27SDimitry Andric ///
125306c3fb27SDimitry Andric /// \param Hi - The classification for the parts of the type
125406c3fb27SDimitry Andric /// residing in the high word of the containing object.
125506c3fb27SDimitry Andric ///
125606c3fb27SDimitry Andric /// \param OffsetBase - The bit offset of this type in the
125706c3fb27SDimitry Andric /// containing object. Some parameters are classified different
125806c3fb27SDimitry Andric /// depending on whether they straddle an eightbyte boundary.
125906c3fb27SDimitry Andric ///
126006c3fb27SDimitry Andric /// \param isNamedArg - Whether the argument in question is a "named"
126106c3fb27SDimitry Andric /// argument, as used in AMD64-ABI 3.5.7.
126206c3fb27SDimitry Andric ///
126306c3fb27SDimitry Andric /// \param IsRegCall - Whether the calling conversion is regcall.
126406c3fb27SDimitry Andric ///
126506c3fb27SDimitry Andric /// If a word is unused its result will be NoClass; if a type should
126606c3fb27SDimitry Andric /// be passed in Memory then at least the classification of \arg Lo
126706c3fb27SDimitry Andric /// will be Memory.
126806c3fb27SDimitry Andric ///
126906c3fb27SDimitry Andric /// The \arg Lo class will be NoClass iff the argument is ignored.
127006c3fb27SDimitry Andric ///
127106c3fb27SDimitry Andric /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
127206c3fb27SDimitry Andric /// also be ComplexX87.
127306c3fb27SDimitry Andric void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
127406c3fb27SDimitry Andric bool isNamedArg, bool IsRegCall = false) const;
127506c3fb27SDimitry Andric
127606c3fb27SDimitry Andric llvm::Type *GetByteVectorType(QualType Ty) const;
127706c3fb27SDimitry Andric llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
127806c3fb27SDimitry Andric unsigned IROffset, QualType SourceTy,
127906c3fb27SDimitry Andric unsigned SourceOffset) const;
128006c3fb27SDimitry Andric llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
128106c3fb27SDimitry Andric unsigned IROffset, QualType SourceTy,
128206c3fb27SDimitry Andric unsigned SourceOffset) const;
128306c3fb27SDimitry Andric
128406c3fb27SDimitry Andric /// getIndirectResult - Give a source type \arg Ty, return a suitable result
128506c3fb27SDimitry Andric /// such that the argument will be returned in memory.
128606c3fb27SDimitry Andric ABIArgInfo getIndirectReturnResult(QualType Ty) const;
128706c3fb27SDimitry Andric
128806c3fb27SDimitry Andric /// getIndirectResult - Give a source type \arg Ty, return a suitable result
128906c3fb27SDimitry Andric /// such that the argument will be passed in memory.
129006c3fb27SDimitry Andric ///
129106c3fb27SDimitry Andric /// \param freeIntRegs - The number of free integer registers remaining
129206c3fb27SDimitry Andric /// available.
129306c3fb27SDimitry Andric ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
129406c3fb27SDimitry Andric
129506c3fb27SDimitry Andric ABIArgInfo classifyReturnType(QualType RetTy) const;
129606c3fb27SDimitry Andric
129706c3fb27SDimitry Andric ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
129806c3fb27SDimitry Andric unsigned &neededInt, unsigned &neededSSE,
129906c3fb27SDimitry Andric bool isNamedArg,
130006c3fb27SDimitry Andric bool IsRegCall = false) const;
130106c3fb27SDimitry Andric
130206c3fb27SDimitry Andric ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
130306c3fb27SDimitry Andric unsigned &NeededSSE,
130406c3fb27SDimitry Andric unsigned &MaxVectorWidth) const;
130506c3fb27SDimitry Andric
130606c3fb27SDimitry Andric ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
130706c3fb27SDimitry Andric unsigned &NeededSSE,
130806c3fb27SDimitry Andric unsigned &MaxVectorWidth) const;
130906c3fb27SDimitry Andric
131006c3fb27SDimitry Andric bool IsIllegalVectorType(QualType Ty) const;
131106c3fb27SDimitry Andric
131206c3fb27SDimitry Andric /// The 0.98 ABI revision clarified a lot of ambiguities,
131306c3fb27SDimitry Andric /// unfortunately in ways that were not always consistent with
131406c3fb27SDimitry Andric /// certain previous compilers. In particular, platforms which
131506c3fb27SDimitry Andric /// required strict binary compatibility with older versions of GCC
131606c3fb27SDimitry Andric /// may need to exempt themselves.
honorsRevision0_98() const131706c3fb27SDimitry Andric bool honorsRevision0_98() const {
131806c3fb27SDimitry Andric return !getTarget().getTriple().isOSDarwin();
131906c3fb27SDimitry Andric }
132006c3fb27SDimitry Andric
132106c3fb27SDimitry Andric /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
132206c3fb27SDimitry Andric /// classify it as INTEGER (for compatibility with older clang compilers).
classifyIntegerMMXAsSSE() const132306c3fb27SDimitry Andric bool classifyIntegerMMXAsSSE() const {
132406c3fb27SDimitry Andric // Clang <= 3.8 did not do this.
132506c3fb27SDimitry Andric if (getContext().getLangOpts().getClangABICompat() <=
132606c3fb27SDimitry Andric LangOptions::ClangABI::Ver3_8)
132706c3fb27SDimitry Andric return false;
132806c3fb27SDimitry Andric
132906c3fb27SDimitry Andric const llvm::Triple &Triple = getTarget().getTriple();
133006c3fb27SDimitry Andric if (Triple.isOSDarwin() || Triple.isPS() || Triple.isOSFreeBSD())
133106c3fb27SDimitry Andric return false;
133206c3fb27SDimitry Andric return true;
133306c3fb27SDimitry Andric }
133406c3fb27SDimitry Andric
133506c3fb27SDimitry Andric // GCC classifies vectors of __int128 as memory.
passInt128VectorsInMem() const133606c3fb27SDimitry Andric bool passInt128VectorsInMem() const {
133706c3fb27SDimitry Andric // Clang <= 9.0 did not do this.
133806c3fb27SDimitry Andric if (getContext().getLangOpts().getClangABICompat() <=
133906c3fb27SDimitry Andric LangOptions::ClangABI::Ver9)
134006c3fb27SDimitry Andric return false;
134106c3fb27SDimitry Andric
134206c3fb27SDimitry Andric const llvm::Triple &T = getTarget().getTriple();
134306c3fb27SDimitry Andric return T.isOSLinux() || T.isOSNetBSD();
134406c3fb27SDimitry Andric }
134506c3fb27SDimitry Andric
134606c3fb27SDimitry Andric X86AVXABILevel AVXLevel;
134706c3fb27SDimitry Andric // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
134806c3fb27SDimitry Andric // 64-bit hardware.
134906c3fb27SDimitry Andric bool Has64BitPointers;
135006c3fb27SDimitry Andric
135106c3fb27SDimitry Andric public:
X86_64ABIInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)135206c3fb27SDimitry Andric X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
135306c3fb27SDimitry Andric : ABIInfo(CGT), AVXLevel(AVXLevel),
135406c3fb27SDimitry Andric Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {}
135506c3fb27SDimitry Andric
isPassedUsingAVXType(QualType type) const135606c3fb27SDimitry Andric bool isPassedUsingAVXType(QualType type) const {
135706c3fb27SDimitry Andric unsigned neededInt, neededSSE;
135806c3fb27SDimitry Andric // The freeIntRegs argument doesn't matter here.
135906c3fb27SDimitry Andric ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
136006c3fb27SDimitry Andric /*isNamedArg*/true);
136106c3fb27SDimitry Andric if (info.isDirect()) {
136206c3fb27SDimitry Andric llvm::Type *ty = info.getCoerceToType();
136306c3fb27SDimitry Andric if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
136406c3fb27SDimitry Andric return vectorTy->getPrimitiveSizeInBits().getFixedValue() > 128;
136506c3fb27SDimitry Andric }
136606c3fb27SDimitry Andric return false;
136706c3fb27SDimitry Andric }
136806c3fb27SDimitry Andric
136906c3fb27SDimitry Andric void computeInfo(CGFunctionInfo &FI) const override;
137006c3fb27SDimitry Andric
1371*0fca6ea1SDimitry Andric RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1372*0fca6ea1SDimitry Andric AggValueSlot Slot) const override;
1373*0fca6ea1SDimitry Andric RValue EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1374*0fca6ea1SDimitry Andric AggValueSlot Slot) const override;
137506c3fb27SDimitry Andric
has64BitPointers() const137606c3fb27SDimitry Andric bool has64BitPointers() const {
137706c3fb27SDimitry Andric return Has64BitPointers;
137806c3fb27SDimitry Andric }
137906c3fb27SDimitry Andric };
138006c3fb27SDimitry Andric
138106c3fb27SDimitry Andric /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
138206c3fb27SDimitry Andric class WinX86_64ABIInfo : public ABIInfo {
138306c3fb27SDimitry Andric public:
WinX86_64ABIInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)138406c3fb27SDimitry Andric WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
138506c3fb27SDimitry Andric : ABIInfo(CGT), AVXLevel(AVXLevel),
138606c3fb27SDimitry Andric IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
138706c3fb27SDimitry Andric
138806c3fb27SDimitry Andric void computeInfo(CGFunctionInfo &FI) const override;
138906c3fb27SDimitry Andric
1390*0fca6ea1SDimitry Andric RValue EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
1391*0fca6ea1SDimitry Andric AggValueSlot Slot) const override;
139206c3fb27SDimitry Andric
isHomogeneousAggregateBaseType(QualType Ty) const139306c3fb27SDimitry Andric bool isHomogeneousAggregateBaseType(QualType Ty) const override {
139406c3fb27SDimitry Andric // FIXME: Assumes vectorcall is in use.
139506c3fb27SDimitry Andric return isX86VectorTypeForVectorCall(getContext(), Ty);
139606c3fb27SDimitry Andric }
139706c3fb27SDimitry Andric
isHomogeneousAggregateSmallEnough(const Type * Ty,uint64_t NumMembers) const139806c3fb27SDimitry Andric bool isHomogeneousAggregateSmallEnough(const Type *Ty,
139906c3fb27SDimitry Andric uint64_t NumMembers) const override {
140006c3fb27SDimitry Andric // FIXME: Assumes vectorcall is in use.
140106c3fb27SDimitry Andric return isX86VectorCallAggregateSmallEnough(NumMembers);
140206c3fb27SDimitry Andric }
140306c3fb27SDimitry Andric
140406c3fb27SDimitry Andric private:
140506c3fb27SDimitry Andric ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
140606c3fb27SDimitry Andric bool IsVectorCall, bool IsRegCall) const;
140706c3fb27SDimitry Andric ABIArgInfo reclassifyHvaArgForVectorCall(QualType Ty, unsigned &FreeSSERegs,
140806c3fb27SDimitry Andric const ABIArgInfo ¤t) const;
140906c3fb27SDimitry Andric
141006c3fb27SDimitry Andric X86AVXABILevel AVXLevel;
141106c3fb27SDimitry Andric
141206c3fb27SDimitry Andric bool IsMingw64;
141306c3fb27SDimitry Andric };
141406c3fb27SDimitry Andric
141506c3fb27SDimitry Andric class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
141606c3fb27SDimitry Andric public:
X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)141706c3fb27SDimitry Andric X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
141806c3fb27SDimitry Andric : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {
141906c3fb27SDimitry Andric SwiftInfo =
142006c3fb27SDimitry Andric std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
142106c3fb27SDimitry Andric }
142206c3fb27SDimitry Andric
142306c3fb27SDimitry Andric /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
142406c3fb27SDimitry Andric /// autoreleaseRV/retainRV and autoreleaseRV/unsafeClaimRV optimizations.
markARCOptimizedReturnCallsAsNoTail() const142506c3fb27SDimitry Andric bool markARCOptimizedReturnCallsAsNoTail() const override { return true; }
142606c3fb27SDimitry Andric
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const142706c3fb27SDimitry Andric int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
142806c3fb27SDimitry Andric return 7;
142906c3fb27SDimitry Andric }
143006c3fb27SDimitry Andric
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const143106c3fb27SDimitry Andric bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
143206c3fb27SDimitry Andric llvm::Value *Address) const override {
143306c3fb27SDimitry Andric llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
143406c3fb27SDimitry Andric
143506c3fb27SDimitry Andric // 0-15 are the 16 integer registers.
143606c3fb27SDimitry Andric // 16 is %rip.
143706c3fb27SDimitry Andric AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
143806c3fb27SDimitry Andric return false;
143906c3fb27SDimitry Andric }
144006c3fb27SDimitry Andric
adjustInlineAsmType(CodeGen::CodeGenFunction & CGF,StringRef Constraint,llvm::Type * Ty) const144106c3fb27SDimitry Andric llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
144206c3fb27SDimitry Andric StringRef Constraint,
144306c3fb27SDimitry Andric llvm::Type* Ty) const override {
144406c3fb27SDimitry Andric return X86AdjustInlineAsmType(CGF, Constraint, Ty);
144506c3fb27SDimitry Andric }
144606c3fb27SDimitry Andric
isNoProtoCallVariadic(const CallArgList & args,const FunctionNoProtoType * fnType) const144706c3fb27SDimitry Andric bool isNoProtoCallVariadic(const CallArgList &args,
144806c3fb27SDimitry Andric const FunctionNoProtoType *fnType) const override {
144906c3fb27SDimitry Andric // The default CC on x86-64 sets %al to the number of SSA
145006c3fb27SDimitry Andric // registers used, and GCC sets this when calling an unprototyped
145106c3fb27SDimitry Andric // function, so we override the default behavior. However, don't do
145206c3fb27SDimitry Andric // that when AVX types are involved: the ABI explicitly states it is
145306c3fb27SDimitry Andric // undefined, and it doesn't work in practice because of how the ABI
145406c3fb27SDimitry Andric // defines varargs anyway.
145506c3fb27SDimitry Andric if (fnType->getCallConv() == CC_C) {
145606c3fb27SDimitry Andric bool HasAVXType = false;
145706c3fb27SDimitry Andric for (CallArgList::const_iterator
145806c3fb27SDimitry Andric it = args.begin(), ie = args.end(); it != ie; ++it) {
145906c3fb27SDimitry Andric if (getABIInfo<X86_64ABIInfo>().isPassedUsingAVXType(it->Ty)) {
146006c3fb27SDimitry Andric HasAVXType = true;
146106c3fb27SDimitry Andric break;
146206c3fb27SDimitry Andric }
146306c3fb27SDimitry Andric }
146406c3fb27SDimitry Andric
146506c3fb27SDimitry Andric if (!HasAVXType)
146606c3fb27SDimitry Andric return true;
146706c3fb27SDimitry Andric }
146806c3fb27SDimitry Andric
146906c3fb27SDimitry Andric return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
147006c3fb27SDimitry Andric }
147106c3fb27SDimitry Andric
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const147206c3fb27SDimitry Andric void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
147306c3fb27SDimitry Andric CodeGen::CodeGenModule &CGM) const override {
147406c3fb27SDimitry Andric if (GV->isDeclaration())
147506c3fb27SDimitry Andric return;
147606c3fb27SDimitry Andric if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
147706c3fb27SDimitry Andric if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
147806c3fb27SDimitry Andric llvm::Function *Fn = cast<llvm::Function>(GV);
147906c3fb27SDimitry Andric Fn->addFnAttr("stackrealign");
148006c3fb27SDimitry Andric }
148106c3fb27SDimitry Andric
148206c3fb27SDimitry Andric addX86InterruptAttrs(FD, GV, CGM);
148306c3fb27SDimitry Andric }
148406c3fb27SDimitry Andric }
148506c3fb27SDimitry Andric
148606c3fb27SDimitry Andric void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
148706c3fb27SDimitry Andric const FunctionDecl *Caller,
1488*0fca6ea1SDimitry Andric const FunctionDecl *Callee, const CallArgList &Args,
1489*0fca6ea1SDimitry Andric QualType ReturnType) const override;
149006c3fb27SDimitry Andric };
149106c3fb27SDimitry Andric } // namespace
149206c3fb27SDimitry Andric
initFeatureMaps(const ASTContext & Ctx,llvm::StringMap<bool> & CallerMap,const FunctionDecl * Caller,llvm::StringMap<bool> & CalleeMap,const FunctionDecl * Callee)149306c3fb27SDimitry Andric static void initFeatureMaps(const ASTContext &Ctx,
149406c3fb27SDimitry Andric llvm::StringMap<bool> &CallerMap,
149506c3fb27SDimitry Andric const FunctionDecl *Caller,
149606c3fb27SDimitry Andric llvm::StringMap<bool> &CalleeMap,
149706c3fb27SDimitry Andric const FunctionDecl *Callee) {
149806c3fb27SDimitry Andric if (CalleeMap.empty() && CallerMap.empty()) {
149906c3fb27SDimitry Andric // The caller is potentially nullptr in the case where the call isn't in a
150006c3fb27SDimitry Andric // function. In this case, the getFunctionFeatureMap ensures we just get
150106c3fb27SDimitry Andric // the TU level setting (since it cannot be modified by 'target'..
150206c3fb27SDimitry Andric Ctx.getFunctionFeatureMap(CallerMap, Caller);
150306c3fb27SDimitry Andric Ctx.getFunctionFeatureMap(CalleeMap, Callee);
150406c3fb27SDimitry Andric }
150506c3fb27SDimitry Andric }
150606c3fb27SDimitry Andric
checkAVXParamFeature(DiagnosticsEngine & Diag,SourceLocation CallLoc,const llvm::StringMap<bool> & CallerMap,const llvm::StringMap<bool> & CalleeMap,QualType Ty,StringRef Feature,bool IsArgument)150706c3fb27SDimitry Andric static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
150806c3fb27SDimitry Andric SourceLocation CallLoc,
150906c3fb27SDimitry Andric const llvm::StringMap<bool> &CallerMap,
151006c3fb27SDimitry Andric const llvm::StringMap<bool> &CalleeMap,
151106c3fb27SDimitry Andric QualType Ty, StringRef Feature,
151206c3fb27SDimitry Andric bool IsArgument) {
151306c3fb27SDimitry Andric bool CallerHasFeat = CallerMap.lookup(Feature);
151406c3fb27SDimitry Andric bool CalleeHasFeat = CalleeMap.lookup(Feature);
151506c3fb27SDimitry Andric if (!CallerHasFeat && !CalleeHasFeat)
151606c3fb27SDimitry Andric return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
151706c3fb27SDimitry Andric << IsArgument << Ty << Feature;
151806c3fb27SDimitry Andric
151906c3fb27SDimitry Andric // Mixing calling conventions here is very clearly an error.
152006c3fb27SDimitry Andric if (!CallerHasFeat || !CalleeHasFeat)
152106c3fb27SDimitry Andric return Diag.Report(CallLoc, diag::err_avx_calling_convention)
152206c3fb27SDimitry Andric << IsArgument << Ty << Feature;
152306c3fb27SDimitry Andric
152406c3fb27SDimitry Andric // Else, both caller and callee have the required feature, so there is no need
152506c3fb27SDimitry Andric // to diagnose.
152606c3fb27SDimitry Andric return false;
152706c3fb27SDimitry Andric }
152806c3fb27SDimitry Andric
checkAVX512ParamFeature(DiagnosticsEngine & Diag,SourceLocation CallLoc,const llvm::StringMap<bool> & CallerMap,const llvm::StringMap<bool> & CalleeMap,QualType Ty,bool IsArgument)15295f757f3fSDimitry Andric static bool checkAVX512ParamFeature(DiagnosticsEngine &Diag,
15305f757f3fSDimitry Andric SourceLocation CallLoc,
15315f757f3fSDimitry Andric const llvm::StringMap<bool> &CallerMap,
15325f757f3fSDimitry Andric const llvm::StringMap<bool> &CalleeMap,
15335f757f3fSDimitry Andric QualType Ty, bool IsArgument) {
15345f757f3fSDimitry Andric bool Caller256 = CallerMap.lookup("avx512f") && !CallerMap.lookup("evex512");
15355f757f3fSDimitry Andric bool Callee256 = CalleeMap.lookup("avx512f") && !CalleeMap.lookup("evex512");
15365f757f3fSDimitry Andric
15375f757f3fSDimitry Andric // Forbid 512-bit or larger vector pass or return when we disabled ZMM
15385f757f3fSDimitry Andric // instructions.
15395f757f3fSDimitry Andric if (Caller256 || Callee256)
15405f757f3fSDimitry Andric return Diag.Report(CallLoc, diag::err_avx_calling_convention)
15415f757f3fSDimitry Andric << IsArgument << Ty << "evex512";
15425f757f3fSDimitry Andric
15435f757f3fSDimitry Andric return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
15445f757f3fSDimitry Andric "avx512f", IsArgument);
15455f757f3fSDimitry Andric }
15465f757f3fSDimitry Andric
checkAVXParam(DiagnosticsEngine & Diag,ASTContext & Ctx,SourceLocation CallLoc,const llvm::StringMap<bool> & CallerMap,const llvm::StringMap<bool> & CalleeMap,QualType Ty,bool IsArgument)154706c3fb27SDimitry Andric static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
154806c3fb27SDimitry Andric SourceLocation CallLoc,
154906c3fb27SDimitry Andric const llvm::StringMap<bool> &CallerMap,
155006c3fb27SDimitry Andric const llvm::StringMap<bool> &CalleeMap, QualType Ty,
155106c3fb27SDimitry Andric bool IsArgument) {
155206c3fb27SDimitry Andric uint64_t Size = Ctx.getTypeSize(Ty);
155306c3fb27SDimitry Andric if (Size > 256)
15545f757f3fSDimitry Andric return checkAVX512ParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
15555f757f3fSDimitry Andric IsArgument);
155606c3fb27SDimitry Andric
155706c3fb27SDimitry Andric if (Size > 128)
155806c3fb27SDimitry Andric return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
155906c3fb27SDimitry Andric IsArgument);
156006c3fb27SDimitry Andric
156106c3fb27SDimitry Andric return false;
156206c3fb27SDimitry Andric }
156306c3fb27SDimitry Andric
checkFunctionCallABI(CodeGenModule & CGM,SourceLocation CallLoc,const FunctionDecl * Caller,const FunctionDecl * Callee,const CallArgList & Args,QualType ReturnType) const1564*0fca6ea1SDimitry Andric void X86_64TargetCodeGenInfo::checkFunctionCallABI(CodeGenModule &CGM,
1565*0fca6ea1SDimitry Andric SourceLocation CallLoc,
1566*0fca6ea1SDimitry Andric const FunctionDecl *Caller,
1567*0fca6ea1SDimitry Andric const FunctionDecl *Callee,
1568*0fca6ea1SDimitry Andric const CallArgList &Args,
1569*0fca6ea1SDimitry Andric QualType ReturnType) const {
1570*0fca6ea1SDimitry Andric if (!Callee)
1571*0fca6ea1SDimitry Andric return;
1572*0fca6ea1SDimitry Andric
157306c3fb27SDimitry Andric llvm::StringMap<bool> CallerMap;
157406c3fb27SDimitry Andric llvm::StringMap<bool> CalleeMap;
157506c3fb27SDimitry Andric unsigned ArgIndex = 0;
157606c3fb27SDimitry Andric
157706c3fb27SDimitry Andric // We need to loop through the actual call arguments rather than the
157806c3fb27SDimitry Andric // function's parameters, in case this variadic.
157906c3fb27SDimitry Andric for (const CallArg &Arg : Args) {
158006c3fb27SDimitry Andric // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
158106c3fb27SDimitry Andric // additionally changes how vectors >256 in size are passed. Like GCC, we
158206c3fb27SDimitry Andric // warn when a function is called with an argument where this will change.
158306c3fb27SDimitry Andric // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
158406c3fb27SDimitry Andric // the caller and callee features are mismatched.
158506c3fb27SDimitry Andric // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
158606c3fb27SDimitry Andric // change its ABI with attribute-target after this call.
158706c3fb27SDimitry Andric if (Arg.getType()->isVectorType() &&
158806c3fb27SDimitry Andric CGM.getContext().getTypeSize(Arg.getType()) > 128) {
158906c3fb27SDimitry Andric initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
159006c3fb27SDimitry Andric QualType Ty = Arg.getType();
159106c3fb27SDimitry Andric // The CallArg seems to have desugared the type already, so for clearer
159206c3fb27SDimitry Andric // diagnostics, replace it with the type in the FunctionDecl if possible.
159306c3fb27SDimitry Andric if (ArgIndex < Callee->getNumParams())
159406c3fb27SDimitry Andric Ty = Callee->getParamDecl(ArgIndex)->getType();
159506c3fb27SDimitry Andric
159606c3fb27SDimitry Andric if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
159706c3fb27SDimitry Andric CalleeMap, Ty, /*IsArgument*/ true))
159806c3fb27SDimitry Andric return;
159906c3fb27SDimitry Andric }
160006c3fb27SDimitry Andric ++ArgIndex;
160106c3fb27SDimitry Andric }
160206c3fb27SDimitry Andric
160306c3fb27SDimitry Andric // Check return always, as we don't have a good way of knowing in codegen
160406c3fb27SDimitry Andric // whether this value is used, tail-called, etc.
160506c3fb27SDimitry Andric if (Callee->getReturnType()->isVectorType() &&
160606c3fb27SDimitry Andric CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
160706c3fb27SDimitry Andric initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
160806c3fb27SDimitry Andric checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
160906c3fb27SDimitry Andric CalleeMap, Callee->getReturnType(),
161006c3fb27SDimitry Andric /*IsArgument*/ false);
161106c3fb27SDimitry Andric }
161206c3fb27SDimitry Andric }
161306c3fb27SDimitry Andric
qualifyWindowsLibrary(StringRef Lib)161406c3fb27SDimitry Andric std::string TargetCodeGenInfo::qualifyWindowsLibrary(StringRef Lib) {
161506c3fb27SDimitry Andric // If the argument does not end in .lib, automatically add the suffix.
161606c3fb27SDimitry Andric // If the argument contains a space, enclose it in quotes.
161706c3fb27SDimitry Andric // This matches the behavior of MSVC.
161806c3fb27SDimitry Andric bool Quote = Lib.contains(' ');
161906c3fb27SDimitry Andric std::string ArgStr = Quote ? "\"" : "";
162006c3fb27SDimitry Andric ArgStr += Lib;
162106c3fb27SDimitry Andric if (!Lib.ends_with_insensitive(".lib") && !Lib.ends_with_insensitive(".a"))
162206c3fb27SDimitry Andric ArgStr += ".lib";
162306c3fb27SDimitry Andric ArgStr += Quote ? "\"" : "";
162406c3fb27SDimitry Andric return ArgStr;
162506c3fb27SDimitry Andric }
162606c3fb27SDimitry Andric
162706c3fb27SDimitry Andric namespace {
162806c3fb27SDimitry Andric class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
162906c3fb27SDimitry Andric public:
WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,bool DarwinVectorABI,bool RetSmallStructInRegABI,bool Win32StructABI,unsigned NumRegisterParameters)163006c3fb27SDimitry Andric WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
163106c3fb27SDimitry Andric bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
163206c3fb27SDimitry Andric unsigned NumRegisterParameters)
163306c3fb27SDimitry Andric : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
163406c3fb27SDimitry Andric Win32StructABI, NumRegisterParameters, false) {}
163506c3fb27SDimitry Andric
163606c3fb27SDimitry Andric void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
163706c3fb27SDimitry Andric CodeGen::CodeGenModule &CGM) const override;
163806c3fb27SDimitry Andric
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const163906c3fb27SDimitry Andric void getDependentLibraryOption(llvm::StringRef Lib,
164006c3fb27SDimitry Andric llvm::SmallString<24> &Opt) const override {
164106c3fb27SDimitry Andric Opt = "/DEFAULTLIB:";
164206c3fb27SDimitry Andric Opt += qualifyWindowsLibrary(Lib);
164306c3fb27SDimitry Andric }
164406c3fb27SDimitry Andric
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const164506c3fb27SDimitry Andric void getDetectMismatchOption(llvm::StringRef Name,
164606c3fb27SDimitry Andric llvm::StringRef Value,
164706c3fb27SDimitry Andric llvm::SmallString<32> &Opt) const override {
164806c3fb27SDimitry Andric Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
164906c3fb27SDimitry Andric }
165006c3fb27SDimitry Andric };
165106c3fb27SDimitry Andric } // namespace
165206c3fb27SDimitry Andric
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const165306c3fb27SDimitry Andric void WinX86_32TargetCodeGenInfo::setTargetAttributes(
165406c3fb27SDimitry Andric const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
165506c3fb27SDimitry Andric X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
165606c3fb27SDimitry Andric if (GV->isDeclaration())
165706c3fb27SDimitry Andric return;
165806c3fb27SDimitry Andric addStackProbeTargetAttributes(D, GV, CGM);
165906c3fb27SDimitry Andric }
166006c3fb27SDimitry Andric
166106c3fb27SDimitry Andric namespace {
166206c3fb27SDimitry Andric class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
166306c3fb27SDimitry Andric public:
WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes & CGT,X86AVXABILevel AVXLevel)166406c3fb27SDimitry Andric WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
166506c3fb27SDimitry Andric X86AVXABILevel AVXLevel)
166606c3fb27SDimitry Andric : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {
166706c3fb27SDimitry Andric SwiftInfo =
166806c3fb27SDimitry Andric std::make_unique<SwiftABIInfo>(CGT, /*SwiftErrorInRegister=*/true);
166906c3fb27SDimitry Andric }
167006c3fb27SDimitry Andric
167106c3fb27SDimitry Andric void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
167206c3fb27SDimitry Andric CodeGen::CodeGenModule &CGM) const override;
167306c3fb27SDimitry Andric
getDwarfEHStackPointer(CodeGen::CodeGenModule & CGM) const167406c3fb27SDimitry Andric int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
167506c3fb27SDimitry Andric return 7;
167606c3fb27SDimitry Andric }
167706c3fb27SDimitry Andric
initDwarfEHRegSizeTable(CodeGen::CodeGenFunction & CGF,llvm::Value * Address) const167806c3fb27SDimitry Andric bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
167906c3fb27SDimitry Andric llvm::Value *Address) const override {
168006c3fb27SDimitry Andric llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
168106c3fb27SDimitry Andric
168206c3fb27SDimitry Andric // 0-15 are the 16 integer registers.
168306c3fb27SDimitry Andric // 16 is %rip.
168406c3fb27SDimitry Andric AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
168506c3fb27SDimitry Andric return false;
168606c3fb27SDimitry Andric }
168706c3fb27SDimitry Andric
getDependentLibraryOption(llvm::StringRef Lib,llvm::SmallString<24> & Opt) const168806c3fb27SDimitry Andric void getDependentLibraryOption(llvm::StringRef Lib,
168906c3fb27SDimitry Andric llvm::SmallString<24> &Opt) const override {
169006c3fb27SDimitry Andric Opt = "/DEFAULTLIB:";
169106c3fb27SDimitry Andric Opt += qualifyWindowsLibrary(Lib);
169206c3fb27SDimitry Andric }
169306c3fb27SDimitry Andric
getDetectMismatchOption(llvm::StringRef Name,llvm::StringRef Value,llvm::SmallString<32> & Opt) const169406c3fb27SDimitry Andric void getDetectMismatchOption(llvm::StringRef Name,
169506c3fb27SDimitry Andric llvm::StringRef Value,
169606c3fb27SDimitry Andric llvm::SmallString<32> &Opt) const override {
169706c3fb27SDimitry Andric Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
169806c3fb27SDimitry Andric }
169906c3fb27SDimitry Andric };
170006c3fb27SDimitry Andric } // namespace
170106c3fb27SDimitry Andric
setTargetAttributes(const Decl * D,llvm::GlobalValue * GV,CodeGen::CodeGenModule & CGM) const170206c3fb27SDimitry Andric void WinX86_64TargetCodeGenInfo::setTargetAttributes(
170306c3fb27SDimitry Andric const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
170406c3fb27SDimitry Andric TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
170506c3fb27SDimitry Andric if (GV->isDeclaration())
170606c3fb27SDimitry Andric return;
170706c3fb27SDimitry Andric if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
170806c3fb27SDimitry Andric if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
170906c3fb27SDimitry Andric llvm::Function *Fn = cast<llvm::Function>(GV);
171006c3fb27SDimitry Andric Fn->addFnAttr("stackrealign");
171106c3fb27SDimitry Andric }
171206c3fb27SDimitry Andric
171306c3fb27SDimitry Andric addX86InterruptAttrs(FD, GV, CGM);
171406c3fb27SDimitry Andric }
171506c3fb27SDimitry Andric
171606c3fb27SDimitry Andric addStackProbeTargetAttributes(D, GV, CGM);
171706c3fb27SDimitry Andric }
171806c3fb27SDimitry Andric
postMerge(unsigned AggregateSize,Class & Lo,Class & Hi) const171906c3fb27SDimitry Andric void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
172006c3fb27SDimitry Andric Class &Hi) const {
172106c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
172206c3fb27SDimitry Andric //
172306c3fb27SDimitry Andric // (a) If one of the classes is Memory, the whole argument is passed in
172406c3fb27SDimitry Andric // memory.
172506c3fb27SDimitry Andric //
172606c3fb27SDimitry Andric // (b) If X87UP is not preceded by X87, the whole argument is passed in
172706c3fb27SDimitry Andric // memory.
172806c3fb27SDimitry Andric //
172906c3fb27SDimitry Andric // (c) If the size of the aggregate exceeds two eightbytes and the first
173006c3fb27SDimitry Andric // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
173106c3fb27SDimitry Andric // argument is passed in memory. NOTE: This is necessary to keep the
173206c3fb27SDimitry Andric // ABI working for processors that don't support the __m256 type.
173306c3fb27SDimitry Andric //
173406c3fb27SDimitry Andric // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
173506c3fb27SDimitry Andric //
173606c3fb27SDimitry Andric // Some of these are enforced by the merging logic. Others can arise
173706c3fb27SDimitry Andric // only with unions; for example:
173806c3fb27SDimitry Andric // union { _Complex double; unsigned; }
173906c3fb27SDimitry Andric //
174006c3fb27SDimitry Andric // Note that clauses (b) and (c) were added in 0.98.
174106c3fb27SDimitry Andric //
174206c3fb27SDimitry Andric if (Hi == Memory)
174306c3fb27SDimitry Andric Lo = Memory;
174406c3fb27SDimitry Andric if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
174506c3fb27SDimitry Andric Lo = Memory;
174606c3fb27SDimitry Andric if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
174706c3fb27SDimitry Andric Lo = Memory;
174806c3fb27SDimitry Andric if (Hi == SSEUp && Lo != SSE)
174906c3fb27SDimitry Andric Hi = SSE;
175006c3fb27SDimitry Andric }
175106c3fb27SDimitry Andric
merge(Class Accum,Class Field)175206c3fb27SDimitry Andric X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
175306c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
175406c3fb27SDimitry Andric // classified recursively so that always two fields are
175506c3fb27SDimitry Andric // considered. The resulting class is calculated according to
175606c3fb27SDimitry Andric // the classes of the fields in the eightbyte:
175706c3fb27SDimitry Andric //
175806c3fb27SDimitry Andric // (a) If both classes are equal, this is the resulting class.
175906c3fb27SDimitry Andric //
176006c3fb27SDimitry Andric // (b) If one of the classes is NO_CLASS, the resulting class is
176106c3fb27SDimitry Andric // the other class.
176206c3fb27SDimitry Andric //
176306c3fb27SDimitry Andric // (c) If one of the classes is MEMORY, the result is the MEMORY
176406c3fb27SDimitry Andric // class.
176506c3fb27SDimitry Andric //
176606c3fb27SDimitry Andric // (d) If one of the classes is INTEGER, the result is the
176706c3fb27SDimitry Andric // INTEGER.
176806c3fb27SDimitry Andric //
176906c3fb27SDimitry Andric // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
177006c3fb27SDimitry Andric // MEMORY is used as class.
177106c3fb27SDimitry Andric //
177206c3fb27SDimitry Andric // (f) Otherwise class SSE is used.
177306c3fb27SDimitry Andric
177406c3fb27SDimitry Andric // Accum should never be memory (we should have returned) or
177506c3fb27SDimitry Andric // ComplexX87 (because this cannot be passed in a structure).
177606c3fb27SDimitry Andric assert((Accum != Memory && Accum != ComplexX87) &&
177706c3fb27SDimitry Andric "Invalid accumulated classification during merge.");
177806c3fb27SDimitry Andric if (Accum == Field || Field == NoClass)
177906c3fb27SDimitry Andric return Accum;
178006c3fb27SDimitry Andric if (Field == Memory)
178106c3fb27SDimitry Andric return Memory;
178206c3fb27SDimitry Andric if (Accum == NoClass)
178306c3fb27SDimitry Andric return Field;
178406c3fb27SDimitry Andric if (Accum == Integer || Field == Integer)
178506c3fb27SDimitry Andric return Integer;
178606c3fb27SDimitry Andric if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
178706c3fb27SDimitry Andric Accum == X87 || Accum == X87Up)
178806c3fb27SDimitry Andric return Memory;
178906c3fb27SDimitry Andric return SSE;
179006c3fb27SDimitry Andric }
179106c3fb27SDimitry Andric
classify(QualType Ty,uint64_t OffsetBase,Class & Lo,Class & Hi,bool isNamedArg,bool IsRegCall) const179206c3fb27SDimitry Andric void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, Class &Lo,
179306c3fb27SDimitry Andric Class &Hi, bool isNamedArg, bool IsRegCall) const {
179406c3fb27SDimitry Andric // FIXME: This code can be simplified by introducing a simple value class for
179506c3fb27SDimitry Andric // Class pairs with appropriate constructor methods for the various
179606c3fb27SDimitry Andric // situations.
179706c3fb27SDimitry Andric
179806c3fb27SDimitry Andric // FIXME: Some of the split computations are wrong; unaligned vectors
179906c3fb27SDimitry Andric // shouldn't be passed in registers for example, so there is no chance they
180006c3fb27SDimitry Andric // can straddle an eightbyte. Verify & simplify.
180106c3fb27SDimitry Andric
180206c3fb27SDimitry Andric Lo = Hi = NoClass;
180306c3fb27SDimitry Andric
180406c3fb27SDimitry Andric Class &Current = OffsetBase < 64 ? Lo : Hi;
180506c3fb27SDimitry Andric Current = Memory;
180606c3fb27SDimitry Andric
180706c3fb27SDimitry Andric if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
180806c3fb27SDimitry Andric BuiltinType::Kind k = BT->getKind();
180906c3fb27SDimitry Andric
181006c3fb27SDimitry Andric if (k == BuiltinType::Void) {
181106c3fb27SDimitry Andric Current = NoClass;
181206c3fb27SDimitry Andric } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
181306c3fb27SDimitry Andric Lo = Integer;
181406c3fb27SDimitry Andric Hi = Integer;
181506c3fb27SDimitry Andric } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
181606c3fb27SDimitry Andric Current = Integer;
181706c3fb27SDimitry Andric } else if (k == BuiltinType::Float || k == BuiltinType::Double ||
181806c3fb27SDimitry Andric k == BuiltinType::Float16 || k == BuiltinType::BFloat16) {
181906c3fb27SDimitry Andric Current = SSE;
18201db9f3b2SDimitry Andric } else if (k == BuiltinType::Float128) {
18211db9f3b2SDimitry Andric Lo = SSE;
18221db9f3b2SDimitry Andric Hi = SSEUp;
182306c3fb27SDimitry Andric } else if (k == BuiltinType::LongDouble) {
182406c3fb27SDimitry Andric const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
182506c3fb27SDimitry Andric if (LDF == &llvm::APFloat::IEEEquad()) {
182606c3fb27SDimitry Andric Lo = SSE;
182706c3fb27SDimitry Andric Hi = SSEUp;
182806c3fb27SDimitry Andric } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
182906c3fb27SDimitry Andric Lo = X87;
183006c3fb27SDimitry Andric Hi = X87Up;
183106c3fb27SDimitry Andric } else if (LDF == &llvm::APFloat::IEEEdouble()) {
183206c3fb27SDimitry Andric Current = SSE;
183306c3fb27SDimitry Andric } else
183406c3fb27SDimitry Andric llvm_unreachable("unexpected long double representation!");
183506c3fb27SDimitry Andric }
183606c3fb27SDimitry Andric // FIXME: _Decimal32 and _Decimal64 are SSE.
183706c3fb27SDimitry Andric // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
183806c3fb27SDimitry Andric return;
183906c3fb27SDimitry Andric }
184006c3fb27SDimitry Andric
184106c3fb27SDimitry Andric if (const EnumType *ET = Ty->getAs<EnumType>()) {
184206c3fb27SDimitry Andric // Classify the underlying integer type.
184306c3fb27SDimitry Andric classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
184406c3fb27SDimitry Andric return;
184506c3fb27SDimitry Andric }
184606c3fb27SDimitry Andric
184706c3fb27SDimitry Andric if (Ty->hasPointerRepresentation()) {
184806c3fb27SDimitry Andric Current = Integer;
184906c3fb27SDimitry Andric return;
185006c3fb27SDimitry Andric }
185106c3fb27SDimitry Andric
185206c3fb27SDimitry Andric if (Ty->isMemberPointerType()) {
185306c3fb27SDimitry Andric if (Ty->isMemberFunctionPointerType()) {
185406c3fb27SDimitry Andric if (Has64BitPointers) {
185506c3fb27SDimitry Andric // If Has64BitPointers, this is an {i64, i64}, so classify both
185606c3fb27SDimitry Andric // Lo and Hi now.
185706c3fb27SDimitry Andric Lo = Hi = Integer;
185806c3fb27SDimitry Andric } else {
185906c3fb27SDimitry Andric // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
186006c3fb27SDimitry Andric // straddles an eightbyte boundary, Hi should be classified as well.
186106c3fb27SDimitry Andric uint64_t EB_FuncPtr = (OffsetBase) / 64;
186206c3fb27SDimitry Andric uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
186306c3fb27SDimitry Andric if (EB_FuncPtr != EB_ThisAdj) {
186406c3fb27SDimitry Andric Lo = Hi = Integer;
186506c3fb27SDimitry Andric } else {
186606c3fb27SDimitry Andric Current = Integer;
186706c3fb27SDimitry Andric }
186806c3fb27SDimitry Andric }
186906c3fb27SDimitry Andric } else {
187006c3fb27SDimitry Andric Current = Integer;
187106c3fb27SDimitry Andric }
187206c3fb27SDimitry Andric return;
187306c3fb27SDimitry Andric }
187406c3fb27SDimitry Andric
187506c3fb27SDimitry Andric if (const VectorType *VT = Ty->getAs<VectorType>()) {
187606c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(VT);
187706c3fb27SDimitry Andric if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
187806c3fb27SDimitry Andric // gcc passes the following as integer:
187906c3fb27SDimitry Andric // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
188006c3fb27SDimitry Andric // 2 bytes - <2 x char>, <1 x short>
188106c3fb27SDimitry Andric // 1 byte - <1 x char>
188206c3fb27SDimitry Andric Current = Integer;
188306c3fb27SDimitry Andric
188406c3fb27SDimitry Andric // If this type crosses an eightbyte boundary, it should be
188506c3fb27SDimitry Andric // split.
188606c3fb27SDimitry Andric uint64_t EB_Lo = (OffsetBase) / 64;
188706c3fb27SDimitry Andric uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
188806c3fb27SDimitry Andric if (EB_Lo != EB_Hi)
188906c3fb27SDimitry Andric Hi = Lo;
189006c3fb27SDimitry Andric } else if (Size == 64) {
189106c3fb27SDimitry Andric QualType ElementType = VT->getElementType();
189206c3fb27SDimitry Andric
189306c3fb27SDimitry Andric // gcc passes <1 x double> in memory. :(
189406c3fb27SDimitry Andric if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
189506c3fb27SDimitry Andric return;
189606c3fb27SDimitry Andric
189706c3fb27SDimitry Andric // gcc passes <1 x long long> as SSE but clang used to unconditionally
189806c3fb27SDimitry Andric // pass them as integer. For platforms where clang is the de facto
189906c3fb27SDimitry Andric // platform compiler, we must continue to use integer.
190006c3fb27SDimitry Andric if (!classifyIntegerMMXAsSSE() &&
190106c3fb27SDimitry Andric (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
190206c3fb27SDimitry Andric ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
190306c3fb27SDimitry Andric ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
190406c3fb27SDimitry Andric ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
190506c3fb27SDimitry Andric Current = Integer;
190606c3fb27SDimitry Andric else
190706c3fb27SDimitry Andric Current = SSE;
190806c3fb27SDimitry Andric
190906c3fb27SDimitry Andric // If this type crosses an eightbyte boundary, it should be
191006c3fb27SDimitry Andric // split.
191106c3fb27SDimitry Andric if (OffsetBase && OffsetBase != 64)
191206c3fb27SDimitry Andric Hi = Lo;
191306c3fb27SDimitry Andric } else if (Size == 128 ||
191406c3fb27SDimitry Andric (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
191506c3fb27SDimitry Andric QualType ElementType = VT->getElementType();
191606c3fb27SDimitry Andric
191706c3fb27SDimitry Andric // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
191806c3fb27SDimitry Andric if (passInt128VectorsInMem() && Size != 128 &&
191906c3fb27SDimitry Andric (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
192006c3fb27SDimitry Andric ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
192106c3fb27SDimitry Andric return;
192206c3fb27SDimitry Andric
192306c3fb27SDimitry Andric // Arguments of 256-bits are split into four eightbyte chunks. The
192406c3fb27SDimitry Andric // least significant one belongs to class SSE and all the others to class
192506c3fb27SDimitry Andric // SSEUP. The original Lo and Hi design considers that types can't be
192606c3fb27SDimitry Andric // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
192706c3fb27SDimitry Andric // This design isn't correct for 256-bits, but since there're no cases
192806c3fb27SDimitry Andric // where the upper parts would need to be inspected, avoid adding
192906c3fb27SDimitry Andric // complexity and just consider Hi to match the 64-256 part.
193006c3fb27SDimitry Andric //
193106c3fb27SDimitry Andric // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
193206c3fb27SDimitry Andric // registers if they are "named", i.e. not part of the "..." of a
193306c3fb27SDimitry Andric // variadic function.
193406c3fb27SDimitry Andric //
193506c3fb27SDimitry Andric // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
193606c3fb27SDimitry Andric // split into eight eightbyte chunks, one SSE and seven SSEUP.
193706c3fb27SDimitry Andric Lo = SSE;
193806c3fb27SDimitry Andric Hi = SSEUp;
193906c3fb27SDimitry Andric }
194006c3fb27SDimitry Andric return;
194106c3fb27SDimitry Andric }
194206c3fb27SDimitry Andric
194306c3fb27SDimitry Andric if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
194406c3fb27SDimitry Andric QualType ET = getContext().getCanonicalType(CT->getElementType());
194506c3fb27SDimitry Andric
194606c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty);
194706c3fb27SDimitry Andric if (ET->isIntegralOrEnumerationType()) {
194806c3fb27SDimitry Andric if (Size <= 64)
194906c3fb27SDimitry Andric Current = Integer;
195006c3fb27SDimitry Andric else if (Size <= 128)
195106c3fb27SDimitry Andric Lo = Hi = Integer;
195206c3fb27SDimitry Andric } else if (ET->isFloat16Type() || ET == getContext().FloatTy ||
195306c3fb27SDimitry Andric ET->isBFloat16Type()) {
195406c3fb27SDimitry Andric Current = SSE;
195506c3fb27SDimitry Andric } else if (ET == getContext().DoubleTy) {
195606c3fb27SDimitry Andric Lo = Hi = SSE;
195706c3fb27SDimitry Andric } else if (ET == getContext().LongDoubleTy) {
195806c3fb27SDimitry Andric const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
195906c3fb27SDimitry Andric if (LDF == &llvm::APFloat::IEEEquad())
196006c3fb27SDimitry Andric Current = Memory;
196106c3fb27SDimitry Andric else if (LDF == &llvm::APFloat::x87DoubleExtended())
196206c3fb27SDimitry Andric Current = ComplexX87;
196306c3fb27SDimitry Andric else if (LDF == &llvm::APFloat::IEEEdouble())
196406c3fb27SDimitry Andric Lo = Hi = SSE;
196506c3fb27SDimitry Andric else
196606c3fb27SDimitry Andric llvm_unreachable("unexpected long double representation!");
196706c3fb27SDimitry Andric }
196806c3fb27SDimitry Andric
196906c3fb27SDimitry Andric // If this complex type crosses an eightbyte boundary then it
197006c3fb27SDimitry Andric // should be split.
197106c3fb27SDimitry Andric uint64_t EB_Real = (OffsetBase) / 64;
197206c3fb27SDimitry Andric uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
197306c3fb27SDimitry Andric if (Hi == NoClass && EB_Real != EB_Imag)
197406c3fb27SDimitry Andric Hi = Lo;
197506c3fb27SDimitry Andric
197606c3fb27SDimitry Andric return;
197706c3fb27SDimitry Andric }
197806c3fb27SDimitry Andric
197906c3fb27SDimitry Andric if (const auto *EITy = Ty->getAs<BitIntType>()) {
198006c3fb27SDimitry Andric if (EITy->getNumBits() <= 64)
198106c3fb27SDimitry Andric Current = Integer;
198206c3fb27SDimitry Andric else if (EITy->getNumBits() <= 128)
198306c3fb27SDimitry Andric Lo = Hi = Integer;
198406c3fb27SDimitry Andric // Larger values need to get passed in memory.
198506c3fb27SDimitry Andric return;
198606c3fb27SDimitry Andric }
198706c3fb27SDimitry Andric
198806c3fb27SDimitry Andric if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
198906c3fb27SDimitry Andric // Arrays are treated like structures.
199006c3fb27SDimitry Andric
199106c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty);
199206c3fb27SDimitry Andric
199306c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
199406c3fb27SDimitry Andric // than eight eightbytes, ..., it has class MEMORY.
199506c3fb27SDimitry Andric // regcall ABI doesn't have limitation to an object. The only limitation
199606c3fb27SDimitry Andric // is the free registers, which will be checked in computeInfo.
199706c3fb27SDimitry Andric if (!IsRegCall && Size > 512)
199806c3fb27SDimitry Andric return;
199906c3fb27SDimitry Andric
200006c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
200106c3fb27SDimitry Andric // fields, it has class MEMORY.
200206c3fb27SDimitry Andric //
200306c3fb27SDimitry Andric // Only need to check alignment of array base.
200406c3fb27SDimitry Andric if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
200506c3fb27SDimitry Andric return;
200606c3fb27SDimitry Andric
200706c3fb27SDimitry Andric // Otherwise implement simplified merge. We could be smarter about
200806c3fb27SDimitry Andric // this, but it isn't worth it and would be harder to verify.
200906c3fb27SDimitry Andric Current = NoClass;
201006c3fb27SDimitry Andric uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2011*0fca6ea1SDimitry Andric uint64_t ArraySize = AT->getZExtSize();
201206c3fb27SDimitry Andric
201306c3fb27SDimitry Andric // The only case a 256-bit wide vector could be used is when the array
201406c3fb27SDimitry Andric // contains a single 256-bit element. Since Lo and Hi logic isn't extended
201506c3fb27SDimitry Andric // to work for sizes wider than 128, early check and fallback to memory.
201606c3fb27SDimitry Andric //
201706c3fb27SDimitry Andric if (Size > 128 &&
201806c3fb27SDimitry Andric (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
201906c3fb27SDimitry Andric return;
202006c3fb27SDimitry Andric
202106c3fb27SDimitry Andric for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
202206c3fb27SDimitry Andric Class FieldLo, FieldHi;
202306c3fb27SDimitry Andric classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
202406c3fb27SDimitry Andric Lo = merge(Lo, FieldLo);
202506c3fb27SDimitry Andric Hi = merge(Hi, FieldHi);
202606c3fb27SDimitry Andric if (Lo == Memory || Hi == Memory)
202706c3fb27SDimitry Andric break;
202806c3fb27SDimitry Andric }
202906c3fb27SDimitry Andric
203006c3fb27SDimitry Andric postMerge(Size, Lo, Hi);
203106c3fb27SDimitry Andric assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
203206c3fb27SDimitry Andric return;
203306c3fb27SDimitry Andric }
203406c3fb27SDimitry Andric
203506c3fb27SDimitry Andric if (const RecordType *RT = Ty->getAs<RecordType>()) {
203606c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty);
203706c3fb27SDimitry Andric
203806c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
203906c3fb27SDimitry Andric // than eight eightbytes, ..., it has class MEMORY.
204006c3fb27SDimitry Andric if (Size > 512)
204106c3fb27SDimitry Andric return;
204206c3fb27SDimitry Andric
204306c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
204406c3fb27SDimitry Andric // copy constructor or a non-trivial destructor, it is passed by invisible
204506c3fb27SDimitry Andric // reference.
204606c3fb27SDimitry Andric if (getRecordArgABI(RT, getCXXABI()))
204706c3fb27SDimitry Andric return;
204806c3fb27SDimitry Andric
204906c3fb27SDimitry Andric const RecordDecl *RD = RT->getDecl();
205006c3fb27SDimitry Andric
205106c3fb27SDimitry Andric // Assume variable sized types are passed in memory.
205206c3fb27SDimitry Andric if (RD->hasFlexibleArrayMember())
205306c3fb27SDimitry Andric return;
205406c3fb27SDimitry Andric
205506c3fb27SDimitry Andric const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
205606c3fb27SDimitry Andric
205706c3fb27SDimitry Andric // Reset Lo class, this will be recomputed.
205806c3fb27SDimitry Andric Current = NoClass;
205906c3fb27SDimitry Andric
206006c3fb27SDimitry Andric // If this is a C++ record, classify the bases first.
206106c3fb27SDimitry Andric if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
206206c3fb27SDimitry Andric for (const auto &I : CXXRD->bases()) {
206306c3fb27SDimitry Andric assert(!I.isVirtual() && !I.getType()->isDependentType() &&
206406c3fb27SDimitry Andric "Unexpected base class!");
206506c3fb27SDimitry Andric const auto *Base =
206606c3fb27SDimitry Andric cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
206706c3fb27SDimitry Andric
206806c3fb27SDimitry Andric // Classify this field.
206906c3fb27SDimitry Andric //
207006c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
207106c3fb27SDimitry Andric // single eightbyte, each is classified separately. Each eightbyte gets
207206c3fb27SDimitry Andric // initialized to class NO_CLASS.
207306c3fb27SDimitry Andric Class FieldLo, FieldHi;
207406c3fb27SDimitry Andric uint64_t Offset =
207506c3fb27SDimitry Andric OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
207606c3fb27SDimitry Andric classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
207706c3fb27SDimitry Andric Lo = merge(Lo, FieldLo);
207806c3fb27SDimitry Andric Hi = merge(Hi, FieldHi);
207906c3fb27SDimitry Andric if (Lo == Memory || Hi == Memory) {
208006c3fb27SDimitry Andric postMerge(Size, Lo, Hi);
208106c3fb27SDimitry Andric return;
208206c3fb27SDimitry Andric }
208306c3fb27SDimitry Andric }
208406c3fb27SDimitry Andric }
208506c3fb27SDimitry Andric
208606c3fb27SDimitry Andric // Classify the fields one at a time, merging the results.
208706c3fb27SDimitry Andric unsigned idx = 0;
208806c3fb27SDimitry Andric bool UseClang11Compat = getContext().getLangOpts().getClangABICompat() <=
208906c3fb27SDimitry Andric LangOptions::ClangABI::Ver11 ||
209006c3fb27SDimitry Andric getContext().getTargetInfo().getTriple().isPS();
209106c3fb27SDimitry Andric bool IsUnion = RT->isUnionType() && !UseClang11Compat;
209206c3fb27SDimitry Andric
209306c3fb27SDimitry Andric for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
209406c3fb27SDimitry Andric i != e; ++i, ++idx) {
209506c3fb27SDimitry Andric uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
209606c3fb27SDimitry Andric bool BitField = i->isBitField();
209706c3fb27SDimitry Andric
209806c3fb27SDimitry Andric // Ignore padding bit-fields.
2099*0fca6ea1SDimitry Andric if (BitField && i->isUnnamedBitField())
210006c3fb27SDimitry Andric continue;
210106c3fb27SDimitry Andric
210206c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
210306c3fb27SDimitry Andric // eight eightbytes, or it contains unaligned fields, it has class MEMORY.
210406c3fb27SDimitry Andric //
210506c3fb27SDimitry Andric // The only case a 256-bit or a 512-bit wide vector could be used is when
210606c3fb27SDimitry Andric // the struct contains a single 256-bit or 512-bit element. Early check
210706c3fb27SDimitry Andric // and fallback to memory.
210806c3fb27SDimitry Andric //
210906c3fb27SDimitry Andric // FIXME: Extended the Lo and Hi logic properly to work for size wider
211006c3fb27SDimitry Andric // than 128.
211106c3fb27SDimitry Andric if (Size > 128 &&
211206c3fb27SDimitry Andric ((!IsUnion && Size != getContext().getTypeSize(i->getType())) ||
211306c3fb27SDimitry Andric Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
211406c3fb27SDimitry Andric Lo = Memory;
211506c3fb27SDimitry Andric postMerge(Size, Lo, Hi);
211606c3fb27SDimitry Andric return;
211706c3fb27SDimitry Andric }
2118*0fca6ea1SDimitry Andric
2119*0fca6ea1SDimitry Andric bool IsInMemory =
2120*0fca6ea1SDimitry Andric Offset % getContext().getTypeAlign(i->getType().getCanonicalType());
212106c3fb27SDimitry Andric // Note, skip this test for bit-fields, see below.
2122*0fca6ea1SDimitry Andric if (!BitField && IsInMemory) {
212306c3fb27SDimitry Andric Lo = Memory;
212406c3fb27SDimitry Andric postMerge(Size, Lo, Hi);
212506c3fb27SDimitry Andric return;
212606c3fb27SDimitry Andric }
212706c3fb27SDimitry Andric
212806c3fb27SDimitry Andric // Classify this field.
212906c3fb27SDimitry Andric //
213006c3fb27SDimitry Andric // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
213106c3fb27SDimitry Andric // exceeds a single eightbyte, each is classified
213206c3fb27SDimitry Andric // separately. Each eightbyte gets initialized to class
213306c3fb27SDimitry Andric // NO_CLASS.
213406c3fb27SDimitry Andric Class FieldLo, FieldHi;
213506c3fb27SDimitry Andric
213606c3fb27SDimitry Andric // Bit-fields require special handling, they do not force the
213706c3fb27SDimitry Andric // structure to be passed in memory even if unaligned, and
213806c3fb27SDimitry Andric // therefore they can straddle an eightbyte.
213906c3fb27SDimitry Andric if (BitField) {
2140*0fca6ea1SDimitry Andric assert(!i->isUnnamedBitField());
214106c3fb27SDimitry Andric uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
214206c3fb27SDimitry Andric uint64_t Size = i->getBitWidthValue(getContext());
214306c3fb27SDimitry Andric
214406c3fb27SDimitry Andric uint64_t EB_Lo = Offset / 64;
214506c3fb27SDimitry Andric uint64_t EB_Hi = (Offset + Size - 1) / 64;
214606c3fb27SDimitry Andric
214706c3fb27SDimitry Andric if (EB_Lo) {
214806c3fb27SDimitry Andric assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
214906c3fb27SDimitry Andric FieldLo = NoClass;
215006c3fb27SDimitry Andric FieldHi = Integer;
215106c3fb27SDimitry Andric } else {
215206c3fb27SDimitry Andric FieldLo = Integer;
215306c3fb27SDimitry Andric FieldHi = EB_Hi ? Integer : NoClass;
215406c3fb27SDimitry Andric }
215506c3fb27SDimitry Andric } else
215606c3fb27SDimitry Andric classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
215706c3fb27SDimitry Andric Lo = merge(Lo, FieldLo);
215806c3fb27SDimitry Andric Hi = merge(Hi, FieldHi);
215906c3fb27SDimitry Andric if (Lo == Memory || Hi == Memory)
216006c3fb27SDimitry Andric break;
216106c3fb27SDimitry Andric }
216206c3fb27SDimitry Andric
216306c3fb27SDimitry Andric postMerge(Size, Lo, Hi);
216406c3fb27SDimitry Andric }
216506c3fb27SDimitry Andric }
216606c3fb27SDimitry Andric
getIndirectReturnResult(QualType Ty) const216706c3fb27SDimitry Andric ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
216806c3fb27SDimitry Andric // If this is a scalar LLVM value then assume LLVM will pass it in the right
216906c3fb27SDimitry Andric // place naturally.
217006c3fb27SDimitry Andric if (!isAggregateTypeForABI(Ty)) {
217106c3fb27SDimitry Andric // Treat an enum type as its underlying type.
217206c3fb27SDimitry Andric if (const EnumType *EnumTy = Ty->getAs<EnumType>())
217306c3fb27SDimitry Andric Ty = EnumTy->getDecl()->getIntegerType();
217406c3fb27SDimitry Andric
217506c3fb27SDimitry Andric if (Ty->isBitIntType())
217606c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty);
217706c3fb27SDimitry Andric
217806c3fb27SDimitry Andric return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
217906c3fb27SDimitry Andric : ABIArgInfo::getDirect());
218006c3fb27SDimitry Andric }
218106c3fb27SDimitry Andric
218206c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty);
218306c3fb27SDimitry Andric }
218406c3fb27SDimitry Andric
IsIllegalVectorType(QualType Ty) const218506c3fb27SDimitry Andric bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
218606c3fb27SDimitry Andric if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
218706c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(VecTy);
218806c3fb27SDimitry Andric unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
218906c3fb27SDimitry Andric if (Size <= 64 || Size > LargestVector)
219006c3fb27SDimitry Andric return true;
219106c3fb27SDimitry Andric QualType EltTy = VecTy->getElementType();
219206c3fb27SDimitry Andric if (passInt128VectorsInMem() &&
219306c3fb27SDimitry Andric (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
219406c3fb27SDimitry Andric EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
219506c3fb27SDimitry Andric return true;
219606c3fb27SDimitry Andric }
219706c3fb27SDimitry Andric
219806c3fb27SDimitry Andric return false;
219906c3fb27SDimitry Andric }
220006c3fb27SDimitry Andric
getIndirectResult(QualType Ty,unsigned freeIntRegs) const220106c3fb27SDimitry Andric ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
220206c3fb27SDimitry Andric unsigned freeIntRegs) const {
220306c3fb27SDimitry Andric // If this is a scalar LLVM value then assume LLVM will pass it in the right
220406c3fb27SDimitry Andric // place naturally.
220506c3fb27SDimitry Andric //
220606c3fb27SDimitry Andric // This assumption is optimistic, as there could be free registers available
220706c3fb27SDimitry Andric // when we need to pass this argument in memory, and LLVM could try to pass
220806c3fb27SDimitry Andric // the argument in the free register. This does not seem to happen currently,
220906c3fb27SDimitry Andric // but this code would be much safer if we could mark the argument with
221006c3fb27SDimitry Andric // 'onstack'. See PR12193.
221106c3fb27SDimitry Andric if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
221206c3fb27SDimitry Andric !Ty->isBitIntType()) {
221306c3fb27SDimitry Andric // Treat an enum type as its underlying type.
221406c3fb27SDimitry Andric if (const EnumType *EnumTy = Ty->getAs<EnumType>())
221506c3fb27SDimitry Andric Ty = EnumTy->getDecl()->getIntegerType();
221606c3fb27SDimitry Andric
221706c3fb27SDimitry Andric return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
221806c3fb27SDimitry Andric : ABIArgInfo::getDirect());
221906c3fb27SDimitry Andric }
222006c3fb27SDimitry Andric
222106c3fb27SDimitry Andric if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
222206c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
222306c3fb27SDimitry Andric
222406c3fb27SDimitry Andric // Compute the byval alignment. We specify the alignment of the byval in all
222506c3fb27SDimitry Andric // cases so that the mid-level optimizer knows the alignment of the byval.
222606c3fb27SDimitry Andric unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
222706c3fb27SDimitry Andric
222806c3fb27SDimitry Andric // Attempt to avoid passing indirect results using byval when possible. This
222906c3fb27SDimitry Andric // is important for good codegen.
223006c3fb27SDimitry Andric //
223106c3fb27SDimitry Andric // We do this by coercing the value into a scalar type which the backend can
223206c3fb27SDimitry Andric // handle naturally (i.e., without using byval).
223306c3fb27SDimitry Andric //
223406c3fb27SDimitry Andric // For simplicity, we currently only do this when we have exhausted all of the
223506c3fb27SDimitry Andric // free integer registers. Doing this when there are free integer registers
223606c3fb27SDimitry Andric // would require more care, as we would have to ensure that the coerced value
223706c3fb27SDimitry Andric // did not claim the unused register. That would require either reording the
223806c3fb27SDimitry Andric // arguments to the function (so that any subsequent inreg values came first),
223906c3fb27SDimitry Andric // or only doing this optimization when there were no following arguments that
224006c3fb27SDimitry Andric // might be inreg.
224106c3fb27SDimitry Andric //
224206c3fb27SDimitry Andric // We currently expect it to be rare (particularly in well written code) for
224306c3fb27SDimitry Andric // arguments to be passed on the stack when there are still free integer
224406c3fb27SDimitry Andric // registers available (this would typically imply large structs being passed
224506c3fb27SDimitry Andric // by value), so this seems like a fair tradeoff for now.
224606c3fb27SDimitry Andric //
224706c3fb27SDimitry Andric // We can revisit this if the backend grows support for 'onstack' parameter
224806c3fb27SDimitry Andric // attributes. See PR12193.
224906c3fb27SDimitry Andric if (freeIntRegs == 0) {
225006c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty);
225106c3fb27SDimitry Andric
225206c3fb27SDimitry Andric // If this type fits in an eightbyte, coerce it into the matching integral
225306c3fb27SDimitry Andric // type, which will end up on the stack (with alignment 8).
225406c3fb27SDimitry Andric if (Align == 8 && Size <= 64)
225506c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
225606c3fb27SDimitry Andric Size));
225706c3fb27SDimitry Andric }
225806c3fb27SDimitry Andric
225906c3fb27SDimitry Andric return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
226006c3fb27SDimitry Andric }
226106c3fb27SDimitry Andric
226206c3fb27SDimitry Andric /// The ABI specifies that a value should be passed in a full vector XMM/YMM
226306c3fb27SDimitry Andric /// register. Pick an LLVM IR type that will be passed as a vector register.
GetByteVectorType(QualType Ty) const226406c3fb27SDimitry Andric llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
226506c3fb27SDimitry Andric // Wrapper structs/arrays that only contain vectors are passed just like
226606c3fb27SDimitry Andric // vectors; strip them off if present.
226706c3fb27SDimitry Andric if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
226806c3fb27SDimitry Andric Ty = QualType(InnerTy, 0);
226906c3fb27SDimitry Andric
227006c3fb27SDimitry Andric llvm::Type *IRType = CGT.ConvertType(Ty);
227106c3fb27SDimitry Andric if (isa<llvm::VectorType>(IRType)) {
227206c3fb27SDimitry Andric // Don't pass vXi128 vectors in their native type, the backend can't
227306c3fb27SDimitry Andric // legalize them.
227406c3fb27SDimitry Andric if (passInt128VectorsInMem() &&
227506c3fb27SDimitry Andric cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
227606c3fb27SDimitry Andric // Use a vXi64 vector.
227706c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty);
227806c3fb27SDimitry Andric return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
227906c3fb27SDimitry Andric Size / 64);
228006c3fb27SDimitry Andric }
228106c3fb27SDimitry Andric
228206c3fb27SDimitry Andric return IRType;
228306c3fb27SDimitry Andric }
228406c3fb27SDimitry Andric
228506c3fb27SDimitry Andric if (IRType->getTypeID() == llvm::Type::FP128TyID)
228606c3fb27SDimitry Andric return IRType;
228706c3fb27SDimitry Andric
228806c3fb27SDimitry Andric // We couldn't find the preferred IR vector type for 'Ty'.
228906c3fb27SDimitry Andric uint64_t Size = getContext().getTypeSize(Ty);
229006c3fb27SDimitry Andric assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
229106c3fb27SDimitry Andric
229206c3fb27SDimitry Andric
229306c3fb27SDimitry Andric // Return a LLVM IR vector type based on the size of 'Ty'.
229406c3fb27SDimitry Andric return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
229506c3fb27SDimitry Andric Size / 64);
229606c3fb27SDimitry Andric }
229706c3fb27SDimitry Andric
229806c3fb27SDimitry Andric /// BitsContainNoUserData - Return true if the specified [start,end) bit range
229906c3fb27SDimitry Andric /// is known to either be off the end of the specified type or being in
230006c3fb27SDimitry Andric /// alignment padding. The user type specified is known to be at most 128 bits
230106c3fb27SDimitry Andric /// in size, and have passed through X86_64ABIInfo::classify with a successful
230206c3fb27SDimitry Andric /// classification that put one of the two halves in the INTEGER class.
230306c3fb27SDimitry Andric ///
230406c3fb27SDimitry Andric /// It is conservatively correct to return false.
BitsContainNoUserData(QualType Ty,unsigned StartBit,unsigned EndBit,ASTContext & Context)230506c3fb27SDimitry Andric static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
230606c3fb27SDimitry Andric unsigned EndBit, ASTContext &Context) {
230706c3fb27SDimitry Andric // If the bytes being queried are off the end of the type, there is no user
230806c3fb27SDimitry Andric // data hiding here. This handles analysis of builtins, vectors and other
230906c3fb27SDimitry Andric // types that don't contain interesting padding.
231006c3fb27SDimitry Andric unsigned TySize = (unsigned)Context.getTypeSize(Ty);
231106c3fb27SDimitry Andric if (TySize <= StartBit)
231206c3fb27SDimitry Andric return true;
231306c3fb27SDimitry Andric
231406c3fb27SDimitry Andric if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
231506c3fb27SDimitry Andric unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
2316*0fca6ea1SDimitry Andric unsigned NumElts = (unsigned)AT->getZExtSize();
231706c3fb27SDimitry Andric
231806c3fb27SDimitry Andric // Check each element to see if the element overlaps with the queried range.
231906c3fb27SDimitry Andric for (unsigned i = 0; i != NumElts; ++i) {
232006c3fb27SDimitry Andric // If the element is after the span we care about, then we're done..
232106c3fb27SDimitry Andric unsigned EltOffset = i*EltSize;
232206c3fb27SDimitry Andric if (EltOffset >= EndBit) break;
232306c3fb27SDimitry Andric
232406c3fb27SDimitry Andric unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
232506c3fb27SDimitry Andric if (!BitsContainNoUserData(AT->getElementType(), EltStart,
232606c3fb27SDimitry Andric EndBit-EltOffset, Context))
232706c3fb27SDimitry Andric return false;
232806c3fb27SDimitry Andric }
232906c3fb27SDimitry Andric // If it overlaps no elements, then it is safe to process as padding.
233006c3fb27SDimitry Andric return true;
233106c3fb27SDimitry Andric }
233206c3fb27SDimitry Andric
233306c3fb27SDimitry Andric if (const RecordType *RT = Ty->getAs<RecordType>()) {
233406c3fb27SDimitry Andric const RecordDecl *RD = RT->getDecl();
233506c3fb27SDimitry Andric const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
233606c3fb27SDimitry Andric
233706c3fb27SDimitry Andric // If this is a C++ record, check the bases first.
233806c3fb27SDimitry Andric if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
233906c3fb27SDimitry Andric for (const auto &I : CXXRD->bases()) {
234006c3fb27SDimitry Andric assert(!I.isVirtual() && !I.getType()->isDependentType() &&
234106c3fb27SDimitry Andric "Unexpected base class!");
234206c3fb27SDimitry Andric const auto *Base =
234306c3fb27SDimitry Andric cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
234406c3fb27SDimitry Andric
234506c3fb27SDimitry Andric // If the base is after the span we care about, ignore it.
234606c3fb27SDimitry Andric unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
234706c3fb27SDimitry Andric if (BaseOffset >= EndBit) continue;
234806c3fb27SDimitry Andric
234906c3fb27SDimitry Andric unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
235006c3fb27SDimitry Andric if (!BitsContainNoUserData(I.getType(), BaseStart,
235106c3fb27SDimitry Andric EndBit-BaseOffset, Context))
235206c3fb27SDimitry Andric return false;
235306c3fb27SDimitry Andric }
235406c3fb27SDimitry Andric }
235506c3fb27SDimitry Andric
235606c3fb27SDimitry Andric // Verify that no field has data that overlaps the region of interest. Yes
235706c3fb27SDimitry Andric // this could be sped up a lot by being smarter about queried fields,
235806c3fb27SDimitry Andric // however we're only looking at structs up to 16 bytes, so we don't care
235906c3fb27SDimitry Andric // much.
236006c3fb27SDimitry Andric unsigned idx = 0;
236106c3fb27SDimitry Andric for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
236206c3fb27SDimitry Andric i != e; ++i, ++idx) {
236306c3fb27SDimitry Andric unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
236406c3fb27SDimitry Andric
236506c3fb27SDimitry Andric // If we found a field after the region we care about, then we're done.
236606c3fb27SDimitry Andric if (FieldOffset >= EndBit) break;
236706c3fb27SDimitry Andric
236806c3fb27SDimitry Andric unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
236906c3fb27SDimitry Andric if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
237006c3fb27SDimitry Andric Context))
237106c3fb27SDimitry Andric return false;
237206c3fb27SDimitry Andric }
237306c3fb27SDimitry Andric
237406c3fb27SDimitry Andric // If nothing in this record overlapped the area of interest, then we're
237506c3fb27SDimitry Andric // clean.
237606c3fb27SDimitry Andric return true;
237706c3fb27SDimitry Andric }
237806c3fb27SDimitry Andric
237906c3fb27SDimitry Andric return false;
238006c3fb27SDimitry Andric }
238106c3fb27SDimitry Andric
238206c3fb27SDimitry Andric /// getFPTypeAtOffset - Return a floating point type at the specified offset.
getFPTypeAtOffset(llvm::Type * IRType,unsigned IROffset,const llvm::DataLayout & TD)238306c3fb27SDimitry Andric static llvm::Type *getFPTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
238406c3fb27SDimitry Andric const llvm::DataLayout &TD) {
238506c3fb27SDimitry Andric if (IROffset == 0 && IRType->isFloatingPointTy())
238606c3fb27SDimitry Andric return IRType;
238706c3fb27SDimitry Andric
238806c3fb27SDimitry Andric // If this is a struct, recurse into the field at the specified offset.
238906c3fb27SDimitry Andric if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
239006c3fb27SDimitry Andric if (!STy->getNumContainedTypes())
239106c3fb27SDimitry Andric return nullptr;
239206c3fb27SDimitry Andric
239306c3fb27SDimitry Andric const llvm::StructLayout *SL = TD.getStructLayout(STy);
239406c3fb27SDimitry Andric unsigned Elt = SL->getElementContainingOffset(IROffset);
239506c3fb27SDimitry Andric IROffset -= SL->getElementOffset(Elt);
239606c3fb27SDimitry Andric return getFPTypeAtOffset(STy->getElementType(Elt), IROffset, TD);
239706c3fb27SDimitry Andric }
239806c3fb27SDimitry Andric
239906c3fb27SDimitry Andric // If this is an array, recurse into the field at the specified offset.
240006c3fb27SDimitry Andric if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
240106c3fb27SDimitry Andric llvm::Type *EltTy = ATy->getElementType();
240206c3fb27SDimitry Andric unsigned EltSize = TD.getTypeAllocSize(EltTy);
240306c3fb27SDimitry Andric IROffset -= IROffset / EltSize * EltSize;
240406c3fb27SDimitry Andric return getFPTypeAtOffset(EltTy, IROffset, TD);
240506c3fb27SDimitry Andric }
240606c3fb27SDimitry Andric
240706c3fb27SDimitry Andric return nullptr;
240806c3fb27SDimitry Andric }
240906c3fb27SDimitry Andric
241006c3fb27SDimitry Andric /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
241106c3fb27SDimitry Andric /// low 8 bytes of an XMM register, corresponding to the SSE class.
241206c3fb27SDimitry Andric llvm::Type *X86_64ABIInfo::
GetSSETypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const241306c3fb27SDimitry Andric GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
241406c3fb27SDimitry Andric QualType SourceTy, unsigned SourceOffset) const {
241506c3fb27SDimitry Andric const llvm::DataLayout &TD = getDataLayout();
241606c3fb27SDimitry Andric unsigned SourceSize =
241706c3fb27SDimitry Andric (unsigned)getContext().getTypeSize(SourceTy) / 8 - SourceOffset;
241806c3fb27SDimitry Andric llvm::Type *T0 = getFPTypeAtOffset(IRType, IROffset, TD);
241906c3fb27SDimitry Andric if (!T0 || T0->isDoubleTy())
242006c3fb27SDimitry Andric return llvm::Type::getDoubleTy(getVMContext());
242106c3fb27SDimitry Andric
242206c3fb27SDimitry Andric // Get the adjacent FP type.
242306c3fb27SDimitry Andric llvm::Type *T1 = nullptr;
242406c3fb27SDimitry Andric unsigned T0Size = TD.getTypeAllocSize(T0);
242506c3fb27SDimitry Andric if (SourceSize > T0Size)
242606c3fb27SDimitry Andric T1 = getFPTypeAtOffset(IRType, IROffset + T0Size, TD);
242706c3fb27SDimitry Andric if (T1 == nullptr) {
242806c3fb27SDimitry Andric // Check if IRType is a half/bfloat + float. float type will be in IROffset+4 due
242906c3fb27SDimitry Andric // to its alignment.
243006c3fb27SDimitry Andric if (T0->is16bitFPTy() && SourceSize > 4)
243106c3fb27SDimitry Andric T1 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
243206c3fb27SDimitry Andric // If we can't get a second FP type, return a simple half or float.
243306c3fb27SDimitry Andric // avx512fp16-abi.c:pr51813_2 shows it works to return float for
243406c3fb27SDimitry Andric // {float, i8} too.
243506c3fb27SDimitry Andric if (T1 == nullptr)
243606c3fb27SDimitry Andric return T0;
243706c3fb27SDimitry Andric }
243806c3fb27SDimitry Andric
243906c3fb27SDimitry Andric if (T0->isFloatTy() && T1->isFloatTy())
244006c3fb27SDimitry Andric return llvm::FixedVectorType::get(T0, 2);
244106c3fb27SDimitry Andric
244206c3fb27SDimitry Andric if (T0->is16bitFPTy() && T1->is16bitFPTy()) {
244306c3fb27SDimitry Andric llvm::Type *T2 = nullptr;
244406c3fb27SDimitry Andric if (SourceSize > 4)
244506c3fb27SDimitry Andric T2 = getFPTypeAtOffset(IRType, IROffset + 4, TD);
244606c3fb27SDimitry Andric if (T2 == nullptr)
244706c3fb27SDimitry Andric return llvm::FixedVectorType::get(T0, 2);
244806c3fb27SDimitry Andric return llvm::FixedVectorType::get(T0, 4);
244906c3fb27SDimitry Andric }
245006c3fb27SDimitry Andric
245106c3fb27SDimitry Andric if (T0->is16bitFPTy() || T1->is16bitFPTy())
245206c3fb27SDimitry Andric return llvm::FixedVectorType::get(llvm::Type::getHalfTy(getVMContext()), 4);
245306c3fb27SDimitry Andric
245406c3fb27SDimitry Andric return llvm::Type::getDoubleTy(getVMContext());
245506c3fb27SDimitry Andric }
245606c3fb27SDimitry Andric
245706c3fb27SDimitry Andric
245806c3fb27SDimitry Andric /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
245906c3fb27SDimitry Andric /// an 8-byte GPR. This means that we either have a scalar or we are talking
246006c3fb27SDimitry Andric /// about the high or low part of an up-to-16-byte struct. This routine picks
246106c3fb27SDimitry Andric /// the best LLVM IR type to represent this, which may be i64 or may be anything
246206c3fb27SDimitry Andric /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
246306c3fb27SDimitry Andric /// etc).
246406c3fb27SDimitry Andric ///
246506c3fb27SDimitry Andric /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
246606c3fb27SDimitry Andric /// the source type. IROffset is an offset in bytes into the LLVM IR type that
246706c3fb27SDimitry Andric /// the 8-byte value references. PrefType may be null.
246806c3fb27SDimitry Andric ///
246906c3fb27SDimitry Andric /// SourceTy is the source-level type for the entire argument. SourceOffset is
247006c3fb27SDimitry Andric /// an offset into this that we're processing (which is always either 0 or 8).
247106c3fb27SDimitry Andric ///
247206c3fb27SDimitry Andric llvm::Type *X86_64ABIInfo::
GetINTEGERTypeAtOffset(llvm::Type * IRType,unsigned IROffset,QualType SourceTy,unsigned SourceOffset) const247306c3fb27SDimitry Andric GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
247406c3fb27SDimitry Andric QualType SourceTy, unsigned SourceOffset) const {
247506c3fb27SDimitry Andric // If we're dealing with an un-offset LLVM IR type, then it means that we're
247606c3fb27SDimitry Andric // returning an 8-byte unit starting with it. See if we can safely use it.
247706c3fb27SDimitry Andric if (IROffset == 0) {
247806c3fb27SDimitry Andric // Pointers and int64's always fill the 8-byte unit.
247906c3fb27SDimitry Andric if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
248006c3fb27SDimitry Andric IRType->isIntegerTy(64))
248106c3fb27SDimitry Andric return IRType;
248206c3fb27SDimitry Andric
248306c3fb27SDimitry Andric // If we have a 1/2/4-byte integer, we can use it only if the rest of the
248406c3fb27SDimitry Andric // goodness in the source type is just tail padding. This is allowed to
248506c3fb27SDimitry Andric // kick in for struct {double,int} on the int, but not on
248606c3fb27SDimitry Andric // struct{double,int,int} because we wouldn't return the second int. We
248706c3fb27SDimitry Andric // have to do this analysis on the source type because we can't depend on
248806c3fb27SDimitry Andric // unions being lowered a specific way etc.
248906c3fb27SDimitry Andric if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
249006c3fb27SDimitry Andric IRType->isIntegerTy(32) ||
249106c3fb27SDimitry Andric (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
249206c3fb27SDimitry Andric unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
249306c3fb27SDimitry Andric cast<llvm::IntegerType>(IRType)->getBitWidth();
249406c3fb27SDimitry Andric
249506c3fb27SDimitry Andric if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
249606c3fb27SDimitry Andric SourceOffset*8+64, getContext()))
249706c3fb27SDimitry Andric return IRType;
249806c3fb27SDimitry Andric }
249906c3fb27SDimitry Andric }
250006c3fb27SDimitry Andric
250106c3fb27SDimitry Andric if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
250206c3fb27SDimitry Andric // If this is a struct, recurse into the field at the specified offset.
250306c3fb27SDimitry Andric const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
250406c3fb27SDimitry Andric if (IROffset < SL->getSizeInBytes()) {
250506c3fb27SDimitry Andric unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
250606c3fb27SDimitry Andric IROffset -= SL->getElementOffset(FieldIdx);
250706c3fb27SDimitry Andric
250806c3fb27SDimitry Andric return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
250906c3fb27SDimitry Andric SourceTy, SourceOffset);
251006c3fb27SDimitry Andric }
251106c3fb27SDimitry Andric }
251206c3fb27SDimitry Andric
251306c3fb27SDimitry Andric if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
251406c3fb27SDimitry Andric llvm::Type *EltTy = ATy->getElementType();
251506c3fb27SDimitry Andric unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
251606c3fb27SDimitry Andric unsigned EltOffset = IROffset/EltSize*EltSize;
251706c3fb27SDimitry Andric return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
251806c3fb27SDimitry Andric SourceOffset);
251906c3fb27SDimitry Andric }
252006c3fb27SDimitry Andric
252106c3fb27SDimitry Andric // Okay, we don't have any better idea of what to pass, so we pass this in an
252206c3fb27SDimitry Andric // integer register that isn't too big to fit the rest of the struct.
252306c3fb27SDimitry Andric unsigned TySizeInBytes =
252406c3fb27SDimitry Andric (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
252506c3fb27SDimitry Andric
252606c3fb27SDimitry Andric assert(TySizeInBytes != SourceOffset && "Empty field?");
252706c3fb27SDimitry Andric
252806c3fb27SDimitry Andric // It is always safe to classify this as an integer type up to i64 that
252906c3fb27SDimitry Andric // isn't larger than the structure.
253006c3fb27SDimitry Andric return llvm::IntegerType::get(getVMContext(),
253106c3fb27SDimitry Andric std::min(TySizeInBytes-SourceOffset, 8U)*8);
253206c3fb27SDimitry Andric }
253306c3fb27SDimitry Andric
253406c3fb27SDimitry Andric
253506c3fb27SDimitry Andric /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
253606c3fb27SDimitry Andric /// be used as elements of a two register pair to pass or return, return a
253706c3fb27SDimitry Andric /// first class aggregate to represent them. For example, if the low part of
253806c3fb27SDimitry Andric /// a by-value argument should be passed as i32* and the high part as float,
253906c3fb27SDimitry Andric /// return {i32*, float}.
254006c3fb27SDimitry Andric static llvm::Type *
GetX86_64ByValArgumentPair(llvm::Type * Lo,llvm::Type * Hi,const llvm::DataLayout & TD)254106c3fb27SDimitry Andric GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
254206c3fb27SDimitry Andric const llvm::DataLayout &TD) {
254306c3fb27SDimitry Andric // In order to correctly satisfy the ABI, we need to the high part to start
254406c3fb27SDimitry Andric // at offset 8. If the high and low parts we inferred are both 4-byte types
254506c3fb27SDimitry Andric // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
254606c3fb27SDimitry Andric // the second element at offset 8. Check for this:
254706c3fb27SDimitry Andric unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
254806c3fb27SDimitry Andric llvm::Align HiAlign = TD.getABITypeAlign(Hi);
254906c3fb27SDimitry Andric unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
255006c3fb27SDimitry Andric assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
255106c3fb27SDimitry Andric
255206c3fb27SDimitry Andric // To handle this, we have to increase the size of the low part so that the
255306c3fb27SDimitry Andric // second element will start at an 8 byte offset. We can't increase the size
255406c3fb27SDimitry Andric // of the second element because it might make us access off the end of the
255506c3fb27SDimitry Andric // struct.
255606c3fb27SDimitry Andric if (HiStart != 8) {
255706c3fb27SDimitry Andric // There are usually two sorts of types the ABI generation code can produce
255806c3fb27SDimitry Andric // for the low part of a pair that aren't 8 bytes in size: half, float or
255906c3fb27SDimitry Andric // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and
256006c3fb27SDimitry Andric // NaCl).
256106c3fb27SDimitry Andric // Promote these to a larger type.
256206c3fb27SDimitry Andric if (Lo->isHalfTy() || Lo->isFloatTy())
256306c3fb27SDimitry Andric Lo = llvm::Type::getDoubleTy(Lo->getContext());
256406c3fb27SDimitry Andric else {
256506c3fb27SDimitry Andric assert((Lo->isIntegerTy() || Lo->isPointerTy())
256606c3fb27SDimitry Andric && "Invalid/unknown lo type");
256706c3fb27SDimitry Andric Lo = llvm::Type::getInt64Ty(Lo->getContext());
256806c3fb27SDimitry Andric }
256906c3fb27SDimitry Andric }
257006c3fb27SDimitry Andric
257106c3fb27SDimitry Andric llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
257206c3fb27SDimitry Andric
257306c3fb27SDimitry Andric // Verify that the second element is at an 8-byte offset.
257406c3fb27SDimitry Andric assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
257506c3fb27SDimitry Andric "Invalid x86-64 argument pair!");
257606c3fb27SDimitry Andric return Result;
257706c3fb27SDimitry Andric }
257806c3fb27SDimitry Andric
257906c3fb27SDimitry Andric ABIArgInfo X86_64ABIInfo::
classifyReturnType(QualType RetTy) const258006c3fb27SDimitry Andric classifyReturnType(QualType RetTy) const {
258106c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
258206c3fb27SDimitry Andric // classification algorithm.
258306c3fb27SDimitry Andric X86_64ABIInfo::Class Lo, Hi;
258406c3fb27SDimitry Andric classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
258506c3fb27SDimitry Andric
258606c3fb27SDimitry Andric // Check some invariants.
258706c3fb27SDimitry Andric assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
258806c3fb27SDimitry Andric assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
258906c3fb27SDimitry Andric
259006c3fb27SDimitry Andric llvm::Type *ResType = nullptr;
259106c3fb27SDimitry Andric switch (Lo) {
259206c3fb27SDimitry Andric case NoClass:
259306c3fb27SDimitry Andric if (Hi == NoClass)
259406c3fb27SDimitry Andric return ABIArgInfo::getIgnore();
259506c3fb27SDimitry Andric // If the low part is just padding, it takes no register, leave ResType
259606c3fb27SDimitry Andric // null.
259706c3fb27SDimitry Andric assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
259806c3fb27SDimitry Andric "Unknown missing lo part");
259906c3fb27SDimitry Andric break;
260006c3fb27SDimitry Andric
260106c3fb27SDimitry Andric case SSEUp:
260206c3fb27SDimitry Andric case X87Up:
260306c3fb27SDimitry Andric llvm_unreachable("Invalid classification for lo word.");
260406c3fb27SDimitry Andric
260506c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
260606c3fb27SDimitry Andric // hidden argument.
260706c3fb27SDimitry Andric case Memory:
260806c3fb27SDimitry Andric return getIndirectReturnResult(RetTy);
260906c3fb27SDimitry Andric
261006c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
261106c3fb27SDimitry Andric // available register of the sequence %rax, %rdx is used.
261206c3fb27SDimitry Andric case Integer:
261306c3fb27SDimitry Andric ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
261406c3fb27SDimitry Andric
261506c3fb27SDimitry Andric // If we have a sign or zero extended integer, make sure to return Extend
261606c3fb27SDimitry Andric // so that the parameter gets the right LLVM IR attributes.
261706c3fb27SDimitry Andric if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
261806c3fb27SDimitry Andric // Treat an enum type as its underlying type.
261906c3fb27SDimitry Andric if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
262006c3fb27SDimitry Andric RetTy = EnumTy->getDecl()->getIntegerType();
262106c3fb27SDimitry Andric
262206c3fb27SDimitry Andric if (RetTy->isIntegralOrEnumerationType() &&
262306c3fb27SDimitry Andric isPromotableIntegerTypeForABI(RetTy))
262406c3fb27SDimitry Andric return ABIArgInfo::getExtend(RetTy);
262506c3fb27SDimitry Andric }
262606c3fb27SDimitry Andric break;
262706c3fb27SDimitry Andric
262806c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
262906c3fb27SDimitry Andric // available SSE register of the sequence %xmm0, %xmm1 is used.
263006c3fb27SDimitry Andric case SSE:
263106c3fb27SDimitry Andric ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
263206c3fb27SDimitry Andric break;
263306c3fb27SDimitry Andric
263406c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
263506c3fb27SDimitry Andric // returned on the X87 stack in %st0 as 80-bit x87 number.
263606c3fb27SDimitry Andric case X87:
263706c3fb27SDimitry Andric ResType = llvm::Type::getX86_FP80Ty(getVMContext());
263806c3fb27SDimitry Andric break;
263906c3fb27SDimitry Andric
264006c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
264106c3fb27SDimitry Andric // part of the value is returned in %st0 and the imaginary part in
264206c3fb27SDimitry Andric // %st1.
264306c3fb27SDimitry Andric case ComplexX87:
264406c3fb27SDimitry Andric assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
264506c3fb27SDimitry Andric ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
264606c3fb27SDimitry Andric llvm::Type::getX86_FP80Ty(getVMContext()));
264706c3fb27SDimitry Andric break;
264806c3fb27SDimitry Andric }
264906c3fb27SDimitry Andric
265006c3fb27SDimitry Andric llvm::Type *HighPart = nullptr;
265106c3fb27SDimitry Andric switch (Hi) {
265206c3fb27SDimitry Andric // Memory was handled previously and X87 should
265306c3fb27SDimitry Andric // never occur as a hi class.
265406c3fb27SDimitry Andric case Memory:
265506c3fb27SDimitry Andric case X87:
265606c3fb27SDimitry Andric llvm_unreachable("Invalid classification for hi word.");
265706c3fb27SDimitry Andric
265806c3fb27SDimitry Andric case ComplexX87: // Previously handled.
265906c3fb27SDimitry Andric case NoClass:
266006c3fb27SDimitry Andric break;
266106c3fb27SDimitry Andric
266206c3fb27SDimitry Andric case Integer:
266306c3fb27SDimitry Andric HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
266406c3fb27SDimitry Andric if (Lo == NoClass) // Return HighPart at offset 8 in memory.
266506c3fb27SDimitry Andric return ABIArgInfo::getDirect(HighPart, 8);
266606c3fb27SDimitry Andric break;
266706c3fb27SDimitry Andric case SSE:
266806c3fb27SDimitry Andric HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
266906c3fb27SDimitry Andric if (Lo == NoClass) // Return HighPart at offset 8 in memory.
267006c3fb27SDimitry Andric return ABIArgInfo::getDirect(HighPart, 8);
267106c3fb27SDimitry Andric break;
267206c3fb27SDimitry Andric
267306c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
267406c3fb27SDimitry Andric // is passed in the next available eightbyte chunk if the last used
267506c3fb27SDimitry Andric // vector register.
267606c3fb27SDimitry Andric //
267706c3fb27SDimitry Andric // SSEUP should always be preceded by SSE, just widen.
267806c3fb27SDimitry Andric case SSEUp:
267906c3fb27SDimitry Andric assert(Lo == SSE && "Unexpected SSEUp classification.");
268006c3fb27SDimitry Andric ResType = GetByteVectorType(RetTy);
268106c3fb27SDimitry Andric break;
268206c3fb27SDimitry Andric
268306c3fb27SDimitry Andric // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
268406c3fb27SDimitry Andric // returned together with the previous X87 value in %st0.
268506c3fb27SDimitry Andric case X87Up:
268606c3fb27SDimitry Andric // If X87Up is preceded by X87, we don't need to do
268706c3fb27SDimitry Andric // anything. However, in some cases with unions it may not be
268806c3fb27SDimitry Andric // preceded by X87. In such situations we follow gcc and pass the
268906c3fb27SDimitry Andric // extra bits in an SSE reg.
269006c3fb27SDimitry Andric if (Lo != X87) {
269106c3fb27SDimitry Andric HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
269206c3fb27SDimitry Andric if (Lo == NoClass) // Return HighPart at offset 8 in memory.
269306c3fb27SDimitry Andric return ABIArgInfo::getDirect(HighPart, 8);
269406c3fb27SDimitry Andric }
269506c3fb27SDimitry Andric break;
269606c3fb27SDimitry Andric }
269706c3fb27SDimitry Andric
269806c3fb27SDimitry Andric // If a high part was specified, merge it together with the low part. It is
269906c3fb27SDimitry Andric // known to pass in the high eightbyte of the result. We do this by forming a
270006c3fb27SDimitry Andric // first class struct aggregate with the high and low part: {low, high}
270106c3fb27SDimitry Andric if (HighPart)
270206c3fb27SDimitry Andric ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
270306c3fb27SDimitry Andric
270406c3fb27SDimitry Andric return ABIArgInfo::getDirect(ResType);
270506c3fb27SDimitry Andric }
270606c3fb27SDimitry Andric
270706c3fb27SDimitry Andric ABIArgInfo
classifyArgumentType(QualType Ty,unsigned freeIntRegs,unsigned & neededInt,unsigned & neededSSE,bool isNamedArg,bool IsRegCall) const270806c3fb27SDimitry Andric X86_64ABIInfo::classifyArgumentType(QualType Ty, unsigned freeIntRegs,
270906c3fb27SDimitry Andric unsigned &neededInt, unsigned &neededSSE,
271006c3fb27SDimitry Andric bool isNamedArg, bool IsRegCall) const {
271106c3fb27SDimitry Andric Ty = useFirstFieldIfTransparentUnion(Ty);
271206c3fb27SDimitry Andric
271306c3fb27SDimitry Andric X86_64ABIInfo::Class Lo, Hi;
271406c3fb27SDimitry Andric classify(Ty, 0, Lo, Hi, isNamedArg, IsRegCall);
271506c3fb27SDimitry Andric
271606c3fb27SDimitry Andric // Check some invariants.
271706c3fb27SDimitry Andric // FIXME: Enforce these by construction.
271806c3fb27SDimitry Andric assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
271906c3fb27SDimitry Andric assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
272006c3fb27SDimitry Andric
272106c3fb27SDimitry Andric neededInt = 0;
272206c3fb27SDimitry Andric neededSSE = 0;
272306c3fb27SDimitry Andric llvm::Type *ResType = nullptr;
272406c3fb27SDimitry Andric switch (Lo) {
272506c3fb27SDimitry Andric case NoClass:
272606c3fb27SDimitry Andric if (Hi == NoClass)
272706c3fb27SDimitry Andric return ABIArgInfo::getIgnore();
272806c3fb27SDimitry Andric // If the low part is just padding, it takes no register, leave ResType
272906c3fb27SDimitry Andric // null.
273006c3fb27SDimitry Andric assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
273106c3fb27SDimitry Andric "Unknown missing lo part");
273206c3fb27SDimitry Andric break;
273306c3fb27SDimitry Andric
273406c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
273506c3fb27SDimitry Andric // on the stack.
273606c3fb27SDimitry Andric case Memory:
273706c3fb27SDimitry Andric
273806c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
273906c3fb27SDimitry Andric // COMPLEX_X87, it is passed in memory.
274006c3fb27SDimitry Andric case X87:
274106c3fb27SDimitry Andric case ComplexX87:
274206c3fb27SDimitry Andric if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
274306c3fb27SDimitry Andric ++neededInt;
274406c3fb27SDimitry Andric return getIndirectResult(Ty, freeIntRegs);
274506c3fb27SDimitry Andric
274606c3fb27SDimitry Andric case SSEUp:
274706c3fb27SDimitry Andric case X87Up:
274806c3fb27SDimitry Andric llvm_unreachable("Invalid classification for lo word.");
274906c3fb27SDimitry Andric
275006c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
275106c3fb27SDimitry Andric // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
275206c3fb27SDimitry Andric // and %r9 is used.
275306c3fb27SDimitry Andric case Integer:
275406c3fb27SDimitry Andric ++neededInt;
275506c3fb27SDimitry Andric
275606c3fb27SDimitry Andric // Pick an 8-byte type based on the preferred type.
275706c3fb27SDimitry Andric ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
275806c3fb27SDimitry Andric
275906c3fb27SDimitry Andric // If we have a sign or zero extended integer, make sure to return Extend
276006c3fb27SDimitry Andric // so that the parameter gets the right LLVM IR attributes.
276106c3fb27SDimitry Andric if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
276206c3fb27SDimitry Andric // Treat an enum type as its underlying type.
276306c3fb27SDimitry Andric if (const EnumType *EnumTy = Ty->getAs<EnumType>())
276406c3fb27SDimitry Andric Ty = EnumTy->getDecl()->getIntegerType();
276506c3fb27SDimitry Andric
276606c3fb27SDimitry Andric if (Ty->isIntegralOrEnumerationType() &&
276706c3fb27SDimitry Andric isPromotableIntegerTypeForABI(Ty))
276806c3fb27SDimitry Andric return ABIArgInfo::getExtend(Ty);
276906c3fb27SDimitry Andric }
277006c3fb27SDimitry Andric
277106c3fb27SDimitry Andric break;
277206c3fb27SDimitry Andric
277306c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
277406c3fb27SDimitry Andric // available SSE register is used, the registers are taken in the
277506c3fb27SDimitry Andric // order from %xmm0 to %xmm7.
277606c3fb27SDimitry Andric case SSE: {
277706c3fb27SDimitry Andric llvm::Type *IRType = CGT.ConvertType(Ty);
277806c3fb27SDimitry Andric ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
277906c3fb27SDimitry Andric ++neededSSE;
278006c3fb27SDimitry Andric break;
278106c3fb27SDimitry Andric }
278206c3fb27SDimitry Andric }
278306c3fb27SDimitry Andric
278406c3fb27SDimitry Andric llvm::Type *HighPart = nullptr;
278506c3fb27SDimitry Andric switch (Hi) {
278606c3fb27SDimitry Andric // Memory was handled previously, ComplexX87 and X87 should
278706c3fb27SDimitry Andric // never occur as hi classes, and X87Up must be preceded by X87,
278806c3fb27SDimitry Andric // which is passed in memory.
278906c3fb27SDimitry Andric case Memory:
279006c3fb27SDimitry Andric case X87:
279106c3fb27SDimitry Andric case ComplexX87:
279206c3fb27SDimitry Andric llvm_unreachable("Invalid classification for hi word.");
279306c3fb27SDimitry Andric
279406c3fb27SDimitry Andric case NoClass: break;
279506c3fb27SDimitry Andric
279606c3fb27SDimitry Andric case Integer:
279706c3fb27SDimitry Andric ++neededInt;
279806c3fb27SDimitry Andric // Pick an 8-byte type based on the preferred type.
279906c3fb27SDimitry Andric HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
280006c3fb27SDimitry Andric
280106c3fb27SDimitry Andric if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
280206c3fb27SDimitry Andric return ABIArgInfo::getDirect(HighPart, 8);
280306c3fb27SDimitry Andric break;
280406c3fb27SDimitry Andric
280506c3fb27SDimitry Andric // X87Up generally doesn't occur here (long double is passed in
280606c3fb27SDimitry Andric // memory), except in situations involving unions.
280706c3fb27SDimitry Andric case X87Up:
280806c3fb27SDimitry Andric case SSE:
2809*0fca6ea1SDimitry Andric ++neededSSE;
281006c3fb27SDimitry Andric HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
281106c3fb27SDimitry Andric
281206c3fb27SDimitry Andric if (Lo == NoClass) // Pass HighPart at offset 8 in memory.
281306c3fb27SDimitry Andric return ABIArgInfo::getDirect(HighPart, 8);
281406c3fb27SDimitry Andric break;
281506c3fb27SDimitry Andric
281606c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
281706c3fb27SDimitry Andric // eightbyte is passed in the upper half of the last used SSE
281806c3fb27SDimitry Andric // register. This only happens when 128-bit vectors are passed.
281906c3fb27SDimitry Andric case SSEUp:
282006c3fb27SDimitry Andric assert(Lo == SSE && "Unexpected SSEUp classification");
282106c3fb27SDimitry Andric ResType = GetByteVectorType(Ty);
282206c3fb27SDimitry Andric break;
282306c3fb27SDimitry Andric }
282406c3fb27SDimitry Andric
282506c3fb27SDimitry Andric // If a high part was specified, merge it together with the low part. It is
282606c3fb27SDimitry Andric // known to pass in the high eightbyte of the result. We do this by forming a
282706c3fb27SDimitry Andric // first class struct aggregate with the high and low part: {low, high}
282806c3fb27SDimitry Andric if (HighPart)
282906c3fb27SDimitry Andric ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
283006c3fb27SDimitry Andric
283106c3fb27SDimitry Andric return ABIArgInfo::getDirect(ResType);
283206c3fb27SDimitry Andric }
283306c3fb27SDimitry Andric
283406c3fb27SDimitry Andric ABIArgInfo
classifyRegCallStructTypeImpl(QualType Ty,unsigned & NeededInt,unsigned & NeededSSE,unsigned & MaxVectorWidth) const283506c3fb27SDimitry Andric X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
283606c3fb27SDimitry Andric unsigned &NeededSSE,
283706c3fb27SDimitry Andric unsigned &MaxVectorWidth) const {
283806c3fb27SDimitry Andric auto RT = Ty->getAs<RecordType>();
283906c3fb27SDimitry Andric assert(RT && "classifyRegCallStructType only valid with struct types");
284006c3fb27SDimitry Andric
284106c3fb27SDimitry Andric if (RT->getDecl()->hasFlexibleArrayMember())
284206c3fb27SDimitry Andric return getIndirectReturnResult(Ty);
284306c3fb27SDimitry Andric
284406c3fb27SDimitry Andric // Sum up bases
284506c3fb27SDimitry Andric if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
284606c3fb27SDimitry Andric if (CXXRD->isDynamicClass()) {
284706c3fb27SDimitry Andric NeededInt = NeededSSE = 0;
284806c3fb27SDimitry Andric return getIndirectReturnResult(Ty);
284906c3fb27SDimitry Andric }
285006c3fb27SDimitry Andric
285106c3fb27SDimitry Andric for (const auto &I : CXXRD->bases())
285206c3fb27SDimitry Andric if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE,
285306c3fb27SDimitry Andric MaxVectorWidth)
285406c3fb27SDimitry Andric .isIndirect()) {
285506c3fb27SDimitry Andric NeededInt = NeededSSE = 0;
285606c3fb27SDimitry Andric return getIndirectReturnResult(Ty);
285706c3fb27SDimitry Andric }
285806c3fb27SDimitry Andric }
285906c3fb27SDimitry Andric
286006c3fb27SDimitry Andric // Sum up members
286106c3fb27SDimitry Andric for (const auto *FD : RT->getDecl()->fields()) {
286206c3fb27SDimitry Andric QualType MTy = FD->getType();
286306c3fb27SDimitry Andric if (MTy->isRecordType() && !MTy->isUnionType()) {
286406c3fb27SDimitry Andric if (classifyRegCallStructTypeImpl(MTy, NeededInt, NeededSSE,
286506c3fb27SDimitry Andric MaxVectorWidth)
286606c3fb27SDimitry Andric .isIndirect()) {
286706c3fb27SDimitry Andric NeededInt = NeededSSE = 0;
286806c3fb27SDimitry Andric return getIndirectReturnResult(Ty);
286906c3fb27SDimitry Andric }
287006c3fb27SDimitry Andric } else {
287106c3fb27SDimitry Andric unsigned LocalNeededInt, LocalNeededSSE;
287206c3fb27SDimitry Andric if (classifyArgumentType(MTy, UINT_MAX, LocalNeededInt, LocalNeededSSE,
287306c3fb27SDimitry Andric true, true)
287406c3fb27SDimitry Andric .isIndirect()) {
287506c3fb27SDimitry Andric NeededInt = NeededSSE = 0;
287606c3fb27SDimitry Andric return getIndirectReturnResult(Ty);
287706c3fb27SDimitry Andric }
287806c3fb27SDimitry Andric if (const auto *AT = getContext().getAsConstantArrayType(MTy))
287906c3fb27SDimitry Andric MTy = AT->getElementType();
288006c3fb27SDimitry Andric if (const auto *VT = MTy->getAs<VectorType>())
288106c3fb27SDimitry Andric if (getContext().getTypeSize(VT) > MaxVectorWidth)
288206c3fb27SDimitry Andric MaxVectorWidth = getContext().getTypeSize(VT);
288306c3fb27SDimitry Andric NeededInt += LocalNeededInt;
288406c3fb27SDimitry Andric NeededSSE += LocalNeededSSE;
288506c3fb27SDimitry Andric }
288606c3fb27SDimitry Andric }
288706c3fb27SDimitry Andric
288806c3fb27SDimitry Andric return ABIArgInfo::getDirect();
288906c3fb27SDimitry Andric }
289006c3fb27SDimitry Andric
289106c3fb27SDimitry Andric ABIArgInfo
classifyRegCallStructType(QualType Ty,unsigned & NeededInt,unsigned & NeededSSE,unsigned & MaxVectorWidth) const289206c3fb27SDimitry Andric X86_64ABIInfo::classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
289306c3fb27SDimitry Andric unsigned &NeededSSE,
289406c3fb27SDimitry Andric unsigned &MaxVectorWidth) const {
289506c3fb27SDimitry Andric
289606c3fb27SDimitry Andric NeededInt = 0;
289706c3fb27SDimitry Andric NeededSSE = 0;
289806c3fb27SDimitry Andric MaxVectorWidth = 0;
289906c3fb27SDimitry Andric
290006c3fb27SDimitry Andric return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE,
290106c3fb27SDimitry Andric MaxVectorWidth);
290206c3fb27SDimitry Andric }
290306c3fb27SDimitry Andric
computeInfo(CGFunctionInfo & FI) const290406c3fb27SDimitry Andric void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
290506c3fb27SDimitry Andric
290606c3fb27SDimitry Andric const unsigned CallingConv = FI.getCallingConvention();
290706c3fb27SDimitry Andric // It is possible to force Win64 calling convention on any x86_64 target by
290806c3fb27SDimitry Andric // using __attribute__((ms_abi)). In such case to correctly emit Win64
290906c3fb27SDimitry Andric // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
291006c3fb27SDimitry Andric if (CallingConv == llvm::CallingConv::Win64) {
291106c3fb27SDimitry Andric WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
291206c3fb27SDimitry Andric Win64ABIInfo.computeInfo(FI);
291306c3fb27SDimitry Andric return;
291406c3fb27SDimitry Andric }
291506c3fb27SDimitry Andric
291606c3fb27SDimitry Andric bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
291706c3fb27SDimitry Andric
291806c3fb27SDimitry Andric // Keep track of the number of assigned registers.
291906c3fb27SDimitry Andric unsigned FreeIntRegs = IsRegCall ? 11 : 6;
292006c3fb27SDimitry Andric unsigned FreeSSERegs = IsRegCall ? 16 : 8;
292106c3fb27SDimitry Andric unsigned NeededInt = 0, NeededSSE = 0, MaxVectorWidth = 0;
292206c3fb27SDimitry Andric
292306c3fb27SDimitry Andric if (!::classifyReturnType(getCXXABI(), FI, *this)) {
292406c3fb27SDimitry Andric if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
292506c3fb27SDimitry Andric !FI.getReturnType()->getTypePtr()->isUnionType()) {
292606c3fb27SDimitry Andric FI.getReturnInfo() = classifyRegCallStructType(
292706c3fb27SDimitry Andric FI.getReturnType(), NeededInt, NeededSSE, MaxVectorWidth);
292806c3fb27SDimitry Andric if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
292906c3fb27SDimitry Andric FreeIntRegs -= NeededInt;
293006c3fb27SDimitry Andric FreeSSERegs -= NeededSSE;
293106c3fb27SDimitry Andric } else {
293206c3fb27SDimitry Andric FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
293306c3fb27SDimitry Andric }
293406c3fb27SDimitry Andric } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
293506c3fb27SDimitry Andric getContext().getCanonicalType(FI.getReturnType()
293606c3fb27SDimitry Andric ->getAs<ComplexType>()
293706c3fb27SDimitry Andric ->getElementType()) ==
293806c3fb27SDimitry Andric getContext().LongDoubleTy)
293906c3fb27SDimitry Andric // Complex Long Double Type is passed in Memory when Regcall
294006c3fb27SDimitry Andric // calling convention is used.
294106c3fb27SDimitry Andric FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
294206c3fb27SDimitry Andric else
294306c3fb27SDimitry Andric FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
294406c3fb27SDimitry Andric }
294506c3fb27SDimitry Andric
294606c3fb27SDimitry Andric // If the return value is indirect, then the hidden argument is consuming one
294706c3fb27SDimitry Andric // integer register.
294806c3fb27SDimitry Andric if (FI.getReturnInfo().isIndirect())
294906c3fb27SDimitry Andric --FreeIntRegs;
295006c3fb27SDimitry Andric else if (NeededSSE && MaxVectorWidth > 0)
295106c3fb27SDimitry Andric FI.setMaxVectorWidth(MaxVectorWidth);
295206c3fb27SDimitry Andric
295306c3fb27SDimitry Andric // The chain argument effectively gives us another free register.
295406c3fb27SDimitry Andric if (FI.isChainCall())
295506c3fb27SDimitry Andric ++FreeIntRegs;
295606c3fb27SDimitry Andric
295706c3fb27SDimitry Andric unsigned NumRequiredArgs = FI.getNumRequiredArgs();
295806c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
295906c3fb27SDimitry Andric // get assigned (in left-to-right order) for passing as follows...
296006c3fb27SDimitry Andric unsigned ArgNo = 0;
296106c3fb27SDimitry Andric for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
296206c3fb27SDimitry Andric it != ie; ++it, ++ArgNo) {
296306c3fb27SDimitry Andric bool IsNamedArg = ArgNo < NumRequiredArgs;
296406c3fb27SDimitry Andric
296506c3fb27SDimitry Andric if (IsRegCall && it->type->isStructureOrClassType())
296606c3fb27SDimitry Andric it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE,
296706c3fb27SDimitry Andric MaxVectorWidth);
296806c3fb27SDimitry Andric else
296906c3fb27SDimitry Andric it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
297006c3fb27SDimitry Andric NeededSSE, IsNamedArg);
297106c3fb27SDimitry Andric
297206c3fb27SDimitry Andric // AMD64-ABI 3.2.3p3: If there are no registers available for any
297306c3fb27SDimitry Andric // eightbyte of an argument, the whole argument is passed on the
297406c3fb27SDimitry Andric // stack. If registers have already been assigned for some
297506c3fb27SDimitry Andric // eightbytes of such an argument, the assignments get reverted.
297606c3fb27SDimitry Andric if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
297706c3fb27SDimitry Andric FreeIntRegs -= NeededInt;
297806c3fb27SDimitry Andric FreeSSERegs -= NeededSSE;
297906c3fb27SDimitry Andric if (MaxVectorWidth > FI.getMaxVectorWidth())
298006c3fb27SDimitry Andric FI.setMaxVectorWidth(MaxVectorWidth);
298106c3fb27SDimitry Andric } else {
298206c3fb27SDimitry Andric it->info = getIndirectResult(it->type, FreeIntRegs);
298306c3fb27SDimitry Andric }
298406c3fb27SDimitry Andric }
298506c3fb27SDimitry Andric }
298606c3fb27SDimitry Andric
EmitX86_64VAArgFromMemory(CodeGenFunction & CGF,Address VAListAddr,QualType Ty)298706c3fb27SDimitry Andric static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
298806c3fb27SDimitry Andric Address VAListAddr, QualType Ty) {
298906c3fb27SDimitry Andric Address overflow_arg_area_p =
299006c3fb27SDimitry Andric CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
299106c3fb27SDimitry Andric llvm::Value *overflow_arg_area =
299206c3fb27SDimitry Andric CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
299306c3fb27SDimitry Andric
299406c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
299506c3fb27SDimitry Andric // byte boundary if alignment needed by type exceeds 8 byte boundary.
299606c3fb27SDimitry Andric // It isn't stated explicitly in the standard, but in practice we use
299706c3fb27SDimitry Andric // alignment greater than 16 where necessary.
299806c3fb27SDimitry Andric CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
299906c3fb27SDimitry Andric if (Align > CharUnits::fromQuantity(8)) {
300006c3fb27SDimitry Andric overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
300106c3fb27SDimitry Andric Align);
300206c3fb27SDimitry Andric }
300306c3fb27SDimitry Andric
300406c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
300506c3fb27SDimitry Andric llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
30065f757f3fSDimitry Andric llvm::Value *Res = overflow_arg_area;
300706c3fb27SDimitry Andric
300806c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
300906c3fb27SDimitry Andric // l->overflow_arg_area + sizeof(type).
301006c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
301106c3fb27SDimitry Andric // an 8 byte boundary.
301206c3fb27SDimitry Andric
301306c3fb27SDimitry Andric uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
301406c3fb27SDimitry Andric llvm::Value *Offset =
301506c3fb27SDimitry Andric llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7);
301606c3fb27SDimitry Andric overflow_arg_area = CGF.Builder.CreateGEP(CGF.Int8Ty, overflow_arg_area,
301706c3fb27SDimitry Andric Offset, "overflow_arg_area.next");
301806c3fb27SDimitry Andric CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
301906c3fb27SDimitry Andric
302006c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
302106c3fb27SDimitry Andric return Address(Res, LTy, Align);
302206c3fb27SDimitry Andric }
302306c3fb27SDimitry Andric
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty,AggValueSlot Slot) const3024*0fca6ea1SDimitry Andric RValue X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3025*0fca6ea1SDimitry Andric QualType Ty, AggValueSlot Slot) const {
302606c3fb27SDimitry Andric // Assume that va_list type is correct; should be pointer to LLVM type:
302706c3fb27SDimitry Andric // struct {
302806c3fb27SDimitry Andric // i32 gp_offset;
302906c3fb27SDimitry Andric // i32 fp_offset;
303006c3fb27SDimitry Andric // i8* overflow_arg_area;
303106c3fb27SDimitry Andric // i8* reg_save_area;
303206c3fb27SDimitry Andric // };
303306c3fb27SDimitry Andric unsigned neededInt, neededSSE;
303406c3fb27SDimitry Andric
303506c3fb27SDimitry Andric Ty = getContext().getCanonicalType(Ty);
303606c3fb27SDimitry Andric ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
303706c3fb27SDimitry Andric /*isNamedArg*/false);
303806c3fb27SDimitry Andric
3039*0fca6ea1SDimitry Andric // Empty records are ignored for parameter passing purposes.
3040*0fca6ea1SDimitry Andric if (AI.isIgnore())
3041*0fca6ea1SDimitry Andric return Slot.asRValue();
3042*0fca6ea1SDimitry Andric
304306c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
304406c3fb27SDimitry Andric // in the registers. If not go to step 7.
304506c3fb27SDimitry Andric if (!neededInt && !neededSSE)
3046*0fca6ea1SDimitry Andric return CGF.EmitLoadOfAnyValue(
3047*0fca6ea1SDimitry Andric CGF.MakeAddrLValue(EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty), Ty),
3048*0fca6ea1SDimitry Andric Slot);
304906c3fb27SDimitry Andric
305006c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
305106c3fb27SDimitry Andric // general purpose registers needed to pass type and num_fp to hold
305206c3fb27SDimitry Andric // the number of floating point registers needed.
305306c3fb27SDimitry Andric
305406c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
305506c3fb27SDimitry Andric // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
305606c3fb27SDimitry Andric // l->fp_offset > 304 - num_fp * 16 go to step 7.
305706c3fb27SDimitry Andric //
305806c3fb27SDimitry Andric // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
305906c3fb27SDimitry Andric // register save space).
306006c3fb27SDimitry Andric
306106c3fb27SDimitry Andric llvm::Value *InRegs = nullptr;
306206c3fb27SDimitry Andric Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
306306c3fb27SDimitry Andric llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
306406c3fb27SDimitry Andric if (neededInt) {
306506c3fb27SDimitry Andric gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
306606c3fb27SDimitry Andric gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
306706c3fb27SDimitry Andric InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
306806c3fb27SDimitry Andric InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
306906c3fb27SDimitry Andric }
307006c3fb27SDimitry Andric
307106c3fb27SDimitry Andric if (neededSSE) {
307206c3fb27SDimitry Andric fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
307306c3fb27SDimitry Andric fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
307406c3fb27SDimitry Andric llvm::Value *FitsInFP =
307506c3fb27SDimitry Andric llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
307606c3fb27SDimitry Andric FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
307706c3fb27SDimitry Andric InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
307806c3fb27SDimitry Andric }
307906c3fb27SDimitry Andric
308006c3fb27SDimitry Andric llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
308106c3fb27SDimitry Andric llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
308206c3fb27SDimitry Andric llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
308306c3fb27SDimitry Andric CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
308406c3fb27SDimitry Andric
308506c3fb27SDimitry Andric // Emit code to load the value if it was passed in registers.
308606c3fb27SDimitry Andric
308706c3fb27SDimitry Andric CGF.EmitBlock(InRegBlock);
308806c3fb27SDimitry Andric
308906c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
309006c3fb27SDimitry Andric // an offset of l->gp_offset and/or l->fp_offset. This may require
309106c3fb27SDimitry Andric // copying to a temporary location in case the parameter is passed
309206c3fb27SDimitry Andric // in different register classes or requires an alignment greater
309306c3fb27SDimitry Andric // than 8 for general purpose registers and 16 for XMM registers.
309406c3fb27SDimitry Andric //
309506c3fb27SDimitry Andric // FIXME: This really results in shameful code when we end up needing to
309606c3fb27SDimitry Andric // collect arguments from different places; often what should result in a
309706c3fb27SDimitry Andric // simple assembling of a structure from scattered addresses has many more
309806c3fb27SDimitry Andric // loads than necessary. Can we clean this up?
309906c3fb27SDimitry Andric llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
310006c3fb27SDimitry Andric llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
310106c3fb27SDimitry Andric CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
310206c3fb27SDimitry Andric
310306c3fb27SDimitry Andric Address RegAddr = Address::invalid();
310406c3fb27SDimitry Andric if (neededInt && neededSSE) {
310506c3fb27SDimitry Andric // FIXME: Cleanup.
310606c3fb27SDimitry Andric assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
310706c3fb27SDimitry Andric llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
310806c3fb27SDimitry Andric Address Tmp = CGF.CreateMemTemp(Ty);
310906c3fb27SDimitry Andric Tmp = Tmp.withElementType(ST);
311006c3fb27SDimitry Andric assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
311106c3fb27SDimitry Andric llvm::Type *TyLo = ST->getElementType(0);
311206c3fb27SDimitry Andric llvm::Type *TyHi = ST->getElementType(1);
311306c3fb27SDimitry Andric assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
311406c3fb27SDimitry Andric "Unexpected ABI info for mixed regs");
311506c3fb27SDimitry Andric llvm::Value *GPAddr =
311606c3fb27SDimitry Andric CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset);
311706c3fb27SDimitry Andric llvm::Value *FPAddr =
311806c3fb27SDimitry Andric CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset);
311906c3fb27SDimitry Andric llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
312006c3fb27SDimitry Andric llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
312106c3fb27SDimitry Andric
312206c3fb27SDimitry Andric // Copy the first element.
312306c3fb27SDimitry Andric // FIXME: Our choice of alignment here and below is probably pessimistic.
312406c3fb27SDimitry Andric llvm::Value *V = CGF.Builder.CreateAlignedLoad(
31255f757f3fSDimitry Andric TyLo, RegLoAddr,
312606c3fb27SDimitry Andric CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyLo)));
312706c3fb27SDimitry Andric CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
312806c3fb27SDimitry Andric
312906c3fb27SDimitry Andric // Copy the second element.
313006c3fb27SDimitry Andric V = CGF.Builder.CreateAlignedLoad(
31315f757f3fSDimitry Andric TyHi, RegHiAddr,
313206c3fb27SDimitry Andric CharUnits::fromQuantity(getDataLayout().getABITypeAlign(TyHi)));
313306c3fb27SDimitry Andric CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
313406c3fb27SDimitry Andric
313506c3fb27SDimitry Andric RegAddr = Tmp.withElementType(LTy);
313606c3fb27SDimitry Andric } else if (neededInt) {
313706c3fb27SDimitry Andric RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, gp_offset),
313806c3fb27SDimitry Andric LTy, CharUnits::fromQuantity(8));
313906c3fb27SDimitry Andric
314006c3fb27SDimitry Andric // Copy to a temporary if necessary to ensure the appropriate alignment.
314106c3fb27SDimitry Andric auto TInfo = getContext().getTypeInfoInChars(Ty);
314206c3fb27SDimitry Andric uint64_t TySize = TInfo.Width.getQuantity();
314306c3fb27SDimitry Andric CharUnits TyAlign = TInfo.Align;
314406c3fb27SDimitry Andric
314506c3fb27SDimitry Andric // Copy into a temporary if the type is more aligned than the
314606c3fb27SDimitry Andric // register save area.
314706c3fb27SDimitry Andric if (TyAlign.getQuantity() > 8) {
314806c3fb27SDimitry Andric Address Tmp = CGF.CreateMemTemp(Ty);
314906c3fb27SDimitry Andric CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
315006c3fb27SDimitry Andric RegAddr = Tmp;
315106c3fb27SDimitry Andric }
315206c3fb27SDimitry Andric
315306c3fb27SDimitry Andric } else if (neededSSE == 1) {
315406c3fb27SDimitry Andric RegAddr = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea, fp_offset),
315506c3fb27SDimitry Andric LTy, CharUnits::fromQuantity(16));
315606c3fb27SDimitry Andric } else {
315706c3fb27SDimitry Andric assert(neededSSE == 2 && "Invalid number of needed registers!");
315806c3fb27SDimitry Andric // SSE registers are spaced 16 bytes apart in the register save
315906c3fb27SDimitry Andric // area, we need to collect the two eightbytes together.
316006c3fb27SDimitry Andric // The ABI isn't explicit about this, but it seems reasonable
316106c3fb27SDimitry Andric // to assume that the slots are 16-byte aligned, since the stack is
316206c3fb27SDimitry Andric // naturally 16-byte aligned and the prologue is expected to store
316306c3fb27SDimitry Andric // all the SSE registers to the RSA.
316406c3fb27SDimitry Andric Address RegAddrLo = Address(CGF.Builder.CreateGEP(CGF.Int8Ty, RegSaveArea,
316506c3fb27SDimitry Andric fp_offset),
316606c3fb27SDimitry Andric CGF.Int8Ty, CharUnits::fromQuantity(16));
316706c3fb27SDimitry Andric Address RegAddrHi =
316806c3fb27SDimitry Andric CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
316906c3fb27SDimitry Andric CharUnits::fromQuantity(16));
317006c3fb27SDimitry Andric llvm::Type *ST = AI.canHaveCoerceToType()
317106c3fb27SDimitry Andric ? AI.getCoerceToType()
317206c3fb27SDimitry Andric : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
317306c3fb27SDimitry Andric llvm::Value *V;
317406c3fb27SDimitry Andric Address Tmp = CGF.CreateMemTemp(Ty);
317506c3fb27SDimitry Andric Tmp = Tmp.withElementType(ST);
317606c3fb27SDimitry Andric V = CGF.Builder.CreateLoad(
317706c3fb27SDimitry Andric RegAddrLo.withElementType(ST->getStructElementType(0)));
317806c3fb27SDimitry Andric CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
317906c3fb27SDimitry Andric V = CGF.Builder.CreateLoad(
318006c3fb27SDimitry Andric RegAddrHi.withElementType(ST->getStructElementType(1)));
318106c3fb27SDimitry Andric CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
318206c3fb27SDimitry Andric
318306c3fb27SDimitry Andric RegAddr = Tmp.withElementType(LTy);
318406c3fb27SDimitry Andric }
318506c3fb27SDimitry Andric
318606c3fb27SDimitry Andric // AMD64-ABI 3.5.7p5: Step 5. Set:
318706c3fb27SDimitry Andric // l->gp_offset = l->gp_offset + num_gp * 8
318806c3fb27SDimitry Andric // l->fp_offset = l->fp_offset + num_fp * 16.
318906c3fb27SDimitry Andric if (neededInt) {
319006c3fb27SDimitry Andric llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
319106c3fb27SDimitry Andric CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
319206c3fb27SDimitry Andric gp_offset_p);
319306c3fb27SDimitry Andric }
319406c3fb27SDimitry Andric if (neededSSE) {
319506c3fb27SDimitry Andric llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
319606c3fb27SDimitry Andric CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
319706c3fb27SDimitry Andric fp_offset_p);
319806c3fb27SDimitry Andric }
319906c3fb27SDimitry Andric CGF.EmitBranch(ContBlock);
320006c3fb27SDimitry Andric
320106c3fb27SDimitry Andric // Emit code to load the value if it was passed in memory.
320206c3fb27SDimitry Andric
320306c3fb27SDimitry Andric CGF.EmitBlock(InMemBlock);
320406c3fb27SDimitry Andric Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
320506c3fb27SDimitry Andric
320606c3fb27SDimitry Andric // Return the appropriate result.
320706c3fb27SDimitry Andric
320806c3fb27SDimitry Andric CGF.EmitBlock(ContBlock);
320906c3fb27SDimitry Andric Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
321006c3fb27SDimitry Andric "vaarg.addr");
3211*0fca6ea1SDimitry Andric return CGF.EmitLoadOfAnyValue(CGF.MakeAddrLValue(ResAddr, Ty), Slot);
321206c3fb27SDimitry Andric }
321306c3fb27SDimitry Andric
EmitMSVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty,AggValueSlot Slot) const3214*0fca6ea1SDimitry Andric RValue X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
3215*0fca6ea1SDimitry Andric QualType Ty, AggValueSlot Slot) const {
321606c3fb27SDimitry Andric // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
321706c3fb27SDimitry Andric // not 1, 2, 4, or 8 bytes, must be passed by reference."
321806c3fb27SDimitry Andric uint64_t Width = getContext().getTypeSize(Ty);
321906c3fb27SDimitry Andric bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
322006c3fb27SDimitry Andric
322106c3fb27SDimitry Andric return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
322206c3fb27SDimitry Andric CGF.getContext().getTypeInfoInChars(Ty),
322306c3fb27SDimitry Andric CharUnits::fromQuantity(8),
3224*0fca6ea1SDimitry Andric /*allowHigherAlign*/ false, Slot);
322506c3fb27SDimitry Andric }
322606c3fb27SDimitry Andric
reclassifyHvaArgForVectorCall(QualType Ty,unsigned & FreeSSERegs,const ABIArgInfo & current) const322706c3fb27SDimitry Andric ABIArgInfo WinX86_64ABIInfo::reclassifyHvaArgForVectorCall(
322806c3fb27SDimitry Andric QualType Ty, unsigned &FreeSSERegs, const ABIArgInfo ¤t) const {
322906c3fb27SDimitry Andric const Type *Base = nullptr;
323006c3fb27SDimitry Andric uint64_t NumElts = 0;
323106c3fb27SDimitry Andric
323206c3fb27SDimitry Andric if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
323306c3fb27SDimitry Andric isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
323406c3fb27SDimitry Andric FreeSSERegs -= NumElts;
323506c3fb27SDimitry Andric return getDirectX86Hva();
323606c3fb27SDimitry Andric }
323706c3fb27SDimitry Andric return current;
323806c3fb27SDimitry Andric }
323906c3fb27SDimitry Andric
classify(QualType Ty,unsigned & FreeSSERegs,bool IsReturnType,bool IsVectorCall,bool IsRegCall) const324006c3fb27SDimitry Andric ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
324106c3fb27SDimitry Andric bool IsReturnType, bool IsVectorCall,
324206c3fb27SDimitry Andric bool IsRegCall) const {
324306c3fb27SDimitry Andric
324406c3fb27SDimitry Andric if (Ty->isVoidType())
324506c3fb27SDimitry Andric return ABIArgInfo::getIgnore();
324606c3fb27SDimitry Andric
324706c3fb27SDimitry Andric if (const EnumType *EnumTy = Ty->getAs<EnumType>())
324806c3fb27SDimitry Andric Ty = EnumTy->getDecl()->getIntegerType();
324906c3fb27SDimitry Andric
325006c3fb27SDimitry Andric TypeInfo Info = getContext().getTypeInfo(Ty);
325106c3fb27SDimitry Andric uint64_t Width = Info.Width;
325206c3fb27SDimitry Andric CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
325306c3fb27SDimitry Andric
325406c3fb27SDimitry Andric const RecordType *RT = Ty->getAs<RecordType>();
325506c3fb27SDimitry Andric if (RT) {
325606c3fb27SDimitry Andric if (!IsReturnType) {
325706c3fb27SDimitry Andric if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
325806c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
325906c3fb27SDimitry Andric }
326006c3fb27SDimitry Andric
326106c3fb27SDimitry Andric if (RT->getDecl()->hasFlexibleArrayMember())
326206c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
326306c3fb27SDimitry Andric
326406c3fb27SDimitry Andric }
326506c3fb27SDimitry Andric
326606c3fb27SDimitry Andric const Type *Base = nullptr;
326706c3fb27SDimitry Andric uint64_t NumElts = 0;
326806c3fb27SDimitry Andric // vectorcall adds the concept of a homogenous vector aggregate, similar to
326906c3fb27SDimitry Andric // other targets.
327006c3fb27SDimitry Andric if ((IsVectorCall || IsRegCall) &&
327106c3fb27SDimitry Andric isHomogeneousAggregate(Ty, Base, NumElts)) {
327206c3fb27SDimitry Andric if (IsRegCall) {
327306c3fb27SDimitry Andric if (FreeSSERegs >= NumElts) {
327406c3fb27SDimitry Andric FreeSSERegs -= NumElts;
327506c3fb27SDimitry Andric if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
327606c3fb27SDimitry Andric return ABIArgInfo::getDirect();
327706c3fb27SDimitry Andric return ABIArgInfo::getExpand();
327806c3fb27SDimitry Andric }
327906c3fb27SDimitry Andric return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
328006c3fb27SDimitry Andric } else if (IsVectorCall) {
328106c3fb27SDimitry Andric if (FreeSSERegs >= NumElts &&
328206c3fb27SDimitry Andric (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
328306c3fb27SDimitry Andric FreeSSERegs -= NumElts;
328406c3fb27SDimitry Andric return ABIArgInfo::getDirect();
328506c3fb27SDimitry Andric } else if (IsReturnType) {
328606c3fb27SDimitry Andric return ABIArgInfo::getExpand();
328706c3fb27SDimitry Andric } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
328806c3fb27SDimitry Andric // HVAs are delayed and reclassified in the 2nd step.
328906c3fb27SDimitry Andric return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
329006c3fb27SDimitry Andric }
329106c3fb27SDimitry Andric }
329206c3fb27SDimitry Andric }
329306c3fb27SDimitry Andric
329406c3fb27SDimitry Andric if (Ty->isMemberPointerType()) {
329506c3fb27SDimitry Andric // If the member pointer is represented by an LLVM int or ptr, pass it
329606c3fb27SDimitry Andric // directly.
329706c3fb27SDimitry Andric llvm::Type *LLTy = CGT.ConvertType(Ty);
329806c3fb27SDimitry Andric if (LLTy->isPointerTy() || LLTy->isIntegerTy())
329906c3fb27SDimitry Andric return ABIArgInfo::getDirect();
330006c3fb27SDimitry Andric }
330106c3fb27SDimitry Andric
330206c3fb27SDimitry Andric if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
330306c3fb27SDimitry Andric // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
330406c3fb27SDimitry Andric // not 1, 2, 4, or 8 bytes, must be passed by reference."
330506c3fb27SDimitry Andric if (Width > 64 || !llvm::isPowerOf2_64(Width))
330606c3fb27SDimitry Andric return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
330706c3fb27SDimitry Andric
330806c3fb27SDimitry Andric // Otherwise, coerce it to a small integer.
330906c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
331006c3fb27SDimitry Andric }
331106c3fb27SDimitry Andric
331206c3fb27SDimitry Andric if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
331306c3fb27SDimitry Andric switch (BT->getKind()) {
331406c3fb27SDimitry Andric case BuiltinType::Bool:
331506c3fb27SDimitry Andric // Bool type is always extended to the ABI, other builtin types are not
331606c3fb27SDimitry Andric // extended.
331706c3fb27SDimitry Andric return ABIArgInfo::getExtend(Ty);
331806c3fb27SDimitry Andric
331906c3fb27SDimitry Andric case BuiltinType::LongDouble:
332006c3fb27SDimitry Andric // Mingw64 GCC uses the old 80 bit extended precision floating point
332106c3fb27SDimitry Andric // unit. It passes them indirectly through memory.
332206c3fb27SDimitry Andric if (IsMingw64) {
332306c3fb27SDimitry Andric const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
332406c3fb27SDimitry Andric if (LDF == &llvm::APFloat::x87DoubleExtended())
332506c3fb27SDimitry Andric return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
332606c3fb27SDimitry Andric }
332706c3fb27SDimitry Andric break;
332806c3fb27SDimitry Andric
332906c3fb27SDimitry Andric case BuiltinType::Int128:
333006c3fb27SDimitry Andric case BuiltinType::UInt128:
333106c3fb27SDimitry Andric // If it's a parameter type, the normal ABI rule is that arguments larger
333206c3fb27SDimitry Andric // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
333306c3fb27SDimitry Andric // even though it isn't particularly efficient.
333406c3fb27SDimitry Andric if (!IsReturnType)
333506c3fb27SDimitry Andric return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
333606c3fb27SDimitry Andric
333706c3fb27SDimitry Andric // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
333806c3fb27SDimitry Andric // Clang matches them for compatibility.
333906c3fb27SDimitry Andric return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
334006c3fb27SDimitry Andric llvm::Type::getInt64Ty(getVMContext()), 2));
334106c3fb27SDimitry Andric
334206c3fb27SDimitry Andric default:
334306c3fb27SDimitry Andric break;
334406c3fb27SDimitry Andric }
334506c3fb27SDimitry Andric }
334606c3fb27SDimitry Andric
334706c3fb27SDimitry Andric if (Ty->isBitIntType()) {
334806c3fb27SDimitry Andric // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
334906c3fb27SDimitry Andric // not 1, 2, 4, or 8 bytes, must be passed by reference."
335006c3fb27SDimitry Andric // However, non-power-of-two bit-precise integers will be passed as 1, 2, 4,
335106c3fb27SDimitry Andric // or 8 bytes anyway as long is it fits in them, so we don't have to check
335206c3fb27SDimitry Andric // the power of 2.
335306c3fb27SDimitry Andric if (Width <= 64)
335406c3fb27SDimitry Andric return ABIArgInfo::getDirect();
335506c3fb27SDimitry Andric return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
335606c3fb27SDimitry Andric }
335706c3fb27SDimitry Andric
335806c3fb27SDimitry Andric return ABIArgInfo::getDirect();
335906c3fb27SDimitry Andric }
336006c3fb27SDimitry Andric
computeInfo(CGFunctionInfo & FI) const336106c3fb27SDimitry Andric void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
336206c3fb27SDimitry Andric const unsigned CC = FI.getCallingConvention();
336306c3fb27SDimitry Andric bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
336406c3fb27SDimitry Andric bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
336506c3fb27SDimitry Andric
336606c3fb27SDimitry Andric // If __attribute__((sysv_abi)) is in use, use the SysV argument
336706c3fb27SDimitry Andric // classification rules.
336806c3fb27SDimitry Andric if (CC == llvm::CallingConv::X86_64_SysV) {
336906c3fb27SDimitry Andric X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
337006c3fb27SDimitry Andric SysVABIInfo.computeInfo(FI);
337106c3fb27SDimitry Andric return;
337206c3fb27SDimitry Andric }
337306c3fb27SDimitry Andric
337406c3fb27SDimitry Andric unsigned FreeSSERegs = 0;
337506c3fb27SDimitry Andric if (IsVectorCall) {
337606c3fb27SDimitry Andric // We can use up to 4 SSE return registers with vectorcall.
337706c3fb27SDimitry Andric FreeSSERegs = 4;
337806c3fb27SDimitry Andric } else if (IsRegCall) {
337906c3fb27SDimitry Andric // RegCall gives us 16 SSE registers.
338006c3fb27SDimitry Andric FreeSSERegs = 16;
338106c3fb27SDimitry Andric }
338206c3fb27SDimitry Andric
338306c3fb27SDimitry Andric if (!getCXXABI().classifyReturnType(FI))
338406c3fb27SDimitry Andric FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
338506c3fb27SDimitry Andric IsVectorCall, IsRegCall);
338606c3fb27SDimitry Andric
338706c3fb27SDimitry Andric if (IsVectorCall) {
338806c3fb27SDimitry Andric // We can use up to 6 SSE register parameters with vectorcall.
338906c3fb27SDimitry Andric FreeSSERegs = 6;
339006c3fb27SDimitry Andric } else if (IsRegCall) {
339106c3fb27SDimitry Andric // RegCall gives us 16 SSE registers, we can reuse the return registers.
339206c3fb27SDimitry Andric FreeSSERegs = 16;
339306c3fb27SDimitry Andric }
339406c3fb27SDimitry Andric
339506c3fb27SDimitry Andric unsigned ArgNum = 0;
339606c3fb27SDimitry Andric unsigned ZeroSSERegs = 0;
339706c3fb27SDimitry Andric for (auto &I : FI.arguments()) {
339806c3fb27SDimitry Andric // Vectorcall in x64 only permits the first 6 arguments to be passed as
339906c3fb27SDimitry Andric // XMM/YMM registers. After the sixth argument, pretend no vector
340006c3fb27SDimitry Andric // registers are left.
340106c3fb27SDimitry Andric unsigned *MaybeFreeSSERegs =
340206c3fb27SDimitry Andric (IsVectorCall && ArgNum >= 6) ? &ZeroSSERegs : &FreeSSERegs;
340306c3fb27SDimitry Andric I.info =
340406c3fb27SDimitry Andric classify(I.type, *MaybeFreeSSERegs, false, IsVectorCall, IsRegCall);
340506c3fb27SDimitry Andric ++ArgNum;
340606c3fb27SDimitry Andric }
340706c3fb27SDimitry Andric
340806c3fb27SDimitry Andric if (IsVectorCall) {
340906c3fb27SDimitry Andric // For vectorcall, assign aggregate HVAs to any free vector registers in a
341006c3fb27SDimitry Andric // second pass.
341106c3fb27SDimitry Andric for (auto &I : FI.arguments())
341206c3fb27SDimitry Andric I.info = reclassifyHvaArgForVectorCall(I.type, FreeSSERegs, I.info);
341306c3fb27SDimitry Andric }
341406c3fb27SDimitry Andric }
341506c3fb27SDimitry Andric
EmitVAArg(CodeGenFunction & CGF,Address VAListAddr,QualType Ty,AggValueSlot Slot) const3416*0fca6ea1SDimitry Andric RValue WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3417*0fca6ea1SDimitry Andric QualType Ty, AggValueSlot Slot) const {
341806c3fb27SDimitry Andric // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
341906c3fb27SDimitry Andric // not 1, 2, 4, or 8 bytes, must be passed by reference."
342006c3fb27SDimitry Andric uint64_t Width = getContext().getTypeSize(Ty);
342106c3fb27SDimitry Andric bool IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
342206c3fb27SDimitry Andric
342306c3fb27SDimitry Andric return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
342406c3fb27SDimitry Andric CGF.getContext().getTypeInfoInChars(Ty),
342506c3fb27SDimitry Andric CharUnits::fromQuantity(8),
3426*0fca6ea1SDimitry Andric /*allowHigherAlign*/ false, Slot);
342706c3fb27SDimitry Andric }
342806c3fb27SDimitry Andric
createX86_32TargetCodeGenInfo(CodeGenModule & CGM,bool DarwinVectorABI,bool Win32StructABI,unsigned NumRegisterParameters,bool SoftFloatABI)342906c3fb27SDimitry Andric std::unique_ptr<TargetCodeGenInfo> CodeGen::createX86_32TargetCodeGenInfo(
343006c3fb27SDimitry Andric CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
343106c3fb27SDimitry Andric unsigned NumRegisterParameters, bool SoftFloatABI) {
343206c3fb27SDimitry Andric bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
343306c3fb27SDimitry Andric CGM.getTriple(), CGM.getCodeGenOpts());
343406c3fb27SDimitry Andric return std::make_unique<X86_32TargetCodeGenInfo>(
343506c3fb27SDimitry Andric CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
343606c3fb27SDimitry Andric NumRegisterParameters, SoftFloatABI);
343706c3fb27SDimitry Andric }
343806c3fb27SDimitry Andric
createWinX86_32TargetCodeGenInfo(CodeGenModule & CGM,bool DarwinVectorABI,bool Win32StructABI,unsigned NumRegisterParameters)343906c3fb27SDimitry Andric std::unique_ptr<TargetCodeGenInfo> CodeGen::createWinX86_32TargetCodeGenInfo(
344006c3fb27SDimitry Andric CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
344106c3fb27SDimitry Andric unsigned NumRegisterParameters) {
344206c3fb27SDimitry Andric bool RetSmallStructInRegABI = X86_32TargetCodeGenInfo::isStructReturnInRegABI(
344306c3fb27SDimitry Andric CGM.getTriple(), CGM.getCodeGenOpts());
344406c3fb27SDimitry Andric return std::make_unique<WinX86_32TargetCodeGenInfo>(
344506c3fb27SDimitry Andric CGM.getTypes(), DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
344606c3fb27SDimitry Andric NumRegisterParameters);
344706c3fb27SDimitry Andric }
344806c3fb27SDimitry Andric
344906c3fb27SDimitry Andric std::unique_ptr<TargetCodeGenInfo>
createX86_64TargetCodeGenInfo(CodeGenModule & CGM,X86AVXABILevel AVXLevel)345006c3fb27SDimitry Andric CodeGen::createX86_64TargetCodeGenInfo(CodeGenModule &CGM,
345106c3fb27SDimitry Andric X86AVXABILevel AVXLevel) {
345206c3fb27SDimitry Andric return std::make_unique<X86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
345306c3fb27SDimitry Andric }
345406c3fb27SDimitry Andric
345506c3fb27SDimitry Andric std::unique_ptr<TargetCodeGenInfo>
createWinX86_64TargetCodeGenInfo(CodeGenModule & CGM,X86AVXABILevel AVXLevel)345606c3fb27SDimitry Andric CodeGen::createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM,
345706c3fb27SDimitry Andric X86AVXABILevel AVXLevel) {
345806c3fb27SDimitry Andric return std::make_unique<WinX86_64TargetCodeGenInfo>(CGM.getTypes(), AVXLevel);
345906c3fb27SDimitry Andric }
3460