1 //===---- TargetInfo.h - Encapsulate target details -------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H 15 #define LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H 16 17 #include "CGBuilder.h" 18 #include "CodeGenModule.h" 19 #include "CGValue.h" 20 #include "clang/AST/Type.h" 21 #include "clang/Basic/LLVM.h" 22 #include "clang/Basic/SyncScope.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/StringRef.h" 25 26 namespace llvm { 27 class Constant; 28 class GlobalValue; 29 class Type; 30 class Value; 31 } 32 33 namespace clang { 34 class Decl; 35 36 namespace CodeGen { 37 class ABIInfo; 38 class CallArgList; 39 class CodeGenFunction; 40 class CGBlockInfo; 41 class SwiftABIInfo; 42 43 /// TargetCodeGenInfo - This class organizes various target-specific 44 /// codegeneration issues, like target-specific attributes, builtins and so 45 /// on. 46 class TargetCodeGenInfo { 47 std::unique_ptr<ABIInfo> Info; 48 49 protected: 50 // Target hooks supporting Swift calling conventions. The target must 51 // initialize this field if it claims to support these calling conventions 52 // by returning true from TargetInfo::checkCallingConvention for them. 53 std::unique_ptr<SwiftABIInfo> SwiftInfo; 54 55 // Returns ABI info helper for the target. This is for use by derived classes. 56 template <typename T> const T &getABIInfo() const { 57 return static_cast<const T &>(*Info); 58 } 59 60 public: 61 TargetCodeGenInfo(std::unique_ptr<ABIInfo> Info); 62 virtual ~TargetCodeGenInfo(); 63 64 /// getABIInfo() - Returns ABI info helper for the target. 65 const ABIInfo &getABIInfo() const { return *Info; } 66 67 /// Returns Swift ABI info helper for the target. 68 const SwiftABIInfo &getSwiftABIInfo() const { 69 assert(SwiftInfo && "Swift ABI info has not been initialized"); 70 return *SwiftInfo; 71 } 72 73 /// setTargetAttributes - Provides a convenient hook to handle extra 74 /// target-specific attributes for the given global. 75 virtual void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 76 CodeGen::CodeGenModule &M) const {} 77 78 /// emitTargetMetadata - Provides a convenient hook to handle extra 79 /// target-specific metadata for the given globals. 80 virtual void emitTargetMetadata( 81 CodeGen::CodeGenModule &CGM, 82 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {} 83 84 /// Provides a convenient hook to handle extra target-specific globals. 85 virtual void emitTargetGlobals(CodeGen::CodeGenModule &CGM) const {} 86 87 /// Any further codegen related checks that need to be done on a function call 88 /// in a target specific manner. 89 virtual void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 90 const FunctionDecl *Caller, 91 const FunctionDecl *Callee, 92 const CallArgList &Args) const {} 93 94 /// Determines the size of struct _Unwind_Exception on this platform, 95 /// in 8-bit units. The Itanium ABI defines this as: 96 /// struct _Unwind_Exception { 97 /// uint64 exception_class; 98 /// _Unwind_Exception_Cleanup_Fn exception_cleanup; 99 /// uint64 private_1; 100 /// uint64 private_2; 101 /// }; 102 virtual unsigned getSizeOfUnwindException() const; 103 104 /// Controls whether __builtin_extend_pointer should sign-extend 105 /// pointers to uint64_t or zero-extend them (the default). Has 106 /// no effect for targets: 107 /// - that have 64-bit pointers, or 108 /// - that cannot address through registers larger than pointers, or 109 /// - that implicitly ignore/truncate the top bits when addressing 110 /// through such registers. 111 virtual bool extendPointerWithSExt() const { return false; } 112 113 /// Determines the DWARF register number for the stack pointer, for 114 /// exception-handling purposes. Implements __builtin_dwarf_sp_column. 115 /// 116 /// Returns -1 if the operation is unsupported by this target. 117 virtual int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const { 118 return -1; 119 } 120 121 /// Initializes the given DWARF EH register-size table, a char*. 122 /// Implements __builtin_init_dwarf_reg_size_table. 123 /// 124 /// Returns true if the operation is unsupported by this target. 125 virtual bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 126 llvm::Value *Address) const { 127 return true; 128 } 129 130 /// Performs the code-generation required to convert a return 131 /// address as stored by the system into the actual address of the 132 /// next instruction that will be executed. 133 /// 134 /// Used by __builtin_extract_return_addr(). 135 virtual llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF, 136 llvm::Value *Address) const { 137 return Address; 138 } 139 140 /// Performs the code-generation required to convert the address 141 /// of an instruction into a return address suitable for storage 142 /// by the system in a return slot. 143 /// 144 /// Used by __builtin_frob_return_addr(). 145 virtual llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF, 146 llvm::Value *Address) const { 147 return Address; 148 } 149 150 /// Performs a target specific test of a floating point value for things 151 /// like IsNaN, Infinity, ... Nullptr is returned if no implementation 152 /// exists. 153 virtual llvm::Value * 154 testFPKind(llvm::Value *V, unsigned BuiltinID, CGBuilderTy &Builder, 155 CodeGenModule &CGM) const { 156 assert(V->getType()->isFloatingPointTy() && "V should have an FP type."); 157 return nullptr; 158 } 159 160 /// Corrects the low-level LLVM type for a given constraint and "usual" 161 /// type. 162 /// 163 /// \returns A pointer to a new LLVM type, possibly the same as the original 164 /// on success; 0 on failure. 165 virtual llvm::Type *adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 166 StringRef Constraint, 167 llvm::Type *Ty) const { 168 return Ty; 169 } 170 171 /// Target hook to decide whether an inline asm operand can be passed 172 /// by value. 173 virtual bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF, 174 llvm::Type *Ty) const { 175 return false; 176 } 177 178 /// Adds constraints and types for result registers. 179 virtual void addReturnRegisterOutputs( 180 CodeGen::CodeGenFunction &CGF, CodeGen::LValue ReturnValue, 181 std::string &Constraints, std::vector<llvm::Type *> &ResultRegTypes, 182 std::vector<llvm::Type *> &ResultTruncRegTypes, 183 std::vector<CodeGen::LValue> &ResultRegDests, std::string &AsmString, 184 unsigned NumOutputs) const {} 185 186 /// doesReturnSlotInterfereWithArgs - Return true if the target uses an 187 /// argument slot for an 'sret' type. 188 virtual bool doesReturnSlotInterfereWithArgs() const { return true; } 189 190 /// Retrieve the address of a function to call immediately before 191 /// calling objc_retainAutoreleasedReturnValue. The 192 /// implementation of objc_autoreleaseReturnValue sniffs the 193 /// instruction stream following its return address to decide 194 /// whether it's a call to objc_retainAutoreleasedReturnValue. 195 /// This can be prohibitively expensive, depending on the 196 /// relocation model, and so on some targets it instead sniffs for 197 /// a particular instruction sequence. This functions returns 198 /// that instruction sequence in inline assembly, which will be 199 /// empty if none is required. 200 virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const { 201 return ""; 202 } 203 204 /// Determine whether a call to objc_retainAutoreleasedReturnValue or 205 /// objc_unsafeClaimAutoreleasedReturnValue should be marked as 'notail'. 206 virtual bool markARCOptimizedReturnCallsAsNoTail() const { return false; } 207 208 /// Return a constant used by UBSan as a signature to identify functions 209 /// possessing type information, or 0 if the platform is unsupported. 210 /// This magic number is invalid instruction encoding in many targets. 211 virtual llvm::Constant * 212 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const { 213 return llvm::ConstantInt::get(CGM.Int32Ty, 0xc105cafe); 214 } 215 216 /// Determine whether a call to an unprototyped functions under 217 /// the given calling convention should use the variadic 218 /// convention or the non-variadic convention. 219 /// 220 /// There's a good reason to make a platform's variadic calling 221 /// convention be different from its non-variadic calling 222 /// convention: the non-variadic arguments can be passed in 223 /// registers (better for performance), and the variadic arguments 224 /// can be passed on the stack (also better for performance). If 225 /// this is done, however, unprototyped functions *must* use the 226 /// non-variadic convention, because C99 states that a call 227 /// through an unprototyped function type must succeed if the 228 /// function was defined with a non-variadic prototype with 229 /// compatible parameters. Therefore, splitting the conventions 230 /// makes it impossible to call a variadic function through an 231 /// unprototyped type. Since function prototypes came out in the 232 /// late 1970s, this is probably an acceptable trade-off. 233 /// Nonetheless, not all platforms are willing to make it, and in 234 /// particularly x86-64 bends over backwards to make the 235 /// conventions compatible. 236 /// 237 /// The default is false. This is correct whenever: 238 /// - the conventions are exactly the same, because it does not 239 /// matter and the resulting IR will be somewhat prettier in 240 /// certain cases; or 241 /// - the conventions are substantively different in how they pass 242 /// arguments, because in this case using the variadic convention 243 /// will lead to C99 violations. 244 /// 245 /// However, some platforms make the conventions identical except 246 /// for passing additional out-of-band information to a variadic 247 /// function: for example, x86-64 passes the number of SSE 248 /// arguments in %al. On these platforms, it is desirable to 249 /// call unprototyped functions using the variadic convention so 250 /// that unprototyped calls to varargs functions still succeed. 251 /// 252 /// Relatedly, platforms which pass the fixed arguments to this: 253 /// A foo(B, C, D); 254 /// differently than they would pass them to this: 255 /// A foo(B, C, D, ...); 256 /// may need to adjust the debugger-support code in Sema to do the 257 /// right thing when calling a function with no know signature. 258 virtual bool isNoProtoCallVariadic(const CodeGen::CallArgList &args, 259 const FunctionNoProtoType *fnType) const; 260 261 /// Gets the linker options necessary to link a dependent library on this 262 /// platform. 263 virtual void getDependentLibraryOption(llvm::StringRef Lib, 264 llvm::SmallString<24> &Opt) const; 265 266 /// Gets the linker options necessary to detect object file mismatches on 267 /// this platform. 268 virtual void getDetectMismatchOption(llvm::StringRef Name, 269 llvm::StringRef Value, 270 llvm::SmallString<32> &Opt) const {} 271 272 /// Get LLVM calling convention for OpenCL kernel. 273 virtual unsigned getOpenCLKernelCallingConv() const; 274 275 /// Get target specific null pointer. 276 /// \param T is the LLVM type of the null pointer. 277 /// \param QT is the clang QualType of the null pointer. 278 /// \return ConstantPointerNull with the given type \p T. 279 /// Each target can override it to return its own desired constant value. 280 virtual llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 281 llvm::PointerType *T, QualType QT) const; 282 283 /// Get target favored AST address space of a global variable for languages 284 /// other than OpenCL and CUDA. 285 /// If \p D is nullptr, returns the default target favored address space 286 /// for global variable. 287 virtual LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 288 const VarDecl *D) const; 289 290 /// Get the AST address space for alloca. 291 virtual LangAS getASTAllocaAddressSpace() const { return LangAS::Default; } 292 293 /// Perform address space cast of an expression of pointer type. 294 /// \param V is the LLVM value to be casted to another address space. 295 /// \param SrcAddr is the language address space of \p V. 296 /// \param DestAddr is the targeted language address space. 297 /// \param DestTy is the destination LLVM pointer type. 298 /// \param IsNonNull is the flag indicating \p V is known to be non null. 299 virtual llvm::Value *performAddrSpaceCast(CodeGen::CodeGenFunction &CGF, 300 llvm::Value *V, LangAS SrcAddr, 301 LangAS DestAddr, llvm::Type *DestTy, 302 bool IsNonNull = false) const; 303 304 /// Perform address space cast of a constant expression of pointer type. 305 /// \param V is the LLVM constant to be casted to another address space. 306 /// \param SrcAddr is the language address space of \p V. 307 /// \param DestAddr is the targeted language address space. 308 /// \param DestTy is the destination LLVM pointer type. 309 virtual llvm::Constant *performAddrSpaceCast(CodeGenModule &CGM, 310 llvm::Constant *V, 311 LangAS SrcAddr, LangAS DestAddr, 312 llvm::Type *DestTy) const; 313 314 /// Get address space of pointer parameter for __cxa_atexit. 315 virtual LangAS getAddrSpaceOfCxaAtexitPtrParam() const { 316 return LangAS::Default; 317 } 318 319 /// Get the syncscope used in LLVM IR. 320 virtual llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 321 SyncScope Scope, 322 llvm::AtomicOrdering Ordering, 323 llvm::LLVMContext &Ctx) const; 324 325 /// Interface class for filling custom fields of a block literal for OpenCL. 326 class TargetOpenCLBlockHelper { 327 public: 328 typedef std::pair<llvm::Value *, StringRef> ValueTy; 329 TargetOpenCLBlockHelper() {} 330 virtual ~TargetOpenCLBlockHelper() {} 331 /// Get the custom field types for OpenCL blocks. 332 virtual llvm::SmallVector<llvm::Type *, 1> getCustomFieldTypes() = 0; 333 /// Get the custom field values for OpenCL blocks. 334 virtual llvm::SmallVector<ValueTy, 1> 335 getCustomFieldValues(CodeGenFunction &CGF, const CGBlockInfo &Info) = 0; 336 virtual bool areAllCustomFieldValuesConstant(const CGBlockInfo &Info) = 0; 337 /// Get the custom field values for OpenCL blocks if all values are LLVM 338 /// constants. 339 virtual llvm::SmallVector<llvm::Constant *, 1> 340 getCustomFieldValues(CodeGenModule &CGM, const CGBlockInfo &Info) = 0; 341 }; 342 virtual TargetOpenCLBlockHelper *getTargetOpenCLBlockHelper() const { 343 return nullptr; 344 } 345 346 /// Create an OpenCL kernel for an enqueued block. The kernel function is 347 /// a wrapper for the block invoke function with target-specific calling 348 /// convention and ABI as an OpenCL kernel. The wrapper function accepts 349 /// block context and block arguments in target-specific way and calls 350 /// the original block invoke function. 351 virtual llvm::Value * 352 createEnqueuedBlockKernel(CodeGenFunction &CGF, 353 llvm::Function *BlockInvokeFunc, 354 llvm::Type *BlockTy) const; 355 356 /// \return true if the target supports alias from the unmangled name to the 357 /// mangled name of functions declared within an extern "C" region and marked 358 /// as 'used', and having internal linkage. 359 virtual bool shouldEmitStaticExternCAliases() const { return true; } 360 361 /// \return true if annonymous zero-sized bitfields should be emitted to 362 /// correctly distinguish between struct types whose memory layout is the 363 /// same, but whose layout may differ when used as argument passed by value 364 virtual bool shouldEmitDWARFBitFieldSeparators() const { return false; } 365 366 virtual void setCUDAKernelCallingConvention(const FunctionType *&FT) const {} 367 368 /// Return the device-side type for the CUDA device builtin surface type. 369 virtual llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const { 370 // By default, no change from the original one. 371 return nullptr; 372 } 373 /// Return the device-side type for the CUDA device builtin texture type. 374 virtual llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const { 375 // By default, no change from the original one. 376 return nullptr; 377 } 378 379 /// Return the WebAssembly externref reference type. 380 virtual llvm::Type *getWasmExternrefReferenceType() const { return nullptr; } 381 382 /// Return the WebAssembly funcref reference type. 383 virtual llvm::Type *getWasmFuncrefReferenceType() const { return nullptr; } 384 385 /// Emit the device-side copy of the builtin surface type. 386 virtual bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, 387 LValue Dst, 388 LValue Src) const { 389 // DO NOTHING by default. 390 return false; 391 } 392 /// Emit the device-side copy of the builtin texture type. 393 virtual bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, 394 LValue Dst, 395 LValue Src) const { 396 // DO NOTHING by default. 397 return false; 398 } 399 400 /// Return an LLVM type that corresponds to an OpenCL type. 401 virtual llvm::Type *getOpenCLType(CodeGenModule &CGM, const Type *T) const { 402 return nullptr; 403 } 404 405 protected: 406 static std::string qualifyWindowsLibrary(StringRef Lib); 407 408 void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 409 CodeGen::CodeGenModule &CGM) const; 410 }; 411 412 std::unique_ptr<TargetCodeGenInfo> 413 createDefaultTargetCodeGenInfo(CodeGenModule &CGM); 414 415 enum class AArch64ABIKind { 416 AAPCS = 0, 417 DarwinPCS, 418 Win64, 419 }; 420 421 std::unique_ptr<TargetCodeGenInfo> 422 createAArch64TargetCodeGenInfo(CodeGenModule &CGM, AArch64ABIKind Kind); 423 424 std::unique_ptr<TargetCodeGenInfo> 425 createWindowsAArch64TargetCodeGenInfo(CodeGenModule &CGM, AArch64ABIKind K); 426 427 std::unique_ptr<TargetCodeGenInfo> 428 createAMDGPUTargetCodeGenInfo(CodeGenModule &CGM); 429 430 std::unique_ptr<TargetCodeGenInfo> 431 createARCTargetCodeGenInfo(CodeGenModule &CGM); 432 433 enum class ARMABIKind { 434 APCS = 0, 435 AAPCS = 1, 436 AAPCS_VFP = 2, 437 AAPCS16_VFP = 3, 438 }; 439 440 std::unique_ptr<TargetCodeGenInfo> 441 createARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind Kind); 442 443 std::unique_ptr<TargetCodeGenInfo> 444 createWindowsARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind K); 445 446 std::unique_ptr<TargetCodeGenInfo> 447 createAVRTargetCodeGenInfo(CodeGenModule &CGM, unsigned NPR, unsigned NRR); 448 449 std::unique_ptr<TargetCodeGenInfo> 450 createBPFTargetCodeGenInfo(CodeGenModule &CGM); 451 452 std::unique_ptr<TargetCodeGenInfo> 453 createCSKYTargetCodeGenInfo(CodeGenModule &CGM, unsigned FLen); 454 455 std::unique_ptr<TargetCodeGenInfo> 456 createHexagonTargetCodeGenInfo(CodeGenModule &CGM); 457 458 std::unique_ptr<TargetCodeGenInfo> 459 createLanaiTargetCodeGenInfo(CodeGenModule &CGM); 460 461 std::unique_ptr<TargetCodeGenInfo> 462 createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen, 463 unsigned FLen); 464 465 std::unique_ptr<TargetCodeGenInfo> 466 createM68kTargetCodeGenInfo(CodeGenModule &CGM); 467 468 std::unique_ptr<TargetCodeGenInfo> 469 createMIPSTargetCodeGenInfo(CodeGenModule &CGM, bool IsOS32); 470 471 std::unique_ptr<TargetCodeGenInfo> 472 createMSP430TargetCodeGenInfo(CodeGenModule &CGM); 473 474 std::unique_ptr<TargetCodeGenInfo> 475 createNVPTXTargetCodeGenInfo(CodeGenModule &CGM); 476 477 std::unique_ptr<TargetCodeGenInfo> 478 createPNaClTargetCodeGenInfo(CodeGenModule &CGM); 479 480 enum class PPC64_SVR4_ABIKind { 481 ELFv1 = 0, 482 ELFv2, 483 }; 484 485 std::unique_ptr<TargetCodeGenInfo> 486 createAIXTargetCodeGenInfo(CodeGenModule &CGM, bool Is64Bit); 487 488 std::unique_ptr<TargetCodeGenInfo> 489 createPPC32TargetCodeGenInfo(CodeGenModule &CGM, bool SoftFloatABI); 490 491 std::unique_ptr<TargetCodeGenInfo> 492 createPPC64TargetCodeGenInfo(CodeGenModule &CGM); 493 494 std::unique_ptr<TargetCodeGenInfo> 495 createPPC64_SVR4_TargetCodeGenInfo(CodeGenModule &CGM, PPC64_SVR4_ABIKind Kind, 496 bool SoftFloatABI); 497 498 std::unique_ptr<TargetCodeGenInfo> 499 createRISCVTargetCodeGenInfo(CodeGenModule &CGM, unsigned XLen, unsigned FLen, 500 bool EABI); 501 502 std::unique_ptr<TargetCodeGenInfo> 503 createCommonSPIRTargetCodeGenInfo(CodeGenModule &CGM); 504 505 std::unique_ptr<TargetCodeGenInfo> 506 createSPIRVTargetCodeGenInfo(CodeGenModule &CGM); 507 508 std::unique_ptr<TargetCodeGenInfo> 509 createSparcV8TargetCodeGenInfo(CodeGenModule &CGM); 510 511 std::unique_ptr<TargetCodeGenInfo> 512 createSparcV9TargetCodeGenInfo(CodeGenModule &CGM); 513 514 std::unique_ptr<TargetCodeGenInfo> 515 createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector, 516 bool SoftFloatABI); 517 518 std::unique_ptr<TargetCodeGenInfo> 519 createTCETargetCodeGenInfo(CodeGenModule &CGM); 520 521 std::unique_ptr<TargetCodeGenInfo> 522 createVETargetCodeGenInfo(CodeGenModule &CGM); 523 524 enum class WebAssemblyABIKind { 525 MVP = 0, 526 ExperimentalMV = 1, 527 }; 528 529 std::unique_ptr<TargetCodeGenInfo> 530 createWebAssemblyTargetCodeGenInfo(CodeGenModule &CGM, WebAssemblyABIKind K); 531 532 /// The AVX ABI level for X86 targets. 533 enum class X86AVXABILevel { 534 None, 535 AVX, 536 AVX512, 537 }; 538 539 std::unique_ptr<TargetCodeGenInfo> createX86_32TargetCodeGenInfo( 540 CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI, 541 unsigned NumRegisterParameters, bool SoftFloatABI); 542 543 std::unique_ptr<TargetCodeGenInfo> 544 createWinX86_32TargetCodeGenInfo(CodeGenModule &CGM, bool DarwinVectorABI, 545 bool Win32StructABI, 546 unsigned NumRegisterParameters); 547 548 std::unique_ptr<TargetCodeGenInfo> 549 createX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel); 550 551 std::unique_ptr<TargetCodeGenInfo> 552 createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel); 553 554 std::unique_ptr<TargetCodeGenInfo> 555 createXCoreTargetCodeGenInfo(CodeGenModule &CGM); 556 557 } // namespace CodeGen 558 } // namespace clang 559 560 #endif // LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H 561