1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // These classes wrap the information about a call or function 10 // definition used to handle ABI compliancy. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "TargetInfo.h" 15 #include "ABIInfo.h" 16 #include "CGBlocks.h" 17 #include "CGCXXABI.h" 18 #include "CGValue.h" 19 #include "CodeGenFunction.h" 20 #include "clang/AST/Attr.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/Basic/CodeGenOptions.h" 23 #include "clang/Basic/DiagnosticFrontend.h" 24 #include "clang/CodeGen/CGFunctionInfo.h" 25 #include "clang/CodeGen/SwiftCallingConv.h" 26 #include "llvm/ADT/SmallBitVector.h" 27 #include "llvm/ADT/StringExtras.h" 28 #include "llvm/ADT/StringSwitch.h" 29 #include "llvm/ADT/Triple.h" 30 #include "llvm/ADT/Twine.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/IntrinsicsNVPTX.h" 33 #include "llvm/IR/Type.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <algorithm> // std::sort 36 37 using namespace clang; 38 using namespace CodeGen; 39 40 // Helper for coercing an aggregate argument or return value into an integer 41 // array of the same size (including padding) and alignment. This alternate 42 // coercion happens only for the RenderScript ABI and can be removed after 43 // runtimes that rely on it are no longer supported. 44 // 45 // RenderScript assumes that the size of the argument / return value in the IR 46 // is the same as the size of the corresponding qualified type. This helper 47 // coerces the aggregate type into an array of the same size (including 48 // padding). This coercion is used in lieu of expansion of struct members or 49 // other canonical coercions that return a coerced-type of larger size. 50 // 51 // Ty - The argument / return value type 52 // Context - The associated ASTContext 53 // LLVMContext - The associated LLVMContext 54 static ABIArgInfo coerceToIntArray(QualType Ty, 55 ASTContext &Context, 56 llvm::LLVMContext &LLVMContext) { 57 // Alignment and Size are measured in bits. 58 const uint64_t Size = Context.getTypeSize(Ty); 59 const uint64_t Alignment = Context.getTypeAlign(Ty); 60 llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment); 61 const uint64_t NumElements = (Size + Alignment - 1) / Alignment; 62 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 63 } 64 65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder, 66 llvm::Value *Array, 67 llvm::Value *Value, 68 unsigned FirstIndex, 69 unsigned LastIndex) { 70 // Alternatively, we could emit this as a loop in the source. 71 for (unsigned I = FirstIndex; I <= LastIndex; ++I) { 72 llvm::Value *Cell = 73 Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I); 74 Builder.CreateAlignedStore(Value, Cell, CharUnits::One()); 75 } 76 } 77 78 static bool isAggregateTypeForABI(QualType T) { 79 return !CodeGenFunction::hasScalarEvaluationKind(T) || 80 T->isMemberFunctionPointerType(); 81 } 82 83 ABIArgInfo 84 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign, 85 llvm::Type *Padding) const { 86 return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty), 87 ByRef, Realign, Padding); 88 } 89 90 ABIArgInfo 91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const { 92 return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty), 93 /*ByRef*/ false, Realign); 94 } 95 96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 97 QualType Ty) const { 98 return Address::invalid(); 99 } 100 101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 102 if (Ty->isPromotableIntegerType()) 103 return true; 104 105 if (const auto *EIT = Ty->getAs<ExtIntType>()) 106 if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy)) 107 return true; 108 109 return false; 110 } 111 112 ABIInfo::~ABIInfo() {} 113 114 /// Does the given lowering require more than the given number of 115 /// registers when expanded? 116 /// 117 /// This is intended to be the basis of a reasonable basic implementation 118 /// of should{Pass,Return}IndirectlyForSwift. 119 /// 120 /// For most targets, a limit of four total registers is reasonable; this 121 /// limits the amount of code required in order to move around the value 122 /// in case it wasn't produced immediately prior to the call by the caller 123 /// (or wasn't produced in exactly the right registers) or isn't used 124 /// immediately within the callee. But some targets may need to further 125 /// limit the register count due to an inability to support that many 126 /// return registers. 127 static bool occupiesMoreThan(CodeGenTypes &cgt, 128 ArrayRef<llvm::Type*> scalarTypes, 129 unsigned maxAllRegisters) { 130 unsigned intCount = 0, fpCount = 0; 131 for (llvm::Type *type : scalarTypes) { 132 if (type->isPointerTy()) { 133 intCount++; 134 } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) { 135 auto ptrWidth = cgt.getTarget().getPointerWidth(0); 136 intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth; 137 } else { 138 assert(type->isVectorTy() || type->isFloatingPointTy()); 139 fpCount++; 140 } 141 } 142 143 return (intCount + fpCount > maxAllRegisters); 144 } 145 146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 147 llvm::Type *eltTy, 148 unsigned numElts) const { 149 // The default implementation of this assumes that the target guarantees 150 // 128-bit SIMD support but nothing more. 151 return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16); 152 } 153 154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT, 155 CGCXXABI &CXXABI) { 156 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl()); 157 if (!RD) { 158 if (!RT->getDecl()->canPassInRegisters()) 159 return CGCXXABI::RAA_Indirect; 160 return CGCXXABI::RAA_Default; 161 } 162 return CXXABI.getRecordArgABI(RD); 163 } 164 165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T, 166 CGCXXABI &CXXABI) { 167 const RecordType *RT = T->getAs<RecordType>(); 168 if (!RT) 169 return CGCXXABI::RAA_Default; 170 return getRecordArgABI(RT, CXXABI); 171 } 172 173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI, 174 const ABIInfo &Info) { 175 QualType Ty = FI.getReturnType(); 176 177 if (const auto *RT = Ty->getAs<RecordType>()) 178 if (!isa<CXXRecordDecl>(RT->getDecl()) && 179 !RT->getDecl()->canPassInRegisters()) { 180 FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty); 181 return true; 182 } 183 184 return CXXABI.classifyReturnType(FI); 185 } 186 187 /// Pass transparent unions as if they were the type of the first element. Sema 188 /// should ensure that all elements of the union have the same "machine type". 189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) { 190 if (const RecordType *UT = Ty->getAsUnionType()) { 191 const RecordDecl *UD = UT->getDecl(); 192 if (UD->hasAttr<TransparentUnionAttr>()) { 193 assert(!UD->field_empty() && "sema created an empty transparent union"); 194 return UD->field_begin()->getType(); 195 } 196 } 197 return Ty; 198 } 199 200 CGCXXABI &ABIInfo::getCXXABI() const { 201 return CGT.getCXXABI(); 202 } 203 204 ASTContext &ABIInfo::getContext() const { 205 return CGT.getContext(); 206 } 207 208 llvm::LLVMContext &ABIInfo::getVMContext() const { 209 return CGT.getLLVMContext(); 210 } 211 212 const llvm::DataLayout &ABIInfo::getDataLayout() const { 213 return CGT.getDataLayout(); 214 } 215 216 const TargetInfo &ABIInfo::getTarget() const { 217 return CGT.getTarget(); 218 } 219 220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const { 221 return CGT.getCodeGenOpts(); 222 } 223 224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); } 225 226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 227 return false; 228 } 229 230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 231 uint64_t Members) const { 232 return false; 233 } 234 235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const { 236 raw_ostream &OS = llvm::errs(); 237 OS << "(ABIArgInfo Kind="; 238 switch (TheKind) { 239 case Direct: 240 OS << "Direct Type="; 241 if (llvm::Type *Ty = getCoerceToType()) 242 Ty->print(OS); 243 else 244 OS << "null"; 245 break; 246 case Extend: 247 OS << "Extend"; 248 break; 249 case Ignore: 250 OS << "Ignore"; 251 break; 252 case InAlloca: 253 OS << "InAlloca Offset=" << getInAllocaFieldIndex(); 254 break; 255 case Indirect: 256 OS << "Indirect Align=" << getIndirectAlign().getQuantity() 257 << " ByVal=" << getIndirectByVal() 258 << " Realign=" << getIndirectRealign(); 259 break; 260 case Expand: 261 OS << "Expand"; 262 break; 263 case CoerceAndExpand: 264 OS << "CoerceAndExpand Type="; 265 getCoerceAndExpandType()->print(OS); 266 break; 267 } 268 OS << ")\n"; 269 } 270 271 // Dynamically round a pointer up to a multiple of the given alignment. 272 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF, 273 llvm::Value *Ptr, 274 CharUnits Align) { 275 llvm::Value *PtrAsInt = Ptr; 276 // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align; 277 PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy); 278 PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt, 279 llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1)); 280 PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt, 281 llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity())); 282 PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt, 283 Ptr->getType(), 284 Ptr->getName() + ".aligned"); 285 return PtrAsInt; 286 } 287 288 /// Emit va_arg for a platform using the common void* representation, 289 /// where arguments are simply emitted in an array of slots on the stack. 290 /// 291 /// This version implements the core direct-value passing rules. 292 /// 293 /// \param SlotSize - The size and alignment of a stack slot. 294 /// Each argument will be allocated to a multiple of this number of 295 /// slots, and all the slots will be aligned to this value. 296 /// \param AllowHigherAlign - The slot alignment is not a cap; 297 /// an argument type with an alignment greater than the slot size 298 /// will be emitted on a higher-alignment address, potentially 299 /// leaving one or more empty slots behind as padding. If this 300 /// is false, the returned address might be less-aligned than 301 /// DirectAlign. 302 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF, 303 Address VAListAddr, 304 llvm::Type *DirectTy, 305 CharUnits DirectSize, 306 CharUnits DirectAlign, 307 CharUnits SlotSize, 308 bool AllowHigherAlign) { 309 // Cast the element type to i8* if necessary. Some platforms define 310 // va_list as a struct containing an i8* instead of just an i8*. 311 if (VAListAddr.getElementType() != CGF.Int8PtrTy) 312 VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy); 313 314 llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur"); 315 316 // If the CC aligns values higher than the slot size, do so if needed. 317 Address Addr = Address::invalid(); 318 if (AllowHigherAlign && DirectAlign > SlotSize) { 319 Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign), 320 DirectAlign); 321 } else { 322 Addr = Address(Ptr, SlotSize); 323 } 324 325 // Advance the pointer past the argument, then store that back. 326 CharUnits FullDirectSize = DirectSize.alignTo(SlotSize); 327 Address NextPtr = 328 CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next"); 329 CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 330 331 // If the argument is smaller than a slot, and this is a big-endian 332 // target, the argument will be right-adjusted in its slot. 333 if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() && 334 !DirectTy->isStructTy()) { 335 Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize); 336 } 337 338 Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy); 339 return Addr; 340 } 341 342 /// Emit va_arg for a platform using the common void* representation, 343 /// where arguments are simply emitted in an array of slots on the stack. 344 /// 345 /// \param IsIndirect - Values of this type are passed indirectly. 346 /// \param ValueInfo - The size and alignment of this type, generally 347 /// computed with getContext().getTypeInfoInChars(ValueTy). 348 /// \param SlotSizeAndAlign - The size and alignment of a stack slot. 349 /// Each argument will be allocated to a multiple of this number of 350 /// slots, and all the slots will be aligned to this value. 351 /// \param AllowHigherAlign - The slot alignment is not a cap; 352 /// an argument type with an alignment greater than the slot size 353 /// will be emitted on a higher-alignment address, potentially 354 /// leaving one or more empty slots behind as padding. 355 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr, 356 QualType ValueTy, bool IsIndirect, 357 std::pair<CharUnits, CharUnits> ValueInfo, 358 CharUnits SlotSizeAndAlign, 359 bool AllowHigherAlign) { 360 // The size and alignment of the value that was passed directly. 361 CharUnits DirectSize, DirectAlign; 362 if (IsIndirect) { 363 DirectSize = CGF.getPointerSize(); 364 DirectAlign = CGF.getPointerAlign(); 365 } else { 366 DirectSize = ValueInfo.first; 367 DirectAlign = ValueInfo.second; 368 } 369 370 // Cast the address we've calculated to the right type. 371 llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy); 372 if (IsIndirect) 373 DirectTy = DirectTy->getPointerTo(0); 374 375 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy, 376 DirectSize, DirectAlign, 377 SlotSizeAndAlign, 378 AllowHigherAlign); 379 380 if (IsIndirect) { 381 Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second); 382 } 383 384 return Addr; 385 386 } 387 388 static Address emitMergePHI(CodeGenFunction &CGF, 389 Address Addr1, llvm::BasicBlock *Block1, 390 Address Addr2, llvm::BasicBlock *Block2, 391 const llvm::Twine &Name = "") { 392 assert(Addr1.getType() == Addr2.getType()); 393 llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name); 394 PHI->addIncoming(Addr1.getPointer(), Block1); 395 PHI->addIncoming(Addr2.getPointer(), Block2); 396 CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment()); 397 return Address(PHI, Align); 398 } 399 400 TargetCodeGenInfo::~TargetCodeGenInfo() = default; 401 402 // If someone can figure out a general rule for this, that would be great. 403 // It's probably just doomed to be platform-dependent, though. 404 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const { 405 // Verified for: 406 // x86-64 FreeBSD, Linux, Darwin 407 // x86-32 FreeBSD, Linux, Darwin 408 // PowerPC Linux, Darwin 409 // ARM Darwin (*not* EABI) 410 // AArch64 Linux 411 return 32; 412 } 413 414 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args, 415 const FunctionNoProtoType *fnType) const { 416 // The following conventions are known to require this to be false: 417 // x86_stdcall 418 // MIPS 419 // For everything else, we just prefer false unless we opt out. 420 return false; 421 } 422 423 void 424 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib, 425 llvm::SmallString<24> &Opt) const { 426 // This assumes the user is passing a library name like "rt" instead of a 427 // filename like "librt.a/so", and that they don't care whether it's static or 428 // dynamic. 429 Opt = "-l"; 430 Opt += Lib; 431 } 432 433 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const { 434 // OpenCL kernels are called via an explicit runtime API with arguments 435 // set with clSetKernelArg(), not as normal sub-functions. 436 // Return SPIR_KERNEL by default as the kernel calling convention to 437 // ensure the fingerprint is fixed such way that each OpenCL argument 438 // gets one matching argument in the produced kernel function argument 439 // list to enable feasible implementation of clSetKernelArg() with 440 // aggregates etc. In case we would use the default C calling conv here, 441 // clSetKernelArg() might break depending on the target-specific 442 // conventions; different targets might split structs passed as values 443 // to multiple function arguments etc. 444 return llvm::CallingConv::SPIR_KERNEL; 445 } 446 447 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM, 448 llvm::PointerType *T, QualType QT) const { 449 return llvm::ConstantPointerNull::get(T); 450 } 451 452 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 453 const VarDecl *D) const { 454 assert(!CGM.getLangOpts().OpenCL && 455 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 456 "Address space agnostic languages only"); 457 return D ? D->getType().getAddressSpace() : LangAS::Default; 458 } 459 460 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast( 461 CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr, 462 LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const { 463 // Since target may map different address spaces in AST to the same address 464 // space, an address space conversion may end up as a bitcast. 465 if (auto *C = dyn_cast<llvm::Constant>(Src)) 466 return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy); 467 // Try to preserve the source's name to make IR more readable. 468 return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast( 469 Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : ""); 470 } 471 472 llvm::Constant * 473 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src, 474 LangAS SrcAddr, LangAS DestAddr, 475 llvm::Type *DestTy) const { 476 // Since target may map different address spaces in AST to the same address 477 // space, an address space conversion may end up as a bitcast. 478 return llvm::ConstantExpr::getPointerCast(Src, DestTy); 479 } 480 481 llvm::SyncScope::ID 482 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 483 SyncScope Scope, 484 llvm::AtomicOrdering Ordering, 485 llvm::LLVMContext &Ctx) const { 486 return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */ 487 } 488 489 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays); 490 491 /// isEmptyField - Return true iff a the field is "empty", that is it 492 /// is an unnamed bit-field or an (array of) empty record(s). 493 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD, 494 bool AllowArrays) { 495 if (FD->isUnnamedBitfield()) 496 return true; 497 498 QualType FT = FD->getType(); 499 500 // Constant arrays of empty records count as empty, strip them off. 501 // Constant arrays of zero length always count as empty. 502 bool WasArray = false; 503 if (AllowArrays) 504 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 505 if (AT->getSize() == 0) 506 return true; 507 FT = AT->getElementType(); 508 // The [[no_unique_address]] special case below does not apply to 509 // arrays of C++ empty records, so we need to remember this fact. 510 WasArray = true; 511 } 512 513 const RecordType *RT = FT->getAs<RecordType>(); 514 if (!RT) 515 return false; 516 517 // C++ record fields are never empty, at least in the Itanium ABI. 518 // 519 // FIXME: We should use a predicate for whether this behavior is true in the 520 // current ABI. 521 // 522 // The exception to the above rule are fields marked with the 523 // [[no_unique_address]] attribute (since C++20). Those do count as empty 524 // according to the Itanium ABI. The exception applies only to records, 525 // not arrays of records, so we must also check whether we stripped off an 526 // array type above. 527 if (isa<CXXRecordDecl>(RT->getDecl()) && 528 (WasArray || !FD->hasAttr<NoUniqueAddressAttr>())) 529 return false; 530 531 return isEmptyRecord(Context, FT, AllowArrays); 532 } 533 534 /// isEmptyRecord - Return true iff a structure contains only empty 535 /// fields. Note that a structure with a flexible array member is not 536 /// considered empty. 537 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) { 538 const RecordType *RT = T->getAs<RecordType>(); 539 if (!RT) 540 return false; 541 const RecordDecl *RD = RT->getDecl(); 542 if (RD->hasFlexibleArrayMember()) 543 return false; 544 545 // If this is a C++ record, check the bases first. 546 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 547 for (const auto &I : CXXRD->bases()) 548 if (!isEmptyRecord(Context, I.getType(), true)) 549 return false; 550 551 for (const auto *I : RD->fields()) 552 if (!isEmptyField(Context, I, AllowArrays)) 553 return false; 554 return true; 555 } 556 557 /// isSingleElementStruct - Determine if a structure is a "single 558 /// element struct", i.e. it has exactly one non-empty field or 559 /// exactly one field which is itself a single element 560 /// struct. Structures with flexible array members are never 561 /// considered single element structs. 562 /// 563 /// \return The field declaration for the single non-empty field, if 564 /// it exists. 565 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) { 566 const RecordType *RT = T->getAs<RecordType>(); 567 if (!RT) 568 return nullptr; 569 570 const RecordDecl *RD = RT->getDecl(); 571 if (RD->hasFlexibleArrayMember()) 572 return nullptr; 573 574 const Type *Found = nullptr; 575 576 // If this is a C++ record, check the bases first. 577 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 578 for (const auto &I : CXXRD->bases()) { 579 // Ignore empty records. 580 if (isEmptyRecord(Context, I.getType(), true)) 581 continue; 582 583 // If we already found an element then this isn't a single-element struct. 584 if (Found) 585 return nullptr; 586 587 // If this is non-empty and not a single element struct, the composite 588 // cannot be a single element struct. 589 Found = isSingleElementStruct(I.getType(), Context); 590 if (!Found) 591 return nullptr; 592 } 593 } 594 595 // Check for single element. 596 for (const auto *FD : RD->fields()) { 597 QualType FT = FD->getType(); 598 599 // Ignore empty fields. 600 if (isEmptyField(Context, FD, true)) 601 continue; 602 603 // If we already found an element then this isn't a single-element 604 // struct. 605 if (Found) 606 return nullptr; 607 608 // Treat single element arrays as the element. 609 while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) { 610 if (AT->getSize().getZExtValue() != 1) 611 break; 612 FT = AT->getElementType(); 613 } 614 615 if (!isAggregateTypeForABI(FT)) { 616 Found = FT.getTypePtr(); 617 } else { 618 Found = isSingleElementStruct(FT, Context); 619 if (!Found) 620 return nullptr; 621 } 622 } 623 624 // We don't consider a struct a single-element struct if it has 625 // padding beyond the element type. 626 if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T)) 627 return nullptr; 628 629 return Found; 630 } 631 632 namespace { 633 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty, 634 const ABIArgInfo &AI) { 635 // This default implementation defers to the llvm backend's va_arg 636 // instruction. It can handle only passing arguments directly 637 // (typically only handled in the backend for primitive types), or 638 // aggregates passed indirectly by pointer (NOTE: if the "byval" 639 // flag has ABI impact in the callee, this implementation cannot 640 // work.) 641 642 // Only a few cases are covered here at the moment -- those needed 643 // by the default abi. 644 llvm::Value *Val; 645 646 if (AI.isIndirect()) { 647 assert(!AI.getPaddingType() && 648 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 649 assert( 650 !AI.getIndirectRealign() && 651 "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!"); 652 653 auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty); 654 CharUnits TyAlignForABI = TyInfo.second; 655 656 llvm::Type *BaseTy = 657 llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 658 llvm::Value *Addr = 659 CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy); 660 return Address(Addr, TyAlignForABI); 661 } else { 662 assert((AI.isDirect() || AI.isExtend()) && 663 "Unexpected ArgInfo Kind in generic VAArg emitter!"); 664 665 assert(!AI.getInReg() && 666 "Unexpected InReg seen in arginfo in generic VAArg emitter!"); 667 assert(!AI.getPaddingType() && 668 "Unexpected PaddingType seen in arginfo in generic VAArg emitter!"); 669 assert(!AI.getDirectOffset() && 670 "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!"); 671 assert(!AI.getCoerceToType() && 672 "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!"); 673 674 Address Temp = CGF.CreateMemTemp(Ty, "varet"); 675 Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty)); 676 CGF.Builder.CreateStore(Val, Temp); 677 return Temp; 678 } 679 } 680 681 /// DefaultABIInfo - The default implementation for ABI specific 682 /// details. This implementation provides information which results in 683 /// self-consistent and sensible LLVM IR generation, but does not 684 /// conform to any particular ABI. 685 class DefaultABIInfo : public ABIInfo { 686 public: 687 DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 688 689 ABIArgInfo classifyReturnType(QualType RetTy) const; 690 ABIArgInfo classifyArgumentType(QualType RetTy) const; 691 692 void computeInfo(CGFunctionInfo &FI) const override { 693 if (!getCXXABI().classifyReturnType(FI)) 694 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 695 for (auto &I : FI.arguments()) 696 I.info = classifyArgumentType(I.type); 697 } 698 699 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 700 QualType Ty) const override { 701 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 702 } 703 }; 704 705 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo { 706 public: 707 DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 708 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 709 }; 710 711 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const { 712 Ty = useFirstFieldIfTransparentUnion(Ty); 713 714 if (isAggregateTypeForABI(Ty)) { 715 // Records with non-trivial destructors/copy-constructors should not be 716 // passed by value. 717 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 718 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 719 720 return getNaturalAlignIndirect(Ty); 721 } 722 723 // Treat an enum type as its underlying type. 724 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 725 Ty = EnumTy->getDecl()->getIntegerType(); 726 727 ASTContext &Context = getContext(); 728 if (const auto *EIT = Ty->getAs<ExtIntType>()) 729 if (EIT->getNumBits() > 730 Context.getTypeSize(Context.getTargetInfo().hasInt128Type() 731 ? Context.Int128Ty 732 : Context.LongLongTy)) 733 return getNaturalAlignIndirect(Ty); 734 735 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 736 : ABIArgInfo::getDirect()); 737 } 738 739 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const { 740 if (RetTy->isVoidType()) 741 return ABIArgInfo::getIgnore(); 742 743 if (isAggregateTypeForABI(RetTy)) 744 return getNaturalAlignIndirect(RetTy); 745 746 // Treat an enum type as its underlying type. 747 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 748 RetTy = EnumTy->getDecl()->getIntegerType(); 749 750 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 751 if (EIT->getNumBits() > 752 getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type() 753 ? getContext().Int128Ty 754 : getContext().LongLongTy)) 755 return getNaturalAlignIndirect(RetTy); 756 757 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 758 : ABIArgInfo::getDirect()); 759 } 760 761 //===----------------------------------------------------------------------===// 762 // WebAssembly ABI Implementation 763 // 764 // This is a very simple ABI that relies a lot on DefaultABIInfo. 765 //===----------------------------------------------------------------------===// 766 767 class WebAssemblyABIInfo final : public SwiftABIInfo { 768 public: 769 enum ABIKind { 770 MVP = 0, 771 ExperimentalMV = 1, 772 }; 773 774 private: 775 DefaultABIInfo defaultInfo; 776 ABIKind Kind; 777 778 public: 779 explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind) 780 : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {} 781 782 private: 783 ABIArgInfo classifyReturnType(QualType RetTy) const; 784 ABIArgInfo classifyArgumentType(QualType Ty) const; 785 786 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 787 // non-virtual, but computeInfo and EmitVAArg are virtual, so we 788 // overload them. 789 void computeInfo(CGFunctionInfo &FI) const override { 790 if (!getCXXABI().classifyReturnType(FI)) 791 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 792 for (auto &Arg : FI.arguments()) 793 Arg.info = classifyArgumentType(Arg.type); 794 } 795 796 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 797 QualType Ty) const override; 798 799 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 800 bool asReturnValue) const override { 801 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 802 } 803 804 bool isSwiftErrorInRegister() const override { 805 return false; 806 } 807 }; 808 809 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo { 810 public: 811 explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 812 WebAssemblyABIInfo::ABIKind K) 813 : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {} 814 815 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 816 CodeGen::CodeGenModule &CGM) const override { 817 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 818 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 819 if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) { 820 llvm::Function *Fn = cast<llvm::Function>(GV); 821 llvm::AttrBuilder B; 822 B.addAttribute("wasm-import-module", Attr->getImportModule()); 823 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 824 } 825 if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) { 826 llvm::Function *Fn = cast<llvm::Function>(GV); 827 llvm::AttrBuilder B; 828 B.addAttribute("wasm-import-name", Attr->getImportName()); 829 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 830 } 831 if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) { 832 llvm::Function *Fn = cast<llvm::Function>(GV); 833 llvm::AttrBuilder B; 834 B.addAttribute("wasm-export-name", Attr->getExportName()); 835 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 836 } 837 } 838 839 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 840 llvm::Function *Fn = cast<llvm::Function>(GV); 841 if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype()) 842 Fn->addFnAttr("no-prototype"); 843 } 844 } 845 }; 846 847 /// Classify argument of given type \p Ty. 848 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const { 849 Ty = useFirstFieldIfTransparentUnion(Ty); 850 851 if (isAggregateTypeForABI(Ty)) { 852 // Records with non-trivial destructors/copy-constructors should not be 853 // passed by value. 854 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 855 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 856 // Ignore empty structs/unions. 857 if (isEmptyRecord(getContext(), Ty, true)) 858 return ABIArgInfo::getIgnore(); 859 // Lower single-element structs to just pass a regular value. TODO: We 860 // could do reasonable-size multiple-element structs too, using getExpand(), 861 // though watch out for things like bitfields. 862 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 863 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 864 // For the experimental multivalue ABI, fully expand all other aggregates 865 if (Kind == ABIKind::ExperimentalMV) { 866 const RecordType *RT = Ty->getAs<RecordType>(); 867 assert(RT); 868 bool HasBitField = false; 869 for (auto *Field : RT->getDecl()->fields()) { 870 if (Field->isBitField()) { 871 HasBitField = true; 872 break; 873 } 874 } 875 if (!HasBitField) 876 return ABIArgInfo::getExpand(); 877 } 878 } 879 880 // Otherwise just do the default thing. 881 return defaultInfo.classifyArgumentType(Ty); 882 } 883 884 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const { 885 if (isAggregateTypeForABI(RetTy)) { 886 // Records with non-trivial destructors/copy-constructors should not be 887 // returned by value. 888 if (!getRecordArgABI(RetTy, getCXXABI())) { 889 // Ignore empty structs/unions. 890 if (isEmptyRecord(getContext(), RetTy, true)) 891 return ABIArgInfo::getIgnore(); 892 // Lower single-element structs to just return a regular value. TODO: We 893 // could do reasonable-size multiple-element structs too, using 894 // ABIArgInfo::getDirect(). 895 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 896 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 897 // For the experimental multivalue ABI, return all other aggregates 898 if (Kind == ABIKind::ExperimentalMV) 899 return ABIArgInfo::getDirect(); 900 } 901 } 902 903 // Otherwise just do the default thing. 904 return defaultInfo.classifyReturnType(RetTy); 905 } 906 907 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 908 QualType Ty) const { 909 bool IsIndirect = isAggregateTypeForABI(Ty) && 910 !isEmptyRecord(getContext(), Ty, true) && 911 !isSingleElementStruct(Ty, getContext()); 912 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 913 getContext().getTypeInfoInChars(Ty), 914 CharUnits::fromQuantity(4), 915 /*AllowHigherAlign=*/true); 916 } 917 918 //===----------------------------------------------------------------------===// 919 // le32/PNaCl bitcode ABI Implementation 920 // 921 // This is a simplified version of the x86_32 ABI. Arguments and return values 922 // are always passed on the stack. 923 //===----------------------------------------------------------------------===// 924 925 class PNaClABIInfo : public ABIInfo { 926 public: 927 PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {} 928 929 ABIArgInfo classifyReturnType(QualType RetTy) const; 930 ABIArgInfo classifyArgumentType(QualType RetTy) const; 931 932 void computeInfo(CGFunctionInfo &FI) const override; 933 Address EmitVAArg(CodeGenFunction &CGF, 934 Address VAListAddr, QualType Ty) const override; 935 }; 936 937 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo { 938 public: 939 PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 940 : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {} 941 }; 942 943 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const { 944 if (!getCXXABI().classifyReturnType(FI)) 945 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 946 947 for (auto &I : FI.arguments()) 948 I.info = classifyArgumentType(I.type); 949 } 950 951 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 952 QualType Ty) const { 953 // The PNaCL ABI is a bit odd, in that varargs don't use normal 954 // function classification. Structs get passed directly for varargs 955 // functions, through a rewriting transform in 956 // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows 957 // this target to actually support a va_arg instructions with an 958 // aggregate type, unlike other targets. 959 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 960 } 961 962 /// Classify argument of given type \p Ty. 963 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const { 964 if (isAggregateTypeForABI(Ty)) { 965 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 966 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 967 return getNaturalAlignIndirect(Ty); 968 } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 969 // Treat an enum type as its underlying type. 970 Ty = EnumTy->getDecl()->getIntegerType(); 971 } else if (Ty->isFloatingType()) { 972 // Floating-point types don't go inreg. 973 return ABIArgInfo::getDirect(); 974 } else if (const auto *EIT = Ty->getAs<ExtIntType>()) { 975 // Treat extended integers as integers if <=64, otherwise pass indirectly. 976 if (EIT->getNumBits() > 64) 977 return getNaturalAlignIndirect(Ty); 978 return ABIArgInfo::getDirect(); 979 } 980 981 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 982 : ABIArgInfo::getDirect()); 983 } 984 985 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const { 986 if (RetTy->isVoidType()) 987 return ABIArgInfo::getIgnore(); 988 989 // In the PNaCl ABI we always return records/structures on the stack. 990 if (isAggregateTypeForABI(RetTy)) 991 return getNaturalAlignIndirect(RetTy); 992 993 // Treat extended integers as integers if <=64, otherwise pass indirectly. 994 if (const auto *EIT = RetTy->getAs<ExtIntType>()) { 995 if (EIT->getNumBits() > 64) 996 return getNaturalAlignIndirect(RetTy); 997 return ABIArgInfo::getDirect(); 998 } 999 1000 // Treat an enum type as its underlying type. 1001 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1002 RetTy = EnumTy->getDecl()->getIntegerType(); 1003 1004 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1005 : ABIArgInfo::getDirect()); 1006 } 1007 1008 /// IsX86_MMXType - Return true if this is an MMX type. 1009 bool IsX86_MMXType(llvm::Type *IRType) { 1010 // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>. 1011 return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 && 1012 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() && 1013 IRType->getScalarSizeInBits() != 64; 1014 } 1015 1016 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1017 StringRef Constraint, 1018 llvm::Type* Ty) { 1019 bool IsMMXCons = llvm::StringSwitch<bool>(Constraint) 1020 .Cases("y", "&y", "^Ym", true) 1021 .Default(false); 1022 if (IsMMXCons && Ty->isVectorTy()) { 1023 if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() != 1024 64) { 1025 // Invalid MMX constraint 1026 return nullptr; 1027 } 1028 1029 return llvm::Type::getX86_MMXTy(CGF.getLLVMContext()); 1030 } 1031 1032 // No operation needed 1033 return Ty; 1034 } 1035 1036 /// Returns true if this type can be passed in SSE registers with the 1037 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1038 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) { 1039 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 1040 if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) { 1041 if (BT->getKind() == BuiltinType::LongDouble) { 1042 if (&Context.getTargetInfo().getLongDoubleFormat() == 1043 &llvm::APFloat::x87DoubleExtended()) 1044 return false; 1045 } 1046 return true; 1047 } 1048 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 1049 // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX 1050 // registers specially. 1051 unsigned VecSize = Context.getTypeSize(VT); 1052 if (VecSize == 128 || VecSize == 256 || VecSize == 512) 1053 return true; 1054 } 1055 return false; 1056 } 1057 1058 /// Returns true if this aggregate is small enough to be passed in SSE registers 1059 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64. 1060 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) { 1061 return NumMembers <= 4; 1062 } 1063 1064 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86. 1065 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) { 1066 auto AI = ABIArgInfo::getDirect(T); 1067 AI.setInReg(true); 1068 AI.setCanBeFlattened(false); 1069 return AI; 1070 } 1071 1072 //===----------------------------------------------------------------------===// 1073 // X86-32 ABI Implementation 1074 //===----------------------------------------------------------------------===// 1075 1076 /// Similar to llvm::CCState, but for Clang. 1077 struct CCState { 1078 CCState(CGFunctionInfo &FI) 1079 : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {} 1080 1081 llvm::SmallBitVector IsPreassigned; 1082 unsigned CC = CallingConv::CC_C; 1083 unsigned FreeRegs = 0; 1084 unsigned FreeSSERegs = 0; 1085 }; 1086 1087 enum { 1088 // Vectorcall only allows the first 6 parameters to be passed in registers. 1089 VectorcallMaxParamNumAsReg = 6 1090 }; 1091 1092 /// X86_32ABIInfo - The X86-32 ABI information. 1093 class X86_32ABIInfo : public SwiftABIInfo { 1094 enum Class { 1095 Integer, 1096 Float 1097 }; 1098 1099 static const unsigned MinABIStackAlignInBytes = 4; 1100 1101 bool IsDarwinVectorABI; 1102 bool IsRetSmallStructInRegABI; 1103 bool IsWin32StructABI; 1104 bool IsSoftFloatABI; 1105 bool IsMCUABI; 1106 unsigned DefaultNumRegisterParameters; 1107 1108 static bool isRegisterSize(unsigned Size) { 1109 return (Size == 8 || Size == 16 || Size == 32 || Size == 64); 1110 } 1111 1112 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 1113 // FIXME: Assumes vectorcall is in use. 1114 return isX86VectorTypeForVectorCall(getContext(), Ty); 1115 } 1116 1117 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 1118 uint64_t NumMembers) const override { 1119 // FIXME: Assumes vectorcall is in use. 1120 return isX86VectorCallAggregateSmallEnough(NumMembers); 1121 } 1122 1123 bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const; 1124 1125 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 1126 /// such that the argument will be passed in memory. 1127 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 1128 1129 ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const; 1130 1131 /// Return the alignment to use for the given type on the stack. 1132 unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const; 1133 1134 Class classify(QualType Ty) const; 1135 ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const; 1136 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 1137 1138 /// Updates the number of available free registers, returns 1139 /// true if any registers were allocated. 1140 bool updateFreeRegs(QualType Ty, CCState &State) const; 1141 1142 bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg, 1143 bool &NeedsPadding) const; 1144 bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const; 1145 1146 bool canExpandIndirectArgument(QualType Ty) const; 1147 1148 /// Rewrite the function info so that all memory arguments use 1149 /// inalloca. 1150 void rewriteWithInAlloca(CGFunctionInfo &FI) const; 1151 1152 void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1153 CharUnits &StackOffset, ABIArgInfo &Info, 1154 QualType Type) const; 1155 void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const; 1156 1157 public: 1158 1159 void computeInfo(CGFunctionInfo &FI) const override; 1160 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 1161 QualType Ty) const override; 1162 1163 X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1164 bool RetSmallStructInRegABI, bool Win32StructABI, 1165 unsigned NumRegisterParameters, bool SoftFloatABI) 1166 : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI), 1167 IsRetSmallStructInRegABI(RetSmallStructInRegABI), 1168 IsWin32StructABI(Win32StructABI), 1169 IsSoftFloatABI(SoftFloatABI), 1170 IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()), 1171 DefaultNumRegisterParameters(NumRegisterParameters) {} 1172 1173 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 1174 bool asReturnValue) const override { 1175 // LLVM's x86-32 lowering currently only assigns up to three 1176 // integer registers and three fp registers. Oddly, it'll use up to 1177 // four vector registers for vectors, but those can overlap with the 1178 // scalar registers. 1179 return occupiesMoreThan(CGT, scalars, /*total*/ 3); 1180 } 1181 1182 bool isSwiftErrorInRegister() const override { 1183 // x86-32 lowering does not support passing swifterror in a register. 1184 return false; 1185 } 1186 }; 1187 1188 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo { 1189 public: 1190 X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI, 1191 bool RetSmallStructInRegABI, bool Win32StructABI, 1192 unsigned NumRegisterParameters, bool SoftFloatABI) 1193 : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>( 1194 CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI, 1195 NumRegisterParameters, SoftFloatABI)) {} 1196 1197 static bool isStructReturnInRegABI( 1198 const llvm::Triple &Triple, const CodeGenOptions &Opts); 1199 1200 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 1201 CodeGen::CodeGenModule &CGM) const override; 1202 1203 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 1204 // Darwin uses different dwarf register numbers for EH. 1205 if (CGM.getTarget().getTriple().isOSDarwin()) return 5; 1206 return 4; 1207 } 1208 1209 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 1210 llvm::Value *Address) const override; 1211 1212 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 1213 StringRef Constraint, 1214 llvm::Type* Ty) const override { 1215 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 1216 } 1217 1218 void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue, 1219 std::string &Constraints, 1220 std::vector<llvm::Type *> &ResultRegTypes, 1221 std::vector<llvm::Type *> &ResultTruncRegTypes, 1222 std::vector<LValue> &ResultRegDests, 1223 std::string &AsmString, 1224 unsigned NumOutputs) const override; 1225 1226 llvm::Constant * 1227 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 1228 unsigned Sig = (0xeb << 0) | // jmp rel8 1229 (0x06 << 8) | // .+0x08 1230 ('v' << 16) | 1231 ('2' << 24); 1232 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 1233 } 1234 1235 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 1236 return "movl\t%ebp, %ebp" 1237 "\t\t// marker for objc_retainAutoreleaseReturnValue"; 1238 } 1239 }; 1240 1241 } 1242 1243 /// Rewrite input constraint references after adding some output constraints. 1244 /// In the case where there is one output and one input and we add one output, 1245 /// we need to replace all operand references greater than or equal to 1: 1246 /// mov $0, $1 1247 /// mov eax, $1 1248 /// The result will be: 1249 /// mov $0, $2 1250 /// mov eax, $2 1251 static void rewriteInputConstraintReferences(unsigned FirstIn, 1252 unsigned NumNewOuts, 1253 std::string &AsmString) { 1254 std::string Buf; 1255 llvm::raw_string_ostream OS(Buf); 1256 size_t Pos = 0; 1257 while (Pos < AsmString.size()) { 1258 size_t DollarStart = AsmString.find('$', Pos); 1259 if (DollarStart == std::string::npos) 1260 DollarStart = AsmString.size(); 1261 size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart); 1262 if (DollarEnd == std::string::npos) 1263 DollarEnd = AsmString.size(); 1264 OS << StringRef(&AsmString[Pos], DollarEnd - Pos); 1265 Pos = DollarEnd; 1266 size_t NumDollars = DollarEnd - DollarStart; 1267 if (NumDollars % 2 != 0 && Pos < AsmString.size()) { 1268 // We have an operand reference. 1269 size_t DigitStart = Pos; 1270 if (AsmString[DigitStart] == '{') { 1271 OS << '{'; 1272 ++DigitStart; 1273 } 1274 size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart); 1275 if (DigitEnd == std::string::npos) 1276 DigitEnd = AsmString.size(); 1277 StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart); 1278 unsigned OperandIndex; 1279 if (!OperandStr.getAsInteger(10, OperandIndex)) { 1280 if (OperandIndex >= FirstIn) 1281 OperandIndex += NumNewOuts; 1282 OS << OperandIndex; 1283 } else { 1284 OS << OperandStr; 1285 } 1286 Pos = DigitEnd; 1287 } 1288 } 1289 AsmString = std::move(OS.str()); 1290 } 1291 1292 /// Add output constraints for EAX:EDX because they are return registers. 1293 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs( 1294 CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints, 1295 std::vector<llvm::Type *> &ResultRegTypes, 1296 std::vector<llvm::Type *> &ResultTruncRegTypes, 1297 std::vector<LValue> &ResultRegDests, std::string &AsmString, 1298 unsigned NumOutputs) const { 1299 uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType()); 1300 1301 // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is 1302 // larger. 1303 if (!Constraints.empty()) 1304 Constraints += ','; 1305 if (RetWidth <= 32) { 1306 Constraints += "={eax}"; 1307 ResultRegTypes.push_back(CGF.Int32Ty); 1308 } else { 1309 // Use the 'A' constraint for EAX:EDX. 1310 Constraints += "=A"; 1311 ResultRegTypes.push_back(CGF.Int64Ty); 1312 } 1313 1314 // Truncate EAX or EAX:EDX to an integer of the appropriate size. 1315 llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth); 1316 ResultTruncRegTypes.push_back(CoerceTy); 1317 1318 // Coerce the integer by bitcasting the return slot pointer. 1319 ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF), 1320 CoerceTy->getPointerTo())); 1321 ResultRegDests.push_back(ReturnSlot); 1322 1323 rewriteInputConstraintReferences(NumOutputs, 1, AsmString); 1324 } 1325 1326 /// shouldReturnTypeInRegister - Determine if the given type should be 1327 /// returned in a register (for the Darwin and MCU ABI). 1328 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty, 1329 ASTContext &Context) const { 1330 uint64_t Size = Context.getTypeSize(Ty); 1331 1332 // For i386, type must be register sized. 1333 // For the MCU ABI, it only needs to be <= 8-byte 1334 if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size))) 1335 return false; 1336 1337 if (Ty->isVectorType()) { 1338 // 64- and 128- bit vectors inside structures are not returned in 1339 // registers. 1340 if (Size == 64 || Size == 128) 1341 return false; 1342 1343 return true; 1344 } 1345 1346 // If this is a builtin, pointer, enum, complex type, member pointer, or 1347 // member function pointer it is ok. 1348 if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() || 1349 Ty->isAnyComplexType() || Ty->isEnumeralType() || 1350 Ty->isBlockPointerType() || Ty->isMemberPointerType()) 1351 return true; 1352 1353 // Arrays are treated like records. 1354 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) 1355 return shouldReturnTypeInRegister(AT->getElementType(), Context); 1356 1357 // Otherwise, it must be a record type. 1358 const RecordType *RT = Ty->getAs<RecordType>(); 1359 if (!RT) return false; 1360 1361 // FIXME: Traverse bases here too. 1362 1363 // Structure types are passed in register if all fields would be 1364 // passed in a register. 1365 for (const auto *FD : RT->getDecl()->fields()) { 1366 // Empty fields are ignored. 1367 if (isEmptyField(Context, FD, true)) 1368 continue; 1369 1370 // Check fields recursively. 1371 if (!shouldReturnTypeInRegister(FD->getType(), Context)) 1372 return false; 1373 } 1374 return true; 1375 } 1376 1377 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) { 1378 // Treat complex types as the element type. 1379 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 1380 Ty = CTy->getElementType(); 1381 1382 // Check for a type which we know has a simple scalar argument-passing 1383 // convention without any padding. (We're specifically looking for 32 1384 // and 64-bit integer and integer-equivalents, float, and double.) 1385 if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() && 1386 !Ty->isEnumeralType() && !Ty->isBlockPointerType()) 1387 return false; 1388 1389 uint64_t Size = Context.getTypeSize(Ty); 1390 return Size == 32 || Size == 64; 1391 } 1392 1393 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD, 1394 uint64_t &Size) { 1395 for (const auto *FD : RD->fields()) { 1396 // Scalar arguments on the stack get 4 byte alignment on x86. If the 1397 // argument is smaller than 32-bits, expanding the struct will create 1398 // alignment padding. 1399 if (!is32Or64BitBasicType(FD->getType(), Context)) 1400 return false; 1401 1402 // FIXME: Reject bit-fields wholesale; there are two problems, we don't know 1403 // how to expand them yet, and the predicate for telling if a bitfield still 1404 // counts as "basic" is more complicated than what we were doing previously. 1405 if (FD->isBitField()) 1406 return false; 1407 1408 Size += Context.getTypeSize(FD->getType()); 1409 } 1410 return true; 1411 } 1412 1413 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD, 1414 uint64_t &Size) { 1415 // Don't do this if there are any non-empty bases. 1416 for (const CXXBaseSpecifier &Base : RD->bases()) { 1417 if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(), 1418 Size)) 1419 return false; 1420 } 1421 if (!addFieldSizes(Context, RD, Size)) 1422 return false; 1423 return true; 1424 } 1425 1426 /// Test whether an argument type which is to be passed indirectly (on the 1427 /// stack) would have the equivalent layout if it was expanded into separate 1428 /// arguments. If so, we prefer to do the latter to avoid inhibiting 1429 /// optimizations. 1430 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const { 1431 // We can only expand structure types. 1432 const RecordType *RT = Ty->getAs<RecordType>(); 1433 if (!RT) 1434 return false; 1435 const RecordDecl *RD = RT->getDecl(); 1436 uint64_t Size = 0; 1437 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 1438 if (!IsWin32StructABI) { 1439 // On non-Windows, we have to conservatively match our old bitcode 1440 // prototypes in order to be ABI-compatible at the bitcode level. 1441 if (!CXXRD->isCLike()) 1442 return false; 1443 } else { 1444 // Don't do this for dynamic classes. 1445 if (CXXRD->isDynamicClass()) 1446 return false; 1447 } 1448 if (!addBaseAndFieldSizes(getContext(), CXXRD, Size)) 1449 return false; 1450 } else { 1451 if (!addFieldSizes(getContext(), RD, Size)) 1452 return false; 1453 } 1454 1455 // We can do this if there was no alignment padding. 1456 return Size == getContext().getTypeSize(Ty); 1457 } 1458 1459 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const { 1460 // If the return value is indirect, then the hidden argument is consuming one 1461 // integer register. 1462 if (State.FreeRegs) { 1463 --State.FreeRegs; 1464 if (!IsMCUABI) 1465 return getNaturalAlignIndirectInReg(RetTy); 1466 } 1467 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 1468 } 1469 1470 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy, 1471 CCState &State) const { 1472 if (RetTy->isVoidType()) 1473 return ABIArgInfo::getIgnore(); 1474 1475 const Type *Base = nullptr; 1476 uint64_t NumElts = 0; 1477 if ((State.CC == llvm::CallingConv::X86_VectorCall || 1478 State.CC == llvm::CallingConv::X86_RegCall) && 1479 isHomogeneousAggregate(RetTy, Base, NumElts)) { 1480 // The LLVM struct type for such an aggregate should lower properly. 1481 return ABIArgInfo::getDirect(); 1482 } 1483 1484 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 1485 // On Darwin, some vectors are returned in registers. 1486 if (IsDarwinVectorABI) { 1487 uint64_t Size = getContext().getTypeSize(RetTy); 1488 1489 // 128-bit vectors are a special case; they are returned in 1490 // registers and we need to make sure to pick a type the LLVM 1491 // backend will like. 1492 if (Size == 128) 1493 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 1494 llvm::Type::getInt64Ty(getVMContext()), 2)); 1495 1496 // Always return in register if it fits in a general purpose 1497 // register, or if it is 64 bits and has a single element. 1498 if ((Size == 8 || Size == 16 || Size == 32) || 1499 (Size == 64 && VT->getNumElements() == 1)) 1500 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 1501 Size)); 1502 1503 return getIndirectReturnResult(RetTy, State); 1504 } 1505 1506 return ABIArgInfo::getDirect(); 1507 } 1508 1509 if (isAggregateTypeForABI(RetTy)) { 1510 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 1511 // Structures with flexible arrays are always indirect. 1512 if (RT->getDecl()->hasFlexibleArrayMember()) 1513 return getIndirectReturnResult(RetTy, State); 1514 } 1515 1516 // If specified, structs and unions are always indirect. 1517 if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType()) 1518 return getIndirectReturnResult(RetTy, State); 1519 1520 // Ignore empty structs/unions. 1521 if (isEmptyRecord(getContext(), RetTy, true)) 1522 return ABIArgInfo::getIgnore(); 1523 1524 // Small structures which are register sized are generally returned 1525 // in a register. 1526 if (shouldReturnTypeInRegister(RetTy, getContext())) { 1527 uint64_t Size = getContext().getTypeSize(RetTy); 1528 1529 // As a special-case, if the struct is a "single-element" struct, and 1530 // the field is of type "float" or "double", return it in a 1531 // floating-point register. (MSVC does not apply this special case.) 1532 // We apply a similar transformation for pointer types to improve the 1533 // quality of the generated IR. 1534 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 1535 if ((!IsWin32StructABI && SeltTy->isRealFloatingType()) 1536 || SeltTy->hasPointerRepresentation()) 1537 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 1538 1539 // FIXME: We should be able to narrow this integer in cases with dead 1540 // padding. 1541 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size)); 1542 } 1543 1544 return getIndirectReturnResult(RetTy, State); 1545 } 1546 1547 // Treat an enum type as its underlying type. 1548 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 1549 RetTy = EnumTy->getDecl()->getIntegerType(); 1550 1551 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 1552 if (EIT->getNumBits() > 64) 1553 return getIndirectReturnResult(RetTy, State); 1554 1555 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 1556 : ABIArgInfo::getDirect()); 1557 } 1558 1559 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) { 1560 return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128; 1561 } 1562 1563 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) { 1564 const RecordType *RT = Ty->getAs<RecordType>(); 1565 if (!RT) 1566 return 0; 1567 const RecordDecl *RD = RT->getDecl(); 1568 1569 // If this is a C++ record, check the bases first. 1570 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 1571 for (const auto &I : CXXRD->bases()) 1572 if (!isRecordWithSIMDVectorType(Context, I.getType())) 1573 return false; 1574 1575 for (const auto *i : RD->fields()) { 1576 QualType FT = i->getType(); 1577 1578 if (isSIMDVectorType(Context, FT)) 1579 return true; 1580 1581 if (isRecordWithSIMDVectorType(Context, FT)) 1582 return true; 1583 } 1584 1585 return false; 1586 } 1587 1588 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty, 1589 unsigned Align) const { 1590 // Otherwise, if the alignment is less than or equal to the minimum ABI 1591 // alignment, just use the default; the backend will handle this. 1592 if (Align <= MinABIStackAlignInBytes) 1593 return 0; // Use default alignment. 1594 1595 // On non-Darwin, the stack type alignment is always 4. 1596 if (!IsDarwinVectorABI) { 1597 // Set explicit alignment, since we may need to realign the top. 1598 return MinABIStackAlignInBytes; 1599 } 1600 1601 // Otherwise, if the type contains an SSE vector type, the alignment is 16. 1602 if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) || 1603 isRecordWithSIMDVectorType(getContext(), Ty))) 1604 return 16; 1605 1606 return MinABIStackAlignInBytes; 1607 } 1608 1609 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal, 1610 CCState &State) const { 1611 if (!ByVal) { 1612 if (State.FreeRegs) { 1613 --State.FreeRegs; // Non-byval indirects just use one pointer. 1614 if (!IsMCUABI) 1615 return getNaturalAlignIndirectInReg(Ty); 1616 } 1617 return getNaturalAlignIndirect(Ty, false); 1618 } 1619 1620 // Compute the byval alignment. 1621 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 1622 unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign); 1623 if (StackAlign == 0) 1624 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true); 1625 1626 // If the stack alignment is less than the type alignment, realign the 1627 // argument. 1628 bool Realign = TypeAlign > StackAlign; 1629 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign), 1630 /*ByVal=*/true, Realign); 1631 } 1632 1633 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const { 1634 const Type *T = isSingleElementStruct(Ty, getContext()); 1635 if (!T) 1636 T = Ty.getTypePtr(); 1637 1638 if (const BuiltinType *BT = T->getAs<BuiltinType>()) { 1639 BuiltinType::Kind K = BT->getKind(); 1640 if (K == BuiltinType::Float || K == BuiltinType::Double) 1641 return Float; 1642 } 1643 return Integer; 1644 } 1645 1646 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const { 1647 if (!IsSoftFloatABI) { 1648 Class C = classify(Ty); 1649 if (C == Float) 1650 return false; 1651 } 1652 1653 unsigned Size = getContext().getTypeSize(Ty); 1654 unsigned SizeInRegs = (Size + 31) / 32; 1655 1656 if (SizeInRegs == 0) 1657 return false; 1658 1659 if (!IsMCUABI) { 1660 if (SizeInRegs > State.FreeRegs) { 1661 State.FreeRegs = 0; 1662 return false; 1663 } 1664 } else { 1665 // The MCU psABI allows passing parameters in-reg even if there are 1666 // earlier parameters that are passed on the stack. Also, 1667 // it does not allow passing >8-byte structs in-register, 1668 // even if there are 3 free registers available. 1669 if (SizeInRegs > State.FreeRegs || SizeInRegs > 2) 1670 return false; 1671 } 1672 1673 State.FreeRegs -= SizeInRegs; 1674 return true; 1675 } 1676 1677 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State, 1678 bool &InReg, 1679 bool &NeedsPadding) const { 1680 // On Windows, aggregates other than HFAs are never passed in registers, and 1681 // they do not consume register slots. Homogenous floating-point aggregates 1682 // (HFAs) have already been dealt with at this point. 1683 if (IsWin32StructABI && isAggregateTypeForABI(Ty)) 1684 return false; 1685 1686 NeedsPadding = false; 1687 InReg = !IsMCUABI; 1688 1689 if (!updateFreeRegs(Ty, State)) 1690 return false; 1691 1692 if (IsMCUABI) 1693 return true; 1694 1695 if (State.CC == llvm::CallingConv::X86_FastCall || 1696 State.CC == llvm::CallingConv::X86_VectorCall || 1697 State.CC == llvm::CallingConv::X86_RegCall) { 1698 if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs) 1699 NeedsPadding = true; 1700 1701 return false; 1702 } 1703 1704 return true; 1705 } 1706 1707 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const { 1708 if (!updateFreeRegs(Ty, State)) 1709 return false; 1710 1711 if (IsMCUABI) 1712 return false; 1713 1714 if (State.CC == llvm::CallingConv::X86_FastCall || 1715 State.CC == llvm::CallingConv::X86_VectorCall || 1716 State.CC == llvm::CallingConv::X86_RegCall) { 1717 if (getContext().getTypeSize(Ty) > 32) 1718 return false; 1719 1720 return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() || 1721 Ty->isReferenceType()); 1722 } 1723 1724 return true; 1725 } 1726 1727 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const { 1728 // Vectorcall x86 works subtly different than in x64, so the format is 1729 // a bit different than the x64 version. First, all vector types (not HVAs) 1730 // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers. 1731 // This differs from the x64 implementation, where the first 6 by INDEX get 1732 // registers. 1733 // In the second pass over the arguments, HVAs are passed in the remaining 1734 // vector registers if possible, or indirectly by address. The address will be 1735 // passed in ECX/EDX if available. Any other arguments are passed according to 1736 // the usual fastcall rules. 1737 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1738 for (int I = 0, E = Args.size(); I < E; ++I) { 1739 const Type *Base = nullptr; 1740 uint64_t NumElts = 0; 1741 const QualType &Ty = Args[I].type; 1742 if ((Ty->isVectorType() || Ty->isBuiltinType()) && 1743 isHomogeneousAggregate(Ty, Base, NumElts)) { 1744 if (State.FreeSSERegs >= NumElts) { 1745 State.FreeSSERegs -= NumElts; 1746 Args[I].info = ABIArgInfo::getDirectInReg(); 1747 State.IsPreassigned.set(I); 1748 } 1749 } 1750 } 1751 } 1752 1753 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty, 1754 CCState &State) const { 1755 // FIXME: Set alignment on indirect arguments. 1756 bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall; 1757 bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall; 1758 bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall; 1759 1760 Ty = useFirstFieldIfTransparentUnion(Ty); 1761 TypeInfo TI = getContext().getTypeInfo(Ty); 1762 1763 // Check with the C++ ABI first. 1764 const RecordType *RT = Ty->getAs<RecordType>(); 1765 if (RT) { 1766 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 1767 if (RAA == CGCXXABI::RAA_Indirect) { 1768 return getIndirectResult(Ty, false, State); 1769 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 1770 // The field index doesn't matter, we'll fix it up later. 1771 return ABIArgInfo::getInAlloca(/*FieldIndex=*/0); 1772 } 1773 } 1774 1775 // Regcall uses the concept of a homogenous vector aggregate, similar 1776 // to other targets. 1777 const Type *Base = nullptr; 1778 uint64_t NumElts = 0; 1779 if ((IsRegCall || IsVectorCall) && 1780 isHomogeneousAggregate(Ty, Base, NumElts)) { 1781 if (State.FreeSSERegs >= NumElts) { 1782 State.FreeSSERegs -= NumElts; 1783 1784 // Vectorcall passes HVAs directly and does not flatten them, but regcall 1785 // does. 1786 if (IsVectorCall) 1787 return getDirectX86Hva(); 1788 1789 if (Ty->isBuiltinType() || Ty->isVectorType()) 1790 return ABIArgInfo::getDirect(); 1791 return ABIArgInfo::getExpand(); 1792 } 1793 return getIndirectResult(Ty, /*ByVal=*/false, State); 1794 } 1795 1796 if (isAggregateTypeForABI(Ty)) { 1797 // Structures with flexible arrays are always indirect. 1798 // FIXME: This should not be byval! 1799 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 1800 return getIndirectResult(Ty, true, State); 1801 1802 // Ignore empty structs/unions on non-Windows. 1803 if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true)) 1804 return ABIArgInfo::getIgnore(); 1805 1806 llvm::LLVMContext &LLVMContext = getVMContext(); 1807 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 1808 bool NeedsPadding = false; 1809 bool InReg; 1810 if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) { 1811 unsigned SizeInRegs = (TI.Width + 31) / 32; 1812 SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32); 1813 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 1814 if (InReg) 1815 return ABIArgInfo::getDirectInReg(Result); 1816 else 1817 return ABIArgInfo::getDirect(Result); 1818 } 1819 llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr; 1820 1821 // Pass over-aligned aggregates on Windows indirectly. This behavior was 1822 // added in MSVC 2015. 1823 if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32) 1824 return getIndirectResult(Ty, /*ByVal=*/false, State); 1825 1826 // Expand small (<= 128-bit) record types when we know that the stack layout 1827 // of those arguments will match the struct. This is important because the 1828 // LLVM backend isn't smart enough to remove byval, which inhibits many 1829 // optimizations. 1830 // Don't do this for the MCU if there are still free integer registers 1831 // (see X86_64 ABI for full explanation). 1832 if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) && 1833 canExpandIndirectArgument(Ty)) 1834 return ABIArgInfo::getExpandWithPadding( 1835 IsFastCall || IsVectorCall || IsRegCall, PaddingType); 1836 1837 return getIndirectResult(Ty, true, State); 1838 } 1839 1840 if (const VectorType *VT = Ty->getAs<VectorType>()) { 1841 // On Windows, vectors are passed directly if registers are available, or 1842 // indirectly if not. This avoids the need to align argument memory. Pass 1843 // user-defined vector types larger than 512 bits indirectly for simplicity. 1844 if (IsWin32StructABI) { 1845 if (TI.Width <= 512 && State.FreeSSERegs > 0) { 1846 --State.FreeSSERegs; 1847 return ABIArgInfo::getDirectInReg(); 1848 } 1849 return getIndirectResult(Ty, /*ByVal=*/false, State); 1850 } 1851 1852 // On Darwin, some vectors are passed in memory, we handle this by passing 1853 // it as an i8/i16/i32/i64. 1854 if (IsDarwinVectorABI) { 1855 if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) || 1856 (TI.Width == 64 && VT->getNumElements() == 1)) 1857 return ABIArgInfo::getDirect( 1858 llvm::IntegerType::get(getVMContext(), TI.Width)); 1859 } 1860 1861 if (IsX86_MMXType(CGT.ConvertType(Ty))) 1862 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64)); 1863 1864 return ABIArgInfo::getDirect(); 1865 } 1866 1867 1868 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 1869 Ty = EnumTy->getDecl()->getIntegerType(); 1870 1871 bool InReg = shouldPrimitiveUseInReg(Ty, State); 1872 1873 if (isPromotableIntegerTypeForABI(Ty)) { 1874 if (InReg) 1875 return ABIArgInfo::getExtendInReg(Ty); 1876 return ABIArgInfo::getExtend(Ty); 1877 } 1878 1879 if (const auto * EIT = Ty->getAs<ExtIntType>()) { 1880 if (EIT->getNumBits() <= 64) { 1881 if (InReg) 1882 return ABIArgInfo::getDirectInReg(); 1883 return ABIArgInfo::getDirect(); 1884 } 1885 return getIndirectResult(Ty, /*ByVal=*/false, State); 1886 } 1887 1888 if (InReg) 1889 return ABIArgInfo::getDirectInReg(); 1890 return ABIArgInfo::getDirect(); 1891 } 1892 1893 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const { 1894 CCState State(FI); 1895 if (IsMCUABI) 1896 State.FreeRegs = 3; 1897 else if (State.CC == llvm::CallingConv::X86_FastCall) { 1898 State.FreeRegs = 2; 1899 State.FreeSSERegs = 3; 1900 } else if (State.CC == llvm::CallingConv::X86_VectorCall) { 1901 State.FreeRegs = 2; 1902 State.FreeSSERegs = 6; 1903 } else if (FI.getHasRegParm()) 1904 State.FreeRegs = FI.getRegParm(); 1905 else if (State.CC == llvm::CallingConv::X86_RegCall) { 1906 State.FreeRegs = 5; 1907 State.FreeSSERegs = 8; 1908 } else if (IsWin32StructABI) { 1909 // Since MSVC 2015, the first three SSE vectors have been passed in 1910 // registers. The rest are passed indirectly. 1911 State.FreeRegs = DefaultNumRegisterParameters; 1912 State.FreeSSERegs = 3; 1913 } else 1914 State.FreeRegs = DefaultNumRegisterParameters; 1915 1916 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 1917 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State); 1918 } else if (FI.getReturnInfo().isIndirect()) { 1919 // The C++ ABI is not aware of register usage, so we have to check if the 1920 // return value was sret and put it in a register ourselves if appropriate. 1921 if (State.FreeRegs) { 1922 --State.FreeRegs; // The sret parameter consumes a register. 1923 if (!IsMCUABI) 1924 FI.getReturnInfo().setInReg(true); 1925 } 1926 } 1927 1928 // The chain argument effectively gives us another free register. 1929 if (FI.isChainCall()) 1930 ++State.FreeRegs; 1931 1932 // For vectorcall, do a first pass over the arguments, assigning FP and vector 1933 // arguments to XMM registers as available. 1934 if (State.CC == llvm::CallingConv::X86_VectorCall) 1935 runVectorCallFirstPass(FI, State); 1936 1937 bool UsedInAlloca = false; 1938 MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments(); 1939 for (int I = 0, E = Args.size(); I < E; ++I) { 1940 // Skip arguments that have already been assigned. 1941 if (State.IsPreassigned.test(I)) 1942 continue; 1943 1944 Args[I].info = classifyArgumentType(Args[I].type, State); 1945 UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca); 1946 } 1947 1948 // If we needed to use inalloca for any argument, do a second pass and rewrite 1949 // all the memory arguments to use inalloca. 1950 if (UsedInAlloca) 1951 rewriteWithInAlloca(FI); 1952 } 1953 1954 void 1955 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields, 1956 CharUnits &StackOffset, ABIArgInfo &Info, 1957 QualType Type) const { 1958 // Arguments are always 4-byte-aligned. 1959 CharUnits WordSize = CharUnits::fromQuantity(4); 1960 assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct"); 1961 1962 // sret pointers and indirect things will require an extra pointer 1963 // indirection, unless they are byval. Most things are byval, and will not 1964 // require this indirection. 1965 bool IsIndirect = false; 1966 if (Info.isIndirect() && !Info.getIndirectByVal()) 1967 IsIndirect = true; 1968 Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect); 1969 llvm::Type *LLTy = CGT.ConvertTypeForMem(Type); 1970 if (IsIndirect) 1971 LLTy = LLTy->getPointerTo(0); 1972 FrameFields.push_back(LLTy); 1973 StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type); 1974 1975 // Insert padding bytes to respect alignment. 1976 CharUnits FieldEnd = StackOffset; 1977 StackOffset = FieldEnd.alignTo(WordSize); 1978 if (StackOffset != FieldEnd) { 1979 CharUnits NumBytes = StackOffset - FieldEnd; 1980 llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext()); 1981 Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity()); 1982 FrameFields.push_back(Ty); 1983 } 1984 } 1985 1986 static bool isArgInAlloca(const ABIArgInfo &Info) { 1987 // Leave ignored and inreg arguments alone. 1988 switch (Info.getKind()) { 1989 case ABIArgInfo::InAlloca: 1990 return true; 1991 case ABIArgInfo::Ignore: 1992 return false; 1993 case ABIArgInfo::Indirect: 1994 case ABIArgInfo::Direct: 1995 case ABIArgInfo::Extend: 1996 return !Info.getInReg(); 1997 case ABIArgInfo::Expand: 1998 case ABIArgInfo::CoerceAndExpand: 1999 // These are aggregate types which are never passed in registers when 2000 // inalloca is involved. 2001 return true; 2002 } 2003 llvm_unreachable("invalid enum"); 2004 } 2005 2006 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const { 2007 assert(IsWin32StructABI && "inalloca only supported on win32"); 2008 2009 // Build a packed struct type for all of the arguments in memory. 2010 SmallVector<llvm::Type *, 6> FrameFields; 2011 2012 // The stack alignment is always 4. 2013 CharUnits StackAlign = CharUnits::fromQuantity(4); 2014 2015 CharUnits StackOffset; 2016 CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end(); 2017 2018 // Put 'this' into the struct before 'sret', if necessary. 2019 bool IsThisCall = 2020 FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall; 2021 ABIArgInfo &Ret = FI.getReturnInfo(); 2022 if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall && 2023 isArgInAlloca(I->info)) { 2024 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2025 ++I; 2026 } 2027 2028 // Put the sret parameter into the inalloca struct if it's in memory. 2029 if (Ret.isIndirect() && !Ret.getInReg()) { 2030 addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType()); 2031 // On Windows, the hidden sret parameter is always returned in eax. 2032 Ret.setInAllocaSRet(IsWin32StructABI); 2033 } 2034 2035 // Skip the 'this' parameter in ecx. 2036 if (IsThisCall) 2037 ++I; 2038 2039 // Put arguments passed in memory into the struct. 2040 for (; I != E; ++I) { 2041 if (isArgInAlloca(I->info)) 2042 addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type); 2043 } 2044 2045 FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields, 2046 /*isPacked=*/true), 2047 StackAlign); 2048 } 2049 2050 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF, 2051 Address VAListAddr, QualType Ty) const { 2052 2053 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 2054 2055 // x86-32 changes the alignment of certain arguments on the stack. 2056 // 2057 // Just messing with TypeInfo like this works because we never pass 2058 // anything indirectly. 2059 TypeInfo.second = CharUnits::fromQuantity( 2060 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity())); 2061 2062 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 2063 TypeInfo, CharUnits::fromQuantity(4), 2064 /*AllowHigherAlign*/ true); 2065 } 2066 2067 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI( 2068 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 2069 assert(Triple.getArch() == llvm::Triple::x86); 2070 2071 switch (Opts.getStructReturnConvention()) { 2072 case CodeGenOptions::SRCK_Default: 2073 break; 2074 case CodeGenOptions::SRCK_OnStack: // -fpcc-struct-return 2075 return false; 2076 case CodeGenOptions::SRCK_InRegs: // -freg-struct-return 2077 return true; 2078 } 2079 2080 if (Triple.isOSDarwin() || Triple.isOSIAMCU()) 2081 return true; 2082 2083 switch (Triple.getOS()) { 2084 case llvm::Triple::DragonFly: 2085 case llvm::Triple::FreeBSD: 2086 case llvm::Triple::OpenBSD: 2087 case llvm::Triple::Win32: 2088 return true; 2089 default: 2090 return false; 2091 } 2092 } 2093 2094 void X86_32TargetCodeGenInfo::setTargetAttributes( 2095 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2096 if (GV->isDeclaration()) 2097 return; 2098 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2099 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2100 llvm::Function *Fn = cast<llvm::Function>(GV); 2101 Fn->addFnAttr("stackrealign"); 2102 } 2103 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2104 llvm::Function *Fn = cast<llvm::Function>(GV); 2105 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2106 } 2107 } 2108 } 2109 2110 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable( 2111 CodeGen::CodeGenFunction &CGF, 2112 llvm::Value *Address) const { 2113 CodeGen::CGBuilderTy &Builder = CGF.Builder; 2114 2115 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 2116 2117 // 0-7 are the eight integer registers; the order is different 2118 // on Darwin (for EH), but the range is the same. 2119 // 8 is %eip. 2120 AssignToArrayRange(Builder, Address, Four8, 0, 8); 2121 2122 if (CGF.CGM.getTarget().getTriple().isOSDarwin()) { 2123 // 12-16 are st(0..4). Not sure why we stop at 4. 2124 // These have size 16, which is sizeof(long double) on 2125 // platforms with 8-byte alignment for that type. 2126 llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16); 2127 AssignToArrayRange(Builder, Address, Sixteen8, 12, 16); 2128 2129 } else { 2130 // 9 is %eflags, which doesn't get a size on Darwin for some 2131 // reason. 2132 Builder.CreateAlignedStore( 2133 Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9), 2134 CharUnits::One()); 2135 2136 // 11-16 are st(0..5). Not sure why we stop at 5. 2137 // These have size 12, which is sizeof(long double) on 2138 // platforms with 4-byte alignment for that type. 2139 llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12); 2140 AssignToArrayRange(Builder, Address, Twelve8, 11, 16); 2141 } 2142 2143 return false; 2144 } 2145 2146 //===----------------------------------------------------------------------===// 2147 // X86-64 ABI Implementation 2148 //===----------------------------------------------------------------------===// 2149 2150 2151 namespace { 2152 /// The AVX ABI level for X86 targets. 2153 enum class X86AVXABILevel { 2154 None, 2155 AVX, 2156 AVX512 2157 }; 2158 2159 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel. 2160 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) { 2161 switch (AVXLevel) { 2162 case X86AVXABILevel::AVX512: 2163 return 512; 2164 case X86AVXABILevel::AVX: 2165 return 256; 2166 case X86AVXABILevel::None: 2167 return 128; 2168 } 2169 llvm_unreachable("Unknown AVXLevel"); 2170 } 2171 2172 /// X86_64ABIInfo - The X86_64 ABI information. 2173 class X86_64ABIInfo : public SwiftABIInfo { 2174 enum Class { 2175 Integer = 0, 2176 SSE, 2177 SSEUp, 2178 X87, 2179 X87Up, 2180 ComplexX87, 2181 NoClass, 2182 Memory 2183 }; 2184 2185 /// merge - Implement the X86_64 ABI merging algorithm. 2186 /// 2187 /// Merge an accumulating classification \arg Accum with a field 2188 /// classification \arg Field. 2189 /// 2190 /// \param Accum - The accumulating classification. This should 2191 /// always be either NoClass or the result of a previous merge 2192 /// call. In addition, this should never be Memory (the caller 2193 /// should just return Memory for the aggregate). 2194 static Class merge(Class Accum, Class Field); 2195 2196 /// postMerge - Implement the X86_64 ABI post merging algorithm. 2197 /// 2198 /// Post merger cleanup, reduces a malformed Hi and Lo pair to 2199 /// final MEMORY or SSE classes when necessary. 2200 /// 2201 /// \param AggregateSize - The size of the current aggregate in 2202 /// the classification process. 2203 /// 2204 /// \param Lo - The classification for the parts of the type 2205 /// residing in the low word of the containing object. 2206 /// 2207 /// \param Hi - The classification for the parts of the type 2208 /// residing in the higher words of the containing object. 2209 /// 2210 void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const; 2211 2212 /// classify - Determine the x86_64 register classes in which the 2213 /// given type T should be passed. 2214 /// 2215 /// \param Lo - The classification for the parts of the type 2216 /// residing in the low word of the containing object. 2217 /// 2218 /// \param Hi - The classification for the parts of the type 2219 /// residing in the high word of the containing object. 2220 /// 2221 /// \param OffsetBase - The bit offset of this type in the 2222 /// containing object. Some parameters are classified different 2223 /// depending on whether they straddle an eightbyte boundary. 2224 /// 2225 /// \param isNamedArg - Whether the argument in question is a "named" 2226 /// argument, as used in AMD64-ABI 3.5.7. 2227 /// 2228 /// If a word is unused its result will be NoClass; if a type should 2229 /// be passed in Memory then at least the classification of \arg Lo 2230 /// will be Memory. 2231 /// 2232 /// The \arg Lo class will be NoClass iff the argument is ignored. 2233 /// 2234 /// If the \arg Lo class is ComplexX87, then the \arg Hi class will 2235 /// also be ComplexX87. 2236 void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi, 2237 bool isNamedArg) const; 2238 2239 llvm::Type *GetByteVectorType(QualType Ty) const; 2240 llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType, 2241 unsigned IROffset, QualType SourceTy, 2242 unsigned SourceOffset) const; 2243 llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType, 2244 unsigned IROffset, QualType SourceTy, 2245 unsigned SourceOffset) const; 2246 2247 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2248 /// such that the argument will be returned in memory. 2249 ABIArgInfo getIndirectReturnResult(QualType Ty) const; 2250 2251 /// getIndirectResult - Give a source type \arg Ty, return a suitable result 2252 /// such that the argument will be passed in memory. 2253 /// 2254 /// \param freeIntRegs - The number of free integer registers remaining 2255 /// available. 2256 ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const; 2257 2258 ABIArgInfo classifyReturnType(QualType RetTy) const; 2259 2260 ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs, 2261 unsigned &neededInt, unsigned &neededSSE, 2262 bool isNamedArg) const; 2263 2264 ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt, 2265 unsigned &NeededSSE) const; 2266 2267 ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 2268 unsigned &NeededSSE) const; 2269 2270 bool IsIllegalVectorType(QualType Ty) const; 2271 2272 /// The 0.98 ABI revision clarified a lot of ambiguities, 2273 /// unfortunately in ways that were not always consistent with 2274 /// certain previous compilers. In particular, platforms which 2275 /// required strict binary compatibility with older versions of GCC 2276 /// may need to exempt themselves. 2277 bool honorsRevision0_98() const { 2278 return !getTarget().getTriple().isOSDarwin(); 2279 } 2280 2281 /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to 2282 /// classify it as INTEGER (for compatibility with older clang compilers). 2283 bool classifyIntegerMMXAsSSE() const { 2284 // Clang <= 3.8 did not do this. 2285 if (getContext().getLangOpts().getClangABICompat() <= 2286 LangOptions::ClangABI::Ver3_8) 2287 return false; 2288 2289 const llvm::Triple &Triple = getTarget().getTriple(); 2290 if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4) 2291 return false; 2292 if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10) 2293 return false; 2294 return true; 2295 } 2296 2297 // GCC classifies vectors of __int128 as memory. 2298 bool passInt128VectorsInMem() const { 2299 // Clang <= 9.0 did not do this. 2300 if (getContext().getLangOpts().getClangABICompat() <= 2301 LangOptions::ClangABI::Ver9) 2302 return false; 2303 2304 const llvm::Triple &T = getTarget().getTriple(); 2305 return T.isOSLinux() || T.isOSNetBSD(); 2306 } 2307 2308 X86AVXABILevel AVXLevel; 2309 // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on 2310 // 64-bit hardware. 2311 bool Has64BitPointers; 2312 2313 public: 2314 X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) : 2315 SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2316 Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) { 2317 } 2318 2319 bool isPassedUsingAVXType(QualType type) const { 2320 unsigned neededInt, neededSSE; 2321 // The freeIntRegs argument doesn't matter here. 2322 ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE, 2323 /*isNamedArg*/true); 2324 if (info.isDirect()) { 2325 llvm::Type *ty = info.getCoerceToType(); 2326 if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty)) 2327 return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128; 2328 } 2329 return false; 2330 } 2331 2332 void computeInfo(CGFunctionInfo &FI) const override; 2333 2334 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2335 QualType Ty) const override; 2336 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 2337 QualType Ty) const override; 2338 2339 bool has64BitPointers() const { 2340 return Has64BitPointers; 2341 } 2342 2343 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 2344 bool asReturnValue) const override { 2345 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2346 } 2347 bool isSwiftErrorInRegister() const override { 2348 return true; 2349 } 2350 }; 2351 2352 /// WinX86_64ABIInfo - The Windows X86_64 ABI information. 2353 class WinX86_64ABIInfo : public SwiftABIInfo { 2354 public: 2355 WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2356 : SwiftABIInfo(CGT), AVXLevel(AVXLevel), 2357 IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {} 2358 2359 void computeInfo(CGFunctionInfo &FI) const override; 2360 2361 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 2362 QualType Ty) const override; 2363 2364 bool isHomogeneousAggregateBaseType(QualType Ty) const override { 2365 // FIXME: Assumes vectorcall is in use. 2366 return isX86VectorTypeForVectorCall(getContext(), Ty); 2367 } 2368 2369 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 2370 uint64_t NumMembers) const override { 2371 // FIXME: Assumes vectorcall is in use. 2372 return isX86VectorCallAggregateSmallEnough(NumMembers); 2373 } 2374 2375 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars, 2376 bool asReturnValue) const override { 2377 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 2378 } 2379 2380 bool isSwiftErrorInRegister() const override { 2381 return true; 2382 } 2383 2384 private: 2385 ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType, 2386 bool IsVectorCall, bool IsRegCall) const; 2387 ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 2388 const ABIArgInfo ¤t) const; 2389 void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs, 2390 bool IsVectorCall, bool IsRegCall) const; 2391 2392 X86AVXABILevel AVXLevel; 2393 2394 bool IsMingw64; 2395 }; 2396 2397 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2398 public: 2399 X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) 2400 : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {} 2401 2402 const X86_64ABIInfo &getABIInfo() const { 2403 return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo()); 2404 } 2405 2406 /// Disable tail call on x86-64. The epilogue code before the tail jump blocks 2407 /// the autoreleaseRV/retainRV optimization. 2408 bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override { 2409 return true; 2410 } 2411 2412 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2413 return 7; 2414 } 2415 2416 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2417 llvm::Value *Address) const override { 2418 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2419 2420 // 0-15 are the 16 integer registers. 2421 // 16 is %rip. 2422 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2423 return false; 2424 } 2425 2426 llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF, 2427 StringRef Constraint, 2428 llvm::Type* Ty) const override { 2429 return X86AdjustInlineAsmType(CGF, Constraint, Ty); 2430 } 2431 2432 bool isNoProtoCallVariadic(const CallArgList &args, 2433 const FunctionNoProtoType *fnType) const override { 2434 // The default CC on x86-64 sets %al to the number of SSA 2435 // registers used, and GCC sets this when calling an unprototyped 2436 // function, so we override the default behavior. However, don't do 2437 // that when AVX types are involved: the ABI explicitly states it is 2438 // undefined, and it doesn't work in practice because of how the ABI 2439 // defines varargs anyway. 2440 if (fnType->getCallConv() == CC_C) { 2441 bool HasAVXType = false; 2442 for (CallArgList::const_iterator 2443 it = args.begin(), ie = args.end(); it != ie; ++it) { 2444 if (getABIInfo().isPassedUsingAVXType(it->Ty)) { 2445 HasAVXType = true; 2446 break; 2447 } 2448 } 2449 2450 if (!HasAVXType) 2451 return true; 2452 } 2453 2454 return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType); 2455 } 2456 2457 llvm::Constant * 2458 getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override { 2459 unsigned Sig = (0xeb << 0) | // jmp rel8 2460 (0x06 << 8) | // .+0x08 2461 ('v' << 16) | 2462 ('2' << 24); 2463 return llvm::ConstantInt::get(CGM.Int32Ty, Sig); 2464 } 2465 2466 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2467 CodeGen::CodeGenModule &CGM) const override { 2468 if (GV->isDeclaration()) 2469 return; 2470 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2471 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2472 llvm::Function *Fn = cast<llvm::Function>(GV); 2473 Fn->addFnAttr("stackrealign"); 2474 } 2475 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2476 llvm::Function *Fn = cast<llvm::Function>(GV); 2477 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2478 } 2479 } 2480 } 2481 2482 void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc, 2483 const FunctionDecl *Caller, 2484 const FunctionDecl *Callee, 2485 const CallArgList &Args) const override; 2486 }; 2487 2488 static void initFeatureMaps(const ASTContext &Ctx, 2489 llvm::StringMap<bool> &CallerMap, 2490 const FunctionDecl *Caller, 2491 llvm::StringMap<bool> &CalleeMap, 2492 const FunctionDecl *Callee) { 2493 if (CalleeMap.empty() && CallerMap.empty()) { 2494 // The caller is potentially nullptr in the case where the call isn't in a 2495 // function. In this case, the getFunctionFeatureMap ensures we just get 2496 // the TU level setting (since it cannot be modified by 'target'.. 2497 Ctx.getFunctionFeatureMap(CallerMap, Caller); 2498 Ctx.getFunctionFeatureMap(CalleeMap, Callee); 2499 } 2500 } 2501 2502 static bool checkAVXParamFeature(DiagnosticsEngine &Diag, 2503 SourceLocation CallLoc, 2504 const llvm::StringMap<bool> &CallerMap, 2505 const llvm::StringMap<bool> &CalleeMap, 2506 QualType Ty, StringRef Feature, 2507 bool IsArgument) { 2508 bool CallerHasFeat = CallerMap.lookup(Feature); 2509 bool CalleeHasFeat = CalleeMap.lookup(Feature); 2510 if (!CallerHasFeat && !CalleeHasFeat) 2511 return Diag.Report(CallLoc, diag::warn_avx_calling_convention) 2512 << IsArgument << Ty << Feature; 2513 2514 // Mixing calling conventions here is very clearly an error. 2515 if (!CallerHasFeat || !CalleeHasFeat) 2516 return Diag.Report(CallLoc, diag::err_avx_calling_convention) 2517 << IsArgument << Ty << Feature; 2518 2519 // Else, both caller and callee have the required feature, so there is no need 2520 // to diagnose. 2521 return false; 2522 } 2523 2524 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx, 2525 SourceLocation CallLoc, 2526 const llvm::StringMap<bool> &CallerMap, 2527 const llvm::StringMap<bool> &CalleeMap, QualType Ty, 2528 bool IsArgument) { 2529 uint64_t Size = Ctx.getTypeSize(Ty); 2530 if (Size > 256) 2531 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, 2532 "avx512f", IsArgument); 2533 2534 if (Size > 128) 2535 return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx", 2536 IsArgument); 2537 2538 return false; 2539 } 2540 2541 void X86_64TargetCodeGenInfo::checkFunctionCallABI( 2542 CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller, 2543 const FunctionDecl *Callee, const CallArgList &Args) const { 2544 llvm::StringMap<bool> CallerMap; 2545 llvm::StringMap<bool> CalleeMap; 2546 unsigned ArgIndex = 0; 2547 2548 // We need to loop through the actual call arguments rather than the the 2549 // function's parameters, in case this variadic. 2550 for (const CallArg &Arg : Args) { 2551 // The "avx" feature changes how vectors >128 in size are passed. "avx512f" 2552 // additionally changes how vectors >256 in size are passed. Like GCC, we 2553 // warn when a function is called with an argument where this will change. 2554 // Unlike GCC, we also error when it is an obvious ABI mismatch, that is, 2555 // the caller and callee features are mismatched. 2556 // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can 2557 // change its ABI with attribute-target after this call. 2558 if (Arg.getType()->isVectorType() && 2559 CGM.getContext().getTypeSize(Arg.getType()) > 128) { 2560 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2561 QualType Ty = Arg.getType(); 2562 // The CallArg seems to have desugared the type already, so for clearer 2563 // diagnostics, replace it with the type in the FunctionDecl if possible. 2564 if (ArgIndex < Callee->getNumParams()) 2565 Ty = Callee->getParamDecl(ArgIndex)->getType(); 2566 2567 if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2568 CalleeMap, Ty, /*IsArgument*/ true)) 2569 return; 2570 } 2571 ++ArgIndex; 2572 } 2573 2574 // Check return always, as we don't have a good way of knowing in codegen 2575 // whether this value is used, tail-called, etc. 2576 if (Callee->getReturnType()->isVectorType() && 2577 CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) { 2578 initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee); 2579 checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap, 2580 CalleeMap, Callee->getReturnType(), 2581 /*IsArgument*/ false); 2582 } 2583 } 2584 2585 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) { 2586 // If the argument does not end in .lib, automatically add the suffix. 2587 // If the argument contains a space, enclose it in quotes. 2588 // This matches the behavior of MSVC. 2589 bool Quote = (Lib.find(" ") != StringRef::npos); 2590 std::string ArgStr = Quote ? "\"" : ""; 2591 ArgStr += Lib; 2592 if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a")) 2593 ArgStr += ".lib"; 2594 ArgStr += Quote ? "\"" : ""; 2595 return ArgStr; 2596 } 2597 2598 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo { 2599 public: 2600 WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2601 bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI, 2602 unsigned NumRegisterParameters) 2603 : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI, 2604 Win32StructABI, NumRegisterParameters, false) {} 2605 2606 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2607 CodeGen::CodeGenModule &CGM) const override; 2608 2609 void getDependentLibraryOption(llvm::StringRef Lib, 2610 llvm::SmallString<24> &Opt) const override { 2611 Opt = "/DEFAULTLIB:"; 2612 Opt += qualifyWindowsLibrary(Lib); 2613 } 2614 2615 void getDetectMismatchOption(llvm::StringRef Name, 2616 llvm::StringRef Value, 2617 llvm::SmallString<32> &Opt) const override { 2618 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2619 } 2620 }; 2621 2622 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2623 CodeGen::CodeGenModule &CGM) { 2624 if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) { 2625 2626 if (CGM.getCodeGenOpts().StackProbeSize != 4096) 2627 Fn->addFnAttr("stack-probe-size", 2628 llvm::utostr(CGM.getCodeGenOpts().StackProbeSize)); 2629 if (CGM.getCodeGenOpts().NoStackArgProbe) 2630 Fn->addFnAttr("no-stack-arg-probe"); 2631 } 2632 } 2633 2634 void WinX86_32TargetCodeGenInfo::setTargetAttributes( 2635 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2636 X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2637 if (GV->isDeclaration()) 2638 return; 2639 addStackProbeTargetAttributes(D, GV, CGM); 2640 } 2641 2642 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo { 2643 public: 2644 WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, 2645 X86AVXABILevel AVXLevel) 2646 : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {} 2647 2648 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 2649 CodeGen::CodeGenModule &CGM) const override; 2650 2651 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 2652 return 7; 2653 } 2654 2655 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 2656 llvm::Value *Address) const override { 2657 llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8); 2658 2659 // 0-15 are the 16 integer registers. 2660 // 16 is %rip. 2661 AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16); 2662 return false; 2663 } 2664 2665 void getDependentLibraryOption(llvm::StringRef Lib, 2666 llvm::SmallString<24> &Opt) const override { 2667 Opt = "/DEFAULTLIB:"; 2668 Opt += qualifyWindowsLibrary(Lib); 2669 } 2670 2671 void getDetectMismatchOption(llvm::StringRef Name, 2672 llvm::StringRef Value, 2673 llvm::SmallString<32> &Opt) const override { 2674 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 2675 } 2676 }; 2677 2678 void WinX86_64TargetCodeGenInfo::setTargetAttributes( 2679 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 2680 TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 2681 if (GV->isDeclaration()) 2682 return; 2683 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 2684 if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) { 2685 llvm::Function *Fn = cast<llvm::Function>(GV); 2686 Fn->addFnAttr("stackrealign"); 2687 } 2688 if (FD->hasAttr<AnyX86InterruptAttr>()) { 2689 llvm::Function *Fn = cast<llvm::Function>(GV); 2690 Fn->setCallingConv(llvm::CallingConv::X86_INTR); 2691 } 2692 } 2693 2694 addStackProbeTargetAttributes(D, GV, CGM); 2695 } 2696 } 2697 2698 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo, 2699 Class &Hi) const { 2700 // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done: 2701 // 2702 // (a) If one of the classes is Memory, the whole argument is passed in 2703 // memory. 2704 // 2705 // (b) If X87UP is not preceded by X87, the whole argument is passed in 2706 // memory. 2707 // 2708 // (c) If the size of the aggregate exceeds two eightbytes and the first 2709 // eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole 2710 // argument is passed in memory. NOTE: This is necessary to keep the 2711 // ABI working for processors that don't support the __m256 type. 2712 // 2713 // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE. 2714 // 2715 // Some of these are enforced by the merging logic. Others can arise 2716 // only with unions; for example: 2717 // union { _Complex double; unsigned; } 2718 // 2719 // Note that clauses (b) and (c) were added in 0.98. 2720 // 2721 if (Hi == Memory) 2722 Lo = Memory; 2723 if (Hi == X87Up && Lo != X87 && honorsRevision0_98()) 2724 Lo = Memory; 2725 if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp)) 2726 Lo = Memory; 2727 if (Hi == SSEUp && Lo != SSE) 2728 Hi = SSE; 2729 } 2730 2731 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) { 2732 // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is 2733 // classified recursively so that always two fields are 2734 // considered. The resulting class is calculated according to 2735 // the classes of the fields in the eightbyte: 2736 // 2737 // (a) If both classes are equal, this is the resulting class. 2738 // 2739 // (b) If one of the classes is NO_CLASS, the resulting class is 2740 // the other class. 2741 // 2742 // (c) If one of the classes is MEMORY, the result is the MEMORY 2743 // class. 2744 // 2745 // (d) If one of the classes is INTEGER, the result is the 2746 // INTEGER. 2747 // 2748 // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class, 2749 // MEMORY is used as class. 2750 // 2751 // (f) Otherwise class SSE is used. 2752 2753 // Accum should never be memory (we should have returned) or 2754 // ComplexX87 (because this cannot be passed in a structure). 2755 assert((Accum != Memory && Accum != ComplexX87) && 2756 "Invalid accumulated classification during merge."); 2757 if (Accum == Field || Field == NoClass) 2758 return Accum; 2759 if (Field == Memory) 2760 return Memory; 2761 if (Accum == NoClass) 2762 return Field; 2763 if (Accum == Integer || Field == Integer) 2764 return Integer; 2765 if (Field == X87 || Field == X87Up || Field == ComplexX87 || 2766 Accum == X87 || Accum == X87Up) 2767 return Memory; 2768 return SSE; 2769 } 2770 2771 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase, 2772 Class &Lo, Class &Hi, bool isNamedArg) const { 2773 // FIXME: This code can be simplified by introducing a simple value class for 2774 // Class pairs with appropriate constructor methods for the various 2775 // situations. 2776 2777 // FIXME: Some of the split computations are wrong; unaligned vectors 2778 // shouldn't be passed in registers for example, so there is no chance they 2779 // can straddle an eightbyte. Verify & simplify. 2780 2781 Lo = Hi = NoClass; 2782 2783 Class &Current = OffsetBase < 64 ? Lo : Hi; 2784 Current = Memory; 2785 2786 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 2787 BuiltinType::Kind k = BT->getKind(); 2788 2789 if (k == BuiltinType::Void) { 2790 Current = NoClass; 2791 } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) { 2792 Lo = Integer; 2793 Hi = Integer; 2794 } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) { 2795 Current = Integer; 2796 } else if (k == BuiltinType::Float || k == BuiltinType::Double) { 2797 Current = SSE; 2798 } else if (k == BuiltinType::LongDouble) { 2799 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2800 if (LDF == &llvm::APFloat::IEEEquad()) { 2801 Lo = SSE; 2802 Hi = SSEUp; 2803 } else if (LDF == &llvm::APFloat::x87DoubleExtended()) { 2804 Lo = X87; 2805 Hi = X87Up; 2806 } else if (LDF == &llvm::APFloat::IEEEdouble()) { 2807 Current = SSE; 2808 } else 2809 llvm_unreachable("unexpected long double representation!"); 2810 } 2811 // FIXME: _Decimal32 and _Decimal64 are SSE. 2812 // FIXME: _float128 and _Decimal128 are (SSE, SSEUp). 2813 return; 2814 } 2815 2816 if (const EnumType *ET = Ty->getAs<EnumType>()) { 2817 // Classify the underlying integer type. 2818 classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg); 2819 return; 2820 } 2821 2822 if (Ty->hasPointerRepresentation()) { 2823 Current = Integer; 2824 return; 2825 } 2826 2827 if (Ty->isMemberPointerType()) { 2828 if (Ty->isMemberFunctionPointerType()) { 2829 if (Has64BitPointers) { 2830 // If Has64BitPointers, this is an {i64, i64}, so classify both 2831 // Lo and Hi now. 2832 Lo = Hi = Integer; 2833 } else { 2834 // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that 2835 // straddles an eightbyte boundary, Hi should be classified as well. 2836 uint64_t EB_FuncPtr = (OffsetBase) / 64; 2837 uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64; 2838 if (EB_FuncPtr != EB_ThisAdj) { 2839 Lo = Hi = Integer; 2840 } else { 2841 Current = Integer; 2842 } 2843 } 2844 } else { 2845 Current = Integer; 2846 } 2847 return; 2848 } 2849 2850 if (const VectorType *VT = Ty->getAs<VectorType>()) { 2851 uint64_t Size = getContext().getTypeSize(VT); 2852 if (Size == 1 || Size == 8 || Size == 16 || Size == 32) { 2853 // gcc passes the following as integer: 2854 // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float> 2855 // 2 bytes - <2 x char>, <1 x short> 2856 // 1 byte - <1 x char> 2857 Current = Integer; 2858 2859 // If this type crosses an eightbyte boundary, it should be 2860 // split. 2861 uint64_t EB_Lo = (OffsetBase) / 64; 2862 uint64_t EB_Hi = (OffsetBase + Size - 1) / 64; 2863 if (EB_Lo != EB_Hi) 2864 Hi = Lo; 2865 } else if (Size == 64) { 2866 QualType ElementType = VT->getElementType(); 2867 2868 // gcc passes <1 x double> in memory. :( 2869 if (ElementType->isSpecificBuiltinType(BuiltinType::Double)) 2870 return; 2871 2872 // gcc passes <1 x long long> as SSE but clang used to unconditionally 2873 // pass them as integer. For platforms where clang is the de facto 2874 // platform compiler, we must continue to use integer. 2875 if (!classifyIntegerMMXAsSSE() && 2876 (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) || 2877 ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) || 2878 ElementType->isSpecificBuiltinType(BuiltinType::Long) || 2879 ElementType->isSpecificBuiltinType(BuiltinType::ULong))) 2880 Current = Integer; 2881 else 2882 Current = SSE; 2883 2884 // If this type crosses an eightbyte boundary, it should be 2885 // split. 2886 if (OffsetBase && OffsetBase != 64) 2887 Hi = Lo; 2888 } else if (Size == 128 || 2889 (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) { 2890 QualType ElementType = VT->getElementType(); 2891 2892 // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :( 2893 if (passInt128VectorsInMem() && Size != 128 && 2894 (ElementType->isSpecificBuiltinType(BuiltinType::Int128) || 2895 ElementType->isSpecificBuiltinType(BuiltinType::UInt128))) 2896 return; 2897 2898 // Arguments of 256-bits are split into four eightbyte chunks. The 2899 // least significant one belongs to class SSE and all the others to class 2900 // SSEUP. The original Lo and Hi design considers that types can't be 2901 // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense. 2902 // This design isn't correct for 256-bits, but since there're no cases 2903 // where the upper parts would need to be inspected, avoid adding 2904 // complexity and just consider Hi to match the 64-256 part. 2905 // 2906 // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in 2907 // registers if they are "named", i.e. not part of the "..." of a 2908 // variadic function. 2909 // 2910 // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are 2911 // split into eight eightbyte chunks, one SSE and seven SSEUP. 2912 Lo = SSE; 2913 Hi = SSEUp; 2914 } 2915 return; 2916 } 2917 2918 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 2919 QualType ET = getContext().getCanonicalType(CT->getElementType()); 2920 2921 uint64_t Size = getContext().getTypeSize(Ty); 2922 if (ET->isIntegralOrEnumerationType()) { 2923 if (Size <= 64) 2924 Current = Integer; 2925 else if (Size <= 128) 2926 Lo = Hi = Integer; 2927 } else if (ET == getContext().FloatTy) { 2928 Current = SSE; 2929 } else if (ET == getContext().DoubleTy) { 2930 Lo = Hi = SSE; 2931 } else if (ET == getContext().LongDoubleTy) { 2932 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 2933 if (LDF == &llvm::APFloat::IEEEquad()) 2934 Current = Memory; 2935 else if (LDF == &llvm::APFloat::x87DoubleExtended()) 2936 Current = ComplexX87; 2937 else if (LDF == &llvm::APFloat::IEEEdouble()) 2938 Lo = Hi = SSE; 2939 else 2940 llvm_unreachable("unexpected long double representation!"); 2941 } 2942 2943 // If this complex type crosses an eightbyte boundary then it 2944 // should be split. 2945 uint64_t EB_Real = (OffsetBase) / 64; 2946 uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64; 2947 if (Hi == NoClass && EB_Real != EB_Imag) 2948 Hi = Lo; 2949 2950 return; 2951 } 2952 2953 if (const auto *EITy = Ty->getAs<ExtIntType>()) { 2954 if (EITy->getNumBits() <= 64) 2955 Current = Integer; 2956 else if (EITy->getNumBits() <= 128) 2957 Lo = Hi = Integer; 2958 // Larger values need to get passed in memory. 2959 return; 2960 } 2961 2962 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 2963 // Arrays are treated like structures. 2964 2965 uint64_t Size = getContext().getTypeSize(Ty); 2966 2967 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 2968 // than eight eightbytes, ..., it has class MEMORY. 2969 if (Size > 512) 2970 return; 2971 2972 // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned 2973 // fields, it has class MEMORY. 2974 // 2975 // Only need to check alignment of array base. 2976 if (OffsetBase % getContext().getTypeAlign(AT->getElementType())) 2977 return; 2978 2979 // Otherwise implement simplified merge. We could be smarter about 2980 // this, but it isn't worth it and would be harder to verify. 2981 Current = NoClass; 2982 uint64_t EltSize = getContext().getTypeSize(AT->getElementType()); 2983 uint64_t ArraySize = AT->getSize().getZExtValue(); 2984 2985 // The only case a 256-bit wide vector could be used is when the array 2986 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 2987 // to work for sizes wider than 128, early check and fallback to memory. 2988 // 2989 if (Size > 128 && 2990 (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel))) 2991 return; 2992 2993 for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) { 2994 Class FieldLo, FieldHi; 2995 classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg); 2996 Lo = merge(Lo, FieldLo); 2997 Hi = merge(Hi, FieldHi); 2998 if (Lo == Memory || Hi == Memory) 2999 break; 3000 } 3001 3002 postMerge(Size, Lo, Hi); 3003 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification."); 3004 return; 3005 } 3006 3007 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3008 uint64_t Size = getContext().getTypeSize(Ty); 3009 3010 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger 3011 // than eight eightbytes, ..., it has class MEMORY. 3012 if (Size > 512) 3013 return; 3014 3015 // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial 3016 // copy constructor or a non-trivial destructor, it is passed by invisible 3017 // reference. 3018 if (getRecordArgABI(RT, getCXXABI())) 3019 return; 3020 3021 const RecordDecl *RD = RT->getDecl(); 3022 3023 // Assume variable sized types are passed in memory. 3024 if (RD->hasFlexibleArrayMember()) 3025 return; 3026 3027 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 3028 3029 // Reset Lo class, this will be recomputed. 3030 Current = NoClass; 3031 3032 // If this is a C++ record, classify the bases first. 3033 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3034 for (const auto &I : CXXRD->bases()) { 3035 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3036 "Unexpected base class!"); 3037 const auto *Base = 3038 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3039 3040 // Classify this field. 3041 // 3042 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a 3043 // single eightbyte, each is classified separately. Each eightbyte gets 3044 // initialized to class NO_CLASS. 3045 Class FieldLo, FieldHi; 3046 uint64_t Offset = 3047 OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base)); 3048 classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg); 3049 Lo = merge(Lo, FieldLo); 3050 Hi = merge(Hi, FieldHi); 3051 if (Lo == Memory || Hi == Memory) { 3052 postMerge(Size, Lo, Hi); 3053 return; 3054 } 3055 } 3056 } 3057 3058 // Classify the fields one at a time, merging the results. 3059 unsigned idx = 0; 3060 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3061 i != e; ++i, ++idx) { 3062 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3063 bool BitField = i->isBitField(); 3064 3065 // Ignore padding bit-fields. 3066 if (BitField && i->isUnnamedBitfield()) 3067 continue; 3068 3069 // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than 3070 // four eightbytes, or it contains unaligned fields, it has class MEMORY. 3071 // 3072 // The only case a 256-bit wide vector could be used is when the struct 3073 // contains a single 256-bit element. Since Lo and Hi logic isn't extended 3074 // to work for sizes wider than 128, early check and fallback to memory. 3075 // 3076 if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) || 3077 Size > getNativeVectorSizeForAVXABI(AVXLevel))) { 3078 Lo = Memory; 3079 postMerge(Size, Lo, Hi); 3080 return; 3081 } 3082 // Note, skip this test for bit-fields, see below. 3083 if (!BitField && Offset % getContext().getTypeAlign(i->getType())) { 3084 Lo = Memory; 3085 postMerge(Size, Lo, Hi); 3086 return; 3087 } 3088 3089 // Classify this field. 3090 // 3091 // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate 3092 // exceeds a single eightbyte, each is classified 3093 // separately. Each eightbyte gets initialized to class 3094 // NO_CLASS. 3095 Class FieldLo, FieldHi; 3096 3097 // Bit-fields require special handling, they do not force the 3098 // structure to be passed in memory even if unaligned, and 3099 // therefore they can straddle an eightbyte. 3100 if (BitField) { 3101 assert(!i->isUnnamedBitfield()); 3102 uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx); 3103 uint64_t Size = i->getBitWidthValue(getContext()); 3104 3105 uint64_t EB_Lo = Offset / 64; 3106 uint64_t EB_Hi = (Offset + Size - 1) / 64; 3107 3108 if (EB_Lo) { 3109 assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes."); 3110 FieldLo = NoClass; 3111 FieldHi = Integer; 3112 } else { 3113 FieldLo = Integer; 3114 FieldHi = EB_Hi ? Integer : NoClass; 3115 } 3116 } else 3117 classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg); 3118 Lo = merge(Lo, FieldLo); 3119 Hi = merge(Hi, FieldHi); 3120 if (Lo == Memory || Hi == Memory) 3121 break; 3122 } 3123 3124 postMerge(Size, Lo, Hi); 3125 } 3126 } 3127 3128 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const { 3129 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3130 // place naturally. 3131 if (!isAggregateTypeForABI(Ty)) { 3132 // Treat an enum type as its underlying type. 3133 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3134 Ty = EnumTy->getDecl()->getIntegerType(); 3135 3136 if (Ty->isExtIntType()) 3137 return getNaturalAlignIndirect(Ty); 3138 3139 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3140 : ABIArgInfo::getDirect()); 3141 } 3142 3143 return getNaturalAlignIndirect(Ty); 3144 } 3145 3146 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const { 3147 if (const VectorType *VecTy = Ty->getAs<VectorType>()) { 3148 uint64_t Size = getContext().getTypeSize(VecTy); 3149 unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel); 3150 if (Size <= 64 || Size > LargestVector) 3151 return true; 3152 QualType EltTy = VecTy->getElementType(); 3153 if (passInt128VectorsInMem() && 3154 (EltTy->isSpecificBuiltinType(BuiltinType::Int128) || 3155 EltTy->isSpecificBuiltinType(BuiltinType::UInt128))) 3156 return true; 3157 } 3158 3159 return false; 3160 } 3161 3162 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty, 3163 unsigned freeIntRegs) const { 3164 // If this is a scalar LLVM value then assume LLVM will pass it in the right 3165 // place naturally. 3166 // 3167 // This assumption is optimistic, as there could be free registers available 3168 // when we need to pass this argument in memory, and LLVM could try to pass 3169 // the argument in the free register. This does not seem to happen currently, 3170 // but this code would be much safer if we could mark the argument with 3171 // 'onstack'. See PR12193. 3172 if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) && 3173 !Ty->isExtIntType()) { 3174 // Treat an enum type as its underlying type. 3175 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3176 Ty = EnumTy->getDecl()->getIntegerType(); 3177 3178 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 3179 : ABIArgInfo::getDirect()); 3180 } 3181 3182 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 3183 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 3184 3185 // Compute the byval alignment. We specify the alignment of the byval in all 3186 // cases so that the mid-level optimizer knows the alignment of the byval. 3187 unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U); 3188 3189 // Attempt to avoid passing indirect results using byval when possible. This 3190 // is important for good codegen. 3191 // 3192 // We do this by coercing the value into a scalar type which the backend can 3193 // handle naturally (i.e., without using byval). 3194 // 3195 // For simplicity, we currently only do this when we have exhausted all of the 3196 // free integer registers. Doing this when there are free integer registers 3197 // would require more care, as we would have to ensure that the coerced value 3198 // did not claim the unused register. That would require either reording the 3199 // arguments to the function (so that any subsequent inreg values came first), 3200 // or only doing this optimization when there were no following arguments that 3201 // might be inreg. 3202 // 3203 // We currently expect it to be rare (particularly in well written code) for 3204 // arguments to be passed on the stack when there are still free integer 3205 // registers available (this would typically imply large structs being passed 3206 // by value), so this seems like a fair tradeoff for now. 3207 // 3208 // We can revisit this if the backend grows support for 'onstack' parameter 3209 // attributes. See PR12193. 3210 if (freeIntRegs == 0) { 3211 uint64_t Size = getContext().getTypeSize(Ty); 3212 3213 // If this type fits in an eightbyte, coerce it into the matching integral 3214 // type, which will end up on the stack (with alignment 8). 3215 if (Align == 8 && Size <= 64) 3216 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 3217 Size)); 3218 } 3219 3220 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align)); 3221 } 3222 3223 /// The ABI specifies that a value should be passed in a full vector XMM/YMM 3224 /// register. Pick an LLVM IR type that will be passed as a vector register. 3225 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const { 3226 // Wrapper structs/arrays that only contain vectors are passed just like 3227 // vectors; strip them off if present. 3228 if (const Type *InnerTy = isSingleElementStruct(Ty, getContext())) 3229 Ty = QualType(InnerTy, 0); 3230 3231 llvm::Type *IRType = CGT.ConvertType(Ty); 3232 if (isa<llvm::VectorType>(IRType)) { 3233 // Don't pass vXi128 vectors in their native type, the backend can't 3234 // legalize them. 3235 if (passInt128VectorsInMem() && 3236 cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) { 3237 // Use a vXi64 vector. 3238 uint64_t Size = getContext().getTypeSize(Ty); 3239 return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()), 3240 Size / 64); 3241 } 3242 3243 return IRType; 3244 } 3245 3246 if (IRType->getTypeID() == llvm::Type::FP128TyID) 3247 return IRType; 3248 3249 // We couldn't find the preferred IR vector type for 'Ty'. 3250 uint64_t Size = getContext().getTypeSize(Ty); 3251 assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!"); 3252 3253 3254 // Return a LLVM IR vector type based on the size of 'Ty'. 3255 return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()), 3256 Size / 64); 3257 } 3258 3259 /// BitsContainNoUserData - Return true if the specified [start,end) bit range 3260 /// is known to either be off the end of the specified type or being in 3261 /// alignment padding. The user type specified is known to be at most 128 bits 3262 /// in size, and have passed through X86_64ABIInfo::classify with a successful 3263 /// classification that put one of the two halves in the INTEGER class. 3264 /// 3265 /// It is conservatively correct to return false. 3266 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit, 3267 unsigned EndBit, ASTContext &Context) { 3268 // If the bytes being queried are off the end of the type, there is no user 3269 // data hiding here. This handles analysis of builtins, vectors and other 3270 // types that don't contain interesting padding. 3271 unsigned TySize = (unsigned)Context.getTypeSize(Ty); 3272 if (TySize <= StartBit) 3273 return true; 3274 3275 if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) { 3276 unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType()); 3277 unsigned NumElts = (unsigned)AT->getSize().getZExtValue(); 3278 3279 // Check each element to see if the element overlaps with the queried range. 3280 for (unsigned i = 0; i != NumElts; ++i) { 3281 // If the element is after the span we care about, then we're done.. 3282 unsigned EltOffset = i*EltSize; 3283 if (EltOffset >= EndBit) break; 3284 3285 unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0; 3286 if (!BitsContainNoUserData(AT->getElementType(), EltStart, 3287 EndBit-EltOffset, Context)) 3288 return false; 3289 } 3290 // If it overlaps no elements, then it is safe to process as padding. 3291 return true; 3292 } 3293 3294 if (const RecordType *RT = Ty->getAs<RecordType>()) { 3295 const RecordDecl *RD = RT->getDecl(); 3296 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 3297 3298 // If this is a C++ record, check the bases first. 3299 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 3300 for (const auto &I : CXXRD->bases()) { 3301 assert(!I.isVirtual() && !I.getType()->isDependentType() && 3302 "Unexpected base class!"); 3303 const auto *Base = 3304 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 3305 3306 // If the base is after the span we care about, ignore it. 3307 unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base)); 3308 if (BaseOffset >= EndBit) continue; 3309 3310 unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0; 3311 if (!BitsContainNoUserData(I.getType(), BaseStart, 3312 EndBit-BaseOffset, Context)) 3313 return false; 3314 } 3315 } 3316 3317 // Verify that no field has data that overlaps the region of interest. Yes 3318 // this could be sped up a lot by being smarter about queried fields, 3319 // however we're only looking at structs up to 16 bytes, so we don't care 3320 // much. 3321 unsigned idx = 0; 3322 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 3323 i != e; ++i, ++idx) { 3324 unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx); 3325 3326 // If we found a field after the region we care about, then we're done. 3327 if (FieldOffset >= EndBit) break; 3328 3329 unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0; 3330 if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset, 3331 Context)) 3332 return false; 3333 } 3334 3335 // If nothing in this record overlapped the area of interest, then we're 3336 // clean. 3337 return true; 3338 } 3339 3340 return false; 3341 } 3342 3343 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a 3344 /// float member at the specified offset. For example, {int,{float}} has a 3345 /// float at offset 4. It is conservatively correct for this routine to return 3346 /// false. 3347 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset, 3348 const llvm::DataLayout &TD) { 3349 // Base case if we find a float. 3350 if (IROffset == 0 && IRType->isFloatTy()) 3351 return true; 3352 3353 // If this is a struct, recurse into the field at the specified offset. 3354 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3355 const llvm::StructLayout *SL = TD.getStructLayout(STy); 3356 unsigned Elt = SL->getElementContainingOffset(IROffset); 3357 IROffset -= SL->getElementOffset(Elt); 3358 return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD); 3359 } 3360 3361 // If this is an array, recurse into the field at the specified offset. 3362 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3363 llvm::Type *EltTy = ATy->getElementType(); 3364 unsigned EltSize = TD.getTypeAllocSize(EltTy); 3365 IROffset -= IROffset/EltSize*EltSize; 3366 return ContainsFloatAtOffset(EltTy, IROffset, TD); 3367 } 3368 3369 return false; 3370 } 3371 3372 3373 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the 3374 /// low 8 bytes of an XMM register, corresponding to the SSE class. 3375 llvm::Type *X86_64ABIInfo:: 3376 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3377 QualType SourceTy, unsigned SourceOffset) const { 3378 // The only three choices we have are either double, <2 x float>, or float. We 3379 // pass as float if the last 4 bytes is just padding. This happens for 3380 // structs that contain 3 floats. 3381 if (BitsContainNoUserData(SourceTy, SourceOffset*8+32, 3382 SourceOffset*8+64, getContext())) 3383 return llvm::Type::getFloatTy(getVMContext()); 3384 3385 // We want to pass as <2 x float> if the LLVM IR type contains a float at 3386 // offset+0 and offset+4. Walk the LLVM IR type to find out if this is the 3387 // case. 3388 if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) && 3389 ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout())) 3390 return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()), 3391 2); 3392 3393 return llvm::Type::getDoubleTy(getVMContext()); 3394 } 3395 3396 3397 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in 3398 /// an 8-byte GPR. This means that we either have a scalar or we are talking 3399 /// about the high or low part of an up-to-16-byte struct. This routine picks 3400 /// the best LLVM IR type to represent this, which may be i64 or may be anything 3401 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*, 3402 /// etc). 3403 /// 3404 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for 3405 /// the source type. IROffset is an offset in bytes into the LLVM IR type that 3406 /// the 8-byte value references. PrefType may be null. 3407 /// 3408 /// SourceTy is the source-level type for the entire argument. SourceOffset is 3409 /// an offset into this that we're processing (which is always either 0 or 8). 3410 /// 3411 llvm::Type *X86_64ABIInfo:: 3412 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset, 3413 QualType SourceTy, unsigned SourceOffset) const { 3414 // If we're dealing with an un-offset LLVM IR type, then it means that we're 3415 // returning an 8-byte unit starting with it. See if we can safely use it. 3416 if (IROffset == 0) { 3417 // Pointers and int64's always fill the 8-byte unit. 3418 if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) || 3419 IRType->isIntegerTy(64)) 3420 return IRType; 3421 3422 // If we have a 1/2/4-byte integer, we can use it only if the rest of the 3423 // goodness in the source type is just tail padding. This is allowed to 3424 // kick in for struct {double,int} on the int, but not on 3425 // struct{double,int,int} because we wouldn't return the second int. We 3426 // have to do this analysis on the source type because we can't depend on 3427 // unions being lowered a specific way etc. 3428 if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) || 3429 IRType->isIntegerTy(32) || 3430 (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) { 3431 unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 : 3432 cast<llvm::IntegerType>(IRType)->getBitWidth(); 3433 3434 if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth, 3435 SourceOffset*8+64, getContext())) 3436 return IRType; 3437 } 3438 } 3439 3440 if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) { 3441 // If this is a struct, recurse into the field at the specified offset. 3442 const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy); 3443 if (IROffset < SL->getSizeInBytes()) { 3444 unsigned FieldIdx = SL->getElementContainingOffset(IROffset); 3445 IROffset -= SL->getElementOffset(FieldIdx); 3446 3447 return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset, 3448 SourceTy, SourceOffset); 3449 } 3450 } 3451 3452 if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) { 3453 llvm::Type *EltTy = ATy->getElementType(); 3454 unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy); 3455 unsigned EltOffset = IROffset/EltSize*EltSize; 3456 return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy, 3457 SourceOffset); 3458 } 3459 3460 // Okay, we don't have any better idea of what to pass, so we pass this in an 3461 // integer register that isn't too big to fit the rest of the struct. 3462 unsigned TySizeInBytes = 3463 (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity(); 3464 3465 assert(TySizeInBytes != SourceOffset && "Empty field?"); 3466 3467 // It is always safe to classify this as an integer type up to i64 that 3468 // isn't larger than the structure. 3469 return llvm::IntegerType::get(getVMContext(), 3470 std::min(TySizeInBytes-SourceOffset, 8U)*8); 3471 } 3472 3473 3474 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally 3475 /// be used as elements of a two register pair to pass or return, return a 3476 /// first class aggregate to represent them. For example, if the low part of 3477 /// a by-value argument should be passed as i32* and the high part as float, 3478 /// return {i32*, float}. 3479 static llvm::Type * 3480 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi, 3481 const llvm::DataLayout &TD) { 3482 // In order to correctly satisfy the ABI, we need to the high part to start 3483 // at offset 8. If the high and low parts we inferred are both 4-byte types 3484 // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have 3485 // the second element at offset 8. Check for this: 3486 unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo); 3487 unsigned HiAlign = TD.getABITypeAlignment(Hi); 3488 unsigned HiStart = llvm::alignTo(LoSize, HiAlign); 3489 assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!"); 3490 3491 // To handle this, we have to increase the size of the low part so that the 3492 // second element will start at an 8 byte offset. We can't increase the size 3493 // of the second element because it might make us access off the end of the 3494 // struct. 3495 if (HiStart != 8) { 3496 // There are usually two sorts of types the ABI generation code can produce 3497 // for the low part of a pair that aren't 8 bytes in size: float or 3498 // i8/i16/i32. This can also include pointers when they are 32-bit (X32 and 3499 // NaCl). 3500 // Promote these to a larger type. 3501 if (Lo->isFloatTy()) 3502 Lo = llvm::Type::getDoubleTy(Lo->getContext()); 3503 else { 3504 assert((Lo->isIntegerTy() || Lo->isPointerTy()) 3505 && "Invalid/unknown lo type"); 3506 Lo = llvm::Type::getInt64Ty(Lo->getContext()); 3507 } 3508 } 3509 3510 llvm::StructType *Result = llvm::StructType::get(Lo, Hi); 3511 3512 // Verify that the second element is at an 8-byte offset. 3513 assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 && 3514 "Invalid x86-64 argument pair!"); 3515 return Result; 3516 } 3517 3518 ABIArgInfo X86_64ABIInfo:: 3519 classifyReturnType(QualType RetTy) const { 3520 // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the 3521 // classification algorithm. 3522 X86_64ABIInfo::Class Lo, Hi; 3523 classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true); 3524 3525 // Check some invariants. 3526 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3527 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3528 3529 llvm::Type *ResType = nullptr; 3530 switch (Lo) { 3531 case NoClass: 3532 if (Hi == NoClass) 3533 return ABIArgInfo::getIgnore(); 3534 // If the low part is just padding, it takes no register, leave ResType 3535 // null. 3536 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3537 "Unknown missing lo part"); 3538 break; 3539 3540 case SSEUp: 3541 case X87Up: 3542 llvm_unreachable("Invalid classification for lo word."); 3543 3544 // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via 3545 // hidden argument. 3546 case Memory: 3547 return getIndirectReturnResult(RetTy); 3548 3549 // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next 3550 // available register of the sequence %rax, %rdx is used. 3551 case Integer: 3552 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3553 3554 // If we have a sign or zero extended integer, make sure to return Extend 3555 // so that the parameter gets the right LLVM IR attributes. 3556 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3557 // Treat an enum type as its underlying type. 3558 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 3559 RetTy = EnumTy->getDecl()->getIntegerType(); 3560 3561 if (RetTy->isIntegralOrEnumerationType() && 3562 isPromotableIntegerTypeForABI(RetTy)) 3563 return ABIArgInfo::getExtend(RetTy); 3564 } 3565 break; 3566 3567 // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next 3568 // available SSE register of the sequence %xmm0, %xmm1 is used. 3569 case SSE: 3570 ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0); 3571 break; 3572 3573 // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is 3574 // returned on the X87 stack in %st0 as 80-bit x87 number. 3575 case X87: 3576 ResType = llvm::Type::getX86_FP80Ty(getVMContext()); 3577 break; 3578 3579 // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real 3580 // part of the value is returned in %st0 and the imaginary part in 3581 // %st1. 3582 case ComplexX87: 3583 assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification."); 3584 ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()), 3585 llvm::Type::getX86_FP80Ty(getVMContext())); 3586 break; 3587 } 3588 3589 llvm::Type *HighPart = nullptr; 3590 switch (Hi) { 3591 // Memory was handled previously and X87 should 3592 // never occur as a hi class. 3593 case Memory: 3594 case X87: 3595 llvm_unreachable("Invalid classification for hi word."); 3596 3597 case ComplexX87: // Previously handled. 3598 case NoClass: 3599 break; 3600 3601 case Integer: 3602 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3603 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3604 return ABIArgInfo::getDirect(HighPart, 8); 3605 break; 3606 case SSE: 3607 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3608 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3609 return ABIArgInfo::getDirect(HighPart, 8); 3610 break; 3611 3612 // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte 3613 // is passed in the next available eightbyte chunk if the last used 3614 // vector register. 3615 // 3616 // SSEUP should always be preceded by SSE, just widen. 3617 case SSEUp: 3618 assert(Lo == SSE && "Unexpected SSEUp classification."); 3619 ResType = GetByteVectorType(RetTy); 3620 break; 3621 3622 // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is 3623 // returned together with the previous X87 value in %st0. 3624 case X87Up: 3625 // If X87Up is preceded by X87, we don't need to do 3626 // anything. However, in some cases with unions it may not be 3627 // preceded by X87. In such situations we follow gcc and pass the 3628 // extra bits in an SSE reg. 3629 if (Lo != X87) { 3630 HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8); 3631 if (Lo == NoClass) // Return HighPart at offset 8 in memory. 3632 return ABIArgInfo::getDirect(HighPart, 8); 3633 } 3634 break; 3635 } 3636 3637 // If a high part was specified, merge it together with the low part. It is 3638 // known to pass in the high eightbyte of the result. We do this by forming a 3639 // first class struct aggregate with the high and low part: {low, high} 3640 if (HighPart) 3641 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3642 3643 return ABIArgInfo::getDirect(ResType); 3644 } 3645 3646 ABIArgInfo X86_64ABIInfo::classifyArgumentType( 3647 QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE, 3648 bool isNamedArg) 3649 const 3650 { 3651 Ty = useFirstFieldIfTransparentUnion(Ty); 3652 3653 X86_64ABIInfo::Class Lo, Hi; 3654 classify(Ty, 0, Lo, Hi, isNamedArg); 3655 3656 // Check some invariants. 3657 // FIXME: Enforce these by construction. 3658 assert((Hi != Memory || Lo == Memory) && "Invalid memory classification."); 3659 assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification."); 3660 3661 neededInt = 0; 3662 neededSSE = 0; 3663 llvm::Type *ResType = nullptr; 3664 switch (Lo) { 3665 case NoClass: 3666 if (Hi == NoClass) 3667 return ABIArgInfo::getIgnore(); 3668 // If the low part is just padding, it takes no register, leave ResType 3669 // null. 3670 assert((Hi == SSE || Hi == Integer || Hi == X87Up) && 3671 "Unknown missing lo part"); 3672 break; 3673 3674 // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument 3675 // on the stack. 3676 case Memory: 3677 3678 // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or 3679 // COMPLEX_X87, it is passed in memory. 3680 case X87: 3681 case ComplexX87: 3682 if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect) 3683 ++neededInt; 3684 return getIndirectResult(Ty, freeIntRegs); 3685 3686 case SSEUp: 3687 case X87Up: 3688 llvm_unreachable("Invalid classification for lo word."); 3689 3690 // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next 3691 // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8 3692 // and %r9 is used. 3693 case Integer: 3694 ++neededInt; 3695 3696 // Pick an 8-byte type based on the preferred type. 3697 ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0); 3698 3699 // If we have a sign or zero extended integer, make sure to return Extend 3700 // so that the parameter gets the right LLVM IR attributes. 3701 if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) { 3702 // Treat an enum type as its underlying type. 3703 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 3704 Ty = EnumTy->getDecl()->getIntegerType(); 3705 3706 if (Ty->isIntegralOrEnumerationType() && 3707 isPromotableIntegerTypeForABI(Ty)) 3708 return ABIArgInfo::getExtend(Ty); 3709 } 3710 3711 break; 3712 3713 // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next 3714 // available SSE register is used, the registers are taken in the 3715 // order from %xmm0 to %xmm7. 3716 case SSE: { 3717 llvm::Type *IRType = CGT.ConvertType(Ty); 3718 ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0); 3719 ++neededSSE; 3720 break; 3721 } 3722 } 3723 3724 llvm::Type *HighPart = nullptr; 3725 switch (Hi) { 3726 // Memory was handled previously, ComplexX87 and X87 should 3727 // never occur as hi classes, and X87Up must be preceded by X87, 3728 // which is passed in memory. 3729 case Memory: 3730 case X87: 3731 case ComplexX87: 3732 llvm_unreachable("Invalid classification for hi word."); 3733 3734 case NoClass: break; 3735 3736 case Integer: 3737 ++neededInt; 3738 // Pick an 8-byte type based on the preferred type. 3739 HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3740 3741 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3742 return ABIArgInfo::getDirect(HighPart, 8); 3743 break; 3744 3745 // X87Up generally doesn't occur here (long double is passed in 3746 // memory), except in situations involving unions. 3747 case X87Up: 3748 case SSE: 3749 HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8); 3750 3751 if (Lo == NoClass) // Pass HighPart at offset 8 in memory. 3752 return ABIArgInfo::getDirect(HighPart, 8); 3753 3754 ++neededSSE; 3755 break; 3756 3757 // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the 3758 // eightbyte is passed in the upper half of the last used SSE 3759 // register. This only happens when 128-bit vectors are passed. 3760 case SSEUp: 3761 assert(Lo == SSE && "Unexpected SSEUp classification"); 3762 ResType = GetByteVectorType(Ty); 3763 break; 3764 } 3765 3766 // If a high part was specified, merge it together with the low part. It is 3767 // known to pass in the high eightbyte of the result. We do this by forming a 3768 // first class struct aggregate with the high and low part: {low, high} 3769 if (HighPart) 3770 ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout()); 3771 3772 return ABIArgInfo::getDirect(ResType); 3773 } 3774 3775 ABIArgInfo 3776 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt, 3777 unsigned &NeededSSE) const { 3778 auto RT = Ty->getAs<RecordType>(); 3779 assert(RT && "classifyRegCallStructType only valid with struct types"); 3780 3781 if (RT->getDecl()->hasFlexibleArrayMember()) 3782 return getIndirectReturnResult(Ty); 3783 3784 // Sum up bases 3785 if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) { 3786 if (CXXRD->isDynamicClass()) { 3787 NeededInt = NeededSSE = 0; 3788 return getIndirectReturnResult(Ty); 3789 } 3790 3791 for (const auto &I : CXXRD->bases()) 3792 if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE) 3793 .isIndirect()) { 3794 NeededInt = NeededSSE = 0; 3795 return getIndirectReturnResult(Ty); 3796 } 3797 } 3798 3799 // Sum up members 3800 for (const auto *FD : RT->getDecl()->fields()) { 3801 if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) { 3802 if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE) 3803 .isIndirect()) { 3804 NeededInt = NeededSSE = 0; 3805 return getIndirectReturnResult(Ty); 3806 } 3807 } else { 3808 unsigned LocalNeededInt, LocalNeededSSE; 3809 if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt, 3810 LocalNeededSSE, true) 3811 .isIndirect()) { 3812 NeededInt = NeededSSE = 0; 3813 return getIndirectReturnResult(Ty); 3814 } 3815 NeededInt += LocalNeededInt; 3816 NeededSSE += LocalNeededSSE; 3817 } 3818 } 3819 3820 return ABIArgInfo::getDirect(); 3821 } 3822 3823 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty, 3824 unsigned &NeededInt, 3825 unsigned &NeededSSE) const { 3826 3827 NeededInt = 0; 3828 NeededSSE = 0; 3829 3830 return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE); 3831 } 3832 3833 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 3834 3835 const unsigned CallingConv = FI.getCallingConvention(); 3836 // It is possible to force Win64 calling convention on any x86_64 target by 3837 // using __attribute__((ms_abi)). In such case to correctly emit Win64 3838 // compatible code delegate this call to WinX86_64ABIInfo::computeInfo. 3839 if (CallingConv == llvm::CallingConv::Win64) { 3840 WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel); 3841 Win64ABIInfo.computeInfo(FI); 3842 return; 3843 } 3844 3845 bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall; 3846 3847 // Keep track of the number of assigned registers. 3848 unsigned FreeIntRegs = IsRegCall ? 11 : 6; 3849 unsigned FreeSSERegs = IsRegCall ? 16 : 8; 3850 unsigned NeededInt, NeededSSE; 3851 3852 if (!::classifyReturnType(getCXXABI(), FI, *this)) { 3853 if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() && 3854 !FI.getReturnType()->getTypePtr()->isUnionType()) { 3855 FI.getReturnInfo() = 3856 classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE); 3857 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3858 FreeIntRegs -= NeededInt; 3859 FreeSSERegs -= NeededSSE; 3860 } else { 3861 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3862 } 3863 } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() && 3864 getContext().getCanonicalType(FI.getReturnType() 3865 ->getAs<ComplexType>() 3866 ->getElementType()) == 3867 getContext().LongDoubleTy) 3868 // Complex Long Double Type is passed in Memory when Regcall 3869 // calling convention is used. 3870 FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType()); 3871 else 3872 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 3873 } 3874 3875 // If the return value is indirect, then the hidden argument is consuming one 3876 // integer register. 3877 if (FI.getReturnInfo().isIndirect()) 3878 --FreeIntRegs; 3879 3880 // The chain argument effectively gives us another free register. 3881 if (FI.isChainCall()) 3882 ++FreeIntRegs; 3883 3884 unsigned NumRequiredArgs = FI.getNumRequiredArgs(); 3885 // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers 3886 // get assigned (in left-to-right order) for passing as follows... 3887 unsigned ArgNo = 0; 3888 for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end(); 3889 it != ie; ++it, ++ArgNo) { 3890 bool IsNamedArg = ArgNo < NumRequiredArgs; 3891 3892 if (IsRegCall && it->type->isStructureOrClassType()) 3893 it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE); 3894 else 3895 it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt, 3896 NeededSSE, IsNamedArg); 3897 3898 // AMD64-ABI 3.2.3p3: If there are no registers available for any 3899 // eightbyte of an argument, the whole argument is passed on the 3900 // stack. If registers have already been assigned for some 3901 // eightbytes of such an argument, the assignments get reverted. 3902 if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) { 3903 FreeIntRegs -= NeededInt; 3904 FreeSSERegs -= NeededSSE; 3905 } else { 3906 it->info = getIndirectResult(it->type, FreeIntRegs); 3907 } 3908 } 3909 } 3910 3911 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF, 3912 Address VAListAddr, QualType Ty) { 3913 Address overflow_arg_area_p = 3914 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p"); 3915 llvm::Value *overflow_arg_area = 3916 CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area"); 3917 3918 // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16 3919 // byte boundary if alignment needed by type exceeds 8 byte boundary. 3920 // It isn't stated explicitly in the standard, but in practice we use 3921 // alignment greater than 16 where necessary. 3922 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 3923 if (Align > CharUnits::fromQuantity(8)) { 3924 overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area, 3925 Align); 3926 } 3927 3928 // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area. 3929 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 3930 llvm::Value *Res = 3931 CGF.Builder.CreateBitCast(overflow_arg_area, 3932 llvm::PointerType::getUnqual(LTy)); 3933 3934 // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to: 3935 // l->overflow_arg_area + sizeof(type). 3936 // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to 3937 // an 8 byte boundary. 3938 3939 uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8; 3940 llvm::Value *Offset = 3941 llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7) & ~7); 3942 overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset, 3943 "overflow_arg_area.next"); 3944 CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p); 3945 3946 // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type. 3947 return Address(Res, Align); 3948 } 3949 3950 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 3951 QualType Ty) const { 3952 // Assume that va_list type is correct; should be pointer to LLVM type: 3953 // struct { 3954 // i32 gp_offset; 3955 // i32 fp_offset; 3956 // i8* overflow_arg_area; 3957 // i8* reg_save_area; 3958 // }; 3959 unsigned neededInt, neededSSE; 3960 3961 Ty = getContext().getCanonicalType(Ty); 3962 ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE, 3963 /*isNamedArg*/false); 3964 3965 // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed 3966 // in the registers. If not go to step 7. 3967 if (!neededInt && !neededSSE) 3968 return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 3969 3970 // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of 3971 // general purpose registers needed to pass type and num_fp to hold 3972 // the number of floating point registers needed. 3973 3974 // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into 3975 // registers. In the case: l->gp_offset > 48 - num_gp * 8 or 3976 // l->fp_offset > 304 - num_fp * 16 go to step 7. 3977 // 3978 // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of 3979 // register save space). 3980 3981 llvm::Value *InRegs = nullptr; 3982 Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid(); 3983 llvm::Value *gp_offset = nullptr, *fp_offset = nullptr; 3984 if (neededInt) { 3985 gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p"); 3986 gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset"); 3987 InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8); 3988 InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp"); 3989 } 3990 3991 if (neededSSE) { 3992 fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p"); 3993 fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset"); 3994 llvm::Value *FitsInFP = 3995 llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16); 3996 FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp"); 3997 InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP; 3998 } 3999 4000 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 4001 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 4002 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 4003 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 4004 4005 // Emit code to load the value if it was passed in registers. 4006 4007 CGF.EmitBlock(InRegBlock); 4008 4009 // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with 4010 // an offset of l->gp_offset and/or l->fp_offset. This may require 4011 // copying to a temporary location in case the parameter is passed 4012 // in different register classes or requires an alignment greater 4013 // than 8 for general purpose registers and 16 for XMM registers. 4014 // 4015 // FIXME: This really results in shameful code when we end up needing to 4016 // collect arguments from different places; often what should result in a 4017 // simple assembling of a structure from scattered addresses has many more 4018 // loads than necessary. Can we clean this up? 4019 llvm::Type *LTy = CGF.ConvertTypeForMem(Ty); 4020 llvm::Value *RegSaveArea = CGF.Builder.CreateLoad( 4021 CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area"); 4022 4023 Address RegAddr = Address::invalid(); 4024 if (neededInt && neededSSE) { 4025 // FIXME: Cleanup. 4026 assert(AI.isDirect() && "Unexpected ABI info for mixed regs"); 4027 llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType()); 4028 Address Tmp = CGF.CreateMemTemp(Ty); 4029 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4030 assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs"); 4031 llvm::Type *TyLo = ST->getElementType(0); 4032 llvm::Type *TyHi = ST->getElementType(1); 4033 assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) && 4034 "Unexpected ABI info for mixed regs"); 4035 llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo); 4036 llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi); 4037 llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset); 4038 llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset); 4039 llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr; 4040 llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr; 4041 4042 // Copy the first element. 4043 // FIXME: Our choice of alignment here and below is probably pessimistic. 4044 llvm::Value *V = CGF.Builder.CreateAlignedLoad( 4045 TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo), 4046 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo))); 4047 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4048 4049 // Copy the second element. 4050 V = CGF.Builder.CreateAlignedLoad( 4051 TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi), 4052 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi))); 4053 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4054 4055 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4056 } else if (neededInt) { 4057 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset), 4058 CharUnits::fromQuantity(8)); 4059 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4060 4061 // Copy to a temporary if necessary to ensure the appropriate alignment. 4062 std::pair<CharUnits, CharUnits> SizeAlign = 4063 getContext().getTypeInfoInChars(Ty); 4064 uint64_t TySize = SizeAlign.first.getQuantity(); 4065 CharUnits TyAlign = SizeAlign.second; 4066 4067 // Copy into a temporary if the type is more aligned than the 4068 // register save area. 4069 if (TyAlign.getQuantity() > 8) { 4070 Address Tmp = CGF.CreateMemTemp(Ty); 4071 CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false); 4072 RegAddr = Tmp; 4073 } 4074 4075 } else if (neededSSE == 1) { 4076 RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4077 CharUnits::fromQuantity(16)); 4078 RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy); 4079 } else { 4080 assert(neededSSE == 2 && "Invalid number of needed registers!"); 4081 // SSE registers are spaced 16 bytes apart in the register save 4082 // area, we need to collect the two eightbytes together. 4083 // The ABI isn't explicit about this, but it seems reasonable 4084 // to assume that the slots are 16-byte aligned, since the stack is 4085 // naturally 16-byte aligned and the prologue is expected to store 4086 // all the SSE registers to the RSA. 4087 Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset), 4088 CharUnits::fromQuantity(16)); 4089 Address RegAddrHi = 4090 CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo, 4091 CharUnits::fromQuantity(16)); 4092 llvm::Type *ST = AI.canHaveCoerceToType() 4093 ? AI.getCoerceToType() 4094 : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy); 4095 llvm::Value *V; 4096 Address Tmp = CGF.CreateMemTemp(Ty); 4097 Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST); 4098 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4099 RegAddrLo, ST->getStructElementType(0))); 4100 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0)); 4101 V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast( 4102 RegAddrHi, ST->getStructElementType(1))); 4103 CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1)); 4104 4105 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy); 4106 } 4107 4108 // AMD64-ABI 3.5.7p5: Step 5. Set: 4109 // l->gp_offset = l->gp_offset + num_gp * 8 4110 // l->fp_offset = l->fp_offset + num_fp * 16. 4111 if (neededInt) { 4112 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8); 4113 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset), 4114 gp_offset_p); 4115 } 4116 if (neededSSE) { 4117 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16); 4118 CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset), 4119 fp_offset_p); 4120 } 4121 CGF.EmitBranch(ContBlock); 4122 4123 // Emit code to load the value if it was passed in memory. 4124 4125 CGF.EmitBlock(InMemBlock); 4126 Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty); 4127 4128 // Return the appropriate result. 4129 4130 CGF.EmitBlock(ContBlock); 4131 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock, 4132 "vaarg.addr"); 4133 return ResAddr; 4134 } 4135 4136 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 4137 QualType Ty) const { 4138 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 4139 CGF.getContext().getTypeInfoInChars(Ty), 4140 CharUnits::fromQuantity(8), 4141 /*allowHigherAlign*/ false); 4142 } 4143 4144 ABIArgInfo 4145 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs, 4146 const ABIArgInfo ¤t) const { 4147 // Assumes vectorCall calling convention. 4148 const Type *Base = nullptr; 4149 uint64_t NumElts = 0; 4150 4151 if (!Ty->isBuiltinType() && !Ty->isVectorType() && 4152 isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) { 4153 FreeSSERegs -= NumElts; 4154 return getDirectX86Hva(); 4155 } 4156 return current; 4157 } 4158 4159 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs, 4160 bool IsReturnType, bool IsVectorCall, 4161 bool IsRegCall) const { 4162 4163 if (Ty->isVoidType()) 4164 return ABIArgInfo::getIgnore(); 4165 4166 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4167 Ty = EnumTy->getDecl()->getIntegerType(); 4168 4169 TypeInfo Info = getContext().getTypeInfo(Ty); 4170 uint64_t Width = Info.Width; 4171 CharUnits Align = getContext().toCharUnitsFromBits(Info.Align); 4172 4173 const RecordType *RT = Ty->getAs<RecordType>(); 4174 if (RT) { 4175 if (!IsReturnType) { 4176 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI())) 4177 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4178 } 4179 4180 if (RT->getDecl()->hasFlexibleArrayMember()) 4181 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4182 4183 } 4184 4185 const Type *Base = nullptr; 4186 uint64_t NumElts = 0; 4187 // vectorcall adds the concept of a homogenous vector aggregate, similar to 4188 // other targets. 4189 if ((IsVectorCall || IsRegCall) && 4190 isHomogeneousAggregate(Ty, Base, NumElts)) { 4191 if (IsRegCall) { 4192 if (FreeSSERegs >= NumElts) { 4193 FreeSSERegs -= NumElts; 4194 if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType()) 4195 return ABIArgInfo::getDirect(); 4196 return ABIArgInfo::getExpand(); 4197 } 4198 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4199 } else if (IsVectorCall) { 4200 if (FreeSSERegs >= NumElts && 4201 (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) { 4202 FreeSSERegs -= NumElts; 4203 return ABIArgInfo::getDirect(); 4204 } else if (IsReturnType) { 4205 return ABIArgInfo::getExpand(); 4206 } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) { 4207 // HVAs are delayed and reclassified in the 2nd step. 4208 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4209 } 4210 } 4211 } 4212 4213 if (Ty->isMemberPointerType()) { 4214 // If the member pointer is represented by an LLVM int or ptr, pass it 4215 // directly. 4216 llvm::Type *LLTy = CGT.ConvertType(Ty); 4217 if (LLTy->isPointerTy() || LLTy->isIntegerTy()) 4218 return ABIArgInfo::getDirect(); 4219 } 4220 4221 if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) { 4222 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4223 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4224 if (Width > 64 || !llvm::isPowerOf2_64(Width)) 4225 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 4226 4227 // Otherwise, coerce it to a small integer. 4228 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width)); 4229 } 4230 4231 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 4232 switch (BT->getKind()) { 4233 case BuiltinType::Bool: 4234 // Bool type is always extended to the ABI, other builtin types are not 4235 // extended. 4236 return ABIArgInfo::getExtend(Ty); 4237 4238 case BuiltinType::LongDouble: 4239 // Mingw64 GCC uses the old 80 bit extended precision floating point 4240 // unit. It passes them indirectly through memory. 4241 if (IsMingw64) { 4242 const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat(); 4243 if (LDF == &llvm::APFloat::x87DoubleExtended()) 4244 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4245 } 4246 break; 4247 4248 case BuiltinType::Int128: 4249 case BuiltinType::UInt128: 4250 // If it's a parameter type, the normal ABI rule is that arguments larger 4251 // than 8 bytes are passed indirectly. GCC follows it. We follow it too, 4252 // even though it isn't particularly efficient. 4253 if (!IsReturnType) 4254 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4255 4256 // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that. 4257 // Clang matches them for compatibility. 4258 return ABIArgInfo::getDirect(llvm::FixedVectorType::get( 4259 llvm::Type::getInt64Ty(getVMContext()), 2)); 4260 4261 default: 4262 break; 4263 } 4264 } 4265 4266 if (Ty->isExtIntType()) { 4267 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4268 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4269 // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes 4270 // anyway as long is it fits in them, so we don't have to check the power of 4271 // 2. 4272 if (Width <= 64) 4273 return ABIArgInfo::getDirect(); 4274 return ABIArgInfo::getIndirect(Align, /*ByVal=*/false); 4275 } 4276 4277 return ABIArgInfo::getDirect(); 4278 } 4279 4280 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI, 4281 unsigned FreeSSERegs, 4282 bool IsVectorCall, 4283 bool IsRegCall) const { 4284 unsigned Count = 0; 4285 for (auto &I : FI.arguments()) { 4286 // Vectorcall in x64 only permits the first 6 arguments to be passed 4287 // as XMM/YMM registers. 4288 if (Count < VectorcallMaxParamNumAsReg) 4289 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4290 else { 4291 // Since these cannot be passed in registers, pretend no registers 4292 // are left. 4293 unsigned ZeroSSERegsAvail = 0; 4294 I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false, 4295 IsVectorCall, IsRegCall); 4296 } 4297 ++Count; 4298 } 4299 4300 for (auto &I : FI.arguments()) { 4301 I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info); 4302 } 4303 } 4304 4305 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const { 4306 const unsigned CC = FI.getCallingConvention(); 4307 bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall; 4308 bool IsRegCall = CC == llvm::CallingConv::X86_RegCall; 4309 4310 // If __attribute__((sysv_abi)) is in use, use the SysV argument 4311 // classification rules. 4312 if (CC == llvm::CallingConv::X86_64_SysV) { 4313 X86_64ABIInfo SysVABIInfo(CGT, AVXLevel); 4314 SysVABIInfo.computeInfo(FI); 4315 return; 4316 } 4317 4318 unsigned FreeSSERegs = 0; 4319 if (IsVectorCall) { 4320 // We can use up to 4 SSE return registers with vectorcall. 4321 FreeSSERegs = 4; 4322 } else if (IsRegCall) { 4323 // RegCall gives us 16 SSE registers. 4324 FreeSSERegs = 16; 4325 } 4326 4327 if (!getCXXABI().classifyReturnType(FI)) 4328 FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true, 4329 IsVectorCall, IsRegCall); 4330 4331 if (IsVectorCall) { 4332 // We can use up to 6 SSE register parameters with vectorcall. 4333 FreeSSERegs = 6; 4334 } else if (IsRegCall) { 4335 // RegCall gives us 16 SSE registers, we can reuse the return registers. 4336 FreeSSERegs = 16; 4337 } 4338 4339 if (IsVectorCall) { 4340 computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall); 4341 } else { 4342 for (auto &I : FI.arguments()) 4343 I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall); 4344 } 4345 4346 } 4347 4348 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4349 QualType Ty) const { 4350 4351 bool IsIndirect = false; 4352 4353 // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is 4354 // not 1, 2, 4, or 8 bytes, must be passed by reference." 4355 if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) { 4356 uint64_t Width = getContext().getTypeSize(Ty); 4357 IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width); 4358 } 4359 4360 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 4361 CGF.getContext().getTypeInfoInChars(Ty), 4362 CharUnits::fromQuantity(8), 4363 /*allowHigherAlign*/ false); 4364 } 4365 4366 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4367 llvm::Value *Address, bool Is64Bit, 4368 bool IsAIX) { 4369 // This is calculated from the LLVM and GCC tables and verified 4370 // against gcc output. AFAIK all PPC ABIs use the same encoding. 4371 4372 CodeGen::CGBuilderTy &Builder = CGF.Builder; 4373 4374 llvm::IntegerType *i8 = CGF.Int8Ty; 4375 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 4376 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 4377 llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16); 4378 4379 // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers 4380 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31); 4381 4382 // 32-63: fp0-31, the 8-byte floating-point registers 4383 AssignToArrayRange(Builder, Address, Eight8, 32, 63); 4384 4385 // 64-67 are various 4-byte or 8-byte special-purpose registers: 4386 // 64: mq 4387 // 65: lr 4388 // 66: ctr 4389 // 67: ap 4390 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67); 4391 4392 // 68-76 are various 4-byte special-purpose registers: 4393 // 68-75 cr0-7 4394 // 76: xer 4395 AssignToArrayRange(Builder, Address, Four8, 68, 76); 4396 4397 // 77-108: v0-31, the 16-byte vector registers 4398 AssignToArrayRange(Builder, Address, Sixteen8, 77, 108); 4399 4400 // 109: vrsave 4401 // 110: vscr 4402 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110); 4403 4404 // AIX does not utilize the rest of the registers. 4405 if (IsAIX) 4406 return false; 4407 4408 // 111: spe_acc 4409 // 112: spefscr 4410 // 113: sfp 4411 AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113); 4412 4413 if (!Is64Bit) 4414 return false; 4415 4416 // TODO: Need to verify if these registers are used on 64 bit AIX with Power8 4417 // or above CPU. 4418 // 64-bit only registers: 4419 // 114: tfhar 4420 // 115: tfiar 4421 // 116: texasr 4422 AssignToArrayRange(Builder, Address, Eight8, 114, 116); 4423 4424 return false; 4425 } 4426 4427 // AIX 4428 namespace { 4429 /// AIXABIInfo - The AIX XCOFF ABI information. 4430 class AIXABIInfo : public ABIInfo { 4431 const bool Is64Bit; 4432 const unsigned PtrByteSize; 4433 CharUnits getParamTypeAlignment(QualType Ty) const; 4434 4435 public: 4436 AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4437 : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {} 4438 4439 bool isPromotableTypeForABI(QualType Ty) const; 4440 4441 ABIArgInfo classifyReturnType(QualType RetTy) const; 4442 ABIArgInfo classifyArgumentType(QualType Ty) const; 4443 4444 void computeInfo(CGFunctionInfo &FI) const override { 4445 if (!getCXXABI().classifyReturnType(FI)) 4446 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4447 4448 for (auto &I : FI.arguments()) 4449 I.info = classifyArgumentType(I.type); 4450 } 4451 4452 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4453 QualType Ty) const override; 4454 }; 4455 4456 class AIXTargetCodeGenInfo : public TargetCodeGenInfo { 4457 const bool Is64Bit; 4458 4459 public: 4460 AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit) 4461 : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)), 4462 Is64Bit(Is64Bit) {} 4463 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4464 return 1; // r1 is the dedicated stack pointer 4465 } 4466 4467 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4468 llvm::Value *Address) const override; 4469 }; 4470 } // namespace 4471 4472 // Return true if the ABI requires Ty to be passed sign- or zero- 4473 // extended to 32/64 bits. 4474 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const { 4475 // Treat an enum type as its underlying type. 4476 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 4477 Ty = EnumTy->getDecl()->getIntegerType(); 4478 4479 // Promotable integer types are required to be promoted by the ABI. 4480 if (Ty->isPromotableIntegerType()) 4481 return true; 4482 4483 if (!Is64Bit) 4484 return false; 4485 4486 // For 64 bit mode, in addition to the usual promotable integer types, we also 4487 // need to extend all 32-bit types, since the ABI requires promotion to 64 4488 // bits. 4489 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 4490 switch (BT->getKind()) { 4491 case BuiltinType::Int: 4492 case BuiltinType::UInt: 4493 return true; 4494 default: 4495 break; 4496 } 4497 4498 return false; 4499 } 4500 4501 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const { 4502 if (RetTy->isAnyComplexType()) 4503 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4504 4505 if (RetTy->isVectorType()) 4506 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4507 4508 if (RetTy->isVoidType()) 4509 return ABIArgInfo::getIgnore(); 4510 4511 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4512 // alignment here. 4513 if (isAggregateTypeForABI(RetTy)) 4514 return getNaturalAlignIndirect(RetTy); 4515 4516 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 4517 : ABIArgInfo::getDirect()); 4518 } 4519 4520 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const { 4521 Ty = useFirstFieldIfTransparentUnion(Ty); 4522 4523 if (Ty->isAnyComplexType()) 4524 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4525 4526 if (Ty->isVectorType()) 4527 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4528 4529 // TODO: Evaluate if AIX power alignment rule would have an impact on the 4530 // alignment here. 4531 if (isAggregateTypeForABI(Ty)) { 4532 // Records with non-trivial destructors/copy-constructors should not be 4533 // passed by value. 4534 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 4535 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 4536 4537 CharUnits CCAlign = getParamTypeAlignment(Ty); 4538 CharUnits TyAlign = getContext().getTypeAlignInChars(Ty); 4539 4540 return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true, 4541 /*Realign*/ TyAlign > CCAlign); 4542 } 4543 4544 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 4545 : ABIArgInfo::getDirect()); 4546 } 4547 4548 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const { 4549 if (Ty->isAnyComplexType()) 4550 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4551 4552 if (Ty->isVectorType()) 4553 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4554 4555 // If the structure contains a vector type, the alignment is 16. 4556 if (isRecordWithSIMDVectorType(getContext(), Ty)) 4557 return CharUnits::fromQuantity(16); 4558 4559 return CharUnits::fromQuantity(PtrByteSize); 4560 } 4561 4562 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4563 QualType Ty) const { 4564 if (Ty->isAnyComplexType()) 4565 llvm::report_fatal_error("complex type is not supported on AIX yet"); 4566 4567 if (Ty->isVectorType()) 4568 llvm::report_fatal_error("vector type is not supported on AIX yet"); 4569 4570 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 4571 TypeInfo.second = getParamTypeAlignment(Ty); 4572 4573 CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize); 4574 4575 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo, 4576 SlotSize, /*AllowHigher*/ true); 4577 } 4578 4579 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable( 4580 CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const { 4581 return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true); 4582 } 4583 4584 // PowerPC-32 4585 namespace { 4586 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information. 4587 class PPC32_SVR4_ABIInfo : public DefaultABIInfo { 4588 bool IsSoftFloatABI; 4589 bool IsRetSmallStructInRegABI; 4590 4591 CharUnits getParamTypeAlignment(QualType Ty) const; 4592 4593 public: 4594 PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI, 4595 bool RetSmallStructInRegABI) 4596 : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI), 4597 IsRetSmallStructInRegABI(RetSmallStructInRegABI) {} 4598 4599 ABIArgInfo classifyReturnType(QualType RetTy) const; 4600 4601 void computeInfo(CGFunctionInfo &FI) const override { 4602 if (!getCXXABI().classifyReturnType(FI)) 4603 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4604 for (auto &I : FI.arguments()) 4605 I.info = classifyArgumentType(I.type); 4606 } 4607 4608 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4609 QualType Ty) const override; 4610 }; 4611 4612 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo { 4613 public: 4614 PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI, 4615 bool RetSmallStructInRegABI) 4616 : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>( 4617 CGT, SoftFloatABI, RetSmallStructInRegABI)) {} 4618 4619 static bool isStructReturnInRegABI(const llvm::Triple &Triple, 4620 const CodeGenOptions &Opts); 4621 4622 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4623 // This is recovered from gcc output. 4624 return 1; // r1 is the dedicated stack pointer 4625 } 4626 4627 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4628 llvm::Value *Address) const override; 4629 }; 4630 } 4631 4632 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 4633 // Complex types are passed just like their elements. 4634 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 4635 Ty = CTy->getElementType(); 4636 4637 if (Ty->isVectorType()) 4638 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 4639 : 4); 4640 4641 // For single-element float/vector structs, we consider the whole type 4642 // to have the same alignment requirements as its single element. 4643 const Type *AlignTy = nullptr; 4644 if (const Type *EltType = isSingleElementStruct(Ty, getContext())) { 4645 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 4646 if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) || 4647 (BT && BT->isFloatingPoint())) 4648 AlignTy = EltType; 4649 } 4650 4651 if (AlignTy) 4652 return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4); 4653 return CharUnits::fromQuantity(4); 4654 } 4655 4656 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 4657 uint64_t Size; 4658 4659 // -msvr4-struct-return puts small aggregates in GPR3 and GPR4. 4660 if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI && 4661 (Size = getContext().getTypeSize(RetTy)) <= 64) { 4662 // System V ABI (1995), page 3-22, specified: 4663 // > A structure or union whose size is less than or equal to 8 bytes 4664 // > shall be returned in r3 and r4, as if it were first stored in the 4665 // > 8-byte aligned memory area and then the low addressed word were 4666 // > loaded into r3 and the high-addressed word into r4. Bits beyond 4667 // > the last member of the structure or union are not defined. 4668 // 4669 // GCC for big-endian PPC32 inserts the pad before the first member, 4670 // not "beyond the last member" of the struct. To stay compatible 4671 // with GCC, we coerce the struct to an integer of the same size. 4672 // LLVM will extend it and return i32 in r3, or i64 in r3:r4. 4673 if (Size == 0) 4674 return ABIArgInfo::getIgnore(); 4675 else { 4676 llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size); 4677 return ABIArgInfo::getDirect(CoerceTy); 4678 } 4679 } 4680 4681 return DefaultABIInfo::classifyReturnType(RetTy); 4682 } 4683 4684 // TODO: this implementation is now likely redundant with 4685 // DefaultABIInfo::EmitVAArg. 4686 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList, 4687 QualType Ty) const { 4688 if (getTarget().getTriple().isOSDarwin()) { 4689 auto TI = getContext().getTypeInfoInChars(Ty); 4690 TI.second = getParamTypeAlignment(Ty); 4691 4692 CharUnits SlotSize = CharUnits::fromQuantity(4); 4693 return emitVoidPtrVAArg(CGF, VAList, Ty, 4694 classifyArgumentType(Ty).isIndirect(), TI, SlotSize, 4695 /*AllowHigherAlign=*/true); 4696 } 4697 4698 const unsigned OverflowLimit = 8; 4699 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 4700 // TODO: Implement this. For now ignore. 4701 (void)CTy; 4702 return Address::invalid(); // FIXME? 4703 } 4704 4705 // struct __va_list_tag { 4706 // unsigned char gpr; 4707 // unsigned char fpr; 4708 // unsigned short reserved; 4709 // void *overflow_arg_area; 4710 // void *reg_save_area; 4711 // }; 4712 4713 bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64; 4714 bool isInt = 4715 Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType(); 4716 bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64; 4717 4718 // All aggregates are passed indirectly? That doesn't seem consistent 4719 // with the argument-lowering code. 4720 bool isIndirect = Ty->isAggregateType(); 4721 4722 CGBuilderTy &Builder = CGF.Builder; 4723 4724 // The calling convention either uses 1-2 GPRs or 1 FPR. 4725 Address NumRegsAddr = Address::invalid(); 4726 if (isInt || IsSoftFloatABI) { 4727 NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr"); 4728 } else { 4729 NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr"); 4730 } 4731 4732 llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs"); 4733 4734 // "Align" the register count when TY is i64. 4735 if (isI64 || (isF64 && IsSoftFloatABI)) { 4736 NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1)); 4737 NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U)); 4738 } 4739 4740 llvm::Value *CC = 4741 Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond"); 4742 4743 llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs"); 4744 llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow"); 4745 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 4746 4747 Builder.CreateCondBr(CC, UsingRegs, UsingOverflow); 4748 4749 llvm::Type *DirectTy = CGF.ConvertType(Ty); 4750 if (isIndirect) DirectTy = DirectTy->getPointerTo(0); 4751 4752 // Case 1: consume registers. 4753 Address RegAddr = Address::invalid(); 4754 { 4755 CGF.EmitBlock(UsingRegs); 4756 4757 Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4); 4758 RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr), 4759 CharUnits::fromQuantity(8)); 4760 assert(RegAddr.getElementType() == CGF.Int8Ty); 4761 4762 // Floating-point registers start after the general-purpose registers. 4763 if (!(isInt || IsSoftFloatABI)) { 4764 RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr, 4765 CharUnits::fromQuantity(32)); 4766 } 4767 4768 // Get the address of the saved value by scaling the number of 4769 // registers we've used by the number of 4770 CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8); 4771 llvm::Value *RegOffset = 4772 Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity())); 4773 RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty, 4774 RegAddr.getPointer(), RegOffset), 4775 RegAddr.getAlignment().alignmentOfArrayElement(RegSize)); 4776 RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy); 4777 4778 // Increase the used-register count. 4779 NumRegs = 4780 Builder.CreateAdd(NumRegs, 4781 Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1)); 4782 Builder.CreateStore(NumRegs, NumRegsAddr); 4783 4784 CGF.EmitBranch(Cont); 4785 } 4786 4787 // Case 2: consume space in the overflow area. 4788 Address MemAddr = Address::invalid(); 4789 { 4790 CGF.EmitBlock(UsingOverflow); 4791 4792 Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr); 4793 4794 // Everything in the overflow area is rounded up to a size of at least 4. 4795 CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4); 4796 4797 CharUnits Size; 4798 if (!isIndirect) { 4799 auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty); 4800 Size = TypeInfo.first.alignTo(OverflowAreaAlign); 4801 } else { 4802 Size = CGF.getPointerSize(); 4803 } 4804 4805 Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3); 4806 Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"), 4807 OverflowAreaAlign); 4808 // Round up address of argument to alignment 4809 CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty); 4810 if (Align > OverflowAreaAlign) { 4811 llvm::Value *Ptr = OverflowArea.getPointer(); 4812 OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align), 4813 Align); 4814 } 4815 4816 MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy); 4817 4818 // Increase the overflow area. 4819 OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size); 4820 Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr); 4821 CGF.EmitBranch(Cont); 4822 } 4823 4824 CGF.EmitBlock(Cont); 4825 4826 // Merge the cases with a phi. 4827 Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow, 4828 "vaarg.addr"); 4829 4830 // Load the pointer if the argument was passed indirectly. 4831 if (isIndirect) { 4832 Result = Address(Builder.CreateLoad(Result, "aggr"), 4833 getContext().getTypeAlignInChars(Ty)); 4834 } 4835 4836 return Result; 4837 } 4838 4839 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI( 4840 const llvm::Triple &Triple, const CodeGenOptions &Opts) { 4841 assert(Triple.getArch() == llvm::Triple::ppc); 4842 4843 switch (Opts.getStructReturnConvention()) { 4844 case CodeGenOptions::SRCK_Default: 4845 break; 4846 case CodeGenOptions::SRCK_OnStack: // -maix-struct-return 4847 return false; 4848 case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return 4849 return true; 4850 } 4851 4852 if (Triple.isOSBinFormatELF() && !Triple.isOSLinux()) 4853 return true; 4854 4855 return false; 4856 } 4857 4858 bool 4859 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4860 llvm::Value *Address) const { 4861 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false, 4862 /*IsAIX*/ false); 4863 } 4864 4865 // PowerPC-64 4866 4867 namespace { 4868 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information. 4869 class PPC64_SVR4_ABIInfo : public SwiftABIInfo { 4870 public: 4871 enum ABIKind { 4872 ELFv1 = 0, 4873 ELFv2 4874 }; 4875 4876 private: 4877 static const unsigned GPRBits = 64; 4878 ABIKind Kind; 4879 bool HasQPX; 4880 bool IsSoftFloatABI; 4881 4882 // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and 4883 // will be passed in a QPX register. 4884 bool IsQPXVectorTy(const Type *Ty) const { 4885 if (!HasQPX) 4886 return false; 4887 4888 if (const VectorType *VT = Ty->getAs<VectorType>()) { 4889 unsigned NumElements = VT->getNumElements(); 4890 if (NumElements == 1) 4891 return false; 4892 4893 if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) { 4894 if (getContext().getTypeSize(Ty) <= 256) 4895 return true; 4896 } else if (VT->getElementType()-> 4897 isSpecificBuiltinType(BuiltinType::Float)) { 4898 if (getContext().getTypeSize(Ty) <= 128) 4899 return true; 4900 } 4901 } 4902 4903 return false; 4904 } 4905 4906 bool IsQPXVectorTy(QualType Ty) const { 4907 return IsQPXVectorTy(Ty.getTypePtr()); 4908 } 4909 4910 public: 4911 PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX, 4912 bool SoftFloatABI) 4913 : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX), 4914 IsSoftFloatABI(SoftFloatABI) {} 4915 4916 bool isPromotableTypeForABI(QualType Ty) const; 4917 CharUnits getParamTypeAlignment(QualType Ty) const; 4918 4919 ABIArgInfo classifyReturnType(QualType RetTy) const; 4920 ABIArgInfo classifyArgumentType(QualType Ty) const; 4921 4922 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 4923 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 4924 uint64_t Members) const override; 4925 4926 // TODO: We can add more logic to computeInfo to improve performance. 4927 // Example: For aggregate arguments that fit in a register, we could 4928 // use getDirectInReg (as is done below for structs containing a single 4929 // floating-point value) to avoid pushing them to memory on function 4930 // entry. This would require changing the logic in PPCISelLowering 4931 // when lowering the parameters in the caller and args in the callee. 4932 void computeInfo(CGFunctionInfo &FI) const override { 4933 if (!getCXXABI().classifyReturnType(FI)) 4934 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 4935 for (auto &I : FI.arguments()) { 4936 // We rely on the default argument classification for the most part. 4937 // One exception: An aggregate containing a single floating-point 4938 // or vector item must be passed in a register if one is available. 4939 const Type *T = isSingleElementStruct(I.type, getContext()); 4940 if (T) { 4941 const BuiltinType *BT = T->getAs<BuiltinType>(); 4942 if (IsQPXVectorTy(T) || 4943 (T->isVectorType() && getContext().getTypeSize(T) == 128) || 4944 (BT && BT->isFloatingPoint())) { 4945 QualType QT(T, 0); 4946 I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT)); 4947 continue; 4948 } 4949 } 4950 I.info = classifyArgumentType(I.type); 4951 } 4952 } 4953 4954 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 4955 QualType Ty) const override; 4956 4957 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 4958 bool asReturnValue) const override { 4959 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 4960 } 4961 4962 bool isSwiftErrorInRegister() const override { 4963 return false; 4964 } 4965 }; 4966 4967 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo { 4968 4969 public: 4970 PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT, 4971 PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX, 4972 bool SoftFloatABI) 4973 : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>( 4974 CGT, Kind, HasQPX, SoftFloatABI)) {} 4975 4976 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4977 // This is recovered from gcc output. 4978 return 1; // r1 is the dedicated stack pointer 4979 } 4980 4981 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4982 llvm::Value *Address) const override; 4983 }; 4984 4985 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo { 4986 public: 4987 PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {} 4988 4989 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 4990 // This is recovered from gcc output. 4991 return 1; // r1 is the dedicated stack pointer 4992 } 4993 4994 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 4995 llvm::Value *Address) const override; 4996 }; 4997 4998 } 4999 5000 // Return true if the ABI requires Ty to be passed sign- or zero- 5001 // extended to 64 bits. 5002 bool 5003 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const { 5004 // Treat an enum type as its underlying type. 5005 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5006 Ty = EnumTy->getDecl()->getIntegerType(); 5007 5008 // Promotable integer types are required to be promoted by the ABI. 5009 if (isPromotableIntegerTypeForABI(Ty)) 5010 return true; 5011 5012 // In addition to the usual promotable integer types, we also need to 5013 // extend all 32-bit types, since the ABI requires promotion to 64 bits. 5014 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 5015 switch (BT->getKind()) { 5016 case BuiltinType::Int: 5017 case BuiltinType::UInt: 5018 return true; 5019 default: 5020 break; 5021 } 5022 5023 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5024 if (EIT->getNumBits() < 64) 5025 return true; 5026 5027 return false; 5028 } 5029 5030 /// isAlignedParamType - Determine whether a type requires 16-byte or 5031 /// higher alignment in the parameter area. Always returns at least 8. 5032 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const { 5033 // Complex types are passed just like their elements. 5034 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) 5035 Ty = CTy->getElementType(); 5036 5037 // Only vector types of size 16 bytes need alignment (larger types are 5038 // passed via reference, smaller types are not aligned). 5039 if (IsQPXVectorTy(Ty)) { 5040 if (getContext().getTypeSize(Ty) > 128) 5041 return CharUnits::fromQuantity(32); 5042 5043 return CharUnits::fromQuantity(16); 5044 } else if (Ty->isVectorType()) { 5045 return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8); 5046 } 5047 5048 // For single-element float/vector structs, we consider the whole type 5049 // to have the same alignment requirements as its single element. 5050 const Type *AlignAsType = nullptr; 5051 const Type *EltType = isSingleElementStruct(Ty, getContext()); 5052 if (EltType) { 5053 const BuiltinType *BT = EltType->getAs<BuiltinType>(); 5054 if (IsQPXVectorTy(EltType) || (EltType->isVectorType() && 5055 getContext().getTypeSize(EltType) == 128) || 5056 (BT && BT->isFloatingPoint())) 5057 AlignAsType = EltType; 5058 } 5059 5060 // Likewise for ELFv2 homogeneous aggregates. 5061 const Type *Base = nullptr; 5062 uint64_t Members = 0; 5063 if (!AlignAsType && Kind == ELFv2 && 5064 isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members)) 5065 AlignAsType = Base; 5066 5067 // With special case aggregates, only vector base types need alignment. 5068 if (AlignAsType && IsQPXVectorTy(AlignAsType)) { 5069 if (getContext().getTypeSize(AlignAsType) > 128) 5070 return CharUnits::fromQuantity(32); 5071 5072 return CharUnits::fromQuantity(16); 5073 } else if (AlignAsType) { 5074 return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8); 5075 } 5076 5077 // Otherwise, we only need alignment for any aggregate type that 5078 // has an alignment requirement of >= 16 bytes. 5079 if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) { 5080 if (HasQPX && getContext().getTypeAlign(Ty) >= 256) 5081 return CharUnits::fromQuantity(32); 5082 return CharUnits::fromQuantity(16); 5083 } 5084 5085 return CharUnits::fromQuantity(8); 5086 } 5087 5088 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous 5089 /// aggregate. Base is set to the base element type, and Members is set 5090 /// to the number of base elements. 5091 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base, 5092 uint64_t &Members) const { 5093 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 5094 uint64_t NElements = AT->getSize().getZExtValue(); 5095 if (NElements == 0) 5096 return false; 5097 if (!isHomogeneousAggregate(AT->getElementType(), Base, Members)) 5098 return false; 5099 Members *= NElements; 5100 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 5101 const RecordDecl *RD = RT->getDecl(); 5102 if (RD->hasFlexibleArrayMember()) 5103 return false; 5104 5105 Members = 0; 5106 5107 // If this is a C++ record, check the bases first. 5108 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) { 5109 for (const auto &I : CXXRD->bases()) { 5110 // Ignore empty records. 5111 if (isEmptyRecord(getContext(), I.getType(), true)) 5112 continue; 5113 5114 uint64_t FldMembers; 5115 if (!isHomogeneousAggregate(I.getType(), Base, FldMembers)) 5116 return false; 5117 5118 Members += FldMembers; 5119 } 5120 } 5121 5122 for (const auto *FD : RD->fields()) { 5123 // Ignore (non-zero arrays of) empty records. 5124 QualType FT = FD->getType(); 5125 while (const ConstantArrayType *AT = 5126 getContext().getAsConstantArrayType(FT)) { 5127 if (AT->getSize().getZExtValue() == 0) 5128 return false; 5129 FT = AT->getElementType(); 5130 } 5131 if (isEmptyRecord(getContext(), FT, true)) 5132 continue; 5133 5134 // For compatibility with GCC, ignore empty bitfields in C++ mode. 5135 if (getContext().getLangOpts().CPlusPlus && 5136 FD->isZeroLengthBitField(getContext())) 5137 continue; 5138 5139 uint64_t FldMembers; 5140 if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers)) 5141 return false; 5142 5143 Members = (RD->isUnion() ? 5144 std::max(Members, FldMembers) : Members + FldMembers); 5145 } 5146 5147 if (!Base) 5148 return false; 5149 5150 // Ensure there is no padding. 5151 if (getContext().getTypeSize(Base) * Members != 5152 getContext().getTypeSize(Ty)) 5153 return false; 5154 } else { 5155 Members = 1; 5156 if (const ComplexType *CT = Ty->getAs<ComplexType>()) { 5157 Members = 2; 5158 Ty = CT->getElementType(); 5159 } 5160 5161 // Most ABIs only support float, double, and some vector type widths. 5162 if (!isHomogeneousAggregateBaseType(Ty)) 5163 return false; 5164 5165 // The base type must be the same for all members. Types that 5166 // agree in both total size and mode (float vs. vector) are 5167 // treated as being equivalent here. 5168 const Type *TyPtr = Ty.getTypePtr(); 5169 if (!Base) { 5170 Base = TyPtr; 5171 // If it's a non-power-of-2 vector, its size is already a power-of-2, 5172 // so make sure to widen it explicitly. 5173 if (const VectorType *VT = Base->getAs<VectorType>()) { 5174 QualType EltTy = VT->getElementType(); 5175 unsigned NumElements = 5176 getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy); 5177 Base = getContext() 5178 .getVectorType(EltTy, NumElements, VT->getVectorKind()) 5179 .getTypePtr(); 5180 } 5181 } 5182 5183 if (Base->isVectorType() != TyPtr->isVectorType() || 5184 getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr)) 5185 return false; 5186 } 5187 return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members); 5188 } 5189 5190 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5191 // Homogeneous aggregates for ELFv2 must have base types of float, 5192 // double, long double, or 128-bit vectors. 5193 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5194 if (BT->getKind() == BuiltinType::Float || 5195 BT->getKind() == BuiltinType::Double || 5196 BT->getKind() == BuiltinType::LongDouble || 5197 (getContext().getTargetInfo().hasFloat128Type() && 5198 (BT->getKind() == BuiltinType::Float128))) { 5199 if (IsSoftFloatABI) 5200 return false; 5201 return true; 5202 } 5203 } 5204 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5205 if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty)) 5206 return true; 5207 } 5208 return false; 5209 } 5210 5211 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough( 5212 const Type *Base, uint64_t Members) const { 5213 // Vector and fp128 types require one register, other floating point types 5214 // require one or two registers depending on their size. 5215 uint32_t NumRegs = 5216 ((getContext().getTargetInfo().hasFloat128Type() && 5217 Base->isFloat128Type()) || 5218 Base->isVectorType()) ? 1 5219 : (getContext().getTypeSize(Base) + 63) / 64; 5220 5221 // Homogeneous Aggregates may occupy at most 8 registers. 5222 return Members * NumRegs <= 8; 5223 } 5224 5225 ABIArgInfo 5226 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const { 5227 Ty = useFirstFieldIfTransparentUnion(Ty); 5228 5229 if (Ty->isAnyComplexType()) 5230 return ABIArgInfo::getDirect(); 5231 5232 // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes) 5233 // or via reference (larger than 16 bytes). 5234 if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) { 5235 uint64_t Size = getContext().getTypeSize(Ty); 5236 if (Size > 128) 5237 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5238 else if (Size < 128) { 5239 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5240 return ABIArgInfo::getDirect(CoerceTy); 5241 } 5242 } 5243 5244 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5245 if (EIT->getNumBits() > 128) 5246 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 5247 5248 if (isAggregateTypeForABI(Ty)) { 5249 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 5250 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 5251 5252 uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity(); 5253 uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 5254 5255 // ELFv2 homogeneous aggregates are passed as array types. 5256 const Type *Base = nullptr; 5257 uint64_t Members = 0; 5258 if (Kind == ELFv2 && 5259 isHomogeneousAggregate(Ty, Base, Members)) { 5260 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5261 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5262 return ABIArgInfo::getDirect(CoerceTy); 5263 } 5264 5265 // If an aggregate may end up fully in registers, we do not 5266 // use the ByVal method, but pass the aggregate as array. 5267 // This is usually beneficial since we avoid forcing the 5268 // back-end to store the argument to memory. 5269 uint64_t Bits = getContext().getTypeSize(Ty); 5270 if (Bits > 0 && Bits <= 8 * GPRBits) { 5271 llvm::Type *CoerceTy; 5272 5273 // Types up to 8 bytes are passed as integer type (which will be 5274 // properly aligned in the argument save area doubleword). 5275 if (Bits <= GPRBits) 5276 CoerceTy = 5277 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5278 // Larger types are passed as arrays, with the base type selected 5279 // according to the required alignment in the save area. 5280 else { 5281 uint64_t RegBits = ABIAlign * 8; 5282 uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits; 5283 llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits); 5284 CoerceTy = llvm::ArrayType::get(RegTy, NumRegs); 5285 } 5286 5287 return ABIArgInfo::getDirect(CoerceTy); 5288 } 5289 5290 // All other aggregates are passed ByVal. 5291 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 5292 /*ByVal=*/true, 5293 /*Realign=*/TyAlign > ABIAlign); 5294 } 5295 5296 return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 5297 : ABIArgInfo::getDirect()); 5298 } 5299 5300 ABIArgInfo 5301 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const { 5302 if (RetTy->isVoidType()) 5303 return ABIArgInfo::getIgnore(); 5304 5305 if (RetTy->isAnyComplexType()) 5306 return ABIArgInfo::getDirect(); 5307 5308 // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes) 5309 // or via reference (larger than 16 bytes). 5310 if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) { 5311 uint64_t Size = getContext().getTypeSize(RetTy); 5312 if (Size > 128) 5313 return getNaturalAlignIndirect(RetTy); 5314 else if (Size < 128) { 5315 llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size); 5316 return ABIArgInfo::getDirect(CoerceTy); 5317 } 5318 } 5319 5320 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5321 if (EIT->getNumBits() > 128) 5322 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 5323 5324 if (isAggregateTypeForABI(RetTy)) { 5325 // ELFv2 homogeneous aggregates are returned as array types. 5326 const Type *Base = nullptr; 5327 uint64_t Members = 0; 5328 if (Kind == ELFv2 && 5329 isHomogeneousAggregate(RetTy, Base, Members)) { 5330 llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0)); 5331 llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members); 5332 return ABIArgInfo::getDirect(CoerceTy); 5333 } 5334 5335 // ELFv2 small aggregates are returned in up to two registers. 5336 uint64_t Bits = getContext().getTypeSize(RetTy); 5337 if (Kind == ELFv2 && Bits <= 2 * GPRBits) { 5338 if (Bits == 0) 5339 return ABIArgInfo::getIgnore(); 5340 5341 llvm::Type *CoerceTy; 5342 if (Bits > GPRBits) { 5343 CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits); 5344 CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy); 5345 } else 5346 CoerceTy = 5347 llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8)); 5348 return ABIArgInfo::getDirect(CoerceTy); 5349 } 5350 5351 // All other aggregates are returned indirectly. 5352 return getNaturalAlignIndirect(RetTy); 5353 } 5354 5355 return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 5356 : ABIArgInfo::getDirect()); 5357 } 5358 5359 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine. 5360 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5361 QualType Ty) const { 5362 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 5363 TypeInfo.second = getParamTypeAlignment(Ty); 5364 5365 CharUnits SlotSize = CharUnits::fromQuantity(8); 5366 5367 // If we have a complex type and the base type is smaller than 8 bytes, 5368 // the ABI calls for the real and imaginary parts to be right-adjusted 5369 // in separate doublewords. However, Clang expects us to produce a 5370 // pointer to a structure with the two parts packed tightly. So generate 5371 // loads of the real and imaginary parts relative to the va_list pointer, 5372 // and store them to a temporary structure. 5373 if (const ComplexType *CTy = Ty->getAs<ComplexType>()) { 5374 CharUnits EltSize = TypeInfo.first / 2; 5375 if (EltSize < SlotSize) { 5376 Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty, 5377 SlotSize * 2, SlotSize, 5378 SlotSize, /*AllowHigher*/ true); 5379 5380 Address RealAddr = Addr; 5381 Address ImagAddr = RealAddr; 5382 if (CGF.CGM.getDataLayout().isBigEndian()) { 5383 RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, 5384 SlotSize - EltSize); 5385 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr, 5386 2 * SlotSize - EltSize); 5387 } else { 5388 ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize); 5389 } 5390 5391 llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType()); 5392 RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy); 5393 ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy); 5394 llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal"); 5395 llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag"); 5396 5397 Address Temp = CGF.CreateMemTemp(Ty, "vacplx"); 5398 CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty), 5399 /*init*/ true); 5400 return Temp; 5401 } 5402 } 5403 5404 // Otherwise, just use the general rule. 5405 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, 5406 TypeInfo, SlotSize, /*AllowHigher*/ true); 5407 } 5408 5409 bool 5410 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable( 5411 CodeGen::CodeGenFunction &CGF, 5412 llvm::Value *Address) const { 5413 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5414 /*IsAIX*/ false); 5415 } 5416 5417 bool 5418 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 5419 llvm::Value *Address) const { 5420 return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true, 5421 /*IsAIX*/ false); 5422 } 5423 5424 //===----------------------------------------------------------------------===// 5425 // AArch64 ABI Implementation 5426 //===----------------------------------------------------------------------===// 5427 5428 namespace { 5429 5430 class AArch64ABIInfo : public SwiftABIInfo { 5431 public: 5432 enum ABIKind { 5433 AAPCS = 0, 5434 DarwinPCS, 5435 Win64 5436 }; 5437 5438 private: 5439 ABIKind Kind; 5440 5441 public: 5442 AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind) 5443 : SwiftABIInfo(CGT), Kind(Kind) {} 5444 5445 private: 5446 ABIKind getABIKind() const { return Kind; } 5447 bool isDarwinPCS() const { return Kind == DarwinPCS; } 5448 5449 ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const; 5450 ABIArgInfo classifyArgumentType(QualType RetTy) const; 5451 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 5452 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 5453 uint64_t Members) const override; 5454 5455 bool isIllegalVectorType(QualType Ty) const; 5456 5457 void computeInfo(CGFunctionInfo &FI) const override { 5458 if (!::classifyReturnType(getCXXABI(), FI, *this)) 5459 FI.getReturnInfo() = 5460 classifyReturnType(FI.getReturnType(), FI.isVariadic()); 5461 5462 for (auto &it : FI.arguments()) 5463 it.info = classifyArgumentType(it.type); 5464 } 5465 5466 Address EmitDarwinVAArg(Address VAListAddr, QualType Ty, 5467 CodeGenFunction &CGF) const; 5468 5469 Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty, 5470 CodeGenFunction &CGF) const; 5471 5472 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 5473 QualType Ty) const override { 5474 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5475 if (isa<llvm::ScalableVectorType>(BaseTy)) 5476 llvm::report_fatal_error("Passing SVE types to variadic functions is " 5477 "currently not supported"); 5478 5479 return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty) 5480 : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF) 5481 : EmitAAPCSVAArg(VAListAddr, Ty, CGF); 5482 } 5483 5484 Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 5485 QualType Ty) const override; 5486 5487 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 5488 bool asReturnValue) const override { 5489 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 5490 } 5491 bool isSwiftErrorInRegister() const override { 5492 return true; 5493 } 5494 5495 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 5496 unsigned elts) const override; 5497 5498 bool allowBFloatArgsAndRet() const override { 5499 return getTarget().hasBFloat16Type(); 5500 } 5501 }; 5502 5503 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo { 5504 public: 5505 AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind) 5506 : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {} 5507 5508 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 5509 return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue"; 5510 } 5511 5512 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 5513 return 31; 5514 } 5515 5516 bool doesReturnSlotInterfereWithArgs() const override { return false; } 5517 5518 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5519 CodeGen::CodeGenModule &CGM) const override { 5520 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 5521 if (!FD) 5522 return; 5523 5524 LangOptions::SignReturnAddressScopeKind Scope = 5525 CGM.getLangOpts().getSignReturnAddressScope(); 5526 LangOptions::SignReturnAddressKeyKind Key = 5527 CGM.getLangOpts().getSignReturnAddressKey(); 5528 bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement; 5529 if (const auto *TA = FD->getAttr<TargetAttr>()) { 5530 ParsedTargetAttr Attr = TA->parse(); 5531 if (!Attr.BranchProtection.empty()) { 5532 TargetInfo::BranchProtectionInfo BPI; 5533 StringRef Error; 5534 (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection, 5535 BPI, Error); 5536 assert(Error.empty()); 5537 Scope = BPI.SignReturnAddr; 5538 Key = BPI.SignKey; 5539 BranchTargetEnforcement = BPI.BranchTargetEnforcement; 5540 } 5541 } 5542 5543 auto *Fn = cast<llvm::Function>(GV); 5544 if (Scope != LangOptions::SignReturnAddressScopeKind::None) { 5545 Fn->addFnAttr("sign-return-address", 5546 Scope == LangOptions::SignReturnAddressScopeKind::All 5547 ? "all" 5548 : "non-leaf"); 5549 5550 Fn->addFnAttr("sign-return-address-key", 5551 Key == LangOptions::SignReturnAddressKeyKind::AKey 5552 ? "a_key" 5553 : "b_key"); 5554 } 5555 5556 if (BranchTargetEnforcement) 5557 Fn->addFnAttr("branch-target-enforcement"); 5558 } 5559 }; 5560 5561 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo { 5562 public: 5563 WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K) 5564 : AArch64TargetCodeGenInfo(CGT, K) {} 5565 5566 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 5567 CodeGen::CodeGenModule &CGM) const override; 5568 5569 void getDependentLibraryOption(llvm::StringRef Lib, 5570 llvm::SmallString<24> &Opt) const override { 5571 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 5572 } 5573 5574 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 5575 llvm::SmallString<32> &Opt) const override { 5576 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 5577 } 5578 }; 5579 5580 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes( 5581 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 5582 AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 5583 if (GV->isDeclaration()) 5584 return; 5585 addStackProbeTargetAttributes(D, GV, CGM); 5586 } 5587 } 5588 5589 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const { 5590 Ty = useFirstFieldIfTransparentUnion(Ty); 5591 5592 // Handle illegal vector types here. 5593 if (isIllegalVectorType(Ty)) { 5594 uint64_t Size = getContext().getTypeSize(Ty); 5595 // Android promotes <2 x i8> to i16, not i32 5596 if (isAndroid() && (Size <= 16)) { 5597 llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext()); 5598 return ABIArgInfo::getDirect(ResType); 5599 } 5600 if (Size <= 32) { 5601 llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext()); 5602 return ABIArgInfo::getDirect(ResType); 5603 } 5604 if (Size == 64) { 5605 auto *ResType = 5606 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2); 5607 return ABIArgInfo::getDirect(ResType); 5608 } 5609 if (Size == 128) { 5610 auto *ResType = 5611 llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4); 5612 return ABIArgInfo::getDirect(ResType); 5613 } 5614 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5615 } 5616 5617 if (!isAggregateTypeForABI(Ty)) { 5618 // Treat an enum type as its underlying type. 5619 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 5620 Ty = EnumTy->getDecl()->getIntegerType(); 5621 5622 if (const auto *EIT = Ty->getAs<ExtIntType>()) 5623 if (EIT->getNumBits() > 128) 5624 return getNaturalAlignIndirect(Ty); 5625 5626 return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS() 5627 ? ABIArgInfo::getExtend(Ty) 5628 : ABIArgInfo::getDirect()); 5629 } 5630 5631 // Structures with either a non-trivial destructor or a non-trivial 5632 // copy constructor are always indirect. 5633 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 5634 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 5635 CGCXXABI::RAA_DirectInMemory); 5636 } 5637 5638 // Empty records are always ignored on Darwin, but actually passed in C++ mode 5639 // elsewhere for GNU compatibility. 5640 uint64_t Size = getContext().getTypeSize(Ty); 5641 bool IsEmpty = isEmptyRecord(getContext(), Ty, true); 5642 if (IsEmpty || Size == 0) { 5643 if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS()) 5644 return ABIArgInfo::getIgnore(); 5645 5646 // GNU C mode. The only argument that gets ignored is an empty one with size 5647 // 0. 5648 if (IsEmpty && Size == 0) 5649 return ABIArgInfo::getIgnore(); 5650 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 5651 } 5652 5653 // Homogeneous Floating-point Aggregates (HFAs) need to be expanded. 5654 const Type *Base = nullptr; 5655 uint64_t Members = 0; 5656 if (isHomogeneousAggregate(Ty, Base, Members)) { 5657 return ABIArgInfo::getDirect( 5658 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members)); 5659 } 5660 5661 // Aggregates <= 16 bytes are passed directly in registers or on the stack. 5662 if (Size <= 128) { 5663 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5664 // same size and alignment. 5665 if (getTarget().isRenderScriptTarget()) { 5666 return coerceToIntArray(Ty, getContext(), getVMContext()); 5667 } 5668 unsigned Alignment; 5669 if (Kind == AArch64ABIInfo::AAPCS) { 5670 Alignment = getContext().getTypeUnadjustedAlign(Ty); 5671 Alignment = Alignment < 128 ? 64 : 128; 5672 } else { 5673 Alignment = std::max(getContext().getTypeAlign(Ty), 5674 (unsigned)getTarget().getPointerWidth(0)); 5675 } 5676 Size = llvm::alignTo(Size, Alignment); 5677 5678 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5679 // For aggregates with 16-byte alignment, we use i128. 5680 llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment); 5681 return ABIArgInfo::getDirect( 5682 Size == Alignment ? BaseTy 5683 : llvm::ArrayType::get(BaseTy, Size / Alignment)); 5684 } 5685 5686 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 5687 } 5688 5689 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy, 5690 bool IsVariadic) const { 5691 if (RetTy->isVoidType()) 5692 return ABIArgInfo::getIgnore(); 5693 5694 // Large vector types should be returned via memory. 5695 if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128) 5696 return getNaturalAlignIndirect(RetTy); 5697 5698 if (!isAggregateTypeForABI(RetTy)) { 5699 // Treat an enum type as its underlying type. 5700 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 5701 RetTy = EnumTy->getDecl()->getIntegerType(); 5702 5703 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 5704 if (EIT->getNumBits() > 128) 5705 return getNaturalAlignIndirect(RetTy); 5706 5707 return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS() 5708 ? ABIArgInfo::getExtend(RetTy) 5709 : ABIArgInfo::getDirect()); 5710 } 5711 5712 uint64_t Size = getContext().getTypeSize(RetTy); 5713 if (isEmptyRecord(getContext(), RetTy, true) || Size == 0) 5714 return ABIArgInfo::getIgnore(); 5715 5716 const Type *Base = nullptr; 5717 uint64_t Members = 0; 5718 if (isHomogeneousAggregate(RetTy, Base, Members) && 5719 !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 && 5720 IsVariadic)) 5721 // Homogeneous Floating-point Aggregates (HFAs) are returned directly. 5722 return ABIArgInfo::getDirect(); 5723 5724 // Aggregates <= 16 bytes are returned directly in registers or on the stack. 5725 if (Size <= 128) { 5726 // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of 5727 // same size and alignment. 5728 if (getTarget().isRenderScriptTarget()) { 5729 return coerceToIntArray(RetTy, getContext(), getVMContext()); 5730 } 5731 unsigned Alignment = getContext().getTypeAlign(RetTy); 5732 Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes 5733 5734 // We use a pair of i64 for 16-byte aggregate with 8-byte alignment. 5735 // For aggregates with 16-byte alignment, we use i128. 5736 if (Alignment < 128 && Size == 128) { 5737 llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext()); 5738 return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64)); 5739 } 5740 return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size)); 5741 } 5742 5743 return getNaturalAlignIndirect(RetTy); 5744 } 5745 5746 /// isIllegalVectorType - check whether the vector type is legal for AArch64. 5747 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const { 5748 if (const VectorType *VT = Ty->getAs<VectorType>()) { 5749 // Check whether VT is legal. 5750 unsigned NumElements = VT->getNumElements(); 5751 uint64_t Size = getContext().getTypeSize(VT); 5752 // NumElements should be power of 2. 5753 if (!llvm::isPowerOf2_32(NumElements)) 5754 return true; 5755 5756 // arm64_32 has to be compatible with the ARM logic here, which allows huge 5757 // vectors for some reason. 5758 llvm::Triple Triple = getTarget().getTriple(); 5759 if (Triple.getArch() == llvm::Triple::aarch64_32 && 5760 Triple.isOSBinFormatMachO()) 5761 return Size <= 32; 5762 5763 return Size != 64 && (Size != 128 || NumElements == 1); 5764 } 5765 return false; 5766 } 5767 5768 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize, 5769 llvm::Type *eltTy, 5770 unsigned elts) const { 5771 if (!llvm::isPowerOf2_32(elts)) 5772 return false; 5773 if (totalSize.getQuantity() != 8 && 5774 (totalSize.getQuantity() != 16 || elts == 1)) 5775 return false; 5776 return true; 5777 } 5778 5779 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 5780 // Homogeneous aggregates for AAPCS64 must have base types of a floating 5781 // point type or a short-vector type. This is the same as the 32-bit ABI, 5782 // but with the difference that any floating-point type is allowed, 5783 // including __fp16. 5784 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 5785 if (BT->isFloatingPoint()) 5786 return true; 5787 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 5788 unsigned VecSize = getContext().getTypeSize(VT); 5789 if (VecSize == 64 || VecSize == 128) 5790 return true; 5791 } 5792 return false; 5793 } 5794 5795 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 5796 uint64_t Members) const { 5797 return Members <= 4; 5798 } 5799 5800 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr, 5801 QualType Ty, 5802 CodeGenFunction &CGF) const { 5803 ABIArgInfo AI = classifyArgumentType(Ty); 5804 bool IsIndirect = AI.isIndirect(); 5805 5806 llvm::Type *BaseTy = CGF.ConvertType(Ty); 5807 if (IsIndirect) 5808 BaseTy = llvm::PointerType::getUnqual(BaseTy); 5809 else if (AI.getCoerceToType()) 5810 BaseTy = AI.getCoerceToType(); 5811 5812 unsigned NumRegs = 1; 5813 if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) { 5814 BaseTy = ArrTy->getElementType(); 5815 NumRegs = ArrTy->getNumElements(); 5816 } 5817 bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy(); 5818 5819 // The AArch64 va_list type and handling is specified in the Procedure Call 5820 // Standard, section B.4: 5821 // 5822 // struct { 5823 // void *__stack; 5824 // void *__gr_top; 5825 // void *__vr_top; 5826 // int __gr_offs; 5827 // int __vr_offs; 5828 // }; 5829 5830 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 5831 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 5832 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 5833 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 5834 5835 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 5836 CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty); 5837 5838 Address reg_offs_p = Address::invalid(); 5839 llvm::Value *reg_offs = nullptr; 5840 int reg_top_index; 5841 int RegSize = IsIndirect ? 8 : TySize.getQuantity(); 5842 if (!IsFPR) { 5843 // 3 is the field number of __gr_offs 5844 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p"); 5845 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs"); 5846 reg_top_index = 1; // field number for __gr_top 5847 RegSize = llvm::alignTo(RegSize, 8); 5848 } else { 5849 // 4 is the field number of __vr_offs. 5850 reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p"); 5851 reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs"); 5852 reg_top_index = 2; // field number for __vr_top 5853 RegSize = 16 * NumRegs; 5854 } 5855 5856 //======================================= 5857 // Find out where argument was passed 5858 //======================================= 5859 5860 // If reg_offs >= 0 we're already using the stack for this type of 5861 // argument. We don't want to keep updating reg_offs (in case it overflows, 5862 // though anyone passing 2GB of arguments, each at most 16 bytes, deserves 5863 // whatever they get). 5864 llvm::Value *UsingStack = nullptr; 5865 UsingStack = CGF.Builder.CreateICmpSGE( 5866 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0)); 5867 5868 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock); 5869 5870 // Otherwise, at least some kind of argument could go in these registers, the 5871 // question is whether this particular type is too big. 5872 CGF.EmitBlock(MaybeRegBlock); 5873 5874 // Integer arguments may need to correct register alignment (for example a 5875 // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we 5876 // align __gr_offs to calculate the potential address. 5877 if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) { 5878 int Align = TyAlign.getQuantity(); 5879 5880 reg_offs = CGF.Builder.CreateAdd( 5881 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1), 5882 "align_regoffs"); 5883 reg_offs = CGF.Builder.CreateAnd( 5884 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align), 5885 "aligned_regoffs"); 5886 } 5887 5888 // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list. 5889 // The fact that this is done unconditionally reflects the fact that 5890 // allocating an argument to the stack also uses up all the remaining 5891 // registers of the appropriate kind. 5892 llvm::Value *NewOffset = nullptr; 5893 NewOffset = CGF.Builder.CreateAdd( 5894 reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs"); 5895 CGF.Builder.CreateStore(NewOffset, reg_offs_p); 5896 5897 // Now we're in a position to decide whether this argument really was in 5898 // registers or not. 5899 llvm::Value *InRegs = nullptr; 5900 InRegs = CGF.Builder.CreateICmpSLE( 5901 NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg"); 5902 5903 CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock); 5904 5905 //======================================= 5906 // Argument was in registers 5907 //======================================= 5908 5909 // Now we emit the code for if the argument was originally passed in 5910 // registers. First start the appropriate block: 5911 CGF.EmitBlock(InRegBlock); 5912 5913 llvm::Value *reg_top = nullptr; 5914 Address reg_top_p = 5915 CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p"); 5916 reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top"); 5917 Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs), 5918 CharUnits::fromQuantity(IsFPR ? 16 : 8)); 5919 Address RegAddr = Address::invalid(); 5920 llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty); 5921 5922 if (IsIndirect) { 5923 // If it's been passed indirectly (actually a struct), whatever we find from 5924 // stored registers or on the stack will actually be a struct **. 5925 MemTy = llvm::PointerType::getUnqual(MemTy); 5926 } 5927 5928 const Type *Base = nullptr; 5929 uint64_t NumMembers = 0; 5930 bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers); 5931 if (IsHFA && NumMembers > 1) { 5932 // Homogeneous aggregates passed in registers will have their elements split 5933 // and stored 16-bytes apart regardless of size (they're notionally in qN, 5934 // qN+1, ...). We reload and store into a temporary local variable 5935 // contiguously. 5936 assert(!IsIndirect && "Homogeneous aggregates should be passed directly"); 5937 auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0)); 5938 llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0)); 5939 llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers); 5940 Address Tmp = CGF.CreateTempAlloca(HFATy, 5941 std::max(TyAlign, BaseTyInfo.second)); 5942 5943 // On big-endian platforms, the value will be right-aligned in its slot. 5944 int Offset = 0; 5945 if (CGF.CGM.getDataLayout().isBigEndian() && 5946 BaseTyInfo.first.getQuantity() < 16) 5947 Offset = 16 - BaseTyInfo.first.getQuantity(); 5948 5949 for (unsigned i = 0; i < NumMembers; ++i) { 5950 CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset); 5951 Address LoadAddr = 5952 CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset); 5953 LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy); 5954 5955 Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i); 5956 5957 llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr); 5958 CGF.Builder.CreateStore(Elem, StoreAddr); 5959 } 5960 5961 RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy); 5962 } else { 5963 // Otherwise the object is contiguous in memory. 5964 5965 // It might be right-aligned in its slot. 5966 CharUnits SlotSize = BaseAddr.getAlignment(); 5967 if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect && 5968 (IsHFA || !isAggregateTypeForABI(Ty)) && 5969 TySize < SlotSize) { 5970 CharUnits Offset = SlotSize - TySize; 5971 BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset); 5972 } 5973 5974 RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy); 5975 } 5976 5977 CGF.EmitBranch(ContBlock); 5978 5979 //======================================= 5980 // Argument was on the stack 5981 //======================================= 5982 CGF.EmitBlock(OnStackBlock); 5983 5984 Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p"); 5985 llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack"); 5986 5987 // Again, stack arguments may need realignment. In this case both integer and 5988 // floating-point ones might be affected. 5989 if (!IsIndirect && TyAlign.getQuantity() > 8) { 5990 int Align = TyAlign.getQuantity(); 5991 5992 OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty); 5993 5994 OnStackPtr = CGF.Builder.CreateAdd( 5995 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1), 5996 "align_stack"); 5997 OnStackPtr = CGF.Builder.CreateAnd( 5998 OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align), 5999 "align_stack"); 6000 6001 OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy); 6002 } 6003 Address OnStackAddr(OnStackPtr, 6004 std::max(CharUnits::fromQuantity(8), TyAlign)); 6005 6006 // All stack slots are multiples of 8 bytes. 6007 CharUnits StackSlotSize = CharUnits::fromQuantity(8); 6008 CharUnits StackSize; 6009 if (IsIndirect) 6010 StackSize = StackSlotSize; 6011 else 6012 StackSize = TySize.alignTo(StackSlotSize); 6013 6014 llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize); 6015 llvm::Value *NewStack = 6016 CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack"); 6017 6018 // Write the new value of __stack for the next call to va_arg 6019 CGF.Builder.CreateStore(NewStack, stack_p); 6020 6021 if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) && 6022 TySize < StackSlotSize) { 6023 CharUnits Offset = StackSlotSize - TySize; 6024 OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset); 6025 } 6026 6027 OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy); 6028 6029 CGF.EmitBranch(ContBlock); 6030 6031 //======================================= 6032 // Tidy up 6033 //======================================= 6034 CGF.EmitBlock(ContBlock); 6035 6036 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 6037 OnStackAddr, OnStackBlock, "vaargs.addr"); 6038 6039 if (IsIndirect) 6040 return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"), 6041 TyAlign); 6042 6043 return ResAddr; 6044 } 6045 6046 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty, 6047 CodeGenFunction &CGF) const { 6048 // The backend's lowering doesn't support va_arg for aggregates or 6049 // illegal vector types. Lower VAArg here for these cases and use 6050 // the LLVM va_arg instruction for everything else. 6051 if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty)) 6052 return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect()); 6053 6054 uint64_t PointerSize = getTarget().getPointerWidth(0) / 8; 6055 CharUnits SlotSize = CharUnits::fromQuantity(PointerSize); 6056 6057 // Empty records are ignored for parameter passing purposes. 6058 if (isEmptyRecord(getContext(), Ty, true)) { 6059 Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 6060 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6061 return Addr; 6062 } 6063 6064 // The size of the actual thing passed, which might end up just 6065 // being a pointer for indirect types. 6066 auto TyInfo = getContext().getTypeInfoInChars(Ty); 6067 6068 // Arguments bigger than 16 bytes which aren't homogeneous 6069 // aggregates should be passed indirectly. 6070 bool IsIndirect = false; 6071 if (TyInfo.first.getQuantity() > 16) { 6072 const Type *Base = nullptr; 6073 uint64_t Members = 0; 6074 IsIndirect = !isHomogeneousAggregate(Ty, Base, Members); 6075 } 6076 6077 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, 6078 TyInfo, SlotSize, /*AllowHigherAlign*/ true); 6079 } 6080 6081 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr, 6082 QualType Ty) const { 6083 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 6084 CGF.getContext().getTypeInfoInChars(Ty), 6085 CharUnits::fromQuantity(8), 6086 /*allowHigherAlign*/ false); 6087 } 6088 6089 //===----------------------------------------------------------------------===// 6090 // ARM ABI Implementation 6091 //===----------------------------------------------------------------------===// 6092 6093 namespace { 6094 6095 class ARMABIInfo : public SwiftABIInfo { 6096 public: 6097 enum ABIKind { 6098 APCS = 0, 6099 AAPCS = 1, 6100 AAPCS_VFP = 2, 6101 AAPCS16_VFP = 3, 6102 }; 6103 6104 private: 6105 ABIKind Kind; 6106 bool IsFloatABISoftFP; 6107 6108 public: 6109 ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind) 6110 : SwiftABIInfo(CGT), Kind(_Kind) { 6111 setCCs(); 6112 IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" || 6113 CGT.getCodeGenOpts().FloatABI == ""; // default 6114 } 6115 6116 bool isEABI() const { 6117 switch (getTarget().getTriple().getEnvironment()) { 6118 case llvm::Triple::Android: 6119 case llvm::Triple::EABI: 6120 case llvm::Triple::EABIHF: 6121 case llvm::Triple::GNUEABI: 6122 case llvm::Triple::GNUEABIHF: 6123 case llvm::Triple::MuslEABI: 6124 case llvm::Triple::MuslEABIHF: 6125 return true; 6126 default: 6127 return false; 6128 } 6129 } 6130 6131 bool isEABIHF() const { 6132 switch (getTarget().getTriple().getEnvironment()) { 6133 case llvm::Triple::EABIHF: 6134 case llvm::Triple::GNUEABIHF: 6135 case llvm::Triple::MuslEABIHF: 6136 return true; 6137 default: 6138 return false; 6139 } 6140 } 6141 6142 ABIKind getABIKind() const { return Kind; } 6143 6144 bool allowBFloatArgsAndRet() const override { 6145 return !IsFloatABISoftFP && getTarget().hasBFloat16Type(); 6146 } 6147 6148 private: 6149 ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic, 6150 unsigned functionCallConv) const; 6151 ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic, 6152 unsigned functionCallConv) const; 6153 ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base, 6154 uint64_t Members) const; 6155 ABIArgInfo coerceIllegalVector(QualType Ty) const; 6156 bool isIllegalVectorType(QualType Ty) const; 6157 bool containsAnyFP16Vectors(QualType Ty) const; 6158 6159 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 6160 bool isHomogeneousAggregateSmallEnough(const Type *Ty, 6161 uint64_t Members) const override; 6162 6163 bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const; 6164 6165 void computeInfo(CGFunctionInfo &FI) const override; 6166 6167 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6168 QualType Ty) const override; 6169 6170 llvm::CallingConv::ID getLLVMDefaultCC() const; 6171 llvm::CallingConv::ID getABIDefaultCC() const; 6172 void setCCs(); 6173 6174 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 6175 bool asReturnValue) const override { 6176 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 6177 } 6178 bool isSwiftErrorInRegister() const override { 6179 return true; 6180 } 6181 bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy, 6182 unsigned elts) const override; 6183 }; 6184 6185 class ARMTargetCodeGenInfo : public TargetCodeGenInfo { 6186 public: 6187 ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6188 : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {} 6189 6190 const ARMABIInfo &getABIInfo() const { 6191 return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo()); 6192 } 6193 6194 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 6195 return 13; 6196 } 6197 6198 StringRef getARCRetainAutoreleasedReturnValueMarker() const override { 6199 return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue"; 6200 } 6201 6202 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 6203 llvm::Value *Address) const override { 6204 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 6205 6206 // 0-15 are the 16 integer registers. 6207 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15); 6208 return false; 6209 } 6210 6211 unsigned getSizeOfUnwindException() const override { 6212 if (getABIInfo().isEABI()) return 88; 6213 return TargetCodeGenInfo::getSizeOfUnwindException(); 6214 } 6215 6216 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6217 CodeGen::CodeGenModule &CGM) const override { 6218 if (GV->isDeclaration()) 6219 return; 6220 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 6221 if (!FD) 6222 return; 6223 6224 const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>(); 6225 if (!Attr) 6226 return; 6227 6228 const char *Kind; 6229 switch (Attr->getInterrupt()) { 6230 case ARMInterruptAttr::Generic: Kind = ""; break; 6231 case ARMInterruptAttr::IRQ: Kind = "IRQ"; break; 6232 case ARMInterruptAttr::FIQ: Kind = "FIQ"; break; 6233 case ARMInterruptAttr::SWI: Kind = "SWI"; break; 6234 case ARMInterruptAttr::ABORT: Kind = "ABORT"; break; 6235 case ARMInterruptAttr::UNDEF: Kind = "UNDEF"; break; 6236 } 6237 6238 llvm::Function *Fn = cast<llvm::Function>(GV); 6239 6240 Fn->addFnAttr("interrupt", Kind); 6241 6242 ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind(); 6243 if (ABI == ARMABIInfo::APCS) 6244 return; 6245 6246 // AAPCS guarantees that sp will be 8-byte aligned on any public interface, 6247 // however this is not necessarily true on taking any interrupt. Instruct 6248 // the backend to perform a realignment as part of the function prologue. 6249 llvm::AttrBuilder B; 6250 B.addStackAlignmentAttr(8); 6251 Fn->addAttributes(llvm::AttributeList::FunctionIndex, B); 6252 } 6253 }; 6254 6255 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo { 6256 public: 6257 WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K) 6258 : ARMTargetCodeGenInfo(CGT, K) {} 6259 6260 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6261 CodeGen::CodeGenModule &CGM) const override; 6262 6263 void getDependentLibraryOption(llvm::StringRef Lib, 6264 llvm::SmallString<24> &Opt) const override { 6265 Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib); 6266 } 6267 6268 void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value, 6269 llvm::SmallString<32> &Opt) const override { 6270 Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\""; 6271 } 6272 }; 6273 6274 void WindowsARMTargetCodeGenInfo::setTargetAttributes( 6275 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const { 6276 ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM); 6277 if (GV->isDeclaration()) 6278 return; 6279 addStackProbeTargetAttributes(D, GV, CGM); 6280 } 6281 } 6282 6283 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const { 6284 if (!::classifyReturnType(getCXXABI(), FI, *this)) 6285 FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(), 6286 FI.getCallingConvention()); 6287 6288 for (auto &I : FI.arguments()) 6289 I.info = classifyArgumentType(I.type, FI.isVariadic(), 6290 FI.getCallingConvention()); 6291 6292 6293 // Always honor user-specified calling convention. 6294 if (FI.getCallingConvention() != llvm::CallingConv::C) 6295 return; 6296 6297 llvm::CallingConv::ID cc = getRuntimeCC(); 6298 if (cc != llvm::CallingConv::C) 6299 FI.setEffectiveCallingConvention(cc); 6300 } 6301 6302 /// Return the default calling convention that LLVM will use. 6303 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const { 6304 // The default calling convention that LLVM will infer. 6305 if (isEABIHF() || getTarget().getTriple().isWatchABI()) 6306 return llvm::CallingConv::ARM_AAPCS_VFP; 6307 else if (isEABI()) 6308 return llvm::CallingConv::ARM_AAPCS; 6309 else 6310 return llvm::CallingConv::ARM_APCS; 6311 } 6312 6313 /// Return the calling convention that our ABI would like us to use 6314 /// as the C calling convention. 6315 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const { 6316 switch (getABIKind()) { 6317 case APCS: return llvm::CallingConv::ARM_APCS; 6318 case AAPCS: return llvm::CallingConv::ARM_AAPCS; 6319 case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6320 case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP; 6321 } 6322 llvm_unreachable("bad ABI kind"); 6323 } 6324 6325 void ARMABIInfo::setCCs() { 6326 assert(getRuntimeCC() == llvm::CallingConv::C); 6327 6328 // Don't muddy up the IR with a ton of explicit annotations if 6329 // they'd just match what LLVM will infer from the triple. 6330 llvm::CallingConv::ID abiCC = getABIDefaultCC(); 6331 if (abiCC != getLLVMDefaultCC()) 6332 RuntimeCC = abiCC; 6333 } 6334 6335 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const { 6336 uint64_t Size = getContext().getTypeSize(Ty); 6337 if (Size <= 32) { 6338 llvm::Type *ResType = 6339 llvm::Type::getInt32Ty(getVMContext()); 6340 return ABIArgInfo::getDirect(ResType); 6341 } 6342 if (Size == 64 || Size == 128) { 6343 auto *ResType = llvm::FixedVectorType::get( 6344 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6345 return ABIArgInfo::getDirect(ResType); 6346 } 6347 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 6348 } 6349 6350 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty, 6351 const Type *Base, 6352 uint64_t Members) const { 6353 assert(Base && "Base class should be set for homogeneous aggregate"); 6354 // Base can be a floating-point or a vector. 6355 if (const VectorType *VT = Base->getAs<VectorType>()) { 6356 // FP16 vectors should be converted to integer vectors 6357 if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) { 6358 uint64_t Size = getContext().getTypeSize(VT); 6359 auto *NewVecTy = llvm::FixedVectorType::get( 6360 llvm::Type::getInt32Ty(getVMContext()), Size / 32); 6361 llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members); 6362 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6363 } 6364 } 6365 return ABIArgInfo::getDirect(nullptr, 0, nullptr, false); 6366 } 6367 6368 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic, 6369 unsigned functionCallConv) const { 6370 // 6.1.2.1 The following argument types are VFP CPRCs: 6371 // A single-precision floating-point type (including promoted 6372 // half-precision types); A double-precision floating-point type; 6373 // A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate 6374 // with a Base Type of a single- or double-precision floating-point type, 6375 // 64-bit containerized vectors or 128-bit containerized vectors with one 6376 // to four Elements. 6377 // Variadic functions should always marshal to the base standard. 6378 bool IsAAPCS_VFP = 6379 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false); 6380 6381 Ty = useFirstFieldIfTransparentUnion(Ty); 6382 6383 // Handle illegal vector types here. 6384 if (isIllegalVectorType(Ty)) 6385 return coerceIllegalVector(Ty); 6386 6387 if (!isAggregateTypeForABI(Ty)) { 6388 // Treat an enum type as its underlying type. 6389 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) { 6390 Ty = EnumTy->getDecl()->getIntegerType(); 6391 } 6392 6393 if (const auto *EIT = Ty->getAs<ExtIntType>()) 6394 if (EIT->getNumBits() > 64) 6395 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 6396 6397 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 6398 : ABIArgInfo::getDirect()); 6399 } 6400 6401 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 6402 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 6403 } 6404 6405 // Ignore empty records. 6406 if (isEmptyRecord(getContext(), Ty, true)) 6407 return ABIArgInfo::getIgnore(); 6408 6409 if (IsAAPCS_VFP) { 6410 // Homogeneous Aggregates need to be expanded when we can fit the aggregate 6411 // into VFP registers. 6412 const Type *Base = nullptr; 6413 uint64_t Members = 0; 6414 if (isHomogeneousAggregate(Ty, Base, Members)) 6415 return classifyHomogeneousAggregate(Ty, Base, Members); 6416 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6417 // WatchOS does have homogeneous aggregates. Note that we intentionally use 6418 // this convention even for a variadic function: the backend will use GPRs 6419 // if needed. 6420 const Type *Base = nullptr; 6421 uint64_t Members = 0; 6422 if (isHomogeneousAggregate(Ty, Base, Members)) { 6423 assert(Base && Members <= 4 && "unexpected homogeneous aggregate"); 6424 llvm::Type *Ty = 6425 llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members); 6426 return ABIArgInfo::getDirect(Ty, 0, nullptr, false); 6427 } 6428 } 6429 6430 if (getABIKind() == ARMABIInfo::AAPCS16_VFP && 6431 getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) { 6432 // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're 6433 // bigger than 128-bits, they get placed in space allocated by the caller, 6434 // and a pointer is passed. 6435 return ABIArgInfo::getIndirect( 6436 CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false); 6437 } 6438 6439 // Support byval for ARM. 6440 // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at 6441 // most 8-byte. We realign the indirect argument if type alignment is bigger 6442 // than ABI alignment. 6443 uint64_t ABIAlign = 4; 6444 uint64_t TyAlign; 6445 if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6446 getABIKind() == ARMABIInfo::AAPCS) { 6447 TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity(); 6448 ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8); 6449 } else { 6450 TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity(); 6451 } 6452 if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) { 6453 assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval"); 6454 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign), 6455 /*ByVal=*/true, 6456 /*Realign=*/TyAlign > ABIAlign); 6457 } 6458 6459 // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of 6460 // same size and alignment. 6461 if (getTarget().isRenderScriptTarget()) { 6462 return coerceToIntArray(Ty, getContext(), getVMContext()); 6463 } 6464 6465 // Otherwise, pass by coercing to a structure of the appropriate size. 6466 llvm::Type* ElemTy; 6467 unsigned SizeRegs; 6468 // FIXME: Try to match the types of the arguments more accurately where 6469 // we can. 6470 if (TyAlign <= 4) { 6471 ElemTy = llvm::Type::getInt32Ty(getVMContext()); 6472 SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32; 6473 } else { 6474 ElemTy = llvm::Type::getInt64Ty(getVMContext()); 6475 SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64; 6476 } 6477 6478 return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs)); 6479 } 6480 6481 static bool isIntegerLikeType(QualType Ty, ASTContext &Context, 6482 llvm::LLVMContext &VMContext) { 6483 // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure 6484 // is called integer-like if its size is less than or equal to one word, and 6485 // the offset of each of its addressable sub-fields is zero. 6486 6487 uint64_t Size = Context.getTypeSize(Ty); 6488 6489 // Check that the type fits in a word. 6490 if (Size > 32) 6491 return false; 6492 6493 // FIXME: Handle vector types! 6494 if (Ty->isVectorType()) 6495 return false; 6496 6497 // Float types are never treated as "integer like". 6498 if (Ty->isRealFloatingType()) 6499 return false; 6500 6501 // If this is a builtin or pointer type then it is ok. 6502 if (Ty->getAs<BuiltinType>() || Ty->isPointerType()) 6503 return true; 6504 6505 // Small complex integer types are "integer like". 6506 if (const ComplexType *CT = Ty->getAs<ComplexType>()) 6507 return isIntegerLikeType(CT->getElementType(), Context, VMContext); 6508 6509 // Single element and zero sized arrays should be allowed, by the definition 6510 // above, but they are not. 6511 6512 // Otherwise, it must be a record type. 6513 const RecordType *RT = Ty->getAs<RecordType>(); 6514 if (!RT) return false; 6515 6516 // Ignore records with flexible arrays. 6517 const RecordDecl *RD = RT->getDecl(); 6518 if (RD->hasFlexibleArrayMember()) 6519 return false; 6520 6521 // Check that all sub-fields are at offset 0, and are themselves "integer 6522 // like". 6523 const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD); 6524 6525 bool HadField = false; 6526 unsigned idx = 0; 6527 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 6528 i != e; ++i, ++idx) { 6529 const FieldDecl *FD = *i; 6530 6531 // Bit-fields are not addressable, we only need to verify they are "integer 6532 // like". We still have to disallow a subsequent non-bitfield, for example: 6533 // struct { int : 0; int x } 6534 // is non-integer like according to gcc. 6535 if (FD->isBitField()) { 6536 if (!RD->isUnion()) 6537 HadField = true; 6538 6539 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6540 return false; 6541 6542 continue; 6543 } 6544 6545 // Check if this field is at offset 0. 6546 if (Layout.getFieldOffset(idx) != 0) 6547 return false; 6548 6549 if (!isIntegerLikeType(FD->getType(), Context, VMContext)) 6550 return false; 6551 6552 // Only allow at most one field in a structure. This doesn't match the 6553 // wording above, but follows gcc in situations with a field following an 6554 // empty structure. 6555 if (!RD->isUnion()) { 6556 if (HadField) 6557 return false; 6558 6559 HadField = true; 6560 } 6561 } 6562 6563 return true; 6564 } 6565 6566 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic, 6567 unsigned functionCallConv) const { 6568 6569 // Variadic functions should always marshal to the base standard. 6570 bool IsAAPCS_VFP = 6571 !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true); 6572 6573 if (RetTy->isVoidType()) 6574 return ABIArgInfo::getIgnore(); 6575 6576 if (const VectorType *VT = RetTy->getAs<VectorType>()) { 6577 // Large vector types should be returned via memory. 6578 if (getContext().getTypeSize(RetTy) > 128) 6579 return getNaturalAlignIndirect(RetTy); 6580 // TODO: FP16/BF16 vectors should be converted to integer vectors 6581 // This check is similar to isIllegalVectorType - refactor? 6582 if ((!getTarget().hasLegalHalfType() && 6583 (VT->getElementType()->isFloat16Type() || 6584 VT->getElementType()->isHalfType())) || 6585 (IsFloatABISoftFP && 6586 VT->getElementType()->isBFloat16Type())) 6587 return coerceIllegalVector(RetTy); 6588 } 6589 6590 if (!isAggregateTypeForABI(RetTy)) { 6591 // Treat an enum type as its underlying type. 6592 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6593 RetTy = EnumTy->getDecl()->getIntegerType(); 6594 6595 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 6596 if (EIT->getNumBits() > 64) 6597 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 6598 6599 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6600 : ABIArgInfo::getDirect(); 6601 } 6602 6603 // Are we following APCS? 6604 if (getABIKind() == APCS) { 6605 if (isEmptyRecord(getContext(), RetTy, false)) 6606 return ABIArgInfo::getIgnore(); 6607 6608 // Complex types are all returned as packed integers. 6609 // 6610 // FIXME: Consider using 2 x vector types if the back end handles them 6611 // correctly. 6612 if (RetTy->isAnyComplexType()) 6613 return ABIArgInfo::getDirect(llvm::IntegerType::get( 6614 getVMContext(), getContext().getTypeSize(RetTy))); 6615 6616 // Integer like structures are returned in r0. 6617 if (isIntegerLikeType(RetTy, getContext(), getVMContext())) { 6618 // Return in the smallest viable integer type. 6619 uint64_t Size = getContext().getTypeSize(RetTy); 6620 if (Size <= 8) 6621 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6622 if (Size <= 16) 6623 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6624 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6625 } 6626 6627 // Otherwise return in memory. 6628 return getNaturalAlignIndirect(RetTy); 6629 } 6630 6631 // Otherwise this is an AAPCS variant. 6632 6633 if (isEmptyRecord(getContext(), RetTy, true)) 6634 return ABIArgInfo::getIgnore(); 6635 6636 // Check for homogeneous aggregates with AAPCS-VFP. 6637 if (IsAAPCS_VFP) { 6638 const Type *Base = nullptr; 6639 uint64_t Members = 0; 6640 if (isHomogeneousAggregate(RetTy, Base, Members)) 6641 return classifyHomogeneousAggregate(RetTy, Base, Members); 6642 } 6643 6644 // Aggregates <= 4 bytes are returned in r0; other aggregates 6645 // are returned indirectly. 6646 uint64_t Size = getContext().getTypeSize(RetTy); 6647 if (Size <= 32) { 6648 // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of 6649 // same size and alignment. 6650 if (getTarget().isRenderScriptTarget()) { 6651 return coerceToIntArray(RetTy, getContext(), getVMContext()); 6652 } 6653 if (getDataLayout().isBigEndian()) 6654 // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4) 6655 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6656 6657 // Return in the smallest viable integer type. 6658 if (Size <= 8) 6659 return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext())); 6660 if (Size <= 16) 6661 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 6662 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 6663 } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) { 6664 llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext()); 6665 llvm::Type *CoerceTy = 6666 llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32); 6667 return ABIArgInfo::getDirect(CoerceTy); 6668 } 6669 6670 return getNaturalAlignIndirect(RetTy); 6671 } 6672 6673 /// isIllegalVector - check whether Ty is an illegal vector type. 6674 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const { 6675 if (const VectorType *VT = Ty->getAs<VectorType> ()) { 6676 // On targets that don't support half, fp16 or bfloat, they are expanded 6677 // into float, and we don't want the ABI to depend on whether or not they 6678 // are supported in hardware. Thus return false to coerce vectors of these 6679 // types into integer vectors. 6680 // We do not depend on hasLegalHalfType for bfloat as it is a 6681 // separate IR type. 6682 if ((!getTarget().hasLegalHalfType() && 6683 (VT->getElementType()->isFloat16Type() || 6684 VT->getElementType()->isHalfType())) || 6685 (IsFloatABISoftFP && 6686 VT->getElementType()->isBFloat16Type())) 6687 return true; 6688 if (isAndroid()) { 6689 // Android shipped using Clang 3.1, which supported a slightly different 6690 // vector ABI. The primary differences were that 3-element vector types 6691 // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path 6692 // accepts that legacy behavior for Android only. 6693 // Check whether VT is legal. 6694 unsigned NumElements = VT->getNumElements(); 6695 // NumElements should be power of 2 or equal to 3. 6696 if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3) 6697 return true; 6698 } else { 6699 // Check whether VT is legal. 6700 unsigned NumElements = VT->getNumElements(); 6701 uint64_t Size = getContext().getTypeSize(VT); 6702 // NumElements should be power of 2. 6703 if (!llvm::isPowerOf2_32(NumElements)) 6704 return true; 6705 // Size should be greater than 32 bits. 6706 return Size <= 32; 6707 } 6708 } 6709 return false; 6710 } 6711 6712 /// Return true if a type contains any 16-bit floating point vectors 6713 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const { 6714 if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) { 6715 uint64_t NElements = AT->getSize().getZExtValue(); 6716 if (NElements == 0) 6717 return false; 6718 return containsAnyFP16Vectors(AT->getElementType()); 6719 } else if (const RecordType *RT = Ty->getAs<RecordType>()) { 6720 const RecordDecl *RD = RT->getDecl(); 6721 6722 // If this is a C++ record, check the bases first. 6723 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6724 if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) { 6725 return containsAnyFP16Vectors(B.getType()); 6726 })) 6727 return true; 6728 6729 if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) { 6730 return FD && containsAnyFP16Vectors(FD->getType()); 6731 })) 6732 return true; 6733 6734 return false; 6735 } else { 6736 if (const VectorType *VT = Ty->getAs<VectorType>()) 6737 return (VT->getElementType()->isFloat16Type() || 6738 VT->getElementType()->isBFloat16Type() || 6739 VT->getElementType()->isHalfType()); 6740 return false; 6741 } 6742 } 6743 6744 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize, 6745 llvm::Type *eltTy, 6746 unsigned numElts) const { 6747 if (!llvm::isPowerOf2_32(numElts)) 6748 return false; 6749 unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy); 6750 if (size > 64) 6751 return false; 6752 if (vectorSize.getQuantity() != 8 && 6753 (vectorSize.getQuantity() != 16 || numElts == 1)) 6754 return false; 6755 return true; 6756 } 6757 6758 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 6759 // Homogeneous aggregates for AAPCS-VFP must have base types of float, 6760 // double, or 64-bit or 128-bit vectors. 6761 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) { 6762 if (BT->getKind() == BuiltinType::Float || 6763 BT->getKind() == BuiltinType::Double || 6764 BT->getKind() == BuiltinType::LongDouble) 6765 return true; 6766 } else if (const VectorType *VT = Ty->getAs<VectorType>()) { 6767 unsigned VecSize = getContext().getTypeSize(VT); 6768 if (VecSize == 64 || VecSize == 128) 6769 return true; 6770 } 6771 return false; 6772 } 6773 6774 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base, 6775 uint64_t Members) const { 6776 return Members <= 4; 6777 } 6778 6779 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention, 6780 bool acceptHalf) const { 6781 // Give precedence to user-specified calling conventions. 6782 if (callConvention != llvm::CallingConv::C) 6783 return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP); 6784 else 6785 return (getABIKind() == AAPCS_VFP) || 6786 (acceptHalf && (getABIKind() == AAPCS16_VFP)); 6787 } 6788 6789 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6790 QualType Ty) const { 6791 CharUnits SlotSize = CharUnits::fromQuantity(4); 6792 6793 // Empty records are ignored for parameter passing purposes. 6794 if (isEmptyRecord(getContext(), Ty, true)) { 6795 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 6796 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 6797 return Addr; 6798 } 6799 6800 CharUnits TySize = getContext().getTypeSizeInChars(Ty); 6801 CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty); 6802 6803 // Use indirect if size of the illegal vector is bigger than 16 bytes. 6804 bool IsIndirect = false; 6805 const Type *Base = nullptr; 6806 uint64_t Members = 0; 6807 if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) { 6808 IsIndirect = true; 6809 6810 // ARMv7k passes structs bigger than 16 bytes indirectly, in space 6811 // allocated by the caller. 6812 } else if (TySize > CharUnits::fromQuantity(16) && 6813 getABIKind() == ARMABIInfo::AAPCS16_VFP && 6814 !isHomogeneousAggregate(Ty, Base, Members)) { 6815 IsIndirect = true; 6816 6817 // Otherwise, bound the type's ABI alignment. 6818 // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for 6819 // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte. 6820 // Our callers should be prepared to handle an under-aligned address. 6821 } else if (getABIKind() == ARMABIInfo::AAPCS_VFP || 6822 getABIKind() == ARMABIInfo::AAPCS) { 6823 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6824 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8)); 6825 } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) { 6826 // ARMv7k allows type alignment up to 16 bytes. 6827 TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4)); 6828 TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16)); 6829 } else { 6830 TyAlignForABI = CharUnits::fromQuantity(4); 6831 } 6832 6833 std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI }; 6834 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo, 6835 SlotSize, /*AllowHigherAlign*/ true); 6836 } 6837 6838 //===----------------------------------------------------------------------===// 6839 // NVPTX ABI Implementation 6840 //===----------------------------------------------------------------------===// 6841 6842 namespace { 6843 6844 class NVPTXTargetCodeGenInfo; 6845 6846 class NVPTXABIInfo : public ABIInfo { 6847 NVPTXTargetCodeGenInfo &CGInfo; 6848 6849 public: 6850 NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info) 6851 : ABIInfo(CGT), CGInfo(Info) {} 6852 6853 ABIArgInfo classifyReturnType(QualType RetTy) const; 6854 ABIArgInfo classifyArgumentType(QualType Ty) const; 6855 6856 void computeInfo(CGFunctionInfo &FI) const override; 6857 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 6858 QualType Ty) const override; 6859 bool isUnsupportedType(QualType T) const; 6860 ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const; 6861 }; 6862 6863 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo { 6864 public: 6865 NVPTXTargetCodeGenInfo(CodeGenTypes &CGT) 6866 : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {} 6867 6868 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 6869 CodeGen::CodeGenModule &M) const override; 6870 bool shouldEmitStaticExternCAliases() const override; 6871 6872 llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override { 6873 // On the device side, surface reference is represented as an object handle 6874 // in 64-bit integer. 6875 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6876 } 6877 6878 llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override { 6879 // On the device side, texture reference is represented as an object handle 6880 // in 64-bit integer. 6881 return llvm::Type::getInt64Ty(getABIInfo().getVMContext()); 6882 } 6883 6884 bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6885 LValue Src) const override { 6886 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6887 return true; 6888 } 6889 6890 bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6891 LValue Src) const override { 6892 emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src); 6893 return true; 6894 } 6895 6896 private: 6897 // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the 6898 // resulting MDNode to the nvvm.annotations MDNode. 6899 static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name, 6900 int Operand); 6901 6902 static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst, 6903 LValue Src) { 6904 llvm::Value *Handle = nullptr; 6905 llvm::Constant *C = 6906 llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer()); 6907 // Lookup `addrspacecast` through the constant pointer if any. 6908 if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C)) 6909 C = llvm::cast<llvm::Constant>(ASC->getPointerOperand()); 6910 if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) { 6911 // Load the handle from the specific global variable using 6912 // `nvvm.texsurf.handle.internal` intrinsic. 6913 Handle = CGF.EmitRuntimeCall( 6914 CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal, 6915 {GV->getType()}), 6916 {GV}, "texsurf_handle"); 6917 } else 6918 Handle = CGF.EmitLoadOfScalar(Src, SourceLocation()); 6919 CGF.EmitStoreOfScalar(Handle, Dst); 6920 } 6921 }; 6922 6923 /// Checks if the type is unsupported directly by the current target. 6924 bool NVPTXABIInfo::isUnsupportedType(QualType T) const { 6925 ASTContext &Context = getContext(); 6926 if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type()) 6927 return true; 6928 if (!Context.getTargetInfo().hasFloat128Type() && 6929 (T->isFloat128Type() || 6930 (T->isRealFloatingType() && Context.getTypeSize(T) == 128))) 6931 return true; 6932 if (const auto *EIT = T->getAs<ExtIntType>()) 6933 return EIT->getNumBits() > 6934 (Context.getTargetInfo().hasInt128Type() ? 128U : 64U); 6935 if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() && 6936 Context.getTypeSize(T) > 64U) 6937 return true; 6938 if (const auto *AT = T->getAsArrayTypeUnsafe()) 6939 return isUnsupportedType(AT->getElementType()); 6940 const auto *RT = T->getAs<RecordType>(); 6941 if (!RT) 6942 return false; 6943 const RecordDecl *RD = RT->getDecl(); 6944 6945 // If this is a C++ record, check the bases first. 6946 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 6947 for (const CXXBaseSpecifier &I : CXXRD->bases()) 6948 if (isUnsupportedType(I.getType())) 6949 return true; 6950 6951 for (const FieldDecl *I : RD->fields()) 6952 if (isUnsupportedType(I->getType())) 6953 return true; 6954 return false; 6955 } 6956 6957 /// Coerce the given type into an array with maximum allowed size of elements. 6958 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty, 6959 unsigned MaxSize) const { 6960 // Alignment and Size are measured in bits. 6961 const uint64_t Size = getContext().getTypeSize(Ty); 6962 const uint64_t Alignment = getContext().getTypeAlign(Ty); 6963 const unsigned Div = std::min<unsigned>(MaxSize, Alignment); 6964 llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div); 6965 const uint64_t NumElements = (Size + Div - 1) / Div; 6966 return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements)); 6967 } 6968 6969 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const { 6970 if (RetTy->isVoidType()) 6971 return ABIArgInfo::getIgnore(); 6972 6973 if (getContext().getLangOpts().OpenMP && 6974 getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy)) 6975 return coerceToIntArrayWithLimit(RetTy, 64); 6976 6977 // note: this is different from default ABI 6978 if (!RetTy->isScalarType()) 6979 return ABIArgInfo::getDirect(); 6980 6981 // Treat an enum type as its underlying type. 6982 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 6983 RetTy = EnumTy->getDecl()->getIntegerType(); 6984 6985 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 6986 : ABIArgInfo::getDirect()); 6987 } 6988 6989 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const { 6990 // Treat an enum type as its underlying type. 6991 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 6992 Ty = EnumTy->getDecl()->getIntegerType(); 6993 6994 // Return aggregates type as indirect by value 6995 if (isAggregateTypeForABI(Ty)) { 6996 // Under CUDA device compilation, tex/surf builtin types are replaced with 6997 // object types and passed directly. 6998 if (getContext().getLangOpts().CUDAIsDevice) { 6999 if (Ty->isCUDADeviceBuiltinSurfaceType()) 7000 return ABIArgInfo::getDirect( 7001 CGInfo.getCUDADeviceBuiltinSurfaceDeviceType()); 7002 if (Ty->isCUDADeviceBuiltinTextureType()) 7003 return ABIArgInfo::getDirect( 7004 CGInfo.getCUDADeviceBuiltinTextureDeviceType()); 7005 } 7006 return getNaturalAlignIndirect(Ty, /* byval */ true); 7007 } 7008 7009 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 7010 if ((EIT->getNumBits() > 128) || 7011 (!getContext().getTargetInfo().hasInt128Type() && 7012 EIT->getNumBits() > 64)) 7013 return getNaturalAlignIndirect(Ty, /* byval */ true); 7014 } 7015 7016 return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 7017 : ABIArgInfo::getDirect()); 7018 } 7019 7020 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const { 7021 if (!getCXXABI().classifyReturnType(FI)) 7022 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7023 for (auto &I : FI.arguments()) 7024 I.info = classifyArgumentType(I.type); 7025 7026 // Always honor user-specified calling convention. 7027 if (FI.getCallingConvention() != llvm::CallingConv::C) 7028 return; 7029 7030 FI.setEffectiveCallingConvention(getRuntimeCC()); 7031 } 7032 7033 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7034 QualType Ty) const { 7035 llvm_unreachable("NVPTX does not support varargs"); 7036 } 7037 7038 void NVPTXTargetCodeGenInfo::setTargetAttributes( 7039 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7040 if (GV->isDeclaration()) 7041 return; 7042 const VarDecl *VD = dyn_cast_or_null<VarDecl>(D); 7043 if (VD) { 7044 if (M.getLangOpts().CUDA) { 7045 if (VD->getType()->isCUDADeviceBuiltinSurfaceType()) 7046 addNVVMMetadata(GV, "surface", 1); 7047 else if (VD->getType()->isCUDADeviceBuiltinTextureType()) 7048 addNVVMMetadata(GV, "texture", 1); 7049 return; 7050 } 7051 } 7052 7053 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7054 if (!FD) return; 7055 7056 llvm::Function *F = cast<llvm::Function>(GV); 7057 7058 // Perform special handling in OpenCL mode 7059 if (M.getLangOpts().OpenCL) { 7060 // Use OpenCL function attributes to check for kernel functions 7061 // By default, all functions are device functions 7062 if (FD->hasAttr<OpenCLKernelAttr>()) { 7063 // OpenCL __kernel functions get kernel metadata 7064 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7065 addNVVMMetadata(F, "kernel", 1); 7066 // And kernel functions are not subject to inlining 7067 F->addFnAttr(llvm::Attribute::NoInline); 7068 } 7069 } 7070 7071 // Perform special handling in CUDA mode. 7072 if (M.getLangOpts().CUDA) { 7073 // CUDA __global__ functions get a kernel metadata entry. Since 7074 // __global__ functions cannot be called from the device, we do not 7075 // need to set the noinline attribute. 7076 if (FD->hasAttr<CUDAGlobalAttr>()) { 7077 // Create !{<func-ref>, metadata !"kernel", i32 1} node 7078 addNVVMMetadata(F, "kernel", 1); 7079 } 7080 if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) { 7081 // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node 7082 llvm::APSInt MaxThreads(32); 7083 MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext()); 7084 if (MaxThreads > 0) 7085 addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue()); 7086 7087 // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was 7088 // not specified in __launch_bounds__ or if the user specified a 0 value, 7089 // we don't have to add a PTX directive. 7090 if (Attr->getMinBlocks()) { 7091 llvm::APSInt MinBlocks(32); 7092 MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext()); 7093 if (MinBlocks > 0) 7094 // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node 7095 addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue()); 7096 } 7097 } 7098 } 7099 } 7100 7101 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV, 7102 StringRef Name, int Operand) { 7103 llvm::Module *M = GV->getParent(); 7104 llvm::LLVMContext &Ctx = M->getContext(); 7105 7106 // Get "nvvm.annotations" metadata node 7107 llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations"); 7108 7109 llvm::Metadata *MDVals[] = { 7110 llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name), 7111 llvm::ConstantAsMetadata::get( 7112 llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))}; 7113 // Append metadata to nvvm.annotations 7114 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 7115 } 7116 7117 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 7118 return false; 7119 } 7120 } 7121 7122 //===----------------------------------------------------------------------===// 7123 // SystemZ ABI Implementation 7124 //===----------------------------------------------------------------------===// 7125 7126 namespace { 7127 7128 class SystemZABIInfo : public SwiftABIInfo { 7129 bool HasVector; 7130 bool IsSoftFloatABI; 7131 7132 public: 7133 SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF) 7134 : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {} 7135 7136 bool isPromotableIntegerTypeForABI(QualType Ty) const; 7137 bool isCompoundType(QualType Ty) const; 7138 bool isVectorArgumentType(QualType Ty) const; 7139 bool isFPArgumentType(QualType Ty) const; 7140 QualType GetSingleElementType(QualType Ty) const; 7141 7142 ABIArgInfo classifyReturnType(QualType RetTy) const; 7143 ABIArgInfo classifyArgumentType(QualType ArgTy) const; 7144 7145 void computeInfo(CGFunctionInfo &FI) const override { 7146 if (!getCXXABI().classifyReturnType(FI)) 7147 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7148 for (auto &I : FI.arguments()) 7149 I.info = classifyArgumentType(I.type); 7150 } 7151 7152 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7153 QualType Ty) const override; 7154 7155 bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars, 7156 bool asReturnValue) const override { 7157 return occupiesMoreThan(CGT, scalars, /*total*/ 4); 7158 } 7159 bool isSwiftErrorInRegister() const override { 7160 return false; 7161 } 7162 }; 7163 7164 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo { 7165 public: 7166 SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI) 7167 : TargetCodeGenInfo( 7168 std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {} 7169 }; 7170 7171 } 7172 7173 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const { 7174 // Treat an enum type as its underlying type. 7175 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7176 Ty = EnumTy->getDecl()->getIntegerType(); 7177 7178 // Promotable integer types are required to be promoted by the ABI. 7179 if (ABIInfo::isPromotableIntegerTypeForABI(Ty)) 7180 return true; 7181 7182 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7183 if (EIT->getNumBits() < 64) 7184 return true; 7185 7186 // 32-bit values must also be promoted. 7187 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7188 switch (BT->getKind()) { 7189 case BuiltinType::Int: 7190 case BuiltinType::UInt: 7191 return true; 7192 default: 7193 return false; 7194 } 7195 return false; 7196 } 7197 7198 bool SystemZABIInfo::isCompoundType(QualType Ty) const { 7199 return (Ty->isAnyComplexType() || 7200 Ty->isVectorType() || 7201 isAggregateTypeForABI(Ty)); 7202 } 7203 7204 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const { 7205 return (HasVector && 7206 Ty->isVectorType() && 7207 getContext().getTypeSize(Ty) <= 128); 7208 } 7209 7210 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const { 7211 if (IsSoftFloatABI) 7212 return false; 7213 7214 if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) 7215 switch (BT->getKind()) { 7216 case BuiltinType::Float: 7217 case BuiltinType::Double: 7218 return true; 7219 default: 7220 return false; 7221 } 7222 7223 return false; 7224 } 7225 7226 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const { 7227 const RecordType *RT = Ty->getAs<RecordType>(); 7228 7229 if (RT && RT->isStructureOrClassType()) { 7230 const RecordDecl *RD = RT->getDecl(); 7231 QualType Found; 7232 7233 // If this is a C++ record, check the bases first. 7234 if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) 7235 for (const auto &I : CXXRD->bases()) { 7236 QualType Base = I.getType(); 7237 7238 // Empty bases don't affect things either way. 7239 if (isEmptyRecord(getContext(), Base, true)) 7240 continue; 7241 7242 if (!Found.isNull()) 7243 return Ty; 7244 Found = GetSingleElementType(Base); 7245 } 7246 7247 // Check the fields. 7248 for (const auto *FD : RD->fields()) { 7249 // For compatibility with GCC, ignore empty bitfields in C++ mode. 7250 // Unlike isSingleElementStruct(), empty structure and array fields 7251 // do count. So do anonymous bitfields that aren't zero-sized. 7252 if (getContext().getLangOpts().CPlusPlus && 7253 FD->isZeroLengthBitField(getContext())) 7254 continue; 7255 // Like isSingleElementStruct(), ignore C++20 empty data members. 7256 if (FD->hasAttr<NoUniqueAddressAttr>() && 7257 isEmptyRecord(getContext(), FD->getType(), true)) 7258 continue; 7259 7260 // Unlike isSingleElementStruct(), arrays do not count. 7261 // Nested structures still do though. 7262 if (!Found.isNull()) 7263 return Ty; 7264 Found = GetSingleElementType(FD->getType()); 7265 } 7266 7267 // Unlike isSingleElementStruct(), trailing padding is allowed. 7268 // An 8-byte aligned struct s { float f; } is passed as a double. 7269 if (!Found.isNull()) 7270 return Found; 7271 } 7272 7273 return Ty; 7274 } 7275 7276 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7277 QualType Ty) const { 7278 // Assume that va_list type is correct; should be pointer to LLVM type: 7279 // struct { 7280 // i64 __gpr; 7281 // i64 __fpr; 7282 // i8 *__overflow_arg_area; 7283 // i8 *__reg_save_area; 7284 // }; 7285 7286 // Every non-vector argument occupies 8 bytes and is passed by preference 7287 // in either GPRs or FPRs. Vector arguments occupy 8 or 16 bytes and are 7288 // always passed on the stack. 7289 Ty = getContext().getCanonicalType(Ty); 7290 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7291 llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty); 7292 llvm::Type *DirectTy = ArgTy; 7293 ABIArgInfo AI = classifyArgumentType(Ty); 7294 bool IsIndirect = AI.isIndirect(); 7295 bool InFPRs = false; 7296 bool IsVector = false; 7297 CharUnits UnpaddedSize; 7298 CharUnits DirectAlign; 7299 if (IsIndirect) { 7300 DirectTy = llvm::PointerType::getUnqual(DirectTy); 7301 UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8); 7302 } else { 7303 if (AI.getCoerceToType()) 7304 ArgTy = AI.getCoerceToType(); 7305 InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy())); 7306 IsVector = ArgTy->isVectorTy(); 7307 UnpaddedSize = TyInfo.first; 7308 DirectAlign = TyInfo.second; 7309 } 7310 CharUnits PaddedSize = CharUnits::fromQuantity(8); 7311 if (IsVector && UnpaddedSize > PaddedSize) 7312 PaddedSize = CharUnits::fromQuantity(16); 7313 assert((UnpaddedSize <= PaddedSize) && "Invalid argument size."); 7314 7315 CharUnits Padding = (PaddedSize - UnpaddedSize); 7316 7317 llvm::Type *IndexTy = CGF.Int64Ty; 7318 llvm::Value *PaddedSizeV = 7319 llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity()); 7320 7321 if (IsVector) { 7322 // Work out the address of a vector argument on the stack. 7323 // Vector arguments are always passed in the high bits of a 7324 // single (8 byte) or double (16 byte) stack slot. 7325 Address OverflowArgAreaPtr = 7326 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7327 Address OverflowArgArea = 7328 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7329 TyInfo.second); 7330 Address MemAddr = 7331 CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr"); 7332 7333 // Update overflow_arg_area_ptr pointer 7334 llvm::Value *NewOverflowArgArea = 7335 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7336 "overflow_arg_area"); 7337 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7338 7339 return MemAddr; 7340 } 7341 7342 assert(PaddedSize.getQuantity() == 8); 7343 7344 unsigned MaxRegs, RegCountField, RegSaveIndex; 7345 CharUnits RegPadding; 7346 if (InFPRs) { 7347 MaxRegs = 4; // Maximum of 4 FPR arguments 7348 RegCountField = 1; // __fpr 7349 RegSaveIndex = 16; // save offset for f0 7350 RegPadding = CharUnits(); // floats are passed in the high bits of an FPR 7351 } else { 7352 MaxRegs = 5; // Maximum of 5 GPR arguments 7353 RegCountField = 0; // __gpr 7354 RegSaveIndex = 2; // save offset for r2 7355 RegPadding = Padding; // values are passed in the low bits of a GPR 7356 } 7357 7358 Address RegCountPtr = 7359 CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr"); 7360 llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count"); 7361 llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs); 7362 llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV, 7363 "fits_in_regs"); 7364 7365 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 7366 llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem"); 7367 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 7368 CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock); 7369 7370 // Emit code to load the value if it was passed in registers. 7371 CGF.EmitBlock(InRegBlock); 7372 7373 // Work out the address of an argument register. 7374 llvm::Value *ScaledRegCount = 7375 CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count"); 7376 llvm::Value *RegBase = 7377 llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity() 7378 + RegPadding.getQuantity()); 7379 llvm::Value *RegOffset = 7380 CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset"); 7381 Address RegSaveAreaPtr = 7382 CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr"); 7383 llvm::Value *RegSaveArea = 7384 CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area"); 7385 Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset, 7386 "raw_reg_addr"), 7387 PaddedSize); 7388 Address RegAddr = 7389 CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr"); 7390 7391 // Update the register count 7392 llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1); 7393 llvm::Value *NewRegCount = 7394 CGF.Builder.CreateAdd(RegCount, One, "reg_count"); 7395 CGF.Builder.CreateStore(NewRegCount, RegCountPtr); 7396 CGF.EmitBranch(ContBlock); 7397 7398 // Emit code to load the value if it was passed in memory. 7399 CGF.EmitBlock(InMemBlock); 7400 7401 // Work out the address of a stack argument. 7402 Address OverflowArgAreaPtr = 7403 CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr"); 7404 Address OverflowArgArea = 7405 Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"), 7406 PaddedSize); 7407 Address RawMemAddr = 7408 CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr"); 7409 Address MemAddr = 7410 CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr"); 7411 7412 // Update overflow_arg_area_ptr pointer 7413 llvm::Value *NewOverflowArgArea = 7414 CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV, 7415 "overflow_arg_area"); 7416 CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr); 7417 CGF.EmitBranch(ContBlock); 7418 7419 // Return the appropriate result. 7420 CGF.EmitBlock(ContBlock); 7421 Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, 7422 MemAddr, InMemBlock, "va_arg.addr"); 7423 7424 if (IsIndirect) 7425 ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"), 7426 TyInfo.second); 7427 7428 return ResAddr; 7429 } 7430 7431 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const { 7432 if (RetTy->isVoidType()) 7433 return ABIArgInfo::getIgnore(); 7434 if (isVectorArgumentType(RetTy)) 7435 return ABIArgInfo::getDirect(); 7436 if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64) 7437 return getNaturalAlignIndirect(RetTy); 7438 return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 7439 : ABIArgInfo::getDirect()); 7440 } 7441 7442 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const { 7443 // Handle the generic C++ ABI. 7444 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 7445 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7446 7447 // Integers and enums are extended to full register width. 7448 if (isPromotableIntegerTypeForABI(Ty)) 7449 return ABIArgInfo::getExtend(Ty); 7450 7451 // Handle vector types and vector-like structure types. Note that 7452 // as opposed to float-like structure types, we do not allow any 7453 // padding for vector-like structures, so verify the sizes match. 7454 uint64_t Size = getContext().getTypeSize(Ty); 7455 QualType SingleElementTy = GetSingleElementType(Ty); 7456 if (isVectorArgumentType(SingleElementTy) && 7457 getContext().getTypeSize(SingleElementTy) == Size) 7458 return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy)); 7459 7460 // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly. 7461 if (Size != 8 && Size != 16 && Size != 32 && Size != 64) 7462 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7463 7464 // Handle small structures. 7465 if (const RecordType *RT = Ty->getAs<RecordType>()) { 7466 // Structures with flexible arrays have variable length, so really 7467 // fail the size test above. 7468 const RecordDecl *RD = RT->getDecl(); 7469 if (RD->hasFlexibleArrayMember()) 7470 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7471 7472 // The structure is passed as an unextended integer, a float, or a double. 7473 llvm::Type *PassTy; 7474 if (isFPArgumentType(SingleElementTy)) { 7475 assert(Size == 32 || Size == 64); 7476 if (Size == 32) 7477 PassTy = llvm::Type::getFloatTy(getVMContext()); 7478 else 7479 PassTy = llvm::Type::getDoubleTy(getVMContext()); 7480 } else 7481 PassTy = llvm::IntegerType::get(getVMContext(), Size); 7482 return ABIArgInfo::getDirect(PassTy); 7483 } 7484 7485 // Non-structure compounds are passed indirectly. 7486 if (isCompoundType(Ty)) 7487 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 7488 7489 return ABIArgInfo::getDirect(nullptr); 7490 } 7491 7492 //===----------------------------------------------------------------------===// 7493 // MSP430 ABI Implementation 7494 //===----------------------------------------------------------------------===// 7495 7496 namespace { 7497 7498 class MSP430ABIInfo : public DefaultABIInfo { 7499 static ABIArgInfo complexArgInfo() { 7500 ABIArgInfo Info = ABIArgInfo::getDirect(); 7501 Info.setCanBeFlattened(false); 7502 return Info; 7503 } 7504 7505 public: 7506 MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 7507 7508 ABIArgInfo classifyReturnType(QualType RetTy) const { 7509 if (RetTy->isAnyComplexType()) 7510 return complexArgInfo(); 7511 7512 return DefaultABIInfo::classifyReturnType(RetTy); 7513 } 7514 7515 ABIArgInfo classifyArgumentType(QualType RetTy) const { 7516 if (RetTy->isAnyComplexType()) 7517 return complexArgInfo(); 7518 7519 return DefaultABIInfo::classifyArgumentType(RetTy); 7520 } 7521 7522 // Just copy the original implementations because 7523 // DefaultABIInfo::classify{Return,Argument}Type() are not virtual 7524 void computeInfo(CGFunctionInfo &FI) const override { 7525 if (!getCXXABI().classifyReturnType(FI)) 7526 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 7527 for (auto &I : FI.arguments()) 7528 I.info = classifyArgumentType(I.type); 7529 } 7530 7531 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7532 QualType Ty) const override { 7533 return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty)); 7534 } 7535 }; 7536 7537 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo { 7538 public: 7539 MSP430TargetCodeGenInfo(CodeGenTypes &CGT) 7540 : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {} 7541 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7542 CodeGen::CodeGenModule &M) const override; 7543 }; 7544 7545 } 7546 7547 void MSP430TargetCodeGenInfo::setTargetAttributes( 7548 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 7549 if (GV->isDeclaration()) 7550 return; 7551 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 7552 const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>(); 7553 if (!InterruptAttr) 7554 return; 7555 7556 // Handle 'interrupt' attribute: 7557 llvm::Function *F = cast<llvm::Function>(GV); 7558 7559 // Step 1: Set ISR calling convention. 7560 F->setCallingConv(llvm::CallingConv::MSP430_INTR); 7561 7562 // Step 2: Add attributes goodness. 7563 F->addFnAttr(llvm::Attribute::NoInline); 7564 F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber())); 7565 } 7566 } 7567 7568 //===----------------------------------------------------------------------===// 7569 // MIPS ABI Implementation. This works for both little-endian and 7570 // big-endian variants. 7571 //===----------------------------------------------------------------------===// 7572 7573 namespace { 7574 class MipsABIInfo : public ABIInfo { 7575 bool IsO32; 7576 unsigned MinABIStackAlignInBytes, StackAlignInBytes; 7577 void CoerceToIntArgs(uint64_t TySize, 7578 SmallVectorImpl<llvm::Type *> &ArgList) const; 7579 llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const; 7580 llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const; 7581 llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const; 7582 public: 7583 MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) : 7584 ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8), 7585 StackAlignInBytes(IsO32 ? 8 : 16) {} 7586 7587 ABIArgInfo classifyReturnType(QualType RetTy) const; 7588 ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const; 7589 void computeInfo(CGFunctionInfo &FI) const override; 7590 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7591 QualType Ty) const override; 7592 ABIArgInfo extendType(QualType Ty) const; 7593 }; 7594 7595 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo { 7596 unsigned SizeOfUnwindException; 7597 public: 7598 MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32) 7599 : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)), 7600 SizeOfUnwindException(IsO32 ? 24 : 32) {} 7601 7602 int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override { 7603 return 29; 7604 } 7605 7606 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 7607 CodeGen::CodeGenModule &CGM) const override { 7608 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 7609 if (!FD) return; 7610 llvm::Function *Fn = cast<llvm::Function>(GV); 7611 7612 if (FD->hasAttr<MipsLongCallAttr>()) 7613 Fn->addFnAttr("long-call"); 7614 else if (FD->hasAttr<MipsShortCallAttr>()) 7615 Fn->addFnAttr("short-call"); 7616 7617 // Other attributes do not have a meaning for declarations. 7618 if (GV->isDeclaration()) 7619 return; 7620 7621 if (FD->hasAttr<Mips16Attr>()) { 7622 Fn->addFnAttr("mips16"); 7623 } 7624 else if (FD->hasAttr<NoMips16Attr>()) { 7625 Fn->addFnAttr("nomips16"); 7626 } 7627 7628 if (FD->hasAttr<MicroMipsAttr>()) 7629 Fn->addFnAttr("micromips"); 7630 else if (FD->hasAttr<NoMicroMipsAttr>()) 7631 Fn->addFnAttr("nomicromips"); 7632 7633 const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>(); 7634 if (!Attr) 7635 return; 7636 7637 const char *Kind; 7638 switch (Attr->getInterrupt()) { 7639 case MipsInterruptAttr::eic: Kind = "eic"; break; 7640 case MipsInterruptAttr::sw0: Kind = "sw0"; break; 7641 case MipsInterruptAttr::sw1: Kind = "sw1"; break; 7642 case MipsInterruptAttr::hw0: Kind = "hw0"; break; 7643 case MipsInterruptAttr::hw1: Kind = "hw1"; break; 7644 case MipsInterruptAttr::hw2: Kind = "hw2"; break; 7645 case MipsInterruptAttr::hw3: Kind = "hw3"; break; 7646 case MipsInterruptAttr::hw4: Kind = "hw4"; break; 7647 case MipsInterruptAttr::hw5: Kind = "hw5"; break; 7648 } 7649 7650 Fn->addFnAttr("interrupt", Kind); 7651 7652 } 7653 7654 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7655 llvm::Value *Address) const override; 7656 7657 unsigned getSizeOfUnwindException() const override { 7658 return SizeOfUnwindException; 7659 } 7660 }; 7661 } 7662 7663 void MipsABIInfo::CoerceToIntArgs( 7664 uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const { 7665 llvm::IntegerType *IntTy = 7666 llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8); 7667 7668 // Add (TySize / MinABIStackAlignInBytes) args of IntTy. 7669 for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N) 7670 ArgList.push_back(IntTy); 7671 7672 // If necessary, add one more integer type to ArgList. 7673 unsigned R = TySize % (MinABIStackAlignInBytes * 8); 7674 7675 if (R) 7676 ArgList.push_back(llvm::IntegerType::get(getVMContext(), R)); 7677 } 7678 7679 // In N32/64, an aligned double precision floating point field is passed in 7680 // a register. 7681 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const { 7682 SmallVector<llvm::Type*, 8> ArgList, IntArgList; 7683 7684 if (IsO32) { 7685 CoerceToIntArgs(TySize, ArgList); 7686 return llvm::StructType::get(getVMContext(), ArgList); 7687 } 7688 7689 if (Ty->isComplexType()) 7690 return CGT.ConvertType(Ty); 7691 7692 const RecordType *RT = Ty->getAs<RecordType>(); 7693 7694 // Unions/vectors are passed in integer registers. 7695 if (!RT || !RT->isStructureOrClassType()) { 7696 CoerceToIntArgs(TySize, ArgList); 7697 return llvm::StructType::get(getVMContext(), ArgList); 7698 } 7699 7700 const RecordDecl *RD = RT->getDecl(); 7701 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7702 assert(!(TySize % 8) && "Size of structure must be multiple of 8."); 7703 7704 uint64_t LastOffset = 0; 7705 unsigned idx = 0; 7706 llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64); 7707 7708 // Iterate over fields in the struct/class and check if there are any aligned 7709 // double fields. 7710 for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end(); 7711 i != e; ++i, ++idx) { 7712 const QualType Ty = i->getType(); 7713 const BuiltinType *BT = Ty->getAs<BuiltinType>(); 7714 7715 if (!BT || BT->getKind() != BuiltinType::Double) 7716 continue; 7717 7718 uint64_t Offset = Layout.getFieldOffset(idx); 7719 if (Offset % 64) // Ignore doubles that are not aligned. 7720 continue; 7721 7722 // Add ((Offset - LastOffset) / 64) args of type i64. 7723 for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j) 7724 ArgList.push_back(I64); 7725 7726 // Add double type. 7727 ArgList.push_back(llvm::Type::getDoubleTy(getVMContext())); 7728 LastOffset = Offset + 64; 7729 } 7730 7731 CoerceToIntArgs(TySize - LastOffset, IntArgList); 7732 ArgList.append(IntArgList.begin(), IntArgList.end()); 7733 7734 return llvm::StructType::get(getVMContext(), ArgList); 7735 } 7736 7737 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset, 7738 uint64_t Offset) const { 7739 if (OrigOffset + MinABIStackAlignInBytes > Offset) 7740 return nullptr; 7741 7742 return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8); 7743 } 7744 7745 ABIArgInfo 7746 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const { 7747 Ty = useFirstFieldIfTransparentUnion(Ty); 7748 7749 uint64_t OrigOffset = Offset; 7750 uint64_t TySize = getContext().getTypeSize(Ty); 7751 uint64_t Align = getContext().getTypeAlign(Ty) / 8; 7752 7753 Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes), 7754 (uint64_t)StackAlignInBytes); 7755 unsigned CurrOffset = llvm::alignTo(Offset, Align); 7756 Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8; 7757 7758 if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) { 7759 // Ignore empty aggregates. 7760 if (TySize == 0) 7761 return ABIArgInfo::getIgnore(); 7762 7763 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 7764 Offset = OrigOffset + MinABIStackAlignInBytes; 7765 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 7766 } 7767 7768 // If we have reached here, aggregates are passed directly by coercing to 7769 // another structure type. Padding is inserted if the offset of the 7770 // aggregate is unaligned. 7771 ABIArgInfo ArgInfo = 7772 ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0, 7773 getPaddingType(OrigOffset, CurrOffset)); 7774 ArgInfo.setInReg(true); 7775 return ArgInfo; 7776 } 7777 7778 // Treat an enum type as its underlying type. 7779 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 7780 Ty = EnumTy->getDecl()->getIntegerType(); 7781 7782 // Make sure we pass indirectly things that are too large. 7783 if (const auto *EIT = Ty->getAs<ExtIntType>()) 7784 if (EIT->getNumBits() > 128 || 7785 (EIT->getNumBits() > 64 && 7786 !getContext().getTargetInfo().hasInt128Type())) 7787 return getNaturalAlignIndirect(Ty); 7788 7789 // All integral types are promoted to the GPR width. 7790 if (Ty->isIntegralOrEnumerationType()) 7791 return extendType(Ty); 7792 7793 return ABIArgInfo::getDirect( 7794 nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset)); 7795 } 7796 7797 llvm::Type* 7798 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const { 7799 const RecordType *RT = RetTy->getAs<RecordType>(); 7800 SmallVector<llvm::Type*, 8> RTList; 7801 7802 if (RT && RT->isStructureOrClassType()) { 7803 const RecordDecl *RD = RT->getDecl(); 7804 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 7805 unsigned FieldCnt = Layout.getFieldCount(); 7806 7807 // N32/64 returns struct/classes in floating point registers if the 7808 // following conditions are met: 7809 // 1. The size of the struct/class is no larger than 128-bit. 7810 // 2. The struct/class has one or two fields all of which are floating 7811 // point types. 7812 // 3. The offset of the first field is zero (this follows what gcc does). 7813 // 7814 // Any other composite results are returned in integer registers. 7815 // 7816 if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) { 7817 RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end(); 7818 for (; b != e; ++b) { 7819 const BuiltinType *BT = b->getType()->getAs<BuiltinType>(); 7820 7821 if (!BT || !BT->isFloatingPoint()) 7822 break; 7823 7824 RTList.push_back(CGT.ConvertType(b->getType())); 7825 } 7826 7827 if (b == e) 7828 return llvm::StructType::get(getVMContext(), RTList, 7829 RD->hasAttr<PackedAttr>()); 7830 7831 RTList.clear(); 7832 } 7833 } 7834 7835 CoerceToIntArgs(Size, RTList); 7836 return llvm::StructType::get(getVMContext(), RTList); 7837 } 7838 7839 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const { 7840 uint64_t Size = getContext().getTypeSize(RetTy); 7841 7842 if (RetTy->isVoidType()) 7843 return ABIArgInfo::getIgnore(); 7844 7845 // O32 doesn't treat zero-sized structs differently from other structs. 7846 // However, N32/N64 ignores zero sized return values. 7847 if (!IsO32 && Size == 0) 7848 return ABIArgInfo::getIgnore(); 7849 7850 if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) { 7851 if (Size <= 128) { 7852 if (RetTy->isAnyComplexType()) 7853 return ABIArgInfo::getDirect(); 7854 7855 // O32 returns integer vectors in registers and N32/N64 returns all small 7856 // aggregates in registers. 7857 if (!IsO32 || 7858 (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) { 7859 ABIArgInfo ArgInfo = 7860 ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size)); 7861 ArgInfo.setInReg(true); 7862 return ArgInfo; 7863 } 7864 } 7865 7866 return getNaturalAlignIndirect(RetTy); 7867 } 7868 7869 // Treat an enum type as its underlying type. 7870 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 7871 RetTy = EnumTy->getDecl()->getIntegerType(); 7872 7873 // Make sure we pass indirectly things that are too large. 7874 if (const auto *EIT = RetTy->getAs<ExtIntType>()) 7875 if (EIT->getNumBits() > 128 || 7876 (EIT->getNumBits() > 64 && 7877 !getContext().getTargetInfo().hasInt128Type())) 7878 return getNaturalAlignIndirect(RetTy); 7879 7880 if (isPromotableIntegerTypeForABI(RetTy)) 7881 return ABIArgInfo::getExtend(RetTy); 7882 7883 if ((RetTy->isUnsignedIntegerOrEnumerationType() || 7884 RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32) 7885 return ABIArgInfo::getSignExtend(RetTy); 7886 7887 return ABIArgInfo::getDirect(); 7888 } 7889 7890 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const { 7891 ABIArgInfo &RetInfo = FI.getReturnInfo(); 7892 if (!getCXXABI().classifyReturnType(FI)) 7893 RetInfo = classifyReturnType(FI.getReturnType()); 7894 7895 // Check if a pointer to an aggregate is passed as a hidden argument. 7896 uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0; 7897 7898 for (auto &I : FI.arguments()) 7899 I.info = classifyArgumentType(I.type, Offset); 7900 } 7901 7902 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 7903 QualType OrigTy) const { 7904 QualType Ty = OrigTy; 7905 7906 // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64. 7907 // Pointers are also promoted in the same way but this only matters for N32. 7908 unsigned SlotSizeInBits = IsO32 ? 32 : 64; 7909 unsigned PtrWidth = getTarget().getPointerWidth(0); 7910 bool DidPromote = false; 7911 if ((Ty->isIntegerType() && 7912 getContext().getIntWidth(Ty) < SlotSizeInBits) || 7913 (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) { 7914 DidPromote = true; 7915 Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits, 7916 Ty->isSignedIntegerType()); 7917 } 7918 7919 auto TyInfo = getContext().getTypeInfoInChars(Ty); 7920 7921 // The alignment of things in the argument area is never larger than 7922 // StackAlignInBytes. 7923 TyInfo.second = 7924 std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes)); 7925 7926 // MinABIStackAlignInBytes is the size of argument slots on the stack. 7927 CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes); 7928 7929 Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 7930 TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true); 7931 7932 7933 // If there was a promotion, "unpromote" into a temporary. 7934 // TODO: can we just use a pointer into a subset of the original slot? 7935 if (DidPromote) { 7936 Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp"); 7937 llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr); 7938 7939 // Truncate down to the right width. 7940 llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType() 7941 : CGF.IntPtrTy); 7942 llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy); 7943 if (OrigTy->isPointerType()) 7944 V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType()); 7945 7946 CGF.Builder.CreateStore(V, Temp); 7947 Addr = Temp; 7948 } 7949 7950 return Addr; 7951 } 7952 7953 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const { 7954 int TySize = getContext().getTypeSize(Ty); 7955 7956 // MIPS64 ABI requires unsigned 32 bit integers to be sign extended. 7957 if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 7958 return ABIArgInfo::getSignExtend(Ty); 7959 7960 return ABIArgInfo::getExtend(Ty); 7961 } 7962 7963 bool 7964 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 7965 llvm::Value *Address) const { 7966 // This information comes from gcc's implementation, which seems to 7967 // as canonical as it gets. 7968 7969 // Everything on MIPS is 4 bytes. Double-precision FP registers 7970 // are aliased to pairs of single-precision FP registers. 7971 llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4); 7972 7973 // 0-31 are the general purpose registers, $0 - $31. 7974 // 32-63 are the floating-point registers, $f0 - $f31. 7975 // 64 and 65 are the multiply/divide registers, $hi and $lo. 7976 // 66 is the (notional, I think) register for signal-handler return. 7977 AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65); 7978 7979 // 67-74 are the floating-point status registers, $fcc0 - $fcc7. 7980 // They are one bit wide and ignored here. 7981 7982 // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31. 7983 // (coprocessor 1 is the FP unit) 7984 // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31. 7985 // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31. 7986 // 176-181 are the DSP accumulator registers. 7987 AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181); 7988 return false; 7989 } 7990 7991 //===----------------------------------------------------------------------===// 7992 // AVR ABI Implementation. 7993 //===----------------------------------------------------------------------===// 7994 7995 namespace { 7996 class AVRTargetCodeGenInfo : public TargetCodeGenInfo { 7997 public: 7998 AVRTargetCodeGenInfo(CodeGenTypes &CGT) 7999 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 8000 8001 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8002 CodeGen::CodeGenModule &CGM) const override { 8003 if (GV->isDeclaration()) 8004 return; 8005 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 8006 if (!FD) return; 8007 auto *Fn = cast<llvm::Function>(GV); 8008 8009 if (FD->getAttr<AVRInterruptAttr>()) 8010 Fn->addFnAttr("interrupt"); 8011 8012 if (FD->getAttr<AVRSignalAttr>()) 8013 Fn->addFnAttr("signal"); 8014 } 8015 }; 8016 } 8017 8018 //===----------------------------------------------------------------------===// 8019 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults. 8020 // Currently subclassed only to implement custom OpenCL C function attribute 8021 // handling. 8022 //===----------------------------------------------------------------------===// 8023 8024 namespace { 8025 8026 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo { 8027 public: 8028 TCETargetCodeGenInfo(CodeGenTypes &CGT) 8029 : DefaultTargetCodeGenInfo(CGT) {} 8030 8031 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8032 CodeGen::CodeGenModule &M) const override; 8033 }; 8034 8035 void TCETargetCodeGenInfo::setTargetAttributes( 8036 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8037 if (GV->isDeclaration()) 8038 return; 8039 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8040 if (!FD) return; 8041 8042 llvm::Function *F = cast<llvm::Function>(GV); 8043 8044 if (M.getLangOpts().OpenCL) { 8045 if (FD->hasAttr<OpenCLKernelAttr>()) { 8046 // OpenCL C Kernel functions are not subject to inlining 8047 F->addFnAttr(llvm::Attribute::NoInline); 8048 const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 8049 if (Attr) { 8050 // Convert the reqd_work_group_size() attributes to metadata. 8051 llvm::LLVMContext &Context = F->getContext(); 8052 llvm::NamedMDNode *OpenCLMetadata = 8053 M.getModule().getOrInsertNamedMetadata( 8054 "opencl.kernel_wg_size_info"); 8055 8056 SmallVector<llvm::Metadata *, 5> Operands; 8057 Operands.push_back(llvm::ConstantAsMetadata::get(F)); 8058 8059 Operands.push_back( 8060 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8061 M.Int32Ty, llvm::APInt(32, Attr->getXDim())))); 8062 Operands.push_back( 8063 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8064 M.Int32Ty, llvm::APInt(32, Attr->getYDim())))); 8065 Operands.push_back( 8066 llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue( 8067 M.Int32Ty, llvm::APInt(32, Attr->getZDim())))); 8068 8069 // Add a boolean constant operand for "required" (true) or "hint" 8070 // (false) for implementing the work_group_size_hint attr later. 8071 // Currently always true as the hint is not yet implemented. 8072 Operands.push_back( 8073 llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context))); 8074 OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands)); 8075 } 8076 } 8077 } 8078 } 8079 8080 } 8081 8082 //===----------------------------------------------------------------------===// 8083 // Hexagon ABI Implementation 8084 //===----------------------------------------------------------------------===// 8085 8086 namespace { 8087 8088 class HexagonABIInfo : public DefaultABIInfo { 8089 public: 8090 HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8091 8092 private: 8093 ABIArgInfo classifyReturnType(QualType RetTy) const; 8094 ABIArgInfo classifyArgumentType(QualType RetTy) const; 8095 ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const; 8096 8097 void computeInfo(CGFunctionInfo &FI) const override; 8098 8099 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8100 QualType Ty) const override; 8101 Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr, 8102 QualType Ty) const; 8103 Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr, 8104 QualType Ty) const; 8105 Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr, 8106 QualType Ty) const; 8107 }; 8108 8109 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo { 8110 public: 8111 HexagonTargetCodeGenInfo(CodeGenTypes &CGT) 8112 : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {} 8113 8114 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 8115 return 29; 8116 } 8117 8118 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8119 CodeGen::CodeGenModule &GCM) const override { 8120 if (GV->isDeclaration()) 8121 return; 8122 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8123 if (!FD) 8124 return; 8125 } 8126 }; 8127 8128 } // namespace 8129 8130 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const { 8131 unsigned RegsLeft = 6; 8132 if (!getCXXABI().classifyReturnType(FI)) 8133 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8134 for (auto &I : FI.arguments()) 8135 I.info = classifyArgumentType(I.type, &RegsLeft); 8136 } 8137 8138 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) { 8139 assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits" 8140 " through registers"); 8141 8142 if (*RegsLeft == 0) 8143 return false; 8144 8145 if (Size <= 32) { 8146 (*RegsLeft)--; 8147 return true; 8148 } 8149 8150 if (2 <= (*RegsLeft & (~1U))) { 8151 *RegsLeft = (*RegsLeft & (~1U)) - 2; 8152 return true; 8153 } 8154 8155 // Next available register was r5 but candidate was greater than 32-bits so it 8156 // has to go on the stack. However we still consume r5 8157 if (*RegsLeft == 1) 8158 *RegsLeft = 0; 8159 8160 return false; 8161 } 8162 8163 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty, 8164 unsigned *RegsLeft) const { 8165 if (!isAggregateTypeForABI(Ty)) { 8166 // Treat an enum type as its underlying type. 8167 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 8168 Ty = EnumTy->getDecl()->getIntegerType(); 8169 8170 uint64_t Size = getContext().getTypeSize(Ty); 8171 if (Size <= 64) 8172 HexagonAdjustRegsLeft(Size, RegsLeft); 8173 8174 if (Size > 64 && Ty->isExtIntType()) 8175 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8176 8177 return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty) 8178 : ABIArgInfo::getDirect(); 8179 } 8180 8181 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 8182 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8183 8184 // Ignore empty records. 8185 if (isEmptyRecord(getContext(), Ty, true)) 8186 return ABIArgInfo::getIgnore(); 8187 8188 uint64_t Size = getContext().getTypeSize(Ty); 8189 unsigned Align = getContext().getTypeAlign(Ty); 8190 8191 if (Size > 64) 8192 return getNaturalAlignIndirect(Ty, /*ByVal=*/true); 8193 8194 if (HexagonAdjustRegsLeft(Size, RegsLeft)) 8195 Align = Size <= 32 ? 32 : 64; 8196 if (Size <= Align) { 8197 // Pass in the smallest viable integer type. 8198 if (!llvm::isPowerOf2_64(Size)) 8199 Size = llvm::NextPowerOf2(Size); 8200 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8201 } 8202 return DefaultABIInfo::classifyArgumentType(Ty); 8203 } 8204 8205 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const { 8206 if (RetTy->isVoidType()) 8207 return ABIArgInfo::getIgnore(); 8208 8209 const TargetInfo &T = CGT.getTarget(); 8210 uint64_t Size = getContext().getTypeSize(RetTy); 8211 8212 if (RetTy->getAs<VectorType>()) { 8213 // HVX vectors are returned in vector registers or register pairs. 8214 if (T.hasFeature("hvx")) { 8215 assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b")); 8216 uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8; 8217 if (Size == VecSize || Size == 2*VecSize) 8218 return ABIArgInfo::getDirectInReg(); 8219 } 8220 // Large vector types should be returned via memory. 8221 if (Size > 64) 8222 return getNaturalAlignIndirect(RetTy); 8223 } 8224 8225 if (!isAggregateTypeForABI(RetTy)) { 8226 // Treat an enum type as its underlying type. 8227 if (const EnumType *EnumTy = RetTy->getAs<EnumType>()) 8228 RetTy = EnumTy->getDecl()->getIntegerType(); 8229 8230 if (Size > 64 && RetTy->isExtIntType()) 8231 return getNaturalAlignIndirect(RetTy, /*ByVal=*/false); 8232 8233 return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy) 8234 : ABIArgInfo::getDirect(); 8235 } 8236 8237 if (isEmptyRecord(getContext(), RetTy, true)) 8238 return ABIArgInfo::getIgnore(); 8239 8240 // Aggregates <= 8 bytes are returned in registers, other aggregates 8241 // are returned indirectly. 8242 if (Size <= 64) { 8243 // Return in the smallest viable integer type. 8244 if (!llvm::isPowerOf2_64(Size)) 8245 Size = llvm::NextPowerOf2(Size); 8246 return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size)); 8247 } 8248 return getNaturalAlignIndirect(RetTy, /*ByVal=*/true); 8249 } 8250 8251 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF, 8252 Address VAListAddr, 8253 QualType Ty) const { 8254 // Load the overflow area pointer. 8255 Address __overflow_area_pointer_p = 8256 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8257 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8258 __overflow_area_pointer_p, "__overflow_area_pointer"); 8259 8260 uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8; 8261 if (Align > 4) { 8262 // Alignment should be a power of 2. 8263 assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!"); 8264 8265 // overflow_arg_area = (overflow_arg_area + align - 1) & -align; 8266 llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1); 8267 8268 // Add offset to the current pointer to access the argument. 8269 __overflow_area_pointer = 8270 CGF.Builder.CreateGEP(__overflow_area_pointer, Offset); 8271 llvm::Value *AsInt = 8272 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8273 8274 // Create a mask which should be "AND"ed 8275 // with (overflow_arg_area + align - 1) 8276 llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align); 8277 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8278 CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(), 8279 "__overflow_area_pointer.align"); 8280 } 8281 8282 // Get the type of the argument from memory and bitcast 8283 // overflow area pointer to the argument type. 8284 llvm::Type *PTy = CGF.ConvertTypeForMem(Ty); 8285 Address AddrTyped = CGF.Builder.CreateBitCast( 8286 Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)), 8287 llvm::PointerType::getUnqual(PTy)); 8288 8289 // Round up to the minimum stack alignment for varargs which is 4 bytes. 8290 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8291 8292 __overflow_area_pointer = CGF.Builder.CreateGEP( 8293 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset), 8294 "__overflow_area_pointer.next"); 8295 CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p); 8296 8297 return AddrTyped; 8298 } 8299 8300 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF, 8301 Address VAListAddr, 8302 QualType Ty) const { 8303 // FIXME: Need to handle alignment 8304 llvm::Type *BP = CGF.Int8PtrTy; 8305 llvm::Type *BPP = CGF.Int8PtrPtrTy; 8306 CGBuilderTy &Builder = CGF.Builder; 8307 Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap"); 8308 llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur"); 8309 // Handle address alignment for type alignment > 32 bits 8310 uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8; 8311 if (TyAlign > 4) { 8312 assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!"); 8313 llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty); 8314 AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1)); 8315 AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1))); 8316 Addr = Builder.CreateIntToPtr(AddrAsInt, BP); 8317 } 8318 llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty)); 8319 Address AddrTyped = Builder.CreateBitCast( 8320 Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy); 8321 8322 uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4); 8323 llvm::Value *NextAddr = Builder.CreateGEP( 8324 Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next"); 8325 Builder.CreateStore(NextAddr, VAListAddrAsBPP); 8326 8327 return AddrTyped; 8328 } 8329 8330 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF, 8331 Address VAListAddr, 8332 QualType Ty) const { 8333 int ArgSize = CGF.getContext().getTypeSize(Ty) / 8; 8334 8335 if (ArgSize > 8) 8336 return EmitVAArgFromMemory(CGF, VAListAddr, Ty); 8337 8338 // Here we have check if the argument is in register area or 8339 // in overflow area. 8340 // If the saved register area pointer + argsize rounded up to alignment > 8341 // saved register area end pointer, argument is in overflow area. 8342 unsigned RegsLeft = 6; 8343 Ty = CGF.getContext().getCanonicalType(Ty); 8344 (void)classifyArgumentType(Ty, &RegsLeft); 8345 8346 llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg"); 8347 llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg"); 8348 llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack"); 8349 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end"); 8350 8351 // Get rounded size of the argument.GCC does not allow vararg of 8352 // size < 4 bytes. We follow the same logic here. 8353 ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8354 int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8; 8355 8356 // Argument may be in saved register area 8357 CGF.EmitBlock(MaybeRegBlock); 8358 8359 // Load the current saved register area pointer. 8360 Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP( 8361 VAListAddr, 0, "__current_saved_reg_area_pointer_p"); 8362 llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad( 8363 __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer"); 8364 8365 // Load the saved register area end pointer. 8366 Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP( 8367 VAListAddr, 1, "__saved_reg_area_end_pointer_p"); 8368 llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad( 8369 __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer"); 8370 8371 // If the size of argument is > 4 bytes, check if the stack 8372 // location is aligned to 8 bytes 8373 if (ArgAlign > 4) { 8374 8375 llvm::Value *__current_saved_reg_area_pointer_int = 8376 CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer, 8377 CGF.Int32Ty); 8378 8379 __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd( 8380 __current_saved_reg_area_pointer_int, 8381 llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)), 8382 "align_current_saved_reg_area_pointer"); 8383 8384 __current_saved_reg_area_pointer_int = 8385 CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int, 8386 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8387 "align_current_saved_reg_area_pointer"); 8388 8389 __current_saved_reg_area_pointer = 8390 CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int, 8391 __current_saved_reg_area_pointer->getType(), 8392 "align_current_saved_reg_area_pointer"); 8393 } 8394 8395 llvm::Value *__new_saved_reg_area_pointer = 8396 CGF.Builder.CreateGEP(__current_saved_reg_area_pointer, 8397 llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8398 "__new_saved_reg_area_pointer"); 8399 8400 llvm::Value *UsingStack = 0; 8401 UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer, 8402 __saved_reg_area_end_pointer); 8403 8404 CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock); 8405 8406 // Argument in saved register area 8407 // Implement the block where argument is in register saved area 8408 CGF.EmitBlock(InRegBlock); 8409 8410 llvm::Type *PTy = CGF.ConvertType(Ty); 8411 llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast( 8412 __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy)); 8413 8414 CGF.Builder.CreateStore(__new_saved_reg_area_pointer, 8415 __current_saved_reg_area_pointer_p); 8416 8417 CGF.EmitBranch(ContBlock); 8418 8419 // Argument in overflow area 8420 // Implement the block where the argument is in overflow area. 8421 CGF.EmitBlock(OnStackBlock); 8422 8423 // Load the overflow area pointer 8424 Address __overflow_area_pointer_p = 8425 CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p"); 8426 llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad( 8427 __overflow_area_pointer_p, "__overflow_area_pointer"); 8428 8429 // Align the overflow area pointer according to the alignment of the argument 8430 if (ArgAlign > 4) { 8431 llvm::Value *__overflow_area_pointer_int = 8432 CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty); 8433 8434 __overflow_area_pointer_int = 8435 CGF.Builder.CreateAdd(__overflow_area_pointer_int, 8436 llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1), 8437 "align_overflow_area_pointer"); 8438 8439 __overflow_area_pointer_int = 8440 CGF.Builder.CreateAnd(__overflow_area_pointer_int, 8441 llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign), 8442 "align_overflow_area_pointer"); 8443 8444 __overflow_area_pointer = CGF.Builder.CreateIntToPtr( 8445 __overflow_area_pointer_int, __overflow_area_pointer->getType(), 8446 "align_overflow_area_pointer"); 8447 } 8448 8449 // Get the pointer for next argument in overflow area and store it 8450 // to overflow area pointer. 8451 llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP( 8452 __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize), 8453 "__overflow_area_pointer.next"); 8454 8455 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8456 __overflow_area_pointer_p); 8457 8458 CGF.Builder.CreateStore(__new_overflow_area_pointer, 8459 __current_saved_reg_area_pointer_p); 8460 8461 // Bitcast the overflow area pointer to the type of argument. 8462 llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty); 8463 llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast( 8464 __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy)); 8465 8466 CGF.EmitBranch(ContBlock); 8467 8468 // Get the correct pointer to load the variable argument 8469 // Implement the ContBlock 8470 CGF.EmitBlock(ContBlock); 8471 8472 llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty)); 8473 llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr"); 8474 ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock); 8475 ArgAddr->addIncoming(__overflow_area_p, OnStackBlock); 8476 8477 return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign)); 8478 } 8479 8480 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8481 QualType Ty) const { 8482 8483 if (getTarget().getTriple().isMusl()) 8484 return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty); 8485 8486 return EmitVAArgForHexagon(CGF, VAListAddr, Ty); 8487 } 8488 8489 //===----------------------------------------------------------------------===// 8490 // Lanai ABI Implementation 8491 //===----------------------------------------------------------------------===// 8492 8493 namespace { 8494 class LanaiABIInfo : public DefaultABIInfo { 8495 public: 8496 LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 8497 8498 bool shouldUseInReg(QualType Ty, CCState &State) const; 8499 8500 void computeInfo(CGFunctionInfo &FI) const override { 8501 CCState State(FI); 8502 // Lanai uses 4 registers to pass arguments unless the function has the 8503 // regparm attribute set. 8504 if (FI.getHasRegParm()) { 8505 State.FreeRegs = FI.getRegParm(); 8506 } else { 8507 State.FreeRegs = 4; 8508 } 8509 8510 if (!getCXXABI().classifyReturnType(FI)) 8511 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8512 for (auto &I : FI.arguments()) 8513 I.info = classifyArgumentType(I.type, State); 8514 } 8515 8516 ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const; 8517 ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const; 8518 }; 8519 } // end anonymous namespace 8520 8521 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const { 8522 unsigned Size = getContext().getTypeSize(Ty); 8523 unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U; 8524 8525 if (SizeInRegs == 0) 8526 return false; 8527 8528 if (SizeInRegs > State.FreeRegs) { 8529 State.FreeRegs = 0; 8530 return false; 8531 } 8532 8533 State.FreeRegs -= SizeInRegs; 8534 8535 return true; 8536 } 8537 8538 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal, 8539 CCState &State) const { 8540 if (!ByVal) { 8541 if (State.FreeRegs) { 8542 --State.FreeRegs; // Non-byval indirects just use one pointer. 8543 return getNaturalAlignIndirectInReg(Ty); 8544 } 8545 return getNaturalAlignIndirect(Ty, false); 8546 } 8547 8548 // Compute the byval alignment. 8549 const unsigned MinABIStackAlignInBytes = 4; 8550 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 8551 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 8552 /*Realign=*/TypeAlign > 8553 MinABIStackAlignInBytes); 8554 } 8555 8556 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty, 8557 CCState &State) const { 8558 // Check with the C++ ABI first. 8559 const RecordType *RT = Ty->getAs<RecordType>(); 8560 if (RT) { 8561 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 8562 if (RAA == CGCXXABI::RAA_Indirect) { 8563 return getIndirectResult(Ty, /*ByVal=*/false, State); 8564 } else if (RAA == CGCXXABI::RAA_DirectInMemory) { 8565 return getNaturalAlignIndirect(Ty, /*ByRef=*/true); 8566 } 8567 } 8568 8569 if (isAggregateTypeForABI(Ty)) { 8570 // Structures with flexible arrays are always indirect. 8571 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 8572 return getIndirectResult(Ty, /*ByVal=*/true, State); 8573 8574 // Ignore empty structs/unions. 8575 if (isEmptyRecord(getContext(), Ty, true)) 8576 return ABIArgInfo::getIgnore(); 8577 8578 llvm::LLVMContext &LLVMContext = getVMContext(); 8579 unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32; 8580 if (SizeInRegs <= State.FreeRegs) { 8581 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 8582 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 8583 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 8584 State.FreeRegs -= SizeInRegs; 8585 return ABIArgInfo::getDirectInReg(Result); 8586 } else { 8587 State.FreeRegs = 0; 8588 } 8589 return getIndirectResult(Ty, true, State); 8590 } 8591 8592 // Treat an enum type as its underlying type. 8593 if (const auto *EnumTy = Ty->getAs<EnumType>()) 8594 Ty = EnumTy->getDecl()->getIntegerType(); 8595 8596 bool InReg = shouldUseInReg(Ty, State); 8597 8598 // Don't pass >64 bit integers in registers. 8599 if (const auto *EIT = Ty->getAs<ExtIntType>()) 8600 if (EIT->getNumBits() > 64) 8601 return getIndirectResult(Ty, /*ByVal=*/true, State); 8602 8603 if (isPromotableIntegerTypeForABI(Ty)) { 8604 if (InReg) 8605 return ABIArgInfo::getDirectInReg(); 8606 return ABIArgInfo::getExtend(Ty); 8607 } 8608 if (InReg) 8609 return ABIArgInfo::getDirectInReg(); 8610 return ABIArgInfo::getDirect(); 8611 } 8612 8613 namespace { 8614 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo { 8615 public: 8616 LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 8617 : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {} 8618 }; 8619 } 8620 8621 //===----------------------------------------------------------------------===// 8622 // AMDGPU ABI Implementation 8623 //===----------------------------------------------------------------------===// 8624 8625 namespace { 8626 8627 class AMDGPUABIInfo final : public DefaultABIInfo { 8628 private: 8629 static const unsigned MaxNumRegsForArgsRet = 16; 8630 8631 unsigned numRegsForType(QualType Ty) const; 8632 8633 bool isHomogeneousAggregateBaseType(QualType Ty) const override; 8634 bool isHomogeneousAggregateSmallEnough(const Type *Base, 8635 uint64_t Members) const override; 8636 8637 // Coerce HIP pointer arguments from generic pointers to global ones. 8638 llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS, 8639 unsigned ToAS) const { 8640 // Structure types. 8641 if (auto STy = dyn_cast<llvm::StructType>(Ty)) { 8642 SmallVector<llvm::Type *, 8> EltTys; 8643 bool Changed = false; 8644 for (auto T : STy->elements()) { 8645 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8646 EltTys.push_back(NT); 8647 Changed |= (NT != T); 8648 } 8649 // Skip if there is no change in element types. 8650 if (!Changed) 8651 return STy; 8652 if (STy->hasName()) 8653 return llvm::StructType::create( 8654 EltTys, (STy->getName() + ".coerce").str(), STy->isPacked()); 8655 return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked()); 8656 } 8657 // Array types. 8658 if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) { 8659 auto T = ATy->getElementType(); 8660 auto NT = coerceKernelArgumentType(T, FromAS, ToAS); 8661 // Skip if there is no change in that element type. 8662 if (NT == T) 8663 return ATy; 8664 return llvm::ArrayType::get(NT, ATy->getNumElements()); 8665 } 8666 // Single value types. 8667 if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS) 8668 return llvm::PointerType::get( 8669 cast<llvm::PointerType>(Ty)->getElementType(), ToAS); 8670 return Ty; 8671 } 8672 8673 public: 8674 explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) : 8675 DefaultABIInfo(CGT) {} 8676 8677 ABIArgInfo classifyReturnType(QualType RetTy) const; 8678 ABIArgInfo classifyKernelArgumentType(QualType Ty) const; 8679 ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const; 8680 8681 void computeInfo(CGFunctionInfo &FI) const override; 8682 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8683 QualType Ty) const override; 8684 }; 8685 8686 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const { 8687 return true; 8688 } 8689 8690 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough( 8691 const Type *Base, uint64_t Members) const { 8692 uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32; 8693 8694 // Homogeneous Aggregates may occupy at most 16 registers. 8695 return Members * NumRegs <= MaxNumRegsForArgsRet; 8696 } 8697 8698 /// Estimate number of registers the type will use when passed in registers. 8699 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const { 8700 unsigned NumRegs = 0; 8701 8702 if (const VectorType *VT = Ty->getAs<VectorType>()) { 8703 // Compute from the number of elements. The reported size is based on the 8704 // in-memory size, which includes the padding 4th element for 3-vectors. 8705 QualType EltTy = VT->getElementType(); 8706 unsigned EltSize = getContext().getTypeSize(EltTy); 8707 8708 // 16-bit element vectors should be passed as packed. 8709 if (EltSize == 16) 8710 return (VT->getNumElements() + 1) / 2; 8711 8712 unsigned EltNumRegs = (EltSize + 31) / 32; 8713 return EltNumRegs * VT->getNumElements(); 8714 } 8715 8716 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8717 const RecordDecl *RD = RT->getDecl(); 8718 assert(!RD->hasFlexibleArrayMember()); 8719 8720 for (const FieldDecl *Field : RD->fields()) { 8721 QualType FieldTy = Field->getType(); 8722 NumRegs += numRegsForType(FieldTy); 8723 } 8724 8725 return NumRegs; 8726 } 8727 8728 return (getContext().getTypeSize(Ty) + 31) / 32; 8729 } 8730 8731 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const { 8732 llvm::CallingConv::ID CC = FI.getCallingConvention(); 8733 8734 if (!getCXXABI().classifyReturnType(FI)) 8735 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 8736 8737 unsigned NumRegsLeft = MaxNumRegsForArgsRet; 8738 for (auto &Arg : FI.arguments()) { 8739 if (CC == llvm::CallingConv::AMDGPU_KERNEL) { 8740 Arg.info = classifyKernelArgumentType(Arg.type); 8741 } else { 8742 Arg.info = classifyArgumentType(Arg.type, NumRegsLeft); 8743 } 8744 } 8745 } 8746 8747 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 8748 QualType Ty) const { 8749 llvm_unreachable("AMDGPU does not support varargs"); 8750 } 8751 8752 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const { 8753 if (isAggregateTypeForABI(RetTy)) { 8754 // Records with non-trivial destructors/copy-constructors should not be 8755 // returned by value. 8756 if (!getRecordArgABI(RetTy, getCXXABI())) { 8757 // Ignore empty structs/unions. 8758 if (isEmptyRecord(getContext(), RetTy, true)) 8759 return ABIArgInfo::getIgnore(); 8760 8761 // Lower single-element structs to just return a regular value. 8762 if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext())) 8763 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8764 8765 if (const RecordType *RT = RetTy->getAs<RecordType>()) { 8766 const RecordDecl *RD = RT->getDecl(); 8767 if (RD->hasFlexibleArrayMember()) 8768 return DefaultABIInfo::classifyReturnType(RetTy); 8769 } 8770 8771 // Pack aggregates <= 4 bytes into single VGPR or pair. 8772 uint64_t Size = getContext().getTypeSize(RetTy); 8773 if (Size <= 16) 8774 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8775 8776 if (Size <= 32) 8777 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8778 8779 if (Size <= 64) { 8780 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8781 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8782 } 8783 8784 if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet) 8785 return ABIArgInfo::getDirect(); 8786 } 8787 } 8788 8789 // Otherwise just do the default thing. 8790 return DefaultABIInfo::classifyReturnType(RetTy); 8791 } 8792 8793 /// For kernels all parameters are really passed in a special buffer. It doesn't 8794 /// make sense to pass anything byval, so everything must be direct. 8795 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const { 8796 Ty = useFirstFieldIfTransparentUnion(Ty); 8797 8798 // TODO: Can we omit empty structs? 8799 8800 llvm::Type *LTy = nullptr; 8801 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8802 LTy = CGT.ConvertType(QualType(SeltTy, 0)); 8803 8804 if (getContext().getLangOpts().HIP) { 8805 if (!LTy) 8806 LTy = CGT.ConvertType(Ty); 8807 LTy = coerceKernelArgumentType( 8808 LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default), 8809 /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device)); 8810 } 8811 8812 // If we set CanBeFlattened to true, CodeGen will expand the struct to its 8813 // individual elements, which confuses the Clover OpenCL backend; therefore we 8814 // have to set it to false here. Other args of getDirect() are just defaults. 8815 return ABIArgInfo::getDirect(LTy, 0, nullptr, false); 8816 } 8817 8818 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty, 8819 unsigned &NumRegsLeft) const { 8820 assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow"); 8821 8822 Ty = useFirstFieldIfTransparentUnion(Ty); 8823 8824 if (isAggregateTypeForABI(Ty)) { 8825 // Records with non-trivial destructors/copy-constructors should not be 8826 // passed by value. 8827 if (auto RAA = getRecordArgABI(Ty, getCXXABI())) 8828 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 8829 8830 // Ignore empty structs/unions. 8831 if (isEmptyRecord(getContext(), Ty, true)) 8832 return ABIArgInfo::getIgnore(); 8833 8834 // Lower single-element structs to just pass a regular value. TODO: We 8835 // could do reasonable-size multiple-element structs too, using getExpand(), 8836 // though watch out for things like bitfields. 8837 if (const Type *SeltTy = isSingleElementStruct(Ty, getContext())) 8838 return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0))); 8839 8840 if (const RecordType *RT = Ty->getAs<RecordType>()) { 8841 const RecordDecl *RD = RT->getDecl(); 8842 if (RD->hasFlexibleArrayMember()) 8843 return DefaultABIInfo::classifyArgumentType(Ty); 8844 } 8845 8846 // Pack aggregates <= 8 bytes into single VGPR or pair. 8847 uint64_t Size = getContext().getTypeSize(Ty); 8848 if (Size <= 64) { 8849 unsigned NumRegs = (Size + 31) / 32; 8850 NumRegsLeft -= std::min(NumRegsLeft, NumRegs); 8851 8852 if (Size <= 16) 8853 return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext())); 8854 8855 if (Size <= 32) 8856 return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext())); 8857 8858 // XXX: Should this be i64 instead, and should the limit increase? 8859 llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext()); 8860 return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2)); 8861 } 8862 8863 if (NumRegsLeft > 0) { 8864 unsigned NumRegs = numRegsForType(Ty); 8865 if (NumRegsLeft >= NumRegs) { 8866 NumRegsLeft -= NumRegs; 8867 return ABIArgInfo::getDirect(); 8868 } 8869 } 8870 } 8871 8872 // Otherwise just do the default thing. 8873 ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty); 8874 if (!ArgInfo.isIndirect()) { 8875 unsigned NumRegs = numRegsForType(Ty); 8876 NumRegsLeft -= std::min(NumRegs, NumRegsLeft); 8877 } 8878 8879 return ArgInfo; 8880 } 8881 8882 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo { 8883 public: 8884 AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT) 8885 : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {} 8886 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 8887 CodeGen::CodeGenModule &M) const override; 8888 unsigned getOpenCLKernelCallingConv() const override; 8889 8890 llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM, 8891 llvm::PointerType *T, QualType QT) const override; 8892 8893 LangAS getASTAllocaAddressSpace() const override { 8894 return getLangASFromTargetAS( 8895 getABIInfo().getDataLayout().getAllocaAddrSpace()); 8896 } 8897 LangAS getGlobalVarAddressSpace(CodeGenModule &CGM, 8898 const VarDecl *D) const override; 8899 llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts, 8900 SyncScope Scope, 8901 llvm::AtomicOrdering Ordering, 8902 llvm::LLVMContext &Ctx) const override; 8903 llvm::Function * 8904 createEnqueuedBlockKernel(CodeGenFunction &CGF, 8905 llvm::Function *BlockInvokeFunc, 8906 llvm::Value *BlockLiteral) const override; 8907 bool shouldEmitStaticExternCAliases() const override; 8908 void setCUDAKernelCallingConvention(const FunctionType *&FT) const override; 8909 }; 8910 } 8911 8912 static bool requiresAMDGPUProtectedVisibility(const Decl *D, 8913 llvm::GlobalValue *GV) { 8914 if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility) 8915 return false; 8916 8917 return D->hasAttr<OpenCLKernelAttr>() || 8918 (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) || 8919 (isa<VarDecl>(D) && 8920 (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() || 8921 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() || 8922 cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType())); 8923 } 8924 8925 void AMDGPUTargetCodeGenInfo::setTargetAttributes( 8926 const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const { 8927 if (requiresAMDGPUProtectedVisibility(D, GV)) { 8928 GV->setVisibility(llvm::GlobalValue::ProtectedVisibility); 8929 GV->setDSOLocal(true); 8930 } 8931 8932 if (GV->isDeclaration()) 8933 return; 8934 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D); 8935 if (!FD) 8936 return; 8937 8938 llvm::Function *F = cast<llvm::Function>(GV); 8939 8940 const auto *ReqdWGS = M.getLangOpts().OpenCL ? 8941 FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr; 8942 8943 8944 const bool IsOpenCLKernel = M.getLangOpts().OpenCL && 8945 FD->hasAttr<OpenCLKernelAttr>(); 8946 const bool IsHIPKernel = M.getLangOpts().HIP && 8947 FD->hasAttr<CUDAGlobalAttr>(); 8948 if ((IsOpenCLKernel || IsHIPKernel) && 8949 (M.getTriple().getOS() == llvm::Triple::AMDHSA)) 8950 F->addFnAttr("amdgpu-implicitarg-num-bytes", "56"); 8951 8952 if (IsHIPKernel) 8953 F->addFnAttr("uniform-work-group-size", "true"); 8954 8955 8956 const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>(); 8957 if (ReqdWGS || FlatWGS) { 8958 unsigned Min = 0; 8959 unsigned Max = 0; 8960 if (FlatWGS) { 8961 Min = FlatWGS->getMin() 8962 ->EvaluateKnownConstInt(M.getContext()) 8963 .getExtValue(); 8964 Max = FlatWGS->getMax() 8965 ->EvaluateKnownConstInt(M.getContext()) 8966 .getExtValue(); 8967 } 8968 if (ReqdWGS && Min == 0 && Max == 0) 8969 Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim(); 8970 8971 if (Min != 0) { 8972 assert(Min <= Max && "Min must be less than or equal Max"); 8973 8974 std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max); 8975 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8976 } else 8977 assert(Max == 0 && "Max must be zero"); 8978 } else if (IsOpenCLKernel || IsHIPKernel) { 8979 // By default, restrict the maximum size to a value specified by 8980 // --gpu-max-threads-per-block=n or its default value for HIP. 8981 const unsigned OpenCLDefaultMaxWorkGroupSize = 256; 8982 const unsigned DefaultMaxWorkGroupSize = 8983 IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize 8984 : M.getLangOpts().GPUMaxThreadsPerBlock; 8985 std::string AttrVal = 8986 std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize); 8987 F->addFnAttr("amdgpu-flat-work-group-size", AttrVal); 8988 } 8989 8990 if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) { 8991 unsigned Min = 8992 Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue(); 8993 unsigned Max = Attr->getMax() ? Attr->getMax() 8994 ->EvaluateKnownConstInt(M.getContext()) 8995 .getExtValue() 8996 : 0; 8997 8998 if (Min != 0) { 8999 assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max"); 9000 9001 std::string AttrVal = llvm::utostr(Min); 9002 if (Max != 0) 9003 AttrVal = AttrVal + "," + llvm::utostr(Max); 9004 F->addFnAttr("amdgpu-waves-per-eu", AttrVal); 9005 } else 9006 assert(Max == 0 && "Max must be zero"); 9007 } 9008 9009 if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) { 9010 unsigned NumSGPR = Attr->getNumSGPR(); 9011 9012 if (NumSGPR != 0) 9013 F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR)); 9014 } 9015 9016 if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) { 9017 uint32_t NumVGPR = Attr->getNumVGPR(); 9018 9019 if (NumVGPR != 0) 9020 F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR)); 9021 } 9022 } 9023 9024 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9025 return llvm::CallingConv::AMDGPU_KERNEL; 9026 } 9027 9028 // Currently LLVM assumes null pointers always have value 0, 9029 // which results in incorrectly transformed IR. Therefore, instead of 9030 // emitting null pointers in private and local address spaces, a null 9031 // pointer in generic address space is emitted which is casted to a 9032 // pointer in local or private address space. 9033 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer( 9034 const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT, 9035 QualType QT) const { 9036 if (CGM.getContext().getTargetNullPointerValue(QT) == 0) 9037 return llvm::ConstantPointerNull::get(PT); 9038 9039 auto &Ctx = CGM.getContext(); 9040 auto NPT = llvm::PointerType::get(PT->getElementType(), 9041 Ctx.getTargetAddressSpace(LangAS::opencl_generic)); 9042 return llvm::ConstantExpr::getAddrSpaceCast( 9043 llvm::ConstantPointerNull::get(NPT), PT); 9044 } 9045 9046 LangAS 9047 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM, 9048 const VarDecl *D) const { 9049 assert(!CGM.getLangOpts().OpenCL && 9050 !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) && 9051 "Address space agnostic languages only"); 9052 LangAS DefaultGlobalAS = getLangASFromTargetAS( 9053 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global)); 9054 if (!D) 9055 return DefaultGlobalAS; 9056 9057 LangAS AddrSpace = D->getType().getAddressSpace(); 9058 assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace)); 9059 if (AddrSpace != LangAS::Default) 9060 return AddrSpace; 9061 9062 if (CGM.isTypeConstant(D->getType(), false)) { 9063 if (auto ConstAS = CGM.getTarget().getConstantAddressSpace()) 9064 return ConstAS.getValue(); 9065 } 9066 return DefaultGlobalAS; 9067 } 9068 9069 llvm::SyncScope::ID 9070 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts, 9071 SyncScope Scope, 9072 llvm::AtomicOrdering Ordering, 9073 llvm::LLVMContext &Ctx) const { 9074 std::string Name; 9075 switch (Scope) { 9076 case SyncScope::OpenCLWorkGroup: 9077 Name = "workgroup"; 9078 break; 9079 case SyncScope::OpenCLDevice: 9080 Name = "agent"; 9081 break; 9082 case SyncScope::OpenCLAllSVMDevices: 9083 Name = ""; 9084 break; 9085 case SyncScope::OpenCLSubGroup: 9086 Name = "wavefront"; 9087 } 9088 9089 if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) { 9090 if (!Name.empty()) 9091 Name = Twine(Twine(Name) + Twine("-")).str(); 9092 9093 Name = Twine(Twine(Name) + Twine("one-as")).str(); 9094 } 9095 9096 return Ctx.getOrInsertSyncScopeID(Name); 9097 } 9098 9099 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const { 9100 return false; 9101 } 9102 9103 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention( 9104 const FunctionType *&FT) const { 9105 FT = getABIInfo().getContext().adjustFunctionType( 9106 FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel)); 9107 } 9108 9109 //===----------------------------------------------------------------------===// 9110 // SPARC v8 ABI Implementation. 9111 // Based on the SPARC Compliance Definition version 2.4.1. 9112 // 9113 // Ensures that complex values are passed in registers. 9114 // 9115 namespace { 9116 class SparcV8ABIInfo : public DefaultABIInfo { 9117 public: 9118 SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9119 9120 private: 9121 ABIArgInfo classifyReturnType(QualType RetTy) const; 9122 void computeInfo(CGFunctionInfo &FI) const override; 9123 }; 9124 } // end anonymous namespace 9125 9126 9127 ABIArgInfo 9128 SparcV8ABIInfo::classifyReturnType(QualType Ty) const { 9129 if (Ty->isAnyComplexType()) { 9130 return ABIArgInfo::getDirect(); 9131 } 9132 else { 9133 return DefaultABIInfo::classifyReturnType(Ty); 9134 } 9135 } 9136 9137 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9138 9139 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9140 for (auto &Arg : FI.arguments()) 9141 Arg.info = classifyArgumentType(Arg.type); 9142 } 9143 9144 namespace { 9145 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo { 9146 public: 9147 SparcV8TargetCodeGenInfo(CodeGenTypes &CGT) 9148 : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {} 9149 }; 9150 } // end anonymous namespace 9151 9152 //===----------------------------------------------------------------------===// 9153 // SPARC v9 ABI Implementation. 9154 // Based on the SPARC Compliance Definition version 2.4.1. 9155 // 9156 // Function arguments a mapped to a nominal "parameter array" and promoted to 9157 // registers depending on their type. Each argument occupies 8 or 16 bytes in 9158 // the array, structs larger than 16 bytes are passed indirectly. 9159 // 9160 // One case requires special care: 9161 // 9162 // struct mixed { 9163 // int i; 9164 // float f; 9165 // }; 9166 // 9167 // When a struct mixed is passed by value, it only occupies 8 bytes in the 9168 // parameter array, but the int is passed in an integer register, and the float 9169 // is passed in a floating point register. This is represented as two arguments 9170 // with the LLVM IR inreg attribute: 9171 // 9172 // declare void f(i32 inreg %i, float inreg %f) 9173 // 9174 // The code generator will only allocate 4 bytes from the parameter array for 9175 // the inreg arguments. All other arguments are allocated a multiple of 8 9176 // bytes. 9177 // 9178 namespace { 9179 class SparcV9ABIInfo : public ABIInfo { 9180 public: 9181 SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {} 9182 9183 private: 9184 ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const; 9185 void computeInfo(CGFunctionInfo &FI) const override; 9186 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9187 QualType Ty) const override; 9188 9189 // Coercion type builder for structs passed in registers. The coercion type 9190 // serves two purposes: 9191 // 9192 // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned' 9193 // in registers. 9194 // 2. Expose aligned floating point elements as first-level elements, so the 9195 // code generator knows to pass them in floating point registers. 9196 // 9197 // We also compute the InReg flag which indicates that the struct contains 9198 // aligned 32-bit floats. 9199 // 9200 struct CoerceBuilder { 9201 llvm::LLVMContext &Context; 9202 const llvm::DataLayout &DL; 9203 SmallVector<llvm::Type*, 8> Elems; 9204 uint64_t Size; 9205 bool InReg; 9206 9207 CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl) 9208 : Context(c), DL(dl), Size(0), InReg(false) {} 9209 9210 // Pad Elems with integers until Size is ToSize. 9211 void pad(uint64_t ToSize) { 9212 assert(ToSize >= Size && "Cannot remove elements"); 9213 if (ToSize == Size) 9214 return; 9215 9216 // Finish the current 64-bit word. 9217 uint64_t Aligned = llvm::alignTo(Size, 64); 9218 if (Aligned > Size && Aligned <= ToSize) { 9219 Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size)); 9220 Size = Aligned; 9221 } 9222 9223 // Add whole 64-bit words. 9224 while (Size + 64 <= ToSize) { 9225 Elems.push_back(llvm::Type::getInt64Ty(Context)); 9226 Size += 64; 9227 } 9228 9229 // Final in-word padding. 9230 if (Size < ToSize) { 9231 Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size)); 9232 Size = ToSize; 9233 } 9234 } 9235 9236 // Add a floating point element at Offset. 9237 void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) { 9238 // Unaligned floats are treated as integers. 9239 if (Offset % Bits) 9240 return; 9241 // The InReg flag is only required if there are any floats < 64 bits. 9242 if (Bits < 64) 9243 InReg = true; 9244 pad(Offset); 9245 Elems.push_back(Ty); 9246 Size = Offset + Bits; 9247 } 9248 9249 // Add a struct type to the coercion type, starting at Offset (in bits). 9250 void addStruct(uint64_t Offset, llvm::StructType *StrTy) { 9251 const llvm::StructLayout *Layout = DL.getStructLayout(StrTy); 9252 for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) { 9253 llvm::Type *ElemTy = StrTy->getElementType(i); 9254 uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i); 9255 switch (ElemTy->getTypeID()) { 9256 case llvm::Type::StructTyID: 9257 addStruct(ElemOffset, cast<llvm::StructType>(ElemTy)); 9258 break; 9259 case llvm::Type::FloatTyID: 9260 addFloat(ElemOffset, ElemTy, 32); 9261 break; 9262 case llvm::Type::DoubleTyID: 9263 addFloat(ElemOffset, ElemTy, 64); 9264 break; 9265 case llvm::Type::FP128TyID: 9266 addFloat(ElemOffset, ElemTy, 128); 9267 break; 9268 case llvm::Type::PointerTyID: 9269 if (ElemOffset % 64 == 0) { 9270 pad(ElemOffset); 9271 Elems.push_back(ElemTy); 9272 Size += 64; 9273 } 9274 break; 9275 default: 9276 break; 9277 } 9278 } 9279 } 9280 9281 // Check if Ty is a usable substitute for the coercion type. 9282 bool isUsableType(llvm::StructType *Ty) const { 9283 return llvm::makeArrayRef(Elems) == Ty->elements(); 9284 } 9285 9286 // Get the coercion type as a literal struct type. 9287 llvm::Type *getType() const { 9288 if (Elems.size() == 1) 9289 return Elems.front(); 9290 else 9291 return llvm::StructType::get(Context, Elems); 9292 } 9293 }; 9294 }; 9295 } // end anonymous namespace 9296 9297 ABIArgInfo 9298 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const { 9299 if (Ty->isVoidType()) 9300 return ABIArgInfo::getIgnore(); 9301 9302 uint64_t Size = getContext().getTypeSize(Ty); 9303 9304 // Anything too big to fit in registers is passed with an explicit indirect 9305 // pointer / sret pointer. 9306 if (Size > SizeLimit) 9307 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 9308 9309 // Treat an enum type as its underlying type. 9310 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9311 Ty = EnumTy->getDecl()->getIntegerType(); 9312 9313 // Integer types smaller than a register are extended. 9314 if (Size < 64 && Ty->isIntegerType()) 9315 return ABIArgInfo::getExtend(Ty); 9316 9317 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9318 if (EIT->getNumBits() < 64) 9319 return ABIArgInfo::getExtend(Ty); 9320 9321 // Other non-aggregates go in registers. 9322 if (!isAggregateTypeForABI(Ty)) 9323 return ABIArgInfo::getDirect(); 9324 9325 // If a C++ object has either a non-trivial copy constructor or a non-trivial 9326 // destructor, it is passed with an explicit indirect pointer / sret pointer. 9327 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) 9328 return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory); 9329 9330 // This is a small aggregate type that should be passed in registers. 9331 // Build a coercion type from the LLVM struct type. 9332 llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty)); 9333 if (!StrTy) 9334 return ABIArgInfo::getDirect(); 9335 9336 CoerceBuilder CB(getVMContext(), getDataLayout()); 9337 CB.addStruct(0, StrTy); 9338 CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64)); 9339 9340 // Try to use the original type for coercion. 9341 llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType(); 9342 9343 if (CB.InReg) 9344 return ABIArgInfo::getDirectInReg(CoerceTy); 9345 else 9346 return ABIArgInfo::getDirect(CoerceTy); 9347 } 9348 9349 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9350 QualType Ty) const { 9351 ABIArgInfo AI = classifyType(Ty, 16 * 8); 9352 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9353 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9354 AI.setCoerceToType(ArgTy); 9355 9356 CharUnits SlotSize = CharUnits::fromQuantity(8); 9357 9358 CGBuilderTy &Builder = CGF.Builder; 9359 Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize); 9360 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9361 9362 auto TypeInfo = getContext().getTypeInfoInChars(Ty); 9363 9364 Address ArgAddr = Address::invalid(); 9365 CharUnits Stride; 9366 switch (AI.getKind()) { 9367 case ABIArgInfo::Expand: 9368 case ABIArgInfo::CoerceAndExpand: 9369 case ABIArgInfo::InAlloca: 9370 llvm_unreachable("Unsupported ABI kind for va_arg"); 9371 9372 case ABIArgInfo::Extend: { 9373 Stride = SlotSize; 9374 CharUnits Offset = SlotSize - TypeInfo.first; 9375 ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend"); 9376 break; 9377 } 9378 9379 case ABIArgInfo::Direct: { 9380 auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType()); 9381 Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize); 9382 ArgAddr = Addr; 9383 break; 9384 } 9385 9386 case ABIArgInfo::Indirect: 9387 Stride = SlotSize; 9388 ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect"); 9389 ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"), 9390 TypeInfo.second); 9391 break; 9392 9393 case ABIArgInfo::Ignore: 9394 return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second); 9395 } 9396 9397 // Update VAList. 9398 Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next"); 9399 Builder.CreateStore(NextPtr.getPointer(), VAListAddr); 9400 9401 return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr"); 9402 } 9403 9404 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const { 9405 FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8); 9406 for (auto &I : FI.arguments()) 9407 I.info = classifyType(I.type, 16 * 8); 9408 } 9409 9410 namespace { 9411 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo { 9412 public: 9413 SparcV9TargetCodeGenInfo(CodeGenTypes &CGT) 9414 : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {} 9415 9416 int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override { 9417 return 14; 9418 } 9419 9420 bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9421 llvm::Value *Address) const override; 9422 }; 9423 } // end anonymous namespace 9424 9425 bool 9426 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF, 9427 llvm::Value *Address) const { 9428 // This is calculated from the LLVM and GCC tables and verified 9429 // against gcc output. AFAIK all ABIs use the same encoding. 9430 9431 CodeGen::CGBuilderTy &Builder = CGF.Builder; 9432 9433 llvm::IntegerType *i8 = CGF.Int8Ty; 9434 llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4); 9435 llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8); 9436 9437 // 0-31: the 8-byte general-purpose registers 9438 AssignToArrayRange(Builder, Address, Eight8, 0, 31); 9439 9440 // 32-63: f0-31, the 4-byte floating-point registers 9441 AssignToArrayRange(Builder, Address, Four8, 32, 63); 9442 9443 // Y = 64 9444 // PSR = 65 9445 // WIM = 66 9446 // TBR = 67 9447 // PC = 68 9448 // NPC = 69 9449 // FSR = 70 9450 // CSR = 71 9451 AssignToArrayRange(Builder, Address, Eight8, 64, 71); 9452 9453 // 72-87: d0-15, the 8-byte floating-point registers 9454 AssignToArrayRange(Builder, Address, Eight8, 72, 87); 9455 9456 return false; 9457 } 9458 9459 // ARC ABI implementation. 9460 namespace { 9461 9462 class ARCABIInfo : public DefaultABIInfo { 9463 public: 9464 using DefaultABIInfo::DefaultABIInfo; 9465 9466 private: 9467 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9468 QualType Ty) const override; 9469 9470 void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const { 9471 if (!State.FreeRegs) 9472 return; 9473 if (Info.isIndirect() && Info.getInReg()) 9474 State.FreeRegs--; 9475 else if (Info.isDirect() && Info.getInReg()) { 9476 unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32; 9477 if (sz < State.FreeRegs) 9478 State.FreeRegs -= sz; 9479 else 9480 State.FreeRegs = 0; 9481 } 9482 } 9483 9484 void computeInfo(CGFunctionInfo &FI) const override { 9485 CCState State(FI); 9486 // ARC uses 8 registers to pass arguments. 9487 State.FreeRegs = 8; 9488 9489 if (!getCXXABI().classifyReturnType(FI)) 9490 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 9491 updateState(FI.getReturnInfo(), FI.getReturnType(), State); 9492 for (auto &I : FI.arguments()) { 9493 I.info = classifyArgumentType(I.type, State.FreeRegs); 9494 updateState(I.info, I.type, State); 9495 } 9496 } 9497 9498 ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const; 9499 ABIArgInfo getIndirectByValue(QualType Ty) const; 9500 ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const; 9501 ABIArgInfo classifyReturnType(QualType RetTy) const; 9502 }; 9503 9504 class ARCTargetCodeGenInfo : public TargetCodeGenInfo { 9505 public: 9506 ARCTargetCodeGenInfo(CodeGenTypes &CGT) 9507 : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {} 9508 }; 9509 9510 9511 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const { 9512 return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) : 9513 getNaturalAlignIndirect(Ty, false); 9514 } 9515 9516 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const { 9517 // Compute the byval alignment. 9518 const unsigned MinABIStackAlignInBytes = 4; 9519 unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8; 9520 return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true, 9521 TypeAlign > MinABIStackAlignInBytes); 9522 } 9523 9524 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9525 QualType Ty) const { 9526 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false, 9527 getContext().getTypeInfoInChars(Ty), 9528 CharUnits::fromQuantity(4), true); 9529 } 9530 9531 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty, 9532 uint8_t FreeRegs) const { 9533 // Handle the generic C++ ABI. 9534 const RecordType *RT = Ty->getAs<RecordType>(); 9535 if (RT) { 9536 CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()); 9537 if (RAA == CGCXXABI::RAA_Indirect) 9538 return getIndirectByRef(Ty, FreeRegs > 0); 9539 9540 if (RAA == CGCXXABI::RAA_DirectInMemory) 9541 return getIndirectByValue(Ty); 9542 } 9543 9544 // Treat an enum type as its underlying type. 9545 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 9546 Ty = EnumTy->getDecl()->getIntegerType(); 9547 9548 auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32; 9549 9550 if (isAggregateTypeForABI(Ty)) { 9551 // Structures with flexible arrays are always indirect. 9552 if (RT && RT->getDecl()->hasFlexibleArrayMember()) 9553 return getIndirectByValue(Ty); 9554 9555 // Ignore empty structs/unions. 9556 if (isEmptyRecord(getContext(), Ty, true)) 9557 return ABIArgInfo::getIgnore(); 9558 9559 llvm::LLVMContext &LLVMContext = getVMContext(); 9560 9561 llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext); 9562 SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32); 9563 llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements); 9564 9565 return FreeRegs >= SizeInRegs ? 9566 ABIArgInfo::getDirectInReg(Result) : 9567 ABIArgInfo::getDirect(Result, 0, nullptr, false); 9568 } 9569 9570 if (const auto *EIT = Ty->getAs<ExtIntType>()) 9571 if (EIT->getNumBits() > 64) 9572 return getIndirectByValue(Ty); 9573 9574 return isPromotableIntegerTypeForABI(Ty) 9575 ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty) 9576 : ABIArgInfo::getExtend(Ty)) 9577 : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg() 9578 : ABIArgInfo::getDirect()); 9579 } 9580 9581 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const { 9582 if (RetTy->isAnyComplexType()) 9583 return ABIArgInfo::getDirectInReg(); 9584 9585 // Arguments of size > 4 registers are indirect. 9586 auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32; 9587 if (RetSize > 4) 9588 return getIndirectByRef(RetTy, /*HasFreeRegs*/ true); 9589 9590 return DefaultABIInfo::classifyReturnType(RetTy); 9591 } 9592 9593 } // End anonymous namespace. 9594 9595 //===----------------------------------------------------------------------===// 9596 // XCore ABI Implementation 9597 //===----------------------------------------------------------------------===// 9598 9599 namespace { 9600 9601 /// A SmallStringEnc instance is used to build up the TypeString by passing 9602 /// it by reference between functions that append to it. 9603 typedef llvm::SmallString<128> SmallStringEnc; 9604 9605 /// TypeStringCache caches the meta encodings of Types. 9606 /// 9607 /// The reason for caching TypeStrings is two fold: 9608 /// 1. To cache a type's encoding for later uses; 9609 /// 2. As a means to break recursive member type inclusion. 9610 /// 9611 /// A cache Entry can have a Status of: 9612 /// NonRecursive: The type encoding is not recursive; 9613 /// Recursive: The type encoding is recursive; 9614 /// Incomplete: An incomplete TypeString; 9615 /// IncompleteUsed: An incomplete TypeString that has been used in a 9616 /// Recursive type encoding. 9617 /// 9618 /// A NonRecursive entry will have all of its sub-members expanded as fully 9619 /// as possible. Whilst it may contain types which are recursive, the type 9620 /// itself is not recursive and thus its encoding may be safely used whenever 9621 /// the type is encountered. 9622 /// 9623 /// A Recursive entry will have all of its sub-members expanded as fully as 9624 /// possible. The type itself is recursive and it may contain other types which 9625 /// are recursive. The Recursive encoding must not be used during the expansion 9626 /// of a recursive type's recursive branch. For simplicity the code uses 9627 /// IncompleteCount to reject all usage of Recursive encodings for member types. 9628 /// 9629 /// An Incomplete entry is always a RecordType and only encodes its 9630 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and 9631 /// are placed into the cache during type expansion as a means to identify and 9632 /// handle recursive inclusion of types as sub-members. If there is recursion 9633 /// the entry becomes IncompleteUsed. 9634 /// 9635 /// During the expansion of a RecordType's members: 9636 /// 9637 /// If the cache contains a NonRecursive encoding for the member type, the 9638 /// cached encoding is used; 9639 /// 9640 /// If the cache contains a Recursive encoding for the member type, the 9641 /// cached encoding is 'Swapped' out, as it may be incorrect, and... 9642 /// 9643 /// If the member is a RecordType, an Incomplete encoding is placed into the 9644 /// cache to break potential recursive inclusion of itself as a sub-member; 9645 /// 9646 /// Once a member RecordType has been expanded, its temporary incomplete 9647 /// entry is removed from the cache. If a Recursive encoding was swapped out 9648 /// it is swapped back in; 9649 /// 9650 /// If an incomplete entry is used to expand a sub-member, the incomplete 9651 /// entry is marked as IncompleteUsed. The cache keeps count of how many 9652 /// IncompleteUsed entries it currently contains in IncompleteUsedCount; 9653 /// 9654 /// If a member's encoding is found to be a NonRecursive or Recursive viz: 9655 /// IncompleteUsedCount==0, the member's encoding is added to the cache. 9656 /// Else the member is part of a recursive type and thus the recursion has 9657 /// been exited too soon for the encoding to be correct for the member. 9658 /// 9659 class TypeStringCache { 9660 enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed}; 9661 struct Entry { 9662 std::string Str; // The encoded TypeString for the type. 9663 enum Status State; // Information about the encoding in 'Str'. 9664 std::string Swapped; // A temporary place holder for a Recursive encoding 9665 // during the expansion of RecordType's members. 9666 }; 9667 std::map<const IdentifierInfo *, struct Entry> Map; 9668 unsigned IncompleteCount; // Number of Incomplete entries in the Map. 9669 unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map. 9670 public: 9671 TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {} 9672 void addIncomplete(const IdentifierInfo *ID, std::string StubEnc); 9673 bool removeIncomplete(const IdentifierInfo *ID); 9674 void addIfComplete(const IdentifierInfo *ID, StringRef Str, 9675 bool IsRecursive); 9676 StringRef lookupStr(const IdentifierInfo *ID); 9677 }; 9678 9679 /// TypeString encodings for enum & union fields must be order. 9680 /// FieldEncoding is a helper for this ordering process. 9681 class FieldEncoding { 9682 bool HasName; 9683 std::string Enc; 9684 public: 9685 FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {} 9686 StringRef str() { return Enc; } 9687 bool operator<(const FieldEncoding &rhs) const { 9688 if (HasName != rhs.HasName) return HasName; 9689 return Enc < rhs.Enc; 9690 } 9691 }; 9692 9693 class XCoreABIInfo : public DefaultABIInfo { 9694 public: 9695 XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 9696 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9697 QualType Ty) const override; 9698 }; 9699 9700 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo { 9701 mutable TypeStringCache TSC; 9702 void emitTargetMD(const Decl *D, llvm::GlobalValue *GV, 9703 const CodeGen::CodeGenModule &M) const; 9704 9705 public: 9706 XCoreTargetCodeGenInfo(CodeGenTypes &CGT) 9707 : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {} 9708 void emitTargetMetadata(CodeGen::CodeGenModule &CGM, 9709 const llvm::MapVector<GlobalDecl, StringRef> 9710 &MangledDeclNames) const override; 9711 }; 9712 9713 } // End anonymous namespace. 9714 9715 // TODO: this implementation is likely now redundant with the default 9716 // EmitVAArg. 9717 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 9718 QualType Ty) const { 9719 CGBuilderTy &Builder = CGF.Builder; 9720 9721 // Get the VAList. 9722 CharUnits SlotSize = CharUnits::fromQuantity(4); 9723 Address AP(Builder.CreateLoad(VAListAddr), SlotSize); 9724 9725 // Handle the argument. 9726 ABIArgInfo AI = classifyArgumentType(Ty); 9727 CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty); 9728 llvm::Type *ArgTy = CGT.ConvertType(Ty); 9729 if (AI.canHaveCoerceToType() && !AI.getCoerceToType()) 9730 AI.setCoerceToType(ArgTy); 9731 llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy); 9732 9733 Address Val = Address::invalid(); 9734 CharUnits ArgSize = CharUnits::Zero(); 9735 switch (AI.getKind()) { 9736 case ABIArgInfo::Expand: 9737 case ABIArgInfo::CoerceAndExpand: 9738 case ABIArgInfo::InAlloca: 9739 llvm_unreachable("Unsupported ABI kind for va_arg"); 9740 case ABIArgInfo::Ignore: 9741 Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign); 9742 ArgSize = CharUnits::Zero(); 9743 break; 9744 case ABIArgInfo::Extend: 9745 case ABIArgInfo::Direct: 9746 Val = Builder.CreateBitCast(AP, ArgPtrTy); 9747 ArgSize = CharUnits::fromQuantity( 9748 getDataLayout().getTypeAllocSize(AI.getCoerceToType())); 9749 ArgSize = ArgSize.alignTo(SlotSize); 9750 break; 9751 case ABIArgInfo::Indirect: 9752 Val = Builder.CreateElementBitCast(AP, ArgPtrTy); 9753 Val = Address(Builder.CreateLoad(Val), TypeAlign); 9754 ArgSize = SlotSize; 9755 break; 9756 } 9757 9758 // Increment the VAList. 9759 if (!ArgSize.isZero()) { 9760 Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize); 9761 Builder.CreateStore(APN.getPointer(), VAListAddr); 9762 } 9763 9764 return Val; 9765 } 9766 9767 /// During the expansion of a RecordType, an incomplete TypeString is placed 9768 /// into the cache as a means to identify and break recursion. 9769 /// If there is a Recursive encoding in the cache, it is swapped out and will 9770 /// be reinserted by removeIncomplete(). 9771 /// All other types of encoding should have been used rather than arriving here. 9772 void TypeStringCache::addIncomplete(const IdentifierInfo *ID, 9773 std::string StubEnc) { 9774 if (!ID) 9775 return; 9776 Entry &E = Map[ID]; 9777 assert( (E.Str.empty() || E.State == Recursive) && 9778 "Incorrectly use of addIncomplete"); 9779 assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()"); 9780 E.Swapped.swap(E.Str); // swap out the Recursive 9781 E.Str.swap(StubEnc); 9782 E.State = Incomplete; 9783 ++IncompleteCount; 9784 } 9785 9786 /// Once the RecordType has been expanded, the temporary incomplete TypeString 9787 /// must be removed from the cache. 9788 /// If a Recursive was swapped out by addIncomplete(), it will be replaced. 9789 /// Returns true if the RecordType was defined recursively. 9790 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) { 9791 if (!ID) 9792 return false; 9793 auto I = Map.find(ID); 9794 assert(I != Map.end() && "Entry not present"); 9795 Entry &E = I->second; 9796 assert( (E.State == Incomplete || 9797 E.State == IncompleteUsed) && 9798 "Entry must be an incomplete type"); 9799 bool IsRecursive = false; 9800 if (E.State == IncompleteUsed) { 9801 // We made use of our Incomplete encoding, thus we are recursive. 9802 IsRecursive = true; 9803 --IncompleteUsedCount; 9804 } 9805 if (E.Swapped.empty()) 9806 Map.erase(I); 9807 else { 9808 // Swap the Recursive back. 9809 E.Swapped.swap(E.Str); 9810 E.Swapped.clear(); 9811 E.State = Recursive; 9812 } 9813 --IncompleteCount; 9814 return IsRecursive; 9815 } 9816 9817 /// Add the encoded TypeString to the cache only if it is NonRecursive or 9818 /// Recursive (viz: all sub-members were expanded as fully as possible). 9819 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str, 9820 bool IsRecursive) { 9821 if (!ID || IncompleteUsedCount) 9822 return; // No key or it is is an incomplete sub-type so don't add. 9823 Entry &E = Map[ID]; 9824 if (IsRecursive && !E.Str.empty()) { 9825 assert(E.State==Recursive && E.Str.size() == Str.size() && 9826 "This is not the same Recursive entry"); 9827 // The parent container was not recursive after all, so we could have used 9828 // this Recursive sub-member entry after all, but we assumed the worse when 9829 // we started viz: IncompleteCount!=0. 9830 return; 9831 } 9832 assert(E.Str.empty() && "Entry already present"); 9833 E.Str = Str.str(); 9834 E.State = IsRecursive? Recursive : NonRecursive; 9835 } 9836 9837 /// Return a cached TypeString encoding for the ID. If there isn't one, or we 9838 /// are recursively expanding a type (IncompleteCount != 0) and the cached 9839 /// encoding is Recursive, return an empty StringRef. 9840 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) { 9841 if (!ID) 9842 return StringRef(); // We have no key. 9843 auto I = Map.find(ID); 9844 if (I == Map.end()) 9845 return StringRef(); // We have no encoding. 9846 Entry &E = I->second; 9847 if (E.State == Recursive && IncompleteCount) 9848 return StringRef(); // We don't use Recursive encodings for member types. 9849 9850 if (E.State == Incomplete) { 9851 // The incomplete type is being used to break out of recursion. 9852 E.State = IncompleteUsed; 9853 ++IncompleteUsedCount; 9854 } 9855 return E.Str; 9856 } 9857 9858 /// The XCore ABI includes a type information section that communicates symbol 9859 /// type information to the linker. The linker uses this information to verify 9860 /// safety/correctness of things such as array bound and pointers et al. 9861 /// The ABI only requires C (and XC) language modules to emit TypeStrings. 9862 /// This type information (TypeString) is emitted into meta data for all global 9863 /// symbols: definitions, declarations, functions & variables. 9864 /// 9865 /// The TypeString carries type, qualifier, name, size & value details. 9866 /// Please see 'Tools Development Guide' section 2.16.2 for format details: 9867 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf 9868 /// The output is tested by test/CodeGen/xcore-stringtype.c. 9869 /// 9870 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 9871 const CodeGen::CodeGenModule &CGM, 9872 TypeStringCache &TSC); 9873 9874 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols. 9875 void XCoreTargetCodeGenInfo::emitTargetMD( 9876 const Decl *D, llvm::GlobalValue *GV, 9877 const CodeGen::CodeGenModule &CGM) const { 9878 SmallStringEnc Enc; 9879 if (getTypeString(Enc, D, CGM, TSC)) { 9880 llvm::LLVMContext &Ctx = CGM.getModule().getContext(); 9881 llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV), 9882 llvm::MDString::get(Ctx, Enc.str())}; 9883 llvm::NamedMDNode *MD = 9884 CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings"); 9885 MD->addOperand(llvm::MDNode::get(Ctx, MDVals)); 9886 } 9887 } 9888 9889 void XCoreTargetCodeGenInfo::emitTargetMetadata( 9890 CodeGen::CodeGenModule &CGM, 9891 const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const { 9892 // Warning, new MangledDeclNames may be appended within this loop. 9893 // We rely on MapVector insertions adding new elements to the end 9894 // of the container. 9895 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 9896 auto Val = *(MangledDeclNames.begin() + I); 9897 llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second); 9898 if (GV) { 9899 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 9900 emitTargetMD(D, GV, CGM); 9901 } 9902 } 9903 } 9904 //===----------------------------------------------------------------------===// 9905 // SPIR ABI Implementation 9906 //===----------------------------------------------------------------------===// 9907 9908 namespace { 9909 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo { 9910 public: 9911 SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT) 9912 : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {} 9913 unsigned getOpenCLKernelCallingConv() const override; 9914 }; 9915 9916 } // End anonymous namespace. 9917 9918 namespace clang { 9919 namespace CodeGen { 9920 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) { 9921 DefaultABIInfo SPIRABI(CGM.getTypes()); 9922 SPIRABI.computeInfo(FI); 9923 } 9924 } 9925 } 9926 9927 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const { 9928 return llvm::CallingConv::SPIR_KERNEL; 9929 } 9930 9931 static bool appendType(SmallStringEnc &Enc, QualType QType, 9932 const CodeGen::CodeGenModule &CGM, 9933 TypeStringCache &TSC); 9934 9935 /// Helper function for appendRecordType(). 9936 /// Builds a SmallVector containing the encoded field types in declaration 9937 /// order. 9938 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE, 9939 const RecordDecl *RD, 9940 const CodeGen::CodeGenModule &CGM, 9941 TypeStringCache &TSC) { 9942 for (const auto *Field : RD->fields()) { 9943 SmallStringEnc Enc; 9944 Enc += "m("; 9945 Enc += Field->getName(); 9946 Enc += "){"; 9947 if (Field->isBitField()) { 9948 Enc += "b("; 9949 llvm::raw_svector_ostream OS(Enc); 9950 OS << Field->getBitWidthValue(CGM.getContext()); 9951 Enc += ':'; 9952 } 9953 if (!appendType(Enc, Field->getType(), CGM, TSC)) 9954 return false; 9955 if (Field->isBitField()) 9956 Enc += ')'; 9957 Enc += '}'; 9958 FE.emplace_back(!Field->getName().empty(), Enc); 9959 } 9960 return true; 9961 } 9962 9963 /// Appends structure and union types to Enc and adds encoding to cache. 9964 /// Recursively calls appendType (via extractFieldType) for each field. 9965 /// Union types have their fields ordered according to the ABI. 9966 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT, 9967 const CodeGen::CodeGenModule &CGM, 9968 TypeStringCache &TSC, const IdentifierInfo *ID) { 9969 // Append the cached TypeString if we have one. 9970 StringRef TypeString = TSC.lookupStr(ID); 9971 if (!TypeString.empty()) { 9972 Enc += TypeString; 9973 return true; 9974 } 9975 9976 // Start to emit an incomplete TypeString. 9977 size_t Start = Enc.size(); 9978 Enc += (RT->isUnionType()? 'u' : 's'); 9979 Enc += '('; 9980 if (ID) 9981 Enc += ID->getName(); 9982 Enc += "){"; 9983 9984 // We collect all encoded fields and order as necessary. 9985 bool IsRecursive = false; 9986 const RecordDecl *RD = RT->getDecl()->getDefinition(); 9987 if (RD && !RD->field_empty()) { 9988 // An incomplete TypeString stub is placed in the cache for this RecordType 9989 // so that recursive calls to this RecordType will use it whilst building a 9990 // complete TypeString for this RecordType. 9991 SmallVector<FieldEncoding, 16> FE; 9992 std::string StubEnc(Enc.substr(Start).str()); 9993 StubEnc += '}'; // StubEnc now holds a valid incomplete TypeString. 9994 TSC.addIncomplete(ID, std::move(StubEnc)); 9995 if (!extractFieldType(FE, RD, CGM, TSC)) { 9996 (void) TSC.removeIncomplete(ID); 9997 return false; 9998 } 9999 IsRecursive = TSC.removeIncomplete(ID); 10000 // The ABI requires unions to be sorted but not structures. 10001 // See FieldEncoding::operator< for sort algorithm. 10002 if (RT->isUnionType()) 10003 llvm::sort(FE); 10004 // We can now complete the TypeString. 10005 unsigned E = FE.size(); 10006 for (unsigned I = 0; I != E; ++I) { 10007 if (I) 10008 Enc += ','; 10009 Enc += FE[I].str(); 10010 } 10011 } 10012 Enc += '}'; 10013 TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive); 10014 return true; 10015 } 10016 10017 /// Appends enum types to Enc and adds the encoding to the cache. 10018 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET, 10019 TypeStringCache &TSC, 10020 const IdentifierInfo *ID) { 10021 // Append the cached TypeString if we have one. 10022 StringRef TypeString = TSC.lookupStr(ID); 10023 if (!TypeString.empty()) { 10024 Enc += TypeString; 10025 return true; 10026 } 10027 10028 size_t Start = Enc.size(); 10029 Enc += "e("; 10030 if (ID) 10031 Enc += ID->getName(); 10032 Enc += "){"; 10033 10034 // We collect all encoded enumerations and order them alphanumerically. 10035 if (const EnumDecl *ED = ET->getDecl()->getDefinition()) { 10036 SmallVector<FieldEncoding, 16> FE; 10037 for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E; 10038 ++I) { 10039 SmallStringEnc EnumEnc; 10040 EnumEnc += "m("; 10041 EnumEnc += I->getName(); 10042 EnumEnc += "){"; 10043 I->getInitVal().toString(EnumEnc); 10044 EnumEnc += '}'; 10045 FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc)); 10046 } 10047 llvm::sort(FE); 10048 unsigned E = FE.size(); 10049 for (unsigned I = 0; I != E; ++I) { 10050 if (I) 10051 Enc += ','; 10052 Enc += FE[I].str(); 10053 } 10054 } 10055 Enc += '}'; 10056 TSC.addIfComplete(ID, Enc.substr(Start), false); 10057 return true; 10058 } 10059 10060 /// Appends type's qualifier to Enc. 10061 /// This is done prior to appending the type's encoding. 10062 static void appendQualifier(SmallStringEnc &Enc, QualType QT) { 10063 // Qualifiers are emitted in alphabetical order. 10064 static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"}; 10065 int Lookup = 0; 10066 if (QT.isConstQualified()) 10067 Lookup += 1<<0; 10068 if (QT.isRestrictQualified()) 10069 Lookup += 1<<1; 10070 if (QT.isVolatileQualified()) 10071 Lookup += 1<<2; 10072 Enc += Table[Lookup]; 10073 } 10074 10075 /// Appends built-in types to Enc. 10076 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) { 10077 const char *EncType; 10078 switch (BT->getKind()) { 10079 case BuiltinType::Void: 10080 EncType = "0"; 10081 break; 10082 case BuiltinType::Bool: 10083 EncType = "b"; 10084 break; 10085 case BuiltinType::Char_U: 10086 EncType = "uc"; 10087 break; 10088 case BuiltinType::UChar: 10089 EncType = "uc"; 10090 break; 10091 case BuiltinType::SChar: 10092 EncType = "sc"; 10093 break; 10094 case BuiltinType::UShort: 10095 EncType = "us"; 10096 break; 10097 case BuiltinType::Short: 10098 EncType = "ss"; 10099 break; 10100 case BuiltinType::UInt: 10101 EncType = "ui"; 10102 break; 10103 case BuiltinType::Int: 10104 EncType = "si"; 10105 break; 10106 case BuiltinType::ULong: 10107 EncType = "ul"; 10108 break; 10109 case BuiltinType::Long: 10110 EncType = "sl"; 10111 break; 10112 case BuiltinType::ULongLong: 10113 EncType = "ull"; 10114 break; 10115 case BuiltinType::LongLong: 10116 EncType = "sll"; 10117 break; 10118 case BuiltinType::Float: 10119 EncType = "ft"; 10120 break; 10121 case BuiltinType::Double: 10122 EncType = "d"; 10123 break; 10124 case BuiltinType::LongDouble: 10125 EncType = "ld"; 10126 break; 10127 default: 10128 return false; 10129 } 10130 Enc += EncType; 10131 return true; 10132 } 10133 10134 /// Appends a pointer encoding to Enc before calling appendType for the pointee. 10135 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT, 10136 const CodeGen::CodeGenModule &CGM, 10137 TypeStringCache &TSC) { 10138 Enc += "p("; 10139 if (!appendType(Enc, PT->getPointeeType(), CGM, TSC)) 10140 return false; 10141 Enc += ')'; 10142 return true; 10143 } 10144 10145 /// Appends array encoding to Enc before calling appendType for the element. 10146 static bool appendArrayType(SmallStringEnc &Enc, QualType QT, 10147 const ArrayType *AT, 10148 const CodeGen::CodeGenModule &CGM, 10149 TypeStringCache &TSC, StringRef NoSizeEnc) { 10150 if (AT->getSizeModifier() != ArrayType::Normal) 10151 return false; 10152 Enc += "a("; 10153 if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT)) 10154 CAT->getSize().toStringUnsigned(Enc); 10155 else 10156 Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "". 10157 Enc += ':'; 10158 // The Qualifiers should be attached to the type rather than the array. 10159 appendQualifier(Enc, QT); 10160 if (!appendType(Enc, AT->getElementType(), CGM, TSC)) 10161 return false; 10162 Enc += ')'; 10163 return true; 10164 } 10165 10166 /// Appends a function encoding to Enc, calling appendType for the return type 10167 /// and the arguments. 10168 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT, 10169 const CodeGen::CodeGenModule &CGM, 10170 TypeStringCache &TSC) { 10171 Enc += "f{"; 10172 if (!appendType(Enc, FT->getReturnType(), CGM, TSC)) 10173 return false; 10174 Enc += "}("; 10175 if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) { 10176 // N.B. we are only interested in the adjusted param types. 10177 auto I = FPT->param_type_begin(); 10178 auto E = FPT->param_type_end(); 10179 if (I != E) { 10180 do { 10181 if (!appendType(Enc, *I, CGM, TSC)) 10182 return false; 10183 ++I; 10184 if (I != E) 10185 Enc += ','; 10186 } while (I != E); 10187 if (FPT->isVariadic()) 10188 Enc += ",va"; 10189 } else { 10190 if (FPT->isVariadic()) 10191 Enc += "va"; 10192 else 10193 Enc += '0'; 10194 } 10195 } 10196 Enc += ')'; 10197 return true; 10198 } 10199 10200 /// Handles the type's qualifier before dispatching a call to handle specific 10201 /// type encodings. 10202 static bool appendType(SmallStringEnc &Enc, QualType QType, 10203 const CodeGen::CodeGenModule &CGM, 10204 TypeStringCache &TSC) { 10205 10206 QualType QT = QType.getCanonicalType(); 10207 10208 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) 10209 // The Qualifiers should be attached to the type rather than the array. 10210 // Thus we don't call appendQualifier() here. 10211 return appendArrayType(Enc, QT, AT, CGM, TSC, ""); 10212 10213 appendQualifier(Enc, QT); 10214 10215 if (const BuiltinType *BT = QT->getAs<BuiltinType>()) 10216 return appendBuiltinType(Enc, BT); 10217 10218 if (const PointerType *PT = QT->getAs<PointerType>()) 10219 return appendPointerType(Enc, PT, CGM, TSC); 10220 10221 if (const EnumType *ET = QT->getAs<EnumType>()) 10222 return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier()); 10223 10224 if (const RecordType *RT = QT->getAsStructureType()) 10225 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10226 10227 if (const RecordType *RT = QT->getAsUnionType()) 10228 return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier()); 10229 10230 if (const FunctionType *FT = QT->getAs<FunctionType>()) 10231 return appendFunctionType(Enc, FT, CGM, TSC); 10232 10233 return false; 10234 } 10235 10236 static bool getTypeString(SmallStringEnc &Enc, const Decl *D, 10237 const CodeGen::CodeGenModule &CGM, 10238 TypeStringCache &TSC) { 10239 if (!D) 10240 return false; 10241 10242 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) { 10243 if (FD->getLanguageLinkage() != CLanguageLinkage) 10244 return false; 10245 return appendType(Enc, FD->getType(), CGM, TSC); 10246 } 10247 10248 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) { 10249 if (VD->getLanguageLinkage() != CLanguageLinkage) 10250 return false; 10251 QualType QT = VD->getType().getCanonicalType(); 10252 if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) { 10253 // Global ArrayTypes are given a size of '*' if the size is unknown. 10254 // The Qualifiers should be attached to the type rather than the array. 10255 // Thus we don't call appendQualifier() here. 10256 return appendArrayType(Enc, QT, AT, CGM, TSC, "*"); 10257 } 10258 return appendType(Enc, QT, CGM, TSC); 10259 } 10260 return false; 10261 } 10262 10263 //===----------------------------------------------------------------------===// 10264 // RISCV ABI Implementation 10265 //===----------------------------------------------------------------------===// 10266 10267 namespace { 10268 class RISCVABIInfo : public DefaultABIInfo { 10269 private: 10270 // Size of the integer ('x') registers in bits. 10271 unsigned XLen; 10272 // Size of the floating point ('f') registers in bits. Note that the target 10273 // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target 10274 // with soft float ABI has FLen==0). 10275 unsigned FLen; 10276 static const int NumArgGPRs = 8; 10277 static const int NumArgFPRs = 8; 10278 bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10279 llvm::Type *&Field1Ty, 10280 CharUnits &Field1Off, 10281 llvm::Type *&Field2Ty, 10282 CharUnits &Field2Off) const; 10283 10284 public: 10285 RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen) 10286 : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {} 10287 10288 // DefaultABIInfo's classifyReturnType and classifyArgumentType are 10289 // non-virtual, but computeInfo is virtual, so we overload it. 10290 void computeInfo(CGFunctionInfo &FI) const override; 10291 10292 ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft, 10293 int &ArgFPRsLeft) const; 10294 ABIArgInfo classifyReturnType(QualType RetTy) const; 10295 10296 Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10297 QualType Ty) const override; 10298 10299 ABIArgInfo extendType(QualType Ty) const; 10300 10301 bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10302 CharUnits &Field1Off, llvm::Type *&Field2Ty, 10303 CharUnits &Field2Off, int &NeededArgGPRs, 10304 int &NeededArgFPRs) const; 10305 ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty, 10306 CharUnits Field1Off, 10307 llvm::Type *Field2Ty, 10308 CharUnits Field2Off) const; 10309 }; 10310 } // end anonymous namespace 10311 10312 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const { 10313 QualType RetTy = FI.getReturnType(); 10314 if (!getCXXABI().classifyReturnType(FI)) 10315 FI.getReturnInfo() = classifyReturnType(RetTy); 10316 10317 // IsRetIndirect is true if classifyArgumentType indicated the value should 10318 // be passed indirect, or if the type size is a scalar greater than 2*XLen 10319 // and not a complex type with elements <= FLen. e.g. fp128 is passed direct 10320 // in LLVM IR, relying on the backend lowering code to rewrite the argument 10321 // list and pass indirectly on RV32. 10322 bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect; 10323 if (!IsRetIndirect && RetTy->isScalarType() && 10324 getContext().getTypeSize(RetTy) > (2 * XLen)) { 10325 if (RetTy->isComplexType() && FLen) { 10326 QualType EltTy = RetTy->getAs<ComplexType>()->getElementType(); 10327 IsRetIndirect = getContext().getTypeSize(EltTy) > FLen; 10328 } else { 10329 // This is a normal scalar > 2*XLen, such as fp128 on RV32. 10330 IsRetIndirect = true; 10331 } 10332 } 10333 10334 // We must track the number of GPRs used in order to conform to the RISC-V 10335 // ABI, as integer scalars passed in registers should have signext/zeroext 10336 // when promoted, but are anyext if passed on the stack. As GPR usage is 10337 // different for variadic arguments, we must also track whether we are 10338 // examining a vararg or not. 10339 int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs; 10340 int ArgFPRsLeft = FLen ? NumArgFPRs : 0; 10341 int NumFixedArgs = FI.getNumRequiredArgs(); 10342 10343 int ArgNum = 0; 10344 for (auto &ArgInfo : FI.arguments()) { 10345 bool IsFixed = ArgNum < NumFixedArgs; 10346 ArgInfo.info = 10347 classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft); 10348 ArgNum++; 10349 } 10350 } 10351 10352 // Returns true if the struct is a potential candidate for the floating point 10353 // calling convention. If this function returns true, the caller is 10354 // responsible for checking that if there is only a single field then that 10355 // field is a float. 10356 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff, 10357 llvm::Type *&Field1Ty, 10358 CharUnits &Field1Off, 10359 llvm::Type *&Field2Ty, 10360 CharUnits &Field2Off) const { 10361 bool IsInt = Ty->isIntegralOrEnumerationType(); 10362 bool IsFloat = Ty->isRealFloatingType(); 10363 10364 if (IsInt || IsFloat) { 10365 uint64_t Size = getContext().getTypeSize(Ty); 10366 if (IsInt && Size > XLen) 10367 return false; 10368 // Can't be eligible if larger than the FP registers. Half precision isn't 10369 // currently supported on RISC-V and the ABI hasn't been confirmed, so 10370 // default to the integer ABI in that case. 10371 if (IsFloat && (Size > FLen || Size < 32)) 10372 return false; 10373 // Can't be eligible if an integer type was already found (int+int pairs 10374 // are not eligible). 10375 if (IsInt && Field1Ty && Field1Ty->isIntegerTy()) 10376 return false; 10377 if (!Field1Ty) { 10378 Field1Ty = CGT.ConvertType(Ty); 10379 Field1Off = CurOff; 10380 return true; 10381 } 10382 if (!Field2Ty) { 10383 Field2Ty = CGT.ConvertType(Ty); 10384 Field2Off = CurOff; 10385 return true; 10386 } 10387 return false; 10388 } 10389 10390 if (auto CTy = Ty->getAs<ComplexType>()) { 10391 if (Field1Ty) 10392 return false; 10393 QualType EltTy = CTy->getElementType(); 10394 if (getContext().getTypeSize(EltTy) > FLen) 10395 return false; 10396 Field1Ty = CGT.ConvertType(EltTy); 10397 Field1Off = CurOff; 10398 Field2Ty = Field1Ty; 10399 Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy); 10400 return true; 10401 } 10402 10403 if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) { 10404 uint64_t ArraySize = ATy->getSize().getZExtValue(); 10405 QualType EltTy = ATy->getElementType(); 10406 CharUnits EltSize = getContext().getTypeSizeInChars(EltTy); 10407 for (uint64_t i = 0; i < ArraySize; ++i) { 10408 bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty, 10409 Field1Off, Field2Ty, Field2Off); 10410 if (!Ret) 10411 return false; 10412 CurOff += EltSize; 10413 } 10414 return true; 10415 } 10416 10417 if (const auto *RTy = Ty->getAs<RecordType>()) { 10418 // Structures with either a non-trivial destructor or a non-trivial 10419 // copy constructor are not eligible for the FP calling convention. 10420 if (getRecordArgABI(Ty, CGT.getCXXABI())) 10421 return false; 10422 if (isEmptyRecord(getContext(), Ty, true)) 10423 return true; 10424 const RecordDecl *RD = RTy->getDecl(); 10425 // Unions aren't eligible unless they're empty (which is caught above). 10426 if (RD->isUnion()) 10427 return false; 10428 int ZeroWidthBitFieldCount = 0; 10429 for (const FieldDecl *FD : RD->fields()) { 10430 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD); 10431 uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex()); 10432 QualType QTy = FD->getType(); 10433 if (FD->isBitField()) { 10434 unsigned BitWidth = FD->getBitWidthValue(getContext()); 10435 // Allow a bitfield with a type greater than XLen as long as the 10436 // bitwidth is XLen or less. 10437 if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen) 10438 QTy = getContext().getIntTypeForBitwidth(XLen, false); 10439 if (BitWidth == 0) { 10440 ZeroWidthBitFieldCount++; 10441 continue; 10442 } 10443 } 10444 10445 bool Ret = detectFPCCEligibleStructHelper( 10446 QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits), 10447 Field1Ty, Field1Off, Field2Ty, Field2Off); 10448 if (!Ret) 10449 return false; 10450 10451 // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp 10452 // or int+fp structs, but are ignored for a struct with an fp field and 10453 // any number of zero-width bitfields. 10454 if (Field2Ty && ZeroWidthBitFieldCount > 0) 10455 return false; 10456 } 10457 return Field1Ty != nullptr; 10458 } 10459 10460 return false; 10461 } 10462 10463 // Determine if a struct is eligible for passing according to the floating 10464 // point calling convention (i.e., when flattened it contains a single fp 10465 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and 10466 // NeededArgGPRs are incremented appropriately. 10467 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty, 10468 CharUnits &Field1Off, 10469 llvm::Type *&Field2Ty, 10470 CharUnits &Field2Off, 10471 int &NeededArgGPRs, 10472 int &NeededArgFPRs) const { 10473 Field1Ty = nullptr; 10474 Field2Ty = nullptr; 10475 NeededArgGPRs = 0; 10476 NeededArgFPRs = 0; 10477 bool IsCandidate = detectFPCCEligibleStructHelper( 10478 Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off); 10479 // Not really a candidate if we have a single int but no float. 10480 if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy()) 10481 return false; 10482 if (!IsCandidate) 10483 return false; 10484 if (Field1Ty && Field1Ty->isFloatingPointTy()) 10485 NeededArgFPRs++; 10486 else if (Field1Ty) 10487 NeededArgGPRs++; 10488 if (Field2Ty && Field2Ty->isFloatingPointTy()) 10489 NeededArgFPRs++; 10490 else if (Field2Ty) 10491 NeededArgGPRs++; 10492 return true; 10493 } 10494 10495 // Call getCoerceAndExpand for the two-element flattened struct described by 10496 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an 10497 // appropriate coerceToType and unpaddedCoerceToType. 10498 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct( 10499 llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty, 10500 CharUnits Field2Off) const { 10501 SmallVector<llvm::Type *, 3> CoerceElts; 10502 SmallVector<llvm::Type *, 2> UnpaddedCoerceElts; 10503 if (!Field1Off.isZero()) 10504 CoerceElts.push_back(llvm::ArrayType::get( 10505 llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity())); 10506 10507 CoerceElts.push_back(Field1Ty); 10508 UnpaddedCoerceElts.push_back(Field1Ty); 10509 10510 if (!Field2Ty) { 10511 return ABIArgInfo::getCoerceAndExpand( 10512 llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()), 10513 UnpaddedCoerceElts[0]); 10514 } 10515 10516 CharUnits Field2Align = 10517 CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty)); 10518 CharUnits Field1End = Field1Off + 10519 CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty)); 10520 CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align); 10521 10522 CharUnits Padding = CharUnits::Zero(); 10523 if (Field2Off > Field2OffNoPadNoPack) 10524 Padding = Field2Off - Field2OffNoPadNoPack; 10525 else if (Field2Off != Field2Align && Field2Off > Field1End) 10526 Padding = Field2Off - Field1End; 10527 10528 bool IsPacked = !Field2Off.isMultipleOf(Field2Align); 10529 10530 if (!Padding.isZero()) 10531 CoerceElts.push_back(llvm::ArrayType::get( 10532 llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity())); 10533 10534 CoerceElts.push_back(Field2Ty); 10535 UnpaddedCoerceElts.push_back(Field2Ty); 10536 10537 auto CoerceToType = 10538 llvm::StructType::get(getVMContext(), CoerceElts, IsPacked); 10539 auto UnpaddedCoerceToType = 10540 llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked); 10541 10542 return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType); 10543 } 10544 10545 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed, 10546 int &ArgGPRsLeft, 10547 int &ArgFPRsLeft) const { 10548 assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow"); 10549 Ty = useFirstFieldIfTransparentUnion(Ty); 10550 10551 // Structures with either a non-trivial destructor or a non-trivial 10552 // copy constructor are always passed indirectly. 10553 if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) { 10554 if (ArgGPRsLeft) 10555 ArgGPRsLeft -= 1; 10556 return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA == 10557 CGCXXABI::RAA_DirectInMemory); 10558 } 10559 10560 // Ignore empty structs/unions. 10561 if (isEmptyRecord(getContext(), Ty, true)) 10562 return ABIArgInfo::getIgnore(); 10563 10564 uint64_t Size = getContext().getTypeSize(Ty); 10565 10566 // Pass floating point values via FPRs if possible. 10567 if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() && 10568 FLen >= Size && ArgFPRsLeft) { 10569 ArgFPRsLeft--; 10570 return ABIArgInfo::getDirect(); 10571 } 10572 10573 // Complex types for the hard float ABI must be passed direct rather than 10574 // using CoerceAndExpand. 10575 if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) { 10576 QualType EltTy = Ty->castAs<ComplexType>()->getElementType(); 10577 if (getContext().getTypeSize(EltTy) <= FLen) { 10578 ArgFPRsLeft -= 2; 10579 return ABIArgInfo::getDirect(); 10580 } 10581 } 10582 10583 if (IsFixed && FLen && Ty->isStructureOrClassType()) { 10584 llvm::Type *Field1Ty = nullptr; 10585 llvm::Type *Field2Ty = nullptr; 10586 CharUnits Field1Off = CharUnits::Zero(); 10587 CharUnits Field2Off = CharUnits::Zero(); 10588 int NeededArgGPRs; 10589 int NeededArgFPRs; 10590 bool IsCandidate = 10591 detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off, 10592 NeededArgGPRs, NeededArgFPRs); 10593 if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft && 10594 NeededArgFPRs <= ArgFPRsLeft) { 10595 ArgGPRsLeft -= NeededArgGPRs; 10596 ArgFPRsLeft -= NeededArgFPRs; 10597 return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty, 10598 Field2Off); 10599 } 10600 } 10601 10602 uint64_t NeededAlign = getContext().getTypeAlign(Ty); 10603 bool MustUseStack = false; 10604 // Determine the number of GPRs needed to pass the current argument 10605 // according to the ABI. 2*XLen-aligned varargs are passed in "aligned" 10606 // register pairs, so may consume 3 registers. 10607 int NeededArgGPRs = 1; 10608 if (!IsFixed && NeededAlign == 2 * XLen) 10609 NeededArgGPRs = 2 + (ArgGPRsLeft % 2); 10610 else if (Size > XLen && Size <= 2 * XLen) 10611 NeededArgGPRs = 2; 10612 10613 if (NeededArgGPRs > ArgGPRsLeft) { 10614 MustUseStack = true; 10615 NeededArgGPRs = ArgGPRsLeft; 10616 } 10617 10618 ArgGPRsLeft -= NeededArgGPRs; 10619 10620 if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) { 10621 // Treat an enum type as its underlying type. 10622 if (const EnumType *EnumTy = Ty->getAs<EnumType>()) 10623 Ty = EnumTy->getDecl()->getIntegerType(); 10624 10625 // All integral types are promoted to XLen width, unless passed on the 10626 // stack. 10627 if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) { 10628 return extendType(Ty); 10629 } 10630 10631 if (const auto *EIT = Ty->getAs<ExtIntType>()) { 10632 if (EIT->getNumBits() < XLen && !MustUseStack) 10633 return extendType(Ty); 10634 if (EIT->getNumBits() > 128 || 10635 (!getContext().getTargetInfo().hasInt128Type() && 10636 EIT->getNumBits() > 64)) 10637 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10638 } 10639 10640 return ABIArgInfo::getDirect(); 10641 } 10642 10643 // Aggregates which are <= 2*XLen will be passed in registers if possible, 10644 // so coerce to integers. 10645 if (Size <= 2 * XLen) { 10646 unsigned Alignment = getContext().getTypeAlign(Ty); 10647 10648 // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is 10649 // required, and a 2-element XLen array if only XLen alignment is required. 10650 if (Size <= XLen) { 10651 return ABIArgInfo::getDirect( 10652 llvm::IntegerType::get(getVMContext(), XLen)); 10653 } else if (Alignment == 2 * XLen) { 10654 return ABIArgInfo::getDirect( 10655 llvm::IntegerType::get(getVMContext(), 2 * XLen)); 10656 } else { 10657 return ABIArgInfo::getDirect(llvm::ArrayType::get( 10658 llvm::IntegerType::get(getVMContext(), XLen), 2)); 10659 } 10660 } 10661 return getNaturalAlignIndirect(Ty, /*ByVal=*/false); 10662 } 10663 10664 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const { 10665 if (RetTy->isVoidType()) 10666 return ABIArgInfo::getIgnore(); 10667 10668 int ArgGPRsLeft = 2; 10669 int ArgFPRsLeft = FLen ? 2 : 0; 10670 10671 // The rules for return and argument types are the same, so defer to 10672 // classifyArgumentType. 10673 return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft, 10674 ArgFPRsLeft); 10675 } 10676 10677 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr, 10678 QualType Ty) const { 10679 CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8); 10680 10681 // Empty records are ignored for parameter passing purposes. 10682 if (isEmptyRecord(getContext(), Ty, true)) { 10683 Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize); 10684 Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty)); 10685 return Addr; 10686 } 10687 10688 std::pair<CharUnits, CharUnits> SizeAndAlign = 10689 getContext().getTypeInfoInChars(Ty); 10690 10691 // Arguments bigger than 2*Xlen bytes are passed indirectly. 10692 bool IsIndirect = SizeAndAlign.first > 2 * SlotSize; 10693 10694 return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign, 10695 SlotSize, /*AllowHigherAlign=*/true); 10696 } 10697 10698 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const { 10699 int TySize = getContext().getTypeSize(Ty); 10700 // RV64 ABI requires unsigned 32 bit integers to be sign extended. 10701 if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32) 10702 return ABIArgInfo::getSignExtend(Ty); 10703 return ABIArgInfo::getExtend(Ty); 10704 } 10705 10706 namespace { 10707 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo { 10708 public: 10709 RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, 10710 unsigned FLen) 10711 : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {} 10712 10713 void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV, 10714 CodeGen::CodeGenModule &CGM) const override { 10715 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 10716 if (!FD) return; 10717 10718 const auto *Attr = FD->getAttr<RISCVInterruptAttr>(); 10719 if (!Attr) 10720 return; 10721 10722 const char *Kind; 10723 switch (Attr->getInterrupt()) { 10724 case RISCVInterruptAttr::user: Kind = "user"; break; 10725 case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break; 10726 case RISCVInterruptAttr::machine: Kind = "machine"; break; 10727 } 10728 10729 auto *Fn = cast<llvm::Function>(GV); 10730 10731 Fn->addFnAttr("interrupt", Kind); 10732 } 10733 }; 10734 } // namespace 10735 10736 //===----------------------------------------------------------------------===// 10737 // VE ABI Implementation. 10738 // 10739 namespace { 10740 class VEABIInfo : public DefaultABIInfo { 10741 public: 10742 VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {} 10743 10744 private: 10745 ABIArgInfo classifyReturnType(QualType RetTy) const; 10746 ABIArgInfo classifyArgumentType(QualType RetTy) const; 10747 void computeInfo(CGFunctionInfo &FI) const override; 10748 }; 10749 } // end anonymous namespace 10750 10751 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const { 10752 if (Ty->isAnyComplexType()) { 10753 return ABIArgInfo::getDirect(); 10754 } 10755 return DefaultABIInfo::classifyReturnType(Ty); 10756 } 10757 10758 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const { 10759 if (Ty->isAnyComplexType()) { 10760 return ABIArgInfo::getDirect(); 10761 } 10762 return DefaultABIInfo::classifyArgumentType(Ty); 10763 } 10764 10765 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const { 10766 10767 FI.getReturnInfo() = classifyReturnType(FI.getReturnType()); 10768 for (auto &Arg : FI.arguments()) 10769 Arg.info = classifyArgumentType(Arg.type); 10770 } 10771 10772 namespace { 10773 class VETargetCodeGenInfo : public TargetCodeGenInfo { 10774 public: 10775 VETargetCodeGenInfo(CodeGenTypes &CGT) 10776 : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {} 10777 // VE ABI requires the arguments of variadic and prototype-less functions 10778 // are passed in both registers and memory. 10779 bool isNoProtoCallVariadic(const CallArgList &args, 10780 const FunctionNoProtoType *fnType) const override { 10781 return true; 10782 } 10783 }; 10784 } // end anonymous namespace 10785 10786 //===----------------------------------------------------------------------===// 10787 // Driver code 10788 //===----------------------------------------------------------------------===// 10789 10790 bool CodeGenModule::supportsCOMDAT() const { 10791 return getTriple().supportsCOMDAT(); 10792 } 10793 10794 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() { 10795 if (TheTargetCodeGenInfo) 10796 return *TheTargetCodeGenInfo; 10797 10798 // Helper to set the unique_ptr while still keeping the return value. 10799 auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & { 10800 this->TheTargetCodeGenInfo.reset(P); 10801 return *P; 10802 }; 10803 10804 const llvm::Triple &Triple = getTarget().getTriple(); 10805 switch (Triple.getArch()) { 10806 default: 10807 return SetCGInfo(new DefaultTargetCodeGenInfo(Types)); 10808 10809 case llvm::Triple::le32: 10810 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10811 case llvm::Triple::mips: 10812 case llvm::Triple::mipsel: 10813 if (Triple.getOS() == llvm::Triple::NaCl) 10814 return SetCGInfo(new PNaClTargetCodeGenInfo(Types)); 10815 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true)); 10816 10817 case llvm::Triple::mips64: 10818 case llvm::Triple::mips64el: 10819 return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false)); 10820 10821 case llvm::Triple::avr: 10822 return SetCGInfo(new AVRTargetCodeGenInfo(Types)); 10823 10824 case llvm::Triple::aarch64: 10825 case llvm::Triple::aarch64_32: 10826 case llvm::Triple::aarch64_be: { 10827 AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS; 10828 if (getTarget().getABI() == "darwinpcs") 10829 Kind = AArch64ABIInfo::DarwinPCS; 10830 else if (Triple.isOSWindows()) 10831 return SetCGInfo( 10832 new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64)); 10833 10834 return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind)); 10835 } 10836 10837 case llvm::Triple::wasm32: 10838 case llvm::Triple::wasm64: { 10839 WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP; 10840 if (getTarget().getABI() == "experimental-mv") 10841 Kind = WebAssemblyABIInfo::ExperimentalMV; 10842 return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind)); 10843 } 10844 10845 case llvm::Triple::arm: 10846 case llvm::Triple::armeb: 10847 case llvm::Triple::thumb: 10848 case llvm::Triple::thumbeb: { 10849 if (Triple.getOS() == llvm::Triple::Win32) { 10850 return SetCGInfo( 10851 new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP)); 10852 } 10853 10854 ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS; 10855 StringRef ABIStr = getTarget().getABI(); 10856 if (ABIStr == "apcs-gnu") 10857 Kind = ARMABIInfo::APCS; 10858 else if (ABIStr == "aapcs16") 10859 Kind = ARMABIInfo::AAPCS16_VFP; 10860 else if (CodeGenOpts.FloatABI == "hard" || 10861 (CodeGenOpts.FloatABI != "soft" && 10862 (Triple.getEnvironment() == llvm::Triple::GNUEABIHF || 10863 Triple.getEnvironment() == llvm::Triple::MuslEABIHF || 10864 Triple.getEnvironment() == llvm::Triple::EABIHF))) 10865 Kind = ARMABIInfo::AAPCS_VFP; 10866 10867 return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind)); 10868 } 10869 10870 case llvm::Triple::ppc: { 10871 if (Triple.isOSAIX()) 10872 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false)); 10873 10874 bool IsSoftFloat = 10875 CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe"); 10876 bool RetSmallStructInRegABI = 10877 PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10878 return SetCGInfo( 10879 new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI)); 10880 } 10881 case llvm::Triple::ppc64: 10882 if (Triple.isOSAIX()) 10883 return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true)); 10884 10885 if (Triple.isOSBinFormatELF()) { 10886 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1; 10887 if (getTarget().getABI() == "elfv2") 10888 Kind = PPC64_SVR4_ABIInfo::ELFv2; 10889 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10890 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10891 10892 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10893 IsSoftFloat)); 10894 } 10895 return SetCGInfo(new PPC64TargetCodeGenInfo(Types)); 10896 case llvm::Triple::ppc64le: { 10897 assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!"); 10898 PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2; 10899 if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx") 10900 Kind = PPC64_SVR4_ABIInfo::ELFv1; 10901 bool HasQPX = getTarget().getABI() == "elfv1-qpx"; 10902 bool IsSoftFloat = CodeGenOpts.FloatABI == "soft"; 10903 10904 return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX, 10905 IsSoftFloat)); 10906 } 10907 10908 case llvm::Triple::nvptx: 10909 case llvm::Triple::nvptx64: 10910 return SetCGInfo(new NVPTXTargetCodeGenInfo(Types)); 10911 10912 case llvm::Triple::msp430: 10913 return SetCGInfo(new MSP430TargetCodeGenInfo(Types)); 10914 10915 case llvm::Triple::riscv32: 10916 case llvm::Triple::riscv64: { 10917 StringRef ABIStr = getTarget().getABI(); 10918 unsigned XLen = getTarget().getPointerWidth(0); 10919 unsigned ABIFLen = 0; 10920 if (ABIStr.endswith("f")) 10921 ABIFLen = 32; 10922 else if (ABIStr.endswith("d")) 10923 ABIFLen = 64; 10924 return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen)); 10925 } 10926 10927 case llvm::Triple::systemz: { 10928 bool SoftFloat = CodeGenOpts.FloatABI == "soft"; 10929 bool HasVector = !SoftFloat && getTarget().getABI() == "vector"; 10930 return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat)); 10931 } 10932 10933 case llvm::Triple::tce: 10934 case llvm::Triple::tcele: 10935 return SetCGInfo(new TCETargetCodeGenInfo(Types)); 10936 10937 case llvm::Triple::x86: { 10938 bool IsDarwinVectorABI = Triple.isOSDarwin(); 10939 bool RetSmallStructInRegABI = 10940 X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts); 10941 bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing(); 10942 10943 if (Triple.getOS() == llvm::Triple::Win32) { 10944 return SetCGInfo(new WinX86_32TargetCodeGenInfo( 10945 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10946 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters)); 10947 } else { 10948 return SetCGInfo(new X86_32TargetCodeGenInfo( 10949 Types, IsDarwinVectorABI, RetSmallStructInRegABI, 10950 IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters, 10951 CodeGenOpts.FloatABI == "soft")); 10952 } 10953 } 10954 10955 case llvm::Triple::x86_64: { 10956 StringRef ABI = getTarget().getABI(); 10957 X86AVXABILevel AVXLevel = 10958 (ABI == "avx512" 10959 ? X86AVXABILevel::AVX512 10960 : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None); 10961 10962 switch (Triple.getOS()) { 10963 case llvm::Triple::Win32: 10964 return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel)); 10965 default: 10966 return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel)); 10967 } 10968 } 10969 case llvm::Triple::hexagon: 10970 return SetCGInfo(new HexagonTargetCodeGenInfo(Types)); 10971 case llvm::Triple::lanai: 10972 return SetCGInfo(new LanaiTargetCodeGenInfo(Types)); 10973 case llvm::Triple::r600: 10974 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10975 case llvm::Triple::amdgcn: 10976 return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types)); 10977 case llvm::Triple::sparc: 10978 return SetCGInfo(new SparcV8TargetCodeGenInfo(Types)); 10979 case llvm::Triple::sparcv9: 10980 return SetCGInfo(new SparcV9TargetCodeGenInfo(Types)); 10981 case llvm::Triple::xcore: 10982 return SetCGInfo(new XCoreTargetCodeGenInfo(Types)); 10983 case llvm::Triple::arc: 10984 return SetCGInfo(new ARCTargetCodeGenInfo(Types)); 10985 case llvm::Triple::spir: 10986 case llvm::Triple::spir64: 10987 return SetCGInfo(new SPIRTargetCodeGenInfo(Types)); 10988 case llvm::Triple::ve: 10989 return SetCGInfo(new VETargetCodeGenInfo(Types)); 10990 } 10991 } 10992 10993 /// Create an OpenCL kernel for an enqueued block. 10994 /// 10995 /// The kernel has the same function type as the block invoke function. Its 10996 /// name is the name of the block invoke function postfixed with "_kernel". 10997 /// It simply calls the block invoke function then returns. 10998 llvm::Function * 10999 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF, 11000 llvm::Function *Invoke, 11001 llvm::Value *BlockLiteral) const { 11002 auto *InvokeFT = Invoke->getFunctionType(); 11003 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11004 for (auto &P : InvokeFT->params()) 11005 ArgTys.push_back(P); 11006 auto &C = CGF.getLLVMContext(); 11007 std::string Name = Invoke->getName().str() + "_kernel"; 11008 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11009 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11010 &CGF.CGM.getModule()); 11011 auto IP = CGF.Builder.saveIP(); 11012 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11013 auto &Builder = CGF.Builder; 11014 Builder.SetInsertPoint(BB); 11015 llvm::SmallVector<llvm::Value *, 2> Args; 11016 for (auto &A : F->args()) 11017 Args.push_back(&A); 11018 Builder.CreateCall(Invoke, Args); 11019 Builder.CreateRetVoid(); 11020 Builder.restoreIP(IP); 11021 return F; 11022 } 11023 11024 /// Create an OpenCL kernel for an enqueued block. 11025 /// 11026 /// The type of the first argument (the block literal) is the struct type 11027 /// of the block literal instead of a pointer type. The first argument 11028 /// (block literal) is passed directly by value to the kernel. The kernel 11029 /// allocates the same type of struct on stack and stores the block literal 11030 /// to it and passes its pointer to the block invoke function. The kernel 11031 /// has "enqueued-block" function attribute and kernel argument metadata. 11032 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel( 11033 CodeGenFunction &CGF, llvm::Function *Invoke, 11034 llvm::Value *BlockLiteral) const { 11035 auto &Builder = CGF.Builder; 11036 auto &C = CGF.getLLVMContext(); 11037 11038 auto *BlockTy = BlockLiteral->getType()->getPointerElementType(); 11039 auto *InvokeFT = Invoke->getFunctionType(); 11040 llvm::SmallVector<llvm::Type *, 2> ArgTys; 11041 llvm::SmallVector<llvm::Metadata *, 8> AddressQuals; 11042 llvm::SmallVector<llvm::Metadata *, 8> AccessQuals; 11043 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames; 11044 llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames; 11045 llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals; 11046 llvm::SmallVector<llvm::Metadata *, 8> ArgNames; 11047 11048 ArgTys.push_back(BlockTy); 11049 ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11050 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0))); 11051 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal")); 11052 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11053 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11054 ArgNames.push_back(llvm::MDString::get(C, "block_literal")); 11055 for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) { 11056 ArgTys.push_back(InvokeFT->getParamType(I)); 11057 ArgTypeNames.push_back(llvm::MDString::get(C, "void*")); 11058 AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3))); 11059 AccessQuals.push_back(llvm::MDString::get(C, "none")); 11060 ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*")); 11061 ArgTypeQuals.push_back(llvm::MDString::get(C, "")); 11062 ArgNames.push_back( 11063 llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str())); 11064 } 11065 std::string Name = Invoke->getName().str() + "_kernel"; 11066 auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false); 11067 auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name, 11068 &CGF.CGM.getModule()); 11069 F->addFnAttr("enqueued-block"); 11070 auto IP = CGF.Builder.saveIP(); 11071 auto *BB = llvm::BasicBlock::Create(C, "entry", F); 11072 Builder.SetInsertPoint(BB); 11073 const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy); 11074 auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr); 11075 BlockPtr->setAlignment(BlockAlign); 11076 Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign); 11077 auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0)); 11078 llvm::SmallVector<llvm::Value *, 2> Args; 11079 Args.push_back(Cast); 11080 for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I) 11081 Args.push_back(I); 11082 Builder.CreateCall(Invoke, Args); 11083 Builder.CreateRetVoid(); 11084 Builder.restoreIP(IP); 11085 11086 F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals)); 11087 F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals)); 11088 F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames)); 11089 F->setMetadata("kernel_arg_base_type", 11090 llvm::MDNode::get(C, ArgBaseTypeNames)); 11091 F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals)); 11092 if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 11093 F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames)); 11094 11095 return F; 11096 } 11097