1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/CodeGen/CGFunctionInfo.h" 24 #include "clang/CodeGen/SwiftCallingConv.h" 25 #include "llvm/ADT/SmallBitVector.h" 26 #include "llvm/ADT/StringExtras.h" 27 #include "llvm/ADT/StringSwitch.h" 28 #include "llvm/ADT/Triple.h" 29 #include "llvm/ADT/Twine.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/Type.h" 32 #include "llvm/Support/raw_ostream.h" 33 #include <algorithm> // std::sort 34 35 using namespace clang; 36 using namespace CodeGen; 37 38 // Helper for coercing an aggregate argument or return value into an integer 39 // array of the same size (including padding) and alignment. This alternate 40 // coercion happens only for the RenderScript ABI and can be removed after 41 // runtimes that rely on it are no longer supported. 42 // 43 // RenderScript assumes that the size of the argument / return value in the IR 44 // is the same as the size of the corresponding qualified type. This helper 45 // coerces the aggregate type into an array of the same size (including 46 // padding). This coercion is used in lieu of expansion of struct members or 47 // other canonical coercions that return a coerced-type of larger size. 48 // 49 // Ty - The argument / return value type 50 // Context - The associated ASTContext 51 // LLVMContext - The associated LLVMContext 52 static ABIArgInfo coerceToIntArray(QualType Ty, 53 ASTContext &Context, 54 llvm::LLVMContext &LLVMContext) { 55 // Alignment and Size are measured in bits. 56 const uint64_t Size = Context.getTypeSize(Ty); 57 const uint64_t Alignment = Context.getTypeAlign(Ty); 58 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 59 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 60 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 61 } 62 63 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 64 llvm::Value *Array, 65 llvm::Value *Value, 66 unsigned FirstIndex, 67 unsigned LastIndex) { 68 // Alternatively, we could emit this as a loop in the source. 69 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 70 llvm::Value *Cell = 71 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 72 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 73 } 74 } 75 76 static bool isAggregateTypeForABI(QualType T) { 77 return !CodeGenFunction::hasScalarEvaluationKind(T) || 78 T->isMemberFunctionPointerType(); 79 } 80 81 ABIArgInfo 82 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 83 llvm::Type *Padding) const { 84 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 85 ByRef, Realign, Padding); 86 } 87 88 ABIArgInfo 89 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 90 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 91 /*ByRef*/ false, Realign); 92 } 93 94 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 95 QualType Ty) const { 96 return Address::invalid(); 97 } 98 99 ABIInfo::~ABIInfo() {} 100 101 /// Does the given lowering require more than the given number of 102 /// registers when expanded? 103 /// 104 /// This is intended to be the basis of a reasonable basic implementation 105 /// of should{Pass,Return}IndirectlyForSwift. 106 /// 107 /// For most targets, a limit of four total registers is reasonable; this 108 /// limits the amount of code required in order to move around the value 109 /// in case it wasn't produced immediately prior to the call by the caller 110 /// (or wasn't produced in exactly the right registers) or isn't used 111 /// immediately within the callee. But some targets may need to further 112 /// limit the register count due to an inability to support that many 113 /// return registers. 114 static bool occupiesMoreThan(CodeGenTypes &cgt, 115 ArrayRef<llvm::Type*> scalarTypes, 116 unsigned maxAllRegisters) { 117 unsigned intCount = 0, fpCount = 0; 118 for (llvm::Type *type : scalarTypes) { 119 if (type->isPointerTy()) { 120 intCount++; 121 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 122 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 123 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 124 } else { 125 assert(type->isVectorTy() || type->isFloatingPointTy()); 126 fpCount++; 127 } 128 } 129 130 return (intCount + fpCount > maxAllRegisters); 131 } 132 133 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 134 llvm::Type *eltTy, 135 unsigned numElts) const { 136 // The default implementation of this assumes that the target guarantees 137 // 128-bit SIMD support but nothing more. 138 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 139 } 140 141 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 142 CGCXXABI &CXXABI) { 143 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 144 if (!RD) { 145 if (!RT->getDecl()->canPassInRegisters()) 146 return CGCXXABI::RAA_Indirect; 147 return CGCXXABI::RAA_Default; 148 } 149 return CXXABI.getRecordArgABI(RD); 150 } 151 152 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 153 CGCXXABI &CXXABI) { 154 const RecordType *RT = T->getAs<RecordType>(); 155 if (!RT) 156 return CGCXXABI::RAA_Default; 157 return getRecordArgABI(RT, CXXABI); 158 } 159 160 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 161 const ABIInfo &Info) { 162 QualType Ty = FI.getReturnType(); 163 164 if (const auto *RT = Ty->getAs<RecordType>()) 165 if (!isa<CXXRecordDecl>(RT->getDecl()) && 166 !RT->getDecl()->canPassInRegisters()) { 167 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 168 return true; 169 } 170 171 return CXXABI.classifyReturnType(FI); 172 } 173 174 /// Pass transparent unions as if they were the type of the first element. Sema 175 /// should ensure that all elements of the union have the same "machine type". 176 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 177 if (const RecordType *UT = Ty->getAsUnionType()) { 178 const RecordDecl *UD = UT->getDecl(); 179 if (UD->hasAttr<TransparentUnionAttr>()) { 180 assert(!UD->field_empty() && "sema created an empty transparent union"); 181 return UD->field_begin()->getType(); 182 } 183 } 184 return Ty; 185 } 186 187 CGCXXABI &ABIInfo::getCXXABI() const { 188 return CGT.getCXXABI(); 189 } 190 191 ASTContext &ABIInfo::getContext() const { 192 return CGT.getContext(); 193 } 194 195 llvm::LLVMContext &ABIInfo::getVMContext() const { 196 return CGT.getLLVMContext(); 197 } 198 199 const llvm::DataLayout &ABIInfo::getDataLayout() const { 200 return CGT.getDataLayout(); 201 } 202 203 const TargetInfo &ABIInfo::getTarget() const { 204 return CGT.getTarget(); 205 } 206 207 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 208 return CGT.getCodeGenOpts(); 209 } 210 211 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 212 213 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 214 return false; 215 } 216 217 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 218 uint64_t Members) const { 219 return false; 220 } 221 222 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 223 raw_ostream &OS = llvm::errs(); 224 OS << "(ABIArgInfo Kind="; 225 switch (TheKind) { 226 case Direct: 227 OS << "Direct Type="; 228 if (llvm::Type *Ty = getCoerceToType()) 229 Ty->print(OS); 230 else 231 OS << "null"; 232 break; 233 case Extend: 234 OS << "Extend"; 235 break; 236 case Ignore: 237 OS << "Ignore"; 238 break; 239 case InAlloca: 240 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 241 break; 242 case Indirect: 243 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 244 << " ByVal=" << getIndirectByVal() 245 << " Realign=" << getIndirectRealign(); 246 break; 247 case Expand: 248 OS << "Expand"; 249 break; 250 case CoerceAndExpand: 251 OS << "CoerceAndExpand Type="; 252 getCoerceAndExpandType()->print(OS); 253 break; 254 } 255 OS << ")\n"; 256 } 257 258 // Dynamically round a pointer up to a multiple of the given alignment. 259 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 260 llvm::Value *Ptr, 261 CharUnits Align) { 262 llvm::Value *PtrAsInt = Ptr; 263 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 264 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 265 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 266 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 267 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 268 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 269 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 270 Ptr->getType(), 271 Ptr->getName() + ".aligned"); 272 return PtrAsInt; 273 } 274 275 /// Emit va_arg for a platform using the common void* representation, 276 /// where arguments are simply emitted in an array of slots on the stack. 277 /// 278 /// This version implements the core direct-value passing rules. 279 /// 280 /// \param SlotSize - The size and alignment of a stack slot. 281 /// Each argument will be allocated to a multiple of this number of 282 /// slots, and all the slots will be aligned to this value. 283 /// \param AllowHigherAlign - The slot alignment is not a cap; 284 /// an argument type with an alignment greater than the slot size 285 /// will be emitted on a higher-alignment address, potentially 286 /// leaving one or more empty slots behind as padding. If this 287 /// is false, the returned address might be less-aligned than 288 /// DirectAlign. 289 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 290 Address VAListAddr, 291 llvm::Type *DirectTy, 292 CharUnits DirectSize, 293 CharUnits DirectAlign, 294 CharUnits SlotSize, 295 bool AllowHigherAlign) { 296 // Cast the element type to i8* if necessary. Some platforms define 297 // va_list as a struct containing an i8* instead of just an i8*. 298 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 299 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 300 301 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 302 303 // If the CC aligns values higher than the slot size, do so if needed. 304 Address Addr = Address::invalid(); 305 if (AllowHigherAlign && DirectAlign > SlotSize) { 306 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 307 DirectAlign); 308 } else { 309 Addr = Address(Ptr, SlotSize); 310 } 311 312 // Advance the pointer past the argument, then store that back. 313 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 314 Address NextPtr = 315 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 316 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 317 318 // If the argument is smaller than a slot, and this is a big-endian 319 // target, the argument will be right-adjusted in its slot. 320 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 321 !DirectTy->isStructTy()) { 322 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 323 } 324 325 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 326 return Addr; 327 } 328 329 /// Emit va_arg for a platform using the common void* representation, 330 /// where arguments are simply emitted in an array of slots on the stack. 331 /// 332 /// \param IsIndirect - Values of this type are passed indirectly. 333 /// \param ValueInfo - The size and alignment of this type, generally 334 /// computed with getContext().getTypeInfoInChars(ValueTy). 335 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 336 /// Each argument will be allocated to a multiple of this number of 337 /// slots, and all the slots will be aligned to this value. 338 /// \param AllowHigherAlign - The slot alignment is not a cap; 339 /// an argument type with an alignment greater than the slot size 340 /// will be emitted on a higher-alignment address, potentially 341 /// leaving one or more empty slots behind as padding. 342 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 343 QualType ValueTy, bool IsIndirect, 344 std::pair<CharUnits, CharUnits> ValueInfo, 345 CharUnits SlotSizeAndAlign, 346 bool AllowHigherAlign) { 347 // The size and alignment of the value that was passed directly. 348 CharUnits DirectSize, DirectAlign; 349 if (IsIndirect) { 350 DirectSize = CGF.getPointerSize(); 351 DirectAlign = CGF.getPointerAlign(); 352 } else { 353 DirectSize = ValueInfo.first; 354 DirectAlign = ValueInfo.second; 355 } 356 357 // Cast the address we've calculated to the right type. 358 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 359 if (IsIndirect) 360 DirectTy = DirectTy->getPointerTo(0); 361 362 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 363 DirectSize, DirectAlign, 364 SlotSizeAndAlign, 365 AllowHigherAlign); 366 367 if (IsIndirect) { 368 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 369 } 370 371 return Addr; 372 373 } 374 375 static Address emitMergePHI(CodeGenFunction &CGF, 376 Address Addr1, llvm::BasicBlock *Block1, 377 Address Addr2, llvm::BasicBlock *Block2, 378 const llvm::Twine &Name = "") { 379 assert(Addr1.getType() == Addr2.getType()); 380 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 381 PHI->addIncoming(Addr1.getPointer(), Block1); 382 PHI->addIncoming(Addr2.getPointer(), Block2); 383 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 384 return Address(PHI, Align); 385 } 386 387 TargetCodeGenInfo::~TargetCodeGenInfo() { delete Info; } 388 389 // If someone can figure out a general rule for this, that would be great. 390 // It's probably just doomed to be platform-dependent, though. 391 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 392 // Verified for: 393 // x86-64 FreeBSD, Linux, Darwin 394 // x86-32 FreeBSD, Linux, Darwin 395 // PowerPC Linux, Darwin 396 // ARM Darwin (*not* EABI) 397 // AArch64 Linux 398 return 32; 399 } 400 401 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 402 const FunctionNoProtoType *fnType) const { 403 // The following conventions are known to require this to be false: 404 // x86_stdcall 405 // MIPS 406 // For everything else, we just prefer false unless we opt out. 407 return false; 408 } 409 410 void 411 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 412 llvm::SmallString<24> &Opt) const { 413 // This assumes the user is passing a library name like "rt" instead of a 414 // filename like "librt.a/so", and that they don't care whether it's static or 415 // dynamic. 416 Opt = "-l"; 417 Opt += Lib; 418 } 419 420 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 421 // OpenCL kernels are called via an explicit runtime API with arguments 422 // set with clSetKernelArg(), not as normal sub-functions. 423 // Return SPIR_KERNEL by default as the kernel calling convention to 424 // ensure the fingerprint is fixed such way that each OpenCL argument 425 // gets one matching argument in the produced kernel function argument 426 // list to enable feasible implementation of clSetKernelArg() with 427 // aggregates etc. In case we would use the default C calling conv here, 428 // clSetKernelArg() might break depending on the target-specific 429 // conventions; different targets might split structs passed as values 430 // to multiple function arguments etc. 431 return llvm::CallingConv::SPIR_KERNEL; 432 } 433 434 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 435 llvm::PointerType *T, QualType QT) const { 436 return llvm::ConstantPointerNull::get(T); 437 } 438 439 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 440 const VarDecl *D) const { 441 assert(!CGM.getLangOpts().OpenCL && 442 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 443 "Address space agnostic languages only"); 444 return D ? D->getType().getAddressSpace() : LangAS::Default; 445 } 446 447 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 448 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 449 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 450 // Since target may map different address spaces in AST to the same address 451 // space, an address space conversion may end up as a bitcast. 452 if (auto *C = dyn_cast<llvm::Constant>(Src)) 453 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 454 // Try to preserve the source's name to make IR more readable. 455 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 456 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 457 } 458 459 llvm::Constant * 460 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 461 LangAS SrcAddr, LangAS DestAddr, 462 llvm::Type *DestTy) const { 463 // Since target may map different address spaces in AST to the same address 464 // space, an address space conversion may end up as a bitcast. 465 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 466 } 467 468 llvm::SyncScope::ID 469 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 470 SyncScope Scope, 471 llvm::AtomicOrdering Ordering, 472 llvm::LLVMContext &Ctx) const { 473 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 474 } 475 476 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 477 478 /// isEmptyField - Return true iff a the field is "empty", that is it 479 /// is an unnamed bit-field or an (array of) empty record(s). 480 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 481 bool AllowArrays) { 482 if (FD->isUnnamedBitfield()) 483 return true; 484 485 QualType FT = FD->getType(); 486 487 // Constant arrays of empty records count as empty, strip them off. 488 // Constant arrays of zero length always count as empty. 489 if (AllowArrays) 490 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 491 if (AT->getSize() == 0) 492 return true; 493 FT = AT->getElementType(); 494 } 495 496 const RecordType *RT = FT->getAs<RecordType>(); 497 if (!RT) 498 return false; 499 500 // C++ record fields are never empty, at least in the Itanium ABI. 501 // 502 // FIXME: We should use a predicate for whether this behavior is true in the 503 // current ABI. 504 if (isa<CXXRecordDecl>(RT->getDecl())) 505 return false; 506 507 return isEmptyRecord(Context, FT, AllowArrays); 508 } 509 510 /// isEmptyRecord - Return true iff a structure contains only empty 511 /// fields. Note that a structure with a flexible array member is not 512 /// considered empty. 513 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 514 const RecordType *RT = T->getAs<RecordType>(); 515 if (!RT) 516 return false; 517 const RecordDecl *RD = RT->getDecl(); 518 if (RD->hasFlexibleArrayMember()) 519 return false; 520 521 // If this is a C++ record, check the bases first. 522 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 523 for (const auto &I : CXXRD->bases()) 524 if (!isEmptyRecord(Context, I.getType(), true)) 525 return false; 526 527 for (const auto *I : RD->fields()) 528 if (!isEmptyField(Context, I, AllowArrays)) 529 return false; 530 return true; 531 } 532 533 /// isSingleElementStruct - Determine if a structure is a "single 534 /// element struct", i.e. it has exactly one non-empty field or 535 /// exactly one field which is itself a single element 536 /// struct. Structures with flexible array members are never 537 /// considered single element structs. 538 /// 539 /// \return The field declaration for the single non-empty field, if 540 /// it exists. 541 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 542 const RecordType *RT = T->getAs<RecordType>(); 543 if (!RT) 544 return nullptr; 545 546 const RecordDecl *RD = RT->getDecl(); 547 if (RD->hasFlexibleArrayMember()) 548 return nullptr; 549 550 const Type *Found = nullptr; 551 552 // If this is a C++ record, check the bases first. 553 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 554 for (const auto &I : CXXRD->bases()) { 555 // Ignore empty records. 556 if (isEmptyRecord(Context, I.getType(), true)) 557 continue; 558 559 // If we already found an element then this isn't a single-element struct. 560 if (Found) 561 return nullptr; 562 563 // If this is non-empty and not a single element struct, the composite 564 // cannot be a single element struct. 565 Found = isSingleElementStruct(I.getType(), Context); 566 if (!Found) 567 return nullptr; 568 } 569 } 570 571 // Check for single element. 572 for (const auto *FD : RD->fields()) { 573 QualType FT = FD->getType(); 574 575 // Ignore empty fields. 576 if (isEmptyField(Context, FD, true)) 577 continue; 578 579 // If we already found an element then this isn't a single-element 580 // struct. 581 if (Found) 582 return nullptr; 583 584 // Treat single element arrays as the element. 585 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 586 if (AT->getSize().getZExtValue() != 1) 587 break; 588 FT = AT->getElementType(); 589 } 590 591 if (!isAggregateTypeForABI(FT)) { 592 Found = FT.getTypePtr(); 593 } else { 594 Found = isSingleElementStruct(FT, Context); 595 if (!Found) 596 return nullptr; 597 } 598 } 599 600 // We don't consider a struct a single-element struct if it has 601 // padding beyond the element type. 602 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 603 return nullptr; 604 605 return Found; 606 } 607 608 namespace { 609 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 610 const ABIArgInfo &AI) { 611 // This default implementation defers to the llvm backend's va_arg 612 // instruction. It can handle only passing arguments directly 613 // (typically only handled in the backend for primitive types), or 614 // aggregates passed indirectly by pointer (NOTE: if the "byval" 615 // flag has ABI impact in the callee, this implementation cannot 616 // work.) 617 618 // Only a few cases are covered here at the moment -- those needed 619 // by the default abi. 620 llvm::Value *Val; 621 622 if (AI.isIndirect()) { 623 assert(!AI.getPaddingType() && 624 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 625 assert( 626 !AI.getIndirectRealign() && 627 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 628 629 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 630 CharUnits TyAlignForABI = TyInfo.second; 631 632 llvm::Type *BaseTy = 633 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 634 llvm::Value *Addr = 635 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 636 return Address(Addr, TyAlignForABI); 637 } else { 638 assert((AI.isDirect() || AI.isExtend()) && 639 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 640 641 assert(!AI.getInReg() && 642 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 643 assert(!AI.getPaddingType() && 644 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 645 assert(!AI.getDirectOffset() && 646 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 647 assert(!AI.getCoerceToType() && 648 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 649 650 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 651 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 652 CGF.Builder.CreateStore(Val, Temp); 653 return Temp; 654 } 655 } 656 657 /// DefaultABIInfo - The default implementation for ABI specific 658 /// details. This implementation provides information which results in 659 /// self-consistent and sensible LLVM IR generation, but does not 660 /// conform to any particular ABI. 661 class DefaultABIInfo : public ABIInfo { 662 public: 663 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 664 665 ABIArgInfo classifyReturnType(QualType RetTy) const; 666 ABIArgInfo classifyArgumentType(QualType RetTy) const; 667 668 void computeInfo(CGFunctionInfo &FI) const override { 669 if (!getCXXABI().classifyReturnType(FI)) 670 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 671 for (auto &I : FI.arguments()) 672 I.info = classifyArgumentType(I.type); 673 } 674 675 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 676 QualType Ty) const override { 677 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 678 } 679 }; 680 681 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 682 public: 683 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 684 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 685 }; 686 687 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 688 Ty = useFirstFieldIfTransparentUnion(Ty); 689 690 if (isAggregateTypeForABI(Ty)) { 691 // Records with non-trivial destructors/copy-constructors should not be 692 // passed by value. 693 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 694 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 695 696 return getNaturalAlignIndirect(Ty); 697 } 698 699 // Treat an enum type as its underlying type. 700 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 701 Ty = EnumTy->getDecl()->getIntegerType(); 702 703 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 704 : ABIArgInfo::getDirect()); 705 } 706 707 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 708 if (RetTy->isVoidType()) 709 return ABIArgInfo::getIgnore(); 710 711 if (isAggregateTypeForABI(RetTy)) 712 return getNaturalAlignIndirect(RetTy); 713 714 // Treat an enum type as its underlying type. 715 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 716 RetTy = EnumTy->getDecl()->getIntegerType(); 717 718 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 719 : ABIArgInfo::getDirect()); 720 } 721 722 //===----------------------------------------------------------------------===// 723 // WebAssembly ABI Implementation 724 // 725 // This is a very simple ABI that relies a lot on DefaultABIInfo. 726 //===----------------------------------------------------------------------===// 727 728 class WebAssemblyABIInfo final : public SwiftABIInfo { 729 DefaultABIInfo defaultInfo; 730 731 public: 732 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT) 733 : SwiftABIInfo(CGT), defaultInfo(CGT) {} 734 735 private: 736 ABIArgInfo classifyReturnType(QualType RetTy) const; 737 ABIArgInfo classifyArgumentType(QualType Ty) const; 738 739 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 740 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 741 // overload them. 742 void computeInfo(CGFunctionInfo &FI) const override { 743 if (!getCXXABI().classifyReturnType(FI)) 744 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 745 for (auto &Arg : FI.arguments()) 746 Arg.info = classifyArgumentType(Arg.type); 747 } 748 749 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 750 QualType Ty) const override; 751 752 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 753 bool asReturnValue) const override { 754 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 755 } 756 757 bool isSwiftErrorInRegister() const override { 758 return false; 759 } 760 }; 761 762 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 763 public: 764 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 765 : TargetCodeGenInfo(new WebAssemblyABIInfo(CGT)) {} 766 767 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 768 CodeGen::CodeGenModule &CGM) const override { 769 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 770 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 771 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 772 llvm::Function *Fn = cast<llvm::Function>(GV); 773 llvm::AttrBuilder B; 774 B.addAttribute("wasm-import-module", Attr->getImportModule()); 775 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 776 } 777 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 778 llvm::Function *Fn = cast<llvm::Function>(GV); 779 llvm::AttrBuilder B; 780 B.addAttribute("wasm-import-name", Attr->getImportName()); 781 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 782 } 783 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 784 llvm::Function *Fn = cast<llvm::Function>(GV); 785 llvm::AttrBuilder B; 786 B.addAttribute("wasm-export-name", Attr->getExportName()); 787 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 788 } 789 } 790 791 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 792 llvm::Function *Fn = cast<llvm::Function>(GV); 793 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 794 Fn->addFnAttr("no-prototype"); 795 } 796 } 797 }; 798 799 /// Classify argument of given type \p Ty. 800 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 801 Ty = useFirstFieldIfTransparentUnion(Ty); 802 803 if (isAggregateTypeForABI(Ty)) { 804 // Records with non-trivial destructors/copy-constructors should not be 805 // passed by value. 806 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 807 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 808 // Ignore empty structs/unions. 809 if (isEmptyRecord(getContext(), Ty, true)) 810 return ABIArgInfo::getIgnore(); 811 // Lower single-element structs to just pass a regular value. TODO: We 812 // could do reasonable-size multiple-element structs too, using getExpand(), 813 // though watch out for things like bitfields. 814 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 815 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 816 } 817 818 // Otherwise just do the default thing. 819 return defaultInfo.classifyArgumentType(Ty); 820 } 821 822 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 823 if (isAggregateTypeForABI(RetTy)) { 824 // Records with non-trivial destructors/copy-constructors should not be 825 // returned by value. 826 if (!getRecordArgABI(RetTy, getCXXABI())) { 827 // Ignore empty structs/unions. 828 if (isEmptyRecord(getContext(), RetTy, true)) 829 return ABIArgInfo::getIgnore(); 830 // Lower single-element structs to just return a regular value. TODO: We 831 // could do reasonable-size multiple-element structs too, using 832 // ABIArgInfo::getDirect(). 833 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 834 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 835 } 836 } 837 838 // Otherwise just do the default thing. 839 return defaultInfo.classifyReturnType(RetTy); 840 } 841 842 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 843 QualType Ty) const { 844 bool IsIndirect = isAggregateTypeForABI(Ty) && 845 !isEmptyRecord(getContext(), Ty, true) && 846 !isSingleElementStruct(Ty, getContext()); 847 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 848 getContext().getTypeInfoInChars(Ty), 849 CharUnits::fromQuantity(4), 850 /*AllowHigherAlign=*/true); 851 } 852 853 //===----------------------------------------------------------------------===// 854 // le32/PNaCl bitcode ABI Implementation 855 // 856 // This is a simplified version of the x86_32 ABI. Arguments and return values 857 // are always passed on the stack. 858 //===----------------------------------------------------------------------===// 859 860 class PNaClABIInfo : public ABIInfo { 861 public: 862 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 863 864 ABIArgInfo classifyReturnType(QualType RetTy) const; 865 ABIArgInfo classifyArgumentType(QualType RetTy) const; 866 867 void computeInfo(CGFunctionInfo &FI) const override; 868 Address EmitVAArg(CodeGenFunction &CGF, 869 Address VAListAddr, QualType Ty) const override; 870 }; 871 872 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 873 public: 874 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 875 : TargetCodeGenInfo(new PNaClABIInfo(CGT)) {} 876 }; 877 878 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 879 if (!getCXXABI().classifyReturnType(FI)) 880 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 881 882 for (auto &I : FI.arguments()) 883 I.info = classifyArgumentType(I.type); 884 } 885 886 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 887 QualType Ty) const { 888 // The PNaCL ABI is a bit odd, in that varargs don't use normal 889 // function classification. Structs get passed directly for varargs 890 // functions, through a rewriting transform in 891 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 892 // this target to actually support a va_arg instructions with an 893 // aggregate type, unlike other targets. 894 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 895 } 896 897 /// Classify argument of given type \p Ty. 898 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 899 if (isAggregateTypeForABI(Ty)) { 900 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 901 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 902 return getNaturalAlignIndirect(Ty); 903 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 904 // Treat an enum type as its underlying type. 905 Ty = EnumTy->getDecl()->getIntegerType(); 906 } else if (Ty->isFloatingType()) { 907 // Floating-point types don't go inreg. 908 return ABIArgInfo::getDirect(); 909 } 910 911 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 912 : ABIArgInfo::getDirect()); 913 } 914 915 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 916 if (RetTy->isVoidType()) 917 return ABIArgInfo::getIgnore(); 918 919 // In the PNaCl ABI we always return records/structures on the stack. 920 if (isAggregateTypeForABI(RetTy)) 921 return getNaturalAlignIndirect(RetTy); 922 923 // Treat an enum type as its underlying type. 924 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 925 RetTy = EnumTy->getDecl()->getIntegerType(); 926 927 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 928 : ABIArgInfo::getDirect()); 929 } 930 931 /// IsX86_MMXType - Return true if this is an MMX type. 932 bool IsX86_MMXType(llvm::Type *IRType) { 933 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 934 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 935 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 936 IRType->getScalarSizeInBits() != 64; 937 } 938 939 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 940 StringRef Constraint, 941 llvm::Type* Ty) { 942 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 943 .Cases("y", "&y", "^Ym", true) 944 .Default(false); 945 if (IsMMXCons && Ty->isVectorTy()) { 946 if (cast<llvm::VectorType>(Ty)->getBitWidth() != 64) { 947 // Invalid MMX constraint 948 return nullptr; 949 } 950 951 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 952 } 953 954 // No operation needed 955 return Ty; 956 } 957 958 /// Returns true if this type can be passed in SSE registers with the 959 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 960 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 961 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 962 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 963 if (BT->getKind() == BuiltinType::LongDouble) { 964 if (&Context.getTargetInfo().getLongDoubleFormat() == 965 &llvm::APFloat::x87DoubleExtended()) 966 return false; 967 } 968 return true; 969 } 970 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 971 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 972 // registers specially. 973 unsigned VecSize = Context.getTypeSize(VT); 974 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 975 return true; 976 } 977 return false; 978 } 979 980 /// Returns true if this aggregate is small enough to be passed in SSE registers 981 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 982 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 983 return NumMembers <= 4; 984 } 985 986 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 987 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 988 auto AI = ABIArgInfo::getDirect(T); 989 AI.setInReg(true); 990 AI.setCanBeFlattened(false); 991 return AI; 992 } 993 994 //===----------------------------------------------------------------------===// 995 // X86-32 ABI Implementation 996 //===----------------------------------------------------------------------===// 997 998 /// Similar to llvm::CCState, but for Clang. 999 struct CCState { 1000 CCState(CGFunctionInfo &FI) 1001 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1002 1003 llvm::SmallBitVector IsPreassigned; 1004 unsigned CC = CallingConv::CC_C; 1005 unsigned FreeRegs = 0; 1006 unsigned FreeSSERegs = 0; 1007 }; 1008 1009 enum { 1010 // Vectorcall only allows the first 6 parameters to be passed in registers. 1011 VectorcallMaxParamNumAsReg = 6 1012 }; 1013 1014 /// X86_32ABIInfo - The X86-32 ABI information. 1015 class X86_32ABIInfo : public SwiftABIInfo { 1016 enum Class { 1017 Integer, 1018 Float 1019 }; 1020 1021 static const unsigned MinABIStackAlignInBytes = 4; 1022 1023 bool IsDarwinVectorABI; 1024 bool IsRetSmallStructInRegABI; 1025 bool IsWin32StructABI; 1026 bool IsSoftFloatABI; 1027 bool IsMCUABI; 1028 unsigned DefaultNumRegisterParameters; 1029 1030 static bool isRegisterSize(unsigned Size) { 1031 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1032 } 1033 1034 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1035 // FIXME: Assumes vectorcall is in use. 1036 return isX86VectorTypeForVectorCall(getContext(), Ty); 1037 } 1038 1039 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1040 uint64_t NumMembers) const override { 1041 // FIXME: Assumes vectorcall is in use. 1042 return isX86VectorCallAggregateSmallEnough(NumMembers); 1043 } 1044 1045 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1046 1047 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1048 /// such that the argument will be passed in memory. 1049 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1050 1051 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1052 1053 /// Return the alignment to use for the given type on the stack. 1054 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1055 1056 Class classify(QualType Ty) const; 1057 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1058 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1059 1060 /// Updates the number of available free registers, returns 1061 /// true if any registers were allocated. 1062 bool updateFreeRegs(QualType Ty, CCState &State) const; 1063 1064 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1065 bool &NeedsPadding) const; 1066 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1067 1068 bool canExpandIndirectArgument(QualType Ty) const; 1069 1070 /// Rewrite the function info so that all memory arguments use 1071 /// inalloca. 1072 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1073 1074 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1075 CharUnits &StackOffset, ABIArgInfo &Info, 1076 QualType Type) const; 1077 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1078 1079 public: 1080 1081 void computeInfo(CGFunctionInfo &FI) const override; 1082 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1083 QualType Ty) const override; 1084 1085 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1086 bool RetSmallStructInRegABI, bool Win32StructABI, 1087 unsigned NumRegisterParameters, bool SoftFloatABI) 1088 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1089 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1090 IsWin32StructABI(Win32StructABI), 1091 IsSoftFloatABI(SoftFloatABI), 1092 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1093 DefaultNumRegisterParameters(NumRegisterParameters) {} 1094 1095 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1096 bool asReturnValue) const override { 1097 // LLVM's x86-32 lowering currently only assigns up to three 1098 // integer registers and three fp registers. Oddly, it'll use up to 1099 // four vector registers for vectors, but those can overlap with the 1100 // scalar registers. 1101 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1102 } 1103 1104 bool isSwiftErrorInRegister() const override { 1105 // x86-32 lowering does not support passing swifterror in a register. 1106 return false; 1107 } 1108 }; 1109 1110 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1111 public: 1112 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1113 bool RetSmallStructInRegABI, bool Win32StructABI, 1114 unsigned NumRegisterParameters, bool SoftFloatABI) 1115 : TargetCodeGenInfo(new X86_32ABIInfo( 1116 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1117 NumRegisterParameters, SoftFloatABI)) {} 1118 1119 static bool isStructReturnInRegABI( 1120 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1121 1122 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1123 CodeGen::CodeGenModule &CGM) const override; 1124 1125 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1126 // Darwin uses different dwarf register numbers for EH. 1127 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1128 return 4; 1129 } 1130 1131 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1132 llvm::Value *Address) const override; 1133 1134 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1135 StringRef Constraint, 1136 llvm::Type* Ty) const override { 1137 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1138 } 1139 1140 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1141 std::string &Constraints, 1142 std::vector<llvm::Type *> &ResultRegTypes, 1143 std::vector<llvm::Type *> &ResultTruncRegTypes, 1144 std::vector<LValue> &ResultRegDests, 1145 std::string &AsmString, 1146 unsigned NumOutputs) const override; 1147 1148 llvm::Constant * 1149 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1150 unsigned Sig = (0xeb << 0) | // jmp rel8 1151 (0x06 << 8) | // .+0x08 1152 ('v' << 16) | 1153 ('2' << 24); 1154 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1155 } 1156 1157 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1158 return "movl\t%ebp, %ebp" 1159 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1160 } 1161 }; 1162 1163 } 1164 1165 /// Rewrite input constraint references after adding some output constraints. 1166 /// In the case where there is one output and one input and we add one output, 1167 /// we need to replace all operand references greater than or equal to 1: 1168 /// mov $0, $1 1169 /// mov eax, $1 1170 /// The result will be: 1171 /// mov $0, $2 1172 /// mov eax, $2 1173 static void rewriteInputConstraintReferences(unsigned FirstIn, 1174 unsigned NumNewOuts, 1175 std::string &AsmString) { 1176 std::string Buf; 1177 llvm::raw_string_ostream OS(Buf); 1178 size_t Pos = 0; 1179 while (Pos < AsmString.size()) { 1180 size_t DollarStart = AsmString.find('$', Pos); 1181 if (DollarStart == std::string::npos) 1182 DollarStart = AsmString.size(); 1183 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1184 if (DollarEnd == std::string::npos) 1185 DollarEnd = AsmString.size(); 1186 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1187 Pos = DollarEnd; 1188 size_t NumDollars = DollarEnd - DollarStart; 1189 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1190 // We have an operand reference. 1191 size_t DigitStart = Pos; 1192 if (AsmString[DigitStart] == '{') { 1193 OS << '{'; 1194 ++DigitStart; 1195 } 1196 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1197 if (DigitEnd == std::string::npos) 1198 DigitEnd = AsmString.size(); 1199 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1200 unsigned OperandIndex; 1201 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1202 if (OperandIndex >= FirstIn) 1203 OperandIndex += NumNewOuts; 1204 OS << OperandIndex; 1205 } else { 1206 OS << OperandStr; 1207 } 1208 Pos = DigitEnd; 1209 } 1210 } 1211 AsmString = std::move(OS.str()); 1212 } 1213 1214 /// Add output constraints for EAX:EDX because they are return registers. 1215 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1216 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1217 std::vector<llvm::Type *> &ResultRegTypes, 1218 std::vector<llvm::Type *> &ResultTruncRegTypes, 1219 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1220 unsigned NumOutputs) const { 1221 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1222 1223 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1224 // larger. 1225 if (!Constraints.empty()) 1226 Constraints += ','; 1227 if (RetWidth <= 32) { 1228 Constraints += "={eax}"; 1229 ResultRegTypes.push_back(CGF.Int32Ty); 1230 } else { 1231 // Use the 'A' constraint for EAX:EDX. 1232 Constraints += "=A"; 1233 ResultRegTypes.push_back(CGF.Int64Ty); 1234 } 1235 1236 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1237 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1238 ResultTruncRegTypes.push_back(CoerceTy); 1239 1240 // Coerce the integer by bitcasting the return slot pointer. 1241 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1242 CoerceTy->getPointerTo())); 1243 ResultRegDests.push_back(ReturnSlot); 1244 1245 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1246 } 1247 1248 /// shouldReturnTypeInRegister - Determine if the given type should be 1249 /// returned in a register (for the Darwin and MCU ABI). 1250 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1251 ASTContext &Context) const { 1252 uint64_t Size = Context.getTypeSize(Ty); 1253 1254 // For i386, type must be register sized. 1255 // For the MCU ABI, it only needs to be <= 8-byte 1256 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1257 return false; 1258 1259 if (Ty->isVectorType()) { 1260 // 64- and 128- bit vectors inside structures are not returned in 1261 // registers. 1262 if (Size == 64 || Size == 128) 1263 return false; 1264 1265 return true; 1266 } 1267 1268 // If this is a builtin, pointer, enum, complex type, member pointer, or 1269 // member function pointer it is ok. 1270 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1271 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1272 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1273 return true; 1274 1275 // Arrays are treated like records. 1276 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1277 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1278 1279 // Otherwise, it must be a record type. 1280 const RecordType *RT = Ty->getAs<RecordType>(); 1281 if (!RT) return false; 1282 1283 // FIXME: Traverse bases here too. 1284 1285 // Structure types are passed in register if all fields would be 1286 // passed in a register. 1287 for (const auto *FD : RT->getDecl()->fields()) { 1288 // Empty fields are ignored. 1289 if (isEmptyField(Context, FD, true)) 1290 continue; 1291 1292 // Check fields recursively. 1293 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1294 return false; 1295 } 1296 return true; 1297 } 1298 1299 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1300 // Treat complex types as the element type. 1301 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1302 Ty = CTy->getElementType(); 1303 1304 // Check for a type which we know has a simple scalar argument-passing 1305 // convention without any padding. (We're specifically looking for 32 1306 // and 64-bit integer and integer-equivalents, float, and double.) 1307 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1308 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1309 return false; 1310 1311 uint64_t Size = Context.getTypeSize(Ty); 1312 return Size == 32 || Size == 64; 1313 } 1314 1315 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1316 uint64_t &Size) { 1317 for (const auto *FD : RD->fields()) { 1318 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1319 // argument is smaller than 32-bits, expanding the struct will create 1320 // alignment padding. 1321 if (!is32Or64BitBasicType(FD->getType(), Context)) 1322 return false; 1323 1324 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1325 // how to expand them yet, and the predicate for telling if a bitfield still 1326 // counts as "basic" is more complicated than what we were doing previously. 1327 if (FD->isBitField()) 1328 return false; 1329 1330 Size += Context.getTypeSize(FD->getType()); 1331 } 1332 return true; 1333 } 1334 1335 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1336 uint64_t &Size) { 1337 // Don't do this if there are any non-empty bases. 1338 for (const CXXBaseSpecifier &Base : RD->bases()) { 1339 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1340 Size)) 1341 return false; 1342 } 1343 if (!addFieldSizes(Context, RD, Size)) 1344 return false; 1345 return true; 1346 } 1347 1348 /// Test whether an argument type which is to be passed indirectly (on the 1349 /// stack) would have the equivalent layout if it was expanded into separate 1350 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1351 /// optimizations. 1352 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1353 // We can only expand structure types. 1354 const RecordType *RT = Ty->getAs<RecordType>(); 1355 if (!RT) 1356 return false; 1357 const RecordDecl *RD = RT->getDecl(); 1358 uint64_t Size = 0; 1359 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1360 if (!IsWin32StructABI) { 1361 // On non-Windows, we have to conservatively match our old bitcode 1362 // prototypes in order to be ABI-compatible at the bitcode level. 1363 if (!CXXRD->isCLike()) 1364 return false; 1365 } else { 1366 // Don't do this for dynamic classes. 1367 if (CXXRD->isDynamicClass()) 1368 return false; 1369 } 1370 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1371 return false; 1372 } else { 1373 if (!addFieldSizes(getContext(), RD, Size)) 1374 return false; 1375 } 1376 1377 // We can do this if there was no alignment padding. 1378 return Size == getContext().getTypeSize(Ty); 1379 } 1380 1381 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1382 // If the return value is indirect, then the hidden argument is consuming one 1383 // integer register. 1384 if (State.FreeRegs) { 1385 --State.FreeRegs; 1386 if (!IsMCUABI) 1387 return getNaturalAlignIndirectInReg(RetTy); 1388 } 1389 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1390 } 1391 1392 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1393 CCState &State) const { 1394 if (RetTy->isVoidType()) 1395 return ABIArgInfo::getIgnore(); 1396 1397 const Type *Base = nullptr; 1398 uint64_t NumElts = 0; 1399 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1400 State.CC == llvm::CallingConv::X86_RegCall) && 1401 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1402 // The LLVM struct type for such an aggregate should lower properly. 1403 return ABIArgInfo::getDirect(); 1404 } 1405 1406 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1407 // On Darwin, some vectors are returned in registers. 1408 if (IsDarwinVectorABI) { 1409 uint64_t Size = getContext().getTypeSize(RetTy); 1410 1411 // 128-bit vectors are a special case; they are returned in 1412 // registers and we need to make sure to pick a type the LLVM 1413 // backend will like. 1414 if (Size == 128) 1415 return ABIArgInfo::getDirect(llvm::VectorType::get( 1416 llvm::Type::getInt64Ty(getVMContext()), 2)); 1417 1418 // Always return in register if it fits in a general purpose 1419 // register, or if it is 64 bits and has a single element. 1420 if ((Size == 8 || Size == 16 || Size == 32) || 1421 (Size == 64 && VT->getNumElements() == 1)) 1422 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1423 Size)); 1424 1425 return getIndirectReturnResult(RetTy, State); 1426 } 1427 1428 return ABIArgInfo::getDirect(); 1429 } 1430 1431 if (isAggregateTypeForABI(RetTy)) { 1432 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1433 // Structures with flexible arrays are always indirect. 1434 if (RT->getDecl()->hasFlexibleArrayMember()) 1435 return getIndirectReturnResult(RetTy, State); 1436 } 1437 1438 // If specified, structs and unions are always indirect. 1439 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1440 return getIndirectReturnResult(RetTy, State); 1441 1442 // Ignore empty structs/unions. 1443 if (isEmptyRecord(getContext(), RetTy, true)) 1444 return ABIArgInfo::getIgnore(); 1445 1446 // Small structures which are register sized are generally returned 1447 // in a register. 1448 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1449 uint64_t Size = getContext().getTypeSize(RetTy); 1450 1451 // As a special-case, if the struct is a "single-element" struct, and 1452 // the field is of type "float" or "double", return it in a 1453 // floating-point register. (MSVC does not apply this special case.) 1454 // We apply a similar transformation for pointer types to improve the 1455 // quality of the generated IR. 1456 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1457 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1458 || SeltTy->hasPointerRepresentation()) 1459 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1460 1461 // FIXME: We should be able to narrow this integer in cases with dead 1462 // padding. 1463 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1464 } 1465 1466 return getIndirectReturnResult(RetTy, State); 1467 } 1468 1469 // Treat an enum type as its underlying type. 1470 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1471 RetTy = EnumTy->getDecl()->getIntegerType(); 1472 1473 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 1474 : ABIArgInfo::getDirect()); 1475 } 1476 1477 static bool isSSEVectorType(ASTContext &Context, QualType Ty) { 1478 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1479 } 1480 1481 static bool isRecordWithSSEVectorType(ASTContext &Context, QualType Ty) { 1482 const RecordType *RT = Ty->getAs<RecordType>(); 1483 if (!RT) 1484 return 0; 1485 const RecordDecl *RD = RT->getDecl(); 1486 1487 // If this is a C++ record, check the bases first. 1488 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1489 for (const auto &I : CXXRD->bases()) 1490 if (!isRecordWithSSEVectorType(Context, I.getType())) 1491 return false; 1492 1493 for (const auto *i : RD->fields()) { 1494 QualType FT = i->getType(); 1495 1496 if (isSSEVectorType(Context, FT)) 1497 return true; 1498 1499 if (isRecordWithSSEVectorType(Context, FT)) 1500 return true; 1501 } 1502 1503 return false; 1504 } 1505 1506 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1507 unsigned Align) const { 1508 // Otherwise, if the alignment is less than or equal to the minimum ABI 1509 // alignment, just use the default; the backend will handle this. 1510 if (Align <= MinABIStackAlignInBytes) 1511 return 0; // Use default alignment. 1512 1513 // On non-Darwin, the stack type alignment is always 4. 1514 if (!IsDarwinVectorABI) { 1515 // Set explicit alignment, since we may need to realign the top. 1516 return MinABIStackAlignInBytes; 1517 } 1518 1519 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1520 if (Align >= 16 && (isSSEVectorType(getContext(), Ty) || 1521 isRecordWithSSEVectorType(getContext(), Ty))) 1522 return 16; 1523 1524 return MinABIStackAlignInBytes; 1525 } 1526 1527 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1528 CCState &State) const { 1529 if (!ByVal) { 1530 if (State.FreeRegs) { 1531 --State.FreeRegs; // Non-byval indirects just use one pointer. 1532 if (!IsMCUABI) 1533 return getNaturalAlignIndirectInReg(Ty); 1534 } 1535 return getNaturalAlignIndirect(Ty, false); 1536 } 1537 1538 // Compute the byval alignment. 1539 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1540 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1541 if (StackAlign == 0) 1542 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1543 1544 // If the stack alignment is less than the type alignment, realign the 1545 // argument. 1546 bool Realign = TypeAlign > StackAlign; 1547 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1548 /*ByVal=*/true, Realign); 1549 } 1550 1551 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1552 const Type *T = isSingleElementStruct(Ty, getContext()); 1553 if (!T) 1554 T = Ty.getTypePtr(); 1555 1556 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1557 BuiltinType::Kind K = BT->getKind(); 1558 if (K == BuiltinType::Float || K == BuiltinType::Double) 1559 return Float; 1560 } 1561 return Integer; 1562 } 1563 1564 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1565 if (!IsSoftFloatABI) { 1566 Class C = classify(Ty); 1567 if (C == Float) 1568 return false; 1569 } 1570 1571 unsigned Size = getContext().getTypeSize(Ty); 1572 unsigned SizeInRegs = (Size + 31) / 32; 1573 1574 if (SizeInRegs == 0) 1575 return false; 1576 1577 if (!IsMCUABI) { 1578 if (SizeInRegs > State.FreeRegs) { 1579 State.FreeRegs = 0; 1580 return false; 1581 } 1582 } else { 1583 // The MCU psABI allows passing parameters in-reg even if there are 1584 // earlier parameters that are passed on the stack. Also, 1585 // it does not allow passing >8-byte structs in-register, 1586 // even if there are 3 free registers available. 1587 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1588 return false; 1589 } 1590 1591 State.FreeRegs -= SizeInRegs; 1592 return true; 1593 } 1594 1595 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1596 bool &InReg, 1597 bool &NeedsPadding) const { 1598 // On Windows, aggregates other than HFAs are never passed in registers, and 1599 // they do not consume register slots. Homogenous floating-point aggregates 1600 // (HFAs) have already been dealt with at this point. 1601 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1602 return false; 1603 1604 NeedsPadding = false; 1605 InReg = !IsMCUABI; 1606 1607 if (!updateFreeRegs(Ty, State)) 1608 return false; 1609 1610 if (IsMCUABI) 1611 return true; 1612 1613 if (State.CC == llvm::CallingConv::X86_FastCall || 1614 State.CC == llvm::CallingConv::X86_VectorCall || 1615 State.CC == llvm::CallingConv::X86_RegCall) { 1616 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1617 NeedsPadding = true; 1618 1619 return false; 1620 } 1621 1622 return true; 1623 } 1624 1625 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1626 if (!updateFreeRegs(Ty, State)) 1627 return false; 1628 1629 if (IsMCUABI) 1630 return false; 1631 1632 if (State.CC == llvm::CallingConv::X86_FastCall || 1633 State.CC == llvm::CallingConv::X86_VectorCall || 1634 State.CC == llvm::CallingConv::X86_RegCall) { 1635 if (getContext().getTypeSize(Ty) > 32) 1636 return false; 1637 1638 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1639 Ty->isReferenceType()); 1640 } 1641 1642 return true; 1643 } 1644 1645 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1646 // Vectorcall x86 works subtly different than in x64, so the format is 1647 // a bit different than the x64 version. First, all vector types (not HVAs) 1648 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1649 // This differs from the x64 implementation, where the first 6 by INDEX get 1650 // registers. 1651 // In the second pass over the arguments, HVAs are passed in the remaining 1652 // vector registers if possible, or indirectly by address. The address will be 1653 // passed in ECX/EDX if available. Any other arguments are passed according to 1654 // the usual fastcall rules. 1655 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1656 for (int I = 0, E = Args.size(); I < E; ++I) { 1657 const Type *Base = nullptr; 1658 uint64_t NumElts = 0; 1659 const QualType &Ty = Args[I].type; 1660 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1661 isHomogeneousAggregate(Ty, Base, NumElts)) { 1662 if (State.FreeSSERegs >= NumElts) { 1663 State.FreeSSERegs -= NumElts; 1664 Args[I].info = ABIArgInfo::getDirect(); 1665 State.IsPreassigned.set(I); 1666 } 1667 } 1668 } 1669 } 1670 1671 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1672 CCState &State) const { 1673 // FIXME: Set alignment on indirect arguments. 1674 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1675 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1676 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1677 1678 Ty = useFirstFieldIfTransparentUnion(Ty); 1679 1680 // Check with the C++ ABI first. 1681 const RecordType *RT = Ty->getAs<RecordType>(); 1682 if (RT) { 1683 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1684 if (RAA == CGCXXABI::RAA_Indirect) { 1685 return getIndirectResult(Ty, false, State); 1686 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1687 // The field index doesn't matter, we'll fix it up later. 1688 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1689 } 1690 } 1691 1692 // Regcall uses the concept of a homogenous vector aggregate, similar 1693 // to other targets. 1694 const Type *Base = nullptr; 1695 uint64_t NumElts = 0; 1696 if ((IsRegCall || IsVectorCall) && 1697 isHomogeneousAggregate(Ty, Base, NumElts)) { 1698 if (State.FreeSSERegs >= NumElts) { 1699 State.FreeSSERegs -= NumElts; 1700 1701 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1702 // does. 1703 if (IsVectorCall) 1704 return getDirectX86Hva(); 1705 1706 if (Ty->isBuiltinType() || Ty->isVectorType()) 1707 return ABIArgInfo::getDirect(); 1708 return ABIArgInfo::getExpand(); 1709 } 1710 return getIndirectResult(Ty, /*ByVal=*/false, State); 1711 } 1712 1713 if (isAggregateTypeForABI(Ty)) { 1714 // Structures with flexible arrays are always indirect. 1715 // FIXME: This should not be byval! 1716 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1717 return getIndirectResult(Ty, true, State); 1718 1719 // Ignore empty structs/unions on non-Windows. 1720 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1721 return ABIArgInfo::getIgnore(); 1722 1723 llvm::LLVMContext &LLVMContext = getVMContext(); 1724 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1725 bool NeedsPadding = false; 1726 bool InReg; 1727 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1728 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 1729 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1730 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1731 if (InReg) 1732 return ABIArgInfo::getDirectInReg(Result); 1733 else 1734 return ABIArgInfo::getDirect(Result); 1735 } 1736 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1737 1738 // Expand small (<= 128-bit) record types when we know that the stack layout 1739 // of those arguments will match the struct. This is important because the 1740 // LLVM backend isn't smart enough to remove byval, which inhibits many 1741 // optimizations. 1742 // Don't do this for the MCU if there are still free integer registers 1743 // (see X86_64 ABI for full explanation). 1744 if (getContext().getTypeSize(Ty) <= 4 * 32 && 1745 (!IsMCUABI || State.FreeRegs == 0) && canExpandIndirectArgument(Ty)) 1746 return ABIArgInfo::getExpandWithPadding( 1747 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1748 1749 return getIndirectResult(Ty, true, State); 1750 } 1751 1752 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1753 // On Darwin, some vectors are passed in memory, we handle this by passing 1754 // it as an i8/i16/i32/i64. 1755 if (IsDarwinVectorABI) { 1756 uint64_t Size = getContext().getTypeSize(Ty); 1757 if ((Size == 8 || Size == 16 || Size == 32) || 1758 (Size == 64 && VT->getNumElements() == 1)) 1759 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1760 Size)); 1761 } 1762 1763 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1764 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1765 1766 return ABIArgInfo::getDirect(); 1767 } 1768 1769 1770 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1771 Ty = EnumTy->getDecl()->getIntegerType(); 1772 1773 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1774 1775 if (Ty->isPromotableIntegerType()) { 1776 if (InReg) 1777 return ABIArgInfo::getExtendInReg(Ty); 1778 return ABIArgInfo::getExtend(Ty); 1779 } 1780 1781 if (InReg) 1782 return ABIArgInfo::getDirectInReg(); 1783 return ABIArgInfo::getDirect(); 1784 } 1785 1786 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1787 CCState State(FI); 1788 if (IsMCUABI) 1789 State.FreeRegs = 3; 1790 else if (State.CC == llvm::CallingConv::X86_FastCall) 1791 State.FreeRegs = 2; 1792 else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1793 State.FreeRegs = 2; 1794 State.FreeSSERegs = 6; 1795 } else if (FI.getHasRegParm()) 1796 State.FreeRegs = FI.getRegParm(); 1797 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1798 State.FreeRegs = 5; 1799 State.FreeSSERegs = 8; 1800 } else 1801 State.FreeRegs = DefaultNumRegisterParameters; 1802 1803 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1804 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1805 } else if (FI.getReturnInfo().isIndirect()) { 1806 // The C++ ABI is not aware of register usage, so we have to check if the 1807 // return value was sret and put it in a register ourselves if appropriate. 1808 if (State.FreeRegs) { 1809 --State.FreeRegs; // The sret parameter consumes a register. 1810 if (!IsMCUABI) 1811 FI.getReturnInfo().setInReg(true); 1812 } 1813 } 1814 1815 // The chain argument effectively gives us another free register. 1816 if (FI.isChainCall()) 1817 ++State.FreeRegs; 1818 1819 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1820 // arguments to XMM registers as available. 1821 if (State.CC == llvm::CallingConv::X86_VectorCall) 1822 runVectorCallFirstPass(FI, State); 1823 1824 bool UsedInAlloca = false; 1825 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1826 for (int I = 0, E = Args.size(); I < E; ++I) { 1827 // Skip arguments that have already been assigned. 1828 if (State.IsPreassigned.test(I)) 1829 continue; 1830 1831 Args[I].info = classifyArgumentType(Args[I].type, State); 1832 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1833 } 1834 1835 // If we needed to use inalloca for any argument, do a second pass and rewrite 1836 // all the memory arguments to use inalloca. 1837 if (UsedInAlloca) 1838 rewriteWithInAlloca(FI); 1839 } 1840 1841 void 1842 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1843 CharUnits &StackOffset, ABIArgInfo &Info, 1844 QualType Type) const { 1845 // Arguments are always 4-byte-aligned. 1846 CharUnits FieldAlign = CharUnits::fromQuantity(4); 1847 1848 assert(StackOffset.isMultipleOf(FieldAlign) && "unaligned inalloca struct"); 1849 Info = ABIArgInfo::getInAlloca(FrameFields.size()); 1850 FrameFields.push_back(CGT.ConvertTypeForMem(Type)); 1851 StackOffset += getContext().getTypeSizeInChars(Type); 1852 1853 // Insert padding bytes to respect alignment. 1854 CharUnits FieldEnd = StackOffset; 1855 StackOffset = FieldEnd.alignTo(FieldAlign); 1856 if (StackOffset != FieldEnd) { 1857 CharUnits NumBytes = StackOffset - FieldEnd; 1858 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1859 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1860 FrameFields.push_back(Ty); 1861 } 1862 } 1863 1864 static bool isArgInAlloca(const ABIArgInfo &Info) { 1865 // Leave ignored and inreg arguments alone. 1866 switch (Info.getKind()) { 1867 case ABIArgInfo::InAlloca: 1868 return true; 1869 case ABIArgInfo::Indirect: 1870 assert(Info.getIndirectByVal()); 1871 return true; 1872 case ABIArgInfo::Ignore: 1873 return false; 1874 case ABIArgInfo::Direct: 1875 case ABIArgInfo::Extend: 1876 if (Info.getInReg()) 1877 return false; 1878 return true; 1879 case ABIArgInfo::Expand: 1880 case ABIArgInfo::CoerceAndExpand: 1881 // These are aggregate types which are never passed in registers when 1882 // inalloca is involved. 1883 return true; 1884 } 1885 llvm_unreachable("invalid enum"); 1886 } 1887 1888 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 1889 assert(IsWin32StructABI && "inalloca only supported on win32"); 1890 1891 // Build a packed struct type for all of the arguments in memory. 1892 SmallVector<llvm::Type *, 6> FrameFields; 1893 1894 // The stack alignment is always 4. 1895 CharUnits StackAlign = CharUnits::fromQuantity(4); 1896 1897 CharUnits StackOffset; 1898 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 1899 1900 // Put 'this' into the struct before 'sret', if necessary. 1901 bool IsThisCall = 1902 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 1903 ABIArgInfo &Ret = FI.getReturnInfo(); 1904 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 1905 isArgInAlloca(I->info)) { 1906 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1907 ++I; 1908 } 1909 1910 // Put the sret parameter into the inalloca struct if it's in memory. 1911 if (Ret.isIndirect() && !Ret.getInReg()) { 1912 CanQualType PtrTy = getContext().getPointerType(FI.getReturnType()); 1913 addFieldToArgStruct(FrameFields, StackOffset, Ret, PtrTy); 1914 // On Windows, the hidden sret parameter is always returned in eax. 1915 Ret.setInAllocaSRet(IsWin32StructABI); 1916 } 1917 1918 // Skip the 'this' parameter in ecx. 1919 if (IsThisCall) 1920 ++I; 1921 1922 // Put arguments passed in memory into the struct. 1923 for (; I != E; ++I) { 1924 if (isArgInAlloca(I->info)) 1925 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 1926 } 1927 1928 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 1929 /*isPacked=*/true), 1930 StackAlign); 1931 } 1932 1933 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 1934 Address VAListAddr, QualType Ty) const { 1935 1936 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 1937 1938 // x86-32 changes the alignment of certain arguments on the stack. 1939 // 1940 // Just messing with TypeInfo like this works because we never pass 1941 // anything indirectly. 1942 TypeInfo.second = CharUnits::fromQuantity( 1943 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 1944 1945 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 1946 TypeInfo, CharUnits::fromQuantity(4), 1947 /*AllowHigherAlign*/ true); 1948 } 1949 1950 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 1951 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 1952 assert(Triple.getArch() == llvm::Triple::x86); 1953 1954 switch (Opts.getStructReturnConvention()) { 1955 case CodeGenOptions::SRCK_Default: 1956 break; 1957 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 1958 return false; 1959 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 1960 return true; 1961 } 1962 1963 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 1964 return true; 1965 1966 switch (Triple.getOS()) { 1967 case llvm::Triple::DragonFly: 1968 case llvm::Triple::FreeBSD: 1969 case llvm::Triple::OpenBSD: 1970 case llvm::Triple::Win32: 1971 return true; 1972 default: 1973 return false; 1974 } 1975 } 1976 1977 void X86_32TargetCodeGenInfo::setTargetAttributes( 1978 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 1979 if (GV->isDeclaration()) 1980 return; 1981 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 1982 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 1983 llvm::Function *Fn = cast<llvm::Function>(GV); 1984 Fn->addFnAttr("stackrealign"); 1985 } 1986 if (FD->hasAttr<AnyX86InterruptAttr>()) { 1987 llvm::Function *Fn = cast<llvm::Function>(GV); 1988 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 1989 } 1990 } 1991 } 1992 1993 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 1994 CodeGen::CodeGenFunction &CGF, 1995 llvm::Value *Address) const { 1996 CodeGen::CGBuilderTy &Builder = CGF.Builder; 1997 1998 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 1999 2000 // 0-7 are the eight integer registers; the order is different 2001 // on Darwin (for EH), but the range is the same. 2002 // 8 is %eip. 2003 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2004 2005 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2006 // 12-16 are st(0..4). Not sure why we stop at 4. 2007 // These have size 16, which is sizeof(long double) on 2008 // platforms with 8-byte alignment for that type. 2009 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2010 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2011 2012 } else { 2013 // 9 is %eflags, which doesn't get a size on Darwin for some 2014 // reason. 2015 Builder.CreateAlignedStore( 2016 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2017 CharUnits::One()); 2018 2019 // 11-16 are st(0..5). Not sure why we stop at 5. 2020 // These have size 12, which is sizeof(long double) on 2021 // platforms with 4-byte alignment for that type. 2022 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2023 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2024 } 2025 2026 return false; 2027 } 2028 2029 //===----------------------------------------------------------------------===// 2030 // X86-64 ABI Implementation 2031 //===----------------------------------------------------------------------===// 2032 2033 2034 namespace { 2035 /// The AVX ABI level for X86 targets. 2036 enum class X86AVXABILevel { 2037 None, 2038 AVX, 2039 AVX512 2040 }; 2041 2042 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2043 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2044 switch (AVXLevel) { 2045 case X86AVXABILevel::AVX512: 2046 return 512; 2047 case X86AVXABILevel::AVX: 2048 return 256; 2049 case X86AVXABILevel::None: 2050 return 128; 2051 } 2052 llvm_unreachable("Unknown AVXLevel"); 2053 } 2054 2055 /// X86_64ABIInfo - The X86_64 ABI information. 2056 class X86_64ABIInfo : public SwiftABIInfo { 2057 enum Class { 2058 Integer = 0, 2059 SSE, 2060 SSEUp, 2061 X87, 2062 X87Up, 2063 ComplexX87, 2064 NoClass, 2065 Memory 2066 }; 2067 2068 /// merge - Implement the X86_64 ABI merging algorithm. 2069 /// 2070 /// Merge an accumulating classification \arg Accum with a field 2071 /// classification \arg Field. 2072 /// 2073 /// \param Accum - The accumulating classification. This should 2074 /// always be either NoClass or the result of a previous merge 2075 /// call. In addition, this should never be Memory (the caller 2076 /// should just return Memory for the aggregate). 2077 static Class merge(Class Accum, Class Field); 2078 2079 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2080 /// 2081 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2082 /// final MEMORY or SSE classes when necessary. 2083 /// 2084 /// \param AggregateSize - The size of the current aggregate in 2085 /// the classification process. 2086 /// 2087 /// \param Lo - The classification for the parts of the type 2088 /// residing in the low word of the containing object. 2089 /// 2090 /// \param Hi - The classification for the parts of the type 2091 /// residing in the higher words of the containing object. 2092 /// 2093 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2094 2095 /// classify - Determine the x86_64 register classes in which the 2096 /// given type T should be passed. 2097 /// 2098 /// \param Lo - The classification for the parts of the type 2099 /// residing in the low word of the containing object. 2100 /// 2101 /// \param Hi - The classification for the parts of the type 2102 /// residing in the high word of the containing object. 2103 /// 2104 /// \param OffsetBase - The bit offset of this type in the 2105 /// containing object. Some parameters are classified different 2106 /// depending on whether they straddle an eightbyte boundary. 2107 /// 2108 /// \param isNamedArg - Whether the argument in question is a "named" 2109 /// argument, as used in AMD64-ABI 3.5.7. 2110 /// 2111 /// If a word is unused its result will be NoClass; if a type should 2112 /// be passed in Memory then at least the classification of \arg Lo 2113 /// will be Memory. 2114 /// 2115 /// The \arg Lo class will be NoClass iff the argument is ignored. 2116 /// 2117 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2118 /// also be ComplexX87. 2119 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2120 bool isNamedArg) const; 2121 2122 llvm::Type *GetByteVectorType(QualType Ty) const; 2123 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2124 unsigned IROffset, QualType SourceTy, 2125 unsigned SourceOffset) const; 2126 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2127 unsigned IROffset, QualType SourceTy, 2128 unsigned SourceOffset) const; 2129 2130 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2131 /// such that the argument will be returned in memory. 2132 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2133 2134 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2135 /// such that the argument will be passed in memory. 2136 /// 2137 /// \param freeIntRegs - The number of free integer registers remaining 2138 /// available. 2139 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2140 2141 ABIArgInfo classifyReturnType(QualType RetTy) const; 2142 2143 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2144 unsigned &neededInt, unsigned &neededSSE, 2145 bool isNamedArg) const; 2146 2147 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2148 unsigned &NeededSSE) const; 2149 2150 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2151 unsigned &NeededSSE) const; 2152 2153 bool IsIllegalVectorType(QualType Ty) const; 2154 2155 /// The 0.98 ABI revision clarified a lot of ambiguities, 2156 /// unfortunately in ways that were not always consistent with 2157 /// certain previous compilers. In particular, platforms which 2158 /// required strict binary compatibility with older versions of GCC 2159 /// may need to exempt themselves. 2160 bool honorsRevision0_98() const { 2161 return !getTarget().getTriple().isOSDarwin(); 2162 } 2163 2164 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2165 /// classify it as INTEGER (for compatibility with older clang compilers). 2166 bool classifyIntegerMMXAsSSE() const { 2167 // Clang <= 3.8 did not do this. 2168 if (getContext().getLangOpts().getClangABICompat() <= 2169 LangOptions::ClangABI::Ver3_8) 2170 return false; 2171 2172 const llvm::Triple &Triple = getTarget().getTriple(); 2173 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2174 return false; 2175 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2176 return false; 2177 return true; 2178 } 2179 2180 // GCC classifies vectors of __int128 as memory. 2181 bool passInt128VectorsInMem() const { 2182 // Clang <= 9.0 did not do this. 2183 if (getContext().getLangOpts().getClangABICompat() <= 2184 LangOptions::ClangABI::Ver9) 2185 return false; 2186 2187 const llvm::Triple &T = getTarget().getTriple(); 2188 return T.isOSLinux() || T.isOSNetBSD(); 2189 } 2190 2191 X86AVXABILevel AVXLevel; 2192 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2193 // 64-bit hardware. 2194 bool Has64BitPointers; 2195 2196 public: 2197 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2198 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2199 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2200 } 2201 2202 bool isPassedUsingAVXType(QualType type) const { 2203 unsigned neededInt, neededSSE; 2204 // The freeIntRegs argument doesn't matter here. 2205 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2206 /*isNamedArg*/true); 2207 if (info.isDirect()) { 2208 llvm::Type *ty = info.getCoerceToType(); 2209 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2210 return (vectorTy->getBitWidth() > 128); 2211 } 2212 return false; 2213 } 2214 2215 void computeInfo(CGFunctionInfo &FI) const override; 2216 2217 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2218 QualType Ty) const override; 2219 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2220 QualType Ty) const override; 2221 2222 bool has64BitPointers() const { 2223 return Has64BitPointers; 2224 } 2225 2226 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2227 bool asReturnValue) const override { 2228 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2229 } 2230 bool isSwiftErrorInRegister() const override { 2231 return true; 2232 } 2233 }; 2234 2235 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2236 class WinX86_64ABIInfo : public SwiftABIInfo { 2237 public: 2238 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2239 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2240 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2241 2242 void computeInfo(CGFunctionInfo &FI) const override; 2243 2244 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2245 QualType Ty) const override; 2246 2247 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2248 // FIXME: Assumes vectorcall is in use. 2249 return isX86VectorTypeForVectorCall(getContext(), Ty); 2250 } 2251 2252 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2253 uint64_t NumMembers) const override { 2254 // FIXME: Assumes vectorcall is in use. 2255 return isX86VectorCallAggregateSmallEnough(NumMembers); 2256 } 2257 2258 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2259 bool asReturnValue) const override { 2260 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2261 } 2262 2263 bool isSwiftErrorInRegister() const override { 2264 return true; 2265 } 2266 2267 private: 2268 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2269 bool IsVectorCall, bool IsRegCall) const; 2270 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2271 const ABIArgInfo ¤t) const; 2272 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2273 bool IsVectorCall, bool IsRegCall) const; 2274 2275 X86AVXABILevel AVXLevel; 2276 2277 bool IsMingw64; 2278 }; 2279 2280 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2281 public: 2282 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2283 : TargetCodeGenInfo(new X86_64ABIInfo(CGT, AVXLevel)) {} 2284 2285 const X86_64ABIInfo &getABIInfo() const { 2286 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2287 } 2288 2289 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2290 /// the autoreleaseRV/retainRV optimization. 2291 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2292 return true; 2293 } 2294 2295 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2296 return 7; 2297 } 2298 2299 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2300 llvm::Value *Address) const override { 2301 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2302 2303 // 0-15 are the 16 integer registers. 2304 // 16 is %rip. 2305 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2306 return false; 2307 } 2308 2309 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2310 StringRef Constraint, 2311 llvm::Type* Ty) const override { 2312 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2313 } 2314 2315 bool isNoProtoCallVariadic(const CallArgList &args, 2316 const FunctionNoProtoType *fnType) const override { 2317 // The default CC on x86-64 sets %al to the number of SSA 2318 // registers used, and GCC sets this when calling an unprototyped 2319 // function, so we override the default behavior. However, don't do 2320 // that when AVX types are involved: the ABI explicitly states it is 2321 // undefined, and it doesn't work in practice because of how the ABI 2322 // defines varargs anyway. 2323 if (fnType->getCallConv() == CC_C) { 2324 bool HasAVXType = false; 2325 for (CallArgList::const_iterator 2326 it = args.begin(), ie = args.end(); it != ie; ++it) { 2327 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2328 HasAVXType = true; 2329 break; 2330 } 2331 } 2332 2333 if (!HasAVXType) 2334 return true; 2335 } 2336 2337 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2338 } 2339 2340 llvm::Constant * 2341 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2342 unsigned Sig = (0xeb << 0) | // jmp rel8 2343 (0x06 << 8) | // .+0x08 2344 ('v' << 16) | 2345 ('2' << 24); 2346 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2347 } 2348 2349 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2350 CodeGen::CodeGenModule &CGM) const override { 2351 if (GV->isDeclaration()) 2352 return; 2353 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2354 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2355 llvm::Function *Fn = cast<llvm::Function>(GV); 2356 Fn->addFnAttr("stackrealign"); 2357 } 2358 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2359 llvm::Function *Fn = cast<llvm::Function>(GV); 2360 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2361 } 2362 } 2363 } 2364 }; 2365 2366 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2367 // If the argument does not end in .lib, automatically add the suffix. 2368 // If the argument contains a space, enclose it in quotes. 2369 // This matches the behavior of MSVC. 2370 bool Quote = (Lib.find(" ") != StringRef::npos); 2371 std::string ArgStr = Quote ? "\"" : ""; 2372 ArgStr += Lib; 2373 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2374 ArgStr += ".lib"; 2375 ArgStr += Quote ? "\"" : ""; 2376 return ArgStr; 2377 } 2378 2379 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2380 public: 2381 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2382 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2383 unsigned NumRegisterParameters) 2384 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2385 Win32StructABI, NumRegisterParameters, false) {} 2386 2387 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2388 CodeGen::CodeGenModule &CGM) const override; 2389 2390 void getDependentLibraryOption(llvm::StringRef Lib, 2391 llvm::SmallString<24> &Opt) const override { 2392 Opt = "/DEFAULTLIB:"; 2393 Opt += qualifyWindowsLibrary(Lib); 2394 } 2395 2396 void getDetectMismatchOption(llvm::StringRef Name, 2397 llvm::StringRef Value, 2398 llvm::SmallString<32> &Opt) const override { 2399 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2400 } 2401 }; 2402 2403 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2404 CodeGen::CodeGenModule &CGM) { 2405 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2406 2407 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2408 Fn->addFnAttr("stack-probe-size", 2409 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2410 if (CGM.getCodeGenOpts().NoStackArgProbe) 2411 Fn->addFnAttr("no-stack-arg-probe"); 2412 } 2413 } 2414 2415 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2416 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2417 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2418 if (GV->isDeclaration()) 2419 return; 2420 addStackProbeTargetAttributes(D, GV, CGM); 2421 } 2422 2423 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2424 public: 2425 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2426 X86AVXABILevel AVXLevel) 2427 : TargetCodeGenInfo(new WinX86_64ABIInfo(CGT, AVXLevel)) {} 2428 2429 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2430 CodeGen::CodeGenModule &CGM) const override; 2431 2432 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2433 return 7; 2434 } 2435 2436 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2437 llvm::Value *Address) const override { 2438 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2439 2440 // 0-15 are the 16 integer registers. 2441 // 16 is %rip. 2442 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2443 return false; 2444 } 2445 2446 void getDependentLibraryOption(llvm::StringRef Lib, 2447 llvm::SmallString<24> &Opt) const override { 2448 Opt = "/DEFAULTLIB:"; 2449 Opt += qualifyWindowsLibrary(Lib); 2450 } 2451 2452 void getDetectMismatchOption(llvm::StringRef Name, 2453 llvm::StringRef Value, 2454 llvm::SmallString<32> &Opt) const override { 2455 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2456 } 2457 }; 2458 2459 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2460 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2461 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2462 if (GV->isDeclaration()) 2463 return; 2464 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2465 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2466 llvm::Function *Fn = cast<llvm::Function>(GV); 2467 Fn->addFnAttr("stackrealign"); 2468 } 2469 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2470 llvm::Function *Fn = cast<llvm::Function>(GV); 2471 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2472 } 2473 } 2474 2475 addStackProbeTargetAttributes(D, GV, CGM); 2476 } 2477 } 2478 2479 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2480 Class &Hi) const { 2481 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2482 // 2483 // (a) If one of the classes is Memory, the whole argument is passed in 2484 // memory. 2485 // 2486 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2487 // memory. 2488 // 2489 // (c) If the size of the aggregate exceeds two eightbytes and the first 2490 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2491 // argument is passed in memory. NOTE: This is necessary to keep the 2492 // ABI working for processors that don't support the __m256 type. 2493 // 2494 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2495 // 2496 // Some of these are enforced by the merging logic. Others can arise 2497 // only with unions; for example: 2498 // union { _Complex double; unsigned; } 2499 // 2500 // Note that clauses (b) and (c) were added in 0.98. 2501 // 2502 if (Hi == Memory) 2503 Lo = Memory; 2504 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2505 Lo = Memory; 2506 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2507 Lo = Memory; 2508 if (Hi == SSEUp && Lo != SSE) 2509 Hi = SSE; 2510 } 2511 2512 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2513 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2514 // classified recursively so that always two fields are 2515 // considered. The resulting class is calculated according to 2516 // the classes of the fields in the eightbyte: 2517 // 2518 // (a) If both classes are equal, this is the resulting class. 2519 // 2520 // (b) If one of the classes is NO_CLASS, the resulting class is 2521 // the other class. 2522 // 2523 // (c) If one of the classes is MEMORY, the result is the MEMORY 2524 // class. 2525 // 2526 // (d) If one of the classes is INTEGER, the result is the 2527 // INTEGER. 2528 // 2529 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2530 // MEMORY is used as class. 2531 // 2532 // (f) Otherwise class SSE is used. 2533 2534 // Accum should never be memory (we should have returned) or 2535 // ComplexX87 (because this cannot be passed in a structure). 2536 assert((Accum != Memory && Accum != ComplexX87) && 2537 "Invalid accumulated classification during merge."); 2538 if (Accum == Field || Field == NoClass) 2539 return Accum; 2540 if (Field == Memory) 2541 return Memory; 2542 if (Accum == NoClass) 2543 return Field; 2544 if (Accum == Integer || Field == Integer) 2545 return Integer; 2546 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2547 Accum == X87 || Accum == X87Up) 2548 return Memory; 2549 return SSE; 2550 } 2551 2552 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2553 Class &Lo, Class &Hi, bool isNamedArg) const { 2554 // FIXME: This code can be simplified by introducing a simple value class for 2555 // Class pairs with appropriate constructor methods for the various 2556 // situations. 2557 2558 // FIXME: Some of the split computations are wrong; unaligned vectors 2559 // shouldn't be passed in registers for example, so there is no chance they 2560 // can straddle an eightbyte. Verify & simplify. 2561 2562 Lo = Hi = NoClass; 2563 2564 Class &Current = OffsetBase < 64 ? Lo : Hi; 2565 Current = Memory; 2566 2567 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2568 BuiltinType::Kind k = BT->getKind(); 2569 2570 if (k == BuiltinType::Void) { 2571 Current = NoClass; 2572 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2573 Lo = Integer; 2574 Hi = Integer; 2575 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2576 Current = Integer; 2577 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2578 Current = SSE; 2579 } else if (k == BuiltinType::LongDouble) { 2580 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2581 if (LDF == &llvm::APFloat::IEEEquad()) { 2582 Lo = SSE; 2583 Hi = SSEUp; 2584 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2585 Lo = X87; 2586 Hi = X87Up; 2587 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2588 Current = SSE; 2589 } else 2590 llvm_unreachable("unexpected long double representation!"); 2591 } 2592 // FIXME: _Decimal32 and _Decimal64 are SSE. 2593 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2594 return; 2595 } 2596 2597 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2598 // Classify the underlying integer type. 2599 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2600 return; 2601 } 2602 2603 if (Ty->hasPointerRepresentation()) { 2604 Current = Integer; 2605 return; 2606 } 2607 2608 if (Ty->isMemberPointerType()) { 2609 if (Ty->isMemberFunctionPointerType()) { 2610 if (Has64BitPointers) { 2611 // If Has64BitPointers, this is an {i64, i64}, so classify both 2612 // Lo and Hi now. 2613 Lo = Hi = Integer; 2614 } else { 2615 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2616 // straddles an eightbyte boundary, Hi should be classified as well. 2617 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2618 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2619 if (EB_FuncPtr != EB_ThisAdj) { 2620 Lo = Hi = Integer; 2621 } else { 2622 Current = Integer; 2623 } 2624 } 2625 } else { 2626 Current = Integer; 2627 } 2628 return; 2629 } 2630 2631 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2632 uint64_t Size = getContext().getTypeSize(VT); 2633 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2634 // gcc passes the following as integer: 2635 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2636 // 2 bytes - <2 x char>, <1 x short> 2637 // 1 byte - <1 x char> 2638 Current = Integer; 2639 2640 // If this type crosses an eightbyte boundary, it should be 2641 // split. 2642 uint64_t EB_Lo = (OffsetBase) / 64; 2643 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2644 if (EB_Lo != EB_Hi) 2645 Hi = Lo; 2646 } else if (Size == 64) { 2647 QualType ElementType = VT->getElementType(); 2648 2649 // gcc passes <1 x double> in memory. :( 2650 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2651 return; 2652 2653 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2654 // pass them as integer. For platforms where clang is the de facto 2655 // platform compiler, we must continue to use integer. 2656 if (!classifyIntegerMMXAsSSE() && 2657 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2658 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2659 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2660 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2661 Current = Integer; 2662 else 2663 Current = SSE; 2664 2665 // If this type crosses an eightbyte boundary, it should be 2666 // split. 2667 if (OffsetBase && OffsetBase != 64) 2668 Hi = Lo; 2669 } else if (Size == 128 || 2670 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2671 QualType ElementType = VT->getElementType(); 2672 2673 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2674 if (passInt128VectorsInMem() && Size != 128 && 2675 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2676 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2677 return; 2678 2679 // Arguments of 256-bits are split into four eightbyte chunks. The 2680 // least significant one belongs to class SSE and all the others to class 2681 // SSEUP. The original Lo and Hi design considers that types can't be 2682 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2683 // This design isn't correct for 256-bits, but since there're no cases 2684 // where the upper parts would need to be inspected, avoid adding 2685 // complexity and just consider Hi to match the 64-256 part. 2686 // 2687 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2688 // registers if they are "named", i.e. not part of the "..." of a 2689 // variadic function. 2690 // 2691 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2692 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2693 Lo = SSE; 2694 Hi = SSEUp; 2695 } 2696 return; 2697 } 2698 2699 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2700 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2701 2702 uint64_t Size = getContext().getTypeSize(Ty); 2703 if (ET->isIntegralOrEnumerationType()) { 2704 if (Size <= 64) 2705 Current = Integer; 2706 else if (Size <= 128) 2707 Lo = Hi = Integer; 2708 } else if (ET == getContext().FloatTy) { 2709 Current = SSE; 2710 } else if (ET == getContext().DoubleTy) { 2711 Lo = Hi = SSE; 2712 } else if (ET == getContext().LongDoubleTy) { 2713 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2714 if (LDF == &llvm::APFloat::IEEEquad()) 2715 Current = Memory; 2716 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2717 Current = ComplexX87; 2718 else if (LDF == &llvm::APFloat::IEEEdouble()) 2719 Lo = Hi = SSE; 2720 else 2721 llvm_unreachable("unexpected long double representation!"); 2722 } 2723 2724 // If this complex type crosses an eightbyte boundary then it 2725 // should be split. 2726 uint64_t EB_Real = (OffsetBase) / 64; 2727 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2728 if (Hi == NoClass && EB_Real != EB_Imag) 2729 Hi = Lo; 2730 2731 return; 2732 } 2733 2734 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2735 // Arrays are treated like structures. 2736 2737 uint64_t Size = getContext().getTypeSize(Ty); 2738 2739 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2740 // than eight eightbytes, ..., it has class MEMORY. 2741 if (Size > 512) 2742 return; 2743 2744 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2745 // fields, it has class MEMORY. 2746 // 2747 // Only need to check alignment of array base. 2748 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2749 return; 2750 2751 // Otherwise implement simplified merge. We could be smarter about 2752 // this, but it isn't worth it and would be harder to verify. 2753 Current = NoClass; 2754 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2755 uint64_t ArraySize = AT->getSize().getZExtValue(); 2756 2757 // The only case a 256-bit wide vector could be used is when the array 2758 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2759 // to work for sizes wider than 128, early check and fallback to memory. 2760 // 2761 if (Size > 128 && 2762 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2763 return; 2764 2765 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2766 Class FieldLo, FieldHi; 2767 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2768 Lo = merge(Lo, FieldLo); 2769 Hi = merge(Hi, FieldHi); 2770 if (Lo == Memory || Hi == Memory) 2771 break; 2772 } 2773 2774 postMerge(Size, Lo, Hi); 2775 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 2776 return; 2777 } 2778 2779 if (const RecordType *RT = Ty->getAs<RecordType>()) { 2780 uint64_t Size = getContext().getTypeSize(Ty); 2781 2782 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2783 // than eight eightbytes, ..., it has class MEMORY. 2784 if (Size > 512) 2785 return; 2786 2787 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 2788 // copy constructor or a non-trivial destructor, it is passed by invisible 2789 // reference. 2790 if (getRecordArgABI(RT, getCXXABI())) 2791 return; 2792 2793 const RecordDecl *RD = RT->getDecl(); 2794 2795 // Assume variable sized types are passed in memory. 2796 if (RD->hasFlexibleArrayMember()) 2797 return; 2798 2799 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 2800 2801 // Reset Lo class, this will be recomputed. 2802 Current = NoClass; 2803 2804 // If this is a C++ record, classify the bases first. 2805 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 2806 for (const auto &I : CXXRD->bases()) { 2807 assert(!I.isVirtual() && !I.getType()->isDependentType() && 2808 "Unexpected base class!"); 2809 const auto *Base = 2810 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 2811 2812 // Classify this field. 2813 // 2814 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 2815 // single eightbyte, each is classified separately. Each eightbyte gets 2816 // initialized to class NO_CLASS. 2817 Class FieldLo, FieldHi; 2818 uint64_t Offset = 2819 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 2820 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 2821 Lo = merge(Lo, FieldLo); 2822 Hi = merge(Hi, FieldHi); 2823 if (Lo == Memory || Hi == Memory) { 2824 postMerge(Size, Lo, Hi); 2825 return; 2826 } 2827 } 2828 } 2829 2830 // Classify the fields one at a time, merging the results. 2831 unsigned idx = 0; 2832 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 2833 i != e; ++i, ++idx) { 2834 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2835 bool BitField = i->isBitField(); 2836 2837 // Ignore padding bit-fields. 2838 if (BitField && i->isUnnamedBitfield()) 2839 continue; 2840 2841 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 2842 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 2843 // 2844 // The only case a 256-bit wide vector could be used is when the struct 2845 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2846 // to work for sizes wider than 128, early check and fallback to memory. 2847 // 2848 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 2849 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 2850 Lo = Memory; 2851 postMerge(Size, Lo, Hi); 2852 return; 2853 } 2854 // Note, skip this test for bit-fields, see below. 2855 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 2856 Lo = Memory; 2857 postMerge(Size, Lo, Hi); 2858 return; 2859 } 2860 2861 // Classify this field. 2862 // 2863 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 2864 // exceeds a single eightbyte, each is classified 2865 // separately. Each eightbyte gets initialized to class 2866 // NO_CLASS. 2867 Class FieldLo, FieldHi; 2868 2869 // Bit-fields require special handling, they do not force the 2870 // structure to be passed in memory even if unaligned, and 2871 // therefore they can straddle an eightbyte. 2872 if (BitField) { 2873 assert(!i->isUnnamedBitfield()); 2874 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 2875 uint64_t Size = i->getBitWidthValue(getContext()); 2876 2877 uint64_t EB_Lo = Offset / 64; 2878 uint64_t EB_Hi = (Offset + Size - 1) / 64; 2879 2880 if (EB_Lo) { 2881 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 2882 FieldLo = NoClass; 2883 FieldHi = Integer; 2884 } else { 2885 FieldLo = Integer; 2886 FieldHi = EB_Hi ? Integer : NoClass; 2887 } 2888 } else 2889 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 2890 Lo = merge(Lo, FieldLo); 2891 Hi = merge(Hi, FieldHi); 2892 if (Lo == Memory || Hi == Memory) 2893 break; 2894 } 2895 2896 postMerge(Size, Lo, Hi); 2897 } 2898 } 2899 2900 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 2901 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2902 // place naturally. 2903 if (!isAggregateTypeForABI(Ty)) { 2904 // Treat an enum type as its underlying type. 2905 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2906 Ty = EnumTy->getDecl()->getIntegerType(); 2907 2908 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2909 : ABIArgInfo::getDirect()); 2910 } 2911 2912 return getNaturalAlignIndirect(Ty); 2913 } 2914 2915 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 2916 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 2917 uint64_t Size = getContext().getTypeSize(VecTy); 2918 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 2919 if (Size <= 64 || Size > LargestVector) 2920 return true; 2921 QualType EltTy = VecTy->getElementType(); 2922 if (passInt128VectorsInMem() && 2923 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 2924 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 2925 return true; 2926 } 2927 2928 return false; 2929 } 2930 2931 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 2932 unsigned freeIntRegs) const { 2933 // If this is a scalar LLVM value then assume LLVM will pass it in the right 2934 // place naturally. 2935 // 2936 // This assumption is optimistic, as there could be free registers available 2937 // when we need to pass this argument in memory, and LLVM could try to pass 2938 // the argument in the free register. This does not seem to happen currently, 2939 // but this code would be much safer if we could mark the argument with 2940 // 'onstack'. See PR12193. 2941 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty)) { 2942 // Treat an enum type as its underlying type. 2943 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 2944 Ty = EnumTy->getDecl()->getIntegerType(); 2945 2946 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 2947 : ABIArgInfo::getDirect()); 2948 } 2949 2950 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 2951 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 2952 2953 // Compute the byval alignment. We specify the alignment of the byval in all 2954 // cases so that the mid-level optimizer knows the alignment of the byval. 2955 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 2956 2957 // Attempt to avoid passing indirect results using byval when possible. This 2958 // is important for good codegen. 2959 // 2960 // We do this by coercing the value into a scalar type which the backend can 2961 // handle naturally (i.e., without using byval). 2962 // 2963 // For simplicity, we currently only do this when we have exhausted all of the 2964 // free integer registers. Doing this when there are free integer registers 2965 // would require more care, as we would have to ensure that the coerced value 2966 // did not claim the unused register. That would require either reording the 2967 // arguments to the function (so that any subsequent inreg values came first), 2968 // or only doing this optimization when there were no following arguments that 2969 // might be inreg. 2970 // 2971 // We currently expect it to be rare (particularly in well written code) for 2972 // arguments to be passed on the stack when there are still free integer 2973 // registers available (this would typically imply large structs being passed 2974 // by value), so this seems like a fair tradeoff for now. 2975 // 2976 // We can revisit this if the backend grows support for 'onstack' parameter 2977 // attributes. See PR12193. 2978 if (freeIntRegs == 0) { 2979 uint64_t Size = getContext().getTypeSize(Ty); 2980 2981 // If this type fits in an eightbyte, coerce it into the matching integral 2982 // type, which will end up on the stack (with alignment 8). 2983 if (Align == 8 && Size <= 64) 2984 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 2985 Size)); 2986 } 2987 2988 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 2989 } 2990 2991 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 2992 /// register. Pick an LLVM IR type that will be passed as a vector register. 2993 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 2994 // Wrapper structs/arrays that only contain vectors are passed just like 2995 // vectors; strip them off if present. 2996 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 2997 Ty = QualType(InnerTy, 0); 2998 2999 llvm::Type *IRType = CGT.ConvertType(Ty); 3000 if (isa<llvm::VectorType>(IRType)) { 3001 // Don't pass vXi128 vectors in their native type, the backend can't 3002 // legalize them. 3003 if (passInt128VectorsInMem() && 3004 IRType->getVectorElementType()->isIntegerTy(128)) { 3005 // Use a vXi64 vector. 3006 uint64_t Size = getContext().getTypeSize(Ty); 3007 return llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3008 Size / 64); 3009 } 3010 3011 return IRType; 3012 } 3013 3014 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3015 return IRType; 3016 3017 // We couldn't find the preferred IR vector type for 'Ty'. 3018 uint64_t Size = getContext().getTypeSize(Ty); 3019 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3020 3021 3022 // Return a LLVM IR vector type based on the size of 'Ty'. 3023 return llvm::VectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3024 Size / 64); 3025 } 3026 3027 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3028 /// is known to either be off the end of the specified type or being in 3029 /// alignment padding. The user type specified is known to be at most 128 bits 3030 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3031 /// classification that put one of the two halves in the INTEGER class. 3032 /// 3033 /// It is conservatively correct to return false. 3034 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3035 unsigned EndBit, ASTContext &Context) { 3036 // If the bytes being queried are off the end of the type, there is no user 3037 // data hiding here. This handles analysis of builtins, vectors and other 3038 // types that don't contain interesting padding. 3039 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3040 if (TySize <= StartBit) 3041 return true; 3042 3043 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3044 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3045 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3046 3047 // Check each element to see if the element overlaps with the queried range. 3048 for (unsigned i = 0; i != NumElts; ++i) { 3049 // If the element is after the span we care about, then we're done.. 3050 unsigned EltOffset = i*EltSize; 3051 if (EltOffset >= EndBit) break; 3052 3053 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3054 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3055 EndBit-EltOffset, Context)) 3056 return false; 3057 } 3058 // If it overlaps no elements, then it is safe to process as padding. 3059 return true; 3060 } 3061 3062 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3063 const RecordDecl *RD = RT->getDecl(); 3064 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3065 3066 // If this is a C++ record, check the bases first. 3067 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3068 for (const auto &I : CXXRD->bases()) { 3069 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3070 "Unexpected base class!"); 3071 const auto *Base = 3072 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3073 3074 // If the base is after the span we care about, ignore it. 3075 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3076 if (BaseOffset >= EndBit) continue; 3077 3078 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3079 if (!BitsContainNoUserData(I.getType(), BaseStart, 3080 EndBit-BaseOffset, Context)) 3081 return false; 3082 } 3083 } 3084 3085 // Verify that no field has data that overlaps the region of interest. Yes 3086 // this could be sped up a lot by being smarter about queried fields, 3087 // however we're only looking at structs up to 16 bytes, so we don't care 3088 // much. 3089 unsigned idx = 0; 3090 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3091 i != e; ++i, ++idx) { 3092 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3093 3094 // If we found a field after the region we care about, then we're done. 3095 if (FieldOffset >= EndBit) break; 3096 3097 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3098 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3099 Context)) 3100 return false; 3101 } 3102 3103 // If nothing in this record overlapped the area of interest, then we're 3104 // clean. 3105 return true; 3106 } 3107 3108 return false; 3109 } 3110 3111 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3112 /// float member at the specified offset. For example, {int,{float}} has a 3113 /// float at offset 4. It is conservatively correct for this routine to return 3114 /// false. 3115 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3116 const llvm::DataLayout &TD) { 3117 // Base case if we find a float. 3118 if (IROffset == 0 && IRType->isFloatTy()) 3119 return true; 3120 3121 // If this is a struct, recurse into the field at the specified offset. 3122 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3123 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3124 unsigned Elt = SL->getElementContainingOffset(IROffset); 3125 IROffset -= SL->getElementOffset(Elt); 3126 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3127 } 3128 3129 // If this is an array, recurse into the field at the specified offset. 3130 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3131 llvm::Type *EltTy = ATy->getElementType(); 3132 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3133 IROffset -= IROffset/EltSize*EltSize; 3134 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3135 } 3136 3137 return false; 3138 } 3139 3140 3141 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3142 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3143 llvm::Type *X86_64ABIInfo:: 3144 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3145 QualType SourceTy, unsigned SourceOffset) const { 3146 // The only three choices we have are either double, <2 x float>, or float. We 3147 // pass as float if the last 4 bytes is just padding. This happens for 3148 // structs that contain 3 floats. 3149 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3150 SourceOffset*8+64, getContext())) 3151 return llvm::Type::getFloatTy(getVMContext()); 3152 3153 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3154 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3155 // case. 3156 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3157 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3158 return llvm::VectorType::get(llvm::Type::getFloatTy(getVMContext()), 2); 3159 3160 return llvm::Type::getDoubleTy(getVMContext()); 3161 } 3162 3163 3164 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3165 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3166 /// about the high or low part of an up-to-16-byte struct. This routine picks 3167 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3168 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3169 /// etc). 3170 /// 3171 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3172 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3173 /// the 8-byte value references. PrefType may be null. 3174 /// 3175 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3176 /// an offset into this that we're processing (which is always either 0 or 8). 3177 /// 3178 llvm::Type *X86_64ABIInfo:: 3179 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3180 QualType SourceTy, unsigned SourceOffset) const { 3181 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3182 // returning an 8-byte unit starting with it. See if we can safely use it. 3183 if (IROffset == 0) { 3184 // Pointers and int64's always fill the 8-byte unit. 3185 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3186 IRType->isIntegerTy(64)) 3187 return IRType; 3188 3189 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3190 // goodness in the source type is just tail padding. This is allowed to 3191 // kick in for struct {double,int} on the int, but not on 3192 // struct{double,int,int} because we wouldn't return the second int. We 3193 // have to do this analysis on the source type because we can't depend on 3194 // unions being lowered a specific way etc. 3195 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3196 IRType->isIntegerTy(32) || 3197 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3198 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3199 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3200 3201 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3202 SourceOffset*8+64, getContext())) 3203 return IRType; 3204 } 3205 } 3206 3207 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3208 // If this is a struct, recurse into the field at the specified offset. 3209 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3210 if (IROffset < SL->getSizeInBytes()) { 3211 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3212 IROffset -= SL->getElementOffset(FieldIdx); 3213 3214 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3215 SourceTy, SourceOffset); 3216 } 3217 } 3218 3219 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3220 llvm::Type *EltTy = ATy->getElementType(); 3221 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3222 unsigned EltOffset = IROffset/EltSize*EltSize; 3223 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3224 SourceOffset); 3225 } 3226 3227 // Okay, we don't have any better idea of what to pass, so we pass this in an 3228 // integer register that isn't too big to fit the rest of the struct. 3229 unsigned TySizeInBytes = 3230 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3231 3232 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3233 3234 // It is always safe to classify this as an integer type up to i64 that 3235 // isn't larger than the structure. 3236 return llvm::IntegerType::get(getVMContext(), 3237 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3238 } 3239 3240 3241 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3242 /// be used as elements of a two register pair to pass or return, return a 3243 /// first class aggregate to represent them. For example, if the low part of 3244 /// a by-value argument should be passed as i32* and the high part as float, 3245 /// return {i32*, float}. 3246 static llvm::Type * 3247 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3248 const llvm::DataLayout &TD) { 3249 // In order to correctly satisfy the ABI, we need to the high part to start 3250 // at offset 8. If the high and low parts we inferred are both 4-byte types 3251 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3252 // the second element at offset 8. Check for this: 3253 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3254 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3255 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3256 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3257 3258 // To handle this, we have to increase the size of the low part so that the 3259 // second element will start at an 8 byte offset. We can't increase the size 3260 // of the second element because it might make us access off the end of the 3261 // struct. 3262 if (HiStart != 8) { 3263 // There are usually two sorts of types the ABI generation code can produce 3264 // for the low part of a pair that aren't 8 bytes in size: float or 3265 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3266 // NaCl). 3267 // Promote these to a larger type. 3268 if (Lo->isFloatTy()) 3269 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3270 else { 3271 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3272 && "Invalid/unknown lo type"); 3273 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3274 } 3275 } 3276 3277 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3278 3279 // Verify that the second element is at an 8-byte offset. 3280 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3281 "Invalid x86-64 argument pair!"); 3282 return Result; 3283 } 3284 3285 ABIArgInfo X86_64ABIInfo:: 3286 classifyReturnType(QualType RetTy) const { 3287 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3288 // classification algorithm. 3289 X86_64ABIInfo::Class Lo, Hi; 3290 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3291 3292 // Check some invariants. 3293 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3294 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3295 3296 llvm::Type *ResType = nullptr; 3297 switch (Lo) { 3298 case NoClass: 3299 if (Hi == NoClass) 3300 return ABIArgInfo::getIgnore(); 3301 // If the low part is just padding, it takes no register, leave ResType 3302 // null. 3303 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3304 "Unknown missing lo part"); 3305 break; 3306 3307 case SSEUp: 3308 case X87Up: 3309 llvm_unreachable("Invalid classification for lo word."); 3310 3311 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3312 // hidden argument. 3313 case Memory: 3314 return getIndirectReturnResult(RetTy); 3315 3316 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3317 // available register of the sequence %rax, %rdx is used. 3318 case Integer: 3319 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3320 3321 // If we have a sign or zero extended integer, make sure to return Extend 3322 // so that the parameter gets the right LLVM IR attributes. 3323 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3324 // Treat an enum type as its underlying type. 3325 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3326 RetTy = EnumTy->getDecl()->getIntegerType(); 3327 3328 if (RetTy->isIntegralOrEnumerationType() && 3329 RetTy->isPromotableIntegerType()) 3330 return ABIArgInfo::getExtend(RetTy); 3331 } 3332 break; 3333 3334 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3335 // available SSE register of the sequence %xmm0, %xmm1 is used. 3336 case SSE: 3337 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3338 break; 3339 3340 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3341 // returned on the X87 stack in %st0 as 80-bit x87 number. 3342 case X87: 3343 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3344 break; 3345 3346 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3347 // part of the value is returned in %st0 and the imaginary part in 3348 // %st1. 3349 case ComplexX87: 3350 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3351 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3352 llvm::Type::getX86_FP80Ty(getVMContext())); 3353 break; 3354 } 3355 3356 llvm::Type *HighPart = nullptr; 3357 switch (Hi) { 3358 // Memory was handled previously and X87 should 3359 // never occur as a hi class. 3360 case Memory: 3361 case X87: 3362 llvm_unreachable("Invalid classification for hi word."); 3363 3364 case ComplexX87: // Previously handled. 3365 case NoClass: 3366 break; 3367 3368 case Integer: 3369 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3370 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3371 return ABIArgInfo::getDirect(HighPart, 8); 3372 break; 3373 case SSE: 3374 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3375 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3376 return ABIArgInfo::getDirect(HighPart, 8); 3377 break; 3378 3379 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3380 // is passed in the next available eightbyte chunk if the last used 3381 // vector register. 3382 // 3383 // SSEUP should always be preceded by SSE, just widen. 3384 case SSEUp: 3385 assert(Lo == SSE && "Unexpected SSEUp classification."); 3386 ResType = GetByteVectorType(RetTy); 3387 break; 3388 3389 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3390 // returned together with the previous X87 value in %st0. 3391 case X87Up: 3392 // If X87Up is preceded by X87, we don't need to do 3393 // anything. However, in some cases with unions it may not be 3394 // preceded by X87. In such situations we follow gcc and pass the 3395 // extra bits in an SSE reg. 3396 if (Lo != X87) { 3397 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3398 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3399 return ABIArgInfo::getDirect(HighPart, 8); 3400 } 3401 break; 3402 } 3403 3404 // If a high part was specified, merge it together with the low part. It is 3405 // known to pass in the high eightbyte of the result. We do this by forming a 3406 // first class struct aggregate with the high and low part: {low, high} 3407 if (HighPart) 3408 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3409 3410 return ABIArgInfo::getDirect(ResType); 3411 } 3412 3413 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3414 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3415 bool isNamedArg) 3416 const 3417 { 3418 Ty = useFirstFieldIfTransparentUnion(Ty); 3419 3420 X86_64ABIInfo::Class Lo, Hi; 3421 classify(Ty, 0, Lo, Hi, isNamedArg); 3422 3423 // Check some invariants. 3424 // FIXME: Enforce these by construction. 3425 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3426 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3427 3428 neededInt = 0; 3429 neededSSE = 0; 3430 llvm::Type *ResType = nullptr; 3431 switch (Lo) { 3432 case NoClass: 3433 if (Hi == NoClass) 3434 return ABIArgInfo::getIgnore(); 3435 // If the low part is just padding, it takes no register, leave ResType 3436 // null. 3437 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3438 "Unknown missing lo part"); 3439 break; 3440 3441 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3442 // on the stack. 3443 case Memory: 3444 3445 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3446 // COMPLEX_X87, it is passed in memory. 3447 case X87: 3448 case ComplexX87: 3449 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3450 ++neededInt; 3451 return getIndirectResult(Ty, freeIntRegs); 3452 3453 case SSEUp: 3454 case X87Up: 3455 llvm_unreachable("Invalid classification for lo word."); 3456 3457 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3458 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3459 // and %r9 is used. 3460 case Integer: 3461 ++neededInt; 3462 3463 // Pick an 8-byte type based on the preferred type. 3464 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3465 3466 // If we have a sign or zero extended integer, make sure to return Extend 3467 // so that the parameter gets the right LLVM IR attributes. 3468 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3469 // Treat an enum type as its underlying type. 3470 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3471 Ty = EnumTy->getDecl()->getIntegerType(); 3472 3473 if (Ty->isIntegralOrEnumerationType() && 3474 Ty->isPromotableIntegerType()) 3475 return ABIArgInfo::getExtend(Ty); 3476 } 3477 3478 break; 3479 3480 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3481 // available SSE register is used, the registers are taken in the 3482 // order from %xmm0 to %xmm7. 3483 case SSE: { 3484 llvm::Type *IRType = CGT.ConvertType(Ty); 3485 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3486 ++neededSSE; 3487 break; 3488 } 3489 } 3490 3491 llvm::Type *HighPart = nullptr; 3492 switch (Hi) { 3493 // Memory was handled previously, ComplexX87 and X87 should 3494 // never occur as hi classes, and X87Up must be preceded by X87, 3495 // which is passed in memory. 3496 case Memory: 3497 case X87: 3498 case ComplexX87: 3499 llvm_unreachable("Invalid classification for hi word."); 3500 3501 case NoClass: break; 3502 3503 case Integer: 3504 ++neededInt; 3505 // Pick an 8-byte type based on the preferred type. 3506 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3507 3508 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3509 return ABIArgInfo::getDirect(HighPart, 8); 3510 break; 3511 3512 // X87Up generally doesn't occur here (long double is passed in 3513 // memory), except in situations involving unions. 3514 case X87Up: 3515 case SSE: 3516 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3517 3518 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3519 return ABIArgInfo::getDirect(HighPart, 8); 3520 3521 ++neededSSE; 3522 break; 3523 3524 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3525 // eightbyte is passed in the upper half of the last used SSE 3526 // register. This only happens when 128-bit vectors are passed. 3527 case SSEUp: 3528 assert(Lo == SSE && "Unexpected SSEUp classification"); 3529 ResType = GetByteVectorType(Ty); 3530 break; 3531 } 3532 3533 // If a high part was specified, merge it together with the low part. It is 3534 // known to pass in the high eightbyte of the result. We do this by forming a 3535 // first class struct aggregate with the high and low part: {low, high} 3536 if (HighPart) 3537 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3538 3539 return ABIArgInfo::getDirect(ResType); 3540 } 3541 3542 ABIArgInfo 3543 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3544 unsigned &NeededSSE) const { 3545 auto RT = Ty->getAs<RecordType>(); 3546 assert(RT && "classifyRegCallStructType only valid with struct types"); 3547 3548 if (RT->getDecl()->hasFlexibleArrayMember()) 3549 return getIndirectReturnResult(Ty); 3550 3551 // Sum up bases 3552 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3553 if (CXXRD->isDynamicClass()) { 3554 NeededInt = NeededSSE = 0; 3555 return getIndirectReturnResult(Ty); 3556 } 3557 3558 for (const auto &I : CXXRD->bases()) 3559 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3560 .isIndirect()) { 3561 NeededInt = NeededSSE = 0; 3562 return getIndirectReturnResult(Ty); 3563 } 3564 } 3565 3566 // Sum up members 3567 for (const auto *FD : RT->getDecl()->fields()) { 3568 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3569 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3570 .isIndirect()) { 3571 NeededInt = NeededSSE = 0; 3572 return getIndirectReturnResult(Ty); 3573 } 3574 } else { 3575 unsigned LocalNeededInt, LocalNeededSSE; 3576 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3577 LocalNeededSSE, true) 3578 .isIndirect()) { 3579 NeededInt = NeededSSE = 0; 3580 return getIndirectReturnResult(Ty); 3581 } 3582 NeededInt += LocalNeededInt; 3583 NeededSSE += LocalNeededSSE; 3584 } 3585 } 3586 3587 return ABIArgInfo::getDirect(); 3588 } 3589 3590 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3591 unsigned &NeededInt, 3592 unsigned &NeededSSE) const { 3593 3594 NeededInt = 0; 3595 NeededSSE = 0; 3596 3597 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3598 } 3599 3600 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3601 3602 const unsigned CallingConv = FI.getCallingConvention(); 3603 // It is possible to force Win64 calling convention on any x86_64 target by 3604 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3605 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3606 if (CallingConv == llvm::CallingConv::Win64) { 3607 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3608 Win64ABIInfo.computeInfo(FI); 3609 return; 3610 } 3611 3612 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3613 3614 // Keep track of the number of assigned registers. 3615 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3616 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3617 unsigned NeededInt, NeededSSE; 3618 3619 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3620 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3621 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3622 FI.getReturnInfo() = 3623 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3624 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3625 FreeIntRegs -= NeededInt; 3626 FreeSSERegs -= NeededSSE; 3627 } else { 3628 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3629 } 3630 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>()) { 3631 // Complex Long Double Type is passed in Memory when Regcall 3632 // calling convention is used. 3633 const ComplexType *CT = FI.getReturnType()->getAs<ComplexType>(); 3634 if (getContext().getCanonicalType(CT->getElementType()) == 3635 getContext().LongDoubleTy) 3636 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3637 } else 3638 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3639 } 3640 3641 // If the return value is indirect, then the hidden argument is consuming one 3642 // integer register. 3643 if (FI.getReturnInfo().isIndirect()) 3644 --FreeIntRegs; 3645 3646 // The chain argument effectively gives us another free register. 3647 if (FI.isChainCall()) 3648 ++FreeIntRegs; 3649 3650 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3651 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3652 // get assigned (in left-to-right order) for passing as follows... 3653 unsigned ArgNo = 0; 3654 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3655 it != ie; ++it, ++ArgNo) { 3656 bool IsNamedArg = ArgNo < NumRequiredArgs; 3657 3658 if (IsRegCall && it->type->isStructureOrClassType()) 3659 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3660 else 3661 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3662 NeededSSE, IsNamedArg); 3663 3664 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3665 // eightbyte of an argument, the whole argument is passed on the 3666 // stack. If registers have already been assigned for some 3667 // eightbytes of such an argument, the assignments get reverted. 3668 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3669 FreeIntRegs -= NeededInt; 3670 FreeSSERegs -= NeededSSE; 3671 } else { 3672 it->info = getIndirectResult(it->type, FreeIntRegs); 3673 } 3674 } 3675 } 3676 3677 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3678 Address VAListAddr, QualType Ty) { 3679 Address overflow_arg_area_p = 3680 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3681 llvm::Value *overflow_arg_area = 3682 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3683 3684 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3685 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3686 // It isn't stated explicitly in the standard, but in practice we use 3687 // alignment greater than 16 where necessary. 3688 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3689 if (Align > CharUnits::fromQuantity(8)) { 3690 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3691 Align); 3692 } 3693 3694 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3695 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3696 llvm::Value *Res = 3697 CGF.Builder.CreateBitCast(overflow_arg_area, 3698 llvm::PointerType::getUnqual(LTy)); 3699 3700 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3701 // l->overflow_arg_area + sizeof(type). 3702 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3703 // an 8 byte boundary. 3704 3705 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3706 llvm::Value *Offset = 3707 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3708 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3709 "overflow_arg_area.next"); 3710 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3711 3712 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3713 return Address(Res, Align); 3714 } 3715 3716 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3717 QualType Ty) const { 3718 // Assume that va_list type is correct; should be pointer to LLVM type: 3719 // struct { 3720 // i32 gp_offset; 3721 // i32 fp_offset; 3722 // i8* overflow_arg_area; 3723 // i8* reg_save_area; 3724 // }; 3725 unsigned neededInt, neededSSE; 3726 3727 Ty = getContext().getCanonicalType(Ty); 3728 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3729 /*isNamedArg*/false); 3730 3731 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3732 // in the registers. If not go to step 7. 3733 if (!neededInt && !neededSSE) 3734 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3735 3736 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3737 // general purpose registers needed to pass type and num_fp to hold 3738 // the number of floating point registers needed. 3739 3740 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3741 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3742 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3743 // 3744 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3745 // register save space). 3746 3747 llvm::Value *InRegs = nullptr; 3748 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3749 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3750 if (neededInt) { 3751 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3752 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3753 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3754 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3755 } 3756 3757 if (neededSSE) { 3758 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3759 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3760 llvm::Value *FitsInFP = 3761 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3762 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3763 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3764 } 3765 3766 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 3767 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 3768 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 3769 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 3770 3771 // Emit code to load the value if it was passed in registers. 3772 3773 CGF.EmitBlock(InRegBlock); 3774 3775 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 3776 // an offset of l->gp_offset and/or l->fp_offset. This may require 3777 // copying to a temporary location in case the parameter is passed 3778 // in different register classes or requires an alignment greater 3779 // than 8 for general purpose registers and 16 for XMM registers. 3780 // 3781 // FIXME: This really results in shameful code when we end up needing to 3782 // collect arguments from different places; often what should result in a 3783 // simple assembling of a structure from scattered addresses has many more 3784 // loads than necessary. Can we clean this up? 3785 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3786 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 3787 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 3788 3789 Address RegAddr = Address::invalid(); 3790 if (neededInt && neededSSE) { 3791 // FIXME: Cleanup. 3792 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 3793 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 3794 Address Tmp = CGF.CreateMemTemp(Ty); 3795 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3796 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 3797 llvm::Type *TyLo = ST->getElementType(0); 3798 llvm::Type *TyHi = ST->getElementType(1); 3799 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 3800 "Unexpected ABI info for mixed regs"); 3801 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 3802 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 3803 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 3804 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 3805 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 3806 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 3807 3808 // Copy the first element. 3809 // FIXME: Our choice of alignment here and below is probably pessimistic. 3810 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 3811 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 3812 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 3813 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3814 3815 // Copy the second element. 3816 V = CGF.Builder.CreateAlignedLoad( 3817 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 3818 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 3819 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3820 3821 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3822 } else if (neededInt) { 3823 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 3824 CharUnits::fromQuantity(8)); 3825 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3826 3827 // Copy to a temporary if necessary to ensure the appropriate alignment. 3828 std::pair<CharUnits, CharUnits> SizeAlign = 3829 getContext().getTypeInfoInChars(Ty); 3830 uint64_t TySize = SizeAlign.first.getQuantity(); 3831 CharUnits TyAlign = SizeAlign.second; 3832 3833 // Copy into a temporary if the type is more aligned than the 3834 // register save area. 3835 if (TyAlign.getQuantity() > 8) { 3836 Address Tmp = CGF.CreateMemTemp(Ty); 3837 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 3838 RegAddr = Tmp; 3839 } 3840 3841 } else if (neededSSE == 1) { 3842 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3843 CharUnits::fromQuantity(16)); 3844 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 3845 } else { 3846 assert(neededSSE == 2 && "Invalid number of needed registers!"); 3847 // SSE registers are spaced 16 bytes apart in the register save 3848 // area, we need to collect the two eightbytes together. 3849 // The ABI isn't explicit about this, but it seems reasonable 3850 // to assume that the slots are 16-byte aligned, since the stack is 3851 // naturally 16-byte aligned and the prologue is expected to store 3852 // all the SSE registers to the RSA. 3853 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 3854 CharUnits::fromQuantity(16)); 3855 Address RegAddrHi = 3856 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 3857 CharUnits::fromQuantity(16)); 3858 llvm::Type *ST = AI.canHaveCoerceToType() 3859 ? AI.getCoerceToType() 3860 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 3861 llvm::Value *V; 3862 Address Tmp = CGF.CreateMemTemp(Ty); 3863 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 3864 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3865 RegAddrLo, ST->getStructElementType(0))); 3866 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 3867 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 3868 RegAddrHi, ST->getStructElementType(1))); 3869 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 3870 3871 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 3872 } 3873 3874 // AMD64-ABI 3.5.7p5: Step 5. Set: 3875 // l->gp_offset = l->gp_offset + num_gp * 8 3876 // l->fp_offset = l->fp_offset + num_fp * 16. 3877 if (neededInt) { 3878 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 3879 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 3880 gp_offset_p); 3881 } 3882 if (neededSSE) { 3883 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 3884 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 3885 fp_offset_p); 3886 } 3887 CGF.EmitBranch(ContBlock); 3888 3889 // Emit code to load the value if it was passed in memory. 3890 3891 CGF.EmitBlock(InMemBlock); 3892 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3893 3894 // Return the appropriate result. 3895 3896 CGF.EmitBlock(ContBlock); 3897 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 3898 "vaarg.addr"); 3899 return ResAddr; 3900 } 3901 3902 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 3903 QualType Ty) const { 3904 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 3905 CGF.getContext().getTypeInfoInChars(Ty), 3906 CharUnits::fromQuantity(8), 3907 /*allowHigherAlign*/ false); 3908 } 3909 3910 ABIArgInfo 3911 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 3912 const ABIArgInfo ¤t) const { 3913 // Assumes vectorCall calling convention. 3914 const Type *Base = nullptr; 3915 uint64_t NumElts = 0; 3916 3917 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 3918 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 3919 FreeSSERegs -= NumElts; 3920 return getDirectX86Hva(); 3921 } 3922 return current; 3923 } 3924 3925 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 3926 bool IsReturnType, bool IsVectorCall, 3927 bool IsRegCall) const { 3928 3929 if (Ty->isVoidType()) 3930 return ABIArgInfo::getIgnore(); 3931 3932 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3933 Ty = EnumTy->getDecl()->getIntegerType(); 3934 3935 TypeInfo Info = getContext().getTypeInfo(Ty); 3936 uint64_t Width = Info.Width; 3937 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 3938 3939 const RecordType *RT = Ty->getAs<RecordType>(); 3940 if (RT) { 3941 if (!IsReturnType) { 3942 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 3943 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3944 } 3945 3946 if (RT->getDecl()->hasFlexibleArrayMember()) 3947 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3948 3949 } 3950 3951 const Type *Base = nullptr; 3952 uint64_t NumElts = 0; 3953 // vectorcall adds the concept of a homogenous vector aggregate, similar to 3954 // other targets. 3955 if ((IsVectorCall || IsRegCall) && 3956 isHomogeneousAggregate(Ty, Base, NumElts)) { 3957 if (IsRegCall) { 3958 if (FreeSSERegs >= NumElts) { 3959 FreeSSERegs -= NumElts; 3960 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 3961 return ABIArgInfo::getDirect(); 3962 return ABIArgInfo::getExpand(); 3963 } 3964 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3965 } else if (IsVectorCall) { 3966 if (FreeSSERegs >= NumElts && 3967 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 3968 FreeSSERegs -= NumElts; 3969 return ABIArgInfo::getDirect(); 3970 } else if (IsReturnType) { 3971 return ABIArgInfo::getExpand(); 3972 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 3973 // HVAs are delayed and reclassified in the 2nd step. 3974 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 3975 } 3976 } 3977 } 3978 3979 if (Ty->isMemberPointerType()) { 3980 // If the member pointer is represented by an LLVM int or ptr, pass it 3981 // directly. 3982 llvm::Type *LLTy = CGT.ConvertType(Ty); 3983 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 3984 return ABIArgInfo::getDirect(); 3985 } 3986 3987 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 3988 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 3989 // not 1, 2, 4, or 8 bytes, must be passed by reference." 3990 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 3991 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 3992 3993 // Otherwise, coerce it to a small integer. 3994 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 3995 } 3996 3997 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 3998 switch (BT->getKind()) { 3999 case BuiltinType::Bool: 4000 // Bool type is always extended to the ABI, other builtin types are not 4001 // extended. 4002 return ABIArgInfo::getExtend(Ty); 4003 4004 case BuiltinType::LongDouble: 4005 // Mingw64 GCC uses the old 80 bit extended precision floating point 4006 // unit. It passes them indirectly through memory. 4007 if (IsMingw64) { 4008 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4009 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4010 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4011 } 4012 break; 4013 4014 case BuiltinType::Int128: 4015 case BuiltinType::UInt128: 4016 // If it's a parameter type, the normal ABI rule is that arguments larger 4017 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4018 // even though it isn't particularly efficient. 4019 if (!IsReturnType) 4020 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4021 4022 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4023 // Clang matches them for compatibility. 4024 return ABIArgInfo::getDirect( 4025 llvm::VectorType::get(llvm::Type::getInt64Ty(getVMContext()), 2)); 4026 4027 default: 4028 break; 4029 } 4030 } 4031 4032 return ABIArgInfo::getDirect(); 4033 } 4034 4035 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4036 unsigned FreeSSERegs, 4037 bool IsVectorCall, 4038 bool IsRegCall) const { 4039 unsigned Count = 0; 4040 for (auto &I : FI.arguments()) { 4041 // Vectorcall in x64 only permits the first 6 arguments to be passed 4042 // as XMM/YMM registers. 4043 if (Count < VectorcallMaxParamNumAsReg) 4044 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4045 else { 4046 // Since these cannot be passed in registers, pretend no registers 4047 // are left. 4048 unsigned ZeroSSERegsAvail = 0; 4049 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4050 IsVectorCall, IsRegCall); 4051 } 4052 ++Count; 4053 } 4054 4055 for (auto &I : FI.arguments()) { 4056 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4057 } 4058 } 4059 4060 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4061 const unsigned CC = FI.getCallingConvention(); 4062 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4063 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4064 4065 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4066 // classification rules. 4067 if (CC == llvm::CallingConv::X86_64_SysV) { 4068 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4069 SysVABIInfo.computeInfo(FI); 4070 return; 4071 } 4072 4073 unsigned FreeSSERegs = 0; 4074 if (IsVectorCall) { 4075 // We can use up to 4 SSE return registers with vectorcall. 4076 FreeSSERegs = 4; 4077 } else if (IsRegCall) { 4078 // RegCall gives us 16 SSE registers. 4079 FreeSSERegs = 16; 4080 } 4081 4082 if (!getCXXABI().classifyReturnType(FI)) 4083 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4084 IsVectorCall, IsRegCall); 4085 4086 if (IsVectorCall) { 4087 // We can use up to 6 SSE register parameters with vectorcall. 4088 FreeSSERegs = 6; 4089 } else if (IsRegCall) { 4090 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4091 FreeSSERegs = 16; 4092 } 4093 4094 if (IsVectorCall) { 4095 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4096 } else { 4097 for (auto &I : FI.arguments()) 4098 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4099 } 4100 4101 } 4102 4103 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4104 QualType Ty) const { 4105 4106 bool IsIndirect = false; 4107 4108 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4109 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4110 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4111 uint64_t Width = getContext().getTypeSize(Ty); 4112 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4113 } 4114 4115 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4116 CGF.getContext().getTypeInfoInChars(Ty), 4117 CharUnits::fromQuantity(8), 4118 /*allowHigherAlign*/ false); 4119 } 4120 4121 // PowerPC-32 4122 namespace { 4123 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4124 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4125 bool IsSoftFloatABI; 4126 bool IsRetSmallStructInRegABI; 4127 4128 CharUnits getParamTypeAlignment(QualType Ty) const; 4129 4130 public: 4131 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4132 bool RetSmallStructInRegABI) 4133 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4134 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4135 4136 ABIArgInfo classifyReturnType(QualType RetTy) const; 4137 4138 void computeInfo(CGFunctionInfo &FI) const override { 4139 if (!getCXXABI().classifyReturnType(FI)) 4140 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4141 for (auto &I : FI.arguments()) 4142 I.info = classifyArgumentType(I.type); 4143 } 4144 4145 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4146 QualType Ty) const override; 4147 }; 4148 4149 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4150 public: 4151 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4152 bool RetSmallStructInRegABI) 4153 : TargetCodeGenInfo(new PPC32_SVR4_ABIInfo(CGT, SoftFloatABI, 4154 RetSmallStructInRegABI)) {} 4155 4156 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4157 const CodeGenOptions &Opts); 4158 4159 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4160 // This is recovered from gcc output. 4161 return 1; // r1 is the dedicated stack pointer 4162 } 4163 4164 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4165 llvm::Value *Address) const override; 4166 }; 4167 } 4168 4169 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4170 // Complex types are passed just like their elements 4171 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4172 Ty = CTy->getElementType(); 4173 4174 if (Ty->isVectorType()) 4175 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4176 : 4); 4177 4178 // For single-element float/vector structs, we consider the whole type 4179 // to have the same alignment requirements as its single element. 4180 const Type *AlignTy = nullptr; 4181 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4182 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4183 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4184 (BT && BT->isFloatingPoint())) 4185 AlignTy = EltType; 4186 } 4187 4188 if (AlignTy) 4189 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4190 return CharUnits::fromQuantity(4); 4191 } 4192 4193 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4194 uint64_t Size; 4195 4196 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4197 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4198 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4199 // System V ABI (1995), page 3-22, specified: 4200 // > A structure or union whose size is less than or equal to 8 bytes 4201 // > shall be returned in r3 and r4, as if it were first stored in the 4202 // > 8-byte aligned memory area and then the low addressed word were 4203 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4204 // > the last member of the structure or union are not defined. 4205 // 4206 // GCC for big-endian PPC32 inserts the pad before the first member, 4207 // not "beyond the last member" of the struct. To stay compatible 4208 // with GCC, we coerce the struct to an integer of the same size. 4209 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4210 if (Size == 0) 4211 return ABIArgInfo::getIgnore(); 4212 else { 4213 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4214 return ABIArgInfo::getDirect(CoerceTy); 4215 } 4216 } 4217 4218 return DefaultABIInfo::classifyReturnType(RetTy); 4219 } 4220 4221 // TODO: this implementation is now likely redundant with 4222 // DefaultABIInfo::EmitVAArg. 4223 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4224 QualType Ty) const { 4225 if (getTarget().getTriple().isOSDarwin()) { 4226 auto TI = getContext().getTypeInfoInChars(Ty); 4227 TI.second = getParamTypeAlignment(Ty); 4228 4229 CharUnits SlotSize = CharUnits::fromQuantity(4); 4230 return emitVoidPtrVAArg(CGF, VAList, Ty, 4231 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4232 /*AllowHigherAlign=*/true); 4233 } 4234 4235 const unsigned OverflowLimit = 8; 4236 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4237 // TODO: Implement this. For now ignore. 4238 (void)CTy; 4239 return Address::invalid(); // FIXME? 4240 } 4241 4242 // struct __va_list_tag { 4243 // unsigned char gpr; 4244 // unsigned char fpr; 4245 // unsigned short reserved; 4246 // void *overflow_arg_area; 4247 // void *reg_save_area; 4248 // }; 4249 4250 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4251 bool isInt = 4252 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4253 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4254 4255 // All aggregates are passed indirectly? That doesn't seem consistent 4256 // with the argument-lowering code. 4257 bool isIndirect = Ty->isAggregateType(); 4258 4259 CGBuilderTy &Builder = CGF.Builder; 4260 4261 // The calling convention either uses 1-2 GPRs or 1 FPR. 4262 Address NumRegsAddr = Address::invalid(); 4263 if (isInt || IsSoftFloatABI) { 4264 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4265 } else { 4266 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4267 } 4268 4269 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4270 4271 // "Align" the register count when TY is i64. 4272 if (isI64 || (isF64 && IsSoftFloatABI)) { 4273 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4274 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4275 } 4276 4277 llvm::Value *CC = 4278 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4279 4280 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4281 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4282 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4283 4284 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4285 4286 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4287 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4288 4289 // Case 1: consume registers. 4290 Address RegAddr = Address::invalid(); 4291 { 4292 CGF.EmitBlock(UsingRegs); 4293 4294 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4295 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4296 CharUnits::fromQuantity(8)); 4297 assert(RegAddr.getElementType() == CGF.Int8Ty); 4298 4299 // Floating-point registers start after the general-purpose registers. 4300 if (!(isInt || IsSoftFloatABI)) { 4301 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4302 CharUnits::fromQuantity(32)); 4303 } 4304 4305 // Get the address of the saved value by scaling the number of 4306 // registers we've used by the number of 4307 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4308 llvm::Value *RegOffset = 4309 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4310 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4311 RegAddr.getPointer(), RegOffset), 4312 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4313 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4314 4315 // Increase the used-register count. 4316 NumRegs = 4317 Builder.CreateAdd(NumRegs, 4318 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4319 Builder.CreateStore(NumRegs, NumRegsAddr); 4320 4321 CGF.EmitBranch(Cont); 4322 } 4323 4324 // Case 2: consume space in the overflow area. 4325 Address MemAddr = Address::invalid(); 4326 { 4327 CGF.EmitBlock(UsingOverflow); 4328 4329 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4330 4331 // Everything in the overflow area is rounded up to a size of at least 4. 4332 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4333 4334 CharUnits Size; 4335 if (!isIndirect) { 4336 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4337 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4338 } else { 4339 Size = CGF.getPointerSize(); 4340 } 4341 4342 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4343 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4344 OverflowAreaAlign); 4345 // Round up address of argument to alignment 4346 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4347 if (Align > OverflowAreaAlign) { 4348 llvm::Value *Ptr = OverflowArea.getPointer(); 4349 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4350 Align); 4351 } 4352 4353 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4354 4355 // Increase the overflow area. 4356 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4357 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4358 CGF.EmitBranch(Cont); 4359 } 4360 4361 CGF.EmitBlock(Cont); 4362 4363 // Merge the cases with a phi. 4364 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4365 "vaarg.addr"); 4366 4367 // Load the pointer if the argument was passed indirectly. 4368 if (isIndirect) { 4369 Result = Address(Builder.CreateLoad(Result, "aggr"), 4370 getContext().getTypeAlignInChars(Ty)); 4371 } 4372 4373 return Result; 4374 } 4375 4376 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4377 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4378 assert(Triple.getArch() == llvm::Triple::ppc); 4379 4380 switch (Opts.getStructReturnConvention()) { 4381 case CodeGenOptions::SRCK_Default: 4382 break; 4383 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4384 return false; 4385 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4386 return true; 4387 } 4388 4389 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4390 return true; 4391 4392 return false; 4393 } 4394 4395 bool 4396 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4397 llvm::Value *Address) const { 4398 // This is calculated from the LLVM and GCC tables and verified 4399 // against gcc output. AFAIK all ABIs use the same encoding. 4400 4401 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4402 4403 llvm::IntegerType *i8 = CGF.Int8Ty; 4404 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4405 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4406 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4407 4408 // 0-31: r0-31, the 4-byte general-purpose registers 4409 AssignToArrayRange(Builder, Address, Four8, 0, 31); 4410 4411 // 32-63: fp0-31, the 8-byte floating-point registers 4412 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4413 4414 // 64-76 are various 4-byte special-purpose registers: 4415 // 64: mq 4416 // 65: lr 4417 // 66: ctr 4418 // 67: ap 4419 // 68-75 cr0-7 4420 // 76: xer 4421 AssignToArrayRange(Builder, Address, Four8, 64, 76); 4422 4423 // 77-108: v0-31, the 16-byte vector registers 4424 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4425 4426 // 109: vrsave 4427 // 110: vscr 4428 // 111: spe_acc 4429 // 112: spefscr 4430 // 113: sfp 4431 AssignToArrayRange(Builder, Address, Four8, 109, 113); 4432 4433 return false; 4434 } 4435 4436 // PowerPC-64 4437 4438 namespace { 4439 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4440 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4441 public: 4442 enum ABIKind { 4443 ELFv1 = 0, 4444 ELFv2 4445 }; 4446 4447 private: 4448 static const unsigned GPRBits = 64; 4449 ABIKind Kind; 4450 bool HasQPX; 4451 bool IsSoftFloatABI; 4452 4453 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4454 // will be passed in a QPX register. 4455 bool IsQPXVectorTy(const Type *Ty) const { 4456 if (!HasQPX) 4457 return false; 4458 4459 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4460 unsigned NumElements = VT->getNumElements(); 4461 if (NumElements == 1) 4462 return false; 4463 4464 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4465 if (getContext().getTypeSize(Ty) <= 256) 4466 return true; 4467 } else if (VT->getElementType()-> 4468 isSpecificBuiltinType(BuiltinType::Float)) { 4469 if (getContext().getTypeSize(Ty) <= 128) 4470 return true; 4471 } 4472 } 4473 4474 return false; 4475 } 4476 4477 bool IsQPXVectorTy(QualType Ty) const { 4478 return IsQPXVectorTy(Ty.getTypePtr()); 4479 } 4480 4481 public: 4482 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4483 bool SoftFloatABI) 4484 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4485 IsSoftFloatABI(SoftFloatABI) {} 4486 4487 bool isPromotableTypeForABI(QualType Ty) const; 4488 CharUnits getParamTypeAlignment(QualType Ty) const; 4489 4490 ABIArgInfo classifyReturnType(QualType RetTy) const; 4491 ABIArgInfo classifyArgumentType(QualType Ty) const; 4492 4493 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4494 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4495 uint64_t Members) const override; 4496 4497 // TODO: We can add more logic to computeInfo to improve performance. 4498 // Example: For aggregate arguments that fit in a register, we could 4499 // use getDirectInReg (as is done below for structs containing a single 4500 // floating-point value) to avoid pushing them to memory on function 4501 // entry. This would require changing the logic in PPCISelLowering 4502 // when lowering the parameters in the caller and args in the callee. 4503 void computeInfo(CGFunctionInfo &FI) const override { 4504 if (!getCXXABI().classifyReturnType(FI)) 4505 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4506 for (auto &I : FI.arguments()) { 4507 // We rely on the default argument classification for the most part. 4508 // One exception: An aggregate containing a single floating-point 4509 // or vector item must be passed in a register if one is available. 4510 const Type *T = isSingleElementStruct(I.type, getContext()); 4511 if (T) { 4512 const BuiltinType *BT = T->getAs<BuiltinType>(); 4513 if (IsQPXVectorTy(T) || 4514 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4515 (BT && BT->isFloatingPoint())) { 4516 QualType QT(T, 0); 4517 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4518 continue; 4519 } 4520 } 4521 I.info = classifyArgumentType(I.type); 4522 } 4523 } 4524 4525 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4526 QualType Ty) const override; 4527 4528 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4529 bool asReturnValue) const override { 4530 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4531 } 4532 4533 bool isSwiftErrorInRegister() const override { 4534 return false; 4535 } 4536 }; 4537 4538 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4539 4540 public: 4541 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4542 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4543 bool SoftFloatABI) 4544 : TargetCodeGenInfo(new PPC64_SVR4_ABIInfo(CGT, Kind, HasQPX, 4545 SoftFloatABI)) {} 4546 4547 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4548 // This is recovered from gcc output. 4549 return 1; // r1 is the dedicated stack pointer 4550 } 4551 4552 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4553 llvm::Value *Address) const override; 4554 }; 4555 4556 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4557 public: 4558 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4559 4560 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4561 // This is recovered from gcc output. 4562 return 1; // r1 is the dedicated stack pointer 4563 } 4564 4565 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4566 llvm::Value *Address) const override; 4567 }; 4568 4569 } 4570 4571 // Return true if the ABI requires Ty to be passed sign- or zero- 4572 // extended to 64 bits. 4573 bool 4574 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 4575 // Treat an enum type as its underlying type. 4576 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4577 Ty = EnumTy->getDecl()->getIntegerType(); 4578 4579 // Promotable integer types are required to be promoted by the ABI. 4580 if (Ty->isPromotableIntegerType()) 4581 return true; 4582 4583 // In addition to the usual promotable integer types, we also need to 4584 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 4585 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4586 switch (BT->getKind()) { 4587 case BuiltinType::Int: 4588 case BuiltinType::UInt: 4589 return true; 4590 default: 4591 break; 4592 } 4593 4594 return false; 4595 } 4596 4597 /// isAlignedParamType - Determine whether a type requires 16-byte or 4598 /// higher alignment in the parameter area. Always returns at least 8. 4599 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4600 // Complex types are passed just like their elements. 4601 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4602 Ty = CTy->getElementType(); 4603 4604 // Only vector types of size 16 bytes need alignment (larger types are 4605 // passed via reference, smaller types are not aligned). 4606 if (IsQPXVectorTy(Ty)) { 4607 if (getContext().getTypeSize(Ty) > 128) 4608 return CharUnits::fromQuantity(32); 4609 4610 return CharUnits::fromQuantity(16); 4611 } else if (Ty->isVectorType()) { 4612 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 4613 } 4614 4615 // For single-element float/vector structs, we consider the whole type 4616 // to have the same alignment requirements as its single element. 4617 const Type *AlignAsType = nullptr; 4618 const Type *EltType = isSingleElementStruct(Ty, getContext()); 4619 if (EltType) { 4620 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4621 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 4622 getContext().getTypeSize(EltType) == 128) || 4623 (BT && BT->isFloatingPoint())) 4624 AlignAsType = EltType; 4625 } 4626 4627 // Likewise for ELFv2 homogeneous aggregates. 4628 const Type *Base = nullptr; 4629 uint64_t Members = 0; 4630 if (!AlignAsType && Kind == ELFv2 && 4631 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 4632 AlignAsType = Base; 4633 4634 // With special case aggregates, only vector base types need alignment. 4635 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 4636 if (getContext().getTypeSize(AlignAsType) > 128) 4637 return CharUnits::fromQuantity(32); 4638 4639 return CharUnits::fromQuantity(16); 4640 } else if (AlignAsType) { 4641 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 4642 } 4643 4644 // Otherwise, we only need alignment for any aggregate type that 4645 // has an alignment requirement of >= 16 bytes. 4646 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 4647 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 4648 return CharUnits::fromQuantity(32); 4649 return CharUnits::fromQuantity(16); 4650 } 4651 4652 return CharUnits::fromQuantity(8); 4653 } 4654 4655 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 4656 /// aggregate. Base is set to the base element type, and Members is set 4657 /// to the number of base elements. 4658 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 4659 uint64_t &Members) const { 4660 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 4661 uint64_t NElements = AT->getSize().getZExtValue(); 4662 if (NElements == 0) 4663 return false; 4664 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 4665 return false; 4666 Members *= NElements; 4667 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 4668 const RecordDecl *RD = RT->getDecl(); 4669 if (RD->hasFlexibleArrayMember()) 4670 return false; 4671 4672 Members = 0; 4673 4674 // If this is a C++ record, check the bases first. 4675 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 4676 for (const auto &I : CXXRD->bases()) { 4677 // Ignore empty records. 4678 if (isEmptyRecord(getContext(), I.getType(), true)) 4679 continue; 4680 4681 uint64_t FldMembers; 4682 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 4683 return false; 4684 4685 Members += FldMembers; 4686 } 4687 } 4688 4689 for (const auto *FD : RD->fields()) { 4690 // Ignore (non-zero arrays of) empty records. 4691 QualType FT = FD->getType(); 4692 while (const ConstantArrayType *AT = 4693 getContext().getAsConstantArrayType(FT)) { 4694 if (AT->getSize().getZExtValue() == 0) 4695 return false; 4696 FT = AT->getElementType(); 4697 } 4698 if (isEmptyRecord(getContext(), FT, true)) 4699 continue; 4700 4701 // For compatibility with GCC, ignore empty bitfields in C++ mode. 4702 if (getContext().getLangOpts().CPlusPlus && 4703 FD->isZeroLengthBitField(getContext())) 4704 continue; 4705 4706 uint64_t FldMembers; 4707 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 4708 return false; 4709 4710 Members = (RD->isUnion() ? 4711 std::max(Members, FldMembers) : Members + FldMembers); 4712 } 4713 4714 if (!Base) 4715 return false; 4716 4717 // Ensure there is no padding. 4718 if (getContext().getTypeSize(Base) * Members != 4719 getContext().getTypeSize(Ty)) 4720 return false; 4721 } else { 4722 Members = 1; 4723 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 4724 Members = 2; 4725 Ty = CT->getElementType(); 4726 } 4727 4728 // Most ABIs only support float, double, and some vector type widths. 4729 if (!isHomogeneousAggregateBaseType(Ty)) 4730 return false; 4731 4732 // The base type must be the same for all members. Types that 4733 // agree in both total size and mode (float vs. vector) are 4734 // treated as being equivalent here. 4735 const Type *TyPtr = Ty.getTypePtr(); 4736 if (!Base) { 4737 Base = TyPtr; 4738 // If it's a non-power-of-2 vector, its size is already a power-of-2, 4739 // so make sure to widen it explicitly. 4740 if (const VectorType *VT = Base->getAs<VectorType>()) { 4741 QualType EltTy = VT->getElementType(); 4742 unsigned NumElements = 4743 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 4744 Base = getContext() 4745 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 4746 .getTypePtr(); 4747 } 4748 } 4749 4750 if (Base->isVectorType() != TyPtr->isVectorType() || 4751 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 4752 return false; 4753 } 4754 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 4755 } 4756 4757 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 4758 // Homogeneous aggregates for ELFv2 must have base types of float, 4759 // double, long double, or 128-bit vectors. 4760 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4761 if (BT->getKind() == BuiltinType::Float || 4762 BT->getKind() == BuiltinType::Double || 4763 BT->getKind() == BuiltinType::LongDouble || 4764 (getContext().getTargetInfo().hasFloat128Type() && 4765 (BT->getKind() == BuiltinType::Float128))) { 4766 if (IsSoftFloatABI) 4767 return false; 4768 return true; 4769 } 4770 } 4771 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4772 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 4773 return true; 4774 } 4775 return false; 4776 } 4777 4778 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 4779 const Type *Base, uint64_t Members) const { 4780 // Vector and fp128 types require one register, other floating point types 4781 // require one or two registers depending on their size. 4782 uint32_t NumRegs = 4783 ((getContext().getTargetInfo().hasFloat128Type() && 4784 Base->isFloat128Type()) || 4785 Base->isVectorType()) ? 1 4786 : (getContext().getTypeSize(Base) + 63) / 64; 4787 4788 // Homogeneous Aggregates may occupy at most 8 registers. 4789 return Members * NumRegs <= 8; 4790 } 4791 4792 ABIArgInfo 4793 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 4794 Ty = useFirstFieldIfTransparentUnion(Ty); 4795 4796 if (Ty->isAnyComplexType()) 4797 return ABIArgInfo::getDirect(); 4798 4799 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 4800 // or via reference (larger than 16 bytes). 4801 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 4802 uint64_t Size = getContext().getTypeSize(Ty); 4803 if (Size > 128) 4804 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4805 else if (Size < 128) { 4806 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4807 return ABIArgInfo::getDirect(CoerceTy); 4808 } 4809 } 4810 4811 if (isAggregateTypeForABI(Ty)) { 4812 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4813 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4814 4815 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 4816 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 4817 4818 // ELFv2 homogeneous aggregates are passed as array types. 4819 const Type *Base = nullptr; 4820 uint64_t Members = 0; 4821 if (Kind == ELFv2 && 4822 isHomogeneousAggregate(Ty, Base, Members)) { 4823 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4824 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4825 return ABIArgInfo::getDirect(CoerceTy); 4826 } 4827 4828 // If an aggregate may end up fully in registers, we do not 4829 // use the ByVal method, but pass the aggregate as array. 4830 // This is usually beneficial since we avoid forcing the 4831 // back-end to store the argument to memory. 4832 uint64_t Bits = getContext().getTypeSize(Ty); 4833 if (Bits > 0 && Bits <= 8 * GPRBits) { 4834 llvm::Type *CoerceTy; 4835 4836 // Types up to 8 bytes are passed as integer type (which will be 4837 // properly aligned in the argument save area doubleword). 4838 if (Bits <= GPRBits) 4839 CoerceTy = 4840 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4841 // Larger types are passed as arrays, with the base type selected 4842 // according to the required alignment in the save area. 4843 else { 4844 uint64_t RegBits = ABIAlign * 8; 4845 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 4846 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 4847 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 4848 } 4849 4850 return ABIArgInfo::getDirect(CoerceTy); 4851 } 4852 4853 // All other aggregates are passed ByVal. 4854 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 4855 /*ByVal=*/true, 4856 /*Realign=*/TyAlign > ABIAlign); 4857 } 4858 4859 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4860 : ABIArgInfo::getDirect()); 4861 } 4862 4863 ABIArgInfo 4864 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4865 if (RetTy->isVoidType()) 4866 return ABIArgInfo::getIgnore(); 4867 4868 if (RetTy->isAnyComplexType()) 4869 return ABIArgInfo::getDirect(); 4870 4871 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 4872 // or via reference (larger than 16 bytes). 4873 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 4874 uint64_t Size = getContext().getTypeSize(RetTy); 4875 if (Size > 128) 4876 return getNaturalAlignIndirect(RetTy); 4877 else if (Size < 128) { 4878 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 4879 return ABIArgInfo::getDirect(CoerceTy); 4880 } 4881 } 4882 4883 if (isAggregateTypeForABI(RetTy)) { 4884 // ELFv2 homogeneous aggregates are returned as array types. 4885 const Type *Base = nullptr; 4886 uint64_t Members = 0; 4887 if (Kind == ELFv2 && 4888 isHomogeneousAggregate(RetTy, Base, Members)) { 4889 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 4890 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 4891 return ABIArgInfo::getDirect(CoerceTy); 4892 } 4893 4894 // ELFv2 small aggregates are returned in up to two registers. 4895 uint64_t Bits = getContext().getTypeSize(RetTy); 4896 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 4897 if (Bits == 0) 4898 return ABIArgInfo::getIgnore(); 4899 4900 llvm::Type *CoerceTy; 4901 if (Bits > GPRBits) { 4902 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 4903 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 4904 } else 4905 CoerceTy = 4906 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 4907 return ABIArgInfo::getDirect(CoerceTy); 4908 } 4909 4910 // All other aggregates are returned indirectly. 4911 return getNaturalAlignIndirect(RetTy); 4912 } 4913 4914 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4915 : ABIArgInfo::getDirect()); 4916 } 4917 4918 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 4919 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4920 QualType Ty) const { 4921 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4922 TypeInfo.second = getParamTypeAlignment(Ty); 4923 4924 CharUnits SlotSize = CharUnits::fromQuantity(8); 4925 4926 // If we have a complex type and the base type is smaller than 8 bytes, 4927 // the ABI calls for the real and imaginary parts to be right-adjusted 4928 // in separate doublewords. However, Clang expects us to produce a 4929 // pointer to a structure with the two parts packed tightly. So generate 4930 // loads of the real and imaginary parts relative to the va_list pointer, 4931 // and store them to a temporary structure. 4932 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4933 CharUnits EltSize = TypeInfo.first / 2; 4934 if (EltSize < SlotSize) { 4935 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 4936 SlotSize * 2, SlotSize, 4937 SlotSize, /*AllowHigher*/ true); 4938 4939 Address RealAddr = Addr; 4940 Address ImagAddr = RealAddr; 4941 if (CGF.CGM.getDataLayout().isBigEndian()) { 4942 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 4943 SlotSize - EltSize); 4944 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 4945 2 * SlotSize - EltSize); 4946 } else { 4947 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 4948 } 4949 4950 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 4951 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 4952 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 4953 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 4954 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 4955 4956 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 4957 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 4958 /*init*/ true); 4959 return Temp; 4960 } 4961 } 4962 4963 // Otherwise, just use the general rule. 4964 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 4965 TypeInfo, SlotSize, /*AllowHigher*/ true); 4966 } 4967 4968 static bool 4969 PPC64_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4970 llvm::Value *Address) { 4971 // This is calculated from the LLVM and GCC tables and verified 4972 // against gcc output. AFAIK all ABIs use the same encoding. 4973 4974 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4975 4976 llvm::IntegerType *i8 = CGF.Int8Ty; 4977 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4978 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4979 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4980 4981 // 0-31: r0-31, the 8-byte general-purpose registers 4982 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 4983 4984 // 32-63: fp0-31, the 8-byte floating-point registers 4985 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4986 4987 // 64-67 are various 8-byte special-purpose registers: 4988 // 64: mq 4989 // 65: lr 4990 // 66: ctr 4991 // 67: ap 4992 AssignToArrayRange(Builder, Address, Eight8, 64, 67); 4993 4994 // 68-76 are various 4-byte special-purpose registers: 4995 // 68-75 cr0-7 4996 // 76: xer 4997 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4998 4999 // 77-108: v0-31, the 16-byte vector registers 5000 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 5001 5002 // 109: vrsave 5003 // 110: vscr 5004 // 111: spe_acc 5005 // 112: spefscr 5006 // 113: sfp 5007 // 114: tfhar 5008 // 115: tfiar 5009 // 116: texasr 5010 AssignToArrayRange(Builder, Address, Eight8, 109, 116); 5011 5012 return false; 5013 } 5014 5015 bool 5016 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5017 CodeGen::CodeGenFunction &CGF, 5018 llvm::Value *Address) const { 5019 5020 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 5021 } 5022 5023 bool 5024 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5025 llvm::Value *Address) const { 5026 5027 return PPC64_initDwarfEHRegSizeTable(CGF, Address); 5028 } 5029 5030 //===----------------------------------------------------------------------===// 5031 // AArch64 ABI Implementation 5032 //===----------------------------------------------------------------------===// 5033 5034 namespace { 5035 5036 class AArch64ABIInfo : public SwiftABIInfo { 5037 public: 5038 enum ABIKind { 5039 AAPCS = 0, 5040 DarwinPCS, 5041 Win64 5042 }; 5043 5044 private: 5045 ABIKind Kind; 5046 5047 public: 5048 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5049 : SwiftABIInfo(CGT), Kind(Kind) {} 5050 5051 private: 5052 ABIKind getABIKind() const { return Kind; } 5053 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5054 5055 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5056 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5057 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5058 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5059 uint64_t Members) const override; 5060 5061 bool isIllegalVectorType(QualType Ty) const; 5062 5063 void computeInfo(CGFunctionInfo &FI) const override { 5064 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5065 FI.getReturnInfo() = 5066 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5067 5068 for (auto &it : FI.arguments()) 5069 it.info = classifyArgumentType(it.type); 5070 } 5071 5072 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5073 CodeGenFunction &CGF) const; 5074 5075 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5076 CodeGenFunction &CGF) const; 5077 5078 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5079 QualType Ty) const override { 5080 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5081 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5082 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5083 } 5084 5085 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5086 QualType Ty) const override; 5087 5088 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5089 bool asReturnValue) const override { 5090 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5091 } 5092 bool isSwiftErrorInRegister() const override { 5093 return true; 5094 } 5095 5096 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5097 unsigned elts) const override; 5098 }; 5099 5100 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5101 public: 5102 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5103 : TargetCodeGenInfo(new AArch64ABIInfo(CGT, Kind)) {} 5104 5105 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5106 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5107 } 5108 5109 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5110 return 31; 5111 } 5112 5113 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5114 5115 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5116 CodeGen::CodeGenModule &CGM) const override { 5117 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5118 if (!FD) 5119 return; 5120 5121 CodeGenOptions::SignReturnAddressScope Scope = CGM.getCodeGenOpts().getSignReturnAddress(); 5122 CodeGenOptions::SignReturnAddressKeyValue Key = CGM.getCodeGenOpts().getSignReturnAddressKey(); 5123 bool BranchTargetEnforcement = CGM.getCodeGenOpts().BranchTargetEnforcement; 5124 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5125 ParsedTargetAttr Attr = TA->parse(); 5126 if (!Attr.BranchProtection.empty()) { 5127 TargetInfo::BranchProtectionInfo BPI; 5128 StringRef Error; 5129 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5130 BPI, Error); 5131 assert(Error.empty()); 5132 Scope = BPI.SignReturnAddr; 5133 Key = BPI.SignKey; 5134 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5135 } 5136 } 5137 5138 auto *Fn = cast<llvm::Function>(GV); 5139 if (Scope != CodeGenOptions::SignReturnAddressScope::None) { 5140 Fn->addFnAttr("sign-return-address", 5141 Scope == CodeGenOptions::SignReturnAddressScope::All 5142 ? "all" 5143 : "non-leaf"); 5144 5145 Fn->addFnAttr("sign-return-address-key", 5146 Key == CodeGenOptions::SignReturnAddressKeyValue::AKey 5147 ? "a_key" 5148 : "b_key"); 5149 } 5150 5151 if (BranchTargetEnforcement) 5152 Fn->addFnAttr("branch-target-enforcement"); 5153 } 5154 }; 5155 5156 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5157 public: 5158 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5159 : AArch64TargetCodeGenInfo(CGT, K) {} 5160 5161 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5162 CodeGen::CodeGenModule &CGM) const override; 5163 5164 void getDependentLibraryOption(llvm::StringRef Lib, 5165 llvm::SmallString<24> &Opt) const override { 5166 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5167 } 5168 5169 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5170 llvm::SmallString<32> &Opt) const override { 5171 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5172 } 5173 }; 5174 5175 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5176 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5177 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5178 if (GV->isDeclaration()) 5179 return; 5180 addStackProbeTargetAttributes(D, GV, CGM); 5181 } 5182 } 5183 5184 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5185 Ty = useFirstFieldIfTransparentUnion(Ty); 5186 5187 // Handle illegal vector types here. 5188 if (isIllegalVectorType(Ty)) { 5189 uint64_t Size = getContext().getTypeSize(Ty); 5190 // Android promotes <2 x i8> to i16, not i32 5191 if (isAndroid() && (Size <= 16)) { 5192 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5193 return ABIArgInfo::getDirect(ResType); 5194 } 5195 if (Size <= 32) { 5196 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5197 return ABIArgInfo::getDirect(ResType); 5198 } 5199 if (Size == 64) { 5200 llvm::Type *ResType = 5201 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5202 return ABIArgInfo::getDirect(ResType); 5203 } 5204 if (Size == 128) { 5205 llvm::Type *ResType = 5206 llvm::VectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5207 return ABIArgInfo::getDirect(ResType); 5208 } 5209 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5210 } 5211 5212 if (!isAggregateTypeForABI(Ty)) { 5213 // Treat an enum type as its underlying type. 5214 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5215 Ty = EnumTy->getDecl()->getIntegerType(); 5216 5217 return (Ty->isPromotableIntegerType() && isDarwinPCS() 5218 ? ABIArgInfo::getExtend(Ty) 5219 : ABIArgInfo::getDirect()); 5220 } 5221 5222 // Structures with either a non-trivial destructor or a non-trivial 5223 // copy constructor are always indirect. 5224 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5225 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5226 CGCXXABI::RAA_DirectInMemory); 5227 } 5228 5229 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5230 // elsewhere for GNU compatibility. 5231 uint64_t Size = getContext().getTypeSize(Ty); 5232 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5233 if (IsEmpty || Size == 0) { 5234 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5235 return ABIArgInfo::getIgnore(); 5236 5237 // GNU C mode. The only argument that gets ignored is an empty one with size 5238 // 0. 5239 if (IsEmpty && Size == 0) 5240 return ABIArgInfo::getIgnore(); 5241 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5242 } 5243 5244 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5245 const Type *Base = nullptr; 5246 uint64_t Members = 0; 5247 if (isHomogeneousAggregate(Ty, Base, Members)) { 5248 return ABIArgInfo::getDirect( 5249 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5250 } 5251 5252 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5253 if (Size <= 128) { 5254 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5255 // same size and alignment. 5256 if (getTarget().isRenderScriptTarget()) { 5257 return coerceToIntArray(Ty, getContext(), getVMContext()); 5258 } 5259 unsigned Alignment; 5260 if (Kind == AArch64ABIInfo::AAPCS) { 5261 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5262 Alignment = Alignment < 128 ? 64 : 128; 5263 } else { 5264 Alignment = std::max(getContext().getTypeAlign(Ty), 5265 (unsigned)getTarget().getPointerWidth(0)); 5266 } 5267 Size = llvm::alignTo(Size, Alignment); 5268 5269 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5270 // For aggregates with 16-byte alignment, we use i128. 5271 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5272 return ABIArgInfo::getDirect( 5273 Size == Alignment ? BaseTy 5274 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5275 } 5276 5277 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5278 } 5279 5280 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5281 bool IsVariadic) const { 5282 if (RetTy->isVoidType()) 5283 return ABIArgInfo::getIgnore(); 5284 5285 // Large vector types should be returned via memory. 5286 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5287 return getNaturalAlignIndirect(RetTy); 5288 5289 if (!isAggregateTypeForABI(RetTy)) { 5290 // Treat an enum type as its underlying type. 5291 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5292 RetTy = EnumTy->getDecl()->getIntegerType(); 5293 5294 return (RetTy->isPromotableIntegerType() && isDarwinPCS() 5295 ? ABIArgInfo::getExtend(RetTy) 5296 : ABIArgInfo::getDirect()); 5297 } 5298 5299 uint64_t Size = getContext().getTypeSize(RetTy); 5300 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5301 return ABIArgInfo::getIgnore(); 5302 5303 const Type *Base = nullptr; 5304 uint64_t Members = 0; 5305 if (isHomogeneousAggregate(RetTy, Base, Members) && 5306 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5307 IsVariadic)) 5308 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5309 return ABIArgInfo::getDirect(); 5310 5311 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5312 if (Size <= 128) { 5313 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5314 // same size and alignment. 5315 if (getTarget().isRenderScriptTarget()) { 5316 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5317 } 5318 unsigned Alignment = getContext().getTypeAlign(RetTy); 5319 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5320 5321 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5322 // For aggregates with 16-byte alignment, we use i128. 5323 if (Alignment < 128 && Size == 128) { 5324 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5325 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5326 } 5327 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5328 } 5329 5330 return getNaturalAlignIndirect(RetTy); 5331 } 5332 5333 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5334 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5335 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5336 // Check whether VT is legal. 5337 unsigned NumElements = VT->getNumElements(); 5338 uint64_t Size = getContext().getTypeSize(VT); 5339 // NumElements should be power of 2. 5340 if (!llvm::isPowerOf2_32(NumElements)) 5341 return true; 5342 5343 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5344 // vectors for some reason. 5345 llvm::Triple Triple = getTarget().getTriple(); 5346 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5347 Triple.isOSBinFormatMachO()) 5348 return Size <= 32; 5349 5350 return Size != 64 && (Size != 128 || NumElements == 1); 5351 } 5352 return false; 5353 } 5354 5355 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5356 llvm::Type *eltTy, 5357 unsigned elts) const { 5358 if (!llvm::isPowerOf2_32(elts)) 5359 return false; 5360 if (totalSize.getQuantity() != 8 && 5361 (totalSize.getQuantity() != 16 || elts == 1)) 5362 return false; 5363 return true; 5364 } 5365 5366 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5367 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5368 // point type or a short-vector type. This is the same as the 32-bit ABI, 5369 // but with the difference that any floating-point type is allowed, 5370 // including __fp16. 5371 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5372 if (BT->isFloatingPoint()) 5373 return true; 5374 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5375 unsigned VecSize = getContext().getTypeSize(VT); 5376 if (VecSize == 64 || VecSize == 128) 5377 return true; 5378 } 5379 return false; 5380 } 5381 5382 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5383 uint64_t Members) const { 5384 return Members <= 4; 5385 } 5386 5387 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5388 QualType Ty, 5389 CodeGenFunction &CGF) const { 5390 ABIArgInfo AI = classifyArgumentType(Ty); 5391 bool IsIndirect = AI.isIndirect(); 5392 5393 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5394 if (IsIndirect) 5395 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5396 else if (AI.getCoerceToType()) 5397 BaseTy = AI.getCoerceToType(); 5398 5399 unsigned NumRegs = 1; 5400 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5401 BaseTy = ArrTy->getElementType(); 5402 NumRegs = ArrTy->getNumElements(); 5403 } 5404 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5405 5406 // The AArch64 va_list type and handling is specified in the Procedure Call 5407 // Standard, section B.4: 5408 // 5409 // struct { 5410 // void *__stack; 5411 // void *__gr_top; 5412 // void *__vr_top; 5413 // int __gr_offs; 5414 // int __vr_offs; 5415 // }; 5416 5417 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5418 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5419 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5420 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5421 5422 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5423 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5424 5425 Address reg_offs_p = Address::invalid(); 5426 llvm::Value *reg_offs = nullptr; 5427 int reg_top_index; 5428 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5429 if (!IsFPR) { 5430 // 3 is the field number of __gr_offs 5431 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5432 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5433 reg_top_index = 1; // field number for __gr_top 5434 RegSize = llvm::alignTo(RegSize, 8); 5435 } else { 5436 // 4 is the field number of __vr_offs. 5437 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5438 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5439 reg_top_index = 2; // field number for __vr_top 5440 RegSize = 16 * NumRegs; 5441 } 5442 5443 //======================================= 5444 // Find out where argument was passed 5445 //======================================= 5446 5447 // If reg_offs >= 0 we're already using the stack for this type of 5448 // argument. We don't want to keep updating reg_offs (in case it overflows, 5449 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5450 // whatever they get). 5451 llvm::Value *UsingStack = nullptr; 5452 UsingStack = CGF.Builder.CreateICmpSGE( 5453 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5454 5455 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5456 5457 // Otherwise, at least some kind of argument could go in these registers, the 5458 // question is whether this particular type is too big. 5459 CGF.EmitBlock(MaybeRegBlock); 5460 5461 // Integer arguments may need to correct register alignment (for example a 5462 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5463 // align __gr_offs to calculate the potential address. 5464 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5465 int Align = TyAlign.getQuantity(); 5466 5467 reg_offs = CGF.Builder.CreateAdd( 5468 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5469 "align_regoffs"); 5470 reg_offs = CGF.Builder.CreateAnd( 5471 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5472 "aligned_regoffs"); 5473 } 5474 5475 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5476 // The fact that this is done unconditionally reflects the fact that 5477 // allocating an argument to the stack also uses up all the remaining 5478 // registers of the appropriate kind. 5479 llvm::Value *NewOffset = nullptr; 5480 NewOffset = CGF.Builder.CreateAdd( 5481 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5482 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5483 5484 // Now we're in a position to decide whether this argument really was in 5485 // registers or not. 5486 llvm::Value *InRegs = nullptr; 5487 InRegs = CGF.Builder.CreateICmpSLE( 5488 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5489 5490 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5491 5492 //======================================= 5493 // Argument was in registers 5494 //======================================= 5495 5496 // Now we emit the code for if the argument was originally passed in 5497 // registers. First start the appropriate block: 5498 CGF.EmitBlock(InRegBlock); 5499 5500 llvm::Value *reg_top = nullptr; 5501 Address reg_top_p = 5502 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5503 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5504 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5505 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5506 Address RegAddr = Address::invalid(); 5507 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5508 5509 if (IsIndirect) { 5510 // If it's been passed indirectly (actually a struct), whatever we find from 5511 // stored registers or on the stack will actually be a struct **. 5512 MemTy = llvm::PointerType::getUnqual(MemTy); 5513 } 5514 5515 const Type *Base = nullptr; 5516 uint64_t NumMembers = 0; 5517 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5518 if (IsHFA && NumMembers > 1) { 5519 // Homogeneous aggregates passed in registers will have their elements split 5520 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5521 // qN+1, ...). We reload and store into a temporary local variable 5522 // contiguously. 5523 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5524 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5525 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5526 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5527 Address Tmp = CGF.CreateTempAlloca(HFATy, 5528 std::max(TyAlign, BaseTyInfo.second)); 5529 5530 // On big-endian platforms, the value will be right-aligned in its slot. 5531 int Offset = 0; 5532 if (CGF.CGM.getDataLayout().isBigEndian() && 5533 BaseTyInfo.first.getQuantity() < 16) 5534 Offset = 16 - BaseTyInfo.first.getQuantity(); 5535 5536 for (unsigned i = 0; i < NumMembers; ++i) { 5537 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5538 Address LoadAddr = 5539 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5540 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5541 5542 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5543 5544 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5545 CGF.Builder.CreateStore(Elem, StoreAddr); 5546 } 5547 5548 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5549 } else { 5550 // Otherwise the object is contiguous in memory. 5551 5552 // It might be right-aligned in its slot. 5553 CharUnits SlotSize = BaseAddr.getAlignment(); 5554 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5555 (IsHFA || !isAggregateTypeForABI(Ty)) && 5556 TySize < SlotSize) { 5557 CharUnits Offset = SlotSize - TySize; 5558 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5559 } 5560 5561 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5562 } 5563 5564 CGF.EmitBranch(ContBlock); 5565 5566 //======================================= 5567 // Argument was on the stack 5568 //======================================= 5569 CGF.EmitBlock(OnStackBlock); 5570 5571 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5572 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5573 5574 // Again, stack arguments may need realignment. In this case both integer and 5575 // floating-point ones might be affected. 5576 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5577 int Align = TyAlign.getQuantity(); 5578 5579 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5580 5581 OnStackPtr = CGF.Builder.CreateAdd( 5582 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5583 "align_stack"); 5584 OnStackPtr = CGF.Builder.CreateAnd( 5585 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5586 "align_stack"); 5587 5588 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 5589 } 5590 Address OnStackAddr(OnStackPtr, 5591 std::max(CharUnits::fromQuantity(8), TyAlign)); 5592 5593 // All stack slots are multiples of 8 bytes. 5594 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 5595 CharUnits StackSize; 5596 if (IsIndirect) 5597 StackSize = StackSlotSize; 5598 else 5599 StackSize = TySize.alignTo(StackSlotSize); 5600 5601 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 5602 llvm::Value *NewStack = 5603 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 5604 5605 // Write the new value of __stack for the next call to va_arg 5606 CGF.Builder.CreateStore(NewStack, stack_p); 5607 5608 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 5609 TySize < StackSlotSize) { 5610 CharUnits Offset = StackSlotSize - TySize; 5611 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 5612 } 5613 5614 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 5615 5616 CGF.EmitBranch(ContBlock); 5617 5618 //======================================= 5619 // Tidy up 5620 //======================================= 5621 CGF.EmitBlock(ContBlock); 5622 5623 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 5624 OnStackAddr, OnStackBlock, "vaargs.addr"); 5625 5626 if (IsIndirect) 5627 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 5628 TyAlign); 5629 5630 return ResAddr; 5631 } 5632 5633 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5634 CodeGenFunction &CGF) const { 5635 // The backend's lowering doesn't support va_arg for aggregates or 5636 // illegal vector types. Lower VAArg here for these cases and use 5637 // the LLVM va_arg instruction for everything else. 5638 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 5639 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 5640 5641 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 5642 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 5643 5644 // Empty records are ignored for parameter passing purposes. 5645 if (isEmptyRecord(getContext(), Ty, true)) { 5646 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 5647 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 5648 return Addr; 5649 } 5650 5651 // The size of the actual thing passed, which might end up just 5652 // being a pointer for indirect types. 5653 auto TyInfo = getContext().getTypeInfoInChars(Ty); 5654 5655 // Arguments bigger than 16 bytes which aren't homogeneous 5656 // aggregates should be passed indirectly. 5657 bool IsIndirect = false; 5658 if (TyInfo.first.getQuantity() > 16) { 5659 const Type *Base = nullptr; 5660 uint64_t Members = 0; 5661 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 5662 } 5663 5664 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 5665 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 5666 } 5667 5668 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5669 QualType Ty) const { 5670 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 5671 CGF.getContext().getTypeInfoInChars(Ty), 5672 CharUnits::fromQuantity(8), 5673 /*allowHigherAlign*/ false); 5674 } 5675 5676 //===----------------------------------------------------------------------===// 5677 // ARM ABI Implementation 5678 //===----------------------------------------------------------------------===// 5679 5680 namespace { 5681 5682 class ARMABIInfo : public SwiftABIInfo { 5683 public: 5684 enum ABIKind { 5685 APCS = 0, 5686 AAPCS = 1, 5687 AAPCS_VFP = 2, 5688 AAPCS16_VFP = 3, 5689 }; 5690 5691 private: 5692 ABIKind Kind; 5693 5694 public: 5695 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 5696 : SwiftABIInfo(CGT), Kind(_Kind) { 5697 setCCs(); 5698 } 5699 5700 bool isEABI() const { 5701 switch (getTarget().getTriple().getEnvironment()) { 5702 case llvm::Triple::Android: 5703 case llvm::Triple::EABI: 5704 case llvm::Triple::EABIHF: 5705 case llvm::Triple::GNUEABI: 5706 case llvm::Triple::GNUEABIHF: 5707 case llvm::Triple::MuslEABI: 5708 case llvm::Triple::MuslEABIHF: 5709 return true; 5710 default: 5711 return false; 5712 } 5713 } 5714 5715 bool isEABIHF() const { 5716 switch (getTarget().getTriple().getEnvironment()) { 5717 case llvm::Triple::EABIHF: 5718 case llvm::Triple::GNUEABIHF: 5719 case llvm::Triple::MuslEABIHF: 5720 return true; 5721 default: 5722 return false; 5723 } 5724 } 5725 5726 ABIKind getABIKind() const { return Kind; } 5727 5728 private: 5729 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 5730 unsigned functionCallConv) const; 5731 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 5732 unsigned functionCallConv) const; 5733 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 5734 uint64_t Members) const; 5735 ABIArgInfo coerceIllegalVector(QualType Ty) const; 5736 bool isIllegalVectorType(QualType Ty) const; 5737 bool containsAnyFP16Vectors(QualType Ty) const; 5738 5739 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5740 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5741 uint64_t Members) const override; 5742 5743 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 5744 5745 void computeInfo(CGFunctionInfo &FI) const override; 5746 5747 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5748 QualType Ty) const override; 5749 5750 llvm::CallingConv::ID getLLVMDefaultCC() const; 5751 llvm::CallingConv::ID getABIDefaultCC() const; 5752 void setCCs(); 5753 5754 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5755 bool asReturnValue) const override { 5756 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5757 } 5758 bool isSwiftErrorInRegister() const override { 5759 return true; 5760 } 5761 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5762 unsigned elts) const override; 5763 }; 5764 5765 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 5766 public: 5767 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5768 :TargetCodeGenInfo(new ARMABIInfo(CGT, K)) {} 5769 5770 const ARMABIInfo &getABIInfo() const { 5771 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 5772 } 5773 5774 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5775 return 13; 5776 } 5777 5778 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5779 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 5780 } 5781 5782 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5783 llvm::Value *Address) const override { 5784 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 5785 5786 // 0-15 are the 16 integer registers. 5787 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 5788 return false; 5789 } 5790 5791 unsigned getSizeOfUnwindException() const override { 5792 if (getABIInfo().isEABI()) return 88; 5793 return TargetCodeGenInfo::getSizeOfUnwindException(); 5794 } 5795 5796 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5797 CodeGen::CodeGenModule &CGM) const override { 5798 if (GV->isDeclaration()) 5799 return; 5800 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5801 if (!FD) 5802 return; 5803 5804 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 5805 if (!Attr) 5806 return; 5807 5808 const char *Kind; 5809 switch (Attr->getInterrupt()) { 5810 case ARMInterruptAttr::Generic: Kind = ""; break; 5811 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 5812 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 5813 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 5814 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 5815 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 5816 } 5817 5818 llvm::Function *Fn = cast<llvm::Function>(GV); 5819 5820 Fn->addFnAttr("interrupt", Kind); 5821 5822 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 5823 if (ABI == ARMABIInfo::APCS) 5824 return; 5825 5826 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 5827 // however this is not necessarily true on taking any interrupt. Instruct 5828 // the backend to perform a realignment as part of the function prologue. 5829 llvm::AttrBuilder B; 5830 B.addStackAlignmentAttr(8); 5831 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 5832 } 5833 }; 5834 5835 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 5836 public: 5837 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 5838 : ARMTargetCodeGenInfo(CGT, K) {} 5839 5840 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5841 CodeGen::CodeGenModule &CGM) const override; 5842 5843 void getDependentLibraryOption(llvm::StringRef Lib, 5844 llvm::SmallString<24> &Opt) const override { 5845 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5846 } 5847 5848 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5849 llvm::SmallString<32> &Opt) const override { 5850 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5851 } 5852 }; 5853 5854 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 5855 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5856 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5857 if (GV->isDeclaration()) 5858 return; 5859 addStackProbeTargetAttributes(D, GV, CGM); 5860 } 5861 } 5862 5863 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 5864 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5865 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 5866 FI.getCallingConvention()); 5867 5868 for (auto &I : FI.arguments()) 5869 I.info = classifyArgumentType(I.type, FI.isVariadic(), 5870 FI.getCallingConvention()); 5871 5872 5873 // Always honor user-specified calling convention. 5874 if (FI.getCallingConvention() != llvm::CallingConv::C) 5875 return; 5876 5877 llvm::CallingConv::ID cc = getRuntimeCC(); 5878 if (cc != llvm::CallingConv::C) 5879 FI.setEffectiveCallingConvention(cc); 5880 } 5881 5882 /// Return the default calling convention that LLVM will use. 5883 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 5884 // The default calling convention that LLVM will infer. 5885 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 5886 return llvm::CallingConv::ARM_AAPCS_VFP; 5887 else if (isEABI()) 5888 return llvm::CallingConv::ARM_AAPCS; 5889 else 5890 return llvm::CallingConv::ARM_APCS; 5891 } 5892 5893 /// Return the calling convention that our ABI would like us to use 5894 /// as the C calling convention. 5895 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 5896 switch (getABIKind()) { 5897 case APCS: return llvm::CallingConv::ARM_APCS; 5898 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 5899 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5900 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 5901 } 5902 llvm_unreachable("bad ABI kind"); 5903 } 5904 5905 void ARMABIInfo::setCCs() { 5906 assert(getRuntimeCC() == llvm::CallingConv::C); 5907 5908 // Don't muddy up the IR with a ton of explicit annotations if 5909 // they'd just match what LLVM will infer from the triple. 5910 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 5911 if (abiCC != getLLVMDefaultCC()) 5912 RuntimeCC = abiCC; 5913 } 5914 5915 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 5916 uint64_t Size = getContext().getTypeSize(Ty); 5917 if (Size <= 32) { 5918 llvm::Type *ResType = 5919 llvm::Type::getInt32Ty(getVMContext()); 5920 return ABIArgInfo::getDirect(ResType); 5921 } 5922 if (Size == 64 || Size == 128) { 5923 llvm::Type *ResType = llvm::VectorType::get( 5924 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5925 return ABIArgInfo::getDirect(ResType); 5926 } 5927 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5928 } 5929 5930 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 5931 const Type *Base, 5932 uint64_t Members) const { 5933 assert(Base && "Base class should be set for homogeneous aggregate"); 5934 // Base can be a floating-point or a vector. 5935 if (const VectorType *VT = Base->getAs<VectorType>()) { 5936 // FP16 vectors should be converted to integer vectors 5937 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 5938 uint64_t Size = getContext().getTypeSize(VT); 5939 llvm::Type *NewVecTy = llvm::VectorType::get( 5940 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 5941 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 5942 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 5943 } 5944 } 5945 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 5946 } 5947 5948 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 5949 unsigned functionCallConv) const { 5950 // 6.1.2.1 The following argument types are VFP CPRCs: 5951 // A single-precision floating-point type (including promoted 5952 // half-precision types); A double-precision floating-point type; 5953 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 5954 // with a Base Type of a single- or double-precision floating-point type, 5955 // 64-bit containerized vectors or 128-bit containerized vectors with one 5956 // to four Elements. 5957 // Variadic functions should always marshal to the base standard. 5958 bool IsAAPCS_VFP = 5959 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 5960 5961 Ty = useFirstFieldIfTransparentUnion(Ty); 5962 5963 // Handle illegal vector types here. 5964 if (isIllegalVectorType(Ty)) 5965 return coerceIllegalVector(Ty); 5966 5967 // _Float16 and __fp16 get passed as if it were an int or float, but with 5968 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 5969 // half type natively, and does not need to interwork with AAPCS code. 5970 if ((Ty->isFloat16Type() || Ty->isHalfType()) && 5971 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 5972 llvm::Type *ResType = IsAAPCS_VFP ? 5973 llvm::Type::getFloatTy(getVMContext()) : 5974 llvm::Type::getInt32Ty(getVMContext()); 5975 return ABIArgInfo::getDirect(ResType); 5976 } 5977 5978 if (!isAggregateTypeForABI(Ty)) { 5979 // Treat an enum type as its underlying type. 5980 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 5981 Ty = EnumTy->getDecl()->getIntegerType(); 5982 } 5983 5984 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 5985 : ABIArgInfo::getDirect()); 5986 } 5987 5988 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5989 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5990 } 5991 5992 // Ignore empty records. 5993 if (isEmptyRecord(getContext(), Ty, true)) 5994 return ABIArgInfo::getIgnore(); 5995 5996 if (IsAAPCS_VFP) { 5997 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 5998 // into VFP registers. 5999 const Type *Base = nullptr; 6000 uint64_t Members = 0; 6001 if (isHomogeneousAggregate(Ty, Base, Members)) 6002 return classifyHomogeneousAggregate(Ty, Base, Members); 6003 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6004 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6005 // this convention even for a variadic function: the backend will use GPRs 6006 // if needed. 6007 const Type *Base = nullptr; 6008 uint64_t Members = 0; 6009 if (isHomogeneousAggregate(Ty, Base, Members)) { 6010 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6011 llvm::Type *Ty = 6012 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6013 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6014 } 6015 } 6016 6017 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6018 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6019 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6020 // bigger than 128-bits, they get placed in space allocated by the caller, 6021 // and a pointer is passed. 6022 return ABIArgInfo::getIndirect( 6023 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6024 } 6025 6026 // Support byval for ARM. 6027 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6028 // most 8-byte. We realign the indirect argument if type alignment is bigger 6029 // than ABI alignment. 6030 uint64_t ABIAlign = 4; 6031 uint64_t TyAlign; 6032 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6033 getABIKind() == ARMABIInfo::AAPCS) { 6034 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6035 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6036 } else { 6037 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6038 } 6039 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6040 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6041 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6042 /*ByVal=*/true, 6043 /*Realign=*/TyAlign > ABIAlign); 6044 } 6045 6046 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6047 // same size and alignment. 6048 if (getTarget().isRenderScriptTarget()) { 6049 return coerceToIntArray(Ty, getContext(), getVMContext()); 6050 } 6051 6052 // Otherwise, pass by coercing to a structure of the appropriate size. 6053 llvm::Type* ElemTy; 6054 unsigned SizeRegs; 6055 // FIXME: Try to match the types of the arguments more accurately where 6056 // we can. 6057 if (TyAlign <= 4) { 6058 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6059 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6060 } else { 6061 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6062 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6063 } 6064 6065 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6066 } 6067 6068 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6069 llvm::LLVMContext &VMContext) { 6070 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6071 // is called integer-like if its size is less than or equal to one word, and 6072 // the offset of each of its addressable sub-fields is zero. 6073 6074 uint64_t Size = Context.getTypeSize(Ty); 6075 6076 // Check that the type fits in a word. 6077 if (Size > 32) 6078 return false; 6079 6080 // FIXME: Handle vector types! 6081 if (Ty->isVectorType()) 6082 return false; 6083 6084 // Float types are never treated as "integer like". 6085 if (Ty->isRealFloatingType()) 6086 return false; 6087 6088 // If this is a builtin or pointer type then it is ok. 6089 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6090 return true; 6091 6092 // Small complex integer types are "integer like". 6093 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6094 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6095 6096 // Single element and zero sized arrays should be allowed, by the definition 6097 // above, but they are not. 6098 6099 // Otherwise, it must be a record type. 6100 const RecordType *RT = Ty->getAs<RecordType>(); 6101 if (!RT) return false; 6102 6103 // Ignore records with flexible arrays. 6104 const RecordDecl *RD = RT->getDecl(); 6105 if (RD->hasFlexibleArrayMember()) 6106 return false; 6107 6108 // Check that all sub-fields are at offset 0, and are themselves "integer 6109 // like". 6110 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6111 6112 bool HadField = false; 6113 unsigned idx = 0; 6114 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6115 i != e; ++i, ++idx) { 6116 const FieldDecl *FD = *i; 6117 6118 // Bit-fields are not addressable, we only need to verify they are "integer 6119 // like". We still have to disallow a subsequent non-bitfield, for example: 6120 // struct { int : 0; int x } 6121 // is non-integer like according to gcc. 6122 if (FD->isBitField()) { 6123 if (!RD->isUnion()) 6124 HadField = true; 6125 6126 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6127 return false; 6128 6129 continue; 6130 } 6131 6132 // Check if this field is at offset 0. 6133 if (Layout.getFieldOffset(idx) != 0) 6134 return false; 6135 6136 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6137 return false; 6138 6139 // Only allow at most one field in a structure. This doesn't match the 6140 // wording above, but follows gcc in situations with a field following an 6141 // empty structure. 6142 if (!RD->isUnion()) { 6143 if (HadField) 6144 return false; 6145 6146 HadField = true; 6147 } 6148 } 6149 6150 return true; 6151 } 6152 6153 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6154 unsigned functionCallConv) const { 6155 6156 // Variadic functions should always marshal to the base standard. 6157 bool IsAAPCS_VFP = 6158 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6159 6160 if (RetTy->isVoidType()) 6161 return ABIArgInfo::getIgnore(); 6162 6163 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6164 // Large vector types should be returned via memory. 6165 if (getContext().getTypeSize(RetTy) > 128) 6166 return getNaturalAlignIndirect(RetTy); 6167 // FP16 vectors should be converted to integer vectors 6168 if (!getTarget().hasLegalHalfType() && 6169 (VT->getElementType()->isFloat16Type() || 6170 VT->getElementType()->isHalfType())) 6171 return coerceIllegalVector(RetTy); 6172 } 6173 6174 // _Float16 and __fp16 get returned as if it were an int or float, but with 6175 // the top 16 bits unspecified. This is not done for OpenCL as it handles the 6176 // half type natively, and does not need to interwork with AAPCS code. 6177 if ((RetTy->isFloat16Type() || RetTy->isHalfType()) && 6178 !getContext().getLangOpts().NativeHalfArgsAndReturns) { 6179 llvm::Type *ResType = IsAAPCS_VFP ? 6180 llvm::Type::getFloatTy(getVMContext()) : 6181 llvm::Type::getInt32Ty(getVMContext()); 6182 return ABIArgInfo::getDirect(ResType); 6183 } 6184 6185 if (!isAggregateTypeForABI(RetTy)) { 6186 // Treat an enum type as its underlying type. 6187 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6188 RetTy = EnumTy->getDecl()->getIntegerType(); 6189 6190 return RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6191 : ABIArgInfo::getDirect(); 6192 } 6193 6194 // Are we following APCS? 6195 if (getABIKind() == APCS) { 6196 if (isEmptyRecord(getContext(), RetTy, false)) 6197 return ABIArgInfo::getIgnore(); 6198 6199 // Complex types are all returned as packed integers. 6200 // 6201 // FIXME: Consider using 2 x vector types if the back end handles them 6202 // correctly. 6203 if (RetTy->isAnyComplexType()) 6204 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6205 getVMContext(), getContext().getTypeSize(RetTy))); 6206 6207 // Integer like structures are returned in r0. 6208 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6209 // Return in the smallest viable integer type. 6210 uint64_t Size = getContext().getTypeSize(RetTy); 6211 if (Size <= 8) 6212 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6213 if (Size <= 16) 6214 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6215 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6216 } 6217 6218 // Otherwise return in memory. 6219 return getNaturalAlignIndirect(RetTy); 6220 } 6221 6222 // Otherwise this is an AAPCS variant. 6223 6224 if (isEmptyRecord(getContext(), RetTy, true)) 6225 return ABIArgInfo::getIgnore(); 6226 6227 // Check for homogeneous aggregates with AAPCS-VFP. 6228 if (IsAAPCS_VFP) { 6229 const Type *Base = nullptr; 6230 uint64_t Members = 0; 6231 if (isHomogeneousAggregate(RetTy, Base, Members)) 6232 return classifyHomogeneousAggregate(RetTy, Base, Members); 6233 } 6234 6235 // Aggregates <= 4 bytes are returned in r0; other aggregates 6236 // are returned indirectly. 6237 uint64_t Size = getContext().getTypeSize(RetTy); 6238 if (Size <= 32) { 6239 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6240 // same size and alignment. 6241 if (getTarget().isRenderScriptTarget()) { 6242 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6243 } 6244 if (getDataLayout().isBigEndian()) 6245 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6246 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6247 6248 // Return in the smallest viable integer type. 6249 if (Size <= 8) 6250 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6251 if (Size <= 16) 6252 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6253 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6254 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6255 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6256 llvm::Type *CoerceTy = 6257 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6258 return ABIArgInfo::getDirect(CoerceTy); 6259 } 6260 6261 return getNaturalAlignIndirect(RetTy); 6262 } 6263 6264 /// isIllegalVector - check whether Ty is an illegal vector type. 6265 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6266 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6267 // On targets that don't support FP16, FP16 is expanded into float, and we 6268 // don't want the ABI to depend on whether or not FP16 is supported in 6269 // hardware. Thus return false to coerce FP16 vectors into integer vectors. 6270 if (!getTarget().hasLegalHalfType() && 6271 (VT->getElementType()->isFloat16Type() || 6272 VT->getElementType()->isHalfType())) 6273 return true; 6274 if (isAndroid()) { 6275 // Android shipped using Clang 3.1, which supported a slightly different 6276 // vector ABI. The primary differences were that 3-element vector types 6277 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6278 // accepts that legacy behavior for Android only. 6279 // Check whether VT is legal. 6280 unsigned NumElements = VT->getNumElements(); 6281 // NumElements should be power of 2 or equal to 3. 6282 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6283 return true; 6284 } else { 6285 // Check whether VT is legal. 6286 unsigned NumElements = VT->getNumElements(); 6287 uint64_t Size = getContext().getTypeSize(VT); 6288 // NumElements should be power of 2. 6289 if (!llvm::isPowerOf2_32(NumElements)) 6290 return true; 6291 // Size should be greater than 32 bits. 6292 return Size <= 32; 6293 } 6294 } 6295 return false; 6296 } 6297 6298 /// Return true if a type contains any 16-bit floating point vectors 6299 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6300 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6301 uint64_t NElements = AT->getSize().getZExtValue(); 6302 if (NElements == 0) 6303 return false; 6304 return containsAnyFP16Vectors(AT->getElementType()); 6305 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6306 const RecordDecl *RD = RT->getDecl(); 6307 6308 // If this is a C++ record, check the bases first. 6309 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6310 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6311 return containsAnyFP16Vectors(B.getType()); 6312 })) 6313 return true; 6314 6315 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6316 return FD && containsAnyFP16Vectors(FD->getType()); 6317 })) 6318 return true; 6319 6320 return false; 6321 } else { 6322 if (const VectorType *VT = Ty->getAs<VectorType>()) 6323 return (VT->getElementType()->isFloat16Type() || 6324 VT->getElementType()->isHalfType()); 6325 return false; 6326 } 6327 } 6328 6329 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6330 llvm::Type *eltTy, 6331 unsigned numElts) const { 6332 if (!llvm::isPowerOf2_32(numElts)) 6333 return false; 6334 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6335 if (size > 64) 6336 return false; 6337 if (vectorSize.getQuantity() != 8 && 6338 (vectorSize.getQuantity() != 16 || numElts == 1)) 6339 return false; 6340 return true; 6341 } 6342 6343 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6344 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6345 // double, or 64-bit or 128-bit vectors. 6346 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6347 if (BT->getKind() == BuiltinType::Float || 6348 BT->getKind() == BuiltinType::Double || 6349 BT->getKind() == BuiltinType::LongDouble) 6350 return true; 6351 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6352 unsigned VecSize = getContext().getTypeSize(VT); 6353 if (VecSize == 64 || VecSize == 128) 6354 return true; 6355 } 6356 return false; 6357 } 6358 6359 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6360 uint64_t Members) const { 6361 return Members <= 4; 6362 } 6363 6364 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6365 bool acceptHalf) const { 6366 // Give precedence to user-specified calling conventions. 6367 if (callConvention != llvm::CallingConv::C) 6368 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6369 else 6370 return (getABIKind() == AAPCS_VFP) || 6371 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6372 } 6373 6374 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6375 QualType Ty) const { 6376 CharUnits SlotSize = CharUnits::fromQuantity(4); 6377 6378 // Empty records are ignored for parameter passing purposes. 6379 if (isEmptyRecord(getContext(), Ty, true)) { 6380 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6381 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6382 return Addr; 6383 } 6384 6385 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6386 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6387 6388 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6389 bool IsIndirect = false; 6390 const Type *Base = nullptr; 6391 uint64_t Members = 0; 6392 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6393 IsIndirect = true; 6394 6395 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6396 // allocated by the caller. 6397 } else if (TySize > CharUnits::fromQuantity(16) && 6398 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6399 !isHomogeneousAggregate(Ty, Base, Members)) { 6400 IsIndirect = true; 6401 6402 // Otherwise, bound the type's ABI alignment. 6403 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6404 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6405 // Our callers should be prepared to handle an under-aligned address. 6406 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6407 getABIKind() == ARMABIInfo::AAPCS) { 6408 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6409 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6410 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6411 // ARMv7k allows type alignment up to 16 bytes. 6412 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6413 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6414 } else { 6415 TyAlignForABI = CharUnits::fromQuantity(4); 6416 } 6417 6418 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6419 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6420 SlotSize, /*AllowHigherAlign*/ true); 6421 } 6422 6423 //===----------------------------------------------------------------------===// 6424 // NVPTX ABI Implementation 6425 //===----------------------------------------------------------------------===// 6426 6427 namespace { 6428 6429 class NVPTXABIInfo : public ABIInfo { 6430 public: 6431 NVPTXABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 6432 6433 ABIArgInfo classifyReturnType(QualType RetTy) const; 6434 ABIArgInfo classifyArgumentType(QualType Ty) const; 6435 6436 void computeInfo(CGFunctionInfo &FI) const override; 6437 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6438 QualType Ty) const override; 6439 }; 6440 6441 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6442 public: 6443 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6444 : TargetCodeGenInfo(new NVPTXABIInfo(CGT)) {} 6445 6446 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6447 CodeGen::CodeGenModule &M) const override; 6448 bool shouldEmitStaticExternCAliases() const override; 6449 6450 private: 6451 // Adds a NamedMDNode with F, Name, and Operand as operands, and adds the 6452 // resulting MDNode to the nvvm.annotations MDNode. 6453 static void addNVVMMetadata(llvm::Function *F, StringRef Name, int Operand); 6454 }; 6455 6456 /// Checks if the type is unsupported directly by the current target. 6457 static bool isUnsupportedType(ASTContext &Context, QualType T) { 6458 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6459 return true; 6460 if (!Context.getTargetInfo().hasFloat128Type() && 6461 (T->isFloat128Type() || 6462 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6463 return true; 6464 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6465 Context.getTypeSize(T) > 64) 6466 return true; 6467 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6468 return isUnsupportedType(Context, AT->getElementType()); 6469 const auto *RT = T->getAs<RecordType>(); 6470 if (!RT) 6471 return false; 6472 const RecordDecl *RD = RT->getDecl(); 6473 6474 // If this is a C++ record, check the bases first. 6475 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6476 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6477 if (isUnsupportedType(Context, I.getType())) 6478 return true; 6479 6480 for (const FieldDecl *I : RD->fields()) 6481 if (isUnsupportedType(Context, I->getType())) 6482 return true; 6483 return false; 6484 } 6485 6486 /// Coerce the given type into an array with maximum allowed size of elements. 6487 static ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, ASTContext &Context, 6488 llvm::LLVMContext &LLVMContext, 6489 unsigned MaxSize) { 6490 // Alignment and Size are measured in bits. 6491 const uint64_t Size = Context.getTypeSize(Ty); 6492 const uint64_t Alignment = Context.getTypeAlign(Ty); 6493 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6494 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Div); 6495 const uint64_t NumElements = (Size + Div - 1) / Div; 6496 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6497 } 6498 6499 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6500 if (RetTy->isVoidType()) 6501 return ABIArgInfo::getIgnore(); 6502 6503 if (getContext().getLangOpts().OpenMP && 6504 getContext().getLangOpts().OpenMPIsDevice && 6505 isUnsupportedType(getContext(), RetTy)) 6506 return coerceToIntArrayWithLimit(RetTy, getContext(), getVMContext(), 64); 6507 6508 // note: this is different from default ABI 6509 if (!RetTy->isScalarType()) 6510 return ABIArgInfo::getDirect(); 6511 6512 // Treat an enum type as its underlying type. 6513 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6514 RetTy = EnumTy->getDecl()->getIntegerType(); 6515 6516 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 6517 : ABIArgInfo::getDirect()); 6518 } 6519 6520 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6521 // Treat an enum type as its underlying type. 6522 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6523 Ty = EnumTy->getDecl()->getIntegerType(); 6524 6525 // Return aggregates type as indirect by value 6526 if (isAggregateTypeForABI(Ty)) 6527 return getNaturalAlignIndirect(Ty, /* byval */ true); 6528 6529 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 6530 : ABIArgInfo::getDirect()); 6531 } 6532 6533 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 6534 if (!getCXXABI().classifyReturnType(FI)) 6535 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6536 for (auto &I : FI.arguments()) 6537 I.info = classifyArgumentType(I.type); 6538 6539 // Always honor user-specified calling convention. 6540 if (FI.getCallingConvention() != llvm::CallingConv::C) 6541 return; 6542 6543 FI.setEffectiveCallingConvention(getRuntimeCC()); 6544 } 6545 6546 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6547 QualType Ty) const { 6548 llvm_unreachable("NVPTX does not support varargs"); 6549 } 6550 6551 void NVPTXTargetCodeGenInfo::setTargetAttributes( 6552 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6553 if (GV->isDeclaration()) 6554 return; 6555 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6556 if (!FD) return; 6557 6558 llvm::Function *F = cast<llvm::Function>(GV); 6559 6560 // Perform special handling in OpenCL mode 6561 if (M.getLangOpts().OpenCL) { 6562 // Use OpenCL function attributes to check for kernel functions 6563 // By default, all functions are device functions 6564 if (FD->hasAttr<OpenCLKernelAttr>()) { 6565 // OpenCL __kernel functions get kernel metadata 6566 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6567 addNVVMMetadata(F, "kernel", 1); 6568 // And kernel functions are not subject to inlining 6569 F->addFnAttr(llvm::Attribute::NoInline); 6570 } 6571 } 6572 6573 // Perform special handling in CUDA mode. 6574 if (M.getLangOpts().CUDA) { 6575 // CUDA __global__ functions get a kernel metadata entry. Since 6576 // __global__ functions cannot be called from the device, we do not 6577 // need to set the noinline attribute. 6578 if (FD->hasAttr<CUDAGlobalAttr>()) { 6579 // Create !{<func-ref>, metadata !"kernel", i32 1} node 6580 addNVVMMetadata(F, "kernel", 1); 6581 } 6582 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 6583 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 6584 llvm::APSInt MaxThreads(32); 6585 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 6586 if (MaxThreads > 0) 6587 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 6588 6589 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 6590 // not specified in __launch_bounds__ or if the user specified a 0 value, 6591 // we don't have to add a PTX directive. 6592 if (Attr->getMinBlocks()) { 6593 llvm::APSInt MinBlocks(32); 6594 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 6595 if (MinBlocks > 0) 6596 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 6597 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 6598 } 6599 } 6600 } 6601 } 6602 6603 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::Function *F, StringRef Name, 6604 int Operand) { 6605 llvm::Module *M = F->getParent(); 6606 llvm::LLVMContext &Ctx = M->getContext(); 6607 6608 // Get "nvvm.annotations" metadata node 6609 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 6610 6611 llvm::Metadata *MDVals[] = { 6612 llvm::ConstantAsMetadata::get(F), llvm::MDString::get(Ctx, Name), 6613 llvm::ConstantAsMetadata::get( 6614 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 6615 // Append metadata to nvvm.annotations 6616 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 6617 } 6618 6619 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 6620 return false; 6621 } 6622 } 6623 6624 //===----------------------------------------------------------------------===// 6625 // SystemZ ABI Implementation 6626 //===----------------------------------------------------------------------===// 6627 6628 namespace { 6629 6630 class SystemZABIInfo : public SwiftABIInfo { 6631 bool HasVector; 6632 6633 public: 6634 SystemZABIInfo(CodeGenTypes &CGT, bool HV) 6635 : SwiftABIInfo(CGT), HasVector(HV) {} 6636 6637 bool isPromotableIntegerType(QualType Ty) const; 6638 bool isCompoundType(QualType Ty) const; 6639 bool isVectorArgumentType(QualType Ty) const; 6640 bool isFPArgumentType(QualType Ty) const; 6641 QualType GetSingleElementType(QualType Ty) const; 6642 6643 ABIArgInfo classifyReturnType(QualType RetTy) const; 6644 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 6645 6646 void computeInfo(CGFunctionInfo &FI) const override { 6647 if (!getCXXABI().classifyReturnType(FI)) 6648 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 6649 for (auto &I : FI.arguments()) 6650 I.info = classifyArgumentType(I.type); 6651 } 6652 6653 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6654 QualType Ty) const override; 6655 6656 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6657 bool asReturnValue) const override { 6658 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6659 } 6660 bool isSwiftErrorInRegister() const override { 6661 return false; 6662 } 6663 }; 6664 6665 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 6666 public: 6667 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector) 6668 : TargetCodeGenInfo(new SystemZABIInfo(CGT, HasVector)) {} 6669 }; 6670 6671 } 6672 6673 bool SystemZABIInfo::isPromotableIntegerType(QualType Ty) const { 6674 // Treat an enum type as its underlying type. 6675 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6676 Ty = EnumTy->getDecl()->getIntegerType(); 6677 6678 // Promotable integer types are required to be promoted by the ABI. 6679 if (Ty->isPromotableIntegerType()) 6680 return true; 6681 6682 // 32-bit values must also be promoted. 6683 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6684 switch (BT->getKind()) { 6685 case BuiltinType::Int: 6686 case BuiltinType::UInt: 6687 return true; 6688 default: 6689 return false; 6690 } 6691 return false; 6692 } 6693 6694 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 6695 return (Ty->isAnyComplexType() || 6696 Ty->isVectorType() || 6697 isAggregateTypeForABI(Ty)); 6698 } 6699 6700 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 6701 return (HasVector && 6702 Ty->isVectorType() && 6703 getContext().getTypeSize(Ty) <= 128); 6704 } 6705 6706 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 6707 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 6708 switch (BT->getKind()) { 6709 case BuiltinType::Float: 6710 case BuiltinType::Double: 6711 return true; 6712 default: 6713 return false; 6714 } 6715 6716 return false; 6717 } 6718 6719 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 6720 if (const RecordType *RT = Ty->getAsStructureType()) { 6721 const RecordDecl *RD = RT->getDecl(); 6722 QualType Found; 6723 6724 // If this is a C++ record, check the bases first. 6725 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6726 for (const auto &I : CXXRD->bases()) { 6727 QualType Base = I.getType(); 6728 6729 // Empty bases don't affect things either way. 6730 if (isEmptyRecord(getContext(), Base, true)) 6731 continue; 6732 6733 if (!Found.isNull()) 6734 return Ty; 6735 Found = GetSingleElementType(Base); 6736 } 6737 6738 // Check the fields. 6739 for (const auto *FD : RD->fields()) { 6740 // For compatibility with GCC, ignore empty bitfields in C++ mode. 6741 // Unlike isSingleElementStruct(), empty structure and array fields 6742 // do count. So do anonymous bitfields that aren't zero-sized. 6743 if (getContext().getLangOpts().CPlusPlus && 6744 FD->isZeroLengthBitField(getContext())) 6745 continue; 6746 6747 // Unlike isSingleElementStruct(), arrays do not count. 6748 // Nested structures still do though. 6749 if (!Found.isNull()) 6750 return Ty; 6751 Found = GetSingleElementType(FD->getType()); 6752 } 6753 6754 // Unlike isSingleElementStruct(), trailing padding is allowed. 6755 // An 8-byte aligned struct s { float f; } is passed as a double. 6756 if (!Found.isNull()) 6757 return Found; 6758 } 6759 6760 return Ty; 6761 } 6762 6763 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6764 QualType Ty) const { 6765 // Assume that va_list type is correct; should be pointer to LLVM type: 6766 // struct { 6767 // i64 __gpr; 6768 // i64 __fpr; 6769 // i8 *__overflow_arg_area; 6770 // i8 *__reg_save_area; 6771 // }; 6772 6773 // Every non-vector argument occupies 8 bytes and is passed by preference 6774 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 6775 // always passed on the stack. 6776 Ty = getContext().getCanonicalType(Ty); 6777 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6778 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 6779 llvm::Type *DirectTy = ArgTy; 6780 ABIArgInfo AI = classifyArgumentType(Ty); 6781 bool IsIndirect = AI.isIndirect(); 6782 bool InFPRs = false; 6783 bool IsVector = false; 6784 CharUnits UnpaddedSize; 6785 CharUnits DirectAlign; 6786 if (IsIndirect) { 6787 DirectTy = llvm::PointerType::getUnqual(DirectTy); 6788 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 6789 } else { 6790 if (AI.getCoerceToType()) 6791 ArgTy = AI.getCoerceToType(); 6792 InFPRs = ArgTy->isFloatTy() || ArgTy->isDoubleTy(); 6793 IsVector = ArgTy->isVectorTy(); 6794 UnpaddedSize = TyInfo.first; 6795 DirectAlign = TyInfo.second; 6796 } 6797 CharUnits PaddedSize = CharUnits::fromQuantity(8); 6798 if (IsVector && UnpaddedSize > PaddedSize) 6799 PaddedSize = CharUnits::fromQuantity(16); 6800 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 6801 6802 CharUnits Padding = (PaddedSize - UnpaddedSize); 6803 6804 llvm::Type *IndexTy = CGF.Int64Ty; 6805 llvm::Value *PaddedSizeV = 6806 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 6807 6808 if (IsVector) { 6809 // Work out the address of a vector argument on the stack. 6810 // Vector arguments are always passed in the high bits of a 6811 // single (8 byte) or double (16 byte) stack slot. 6812 Address OverflowArgAreaPtr = 6813 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6814 Address OverflowArgArea = 6815 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6816 TyInfo.second); 6817 Address MemAddr = 6818 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 6819 6820 // Update overflow_arg_area_ptr pointer 6821 llvm::Value *NewOverflowArgArea = 6822 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6823 "overflow_arg_area"); 6824 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6825 6826 return MemAddr; 6827 } 6828 6829 assert(PaddedSize.getQuantity() == 8); 6830 6831 unsigned MaxRegs, RegCountField, RegSaveIndex; 6832 CharUnits RegPadding; 6833 if (InFPRs) { 6834 MaxRegs = 4; // Maximum of 4 FPR arguments 6835 RegCountField = 1; // __fpr 6836 RegSaveIndex = 16; // save offset for f0 6837 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 6838 } else { 6839 MaxRegs = 5; // Maximum of 5 GPR arguments 6840 RegCountField = 0; // __gpr 6841 RegSaveIndex = 2; // save offset for r2 6842 RegPadding = Padding; // values are passed in the low bits of a GPR 6843 } 6844 6845 Address RegCountPtr = 6846 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 6847 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 6848 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 6849 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 6850 "fits_in_regs"); 6851 6852 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 6853 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 6854 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 6855 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 6856 6857 // Emit code to load the value if it was passed in registers. 6858 CGF.EmitBlock(InRegBlock); 6859 6860 // Work out the address of an argument register. 6861 llvm::Value *ScaledRegCount = 6862 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 6863 llvm::Value *RegBase = 6864 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 6865 + RegPadding.getQuantity()); 6866 llvm::Value *RegOffset = 6867 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 6868 Address RegSaveAreaPtr = 6869 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 6870 llvm::Value *RegSaveArea = 6871 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 6872 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 6873 "raw_reg_addr"), 6874 PaddedSize); 6875 Address RegAddr = 6876 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 6877 6878 // Update the register count 6879 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 6880 llvm::Value *NewRegCount = 6881 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 6882 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 6883 CGF.EmitBranch(ContBlock); 6884 6885 // Emit code to load the value if it was passed in memory. 6886 CGF.EmitBlock(InMemBlock); 6887 6888 // Work out the address of a stack argument. 6889 Address OverflowArgAreaPtr = 6890 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 6891 Address OverflowArgArea = 6892 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 6893 PaddedSize); 6894 Address RawMemAddr = 6895 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 6896 Address MemAddr = 6897 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 6898 6899 // Update overflow_arg_area_ptr pointer 6900 llvm::Value *NewOverflowArgArea = 6901 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 6902 "overflow_arg_area"); 6903 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 6904 CGF.EmitBranch(ContBlock); 6905 6906 // Return the appropriate result. 6907 CGF.EmitBlock(ContBlock); 6908 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6909 MemAddr, InMemBlock, "va_arg.addr"); 6910 6911 if (IsIndirect) 6912 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 6913 TyInfo.second); 6914 6915 return ResAddr; 6916 } 6917 6918 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 6919 if (RetTy->isVoidType()) 6920 return ABIArgInfo::getIgnore(); 6921 if (isVectorArgumentType(RetTy)) 6922 return ABIArgInfo::getDirect(); 6923 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 6924 return getNaturalAlignIndirect(RetTy); 6925 return (isPromotableIntegerType(RetTy) ? ABIArgInfo::getExtend(RetTy) 6926 : ABIArgInfo::getDirect()); 6927 } 6928 6929 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 6930 // Handle the generic C++ ABI. 6931 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 6932 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6933 6934 // Integers and enums are extended to full register width. 6935 if (isPromotableIntegerType(Ty)) 6936 return ABIArgInfo::getExtend(Ty); 6937 6938 // Handle vector types and vector-like structure types. Note that 6939 // as opposed to float-like structure types, we do not allow any 6940 // padding for vector-like structures, so verify the sizes match. 6941 uint64_t Size = getContext().getTypeSize(Ty); 6942 QualType SingleElementTy = GetSingleElementType(Ty); 6943 if (isVectorArgumentType(SingleElementTy) && 6944 getContext().getTypeSize(SingleElementTy) == Size) 6945 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 6946 6947 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 6948 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 6949 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6950 6951 // Handle small structures. 6952 if (const RecordType *RT = Ty->getAs<RecordType>()) { 6953 // Structures with flexible arrays have variable length, so really 6954 // fail the size test above. 6955 const RecordDecl *RD = RT->getDecl(); 6956 if (RD->hasFlexibleArrayMember()) 6957 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6958 6959 // The structure is passed as an unextended integer, a float, or a double. 6960 llvm::Type *PassTy; 6961 if (isFPArgumentType(SingleElementTy)) { 6962 assert(Size == 32 || Size == 64); 6963 if (Size == 32) 6964 PassTy = llvm::Type::getFloatTy(getVMContext()); 6965 else 6966 PassTy = llvm::Type::getDoubleTy(getVMContext()); 6967 } else 6968 PassTy = llvm::IntegerType::get(getVMContext(), Size); 6969 return ABIArgInfo::getDirect(PassTy); 6970 } 6971 6972 // Non-structure compounds are passed indirectly. 6973 if (isCompoundType(Ty)) 6974 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6975 6976 return ABIArgInfo::getDirect(nullptr); 6977 } 6978 6979 //===----------------------------------------------------------------------===// 6980 // MSP430 ABI Implementation 6981 //===----------------------------------------------------------------------===// 6982 6983 namespace { 6984 6985 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 6986 public: 6987 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 6988 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 6989 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6990 CodeGen::CodeGenModule &M) const override; 6991 }; 6992 6993 } 6994 6995 void MSP430TargetCodeGenInfo::setTargetAttributes( 6996 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 6997 if (GV->isDeclaration()) 6998 return; 6999 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7000 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7001 if (!InterruptAttr) 7002 return; 7003 7004 // Handle 'interrupt' attribute: 7005 llvm::Function *F = cast<llvm::Function>(GV); 7006 7007 // Step 1: Set ISR calling convention. 7008 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7009 7010 // Step 2: Add attributes goodness. 7011 F->addFnAttr(llvm::Attribute::NoInline); 7012 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7013 } 7014 } 7015 7016 //===----------------------------------------------------------------------===// 7017 // MIPS ABI Implementation. This works for both little-endian and 7018 // big-endian variants. 7019 //===----------------------------------------------------------------------===// 7020 7021 namespace { 7022 class MipsABIInfo : public ABIInfo { 7023 bool IsO32; 7024 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7025 void CoerceToIntArgs(uint64_t TySize, 7026 SmallVectorImpl<llvm::Type *> &ArgList) const; 7027 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7028 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7029 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7030 public: 7031 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7032 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7033 StackAlignInBytes(IsO32 ? 8 : 16) {} 7034 7035 ABIArgInfo classifyReturnType(QualType RetTy) const; 7036 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7037 void computeInfo(CGFunctionInfo &FI) const override; 7038 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7039 QualType Ty) const override; 7040 ABIArgInfo extendType(QualType Ty) const; 7041 }; 7042 7043 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7044 unsigned SizeOfUnwindException; 7045 public: 7046 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7047 : TargetCodeGenInfo(new MipsABIInfo(CGT, IsO32)), 7048 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7049 7050 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7051 return 29; 7052 } 7053 7054 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7055 CodeGen::CodeGenModule &CGM) const override { 7056 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7057 if (!FD) return; 7058 llvm::Function *Fn = cast<llvm::Function>(GV); 7059 7060 if (FD->hasAttr<MipsLongCallAttr>()) 7061 Fn->addFnAttr("long-call"); 7062 else if (FD->hasAttr<MipsShortCallAttr>()) 7063 Fn->addFnAttr("short-call"); 7064 7065 // Other attributes do not have a meaning for declarations. 7066 if (GV->isDeclaration()) 7067 return; 7068 7069 if (FD->hasAttr<Mips16Attr>()) { 7070 Fn->addFnAttr("mips16"); 7071 } 7072 else if (FD->hasAttr<NoMips16Attr>()) { 7073 Fn->addFnAttr("nomips16"); 7074 } 7075 7076 if (FD->hasAttr<MicroMipsAttr>()) 7077 Fn->addFnAttr("micromips"); 7078 else if (FD->hasAttr<NoMicroMipsAttr>()) 7079 Fn->addFnAttr("nomicromips"); 7080 7081 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7082 if (!Attr) 7083 return; 7084 7085 const char *Kind; 7086 switch (Attr->getInterrupt()) { 7087 case MipsInterruptAttr::eic: Kind = "eic"; break; 7088 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7089 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7090 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7091 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7092 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7093 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7094 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7095 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7096 } 7097 7098 Fn->addFnAttr("interrupt", Kind); 7099 7100 } 7101 7102 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7103 llvm::Value *Address) const override; 7104 7105 unsigned getSizeOfUnwindException() const override { 7106 return SizeOfUnwindException; 7107 } 7108 }; 7109 } 7110 7111 void MipsABIInfo::CoerceToIntArgs( 7112 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7113 llvm::IntegerType *IntTy = 7114 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7115 7116 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7117 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7118 ArgList.push_back(IntTy); 7119 7120 // If necessary, add one more integer type to ArgList. 7121 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7122 7123 if (R) 7124 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7125 } 7126 7127 // In N32/64, an aligned double precision floating point field is passed in 7128 // a register. 7129 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7130 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7131 7132 if (IsO32) { 7133 CoerceToIntArgs(TySize, ArgList); 7134 return llvm::StructType::get(getVMContext(), ArgList); 7135 } 7136 7137 if (Ty->isComplexType()) 7138 return CGT.ConvertType(Ty); 7139 7140 const RecordType *RT = Ty->getAs<RecordType>(); 7141 7142 // Unions/vectors are passed in integer registers. 7143 if (!RT || !RT->isStructureOrClassType()) { 7144 CoerceToIntArgs(TySize, ArgList); 7145 return llvm::StructType::get(getVMContext(), ArgList); 7146 } 7147 7148 const RecordDecl *RD = RT->getDecl(); 7149 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7150 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7151 7152 uint64_t LastOffset = 0; 7153 unsigned idx = 0; 7154 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7155 7156 // Iterate over fields in the struct/class and check if there are any aligned 7157 // double fields. 7158 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7159 i != e; ++i, ++idx) { 7160 const QualType Ty = i->getType(); 7161 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7162 7163 if (!BT || BT->getKind() != BuiltinType::Double) 7164 continue; 7165 7166 uint64_t Offset = Layout.getFieldOffset(idx); 7167 if (Offset % 64) // Ignore doubles that are not aligned. 7168 continue; 7169 7170 // Add ((Offset - LastOffset) / 64) args of type i64. 7171 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7172 ArgList.push_back(I64); 7173 7174 // Add double type. 7175 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7176 LastOffset = Offset + 64; 7177 } 7178 7179 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7180 ArgList.append(IntArgList.begin(), IntArgList.end()); 7181 7182 return llvm::StructType::get(getVMContext(), ArgList); 7183 } 7184 7185 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7186 uint64_t Offset) const { 7187 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7188 return nullptr; 7189 7190 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7191 } 7192 7193 ABIArgInfo 7194 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7195 Ty = useFirstFieldIfTransparentUnion(Ty); 7196 7197 uint64_t OrigOffset = Offset; 7198 uint64_t TySize = getContext().getTypeSize(Ty); 7199 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7200 7201 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7202 (uint64_t)StackAlignInBytes); 7203 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7204 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7205 7206 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7207 // Ignore empty aggregates. 7208 if (TySize == 0) 7209 return ABIArgInfo::getIgnore(); 7210 7211 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7212 Offset = OrigOffset + MinABIStackAlignInBytes; 7213 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7214 } 7215 7216 // If we have reached here, aggregates are passed directly by coercing to 7217 // another structure type. Padding is inserted if the offset of the 7218 // aggregate is unaligned. 7219 ABIArgInfo ArgInfo = 7220 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7221 getPaddingType(OrigOffset, CurrOffset)); 7222 ArgInfo.setInReg(true); 7223 return ArgInfo; 7224 } 7225 7226 // Treat an enum type as its underlying type. 7227 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7228 Ty = EnumTy->getDecl()->getIntegerType(); 7229 7230 // All integral types are promoted to the GPR width. 7231 if (Ty->isIntegralOrEnumerationType()) 7232 return extendType(Ty); 7233 7234 return ABIArgInfo::getDirect( 7235 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7236 } 7237 7238 llvm::Type* 7239 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7240 const RecordType *RT = RetTy->getAs<RecordType>(); 7241 SmallVector<llvm::Type*, 8> RTList; 7242 7243 if (RT && RT->isStructureOrClassType()) { 7244 const RecordDecl *RD = RT->getDecl(); 7245 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7246 unsigned FieldCnt = Layout.getFieldCount(); 7247 7248 // N32/64 returns struct/classes in floating point registers if the 7249 // following conditions are met: 7250 // 1. The size of the struct/class is no larger than 128-bit. 7251 // 2. The struct/class has one or two fields all of which are floating 7252 // point types. 7253 // 3. The offset of the first field is zero (this follows what gcc does). 7254 // 7255 // Any other composite results are returned in integer registers. 7256 // 7257 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7258 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7259 for (; b != e; ++b) { 7260 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7261 7262 if (!BT || !BT->isFloatingPoint()) 7263 break; 7264 7265 RTList.push_back(CGT.ConvertType(b->getType())); 7266 } 7267 7268 if (b == e) 7269 return llvm::StructType::get(getVMContext(), RTList, 7270 RD->hasAttr<PackedAttr>()); 7271 7272 RTList.clear(); 7273 } 7274 } 7275 7276 CoerceToIntArgs(Size, RTList); 7277 return llvm::StructType::get(getVMContext(), RTList); 7278 } 7279 7280 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7281 uint64_t Size = getContext().getTypeSize(RetTy); 7282 7283 if (RetTy->isVoidType()) 7284 return ABIArgInfo::getIgnore(); 7285 7286 // O32 doesn't treat zero-sized structs differently from other structs. 7287 // However, N32/N64 ignores zero sized return values. 7288 if (!IsO32 && Size == 0) 7289 return ABIArgInfo::getIgnore(); 7290 7291 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7292 if (Size <= 128) { 7293 if (RetTy->isAnyComplexType()) 7294 return ABIArgInfo::getDirect(); 7295 7296 // O32 returns integer vectors in registers and N32/N64 returns all small 7297 // aggregates in registers. 7298 if (!IsO32 || 7299 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7300 ABIArgInfo ArgInfo = 7301 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7302 ArgInfo.setInReg(true); 7303 return ArgInfo; 7304 } 7305 } 7306 7307 return getNaturalAlignIndirect(RetTy); 7308 } 7309 7310 // Treat an enum type as its underlying type. 7311 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7312 RetTy = EnumTy->getDecl()->getIntegerType(); 7313 7314 if (RetTy->isPromotableIntegerType()) 7315 return ABIArgInfo::getExtend(RetTy); 7316 7317 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7318 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7319 return ABIArgInfo::getSignExtend(RetTy); 7320 7321 return ABIArgInfo::getDirect(); 7322 } 7323 7324 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7325 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7326 if (!getCXXABI().classifyReturnType(FI)) 7327 RetInfo = classifyReturnType(FI.getReturnType()); 7328 7329 // Check if a pointer to an aggregate is passed as a hidden argument. 7330 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7331 7332 for (auto &I : FI.arguments()) 7333 I.info = classifyArgumentType(I.type, Offset); 7334 } 7335 7336 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7337 QualType OrigTy) const { 7338 QualType Ty = OrigTy; 7339 7340 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7341 // Pointers are also promoted in the same way but this only matters for N32. 7342 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7343 unsigned PtrWidth = getTarget().getPointerWidth(0); 7344 bool DidPromote = false; 7345 if ((Ty->isIntegerType() && 7346 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7347 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7348 DidPromote = true; 7349 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7350 Ty->isSignedIntegerType()); 7351 } 7352 7353 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7354 7355 // The alignment of things in the argument area is never larger than 7356 // StackAlignInBytes. 7357 TyInfo.second = 7358 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7359 7360 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7361 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7362 7363 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7364 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7365 7366 7367 // If there was a promotion, "unpromote" into a temporary. 7368 // TODO: can we just use a pointer into a subset of the original slot? 7369 if (DidPromote) { 7370 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7371 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7372 7373 // Truncate down to the right width. 7374 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7375 : CGF.IntPtrTy); 7376 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7377 if (OrigTy->isPointerType()) 7378 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7379 7380 CGF.Builder.CreateStore(V, Temp); 7381 Addr = Temp; 7382 } 7383 7384 return Addr; 7385 } 7386 7387 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7388 int TySize = getContext().getTypeSize(Ty); 7389 7390 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7391 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7392 return ABIArgInfo::getSignExtend(Ty); 7393 7394 return ABIArgInfo::getExtend(Ty); 7395 } 7396 7397 bool 7398 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7399 llvm::Value *Address) const { 7400 // This information comes from gcc's implementation, which seems to 7401 // as canonical as it gets. 7402 7403 // Everything on MIPS is 4 bytes. Double-precision FP registers 7404 // are aliased to pairs of single-precision FP registers. 7405 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7406 7407 // 0-31 are the general purpose registers, $0 - $31. 7408 // 32-63 are the floating-point registers, $f0 - $f31. 7409 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7410 // 66 is the (notional, I think) register for signal-handler return. 7411 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7412 7413 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7414 // They are one bit wide and ignored here. 7415 7416 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7417 // (coprocessor 1 is the FP unit) 7418 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7419 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7420 // 176-181 are the DSP accumulator registers. 7421 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7422 return false; 7423 } 7424 7425 //===----------------------------------------------------------------------===// 7426 // AVR ABI Implementation. 7427 //===----------------------------------------------------------------------===// 7428 7429 namespace { 7430 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7431 public: 7432 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7433 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) { } 7434 7435 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7436 CodeGen::CodeGenModule &CGM) const override { 7437 if (GV->isDeclaration()) 7438 return; 7439 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 7440 if (!FD) return; 7441 auto *Fn = cast<llvm::Function>(GV); 7442 7443 if (FD->getAttr<AVRInterruptAttr>()) 7444 Fn->addFnAttr("interrupt"); 7445 7446 if (FD->getAttr<AVRSignalAttr>()) 7447 Fn->addFnAttr("signal"); 7448 } 7449 }; 7450 } 7451 7452 //===----------------------------------------------------------------------===// 7453 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 7454 // Currently subclassed only to implement custom OpenCL C function attribute 7455 // handling. 7456 //===----------------------------------------------------------------------===// 7457 7458 namespace { 7459 7460 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 7461 public: 7462 TCETargetCodeGenInfo(CodeGenTypes &CGT) 7463 : DefaultTargetCodeGenInfo(CGT) {} 7464 7465 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7466 CodeGen::CodeGenModule &M) const override; 7467 }; 7468 7469 void TCETargetCodeGenInfo::setTargetAttributes( 7470 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7471 if (GV->isDeclaration()) 7472 return; 7473 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7474 if (!FD) return; 7475 7476 llvm::Function *F = cast<llvm::Function>(GV); 7477 7478 if (M.getLangOpts().OpenCL) { 7479 if (FD->hasAttr<OpenCLKernelAttr>()) { 7480 // OpenCL C Kernel functions are not subject to inlining 7481 F->addFnAttr(llvm::Attribute::NoInline); 7482 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 7483 if (Attr) { 7484 // Convert the reqd_work_group_size() attributes to metadata. 7485 llvm::LLVMContext &Context = F->getContext(); 7486 llvm::NamedMDNode *OpenCLMetadata = 7487 M.getModule().getOrInsertNamedMetadata( 7488 "opencl.kernel_wg_size_info"); 7489 7490 SmallVector<llvm::Metadata *, 5> Operands; 7491 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 7492 7493 Operands.push_back( 7494 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7495 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 7496 Operands.push_back( 7497 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7498 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 7499 Operands.push_back( 7500 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 7501 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 7502 7503 // Add a boolean constant operand for "required" (true) or "hint" 7504 // (false) for implementing the work_group_size_hint attr later. 7505 // Currently always true as the hint is not yet implemented. 7506 Operands.push_back( 7507 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 7508 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 7509 } 7510 } 7511 } 7512 } 7513 7514 } 7515 7516 //===----------------------------------------------------------------------===// 7517 // Hexagon ABI Implementation 7518 //===----------------------------------------------------------------------===// 7519 7520 namespace { 7521 7522 class HexagonABIInfo : public ABIInfo { 7523 7524 7525 public: 7526 HexagonABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 7527 7528 private: 7529 7530 ABIArgInfo classifyReturnType(QualType RetTy) const; 7531 ABIArgInfo classifyArgumentType(QualType RetTy) const; 7532 7533 void computeInfo(CGFunctionInfo &FI) const override; 7534 7535 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7536 QualType Ty) const override; 7537 }; 7538 7539 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 7540 public: 7541 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 7542 :TargetCodeGenInfo(new HexagonABIInfo(CGT)) {} 7543 7544 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 7545 return 29; 7546 } 7547 }; 7548 7549 } 7550 7551 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 7552 if (!getCXXABI().classifyReturnType(FI)) 7553 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7554 for (auto &I : FI.arguments()) 7555 I.info = classifyArgumentType(I.type); 7556 } 7557 7558 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty) const { 7559 if (!isAggregateTypeForABI(Ty)) { 7560 // Treat an enum type as its underlying type. 7561 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7562 Ty = EnumTy->getDecl()->getIntegerType(); 7563 7564 return (Ty->isPromotableIntegerType() ? ABIArgInfo::getExtend(Ty) 7565 : ABIArgInfo::getDirect()); 7566 } 7567 7568 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7569 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7570 7571 // Ignore empty records. 7572 if (isEmptyRecord(getContext(), Ty, true)) 7573 return ABIArgInfo::getIgnore(); 7574 7575 uint64_t Size = getContext().getTypeSize(Ty); 7576 if (Size > 64) 7577 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 7578 // Pass in the smallest viable integer type. 7579 else if (Size > 32) 7580 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7581 else if (Size > 16) 7582 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7583 else if (Size > 8) 7584 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7585 else 7586 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7587 } 7588 7589 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 7590 if (RetTy->isVoidType()) 7591 return ABIArgInfo::getIgnore(); 7592 7593 // Large vector types should be returned via memory. 7594 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 64) 7595 return getNaturalAlignIndirect(RetTy); 7596 7597 if (!isAggregateTypeForABI(RetTy)) { 7598 // Treat an enum type as its underlying type. 7599 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7600 RetTy = EnumTy->getDecl()->getIntegerType(); 7601 7602 return (RetTy->isPromotableIntegerType() ? ABIArgInfo::getExtend(RetTy) 7603 : ABIArgInfo::getDirect()); 7604 } 7605 7606 if (isEmptyRecord(getContext(), RetTy, true)) 7607 return ABIArgInfo::getIgnore(); 7608 7609 // Aggregates <= 8 bytes are returned in r0; other aggregates 7610 // are returned indirectly. 7611 uint64_t Size = getContext().getTypeSize(RetTy); 7612 if (Size <= 64) { 7613 // Return in the smallest viable integer type. 7614 if (Size <= 8) 7615 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 7616 if (Size <= 16) 7617 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7618 if (Size <= 32) 7619 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7620 return ABIArgInfo::getDirect(llvm::Type::getInt64Ty(getVMContext())); 7621 } 7622 7623 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 7624 } 7625 7626 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7627 QualType Ty) const { 7628 // FIXME: Someone needs to audit that this handle alignment correctly. 7629 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7630 getContext().getTypeInfoInChars(Ty), 7631 CharUnits::fromQuantity(4), 7632 /*AllowHigherAlign*/ true); 7633 } 7634 7635 //===----------------------------------------------------------------------===// 7636 // Lanai ABI Implementation 7637 //===----------------------------------------------------------------------===// 7638 7639 namespace { 7640 class LanaiABIInfo : public DefaultABIInfo { 7641 public: 7642 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7643 7644 bool shouldUseInReg(QualType Ty, CCState &State) const; 7645 7646 void computeInfo(CGFunctionInfo &FI) const override { 7647 CCState State(FI); 7648 // Lanai uses 4 registers to pass arguments unless the function has the 7649 // regparm attribute set. 7650 if (FI.getHasRegParm()) { 7651 State.FreeRegs = FI.getRegParm(); 7652 } else { 7653 State.FreeRegs = 4; 7654 } 7655 7656 if (!getCXXABI().classifyReturnType(FI)) 7657 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7658 for (auto &I : FI.arguments()) 7659 I.info = classifyArgumentType(I.type, State); 7660 } 7661 7662 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 7663 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 7664 }; 7665 } // end anonymous namespace 7666 7667 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 7668 unsigned Size = getContext().getTypeSize(Ty); 7669 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 7670 7671 if (SizeInRegs == 0) 7672 return false; 7673 7674 if (SizeInRegs > State.FreeRegs) { 7675 State.FreeRegs = 0; 7676 return false; 7677 } 7678 7679 State.FreeRegs -= SizeInRegs; 7680 7681 return true; 7682 } 7683 7684 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 7685 CCState &State) const { 7686 if (!ByVal) { 7687 if (State.FreeRegs) { 7688 --State.FreeRegs; // Non-byval indirects just use one pointer. 7689 return getNaturalAlignIndirectInReg(Ty); 7690 } 7691 return getNaturalAlignIndirect(Ty, false); 7692 } 7693 7694 // Compute the byval alignment. 7695 const unsigned MinABIStackAlignInBytes = 4; 7696 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 7697 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 7698 /*Realign=*/TypeAlign > 7699 MinABIStackAlignInBytes); 7700 } 7701 7702 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 7703 CCState &State) const { 7704 // Check with the C++ ABI first. 7705 const RecordType *RT = Ty->getAs<RecordType>(); 7706 if (RT) { 7707 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 7708 if (RAA == CGCXXABI::RAA_Indirect) { 7709 return getIndirectResult(Ty, /*ByVal=*/false, State); 7710 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 7711 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 7712 } 7713 } 7714 7715 if (isAggregateTypeForABI(Ty)) { 7716 // Structures with flexible arrays are always indirect. 7717 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 7718 return getIndirectResult(Ty, /*ByVal=*/true, State); 7719 7720 // Ignore empty structs/unions. 7721 if (isEmptyRecord(getContext(), Ty, true)) 7722 return ABIArgInfo::getIgnore(); 7723 7724 llvm::LLVMContext &LLVMContext = getVMContext(); 7725 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 7726 if (SizeInRegs <= State.FreeRegs) { 7727 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 7728 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 7729 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 7730 State.FreeRegs -= SizeInRegs; 7731 return ABIArgInfo::getDirectInReg(Result); 7732 } else { 7733 State.FreeRegs = 0; 7734 } 7735 return getIndirectResult(Ty, true, State); 7736 } 7737 7738 // Treat an enum type as its underlying type. 7739 if (const auto *EnumTy = Ty->getAs<EnumType>()) 7740 Ty = EnumTy->getDecl()->getIntegerType(); 7741 7742 bool InReg = shouldUseInReg(Ty, State); 7743 if (Ty->isPromotableIntegerType()) { 7744 if (InReg) 7745 return ABIArgInfo::getDirectInReg(); 7746 return ABIArgInfo::getExtend(Ty); 7747 } 7748 if (InReg) 7749 return ABIArgInfo::getDirectInReg(); 7750 return ABIArgInfo::getDirect(); 7751 } 7752 7753 namespace { 7754 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 7755 public: 7756 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 7757 : TargetCodeGenInfo(new LanaiABIInfo(CGT)) {} 7758 }; 7759 } 7760 7761 //===----------------------------------------------------------------------===// 7762 // AMDGPU ABI Implementation 7763 //===----------------------------------------------------------------------===// 7764 7765 namespace { 7766 7767 class AMDGPUABIInfo final : public DefaultABIInfo { 7768 private: 7769 static const unsigned MaxNumRegsForArgsRet = 16; 7770 7771 unsigned numRegsForType(QualType Ty) const; 7772 7773 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 7774 bool isHomogeneousAggregateSmallEnough(const Type *Base, 7775 uint64_t Members) const override; 7776 7777 // Coerce HIP pointer arguments from generic pointers to global ones. 7778 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 7779 unsigned ToAS) const { 7780 // Structure types. 7781 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 7782 SmallVector<llvm::Type *, 8> EltTys; 7783 bool Changed = false; 7784 for (auto T : STy->elements()) { 7785 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 7786 EltTys.push_back(NT); 7787 Changed |= (NT != T); 7788 } 7789 // Skip if there is no change in element types. 7790 if (!Changed) 7791 return STy; 7792 if (STy->hasName()) 7793 return llvm::StructType::create( 7794 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 7795 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 7796 } 7797 // Arrary types. 7798 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 7799 auto T = ATy->getElementType(); 7800 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 7801 // Skip if there is no change in that element type. 7802 if (NT == T) 7803 return ATy; 7804 return llvm::ArrayType::get(NT, ATy->getNumElements()); 7805 } 7806 // Single value types. 7807 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 7808 return llvm::PointerType::get( 7809 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 7810 return Ty; 7811 } 7812 7813 public: 7814 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 7815 DefaultABIInfo(CGT) {} 7816 7817 ABIArgInfo classifyReturnType(QualType RetTy) const; 7818 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 7819 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 7820 7821 void computeInfo(CGFunctionInfo &FI) const override; 7822 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7823 QualType Ty) const override; 7824 }; 7825 7826 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 7827 return true; 7828 } 7829 7830 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 7831 const Type *Base, uint64_t Members) const { 7832 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 7833 7834 // Homogeneous Aggregates may occupy at most 16 registers. 7835 return Members * NumRegs <= MaxNumRegsForArgsRet; 7836 } 7837 7838 /// Estimate number of registers the type will use when passed in registers. 7839 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 7840 unsigned NumRegs = 0; 7841 7842 if (const VectorType *VT = Ty->getAs<VectorType>()) { 7843 // Compute from the number of elements. The reported size is based on the 7844 // in-memory size, which includes the padding 4th element for 3-vectors. 7845 QualType EltTy = VT->getElementType(); 7846 unsigned EltSize = getContext().getTypeSize(EltTy); 7847 7848 // 16-bit element vectors should be passed as packed. 7849 if (EltSize == 16) 7850 return (VT->getNumElements() + 1) / 2; 7851 7852 unsigned EltNumRegs = (EltSize + 31) / 32; 7853 return EltNumRegs * VT->getNumElements(); 7854 } 7855 7856 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7857 const RecordDecl *RD = RT->getDecl(); 7858 assert(!RD->hasFlexibleArrayMember()); 7859 7860 for (const FieldDecl *Field : RD->fields()) { 7861 QualType FieldTy = Field->getType(); 7862 NumRegs += numRegsForType(FieldTy); 7863 } 7864 7865 return NumRegs; 7866 } 7867 7868 return (getContext().getTypeSize(Ty) + 31) / 32; 7869 } 7870 7871 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 7872 llvm::CallingConv::ID CC = FI.getCallingConvention(); 7873 7874 if (!getCXXABI().classifyReturnType(FI)) 7875 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7876 7877 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 7878 for (auto &Arg : FI.arguments()) { 7879 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 7880 Arg.info = classifyKernelArgumentType(Arg.type); 7881 } else { 7882 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 7883 } 7884 } 7885 } 7886 7887 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7888 QualType Ty) const { 7889 llvm_unreachable("AMDGPU does not support varargs"); 7890 } 7891 7892 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 7893 if (isAggregateTypeForABI(RetTy)) { 7894 // Records with non-trivial destructors/copy-constructors should not be 7895 // returned by value. 7896 if (!getRecordArgABI(RetTy, getCXXABI())) { 7897 // Ignore empty structs/unions. 7898 if (isEmptyRecord(getContext(), RetTy, true)) 7899 return ABIArgInfo::getIgnore(); 7900 7901 // Lower single-element structs to just return a regular value. 7902 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 7903 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7904 7905 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 7906 const RecordDecl *RD = RT->getDecl(); 7907 if (RD->hasFlexibleArrayMember()) 7908 return DefaultABIInfo::classifyReturnType(RetTy); 7909 } 7910 7911 // Pack aggregates <= 4 bytes into single VGPR or pair. 7912 uint64_t Size = getContext().getTypeSize(RetTy); 7913 if (Size <= 16) 7914 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7915 7916 if (Size <= 32) 7917 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7918 7919 if (Size <= 64) { 7920 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 7921 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 7922 } 7923 7924 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 7925 return ABIArgInfo::getDirect(); 7926 } 7927 } 7928 7929 // Otherwise just do the default thing. 7930 return DefaultABIInfo::classifyReturnType(RetTy); 7931 } 7932 7933 /// For kernels all parameters are really passed in a special buffer. It doesn't 7934 /// make sense to pass anything byval, so everything must be direct. 7935 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 7936 Ty = useFirstFieldIfTransparentUnion(Ty); 7937 7938 // TODO: Can we omit empty structs? 7939 7940 llvm::Type *LTy = nullptr; 7941 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7942 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 7943 7944 if (getContext().getLangOpts().HIP) { 7945 if (!LTy) 7946 LTy = CGT.ConvertType(Ty); 7947 LTy = coerceKernelArgumentType( 7948 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 7949 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 7950 } 7951 7952 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 7953 // individual elements, which confuses the Clover OpenCL backend; therefore we 7954 // have to set it to false here. Other args of getDirect() are just defaults. 7955 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 7956 } 7957 7958 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 7959 unsigned &NumRegsLeft) const { 7960 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 7961 7962 Ty = useFirstFieldIfTransparentUnion(Ty); 7963 7964 if (isAggregateTypeForABI(Ty)) { 7965 // Records with non-trivial destructors/copy-constructors should not be 7966 // passed by value. 7967 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 7968 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7969 7970 // Ignore empty structs/unions. 7971 if (isEmptyRecord(getContext(), Ty, true)) 7972 return ABIArgInfo::getIgnore(); 7973 7974 // Lower single-element structs to just pass a regular value. TODO: We 7975 // could do reasonable-size multiple-element structs too, using getExpand(), 7976 // though watch out for things like bitfields. 7977 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 7978 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 7979 7980 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7981 const RecordDecl *RD = RT->getDecl(); 7982 if (RD->hasFlexibleArrayMember()) 7983 return DefaultABIInfo::classifyArgumentType(Ty); 7984 } 7985 7986 // Pack aggregates <= 8 bytes into single VGPR or pair. 7987 uint64_t Size = getContext().getTypeSize(Ty); 7988 if (Size <= 64) { 7989 unsigned NumRegs = (Size + 31) / 32; 7990 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 7991 7992 if (Size <= 16) 7993 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 7994 7995 if (Size <= 32) 7996 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 7997 7998 // XXX: Should this be i64 instead, and should the limit increase? 7999 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8000 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8001 } 8002 8003 if (NumRegsLeft > 0) { 8004 unsigned NumRegs = numRegsForType(Ty); 8005 if (NumRegsLeft >= NumRegs) { 8006 NumRegsLeft -= NumRegs; 8007 return ABIArgInfo::getDirect(); 8008 } 8009 } 8010 } 8011 8012 // Otherwise just do the default thing. 8013 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8014 if (!ArgInfo.isIndirect()) { 8015 unsigned NumRegs = numRegsForType(Ty); 8016 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8017 } 8018 8019 return ArgInfo; 8020 } 8021 8022 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8023 public: 8024 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8025 : TargetCodeGenInfo(new AMDGPUABIInfo(CGT)) {} 8026 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8027 CodeGen::CodeGenModule &M) const override; 8028 unsigned getOpenCLKernelCallingConv() const override; 8029 8030 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8031 llvm::PointerType *T, QualType QT) const override; 8032 8033 LangAS getASTAllocaAddressSpace() const override { 8034 return getLangASFromTargetAS( 8035 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8036 } 8037 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8038 const VarDecl *D) const override; 8039 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8040 SyncScope Scope, 8041 llvm::AtomicOrdering Ordering, 8042 llvm::LLVMContext &Ctx) const override; 8043 llvm::Function * 8044 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8045 llvm::Function *BlockInvokeFunc, 8046 llvm::Value *BlockLiteral) const override; 8047 bool shouldEmitStaticExternCAliases() const override; 8048 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8049 }; 8050 } 8051 8052 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8053 llvm::GlobalValue *GV) { 8054 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8055 return false; 8056 8057 return D->hasAttr<OpenCLKernelAttr>() || 8058 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8059 (isa<VarDecl>(D) && 8060 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8061 D->hasAttr<HIPPinnedShadowAttr>())); 8062 } 8063 8064 static bool requiresAMDGPUDefaultVisibility(const Decl *D, 8065 llvm::GlobalValue *GV) { 8066 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8067 return false; 8068 8069 return isa<VarDecl>(D) && D->hasAttr<HIPPinnedShadowAttr>(); 8070 } 8071 8072 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8073 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8074 if (requiresAMDGPUDefaultVisibility(D, GV)) { 8075 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 8076 GV->setDSOLocal(false); 8077 } else if (requiresAMDGPUProtectedVisibility(D, GV)) { 8078 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8079 GV->setDSOLocal(true); 8080 } 8081 8082 if (GV->isDeclaration()) 8083 return; 8084 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8085 if (!FD) 8086 return; 8087 8088 llvm::Function *F = cast<llvm::Function>(GV); 8089 8090 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8091 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8092 8093 8094 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8095 FD->hasAttr<OpenCLKernelAttr>(); 8096 const bool IsHIPKernel = M.getLangOpts().HIP && 8097 FD->hasAttr<CUDAGlobalAttr>(); 8098 if ((IsOpenCLKernel || IsHIPKernel) && 8099 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8100 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8101 8102 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8103 if (ReqdWGS || FlatWGS) { 8104 unsigned Min = 0; 8105 unsigned Max = 0; 8106 if (FlatWGS) { 8107 Min = FlatWGS->getMin() 8108 ->EvaluateKnownConstInt(M.getContext()) 8109 .getExtValue(); 8110 Max = FlatWGS->getMax() 8111 ->EvaluateKnownConstInt(M.getContext()) 8112 .getExtValue(); 8113 } 8114 if (ReqdWGS && Min == 0 && Max == 0) 8115 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8116 8117 if (Min != 0) { 8118 assert(Min <= Max && "Min must be less than or equal Max"); 8119 8120 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8121 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8122 } else 8123 assert(Max == 0 && "Max must be zero"); 8124 } else if (IsOpenCLKernel || IsHIPKernel) { 8125 // By default, restrict the maximum size to a value specified by 8126 // --gpu-max-threads-per-block=n or its default value. 8127 std::string AttrVal = 8128 std::string("1,") + llvm::utostr(M.getLangOpts().GPUMaxThreadsPerBlock); 8129 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8130 } 8131 8132 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8133 unsigned Min = 8134 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8135 unsigned Max = Attr->getMax() ? Attr->getMax() 8136 ->EvaluateKnownConstInt(M.getContext()) 8137 .getExtValue() 8138 : 0; 8139 8140 if (Min != 0) { 8141 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 8142 8143 std::string AttrVal = llvm::utostr(Min); 8144 if (Max != 0) 8145 AttrVal = AttrVal + "," + llvm::utostr(Max); 8146 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 8147 } else 8148 assert(Max == 0 && "Max must be zero"); 8149 } 8150 8151 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 8152 unsigned NumSGPR = Attr->getNumSGPR(); 8153 8154 if (NumSGPR != 0) 8155 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 8156 } 8157 8158 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 8159 uint32_t NumVGPR = Attr->getNumVGPR(); 8160 8161 if (NumVGPR != 0) 8162 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 8163 } 8164 } 8165 8166 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 8167 return llvm::CallingConv::AMDGPU_KERNEL; 8168 } 8169 8170 // Currently LLVM assumes null pointers always have value 0, 8171 // which results in incorrectly transformed IR. Therefore, instead of 8172 // emitting null pointers in private and local address spaces, a null 8173 // pointer in generic address space is emitted which is casted to a 8174 // pointer in local or private address space. 8175 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 8176 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 8177 QualType QT) const { 8178 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 8179 return llvm::ConstantPointerNull::get(PT); 8180 8181 auto &Ctx = CGM.getContext(); 8182 auto NPT = llvm::PointerType::get(PT->getElementType(), 8183 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 8184 return llvm::ConstantExpr::getAddrSpaceCast( 8185 llvm::ConstantPointerNull::get(NPT), PT); 8186 } 8187 8188 LangAS 8189 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 8190 const VarDecl *D) const { 8191 assert(!CGM.getLangOpts().OpenCL && 8192 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 8193 "Address space agnostic languages only"); 8194 LangAS DefaultGlobalAS = getLangASFromTargetAS( 8195 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 8196 if (!D) 8197 return DefaultGlobalAS; 8198 8199 LangAS AddrSpace = D->getType().getAddressSpace(); 8200 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 8201 if (AddrSpace != LangAS::Default) 8202 return AddrSpace; 8203 8204 if (CGM.isTypeConstant(D->getType(), false)) { 8205 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 8206 return ConstAS.getValue(); 8207 } 8208 return DefaultGlobalAS; 8209 } 8210 8211 llvm::SyncScope::ID 8212 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 8213 SyncScope Scope, 8214 llvm::AtomicOrdering Ordering, 8215 llvm::LLVMContext &Ctx) const { 8216 std::string Name; 8217 switch (Scope) { 8218 case SyncScope::OpenCLWorkGroup: 8219 Name = "workgroup"; 8220 break; 8221 case SyncScope::OpenCLDevice: 8222 Name = "agent"; 8223 break; 8224 case SyncScope::OpenCLAllSVMDevices: 8225 Name = ""; 8226 break; 8227 case SyncScope::OpenCLSubGroup: 8228 Name = "wavefront"; 8229 } 8230 8231 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 8232 if (!Name.empty()) 8233 Name = Twine(Twine(Name) + Twine("-")).str(); 8234 8235 Name = Twine(Twine(Name) + Twine("one-as")).str(); 8236 } 8237 8238 return Ctx.getOrInsertSyncScopeID(Name); 8239 } 8240 8241 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 8242 return false; 8243 } 8244 8245 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 8246 const FunctionType *&FT) const { 8247 FT = getABIInfo().getContext().adjustFunctionType( 8248 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 8249 } 8250 8251 //===----------------------------------------------------------------------===// 8252 // SPARC v8 ABI Implementation. 8253 // Based on the SPARC Compliance Definition version 2.4.1. 8254 // 8255 // Ensures that complex values are passed in registers. 8256 // 8257 namespace { 8258 class SparcV8ABIInfo : public DefaultABIInfo { 8259 public: 8260 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8261 8262 private: 8263 ABIArgInfo classifyReturnType(QualType RetTy) const; 8264 void computeInfo(CGFunctionInfo &FI) const override; 8265 }; 8266 } // end anonymous namespace 8267 8268 8269 ABIArgInfo 8270 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 8271 if (Ty->isAnyComplexType()) { 8272 return ABIArgInfo::getDirect(); 8273 } 8274 else { 8275 return DefaultABIInfo::classifyReturnType(Ty); 8276 } 8277 } 8278 8279 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8280 8281 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8282 for (auto &Arg : FI.arguments()) 8283 Arg.info = classifyArgumentType(Arg.type); 8284 } 8285 8286 namespace { 8287 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 8288 public: 8289 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 8290 : TargetCodeGenInfo(new SparcV8ABIInfo(CGT)) {} 8291 }; 8292 } // end anonymous namespace 8293 8294 //===----------------------------------------------------------------------===// 8295 // SPARC v9 ABI Implementation. 8296 // Based on the SPARC Compliance Definition version 2.4.1. 8297 // 8298 // Function arguments a mapped to a nominal "parameter array" and promoted to 8299 // registers depending on their type. Each argument occupies 8 or 16 bytes in 8300 // the array, structs larger than 16 bytes are passed indirectly. 8301 // 8302 // One case requires special care: 8303 // 8304 // struct mixed { 8305 // int i; 8306 // float f; 8307 // }; 8308 // 8309 // When a struct mixed is passed by value, it only occupies 8 bytes in the 8310 // parameter array, but the int is passed in an integer register, and the float 8311 // is passed in a floating point register. This is represented as two arguments 8312 // with the LLVM IR inreg attribute: 8313 // 8314 // declare void f(i32 inreg %i, float inreg %f) 8315 // 8316 // The code generator will only allocate 4 bytes from the parameter array for 8317 // the inreg arguments. All other arguments are allocated a multiple of 8 8318 // bytes. 8319 // 8320 namespace { 8321 class SparcV9ABIInfo : public ABIInfo { 8322 public: 8323 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 8324 8325 private: 8326 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 8327 void computeInfo(CGFunctionInfo &FI) const override; 8328 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8329 QualType Ty) const override; 8330 8331 // Coercion type builder for structs passed in registers. The coercion type 8332 // serves two purposes: 8333 // 8334 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 8335 // in registers. 8336 // 2. Expose aligned floating point elements as first-level elements, so the 8337 // code generator knows to pass them in floating point registers. 8338 // 8339 // We also compute the InReg flag which indicates that the struct contains 8340 // aligned 32-bit floats. 8341 // 8342 struct CoerceBuilder { 8343 llvm::LLVMContext &Context; 8344 const llvm::DataLayout &DL; 8345 SmallVector<llvm::Type*, 8> Elems; 8346 uint64_t Size; 8347 bool InReg; 8348 8349 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 8350 : Context(c), DL(dl), Size(0), InReg(false) {} 8351 8352 // Pad Elems with integers until Size is ToSize. 8353 void pad(uint64_t ToSize) { 8354 assert(ToSize >= Size && "Cannot remove elements"); 8355 if (ToSize == Size) 8356 return; 8357 8358 // Finish the current 64-bit word. 8359 uint64_t Aligned = llvm::alignTo(Size, 64); 8360 if (Aligned > Size && Aligned <= ToSize) { 8361 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 8362 Size = Aligned; 8363 } 8364 8365 // Add whole 64-bit words. 8366 while (Size + 64 <= ToSize) { 8367 Elems.push_back(llvm::Type::getInt64Ty(Context)); 8368 Size += 64; 8369 } 8370 8371 // Final in-word padding. 8372 if (Size < ToSize) { 8373 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 8374 Size = ToSize; 8375 } 8376 } 8377 8378 // Add a floating point element at Offset. 8379 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 8380 // Unaligned floats are treated as integers. 8381 if (Offset % Bits) 8382 return; 8383 // The InReg flag is only required if there are any floats < 64 bits. 8384 if (Bits < 64) 8385 InReg = true; 8386 pad(Offset); 8387 Elems.push_back(Ty); 8388 Size = Offset + Bits; 8389 } 8390 8391 // Add a struct type to the coercion type, starting at Offset (in bits). 8392 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 8393 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 8394 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 8395 llvm::Type *ElemTy = StrTy->getElementType(i); 8396 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 8397 switch (ElemTy->getTypeID()) { 8398 case llvm::Type::StructTyID: 8399 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 8400 break; 8401 case llvm::Type::FloatTyID: 8402 addFloat(ElemOffset, ElemTy, 32); 8403 break; 8404 case llvm::Type::DoubleTyID: 8405 addFloat(ElemOffset, ElemTy, 64); 8406 break; 8407 case llvm::Type::FP128TyID: 8408 addFloat(ElemOffset, ElemTy, 128); 8409 break; 8410 case llvm::Type::PointerTyID: 8411 if (ElemOffset % 64 == 0) { 8412 pad(ElemOffset); 8413 Elems.push_back(ElemTy); 8414 Size += 64; 8415 } 8416 break; 8417 default: 8418 break; 8419 } 8420 } 8421 } 8422 8423 // Check if Ty is a usable substitute for the coercion type. 8424 bool isUsableType(llvm::StructType *Ty) const { 8425 return llvm::makeArrayRef(Elems) == Ty->elements(); 8426 } 8427 8428 // Get the coercion type as a literal struct type. 8429 llvm::Type *getType() const { 8430 if (Elems.size() == 1) 8431 return Elems.front(); 8432 else 8433 return llvm::StructType::get(Context, Elems); 8434 } 8435 }; 8436 }; 8437 } // end anonymous namespace 8438 8439 ABIArgInfo 8440 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 8441 if (Ty->isVoidType()) 8442 return ABIArgInfo::getIgnore(); 8443 8444 uint64_t Size = getContext().getTypeSize(Ty); 8445 8446 // Anything too big to fit in registers is passed with an explicit indirect 8447 // pointer / sret pointer. 8448 if (Size > SizeLimit) 8449 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 8450 8451 // Treat an enum type as its underlying type. 8452 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8453 Ty = EnumTy->getDecl()->getIntegerType(); 8454 8455 // Integer types smaller than a register are extended. 8456 if (Size < 64 && Ty->isIntegerType()) 8457 return ABIArgInfo::getExtend(Ty); 8458 8459 // Other non-aggregates go in registers. 8460 if (!isAggregateTypeForABI(Ty)) 8461 return ABIArgInfo::getDirect(); 8462 8463 // If a C++ object has either a non-trivial copy constructor or a non-trivial 8464 // destructor, it is passed with an explicit indirect pointer / sret pointer. 8465 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8466 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8467 8468 // This is a small aggregate type that should be passed in registers. 8469 // Build a coercion type from the LLVM struct type. 8470 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 8471 if (!StrTy) 8472 return ABIArgInfo::getDirect(); 8473 8474 CoerceBuilder CB(getVMContext(), getDataLayout()); 8475 CB.addStruct(0, StrTy); 8476 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 8477 8478 // Try to use the original type for coercion. 8479 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 8480 8481 if (CB.InReg) 8482 return ABIArgInfo::getDirectInReg(CoerceTy); 8483 else 8484 return ABIArgInfo::getDirect(CoerceTy); 8485 } 8486 8487 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8488 QualType Ty) const { 8489 ABIArgInfo AI = classifyType(Ty, 16 * 8); 8490 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8491 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8492 AI.setCoerceToType(ArgTy); 8493 8494 CharUnits SlotSize = CharUnits::fromQuantity(8); 8495 8496 CGBuilderTy &Builder = CGF.Builder; 8497 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 8498 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8499 8500 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 8501 8502 Address ArgAddr = Address::invalid(); 8503 CharUnits Stride; 8504 switch (AI.getKind()) { 8505 case ABIArgInfo::Expand: 8506 case ABIArgInfo::CoerceAndExpand: 8507 case ABIArgInfo::InAlloca: 8508 llvm_unreachable("Unsupported ABI kind for va_arg"); 8509 8510 case ABIArgInfo::Extend: { 8511 Stride = SlotSize; 8512 CharUnits Offset = SlotSize - TypeInfo.first; 8513 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 8514 break; 8515 } 8516 8517 case ABIArgInfo::Direct: { 8518 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 8519 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 8520 ArgAddr = Addr; 8521 break; 8522 } 8523 8524 case ABIArgInfo::Indirect: 8525 Stride = SlotSize; 8526 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 8527 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 8528 TypeInfo.second); 8529 break; 8530 8531 case ABIArgInfo::Ignore: 8532 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 8533 } 8534 8535 // Update VAList. 8536 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 8537 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 8538 8539 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 8540 } 8541 8542 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 8543 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 8544 for (auto &I : FI.arguments()) 8545 I.info = classifyType(I.type, 16 * 8); 8546 } 8547 8548 namespace { 8549 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 8550 public: 8551 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 8552 : TargetCodeGenInfo(new SparcV9ABIInfo(CGT)) {} 8553 8554 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8555 return 14; 8556 } 8557 8558 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8559 llvm::Value *Address) const override; 8560 }; 8561 } // end anonymous namespace 8562 8563 bool 8564 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 8565 llvm::Value *Address) const { 8566 // This is calculated from the LLVM and GCC tables and verified 8567 // against gcc output. AFAIK all ABIs use the same encoding. 8568 8569 CodeGen::CGBuilderTy &Builder = CGF.Builder; 8570 8571 llvm::IntegerType *i8 = CGF.Int8Ty; 8572 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 8573 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 8574 8575 // 0-31: the 8-byte general-purpose registers 8576 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 8577 8578 // 32-63: f0-31, the 4-byte floating-point registers 8579 AssignToArrayRange(Builder, Address, Four8, 32, 63); 8580 8581 // Y = 64 8582 // PSR = 65 8583 // WIM = 66 8584 // TBR = 67 8585 // PC = 68 8586 // NPC = 69 8587 // FSR = 70 8588 // CSR = 71 8589 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 8590 8591 // 72-87: d0-15, the 8-byte floating-point registers 8592 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 8593 8594 return false; 8595 } 8596 8597 // ARC ABI implementation. 8598 namespace { 8599 8600 class ARCABIInfo : public DefaultABIInfo { 8601 public: 8602 using DefaultABIInfo::DefaultABIInfo; 8603 8604 private: 8605 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8606 QualType Ty) const override; 8607 8608 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 8609 if (!State.FreeRegs) 8610 return; 8611 if (Info.isIndirect() && Info.getInReg()) 8612 State.FreeRegs--; 8613 else if (Info.isDirect() && Info.getInReg()) { 8614 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 8615 if (sz < State.FreeRegs) 8616 State.FreeRegs -= sz; 8617 else 8618 State.FreeRegs = 0; 8619 } 8620 } 8621 8622 void computeInfo(CGFunctionInfo &FI) const override { 8623 CCState State(FI); 8624 // ARC uses 8 registers to pass arguments. 8625 State.FreeRegs = 8; 8626 8627 if (!getCXXABI().classifyReturnType(FI)) 8628 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8629 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 8630 for (auto &I : FI.arguments()) { 8631 I.info = classifyArgumentType(I.type, State.FreeRegs); 8632 updateState(I.info, I.type, State); 8633 } 8634 } 8635 8636 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 8637 ABIArgInfo getIndirectByValue(QualType Ty) const; 8638 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 8639 ABIArgInfo classifyReturnType(QualType RetTy) const; 8640 }; 8641 8642 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 8643 public: 8644 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 8645 : TargetCodeGenInfo(new ARCABIInfo(CGT)) {} 8646 }; 8647 8648 8649 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 8650 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 8651 getNaturalAlignIndirect(Ty, false); 8652 } 8653 8654 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 8655 // Compute the byval alignment. 8656 const unsigned MinABIStackAlignInBytes = 4; 8657 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8658 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8659 TypeAlign > MinABIStackAlignInBytes); 8660 } 8661 8662 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8663 QualType Ty) const { 8664 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 8665 getContext().getTypeInfoInChars(Ty), 8666 CharUnits::fromQuantity(4), true); 8667 } 8668 8669 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 8670 uint8_t FreeRegs) const { 8671 // Handle the generic C++ ABI. 8672 const RecordType *RT = Ty->getAs<RecordType>(); 8673 if (RT) { 8674 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8675 if (RAA == CGCXXABI::RAA_Indirect) 8676 return getIndirectByRef(Ty, FreeRegs > 0); 8677 8678 if (RAA == CGCXXABI::RAA_DirectInMemory) 8679 return getIndirectByValue(Ty); 8680 } 8681 8682 // Treat an enum type as its underlying type. 8683 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8684 Ty = EnumTy->getDecl()->getIntegerType(); 8685 8686 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 8687 8688 if (isAggregateTypeForABI(Ty)) { 8689 // Structures with flexible arrays are always indirect. 8690 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8691 return getIndirectByValue(Ty); 8692 8693 // Ignore empty structs/unions. 8694 if (isEmptyRecord(getContext(), Ty, true)) 8695 return ABIArgInfo::getIgnore(); 8696 8697 llvm::LLVMContext &LLVMContext = getVMContext(); 8698 8699 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8700 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8701 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8702 8703 return FreeRegs >= SizeInRegs ? 8704 ABIArgInfo::getDirectInReg(Result) : 8705 ABIArgInfo::getDirect(Result, 0, nullptr, false); 8706 } 8707 8708 return Ty->isPromotableIntegerType() ? 8709 (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) : 8710 ABIArgInfo::getExtend(Ty)) : 8711 (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() : 8712 ABIArgInfo::getDirect()); 8713 } 8714 8715 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 8716 if (RetTy->isAnyComplexType()) 8717 return ABIArgInfo::getDirectInReg(); 8718 8719 // Arguments of size > 4 registers are indirect. 8720 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 8721 if (RetSize > 4) 8722 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 8723 8724 return DefaultABIInfo::classifyReturnType(RetTy); 8725 } 8726 8727 } // End anonymous namespace. 8728 8729 //===----------------------------------------------------------------------===// 8730 // XCore ABI Implementation 8731 //===----------------------------------------------------------------------===// 8732 8733 namespace { 8734 8735 /// A SmallStringEnc instance is used to build up the TypeString by passing 8736 /// it by reference between functions that append to it. 8737 typedef llvm::SmallString<128> SmallStringEnc; 8738 8739 /// TypeStringCache caches the meta encodings of Types. 8740 /// 8741 /// The reason for caching TypeStrings is two fold: 8742 /// 1. To cache a type's encoding for later uses; 8743 /// 2. As a means to break recursive member type inclusion. 8744 /// 8745 /// A cache Entry can have a Status of: 8746 /// NonRecursive: The type encoding is not recursive; 8747 /// Recursive: The type encoding is recursive; 8748 /// Incomplete: An incomplete TypeString; 8749 /// IncompleteUsed: An incomplete TypeString that has been used in a 8750 /// Recursive type encoding. 8751 /// 8752 /// A NonRecursive entry will have all of its sub-members expanded as fully 8753 /// as possible. Whilst it may contain types which are recursive, the type 8754 /// itself is not recursive and thus its encoding may be safely used whenever 8755 /// the type is encountered. 8756 /// 8757 /// A Recursive entry will have all of its sub-members expanded as fully as 8758 /// possible. The type itself is recursive and it may contain other types which 8759 /// are recursive. The Recursive encoding must not be used during the expansion 8760 /// of a recursive type's recursive branch. For simplicity the code uses 8761 /// IncompleteCount to reject all usage of Recursive encodings for member types. 8762 /// 8763 /// An Incomplete entry is always a RecordType and only encodes its 8764 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 8765 /// are placed into the cache during type expansion as a means to identify and 8766 /// handle recursive inclusion of types as sub-members. If there is recursion 8767 /// the entry becomes IncompleteUsed. 8768 /// 8769 /// During the expansion of a RecordType's members: 8770 /// 8771 /// If the cache contains a NonRecursive encoding for the member type, the 8772 /// cached encoding is used; 8773 /// 8774 /// If the cache contains a Recursive encoding for the member type, the 8775 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 8776 /// 8777 /// If the member is a RecordType, an Incomplete encoding is placed into the 8778 /// cache to break potential recursive inclusion of itself as a sub-member; 8779 /// 8780 /// Once a member RecordType has been expanded, its temporary incomplete 8781 /// entry is removed from the cache. If a Recursive encoding was swapped out 8782 /// it is swapped back in; 8783 /// 8784 /// If an incomplete entry is used to expand a sub-member, the incomplete 8785 /// entry is marked as IncompleteUsed. The cache keeps count of how many 8786 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 8787 /// 8788 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 8789 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 8790 /// Else the member is part of a recursive type and thus the recursion has 8791 /// been exited too soon for the encoding to be correct for the member. 8792 /// 8793 class TypeStringCache { 8794 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 8795 struct Entry { 8796 std::string Str; // The encoded TypeString for the type. 8797 enum Status State; // Information about the encoding in 'Str'. 8798 std::string Swapped; // A temporary place holder for a Recursive encoding 8799 // during the expansion of RecordType's members. 8800 }; 8801 std::map<const IdentifierInfo *, struct Entry> Map; 8802 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 8803 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 8804 public: 8805 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 8806 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 8807 bool removeIncomplete(const IdentifierInfo *ID); 8808 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 8809 bool IsRecursive); 8810 StringRef lookupStr(const IdentifierInfo *ID); 8811 }; 8812 8813 /// TypeString encodings for enum & union fields must be order. 8814 /// FieldEncoding is a helper for this ordering process. 8815 class FieldEncoding { 8816 bool HasName; 8817 std::string Enc; 8818 public: 8819 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 8820 StringRef str() { return Enc; } 8821 bool operator<(const FieldEncoding &rhs) const { 8822 if (HasName != rhs.HasName) return HasName; 8823 return Enc < rhs.Enc; 8824 } 8825 }; 8826 8827 class XCoreABIInfo : public DefaultABIInfo { 8828 public: 8829 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8830 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8831 QualType Ty) const override; 8832 }; 8833 8834 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 8835 mutable TypeStringCache TSC; 8836 public: 8837 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 8838 :TargetCodeGenInfo(new XCoreABIInfo(CGT)) {} 8839 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 8840 CodeGen::CodeGenModule &M) const override; 8841 }; 8842 8843 } // End anonymous namespace. 8844 8845 // TODO: this implementation is likely now redundant with the default 8846 // EmitVAArg. 8847 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8848 QualType Ty) const { 8849 CGBuilderTy &Builder = CGF.Builder; 8850 8851 // Get the VAList. 8852 CharUnits SlotSize = CharUnits::fromQuantity(4); 8853 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 8854 8855 // Handle the argument. 8856 ABIArgInfo AI = classifyArgumentType(Ty); 8857 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 8858 llvm::Type *ArgTy = CGT.ConvertType(Ty); 8859 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 8860 AI.setCoerceToType(ArgTy); 8861 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 8862 8863 Address Val = Address::invalid(); 8864 CharUnits ArgSize = CharUnits::Zero(); 8865 switch (AI.getKind()) { 8866 case ABIArgInfo::Expand: 8867 case ABIArgInfo::CoerceAndExpand: 8868 case ABIArgInfo::InAlloca: 8869 llvm_unreachable("Unsupported ABI kind for va_arg"); 8870 case ABIArgInfo::Ignore: 8871 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 8872 ArgSize = CharUnits::Zero(); 8873 break; 8874 case ABIArgInfo::Extend: 8875 case ABIArgInfo::Direct: 8876 Val = Builder.CreateBitCast(AP, ArgPtrTy); 8877 ArgSize = CharUnits::fromQuantity( 8878 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 8879 ArgSize = ArgSize.alignTo(SlotSize); 8880 break; 8881 case ABIArgInfo::Indirect: 8882 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 8883 Val = Address(Builder.CreateLoad(Val), TypeAlign); 8884 ArgSize = SlotSize; 8885 break; 8886 } 8887 8888 // Increment the VAList. 8889 if (!ArgSize.isZero()) { 8890 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 8891 Builder.CreateStore(APN.getPointer(), VAListAddr); 8892 } 8893 8894 return Val; 8895 } 8896 8897 /// During the expansion of a RecordType, an incomplete TypeString is placed 8898 /// into the cache as a means to identify and break recursion. 8899 /// If there is a Recursive encoding in the cache, it is swapped out and will 8900 /// be reinserted by removeIncomplete(). 8901 /// All other types of encoding should have been used rather than arriving here. 8902 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 8903 std::string StubEnc) { 8904 if (!ID) 8905 return; 8906 Entry &E = Map[ID]; 8907 assert( (E.Str.empty() || E.State == Recursive) && 8908 "Incorrectly use of addIncomplete"); 8909 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 8910 E.Swapped.swap(E.Str); // swap out the Recursive 8911 E.Str.swap(StubEnc); 8912 E.State = Incomplete; 8913 ++IncompleteCount; 8914 } 8915 8916 /// Once the RecordType has been expanded, the temporary incomplete TypeString 8917 /// must be removed from the cache. 8918 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 8919 /// Returns true if the RecordType was defined recursively. 8920 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 8921 if (!ID) 8922 return false; 8923 auto I = Map.find(ID); 8924 assert(I != Map.end() && "Entry not present"); 8925 Entry &E = I->second; 8926 assert( (E.State == Incomplete || 8927 E.State == IncompleteUsed) && 8928 "Entry must be an incomplete type"); 8929 bool IsRecursive = false; 8930 if (E.State == IncompleteUsed) { 8931 // We made use of our Incomplete encoding, thus we are recursive. 8932 IsRecursive = true; 8933 --IncompleteUsedCount; 8934 } 8935 if (E.Swapped.empty()) 8936 Map.erase(I); 8937 else { 8938 // Swap the Recursive back. 8939 E.Swapped.swap(E.Str); 8940 E.Swapped.clear(); 8941 E.State = Recursive; 8942 } 8943 --IncompleteCount; 8944 return IsRecursive; 8945 } 8946 8947 /// Add the encoded TypeString to the cache only if it is NonRecursive or 8948 /// Recursive (viz: all sub-members were expanded as fully as possible). 8949 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 8950 bool IsRecursive) { 8951 if (!ID || IncompleteUsedCount) 8952 return; // No key or it is is an incomplete sub-type so don't add. 8953 Entry &E = Map[ID]; 8954 if (IsRecursive && !E.Str.empty()) { 8955 assert(E.State==Recursive && E.Str.size() == Str.size() && 8956 "This is not the same Recursive entry"); 8957 // The parent container was not recursive after all, so we could have used 8958 // this Recursive sub-member entry after all, but we assumed the worse when 8959 // we started viz: IncompleteCount!=0. 8960 return; 8961 } 8962 assert(E.Str.empty() && "Entry already present"); 8963 E.Str = Str.str(); 8964 E.State = IsRecursive? Recursive : NonRecursive; 8965 } 8966 8967 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 8968 /// are recursively expanding a type (IncompleteCount != 0) and the cached 8969 /// encoding is Recursive, return an empty StringRef. 8970 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 8971 if (!ID) 8972 return StringRef(); // We have no key. 8973 auto I = Map.find(ID); 8974 if (I == Map.end()) 8975 return StringRef(); // We have no encoding. 8976 Entry &E = I->second; 8977 if (E.State == Recursive && IncompleteCount) 8978 return StringRef(); // We don't use Recursive encodings for member types. 8979 8980 if (E.State == Incomplete) { 8981 // The incomplete type is being used to break out of recursion. 8982 E.State = IncompleteUsed; 8983 ++IncompleteUsedCount; 8984 } 8985 return E.Str; 8986 } 8987 8988 /// The XCore ABI includes a type information section that communicates symbol 8989 /// type information to the linker. The linker uses this information to verify 8990 /// safety/correctness of things such as array bound and pointers et al. 8991 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 8992 /// This type information (TypeString) is emitted into meta data for all global 8993 /// symbols: definitions, declarations, functions & variables. 8994 /// 8995 /// The TypeString carries type, qualifier, name, size & value details. 8996 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 8997 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 8998 /// The output is tested by test/CodeGen/xcore-stringtype.c. 8999 /// 9000 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9001 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC); 9002 9003 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9004 void XCoreTargetCodeGenInfo::emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9005 CodeGen::CodeGenModule &CGM) const { 9006 SmallStringEnc Enc; 9007 if (getTypeString(Enc, D, CGM, TSC)) { 9008 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9009 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9010 llvm::MDString::get(Ctx, Enc.str())}; 9011 llvm::NamedMDNode *MD = 9012 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9013 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9014 } 9015 } 9016 9017 //===----------------------------------------------------------------------===// 9018 // SPIR ABI Implementation 9019 //===----------------------------------------------------------------------===// 9020 9021 namespace { 9022 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9023 public: 9024 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9025 : TargetCodeGenInfo(new DefaultABIInfo(CGT)) {} 9026 unsigned getOpenCLKernelCallingConv() const override; 9027 }; 9028 9029 } // End anonymous namespace. 9030 9031 namespace clang { 9032 namespace CodeGen { 9033 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9034 DefaultABIInfo SPIRABI(CGM.getTypes()); 9035 SPIRABI.computeInfo(FI); 9036 } 9037 } 9038 } 9039 9040 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9041 return llvm::CallingConv::SPIR_KERNEL; 9042 } 9043 9044 static bool appendType(SmallStringEnc &Enc, QualType QType, 9045 const CodeGen::CodeGenModule &CGM, 9046 TypeStringCache &TSC); 9047 9048 /// Helper function for appendRecordType(). 9049 /// Builds a SmallVector containing the encoded field types in declaration 9050 /// order. 9051 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9052 const RecordDecl *RD, 9053 const CodeGen::CodeGenModule &CGM, 9054 TypeStringCache &TSC) { 9055 for (const auto *Field : RD->fields()) { 9056 SmallStringEnc Enc; 9057 Enc += "m("; 9058 Enc += Field->getName(); 9059 Enc += "){"; 9060 if (Field->isBitField()) { 9061 Enc += "b("; 9062 llvm::raw_svector_ostream OS(Enc); 9063 OS << Field->getBitWidthValue(CGM.getContext()); 9064 Enc += ':'; 9065 } 9066 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9067 return false; 9068 if (Field->isBitField()) 9069 Enc += ')'; 9070 Enc += '}'; 9071 FE.emplace_back(!Field->getName().empty(), Enc); 9072 } 9073 return true; 9074 } 9075 9076 /// Appends structure and union types to Enc and adds encoding to cache. 9077 /// Recursively calls appendType (via extractFieldType) for each field. 9078 /// Union types have their fields ordered according to the ABI. 9079 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9080 const CodeGen::CodeGenModule &CGM, 9081 TypeStringCache &TSC, const IdentifierInfo *ID) { 9082 // Append the cached TypeString if we have one. 9083 StringRef TypeString = TSC.lookupStr(ID); 9084 if (!TypeString.empty()) { 9085 Enc += TypeString; 9086 return true; 9087 } 9088 9089 // Start to emit an incomplete TypeString. 9090 size_t Start = Enc.size(); 9091 Enc += (RT->isUnionType()? 'u' : 's'); 9092 Enc += '('; 9093 if (ID) 9094 Enc += ID->getName(); 9095 Enc += "){"; 9096 9097 // We collect all encoded fields and order as necessary. 9098 bool IsRecursive = false; 9099 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9100 if (RD && !RD->field_empty()) { 9101 // An incomplete TypeString stub is placed in the cache for this RecordType 9102 // so that recursive calls to this RecordType will use it whilst building a 9103 // complete TypeString for this RecordType. 9104 SmallVector<FieldEncoding, 16> FE; 9105 std::string StubEnc(Enc.substr(Start).str()); 9106 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9107 TSC.addIncomplete(ID, std::move(StubEnc)); 9108 if (!extractFieldType(FE, RD, CGM, TSC)) { 9109 (void) TSC.removeIncomplete(ID); 9110 return false; 9111 } 9112 IsRecursive = TSC.removeIncomplete(ID); 9113 // The ABI requires unions to be sorted but not structures. 9114 // See FieldEncoding::operator< for sort algorithm. 9115 if (RT->isUnionType()) 9116 llvm::sort(FE); 9117 // We can now complete the TypeString. 9118 unsigned E = FE.size(); 9119 for (unsigned I = 0; I != E; ++I) { 9120 if (I) 9121 Enc += ','; 9122 Enc += FE[I].str(); 9123 } 9124 } 9125 Enc += '}'; 9126 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 9127 return true; 9128 } 9129 9130 /// Appends enum types to Enc and adds the encoding to the cache. 9131 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 9132 TypeStringCache &TSC, 9133 const IdentifierInfo *ID) { 9134 // Append the cached TypeString if we have one. 9135 StringRef TypeString = TSC.lookupStr(ID); 9136 if (!TypeString.empty()) { 9137 Enc += TypeString; 9138 return true; 9139 } 9140 9141 size_t Start = Enc.size(); 9142 Enc += "e("; 9143 if (ID) 9144 Enc += ID->getName(); 9145 Enc += "){"; 9146 9147 // We collect all encoded enumerations and order them alphanumerically. 9148 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 9149 SmallVector<FieldEncoding, 16> FE; 9150 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 9151 ++I) { 9152 SmallStringEnc EnumEnc; 9153 EnumEnc += "m("; 9154 EnumEnc += I->getName(); 9155 EnumEnc += "){"; 9156 I->getInitVal().toString(EnumEnc); 9157 EnumEnc += '}'; 9158 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 9159 } 9160 llvm::sort(FE); 9161 unsigned E = FE.size(); 9162 for (unsigned I = 0; I != E; ++I) { 9163 if (I) 9164 Enc += ','; 9165 Enc += FE[I].str(); 9166 } 9167 } 9168 Enc += '}'; 9169 TSC.addIfComplete(ID, Enc.substr(Start), false); 9170 return true; 9171 } 9172 9173 /// Appends type's qualifier to Enc. 9174 /// This is done prior to appending the type's encoding. 9175 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 9176 // Qualifiers are emitted in alphabetical order. 9177 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 9178 int Lookup = 0; 9179 if (QT.isConstQualified()) 9180 Lookup += 1<<0; 9181 if (QT.isRestrictQualified()) 9182 Lookup += 1<<1; 9183 if (QT.isVolatileQualified()) 9184 Lookup += 1<<2; 9185 Enc += Table[Lookup]; 9186 } 9187 9188 /// Appends built-in types to Enc. 9189 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 9190 const char *EncType; 9191 switch (BT->getKind()) { 9192 case BuiltinType::Void: 9193 EncType = "0"; 9194 break; 9195 case BuiltinType::Bool: 9196 EncType = "b"; 9197 break; 9198 case BuiltinType::Char_U: 9199 EncType = "uc"; 9200 break; 9201 case BuiltinType::UChar: 9202 EncType = "uc"; 9203 break; 9204 case BuiltinType::SChar: 9205 EncType = "sc"; 9206 break; 9207 case BuiltinType::UShort: 9208 EncType = "us"; 9209 break; 9210 case BuiltinType::Short: 9211 EncType = "ss"; 9212 break; 9213 case BuiltinType::UInt: 9214 EncType = "ui"; 9215 break; 9216 case BuiltinType::Int: 9217 EncType = "si"; 9218 break; 9219 case BuiltinType::ULong: 9220 EncType = "ul"; 9221 break; 9222 case BuiltinType::Long: 9223 EncType = "sl"; 9224 break; 9225 case BuiltinType::ULongLong: 9226 EncType = "ull"; 9227 break; 9228 case BuiltinType::LongLong: 9229 EncType = "sll"; 9230 break; 9231 case BuiltinType::Float: 9232 EncType = "ft"; 9233 break; 9234 case BuiltinType::Double: 9235 EncType = "d"; 9236 break; 9237 case BuiltinType::LongDouble: 9238 EncType = "ld"; 9239 break; 9240 default: 9241 return false; 9242 } 9243 Enc += EncType; 9244 return true; 9245 } 9246 9247 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 9248 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 9249 const CodeGen::CodeGenModule &CGM, 9250 TypeStringCache &TSC) { 9251 Enc += "p("; 9252 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 9253 return false; 9254 Enc += ')'; 9255 return true; 9256 } 9257 9258 /// Appends array encoding to Enc before calling appendType for the element. 9259 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 9260 const ArrayType *AT, 9261 const CodeGen::CodeGenModule &CGM, 9262 TypeStringCache &TSC, StringRef NoSizeEnc) { 9263 if (AT->getSizeModifier() != ArrayType::Normal) 9264 return false; 9265 Enc += "a("; 9266 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 9267 CAT->getSize().toStringUnsigned(Enc); 9268 else 9269 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 9270 Enc += ':'; 9271 // The Qualifiers should be attached to the type rather than the array. 9272 appendQualifier(Enc, QT); 9273 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 9274 return false; 9275 Enc += ')'; 9276 return true; 9277 } 9278 9279 /// Appends a function encoding to Enc, calling appendType for the return type 9280 /// and the arguments. 9281 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 9282 const CodeGen::CodeGenModule &CGM, 9283 TypeStringCache &TSC) { 9284 Enc += "f{"; 9285 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 9286 return false; 9287 Enc += "}("; 9288 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 9289 // N.B. we are only interested in the adjusted param types. 9290 auto I = FPT->param_type_begin(); 9291 auto E = FPT->param_type_end(); 9292 if (I != E) { 9293 do { 9294 if (!appendType(Enc, *I, CGM, TSC)) 9295 return false; 9296 ++I; 9297 if (I != E) 9298 Enc += ','; 9299 } while (I != E); 9300 if (FPT->isVariadic()) 9301 Enc += ",va"; 9302 } else { 9303 if (FPT->isVariadic()) 9304 Enc += "va"; 9305 else 9306 Enc += '0'; 9307 } 9308 } 9309 Enc += ')'; 9310 return true; 9311 } 9312 9313 /// Handles the type's qualifier before dispatching a call to handle specific 9314 /// type encodings. 9315 static bool appendType(SmallStringEnc &Enc, QualType QType, 9316 const CodeGen::CodeGenModule &CGM, 9317 TypeStringCache &TSC) { 9318 9319 QualType QT = QType.getCanonicalType(); 9320 9321 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 9322 // The Qualifiers should be attached to the type rather than the array. 9323 // Thus we don't call appendQualifier() here. 9324 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 9325 9326 appendQualifier(Enc, QT); 9327 9328 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 9329 return appendBuiltinType(Enc, BT); 9330 9331 if (const PointerType *PT = QT->getAs<PointerType>()) 9332 return appendPointerType(Enc, PT, CGM, TSC); 9333 9334 if (const EnumType *ET = QT->getAs<EnumType>()) 9335 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 9336 9337 if (const RecordType *RT = QT->getAsStructureType()) 9338 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9339 9340 if (const RecordType *RT = QT->getAsUnionType()) 9341 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 9342 9343 if (const FunctionType *FT = QT->getAs<FunctionType>()) 9344 return appendFunctionType(Enc, FT, CGM, TSC); 9345 9346 return false; 9347 } 9348 9349 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9350 CodeGen::CodeGenModule &CGM, TypeStringCache &TSC) { 9351 if (!D) 9352 return false; 9353 9354 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 9355 if (FD->getLanguageLinkage() != CLanguageLinkage) 9356 return false; 9357 return appendType(Enc, FD->getType(), CGM, TSC); 9358 } 9359 9360 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 9361 if (VD->getLanguageLinkage() != CLanguageLinkage) 9362 return false; 9363 QualType QT = VD->getType().getCanonicalType(); 9364 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 9365 // Global ArrayTypes are given a size of '*' if the size is unknown. 9366 // The Qualifiers should be attached to the type rather than the array. 9367 // Thus we don't call appendQualifier() here. 9368 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 9369 } 9370 return appendType(Enc, QT, CGM, TSC); 9371 } 9372 return false; 9373 } 9374 9375 //===----------------------------------------------------------------------===// 9376 // RISCV ABI Implementation 9377 //===----------------------------------------------------------------------===// 9378 9379 namespace { 9380 class RISCVABIInfo : public DefaultABIInfo { 9381 private: 9382 // Size of the integer ('x') registers in bits. 9383 unsigned XLen; 9384 // Size of the floating point ('f') registers in bits. Note that the target 9385 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 9386 // with soft float ABI has FLen==0). 9387 unsigned FLen; 9388 static const int NumArgGPRs = 8; 9389 static const int NumArgFPRs = 8; 9390 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9391 llvm::Type *&Field1Ty, 9392 CharUnits &Field1Off, 9393 llvm::Type *&Field2Ty, 9394 CharUnits &Field2Off) const; 9395 9396 public: 9397 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 9398 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 9399 9400 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 9401 // non-virtual, but computeInfo is virtual, so we overload it. 9402 void computeInfo(CGFunctionInfo &FI) const override; 9403 9404 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 9405 int &ArgFPRsLeft) const; 9406 ABIArgInfo classifyReturnType(QualType RetTy) const; 9407 9408 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9409 QualType Ty) const override; 9410 9411 ABIArgInfo extendType(QualType Ty) const; 9412 9413 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9414 CharUnits &Field1Off, llvm::Type *&Field2Ty, 9415 CharUnits &Field2Off, int &NeededArgGPRs, 9416 int &NeededArgFPRs) const; 9417 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 9418 CharUnits Field1Off, 9419 llvm::Type *Field2Ty, 9420 CharUnits Field2Off) const; 9421 }; 9422 } // end anonymous namespace 9423 9424 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 9425 QualType RetTy = FI.getReturnType(); 9426 if (!getCXXABI().classifyReturnType(FI)) 9427 FI.getReturnInfo() = classifyReturnType(RetTy); 9428 9429 // IsRetIndirect is true if classifyArgumentType indicated the value should 9430 // be passed indirect, or if the type size is a scalar greater than 2*XLen 9431 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 9432 // in LLVM IR, relying on the backend lowering code to rewrite the argument 9433 // list and pass indirectly on RV32. 9434 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 9435 if (!IsRetIndirect && RetTy->isScalarType() && 9436 getContext().getTypeSize(RetTy) > (2 * XLen)) { 9437 if (RetTy->isComplexType() && FLen) { 9438 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 9439 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 9440 } else { 9441 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 9442 IsRetIndirect = true; 9443 } 9444 } 9445 9446 // We must track the number of GPRs used in order to conform to the RISC-V 9447 // ABI, as integer scalars passed in registers should have signext/zeroext 9448 // when promoted, but are anyext if passed on the stack. As GPR usage is 9449 // different for variadic arguments, we must also track whether we are 9450 // examining a vararg or not. 9451 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 9452 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 9453 int NumFixedArgs = FI.getNumRequiredArgs(); 9454 9455 int ArgNum = 0; 9456 for (auto &ArgInfo : FI.arguments()) { 9457 bool IsFixed = ArgNum < NumFixedArgs; 9458 ArgInfo.info = 9459 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 9460 ArgNum++; 9461 } 9462 } 9463 9464 // Returns true if the struct is a potential candidate for the floating point 9465 // calling convention. If this function returns true, the caller is 9466 // responsible for checking that if there is only a single field then that 9467 // field is a float. 9468 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 9469 llvm::Type *&Field1Ty, 9470 CharUnits &Field1Off, 9471 llvm::Type *&Field2Ty, 9472 CharUnits &Field2Off) const { 9473 bool IsInt = Ty->isIntegralOrEnumerationType(); 9474 bool IsFloat = Ty->isRealFloatingType(); 9475 9476 if (IsInt || IsFloat) { 9477 uint64_t Size = getContext().getTypeSize(Ty); 9478 if (IsInt && Size > XLen) 9479 return false; 9480 // Can't be eligible if larger than the FP registers. Half precision isn't 9481 // currently supported on RISC-V and the ABI hasn't been confirmed, so 9482 // default to the integer ABI in that case. 9483 if (IsFloat && (Size > FLen || Size < 32)) 9484 return false; 9485 // Can't be eligible if an integer type was already found (int+int pairs 9486 // are not eligible). 9487 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 9488 return false; 9489 if (!Field1Ty) { 9490 Field1Ty = CGT.ConvertType(Ty); 9491 Field1Off = CurOff; 9492 return true; 9493 } 9494 if (!Field2Ty) { 9495 Field2Ty = CGT.ConvertType(Ty); 9496 Field2Off = CurOff; 9497 return true; 9498 } 9499 return false; 9500 } 9501 9502 if (auto CTy = Ty->getAs<ComplexType>()) { 9503 if (Field1Ty) 9504 return false; 9505 QualType EltTy = CTy->getElementType(); 9506 if (getContext().getTypeSize(EltTy) > FLen) 9507 return false; 9508 Field1Ty = CGT.ConvertType(EltTy); 9509 Field1Off = CurOff; 9510 assert(CurOff.isZero() && "Unexpected offset for first field"); 9511 Field2Ty = Field1Ty; 9512 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 9513 return true; 9514 } 9515 9516 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 9517 uint64_t ArraySize = ATy->getSize().getZExtValue(); 9518 QualType EltTy = ATy->getElementType(); 9519 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 9520 for (uint64_t i = 0; i < ArraySize; ++i) { 9521 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 9522 Field1Off, Field2Ty, Field2Off); 9523 if (!Ret) 9524 return false; 9525 CurOff += EltSize; 9526 } 9527 return true; 9528 } 9529 9530 if (const auto *RTy = Ty->getAs<RecordType>()) { 9531 // Structures with either a non-trivial destructor or a non-trivial 9532 // copy constructor are not eligible for the FP calling convention. 9533 if (getRecordArgABI(Ty, CGT.getCXXABI())) 9534 return false; 9535 if (isEmptyRecord(getContext(), Ty, true)) 9536 return true; 9537 const RecordDecl *RD = RTy->getDecl(); 9538 // Unions aren't eligible unless they're empty (which is caught above). 9539 if (RD->isUnion()) 9540 return false; 9541 int ZeroWidthBitFieldCount = 0; 9542 for (const FieldDecl *FD : RD->fields()) { 9543 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 9544 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 9545 QualType QTy = FD->getType(); 9546 if (FD->isBitField()) { 9547 unsigned BitWidth = FD->getBitWidthValue(getContext()); 9548 // Allow a bitfield with a type greater than XLen as long as the 9549 // bitwidth is XLen or less. 9550 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 9551 QTy = getContext().getIntTypeForBitwidth(XLen, false); 9552 if (BitWidth == 0) { 9553 ZeroWidthBitFieldCount++; 9554 continue; 9555 } 9556 } 9557 9558 bool Ret = detectFPCCEligibleStructHelper( 9559 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 9560 Field1Ty, Field1Off, Field2Ty, Field2Off); 9561 if (!Ret) 9562 return false; 9563 9564 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 9565 // or int+fp structs, but are ignored for a struct with an fp field and 9566 // any number of zero-width bitfields. 9567 if (Field2Ty && ZeroWidthBitFieldCount > 0) 9568 return false; 9569 } 9570 return Field1Ty != nullptr; 9571 } 9572 9573 return false; 9574 } 9575 9576 // Determine if a struct is eligible for passing according to the floating 9577 // point calling convention (i.e., when flattened it contains a single fp 9578 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 9579 // NeededArgGPRs are incremented appropriately. 9580 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 9581 CharUnits &Field1Off, 9582 llvm::Type *&Field2Ty, 9583 CharUnits &Field2Off, 9584 int &NeededArgGPRs, 9585 int &NeededArgFPRs) const { 9586 Field1Ty = nullptr; 9587 Field2Ty = nullptr; 9588 NeededArgGPRs = 0; 9589 NeededArgFPRs = 0; 9590 bool IsCandidate = detectFPCCEligibleStructHelper( 9591 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 9592 // Not really a candidate if we have a single int but no float. 9593 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 9594 return false; 9595 if (!IsCandidate) 9596 return false; 9597 if (Field1Ty && Field1Ty->isFloatingPointTy()) 9598 NeededArgFPRs++; 9599 else if (Field1Ty) 9600 NeededArgGPRs++; 9601 if (Field2Ty && Field2Ty->isFloatingPointTy()) 9602 NeededArgFPRs++; 9603 else if (Field2Ty) 9604 NeededArgGPRs++; 9605 return IsCandidate; 9606 } 9607 9608 // Call getCoerceAndExpand for the two-element flattened struct described by 9609 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 9610 // appropriate coerceToType and unpaddedCoerceToType. 9611 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 9612 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 9613 CharUnits Field2Off) const { 9614 SmallVector<llvm::Type *, 3> CoerceElts; 9615 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 9616 if (!Field1Off.isZero()) 9617 CoerceElts.push_back(llvm::ArrayType::get( 9618 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 9619 9620 CoerceElts.push_back(Field1Ty); 9621 UnpaddedCoerceElts.push_back(Field1Ty); 9622 9623 if (!Field2Ty) { 9624 return ABIArgInfo::getCoerceAndExpand( 9625 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 9626 UnpaddedCoerceElts[0]); 9627 } 9628 9629 CharUnits Field2Align = 9630 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 9631 CharUnits Field1Size = 9632 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 9633 CharUnits Field2OffNoPadNoPack = Field1Size.alignTo(Field2Align); 9634 9635 CharUnits Padding = CharUnits::Zero(); 9636 if (Field2Off > Field2OffNoPadNoPack) 9637 Padding = Field2Off - Field2OffNoPadNoPack; 9638 else if (Field2Off != Field2Align && Field2Off > Field1Size) 9639 Padding = Field2Off - Field1Size; 9640 9641 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 9642 9643 if (!Padding.isZero()) 9644 CoerceElts.push_back(llvm::ArrayType::get( 9645 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 9646 9647 CoerceElts.push_back(Field2Ty); 9648 UnpaddedCoerceElts.push_back(Field2Ty); 9649 9650 auto CoerceToType = 9651 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 9652 auto UnpaddedCoerceToType = 9653 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 9654 9655 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 9656 } 9657 9658 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 9659 int &ArgGPRsLeft, 9660 int &ArgFPRsLeft) const { 9661 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 9662 Ty = useFirstFieldIfTransparentUnion(Ty); 9663 9664 // Structures with either a non-trivial destructor or a non-trivial 9665 // copy constructor are always passed indirectly. 9666 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 9667 if (ArgGPRsLeft) 9668 ArgGPRsLeft -= 1; 9669 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 9670 CGCXXABI::RAA_DirectInMemory); 9671 } 9672 9673 // Ignore empty structs/unions. 9674 if (isEmptyRecord(getContext(), Ty, true)) 9675 return ABIArgInfo::getIgnore(); 9676 9677 uint64_t Size = getContext().getTypeSize(Ty); 9678 9679 // Pass floating point values via FPRs if possible. 9680 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 9681 FLen >= Size && ArgFPRsLeft) { 9682 ArgFPRsLeft--; 9683 return ABIArgInfo::getDirect(); 9684 } 9685 9686 // Complex types for the hard float ABI must be passed direct rather than 9687 // using CoerceAndExpand. 9688 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 9689 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 9690 if (getContext().getTypeSize(EltTy) <= FLen) { 9691 ArgFPRsLeft -= 2; 9692 return ABIArgInfo::getDirect(); 9693 } 9694 } 9695 9696 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 9697 llvm::Type *Field1Ty = nullptr; 9698 llvm::Type *Field2Ty = nullptr; 9699 CharUnits Field1Off = CharUnits::Zero(); 9700 CharUnits Field2Off = CharUnits::Zero(); 9701 int NeededArgGPRs; 9702 int NeededArgFPRs; 9703 bool IsCandidate = 9704 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 9705 NeededArgGPRs, NeededArgFPRs); 9706 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 9707 NeededArgFPRs <= ArgFPRsLeft) { 9708 ArgGPRsLeft -= NeededArgGPRs; 9709 ArgFPRsLeft -= NeededArgFPRs; 9710 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 9711 Field2Off); 9712 } 9713 } 9714 9715 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 9716 bool MustUseStack = false; 9717 // Determine the number of GPRs needed to pass the current argument 9718 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 9719 // register pairs, so may consume 3 registers. 9720 int NeededArgGPRs = 1; 9721 if (!IsFixed && NeededAlign == 2 * XLen) 9722 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 9723 else if (Size > XLen && Size <= 2 * XLen) 9724 NeededArgGPRs = 2; 9725 9726 if (NeededArgGPRs > ArgGPRsLeft) { 9727 MustUseStack = true; 9728 NeededArgGPRs = ArgGPRsLeft; 9729 } 9730 9731 ArgGPRsLeft -= NeededArgGPRs; 9732 9733 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 9734 // Treat an enum type as its underlying type. 9735 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9736 Ty = EnumTy->getDecl()->getIntegerType(); 9737 9738 // All integral types are promoted to XLen width, unless passed on the 9739 // stack. 9740 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 9741 return extendType(Ty); 9742 } 9743 9744 return ABIArgInfo::getDirect(); 9745 } 9746 9747 // Aggregates which are <= 2*XLen will be passed in registers if possible, 9748 // so coerce to integers. 9749 if (Size <= 2 * XLen) { 9750 unsigned Alignment = getContext().getTypeAlign(Ty); 9751 9752 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 9753 // required, and a 2-element XLen array if only XLen alignment is required. 9754 if (Size <= XLen) { 9755 return ABIArgInfo::getDirect( 9756 llvm::IntegerType::get(getVMContext(), XLen)); 9757 } else if (Alignment == 2 * XLen) { 9758 return ABIArgInfo::getDirect( 9759 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 9760 } else { 9761 return ABIArgInfo::getDirect(llvm::ArrayType::get( 9762 llvm::IntegerType::get(getVMContext(), XLen), 2)); 9763 } 9764 } 9765 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9766 } 9767 9768 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 9769 if (RetTy->isVoidType()) 9770 return ABIArgInfo::getIgnore(); 9771 9772 int ArgGPRsLeft = 2; 9773 int ArgFPRsLeft = FLen ? 2 : 0; 9774 9775 // The rules for return and argument types are the same, so defer to 9776 // classifyArgumentType. 9777 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 9778 ArgFPRsLeft); 9779 } 9780 9781 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9782 QualType Ty) const { 9783 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 9784 9785 // Empty records are ignored for parameter passing purposes. 9786 if (isEmptyRecord(getContext(), Ty, true)) { 9787 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 9788 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 9789 return Addr; 9790 } 9791 9792 std::pair<CharUnits, CharUnits> SizeAndAlign = 9793 getContext().getTypeInfoInChars(Ty); 9794 9795 // Arguments bigger than 2*Xlen bytes are passed indirectly. 9796 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 9797 9798 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 9799 SlotSize, /*AllowHigherAlign=*/true); 9800 } 9801 9802 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 9803 int TySize = getContext().getTypeSize(Ty); 9804 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 9805 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 9806 return ABIArgInfo::getSignExtend(Ty); 9807 return ABIArgInfo::getExtend(Ty); 9808 } 9809 9810 namespace { 9811 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 9812 public: 9813 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 9814 unsigned FLen) 9815 : TargetCodeGenInfo(new RISCVABIInfo(CGT, XLen, FLen)) {} 9816 9817 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 9818 CodeGen::CodeGenModule &CGM) const override { 9819 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 9820 if (!FD) return; 9821 9822 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 9823 if (!Attr) 9824 return; 9825 9826 const char *Kind; 9827 switch (Attr->getInterrupt()) { 9828 case RISCVInterruptAttr::user: Kind = "user"; break; 9829 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 9830 case RISCVInterruptAttr::machine: Kind = "machine"; break; 9831 } 9832 9833 auto *Fn = cast<llvm::Function>(GV); 9834 9835 Fn->addFnAttr("interrupt", Kind); 9836 } 9837 }; 9838 } // namespace 9839 9840 //===----------------------------------------------------------------------===// 9841 // Driver code 9842 //===----------------------------------------------------------------------===// 9843 9844 bool CodeGenModule::supportsCOMDAT() const { 9845 return getTriple().supportsCOMDAT(); 9846 } 9847 9848 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 9849 if (TheTargetCodeGenInfo) 9850 return *TheTargetCodeGenInfo; 9851 9852 // Helper to set the unique_ptr while still keeping the return value. 9853 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 9854 this->TheTargetCodeGenInfo.reset(P); 9855 return *P; 9856 }; 9857 9858 const llvm::Triple &Triple = getTarget().getTriple(); 9859 switch (Triple.getArch()) { 9860 default: 9861 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 9862 9863 case llvm::Triple::le32: 9864 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9865 case llvm::Triple::mips: 9866 case llvm::Triple::mipsel: 9867 if (Triple.getOS() == llvm::Triple::NaCl) 9868 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 9869 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 9870 9871 case llvm::Triple::mips64: 9872 case llvm::Triple::mips64el: 9873 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 9874 9875 case llvm::Triple::avr: 9876 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 9877 9878 case llvm::Triple::aarch64: 9879 case llvm::Triple::aarch64_32: 9880 case llvm::Triple::aarch64_be: { 9881 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 9882 if (getTarget().getABI() == "darwinpcs") 9883 Kind = AArch64ABIInfo::DarwinPCS; 9884 else if (Triple.isOSWindows()) 9885 return SetCGInfo( 9886 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 9887 9888 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 9889 } 9890 9891 case llvm::Triple::wasm32: 9892 case llvm::Triple::wasm64: 9893 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types)); 9894 9895 case llvm::Triple::arm: 9896 case llvm::Triple::armeb: 9897 case llvm::Triple::thumb: 9898 case llvm::Triple::thumbeb: { 9899 if (Triple.getOS() == llvm::Triple::Win32) { 9900 return SetCGInfo( 9901 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 9902 } 9903 9904 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 9905 StringRef ABIStr = getTarget().getABI(); 9906 if (ABIStr == "apcs-gnu") 9907 Kind = ARMABIInfo::APCS; 9908 else if (ABIStr == "aapcs16") 9909 Kind = ARMABIInfo::AAPCS16_VFP; 9910 else if (CodeGenOpts.FloatABI == "hard" || 9911 (CodeGenOpts.FloatABI != "soft" && 9912 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 9913 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 9914 Triple.getEnvironment() == llvm::Triple::EABIHF))) 9915 Kind = ARMABIInfo::AAPCS_VFP; 9916 9917 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 9918 } 9919 9920 case llvm::Triple::ppc: { 9921 bool IsSoftFloat = 9922 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 9923 bool RetSmallStructInRegABI = 9924 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9925 return SetCGInfo( 9926 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 9927 } 9928 case llvm::Triple::ppc64: 9929 if (Triple.isOSBinFormatELF()) { 9930 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 9931 if (getTarget().getABI() == "elfv2") 9932 Kind = PPC64_SVR4_ABIInfo::ELFv2; 9933 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9934 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9935 9936 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9937 IsSoftFloat)); 9938 } else 9939 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 9940 case llvm::Triple::ppc64le: { 9941 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 9942 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 9943 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 9944 Kind = PPC64_SVR4_ABIInfo::ELFv1; 9945 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 9946 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 9947 9948 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 9949 IsSoftFloat)); 9950 } 9951 9952 case llvm::Triple::nvptx: 9953 case llvm::Triple::nvptx64: 9954 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 9955 9956 case llvm::Triple::msp430: 9957 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 9958 9959 case llvm::Triple::riscv32: 9960 case llvm::Triple::riscv64: { 9961 StringRef ABIStr = getTarget().getABI(); 9962 unsigned XLen = getTarget().getPointerWidth(0); 9963 unsigned ABIFLen = 0; 9964 if (ABIStr.endswith("f")) 9965 ABIFLen = 32; 9966 else if (ABIStr.endswith("d")) 9967 ABIFLen = 64; 9968 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 9969 } 9970 9971 case llvm::Triple::systemz: { 9972 bool HasVector = getTarget().getABI() == "vector"; 9973 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector)); 9974 } 9975 9976 case llvm::Triple::tce: 9977 case llvm::Triple::tcele: 9978 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 9979 9980 case llvm::Triple::x86: { 9981 bool IsDarwinVectorABI = Triple.isOSDarwin(); 9982 bool RetSmallStructInRegABI = 9983 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 9984 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 9985 9986 if (Triple.getOS() == llvm::Triple::Win32) { 9987 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 9988 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9989 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 9990 } else { 9991 return SetCGInfo(new X86_32TargetCodeGenInfo( 9992 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 9993 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 9994 CodeGenOpts.FloatABI == "soft")); 9995 } 9996 } 9997 9998 case llvm::Triple::x86_64: { 9999 StringRef ABI = getTarget().getABI(); 10000 X86AVXABILevel AVXLevel = 10001 (ABI == "avx512" 10002 ? X86AVXABILevel::AVX512 10003 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 10004 10005 switch (Triple.getOS()) { 10006 case llvm::Triple::Win32: 10007 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 10008 default: 10009 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 10010 } 10011 } 10012 case llvm::Triple::hexagon: 10013 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 10014 case llvm::Triple::lanai: 10015 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 10016 case llvm::Triple::r600: 10017 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10018 case llvm::Triple::amdgcn: 10019 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10020 case llvm::Triple::sparc: 10021 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 10022 case llvm::Triple::sparcv9: 10023 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 10024 case llvm::Triple::xcore: 10025 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 10026 case llvm::Triple::arc: 10027 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 10028 case llvm::Triple::spir: 10029 case llvm::Triple::spir64: 10030 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 10031 } 10032 } 10033 10034 /// Create an OpenCL kernel for an enqueued block. 10035 /// 10036 /// The kernel has the same function type as the block invoke function. Its 10037 /// name is the name of the block invoke function postfixed with "_kernel". 10038 /// It simply calls the block invoke function then returns. 10039 llvm::Function * 10040 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 10041 llvm::Function *Invoke, 10042 llvm::Value *BlockLiteral) const { 10043 auto *InvokeFT = Invoke->getFunctionType(); 10044 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10045 for (auto &P : InvokeFT->params()) 10046 ArgTys.push_back(P); 10047 auto &C = CGF.getLLVMContext(); 10048 std::string Name = Invoke->getName().str() + "_kernel"; 10049 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10050 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10051 &CGF.CGM.getModule()); 10052 auto IP = CGF.Builder.saveIP(); 10053 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10054 auto &Builder = CGF.Builder; 10055 Builder.SetInsertPoint(BB); 10056 llvm::SmallVector<llvm::Value *, 2> Args; 10057 for (auto &A : F->args()) 10058 Args.push_back(&A); 10059 Builder.CreateCall(Invoke, Args); 10060 Builder.CreateRetVoid(); 10061 Builder.restoreIP(IP); 10062 return F; 10063 } 10064 10065 /// Create an OpenCL kernel for an enqueued block. 10066 /// 10067 /// The type of the first argument (the block literal) is the struct type 10068 /// of the block literal instead of a pointer type. The first argument 10069 /// (block literal) is passed directly by value to the kernel. The kernel 10070 /// allocates the same type of struct on stack and stores the block literal 10071 /// to it and passes its pointer to the block invoke function. The kernel 10072 /// has "enqueued-block" function attribute and kernel argument metadata. 10073 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 10074 CodeGenFunction &CGF, llvm::Function *Invoke, 10075 llvm::Value *BlockLiteral) const { 10076 auto &Builder = CGF.Builder; 10077 auto &C = CGF.getLLVMContext(); 10078 10079 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 10080 auto *InvokeFT = Invoke->getFunctionType(); 10081 llvm::SmallVector<llvm::Type *, 2> ArgTys; 10082 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 10083 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 10084 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 10085 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 10086 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 10087 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 10088 10089 ArgTys.push_back(BlockTy); 10090 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10091 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 10092 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 10093 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10094 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10095 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 10096 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 10097 ArgTys.push_back(InvokeFT->getParamType(I)); 10098 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 10099 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 10100 AccessQuals.push_back(llvm::MDString::get(C, "none")); 10101 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 10102 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 10103 ArgNames.push_back( 10104 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 10105 } 10106 std::string Name = Invoke->getName().str() + "_kernel"; 10107 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 10108 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 10109 &CGF.CGM.getModule()); 10110 F->addFnAttr("enqueued-block"); 10111 auto IP = CGF.Builder.saveIP(); 10112 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 10113 Builder.SetInsertPoint(BB); 10114 unsigned BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlignment(BlockTy); 10115 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 10116 BlockPtr->setAlignment(llvm::MaybeAlign(BlockAlign)); 10117 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 10118 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 10119 llvm::SmallVector<llvm::Value *, 2> Args; 10120 Args.push_back(Cast); 10121 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 10122 Args.push_back(I); 10123 Builder.CreateCall(Invoke, Args); 10124 Builder.CreateRetVoid(); 10125 Builder.restoreIP(IP); 10126 10127 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 10128 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 10129 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 10130 F->setMetadata("kernel_arg_base_type", 10131 llvm::MDNode::get(C, ArgBaseTypeNames)); 10132 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 10133 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 10134 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 10135 10136 return F; 10137 } 10138