xref: /freebsd/contrib/llvm-project/clang/lib/CodeGen/TargetInfo.cpp (revision c66ec88fed842fbaad62c30d510644ceb7bd2d71)
1 //===---- TargetInfo.cpp - Encapsulate target details -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // These classes wrap the information about a call or function
10 // definition used to handle ABI compliancy.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "TargetInfo.h"
15 #include "ABIInfo.h"
16 #include "CGBlocks.h"
17 #include "CGCXXABI.h"
18 #include "CGValue.h"
19 #include "CodeGenFunction.h"
20 #include "clang/AST/Attr.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/Basic/CodeGenOptions.h"
23 #include "clang/Basic/DiagnosticFrontend.h"
24 #include "clang/CodeGen/CGFunctionInfo.h"
25 #include "clang/CodeGen/SwiftCallingConv.h"
26 #include "llvm/ADT/SmallBitVector.h"
27 #include "llvm/ADT/StringExtras.h"
28 #include "llvm/ADT/StringSwitch.h"
29 #include "llvm/ADT/Triple.h"
30 #include "llvm/ADT/Twine.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/IntrinsicsNVPTX.h"
33 #include "llvm/IR/Type.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include <algorithm> // std::sort
36 
37 using namespace clang;
38 using namespace CodeGen;
39 
40 // Helper for coercing an aggregate argument or return value into an integer
41 // array of the same size (including padding) and alignment.  This alternate
42 // coercion happens only for the RenderScript ABI and can be removed after
43 // runtimes that rely on it are no longer supported.
44 //
45 // RenderScript assumes that the size of the argument / return value in the IR
46 // is the same as the size of the corresponding qualified type. This helper
47 // coerces the aggregate type into an array of the same size (including
48 // padding).  This coercion is used in lieu of expansion of struct members or
49 // other canonical coercions that return a coerced-type of larger size.
50 //
51 // Ty          - The argument / return value type
52 // Context     - The associated ASTContext
53 // LLVMContext - The associated LLVMContext
54 static ABIArgInfo coerceToIntArray(QualType Ty,
55                                    ASTContext &Context,
56                                    llvm::LLVMContext &LLVMContext) {
57   // Alignment and Size are measured in bits.
58   const uint64_t Size = Context.getTypeSize(Ty);
59   const uint64_t Alignment = Context.getTypeAlign(Ty);
60   llvm::Type *IntType = llvm::Type::getIntNTy(LLVMContext, Alignment);
61   const uint64_t NumElements = (Size + Alignment - 1) / Alignment;
62   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
63 }
64 
65 static void AssignToArrayRange(CodeGen::CGBuilderTy &Builder,
66                                llvm::Value *Array,
67                                llvm::Value *Value,
68                                unsigned FirstIndex,
69                                unsigned LastIndex) {
70   // Alternatively, we could emit this as a loop in the source.
71   for (unsigned I = FirstIndex; I <= LastIndex; ++I) {
72     llvm::Value *Cell =
73         Builder.CreateConstInBoundsGEP1_32(Builder.getInt8Ty(), Array, I);
74     Builder.CreateAlignedStore(Value, Cell, CharUnits::One());
75   }
76 }
77 
78 static bool isAggregateTypeForABI(QualType T) {
79   return !CodeGenFunction::hasScalarEvaluationKind(T) ||
80          T->isMemberFunctionPointerType();
81 }
82 
83 ABIArgInfo
84 ABIInfo::getNaturalAlignIndirect(QualType Ty, bool ByRef, bool Realign,
85                                  llvm::Type *Padding) const {
86   return ABIArgInfo::getIndirect(getContext().getTypeAlignInChars(Ty),
87                                  ByRef, Realign, Padding);
88 }
89 
90 ABIArgInfo
91 ABIInfo::getNaturalAlignIndirectInReg(QualType Ty, bool Realign) const {
92   return ABIArgInfo::getIndirectInReg(getContext().getTypeAlignInChars(Ty),
93                                       /*ByRef*/ false, Realign);
94 }
95 
96 Address ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
97                              QualType Ty) const {
98   return Address::invalid();
99 }
100 
101 bool ABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
102   if (Ty->isPromotableIntegerType())
103     return true;
104 
105   if (const auto *EIT = Ty->getAs<ExtIntType>())
106     if (EIT->getNumBits() < getContext().getTypeSize(getContext().IntTy))
107       return true;
108 
109   return false;
110 }
111 
112 ABIInfo::~ABIInfo() {}
113 
114 /// Does the given lowering require more than the given number of
115 /// registers when expanded?
116 ///
117 /// This is intended to be the basis of a reasonable basic implementation
118 /// of should{Pass,Return}IndirectlyForSwift.
119 ///
120 /// For most targets, a limit of four total registers is reasonable; this
121 /// limits the amount of code required in order to move around the value
122 /// in case it wasn't produced immediately prior to the call by the caller
123 /// (or wasn't produced in exactly the right registers) or isn't used
124 /// immediately within the callee.  But some targets may need to further
125 /// limit the register count due to an inability to support that many
126 /// return registers.
127 static bool occupiesMoreThan(CodeGenTypes &cgt,
128                              ArrayRef<llvm::Type*> scalarTypes,
129                              unsigned maxAllRegisters) {
130   unsigned intCount = 0, fpCount = 0;
131   for (llvm::Type *type : scalarTypes) {
132     if (type->isPointerTy()) {
133       intCount++;
134     } else if (auto intTy = dyn_cast<llvm::IntegerType>(type)) {
135       auto ptrWidth = cgt.getTarget().getPointerWidth(0);
136       intCount += (intTy->getBitWidth() + ptrWidth - 1) / ptrWidth;
137     } else {
138       assert(type->isVectorTy() || type->isFloatingPointTy());
139       fpCount++;
140     }
141   }
142 
143   return (intCount + fpCount > maxAllRegisters);
144 }
145 
146 bool SwiftABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
147                                              llvm::Type *eltTy,
148                                              unsigned numElts) const {
149   // The default implementation of this assumes that the target guarantees
150   // 128-bit SIMD support but nothing more.
151   return (vectorSize.getQuantity() > 8 && vectorSize.getQuantity() <= 16);
152 }
153 
154 static CGCXXABI::RecordArgABI getRecordArgABI(const RecordType *RT,
155                                               CGCXXABI &CXXABI) {
156   const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl());
157   if (!RD) {
158     if (!RT->getDecl()->canPassInRegisters())
159       return CGCXXABI::RAA_Indirect;
160     return CGCXXABI::RAA_Default;
161   }
162   return CXXABI.getRecordArgABI(RD);
163 }
164 
165 static CGCXXABI::RecordArgABI getRecordArgABI(QualType T,
166                                               CGCXXABI &CXXABI) {
167   const RecordType *RT = T->getAs<RecordType>();
168   if (!RT)
169     return CGCXXABI::RAA_Default;
170   return getRecordArgABI(RT, CXXABI);
171 }
172 
173 static bool classifyReturnType(const CGCXXABI &CXXABI, CGFunctionInfo &FI,
174                                const ABIInfo &Info) {
175   QualType Ty = FI.getReturnType();
176 
177   if (const auto *RT = Ty->getAs<RecordType>())
178     if (!isa<CXXRecordDecl>(RT->getDecl()) &&
179         !RT->getDecl()->canPassInRegisters()) {
180       FI.getReturnInfo() = Info.getNaturalAlignIndirect(Ty);
181       return true;
182     }
183 
184   return CXXABI.classifyReturnType(FI);
185 }
186 
187 /// Pass transparent unions as if they were the type of the first element. Sema
188 /// should ensure that all elements of the union have the same "machine type".
189 static QualType useFirstFieldIfTransparentUnion(QualType Ty) {
190   if (const RecordType *UT = Ty->getAsUnionType()) {
191     const RecordDecl *UD = UT->getDecl();
192     if (UD->hasAttr<TransparentUnionAttr>()) {
193       assert(!UD->field_empty() && "sema created an empty transparent union");
194       return UD->field_begin()->getType();
195     }
196   }
197   return Ty;
198 }
199 
200 CGCXXABI &ABIInfo::getCXXABI() const {
201   return CGT.getCXXABI();
202 }
203 
204 ASTContext &ABIInfo::getContext() const {
205   return CGT.getContext();
206 }
207 
208 llvm::LLVMContext &ABIInfo::getVMContext() const {
209   return CGT.getLLVMContext();
210 }
211 
212 const llvm::DataLayout &ABIInfo::getDataLayout() const {
213   return CGT.getDataLayout();
214 }
215 
216 const TargetInfo &ABIInfo::getTarget() const {
217   return CGT.getTarget();
218 }
219 
220 const CodeGenOptions &ABIInfo::getCodeGenOpts() const {
221   return CGT.getCodeGenOpts();
222 }
223 
224 bool ABIInfo::isAndroid() const { return getTarget().getTriple().isAndroid(); }
225 
226 bool ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
227   return false;
228 }
229 
230 bool ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
231                                                 uint64_t Members) const {
232   return false;
233 }
234 
235 LLVM_DUMP_METHOD void ABIArgInfo::dump() const {
236   raw_ostream &OS = llvm::errs();
237   OS << "(ABIArgInfo Kind=";
238   switch (TheKind) {
239   case Direct:
240     OS << "Direct Type=";
241     if (llvm::Type *Ty = getCoerceToType())
242       Ty->print(OS);
243     else
244       OS << "null";
245     break;
246   case Extend:
247     OS << "Extend";
248     break;
249   case Ignore:
250     OS << "Ignore";
251     break;
252   case InAlloca:
253     OS << "InAlloca Offset=" << getInAllocaFieldIndex();
254     break;
255   case Indirect:
256     OS << "Indirect Align=" << getIndirectAlign().getQuantity()
257        << " ByVal=" << getIndirectByVal()
258        << " Realign=" << getIndirectRealign();
259     break;
260   case Expand:
261     OS << "Expand";
262     break;
263   case CoerceAndExpand:
264     OS << "CoerceAndExpand Type=";
265     getCoerceAndExpandType()->print(OS);
266     break;
267   }
268   OS << ")\n";
269 }
270 
271 // Dynamically round a pointer up to a multiple of the given alignment.
272 static llvm::Value *emitRoundPointerUpToAlignment(CodeGenFunction &CGF,
273                                                   llvm::Value *Ptr,
274                                                   CharUnits Align) {
275   llvm::Value *PtrAsInt = Ptr;
276   // OverflowArgArea = (OverflowArgArea + Align - 1) & -Align;
277   PtrAsInt = CGF.Builder.CreatePtrToInt(PtrAsInt, CGF.IntPtrTy);
278   PtrAsInt = CGF.Builder.CreateAdd(PtrAsInt,
279         llvm::ConstantInt::get(CGF.IntPtrTy, Align.getQuantity() - 1));
280   PtrAsInt = CGF.Builder.CreateAnd(PtrAsInt,
281            llvm::ConstantInt::get(CGF.IntPtrTy, -Align.getQuantity()));
282   PtrAsInt = CGF.Builder.CreateIntToPtr(PtrAsInt,
283                                         Ptr->getType(),
284                                         Ptr->getName() + ".aligned");
285   return PtrAsInt;
286 }
287 
288 /// Emit va_arg for a platform using the common void* representation,
289 /// where arguments are simply emitted in an array of slots on the stack.
290 ///
291 /// This version implements the core direct-value passing rules.
292 ///
293 /// \param SlotSize - The size and alignment of a stack slot.
294 ///   Each argument will be allocated to a multiple of this number of
295 ///   slots, and all the slots will be aligned to this value.
296 /// \param AllowHigherAlign - The slot alignment is not a cap;
297 ///   an argument type with an alignment greater than the slot size
298 ///   will be emitted on a higher-alignment address, potentially
299 ///   leaving one or more empty slots behind as padding.  If this
300 ///   is false, the returned address might be less-aligned than
301 ///   DirectAlign.
302 static Address emitVoidPtrDirectVAArg(CodeGenFunction &CGF,
303                                       Address VAListAddr,
304                                       llvm::Type *DirectTy,
305                                       CharUnits DirectSize,
306                                       CharUnits DirectAlign,
307                                       CharUnits SlotSize,
308                                       bool AllowHigherAlign) {
309   // Cast the element type to i8* if necessary.  Some platforms define
310   // va_list as a struct containing an i8* instead of just an i8*.
311   if (VAListAddr.getElementType() != CGF.Int8PtrTy)
312     VAListAddr = CGF.Builder.CreateElementBitCast(VAListAddr, CGF.Int8PtrTy);
313 
314   llvm::Value *Ptr = CGF.Builder.CreateLoad(VAListAddr, "argp.cur");
315 
316   // If the CC aligns values higher than the slot size, do so if needed.
317   Address Addr = Address::invalid();
318   if (AllowHigherAlign && DirectAlign > SlotSize) {
319     Addr = Address(emitRoundPointerUpToAlignment(CGF, Ptr, DirectAlign),
320                                                  DirectAlign);
321   } else {
322     Addr = Address(Ptr, SlotSize);
323   }
324 
325   // Advance the pointer past the argument, then store that back.
326   CharUnits FullDirectSize = DirectSize.alignTo(SlotSize);
327   Address NextPtr =
328       CGF.Builder.CreateConstInBoundsByteGEP(Addr, FullDirectSize, "argp.next");
329   CGF.Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
330 
331   // If the argument is smaller than a slot, and this is a big-endian
332   // target, the argument will be right-adjusted in its slot.
333   if (DirectSize < SlotSize && CGF.CGM.getDataLayout().isBigEndian() &&
334       !DirectTy->isStructTy()) {
335     Addr = CGF.Builder.CreateConstInBoundsByteGEP(Addr, SlotSize - DirectSize);
336   }
337 
338   Addr = CGF.Builder.CreateElementBitCast(Addr, DirectTy);
339   return Addr;
340 }
341 
342 /// Emit va_arg for a platform using the common void* representation,
343 /// where arguments are simply emitted in an array of slots on the stack.
344 ///
345 /// \param IsIndirect - Values of this type are passed indirectly.
346 /// \param ValueInfo - The size and alignment of this type, generally
347 ///   computed with getContext().getTypeInfoInChars(ValueTy).
348 /// \param SlotSizeAndAlign - The size and alignment of a stack slot.
349 ///   Each argument will be allocated to a multiple of this number of
350 ///   slots, and all the slots will be aligned to this value.
351 /// \param AllowHigherAlign - The slot alignment is not a cap;
352 ///   an argument type with an alignment greater than the slot size
353 ///   will be emitted on a higher-alignment address, potentially
354 ///   leaving one or more empty slots behind as padding.
355 static Address emitVoidPtrVAArg(CodeGenFunction &CGF, Address VAListAddr,
356                                 QualType ValueTy, bool IsIndirect,
357                                 std::pair<CharUnits, CharUnits> ValueInfo,
358                                 CharUnits SlotSizeAndAlign,
359                                 bool AllowHigherAlign) {
360   // The size and alignment of the value that was passed directly.
361   CharUnits DirectSize, DirectAlign;
362   if (IsIndirect) {
363     DirectSize = CGF.getPointerSize();
364     DirectAlign = CGF.getPointerAlign();
365   } else {
366     DirectSize = ValueInfo.first;
367     DirectAlign = ValueInfo.second;
368   }
369 
370   // Cast the address we've calculated to the right type.
371   llvm::Type *DirectTy = CGF.ConvertTypeForMem(ValueTy);
372   if (IsIndirect)
373     DirectTy = DirectTy->getPointerTo(0);
374 
375   Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, DirectTy,
376                                         DirectSize, DirectAlign,
377                                         SlotSizeAndAlign,
378                                         AllowHigherAlign);
379 
380   if (IsIndirect) {
381     Addr = Address(CGF.Builder.CreateLoad(Addr), ValueInfo.second);
382   }
383 
384   return Addr;
385 
386 }
387 
388 static Address emitMergePHI(CodeGenFunction &CGF,
389                             Address Addr1, llvm::BasicBlock *Block1,
390                             Address Addr2, llvm::BasicBlock *Block2,
391                             const llvm::Twine &Name = "") {
392   assert(Addr1.getType() == Addr2.getType());
393   llvm::PHINode *PHI = CGF.Builder.CreatePHI(Addr1.getType(), 2, Name);
394   PHI->addIncoming(Addr1.getPointer(), Block1);
395   PHI->addIncoming(Addr2.getPointer(), Block2);
396   CharUnits Align = std::min(Addr1.getAlignment(), Addr2.getAlignment());
397   return Address(PHI, Align);
398 }
399 
400 TargetCodeGenInfo::~TargetCodeGenInfo() = default;
401 
402 // If someone can figure out a general rule for this, that would be great.
403 // It's probably just doomed to be platform-dependent, though.
404 unsigned TargetCodeGenInfo::getSizeOfUnwindException() const {
405   // Verified for:
406   //   x86-64     FreeBSD, Linux, Darwin
407   //   x86-32     FreeBSD, Linux, Darwin
408   //   PowerPC    Linux, Darwin
409   //   ARM        Darwin (*not* EABI)
410   //   AArch64    Linux
411   return 32;
412 }
413 
414 bool TargetCodeGenInfo::isNoProtoCallVariadic(const CallArgList &args,
415                                      const FunctionNoProtoType *fnType) const {
416   // The following conventions are known to require this to be false:
417   //   x86_stdcall
418   //   MIPS
419   // For everything else, we just prefer false unless we opt out.
420   return false;
421 }
422 
423 void
424 TargetCodeGenInfo::getDependentLibraryOption(llvm::StringRef Lib,
425                                              llvm::SmallString<24> &Opt) const {
426   // This assumes the user is passing a library name like "rt" instead of a
427   // filename like "librt.a/so", and that they don't care whether it's static or
428   // dynamic.
429   Opt = "-l";
430   Opt += Lib;
431 }
432 
433 unsigned TargetCodeGenInfo::getOpenCLKernelCallingConv() const {
434   // OpenCL kernels are called via an explicit runtime API with arguments
435   // set with clSetKernelArg(), not as normal sub-functions.
436   // Return SPIR_KERNEL by default as the kernel calling convention to
437   // ensure the fingerprint is fixed such way that each OpenCL argument
438   // gets one matching argument in the produced kernel function argument
439   // list to enable feasible implementation of clSetKernelArg() with
440   // aggregates etc. In case we would use the default C calling conv here,
441   // clSetKernelArg() might break depending on the target-specific
442   // conventions; different targets might split structs passed as values
443   // to multiple function arguments etc.
444   return llvm::CallingConv::SPIR_KERNEL;
445 }
446 
447 llvm::Constant *TargetCodeGenInfo::getNullPointer(const CodeGen::CodeGenModule &CGM,
448     llvm::PointerType *T, QualType QT) const {
449   return llvm::ConstantPointerNull::get(T);
450 }
451 
452 LangAS TargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
453                                                    const VarDecl *D) const {
454   assert(!CGM.getLangOpts().OpenCL &&
455          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
456          "Address space agnostic languages only");
457   return D ? D->getType().getAddressSpace() : LangAS::Default;
458 }
459 
460 llvm::Value *TargetCodeGenInfo::performAddrSpaceCast(
461     CodeGen::CodeGenFunction &CGF, llvm::Value *Src, LangAS SrcAddr,
462     LangAS DestAddr, llvm::Type *DestTy, bool isNonNull) const {
463   // Since target may map different address spaces in AST to the same address
464   // space, an address space conversion may end up as a bitcast.
465   if (auto *C = dyn_cast<llvm::Constant>(Src))
466     return performAddrSpaceCast(CGF.CGM, C, SrcAddr, DestAddr, DestTy);
467   // Try to preserve the source's name to make IR more readable.
468   return CGF.Builder.CreatePointerBitCastOrAddrSpaceCast(
469       Src, DestTy, Src->hasName() ? Src->getName() + ".ascast" : "");
470 }
471 
472 llvm::Constant *
473 TargetCodeGenInfo::performAddrSpaceCast(CodeGenModule &CGM, llvm::Constant *Src,
474                                         LangAS SrcAddr, LangAS DestAddr,
475                                         llvm::Type *DestTy) const {
476   // Since target may map different address spaces in AST to the same address
477   // space, an address space conversion may end up as a bitcast.
478   return llvm::ConstantExpr::getPointerCast(Src, DestTy);
479 }
480 
481 llvm::SyncScope::ID
482 TargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
483                                       SyncScope Scope,
484                                       llvm::AtomicOrdering Ordering,
485                                       llvm::LLVMContext &Ctx) const {
486   return Ctx.getOrInsertSyncScopeID(""); /* default sync scope */
487 }
488 
489 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays);
490 
491 /// isEmptyField - Return true iff a the field is "empty", that is it
492 /// is an unnamed bit-field or an (array of) empty record(s).
493 static bool isEmptyField(ASTContext &Context, const FieldDecl *FD,
494                          bool AllowArrays) {
495   if (FD->isUnnamedBitfield())
496     return true;
497 
498   QualType FT = FD->getType();
499 
500   // Constant arrays of empty records count as empty, strip them off.
501   // Constant arrays of zero length always count as empty.
502   bool WasArray = false;
503   if (AllowArrays)
504     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
505       if (AT->getSize() == 0)
506         return true;
507       FT = AT->getElementType();
508       // The [[no_unique_address]] special case below does not apply to
509       // arrays of C++ empty records, so we need to remember this fact.
510       WasArray = true;
511     }
512 
513   const RecordType *RT = FT->getAs<RecordType>();
514   if (!RT)
515     return false;
516 
517   // C++ record fields are never empty, at least in the Itanium ABI.
518   //
519   // FIXME: We should use a predicate for whether this behavior is true in the
520   // current ABI.
521   //
522   // The exception to the above rule are fields marked with the
523   // [[no_unique_address]] attribute (since C++20).  Those do count as empty
524   // according to the Itanium ABI.  The exception applies only to records,
525   // not arrays of records, so we must also check whether we stripped off an
526   // array type above.
527   if (isa<CXXRecordDecl>(RT->getDecl()) &&
528       (WasArray || !FD->hasAttr<NoUniqueAddressAttr>()))
529     return false;
530 
531   return isEmptyRecord(Context, FT, AllowArrays);
532 }
533 
534 /// isEmptyRecord - Return true iff a structure contains only empty
535 /// fields. Note that a structure with a flexible array member is not
536 /// considered empty.
537 static bool isEmptyRecord(ASTContext &Context, QualType T, bool AllowArrays) {
538   const RecordType *RT = T->getAs<RecordType>();
539   if (!RT)
540     return false;
541   const RecordDecl *RD = RT->getDecl();
542   if (RD->hasFlexibleArrayMember())
543     return false;
544 
545   // If this is a C++ record, check the bases first.
546   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
547     for (const auto &I : CXXRD->bases())
548       if (!isEmptyRecord(Context, I.getType(), true))
549         return false;
550 
551   for (const auto *I : RD->fields())
552     if (!isEmptyField(Context, I, AllowArrays))
553       return false;
554   return true;
555 }
556 
557 /// isSingleElementStruct - Determine if a structure is a "single
558 /// element struct", i.e. it has exactly one non-empty field or
559 /// exactly one field which is itself a single element
560 /// struct. Structures with flexible array members are never
561 /// considered single element structs.
562 ///
563 /// \return The field declaration for the single non-empty field, if
564 /// it exists.
565 static const Type *isSingleElementStruct(QualType T, ASTContext &Context) {
566   const RecordType *RT = T->getAs<RecordType>();
567   if (!RT)
568     return nullptr;
569 
570   const RecordDecl *RD = RT->getDecl();
571   if (RD->hasFlexibleArrayMember())
572     return nullptr;
573 
574   const Type *Found = nullptr;
575 
576   // If this is a C++ record, check the bases first.
577   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
578     for (const auto &I : CXXRD->bases()) {
579       // Ignore empty records.
580       if (isEmptyRecord(Context, I.getType(), true))
581         continue;
582 
583       // If we already found an element then this isn't a single-element struct.
584       if (Found)
585         return nullptr;
586 
587       // If this is non-empty and not a single element struct, the composite
588       // cannot be a single element struct.
589       Found = isSingleElementStruct(I.getType(), Context);
590       if (!Found)
591         return nullptr;
592     }
593   }
594 
595   // Check for single element.
596   for (const auto *FD : RD->fields()) {
597     QualType FT = FD->getType();
598 
599     // Ignore empty fields.
600     if (isEmptyField(Context, FD, true))
601       continue;
602 
603     // If we already found an element then this isn't a single-element
604     // struct.
605     if (Found)
606       return nullptr;
607 
608     // Treat single element arrays as the element.
609     while (const ConstantArrayType *AT = Context.getAsConstantArrayType(FT)) {
610       if (AT->getSize().getZExtValue() != 1)
611         break;
612       FT = AT->getElementType();
613     }
614 
615     if (!isAggregateTypeForABI(FT)) {
616       Found = FT.getTypePtr();
617     } else {
618       Found = isSingleElementStruct(FT, Context);
619       if (!Found)
620         return nullptr;
621     }
622   }
623 
624   // We don't consider a struct a single-element struct if it has
625   // padding beyond the element type.
626   if (Found && Context.getTypeSize(Found) != Context.getTypeSize(T))
627     return nullptr;
628 
629   return Found;
630 }
631 
632 namespace {
633 Address EmitVAArgInstr(CodeGenFunction &CGF, Address VAListAddr, QualType Ty,
634                        const ABIArgInfo &AI) {
635   // This default implementation defers to the llvm backend's va_arg
636   // instruction. It can handle only passing arguments directly
637   // (typically only handled in the backend for primitive types), or
638   // aggregates passed indirectly by pointer (NOTE: if the "byval"
639   // flag has ABI impact in the callee, this implementation cannot
640   // work.)
641 
642   // Only a few cases are covered here at the moment -- those needed
643   // by the default abi.
644   llvm::Value *Val;
645 
646   if (AI.isIndirect()) {
647     assert(!AI.getPaddingType() &&
648            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
649     assert(
650         !AI.getIndirectRealign() &&
651         "Unexpected IndirectRealign seen in arginfo in generic VAArg emitter!");
652 
653     auto TyInfo = CGF.getContext().getTypeInfoInChars(Ty);
654     CharUnits TyAlignForABI = TyInfo.second;
655 
656     llvm::Type *BaseTy =
657         llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
658     llvm::Value *Addr =
659         CGF.Builder.CreateVAArg(VAListAddr.getPointer(), BaseTy);
660     return Address(Addr, TyAlignForABI);
661   } else {
662     assert((AI.isDirect() || AI.isExtend()) &&
663            "Unexpected ArgInfo Kind in generic VAArg emitter!");
664 
665     assert(!AI.getInReg() &&
666            "Unexpected InReg seen in arginfo in generic VAArg emitter!");
667     assert(!AI.getPaddingType() &&
668            "Unexpected PaddingType seen in arginfo in generic VAArg emitter!");
669     assert(!AI.getDirectOffset() &&
670            "Unexpected DirectOffset seen in arginfo in generic VAArg emitter!");
671     assert(!AI.getCoerceToType() &&
672            "Unexpected CoerceToType seen in arginfo in generic VAArg emitter!");
673 
674     Address Temp = CGF.CreateMemTemp(Ty, "varet");
675     Val = CGF.Builder.CreateVAArg(VAListAddr.getPointer(), CGF.ConvertType(Ty));
676     CGF.Builder.CreateStore(Val, Temp);
677     return Temp;
678   }
679 }
680 
681 /// DefaultABIInfo - The default implementation for ABI specific
682 /// details. This implementation provides information which results in
683 /// self-consistent and sensible LLVM IR generation, but does not
684 /// conform to any particular ABI.
685 class DefaultABIInfo : public ABIInfo {
686 public:
687   DefaultABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
688 
689   ABIArgInfo classifyReturnType(QualType RetTy) const;
690   ABIArgInfo classifyArgumentType(QualType RetTy) const;
691 
692   void computeInfo(CGFunctionInfo &FI) const override {
693     if (!getCXXABI().classifyReturnType(FI))
694       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
695     for (auto &I : FI.arguments())
696       I.info = classifyArgumentType(I.type);
697   }
698 
699   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
700                     QualType Ty) const override {
701     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
702   }
703 };
704 
705 class DefaultTargetCodeGenInfo : public TargetCodeGenInfo {
706 public:
707   DefaultTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
708       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
709 };
710 
711 ABIArgInfo DefaultABIInfo::classifyArgumentType(QualType Ty) const {
712   Ty = useFirstFieldIfTransparentUnion(Ty);
713 
714   if (isAggregateTypeForABI(Ty)) {
715     // Records with non-trivial destructors/copy-constructors should not be
716     // passed by value.
717     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
718       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
719 
720     return getNaturalAlignIndirect(Ty);
721   }
722 
723   // Treat an enum type as its underlying type.
724   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
725     Ty = EnumTy->getDecl()->getIntegerType();
726 
727   ASTContext &Context = getContext();
728   if (const auto *EIT = Ty->getAs<ExtIntType>())
729     if (EIT->getNumBits() >
730         Context.getTypeSize(Context.getTargetInfo().hasInt128Type()
731                                 ? Context.Int128Ty
732                                 : Context.LongLongTy))
733       return getNaturalAlignIndirect(Ty);
734 
735   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
736                                             : ABIArgInfo::getDirect());
737 }
738 
739 ABIArgInfo DefaultABIInfo::classifyReturnType(QualType RetTy) const {
740   if (RetTy->isVoidType())
741     return ABIArgInfo::getIgnore();
742 
743   if (isAggregateTypeForABI(RetTy))
744     return getNaturalAlignIndirect(RetTy);
745 
746   // Treat an enum type as its underlying type.
747   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
748     RetTy = EnumTy->getDecl()->getIntegerType();
749 
750   if (const auto *EIT = RetTy->getAs<ExtIntType>())
751     if (EIT->getNumBits() >
752         getContext().getTypeSize(getContext().getTargetInfo().hasInt128Type()
753                                      ? getContext().Int128Ty
754                                      : getContext().LongLongTy))
755       return getNaturalAlignIndirect(RetTy);
756 
757   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
758                                                : ABIArgInfo::getDirect());
759 }
760 
761 //===----------------------------------------------------------------------===//
762 // WebAssembly ABI Implementation
763 //
764 // This is a very simple ABI that relies a lot on DefaultABIInfo.
765 //===----------------------------------------------------------------------===//
766 
767 class WebAssemblyABIInfo final : public SwiftABIInfo {
768 public:
769   enum ABIKind {
770     MVP = 0,
771     ExperimentalMV = 1,
772   };
773 
774 private:
775   DefaultABIInfo defaultInfo;
776   ABIKind Kind;
777 
778 public:
779   explicit WebAssemblyABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind)
780       : SwiftABIInfo(CGT), defaultInfo(CGT), Kind(Kind) {}
781 
782 private:
783   ABIArgInfo classifyReturnType(QualType RetTy) const;
784   ABIArgInfo classifyArgumentType(QualType Ty) const;
785 
786   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
787   // non-virtual, but computeInfo and EmitVAArg are virtual, so we
788   // overload them.
789   void computeInfo(CGFunctionInfo &FI) const override {
790     if (!getCXXABI().classifyReturnType(FI))
791       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
792     for (auto &Arg : FI.arguments())
793       Arg.info = classifyArgumentType(Arg.type);
794   }
795 
796   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
797                     QualType Ty) const override;
798 
799   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
800                                     bool asReturnValue) const override {
801     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
802   }
803 
804   bool isSwiftErrorInRegister() const override {
805     return false;
806   }
807 };
808 
809 class WebAssemblyTargetCodeGenInfo final : public TargetCodeGenInfo {
810 public:
811   explicit WebAssemblyTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
812                                         WebAssemblyABIInfo::ABIKind K)
813       : TargetCodeGenInfo(std::make_unique<WebAssemblyABIInfo>(CGT, K)) {}
814 
815   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
816                            CodeGen::CodeGenModule &CGM) const override {
817     TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
818     if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
819       if (const auto *Attr = FD->getAttr<WebAssemblyImportModuleAttr>()) {
820         llvm::Function *Fn = cast<llvm::Function>(GV);
821         llvm::AttrBuilder B;
822         B.addAttribute("wasm-import-module", Attr->getImportModule());
823         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
824       }
825       if (const auto *Attr = FD->getAttr<WebAssemblyImportNameAttr>()) {
826         llvm::Function *Fn = cast<llvm::Function>(GV);
827         llvm::AttrBuilder B;
828         B.addAttribute("wasm-import-name", Attr->getImportName());
829         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
830       }
831       if (const auto *Attr = FD->getAttr<WebAssemblyExportNameAttr>()) {
832         llvm::Function *Fn = cast<llvm::Function>(GV);
833         llvm::AttrBuilder B;
834         B.addAttribute("wasm-export-name", Attr->getExportName());
835         Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
836       }
837     }
838 
839     if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) {
840       llvm::Function *Fn = cast<llvm::Function>(GV);
841       if (!FD->doesThisDeclarationHaveABody() && !FD->hasPrototype())
842         Fn->addFnAttr("no-prototype");
843     }
844   }
845 };
846 
847 /// Classify argument of given type \p Ty.
848 ABIArgInfo WebAssemblyABIInfo::classifyArgumentType(QualType Ty) const {
849   Ty = useFirstFieldIfTransparentUnion(Ty);
850 
851   if (isAggregateTypeForABI(Ty)) {
852     // Records with non-trivial destructors/copy-constructors should not be
853     // passed by value.
854     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
855       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
856     // Ignore empty structs/unions.
857     if (isEmptyRecord(getContext(), Ty, true))
858       return ABIArgInfo::getIgnore();
859     // Lower single-element structs to just pass a regular value. TODO: We
860     // could do reasonable-size multiple-element structs too, using getExpand(),
861     // though watch out for things like bitfields.
862     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
863       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
864     // For the experimental multivalue ABI, fully expand all other aggregates
865     if (Kind == ABIKind::ExperimentalMV) {
866       const RecordType *RT = Ty->getAs<RecordType>();
867       assert(RT);
868       bool HasBitField = false;
869       for (auto *Field : RT->getDecl()->fields()) {
870         if (Field->isBitField()) {
871           HasBitField = true;
872           break;
873         }
874       }
875       if (!HasBitField)
876         return ABIArgInfo::getExpand();
877     }
878   }
879 
880   // Otherwise just do the default thing.
881   return defaultInfo.classifyArgumentType(Ty);
882 }
883 
884 ABIArgInfo WebAssemblyABIInfo::classifyReturnType(QualType RetTy) const {
885   if (isAggregateTypeForABI(RetTy)) {
886     // Records with non-trivial destructors/copy-constructors should not be
887     // returned by value.
888     if (!getRecordArgABI(RetTy, getCXXABI())) {
889       // Ignore empty structs/unions.
890       if (isEmptyRecord(getContext(), RetTy, true))
891         return ABIArgInfo::getIgnore();
892       // Lower single-element structs to just return a regular value. TODO: We
893       // could do reasonable-size multiple-element structs too, using
894       // ABIArgInfo::getDirect().
895       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
896         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
897       // For the experimental multivalue ABI, return all other aggregates
898       if (Kind == ABIKind::ExperimentalMV)
899         return ABIArgInfo::getDirect();
900     }
901   }
902 
903   // Otherwise just do the default thing.
904   return defaultInfo.classifyReturnType(RetTy);
905 }
906 
907 Address WebAssemblyABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
908                                       QualType Ty) const {
909   bool IsIndirect = isAggregateTypeForABI(Ty) &&
910                     !isEmptyRecord(getContext(), Ty, true) &&
911                     !isSingleElementStruct(Ty, getContext());
912   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
913                           getContext().getTypeInfoInChars(Ty),
914                           CharUnits::fromQuantity(4),
915                           /*AllowHigherAlign=*/true);
916 }
917 
918 //===----------------------------------------------------------------------===//
919 // le32/PNaCl bitcode ABI Implementation
920 //
921 // This is a simplified version of the x86_32 ABI.  Arguments and return values
922 // are always passed on the stack.
923 //===----------------------------------------------------------------------===//
924 
925 class PNaClABIInfo : public ABIInfo {
926  public:
927   PNaClABIInfo(CodeGen::CodeGenTypes &CGT) : ABIInfo(CGT) {}
928 
929   ABIArgInfo classifyReturnType(QualType RetTy) const;
930   ABIArgInfo classifyArgumentType(QualType RetTy) const;
931 
932   void computeInfo(CGFunctionInfo &FI) const override;
933   Address EmitVAArg(CodeGenFunction &CGF,
934                     Address VAListAddr, QualType Ty) const override;
935 };
936 
937 class PNaClTargetCodeGenInfo : public TargetCodeGenInfo {
938  public:
939    PNaClTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
940        : TargetCodeGenInfo(std::make_unique<PNaClABIInfo>(CGT)) {}
941 };
942 
943 void PNaClABIInfo::computeInfo(CGFunctionInfo &FI) const {
944   if (!getCXXABI().classifyReturnType(FI))
945     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
946 
947   for (auto &I : FI.arguments())
948     I.info = classifyArgumentType(I.type);
949 }
950 
951 Address PNaClABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
952                                 QualType Ty) const {
953   // The PNaCL ABI is a bit odd, in that varargs don't use normal
954   // function classification. Structs get passed directly for varargs
955   // functions, through a rewriting transform in
956   // pnacl-llvm/lib/Transforms/NaCl/ExpandVarArgs.cpp, which allows
957   // this target to actually support a va_arg instructions with an
958   // aggregate type, unlike other targets.
959   return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
960 }
961 
962 /// Classify argument of given type \p Ty.
963 ABIArgInfo PNaClABIInfo::classifyArgumentType(QualType Ty) const {
964   if (isAggregateTypeForABI(Ty)) {
965     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
966       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
967     return getNaturalAlignIndirect(Ty);
968   } else if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
969     // Treat an enum type as its underlying type.
970     Ty = EnumTy->getDecl()->getIntegerType();
971   } else if (Ty->isFloatingType()) {
972     // Floating-point types don't go inreg.
973     return ABIArgInfo::getDirect();
974   } else if (const auto *EIT = Ty->getAs<ExtIntType>()) {
975     // Treat extended integers as integers if <=64, otherwise pass indirectly.
976     if (EIT->getNumBits() > 64)
977       return getNaturalAlignIndirect(Ty);
978     return ABIArgInfo::getDirect();
979   }
980 
981   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
982                                             : ABIArgInfo::getDirect());
983 }
984 
985 ABIArgInfo PNaClABIInfo::classifyReturnType(QualType RetTy) const {
986   if (RetTy->isVoidType())
987     return ABIArgInfo::getIgnore();
988 
989   // In the PNaCl ABI we always return records/structures on the stack.
990   if (isAggregateTypeForABI(RetTy))
991     return getNaturalAlignIndirect(RetTy);
992 
993   // Treat extended integers as integers if <=64, otherwise pass indirectly.
994   if (const auto *EIT = RetTy->getAs<ExtIntType>()) {
995     if (EIT->getNumBits() > 64)
996       return getNaturalAlignIndirect(RetTy);
997     return ABIArgInfo::getDirect();
998   }
999 
1000   // Treat an enum type as its underlying type.
1001   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1002     RetTy = EnumTy->getDecl()->getIntegerType();
1003 
1004   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1005                                                : ABIArgInfo::getDirect());
1006 }
1007 
1008 /// IsX86_MMXType - Return true if this is an MMX type.
1009 bool IsX86_MMXType(llvm::Type *IRType) {
1010   // Return true if the type is an MMX type <2 x i32>, <4 x i16>, or <8 x i8>.
1011   return IRType->isVectorTy() && IRType->getPrimitiveSizeInBits() == 64 &&
1012     cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy() &&
1013     IRType->getScalarSizeInBits() != 64;
1014 }
1015 
1016 static llvm::Type* X86AdjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1017                                           StringRef Constraint,
1018                                           llvm::Type* Ty) {
1019   bool IsMMXCons = llvm::StringSwitch<bool>(Constraint)
1020                      .Cases("y", "&y", "^Ym", true)
1021                      .Default(false);
1022   if (IsMMXCons && Ty->isVectorTy()) {
1023     if (cast<llvm::VectorType>(Ty)->getPrimitiveSizeInBits().getFixedSize() !=
1024         64) {
1025       // Invalid MMX constraint
1026       return nullptr;
1027     }
1028 
1029     return llvm::Type::getX86_MMXTy(CGF.getLLVMContext());
1030   }
1031 
1032   // No operation needed
1033   return Ty;
1034 }
1035 
1036 /// Returns true if this type can be passed in SSE registers with the
1037 /// X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1038 static bool isX86VectorTypeForVectorCall(ASTContext &Context, QualType Ty) {
1039   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
1040     if (BT->isFloatingPoint() && BT->getKind() != BuiltinType::Half) {
1041       if (BT->getKind() == BuiltinType::LongDouble) {
1042         if (&Context.getTargetInfo().getLongDoubleFormat() ==
1043             &llvm::APFloat::x87DoubleExtended())
1044           return false;
1045       }
1046       return true;
1047     }
1048   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
1049     // vectorcall can pass XMM, YMM, and ZMM vectors. We don't pass SSE1 MMX
1050     // registers specially.
1051     unsigned VecSize = Context.getTypeSize(VT);
1052     if (VecSize == 128 || VecSize == 256 || VecSize == 512)
1053       return true;
1054   }
1055   return false;
1056 }
1057 
1058 /// Returns true if this aggregate is small enough to be passed in SSE registers
1059 /// in the X86_VectorCall calling convention. Shared between x86_32 and x86_64.
1060 static bool isX86VectorCallAggregateSmallEnough(uint64_t NumMembers) {
1061   return NumMembers <= 4;
1062 }
1063 
1064 /// Returns a Homogeneous Vector Aggregate ABIArgInfo, used in X86.
1065 static ABIArgInfo getDirectX86Hva(llvm::Type* T = nullptr) {
1066   auto AI = ABIArgInfo::getDirect(T);
1067   AI.setInReg(true);
1068   AI.setCanBeFlattened(false);
1069   return AI;
1070 }
1071 
1072 //===----------------------------------------------------------------------===//
1073 // X86-32 ABI Implementation
1074 //===----------------------------------------------------------------------===//
1075 
1076 /// Similar to llvm::CCState, but for Clang.
1077 struct CCState {
1078   CCState(CGFunctionInfo &FI)
1079       : IsPreassigned(FI.arg_size()), CC(FI.getCallingConvention()) {}
1080 
1081   llvm::SmallBitVector IsPreassigned;
1082   unsigned CC = CallingConv::CC_C;
1083   unsigned FreeRegs = 0;
1084   unsigned FreeSSERegs = 0;
1085 };
1086 
1087 enum {
1088   // Vectorcall only allows the first 6 parameters to be passed in registers.
1089   VectorcallMaxParamNumAsReg = 6
1090 };
1091 
1092 /// X86_32ABIInfo - The X86-32 ABI information.
1093 class X86_32ABIInfo : public SwiftABIInfo {
1094   enum Class {
1095     Integer,
1096     Float
1097   };
1098 
1099   static const unsigned MinABIStackAlignInBytes = 4;
1100 
1101   bool IsDarwinVectorABI;
1102   bool IsRetSmallStructInRegABI;
1103   bool IsWin32StructABI;
1104   bool IsSoftFloatABI;
1105   bool IsMCUABI;
1106   unsigned DefaultNumRegisterParameters;
1107 
1108   static bool isRegisterSize(unsigned Size) {
1109     return (Size == 8 || Size == 16 || Size == 32 || Size == 64);
1110   }
1111 
1112   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
1113     // FIXME: Assumes vectorcall is in use.
1114     return isX86VectorTypeForVectorCall(getContext(), Ty);
1115   }
1116 
1117   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
1118                                          uint64_t NumMembers) const override {
1119     // FIXME: Assumes vectorcall is in use.
1120     return isX86VectorCallAggregateSmallEnough(NumMembers);
1121   }
1122 
1123   bool shouldReturnTypeInRegister(QualType Ty, ASTContext &Context) const;
1124 
1125   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
1126   /// such that the argument will be passed in memory.
1127   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
1128 
1129   ABIArgInfo getIndirectReturnResult(QualType Ty, CCState &State) const;
1130 
1131   /// Return the alignment to use for the given type on the stack.
1132   unsigned getTypeStackAlignInBytes(QualType Ty, unsigned Align) const;
1133 
1134   Class classify(QualType Ty) const;
1135   ABIArgInfo classifyReturnType(QualType RetTy, CCState &State) const;
1136   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
1137 
1138   /// Updates the number of available free registers, returns
1139   /// true if any registers were allocated.
1140   bool updateFreeRegs(QualType Ty, CCState &State) const;
1141 
1142   bool shouldAggregateUseDirect(QualType Ty, CCState &State, bool &InReg,
1143                                 bool &NeedsPadding) const;
1144   bool shouldPrimitiveUseInReg(QualType Ty, CCState &State) const;
1145 
1146   bool canExpandIndirectArgument(QualType Ty) const;
1147 
1148   /// Rewrite the function info so that all memory arguments use
1149   /// inalloca.
1150   void rewriteWithInAlloca(CGFunctionInfo &FI) const;
1151 
1152   void addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1153                            CharUnits &StackOffset, ABIArgInfo &Info,
1154                            QualType Type) const;
1155   void runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const;
1156 
1157 public:
1158 
1159   void computeInfo(CGFunctionInfo &FI) const override;
1160   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
1161                     QualType Ty) const override;
1162 
1163   X86_32ABIInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1164                 bool RetSmallStructInRegABI, bool Win32StructABI,
1165                 unsigned NumRegisterParameters, bool SoftFloatABI)
1166     : SwiftABIInfo(CGT), IsDarwinVectorABI(DarwinVectorABI),
1167       IsRetSmallStructInRegABI(RetSmallStructInRegABI),
1168       IsWin32StructABI(Win32StructABI),
1169       IsSoftFloatABI(SoftFloatABI),
1170       IsMCUABI(CGT.getTarget().getTriple().isOSIAMCU()),
1171       DefaultNumRegisterParameters(NumRegisterParameters) {}
1172 
1173   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
1174                                     bool asReturnValue) const override {
1175     // LLVM's x86-32 lowering currently only assigns up to three
1176     // integer registers and three fp registers.  Oddly, it'll use up to
1177     // four vector registers for vectors, but those can overlap with the
1178     // scalar registers.
1179     return occupiesMoreThan(CGT, scalars, /*total*/ 3);
1180   }
1181 
1182   bool isSwiftErrorInRegister() const override {
1183     // x86-32 lowering does not support passing swifterror in a register.
1184     return false;
1185   }
1186 };
1187 
1188 class X86_32TargetCodeGenInfo : public TargetCodeGenInfo {
1189 public:
1190   X86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool DarwinVectorABI,
1191                           bool RetSmallStructInRegABI, bool Win32StructABI,
1192                           unsigned NumRegisterParameters, bool SoftFloatABI)
1193       : TargetCodeGenInfo(std::make_unique<X86_32ABIInfo>(
1194             CGT, DarwinVectorABI, RetSmallStructInRegABI, Win32StructABI,
1195             NumRegisterParameters, SoftFloatABI)) {}
1196 
1197   static bool isStructReturnInRegABI(
1198       const llvm::Triple &Triple, const CodeGenOptions &Opts);
1199 
1200   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
1201                            CodeGen::CodeGenModule &CGM) const override;
1202 
1203   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
1204     // Darwin uses different dwarf register numbers for EH.
1205     if (CGM.getTarget().getTriple().isOSDarwin()) return 5;
1206     return 4;
1207   }
1208 
1209   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
1210                                llvm::Value *Address) const override;
1211 
1212   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
1213                                   StringRef Constraint,
1214                                   llvm::Type* Ty) const override {
1215     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
1216   }
1217 
1218   void addReturnRegisterOutputs(CodeGenFunction &CGF, LValue ReturnValue,
1219                                 std::string &Constraints,
1220                                 std::vector<llvm::Type *> &ResultRegTypes,
1221                                 std::vector<llvm::Type *> &ResultTruncRegTypes,
1222                                 std::vector<LValue> &ResultRegDests,
1223                                 std::string &AsmString,
1224                                 unsigned NumOutputs) const override;
1225 
1226   llvm::Constant *
1227   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
1228     unsigned Sig = (0xeb << 0) |  // jmp rel8
1229                    (0x06 << 8) |  //           .+0x08
1230                    ('v' << 16) |
1231                    ('2' << 24);
1232     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
1233   }
1234 
1235   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
1236     return "movl\t%ebp, %ebp"
1237            "\t\t// marker for objc_retainAutoreleaseReturnValue";
1238   }
1239 };
1240 
1241 }
1242 
1243 /// Rewrite input constraint references after adding some output constraints.
1244 /// In the case where there is one output and one input and we add one output,
1245 /// we need to replace all operand references greater than or equal to 1:
1246 ///     mov $0, $1
1247 ///     mov eax, $1
1248 /// The result will be:
1249 ///     mov $0, $2
1250 ///     mov eax, $2
1251 static void rewriteInputConstraintReferences(unsigned FirstIn,
1252                                              unsigned NumNewOuts,
1253                                              std::string &AsmString) {
1254   std::string Buf;
1255   llvm::raw_string_ostream OS(Buf);
1256   size_t Pos = 0;
1257   while (Pos < AsmString.size()) {
1258     size_t DollarStart = AsmString.find('$', Pos);
1259     if (DollarStart == std::string::npos)
1260       DollarStart = AsmString.size();
1261     size_t DollarEnd = AsmString.find_first_not_of('$', DollarStart);
1262     if (DollarEnd == std::string::npos)
1263       DollarEnd = AsmString.size();
1264     OS << StringRef(&AsmString[Pos], DollarEnd - Pos);
1265     Pos = DollarEnd;
1266     size_t NumDollars = DollarEnd - DollarStart;
1267     if (NumDollars % 2 != 0 && Pos < AsmString.size()) {
1268       // We have an operand reference.
1269       size_t DigitStart = Pos;
1270       if (AsmString[DigitStart] == '{') {
1271         OS << '{';
1272         ++DigitStart;
1273       }
1274       size_t DigitEnd = AsmString.find_first_not_of("0123456789", DigitStart);
1275       if (DigitEnd == std::string::npos)
1276         DigitEnd = AsmString.size();
1277       StringRef OperandStr(&AsmString[DigitStart], DigitEnd - DigitStart);
1278       unsigned OperandIndex;
1279       if (!OperandStr.getAsInteger(10, OperandIndex)) {
1280         if (OperandIndex >= FirstIn)
1281           OperandIndex += NumNewOuts;
1282         OS << OperandIndex;
1283       } else {
1284         OS << OperandStr;
1285       }
1286       Pos = DigitEnd;
1287     }
1288   }
1289   AsmString = std::move(OS.str());
1290 }
1291 
1292 /// Add output constraints for EAX:EDX because they are return registers.
1293 void X86_32TargetCodeGenInfo::addReturnRegisterOutputs(
1294     CodeGenFunction &CGF, LValue ReturnSlot, std::string &Constraints,
1295     std::vector<llvm::Type *> &ResultRegTypes,
1296     std::vector<llvm::Type *> &ResultTruncRegTypes,
1297     std::vector<LValue> &ResultRegDests, std::string &AsmString,
1298     unsigned NumOutputs) const {
1299   uint64_t RetWidth = CGF.getContext().getTypeSize(ReturnSlot.getType());
1300 
1301   // Use the EAX constraint if the width is 32 or smaller and EAX:EDX if it is
1302   // larger.
1303   if (!Constraints.empty())
1304     Constraints += ',';
1305   if (RetWidth <= 32) {
1306     Constraints += "={eax}";
1307     ResultRegTypes.push_back(CGF.Int32Ty);
1308   } else {
1309     // Use the 'A' constraint for EAX:EDX.
1310     Constraints += "=A";
1311     ResultRegTypes.push_back(CGF.Int64Ty);
1312   }
1313 
1314   // Truncate EAX or EAX:EDX to an integer of the appropriate size.
1315   llvm::Type *CoerceTy = llvm::IntegerType::get(CGF.getLLVMContext(), RetWidth);
1316   ResultTruncRegTypes.push_back(CoerceTy);
1317 
1318   // Coerce the integer by bitcasting the return slot pointer.
1319   ReturnSlot.setAddress(CGF.Builder.CreateBitCast(ReturnSlot.getAddress(CGF),
1320                                                   CoerceTy->getPointerTo()));
1321   ResultRegDests.push_back(ReturnSlot);
1322 
1323   rewriteInputConstraintReferences(NumOutputs, 1, AsmString);
1324 }
1325 
1326 /// shouldReturnTypeInRegister - Determine if the given type should be
1327 /// returned in a register (for the Darwin and MCU ABI).
1328 bool X86_32ABIInfo::shouldReturnTypeInRegister(QualType Ty,
1329                                                ASTContext &Context) const {
1330   uint64_t Size = Context.getTypeSize(Ty);
1331 
1332   // For i386, type must be register sized.
1333   // For the MCU ABI, it only needs to be <= 8-byte
1334   if ((IsMCUABI && Size > 64) || (!IsMCUABI && !isRegisterSize(Size)))
1335    return false;
1336 
1337   if (Ty->isVectorType()) {
1338     // 64- and 128- bit vectors inside structures are not returned in
1339     // registers.
1340     if (Size == 64 || Size == 128)
1341       return false;
1342 
1343     return true;
1344   }
1345 
1346   // If this is a builtin, pointer, enum, complex type, member pointer, or
1347   // member function pointer it is ok.
1348   if (Ty->getAs<BuiltinType>() || Ty->hasPointerRepresentation() ||
1349       Ty->isAnyComplexType() || Ty->isEnumeralType() ||
1350       Ty->isBlockPointerType() || Ty->isMemberPointerType())
1351     return true;
1352 
1353   // Arrays are treated like records.
1354   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty))
1355     return shouldReturnTypeInRegister(AT->getElementType(), Context);
1356 
1357   // Otherwise, it must be a record type.
1358   const RecordType *RT = Ty->getAs<RecordType>();
1359   if (!RT) return false;
1360 
1361   // FIXME: Traverse bases here too.
1362 
1363   // Structure types are passed in register if all fields would be
1364   // passed in a register.
1365   for (const auto *FD : RT->getDecl()->fields()) {
1366     // Empty fields are ignored.
1367     if (isEmptyField(Context, FD, true))
1368       continue;
1369 
1370     // Check fields recursively.
1371     if (!shouldReturnTypeInRegister(FD->getType(), Context))
1372       return false;
1373   }
1374   return true;
1375 }
1376 
1377 static bool is32Or64BitBasicType(QualType Ty, ASTContext &Context) {
1378   // Treat complex types as the element type.
1379   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
1380     Ty = CTy->getElementType();
1381 
1382   // Check for a type which we know has a simple scalar argument-passing
1383   // convention without any padding.  (We're specifically looking for 32
1384   // and 64-bit integer and integer-equivalents, float, and double.)
1385   if (!Ty->getAs<BuiltinType>() && !Ty->hasPointerRepresentation() &&
1386       !Ty->isEnumeralType() && !Ty->isBlockPointerType())
1387     return false;
1388 
1389   uint64_t Size = Context.getTypeSize(Ty);
1390   return Size == 32 || Size == 64;
1391 }
1392 
1393 static bool addFieldSizes(ASTContext &Context, const RecordDecl *RD,
1394                           uint64_t &Size) {
1395   for (const auto *FD : RD->fields()) {
1396     // Scalar arguments on the stack get 4 byte alignment on x86. If the
1397     // argument is smaller than 32-bits, expanding the struct will create
1398     // alignment padding.
1399     if (!is32Or64BitBasicType(FD->getType(), Context))
1400       return false;
1401 
1402     // FIXME: Reject bit-fields wholesale; there are two problems, we don't know
1403     // how to expand them yet, and the predicate for telling if a bitfield still
1404     // counts as "basic" is more complicated than what we were doing previously.
1405     if (FD->isBitField())
1406       return false;
1407 
1408     Size += Context.getTypeSize(FD->getType());
1409   }
1410   return true;
1411 }
1412 
1413 static bool addBaseAndFieldSizes(ASTContext &Context, const CXXRecordDecl *RD,
1414                                  uint64_t &Size) {
1415   // Don't do this if there are any non-empty bases.
1416   for (const CXXBaseSpecifier &Base : RD->bases()) {
1417     if (!addBaseAndFieldSizes(Context, Base.getType()->getAsCXXRecordDecl(),
1418                               Size))
1419       return false;
1420   }
1421   if (!addFieldSizes(Context, RD, Size))
1422     return false;
1423   return true;
1424 }
1425 
1426 /// Test whether an argument type which is to be passed indirectly (on the
1427 /// stack) would have the equivalent layout if it was expanded into separate
1428 /// arguments. If so, we prefer to do the latter to avoid inhibiting
1429 /// optimizations.
1430 bool X86_32ABIInfo::canExpandIndirectArgument(QualType Ty) const {
1431   // We can only expand structure types.
1432   const RecordType *RT = Ty->getAs<RecordType>();
1433   if (!RT)
1434     return false;
1435   const RecordDecl *RD = RT->getDecl();
1436   uint64_t Size = 0;
1437   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
1438     if (!IsWin32StructABI) {
1439       // On non-Windows, we have to conservatively match our old bitcode
1440       // prototypes in order to be ABI-compatible at the bitcode level.
1441       if (!CXXRD->isCLike())
1442         return false;
1443     } else {
1444       // Don't do this for dynamic classes.
1445       if (CXXRD->isDynamicClass())
1446         return false;
1447     }
1448     if (!addBaseAndFieldSizes(getContext(), CXXRD, Size))
1449       return false;
1450   } else {
1451     if (!addFieldSizes(getContext(), RD, Size))
1452       return false;
1453   }
1454 
1455   // We can do this if there was no alignment padding.
1456   return Size == getContext().getTypeSize(Ty);
1457 }
1458 
1459 ABIArgInfo X86_32ABIInfo::getIndirectReturnResult(QualType RetTy, CCState &State) const {
1460   // If the return value is indirect, then the hidden argument is consuming one
1461   // integer register.
1462   if (State.FreeRegs) {
1463     --State.FreeRegs;
1464     if (!IsMCUABI)
1465       return getNaturalAlignIndirectInReg(RetTy);
1466   }
1467   return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
1468 }
1469 
1470 ABIArgInfo X86_32ABIInfo::classifyReturnType(QualType RetTy,
1471                                              CCState &State) const {
1472   if (RetTy->isVoidType())
1473     return ABIArgInfo::getIgnore();
1474 
1475   const Type *Base = nullptr;
1476   uint64_t NumElts = 0;
1477   if ((State.CC == llvm::CallingConv::X86_VectorCall ||
1478        State.CC == llvm::CallingConv::X86_RegCall) &&
1479       isHomogeneousAggregate(RetTy, Base, NumElts)) {
1480     // The LLVM struct type for such an aggregate should lower properly.
1481     return ABIArgInfo::getDirect();
1482   }
1483 
1484   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
1485     // On Darwin, some vectors are returned in registers.
1486     if (IsDarwinVectorABI) {
1487       uint64_t Size = getContext().getTypeSize(RetTy);
1488 
1489       // 128-bit vectors are a special case; they are returned in
1490       // registers and we need to make sure to pick a type the LLVM
1491       // backend will like.
1492       if (Size == 128)
1493         return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
1494             llvm::Type::getInt64Ty(getVMContext()), 2));
1495 
1496       // Always return in register if it fits in a general purpose
1497       // register, or if it is 64 bits and has a single element.
1498       if ((Size == 8 || Size == 16 || Size == 32) ||
1499           (Size == 64 && VT->getNumElements() == 1))
1500         return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
1501                                                             Size));
1502 
1503       return getIndirectReturnResult(RetTy, State);
1504     }
1505 
1506     return ABIArgInfo::getDirect();
1507   }
1508 
1509   if (isAggregateTypeForABI(RetTy)) {
1510     if (const RecordType *RT = RetTy->getAs<RecordType>()) {
1511       // Structures with flexible arrays are always indirect.
1512       if (RT->getDecl()->hasFlexibleArrayMember())
1513         return getIndirectReturnResult(RetTy, State);
1514     }
1515 
1516     // If specified, structs and unions are always indirect.
1517     if (!IsRetSmallStructInRegABI && !RetTy->isAnyComplexType())
1518       return getIndirectReturnResult(RetTy, State);
1519 
1520     // Ignore empty structs/unions.
1521     if (isEmptyRecord(getContext(), RetTy, true))
1522       return ABIArgInfo::getIgnore();
1523 
1524     // Small structures which are register sized are generally returned
1525     // in a register.
1526     if (shouldReturnTypeInRegister(RetTy, getContext())) {
1527       uint64_t Size = getContext().getTypeSize(RetTy);
1528 
1529       // As a special-case, if the struct is a "single-element" struct, and
1530       // the field is of type "float" or "double", return it in a
1531       // floating-point register. (MSVC does not apply this special case.)
1532       // We apply a similar transformation for pointer types to improve the
1533       // quality of the generated IR.
1534       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
1535         if ((!IsWin32StructABI && SeltTy->isRealFloatingType())
1536             || SeltTy->hasPointerRepresentation())
1537           return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
1538 
1539       // FIXME: We should be able to narrow this integer in cases with dead
1540       // padding.
1541       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),Size));
1542     }
1543 
1544     return getIndirectReturnResult(RetTy, State);
1545   }
1546 
1547   // Treat an enum type as its underlying type.
1548   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
1549     RetTy = EnumTy->getDecl()->getIntegerType();
1550 
1551   if (const auto *EIT = RetTy->getAs<ExtIntType>())
1552     if (EIT->getNumBits() > 64)
1553       return getIndirectReturnResult(RetTy, State);
1554 
1555   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
1556                                                : ABIArgInfo::getDirect());
1557 }
1558 
1559 static bool isSIMDVectorType(ASTContext &Context, QualType Ty) {
1560   return Ty->getAs<VectorType>() && Context.getTypeSize(Ty) == 128;
1561 }
1562 
1563 static bool isRecordWithSIMDVectorType(ASTContext &Context, QualType Ty) {
1564   const RecordType *RT = Ty->getAs<RecordType>();
1565   if (!RT)
1566     return 0;
1567   const RecordDecl *RD = RT->getDecl();
1568 
1569   // If this is a C++ record, check the bases first.
1570   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
1571     for (const auto &I : CXXRD->bases())
1572       if (!isRecordWithSIMDVectorType(Context, I.getType()))
1573         return false;
1574 
1575   for (const auto *i : RD->fields()) {
1576     QualType FT = i->getType();
1577 
1578     if (isSIMDVectorType(Context, FT))
1579       return true;
1580 
1581     if (isRecordWithSIMDVectorType(Context, FT))
1582       return true;
1583   }
1584 
1585   return false;
1586 }
1587 
1588 unsigned X86_32ABIInfo::getTypeStackAlignInBytes(QualType Ty,
1589                                                  unsigned Align) const {
1590   // Otherwise, if the alignment is less than or equal to the minimum ABI
1591   // alignment, just use the default; the backend will handle this.
1592   if (Align <= MinABIStackAlignInBytes)
1593     return 0; // Use default alignment.
1594 
1595   // On non-Darwin, the stack type alignment is always 4.
1596   if (!IsDarwinVectorABI) {
1597     // Set explicit alignment, since we may need to realign the top.
1598     return MinABIStackAlignInBytes;
1599   }
1600 
1601   // Otherwise, if the type contains an SSE vector type, the alignment is 16.
1602   if (Align >= 16 && (isSIMDVectorType(getContext(), Ty) ||
1603                       isRecordWithSIMDVectorType(getContext(), Ty)))
1604     return 16;
1605 
1606   return MinABIStackAlignInBytes;
1607 }
1608 
1609 ABIArgInfo X86_32ABIInfo::getIndirectResult(QualType Ty, bool ByVal,
1610                                             CCState &State) const {
1611   if (!ByVal) {
1612     if (State.FreeRegs) {
1613       --State.FreeRegs; // Non-byval indirects just use one pointer.
1614       if (!IsMCUABI)
1615         return getNaturalAlignIndirectInReg(Ty);
1616     }
1617     return getNaturalAlignIndirect(Ty, false);
1618   }
1619 
1620   // Compute the byval alignment.
1621   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
1622   unsigned StackAlign = getTypeStackAlignInBytes(Ty, TypeAlign);
1623   if (StackAlign == 0)
1624     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true);
1625 
1626   // If the stack alignment is less than the type alignment, realign the
1627   // argument.
1628   bool Realign = TypeAlign > StackAlign;
1629   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(StackAlign),
1630                                  /*ByVal=*/true, Realign);
1631 }
1632 
1633 X86_32ABIInfo::Class X86_32ABIInfo::classify(QualType Ty) const {
1634   const Type *T = isSingleElementStruct(Ty, getContext());
1635   if (!T)
1636     T = Ty.getTypePtr();
1637 
1638   if (const BuiltinType *BT = T->getAs<BuiltinType>()) {
1639     BuiltinType::Kind K = BT->getKind();
1640     if (K == BuiltinType::Float || K == BuiltinType::Double)
1641       return Float;
1642   }
1643   return Integer;
1644 }
1645 
1646 bool X86_32ABIInfo::updateFreeRegs(QualType Ty, CCState &State) const {
1647   if (!IsSoftFloatABI) {
1648     Class C = classify(Ty);
1649     if (C == Float)
1650       return false;
1651   }
1652 
1653   unsigned Size = getContext().getTypeSize(Ty);
1654   unsigned SizeInRegs = (Size + 31) / 32;
1655 
1656   if (SizeInRegs == 0)
1657     return false;
1658 
1659   if (!IsMCUABI) {
1660     if (SizeInRegs > State.FreeRegs) {
1661       State.FreeRegs = 0;
1662       return false;
1663     }
1664   } else {
1665     // The MCU psABI allows passing parameters in-reg even if there are
1666     // earlier parameters that are passed on the stack. Also,
1667     // it does not allow passing >8-byte structs in-register,
1668     // even if there are 3 free registers available.
1669     if (SizeInRegs > State.FreeRegs || SizeInRegs > 2)
1670       return false;
1671   }
1672 
1673   State.FreeRegs -= SizeInRegs;
1674   return true;
1675 }
1676 
1677 bool X86_32ABIInfo::shouldAggregateUseDirect(QualType Ty, CCState &State,
1678                                              bool &InReg,
1679                                              bool &NeedsPadding) const {
1680   // On Windows, aggregates other than HFAs are never passed in registers, and
1681   // they do not consume register slots. Homogenous floating-point aggregates
1682   // (HFAs) have already been dealt with at this point.
1683   if (IsWin32StructABI && isAggregateTypeForABI(Ty))
1684     return false;
1685 
1686   NeedsPadding = false;
1687   InReg = !IsMCUABI;
1688 
1689   if (!updateFreeRegs(Ty, State))
1690     return false;
1691 
1692   if (IsMCUABI)
1693     return true;
1694 
1695   if (State.CC == llvm::CallingConv::X86_FastCall ||
1696       State.CC == llvm::CallingConv::X86_VectorCall ||
1697       State.CC == llvm::CallingConv::X86_RegCall) {
1698     if (getContext().getTypeSize(Ty) <= 32 && State.FreeRegs)
1699       NeedsPadding = true;
1700 
1701     return false;
1702   }
1703 
1704   return true;
1705 }
1706 
1707 bool X86_32ABIInfo::shouldPrimitiveUseInReg(QualType Ty, CCState &State) const {
1708   if (!updateFreeRegs(Ty, State))
1709     return false;
1710 
1711   if (IsMCUABI)
1712     return false;
1713 
1714   if (State.CC == llvm::CallingConv::X86_FastCall ||
1715       State.CC == llvm::CallingConv::X86_VectorCall ||
1716       State.CC == llvm::CallingConv::X86_RegCall) {
1717     if (getContext().getTypeSize(Ty) > 32)
1718       return false;
1719 
1720     return (Ty->isIntegralOrEnumerationType() || Ty->isPointerType() ||
1721         Ty->isReferenceType());
1722   }
1723 
1724   return true;
1725 }
1726 
1727 void X86_32ABIInfo::runVectorCallFirstPass(CGFunctionInfo &FI, CCState &State) const {
1728   // Vectorcall x86 works subtly different than in x64, so the format is
1729   // a bit different than the x64 version.  First, all vector types (not HVAs)
1730   // are assigned, with the first 6 ending up in the [XYZ]MM0-5 registers.
1731   // This differs from the x64 implementation, where the first 6 by INDEX get
1732   // registers.
1733   // In the second pass over the arguments, HVAs are passed in the remaining
1734   // vector registers if possible, or indirectly by address. The address will be
1735   // passed in ECX/EDX if available. Any other arguments are passed according to
1736   // the usual fastcall rules.
1737   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1738   for (int I = 0, E = Args.size(); I < E; ++I) {
1739     const Type *Base = nullptr;
1740     uint64_t NumElts = 0;
1741     const QualType &Ty = Args[I].type;
1742     if ((Ty->isVectorType() || Ty->isBuiltinType()) &&
1743         isHomogeneousAggregate(Ty, Base, NumElts)) {
1744       if (State.FreeSSERegs >= NumElts) {
1745         State.FreeSSERegs -= NumElts;
1746         Args[I].info = ABIArgInfo::getDirectInReg();
1747         State.IsPreassigned.set(I);
1748       }
1749     }
1750   }
1751 }
1752 
1753 ABIArgInfo X86_32ABIInfo::classifyArgumentType(QualType Ty,
1754                                                CCState &State) const {
1755   // FIXME: Set alignment on indirect arguments.
1756   bool IsFastCall = State.CC == llvm::CallingConv::X86_FastCall;
1757   bool IsRegCall = State.CC == llvm::CallingConv::X86_RegCall;
1758   bool IsVectorCall = State.CC == llvm::CallingConv::X86_VectorCall;
1759 
1760   Ty = useFirstFieldIfTransparentUnion(Ty);
1761   TypeInfo TI = getContext().getTypeInfo(Ty);
1762 
1763   // Check with the C++ ABI first.
1764   const RecordType *RT = Ty->getAs<RecordType>();
1765   if (RT) {
1766     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
1767     if (RAA == CGCXXABI::RAA_Indirect) {
1768       return getIndirectResult(Ty, false, State);
1769     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
1770       // The field index doesn't matter, we'll fix it up later.
1771       return ABIArgInfo::getInAlloca(/*FieldIndex=*/0);
1772     }
1773   }
1774 
1775   // Regcall uses the concept of a homogenous vector aggregate, similar
1776   // to other targets.
1777   const Type *Base = nullptr;
1778   uint64_t NumElts = 0;
1779   if ((IsRegCall || IsVectorCall) &&
1780       isHomogeneousAggregate(Ty, Base, NumElts)) {
1781     if (State.FreeSSERegs >= NumElts) {
1782       State.FreeSSERegs -= NumElts;
1783 
1784       // Vectorcall passes HVAs directly and does not flatten them, but regcall
1785       // does.
1786       if (IsVectorCall)
1787         return getDirectX86Hva();
1788 
1789       if (Ty->isBuiltinType() || Ty->isVectorType())
1790         return ABIArgInfo::getDirect();
1791       return ABIArgInfo::getExpand();
1792     }
1793     return getIndirectResult(Ty, /*ByVal=*/false, State);
1794   }
1795 
1796   if (isAggregateTypeForABI(Ty)) {
1797     // Structures with flexible arrays are always indirect.
1798     // FIXME: This should not be byval!
1799     if (RT && RT->getDecl()->hasFlexibleArrayMember())
1800       return getIndirectResult(Ty, true, State);
1801 
1802     // Ignore empty structs/unions on non-Windows.
1803     if (!IsWin32StructABI && isEmptyRecord(getContext(), Ty, true))
1804       return ABIArgInfo::getIgnore();
1805 
1806     llvm::LLVMContext &LLVMContext = getVMContext();
1807     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
1808     bool NeedsPadding = false;
1809     bool InReg;
1810     if (shouldAggregateUseDirect(Ty, State, InReg, NeedsPadding)) {
1811       unsigned SizeInRegs = (TI.Width + 31) / 32;
1812       SmallVector<llvm::Type*, 3> Elements(SizeInRegs, Int32);
1813       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
1814       if (InReg)
1815         return ABIArgInfo::getDirectInReg(Result);
1816       else
1817         return ABIArgInfo::getDirect(Result);
1818     }
1819     llvm::IntegerType *PaddingType = NeedsPadding ? Int32 : nullptr;
1820 
1821     // Pass over-aligned aggregates on Windows indirectly. This behavior was
1822     // added in MSVC 2015.
1823     if (IsWin32StructABI && TI.AlignIsRequired && TI.Align > 32)
1824       return getIndirectResult(Ty, /*ByVal=*/false, State);
1825 
1826     // Expand small (<= 128-bit) record types when we know that the stack layout
1827     // of those arguments will match the struct. This is important because the
1828     // LLVM backend isn't smart enough to remove byval, which inhibits many
1829     // optimizations.
1830     // Don't do this for the MCU if there are still free integer registers
1831     // (see X86_64 ABI for full explanation).
1832     if (TI.Width <= 4 * 32 && (!IsMCUABI || State.FreeRegs == 0) &&
1833         canExpandIndirectArgument(Ty))
1834       return ABIArgInfo::getExpandWithPadding(
1835           IsFastCall || IsVectorCall || IsRegCall, PaddingType);
1836 
1837     return getIndirectResult(Ty, true, State);
1838   }
1839 
1840   if (const VectorType *VT = Ty->getAs<VectorType>()) {
1841     // On Windows, vectors are passed directly if registers are available, or
1842     // indirectly if not. This avoids the need to align argument memory. Pass
1843     // user-defined vector types larger than 512 bits indirectly for simplicity.
1844     if (IsWin32StructABI) {
1845       if (TI.Width <= 512 && State.FreeSSERegs > 0) {
1846         --State.FreeSSERegs;
1847         return ABIArgInfo::getDirectInReg();
1848       }
1849       return getIndirectResult(Ty, /*ByVal=*/false, State);
1850     }
1851 
1852     // On Darwin, some vectors are passed in memory, we handle this by passing
1853     // it as an i8/i16/i32/i64.
1854     if (IsDarwinVectorABI) {
1855       if ((TI.Width == 8 || TI.Width == 16 || TI.Width == 32) ||
1856           (TI.Width == 64 && VT->getNumElements() == 1))
1857         return ABIArgInfo::getDirect(
1858             llvm::IntegerType::get(getVMContext(), TI.Width));
1859     }
1860 
1861     if (IsX86_MMXType(CGT.ConvertType(Ty)))
1862       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), 64));
1863 
1864     return ABIArgInfo::getDirect();
1865   }
1866 
1867 
1868   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
1869     Ty = EnumTy->getDecl()->getIntegerType();
1870 
1871   bool InReg = shouldPrimitiveUseInReg(Ty, State);
1872 
1873   if (isPromotableIntegerTypeForABI(Ty)) {
1874     if (InReg)
1875       return ABIArgInfo::getExtendInReg(Ty);
1876     return ABIArgInfo::getExtend(Ty);
1877   }
1878 
1879   if (const auto * EIT = Ty->getAs<ExtIntType>()) {
1880     if (EIT->getNumBits() <= 64) {
1881       if (InReg)
1882         return ABIArgInfo::getDirectInReg();
1883       return ABIArgInfo::getDirect();
1884     }
1885     return getIndirectResult(Ty, /*ByVal=*/false, State);
1886   }
1887 
1888   if (InReg)
1889     return ABIArgInfo::getDirectInReg();
1890   return ABIArgInfo::getDirect();
1891 }
1892 
1893 void X86_32ABIInfo::computeInfo(CGFunctionInfo &FI) const {
1894   CCState State(FI);
1895   if (IsMCUABI)
1896     State.FreeRegs = 3;
1897   else if (State.CC == llvm::CallingConv::X86_FastCall) {
1898     State.FreeRegs = 2;
1899     State.FreeSSERegs = 3;
1900   } else if (State.CC == llvm::CallingConv::X86_VectorCall) {
1901     State.FreeRegs = 2;
1902     State.FreeSSERegs = 6;
1903   } else if (FI.getHasRegParm())
1904     State.FreeRegs = FI.getRegParm();
1905   else if (State.CC == llvm::CallingConv::X86_RegCall) {
1906     State.FreeRegs = 5;
1907     State.FreeSSERegs = 8;
1908   } else if (IsWin32StructABI) {
1909     // Since MSVC 2015, the first three SSE vectors have been passed in
1910     // registers. The rest are passed indirectly.
1911     State.FreeRegs = DefaultNumRegisterParameters;
1912     State.FreeSSERegs = 3;
1913   } else
1914     State.FreeRegs = DefaultNumRegisterParameters;
1915 
1916   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
1917     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), State);
1918   } else if (FI.getReturnInfo().isIndirect()) {
1919     // The C++ ABI is not aware of register usage, so we have to check if the
1920     // return value was sret and put it in a register ourselves if appropriate.
1921     if (State.FreeRegs) {
1922       --State.FreeRegs;  // The sret parameter consumes a register.
1923       if (!IsMCUABI)
1924         FI.getReturnInfo().setInReg(true);
1925     }
1926   }
1927 
1928   // The chain argument effectively gives us another free register.
1929   if (FI.isChainCall())
1930     ++State.FreeRegs;
1931 
1932   // For vectorcall, do a first pass over the arguments, assigning FP and vector
1933   // arguments to XMM registers as available.
1934   if (State.CC == llvm::CallingConv::X86_VectorCall)
1935     runVectorCallFirstPass(FI, State);
1936 
1937   bool UsedInAlloca = false;
1938   MutableArrayRef<CGFunctionInfoArgInfo> Args = FI.arguments();
1939   for (int I = 0, E = Args.size(); I < E; ++I) {
1940     // Skip arguments that have already been assigned.
1941     if (State.IsPreassigned.test(I))
1942       continue;
1943 
1944     Args[I].info = classifyArgumentType(Args[I].type, State);
1945     UsedInAlloca |= (Args[I].info.getKind() == ABIArgInfo::InAlloca);
1946   }
1947 
1948   // If we needed to use inalloca for any argument, do a second pass and rewrite
1949   // all the memory arguments to use inalloca.
1950   if (UsedInAlloca)
1951     rewriteWithInAlloca(FI);
1952 }
1953 
1954 void
1955 X86_32ABIInfo::addFieldToArgStruct(SmallVector<llvm::Type *, 6> &FrameFields,
1956                                    CharUnits &StackOffset, ABIArgInfo &Info,
1957                                    QualType Type) const {
1958   // Arguments are always 4-byte-aligned.
1959   CharUnits WordSize = CharUnits::fromQuantity(4);
1960   assert(StackOffset.isMultipleOf(WordSize) && "unaligned inalloca struct");
1961 
1962   // sret pointers and indirect things will require an extra pointer
1963   // indirection, unless they are byval. Most things are byval, and will not
1964   // require this indirection.
1965   bool IsIndirect = false;
1966   if (Info.isIndirect() && !Info.getIndirectByVal())
1967     IsIndirect = true;
1968   Info = ABIArgInfo::getInAlloca(FrameFields.size(), IsIndirect);
1969   llvm::Type *LLTy = CGT.ConvertTypeForMem(Type);
1970   if (IsIndirect)
1971     LLTy = LLTy->getPointerTo(0);
1972   FrameFields.push_back(LLTy);
1973   StackOffset += IsIndirect ? WordSize : getContext().getTypeSizeInChars(Type);
1974 
1975   // Insert padding bytes to respect alignment.
1976   CharUnits FieldEnd = StackOffset;
1977   StackOffset = FieldEnd.alignTo(WordSize);
1978   if (StackOffset != FieldEnd) {
1979     CharUnits NumBytes = StackOffset - FieldEnd;
1980     llvm::Type *Ty = llvm::Type::getInt8Ty(getVMContext());
1981     Ty = llvm::ArrayType::get(Ty, NumBytes.getQuantity());
1982     FrameFields.push_back(Ty);
1983   }
1984 }
1985 
1986 static bool isArgInAlloca(const ABIArgInfo &Info) {
1987   // Leave ignored and inreg arguments alone.
1988   switch (Info.getKind()) {
1989   case ABIArgInfo::InAlloca:
1990     return true;
1991   case ABIArgInfo::Ignore:
1992     return false;
1993   case ABIArgInfo::Indirect:
1994   case ABIArgInfo::Direct:
1995   case ABIArgInfo::Extend:
1996     return !Info.getInReg();
1997   case ABIArgInfo::Expand:
1998   case ABIArgInfo::CoerceAndExpand:
1999     // These are aggregate types which are never passed in registers when
2000     // inalloca is involved.
2001     return true;
2002   }
2003   llvm_unreachable("invalid enum");
2004 }
2005 
2006 void X86_32ABIInfo::rewriteWithInAlloca(CGFunctionInfo &FI) const {
2007   assert(IsWin32StructABI && "inalloca only supported on win32");
2008 
2009   // Build a packed struct type for all of the arguments in memory.
2010   SmallVector<llvm::Type *, 6> FrameFields;
2011 
2012   // The stack alignment is always 4.
2013   CharUnits StackAlign = CharUnits::fromQuantity(4);
2014 
2015   CharUnits StackOffset;
2016   CGFunctionInfo::arg_iterator I = FI.arg_begin(), E = FI.arg_end();
2017 
2018   // Put 'this' into the struct before 'sret', if necessary.
2019   bool IsThisCall =
2020       FI.getCallingConvention() == llvm::CallingConv::X86_ThisCall;
2021   ABIArgInfo &Ret = FI.getReturnInfo();
2022   if (Ret.isIndirect() && Ret.isSRetAfterThis() && !IsThisCall &&
2023       isArgInAlloca(I->info)) {
2024     addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2025     ++I;
2026   }
2027 
2028   // Put the sret parameter into the inalloca struct if it's in memory.
2029   if (Ret.isIndirect() && !Ret.getInReg()) {
2030     addFieldToArgStruct(FrameFields, StackOffset, Ret, FI.getReturnType());
2031     // On Windows, the hidden sret parameter is always returned in eax.
2032     Ret.setInAllocaSRet(IsWin32StructABI);
2033   }
2034 
2035   // Skip the 'this' parameter in ecx.
2036   if (IsThisCall)
2037     ++I;
2038 
2039   // Put arguments passed in memory into the struct.
2040   for (; I != E; ++I) {
2041     if (isArgInAlloca(I->info))
2042       addFieldToArgStruct(FrameFields, StackOffset, I->info, I->type);
2043   }
2044 
2045   FI.setArgStruct(llvm::StructType::get(getVMContext(), FrameFields,
2046                                         /*isPacked=*/true),
2047                   StackAlign);
2048 }
2049 
2050 Address X86_32ABIInfo::EmitVAArg(CodeGenFunction &CGF,
2051                                  Address VAListAddr, QualType Ty) const {
2052 
2053   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
2054 
2055   // x86-32 changes the alignment of certain arguments on the stack.
2056   //
2057   // Just messing with TypeInfo like this works because we never pass
2058   // anything indirectly.
2059   TypeInfo.second = CharUnits::fromQuantity(
2060                 getTypeStackAlignInBytes(Ty, TypeInfo.second.getQuantity()));
2061 
2062   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
2063                           TypeInfo, CharUnits::fromQuantity(4),
2064                           /*AllowHigherAlign*/ true);
2065 }
2066 
2067 bool X86_32TargetCodeGenInfo::isStructReturnInRegABI(
2068     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
2069   assert(Triple.getArch() == llvm::Triple::x86);
2070 
2071   switch (Opts.getStructReturnConvention()) {
2072   case CodeGenOptions::SRCK_Default:
2073     break;
2074   case CodeGenOptions::SRCK_OnStack:  // -fpcc-struct-return
2075     return false;
2076   case CodeGenOptions::SRCK_InRegs:  // -freg-struct-return
2077     return true;
2078   }
2079 
2080   if (Triple.isOSDarwin() || Triple.isOSIAMCU())
2081     return true;
2082 
2083   switch (Triple.getOS()) {
2084   case llvm::Triple::DragonFly:
2085   case llvm::Triple::FreeBSD:
2086   case llvm::Triple::OpenBSD:
2087   case llvm::Triple::Win32:
2088     return true;
2089   default:
2090     return false;
2091   }
2092 }
2093 
2094 void X86_32TargetCodeGenInfo::setTargetAttributes(
2095     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2096   if (GV->isDeclaration())
2097     return;
2098   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2099     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2100       llvm::Function *Fn = cast<llvm::Function>(GV);
2101       Fn->addFnAttr("stackrealign");
2102     }
2103     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2104       llvm::Function *Fn = cast<llvm::Function>(GV);
2105       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2106     }
2107   }
2108 }
2109 
2110 bool X86_32TargetCodeGenInfo::initDwarfEHRegSizeTable(
2111                                                CodeGen::CodeGenFunction &CGF,
2112                                                llvm::Value *Address) const {
2113   CodeGen::CGBuilderTy &Builder = CGF.Builder;
2114 
2115   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
2116 
2117   // 0-7 are the eight integer registers;  the order is different
2118   //   on Darwin (for EH), but the range is the same.
2119   // 8 is %eip.
2120   AssignToArrayRange(Builder, Address, Four8, 0, 8);
2121 
2122   if (CGF.CGM.getTarget().getTriple().isOSDarwin()) {
2123     // 12-16 are st(0..4).  Not sure why we stop at 4.
2124     // These have size 16, which is sizeof(long double) on
2125     // platforms with 8-byte alignment for that type.
2126     llvm::Value *Sixteen8 = llvm::ConstantInt::get(CGF.Int8Ty, 16);
2127     AssignToArrayRange(Builder, Address, Sixteen8, 12, 16);
2128 
2129   } else {
2130     // 9 is %eflags, which doesn't get a size on Darwin for some
2131     // reason.
2132     Builder.CreateAlignedStore(
2133         Four8, Builder.CreateConstInBoundsGEP1_32(CGF.Int8Ty, Address, 9),
2134                                CharUnits::One());
2135 
2136     // 11-16 are st(0..5).  Not sure why we stop at 5.
2137     // These have size 12, which is sizeof(long double) on
2138     // platforms with 4-byte alignment for that type.
2139     llvm::Value *Twelve8 = llvm::ConstantInt::get(CGF.Int8Ty, 12);
2140     AssignToArrayRange(Builder, Address, Twelve8, 11, 16);
2141   }
2142 
2143   return false;
2144 }
2145 
2146 //===----------------------------------------------------------------------===//
2147 // X86-64 ABI Implementation
2148 //===----------------------------------------------------------------------===//
2149 
2150 
2151 namespace {
2152 /// The AVX ABI level for X86 targets.
2153 enum class X86AVXABILevel {
2154   None,
2155   AVX,
2156   AVX512
2157 };
2158 
2159 /// \p returns the size in bits of the largest (native) vector for \p AVXLevel.
2160 static unsigned getNativeVectorSizeForAVXABI(X86AVXABILevel AVXLevel) {
2161   switch (AVXLevel) {
2162   case X86AVXABILevel::AVX512:
2163     return 512;
2164   case X86AVXABILevel::AVX:
2165     return 256;
2166   case X86AVXABILevel::None:
2167     return 128;
2168   }
2169   llvm_unreachable("Unknown AVXLevel");
2170 }
2171 
2172 /// X86_64ABIInfo - The X86_64 ABI information.
2173 class X86_64ABIInfo : public SwiftABIInfo {
2174   enum Class {
2175     Integer = 0,
2176     SSE,
2177     SSEUp,
2178     X87,
2179     X87Up,
2180     ComplexX87,
2181     NoClass,
2182     Memory
2183   };
2184 
2185   /// merge - Implement the X86_64 ABI merging algorithm.
2186   ///
2187   /// Merge an accumulating classification \arg Accum with a field
2188   /// classification \arg Field.
2189   ///
2190   /// \param Accum - The accumulating classification. This should
2191   /// always be either NoClass or the result of a previous merge
2192   /// call. In addition, this should never be Memory (the caller
2193   /// should just return Memory for the aggregate).
2194   static Class merge(Class Accum, Class Field);
2195 
2196   /// postMerge - Implement the X86_64 ABI post merging algorithm.
2197   ///
2198   /// Post merger cleanup, reduces a malformed Hi and Lo pair to
2199   /// final MEMORY or SSE classes when necessary.
2200   ///
2201   /// \param AggregateSize - The size of the current aggregate in
2202   /// the classification process.
2203   ///
2204   /// \param Lo - The classification for the parts of the type
2205   /// residing in the low word of the containing object.
2206   ///
2207   /// \param Hi - The classification for the parts of the type
2208   /// residing in the higher words of the containing object.
2209   ///
2210   void postMerge(unsigned AggregateSize, Class &Lo, Class &Hi) const;
2211 
2212   /// classify - Determine the x86_64 register classes in which the
2213   /// given type T should be passed.
2214   ///
2215   /// \param Lo - The classification for the parts of the type
2216   /// residing in the low word of the containing object.
2217   ///
2218   /// \param Hi - The classification for the parts of the type
2219   /// residing in the high word of the containing object.
2220   ///
2221   /// \param OffsetBase - The bit offset of this type in the
2222   /// containing object.  Some parameters are classified different
2223   /// depending on whether they straddle an eightbyte boundary.
2224   ///
2225   /// \param isNamedArg - Whether the argument in question is a "named"
2226   /// argument, as used in AMD64-ABI 3.5.7.
2227   ///
2228   /// If a word is unused its result will be NoClass; if a type should
2229   /// be passed in Memory then at least the classification of \arg Lo
2230   /// will be Memory.
2231   ///
2232   /// The \arg Lo class will be NoClass iff the argument is ignored.
2233   ///
2234   /// If the \arg Lo class is ComplexX87, then the \arg Hi class will
2235   /// also be ComplexX87.
2236   void classify(QualType T, uint64_t OffsetBase, Class &Lo, Class &Hi,
2237                 bool isNamedArg) const;
2238 
2239   llvm::Type *GetByteVectorType(QualType Ty) const;
2240   llvm::Type *GetSSETypeAtOffset(llvm::Type *IRType,
2241                                  unsigned IROffset, QualType SourceTy,
2242                                  unsigned SourceOffset) const;
2243   llvm::Type *GetINTEGERTypeAtOffset(llvm::Type *IRType,
2244                                      unsigned IROffset, QualType SourceTy,
2245                                      unsigned SourceOffset) const;
2246 
2247   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2248   /// such that the argument will be returned in memory.
2249   ABIArgInfo getIndirectReturnResult(QualType Ty) const;
2250 
2251   /// getIndirectResult - Give a source type \arg Ty, return a suitable result
2252   /// such that the argument will be passed in memory.
2253   ///
2254   /// \param freeIntRegs - The number of free integer registers remaining
2255   /// available.
2256   ABIArgInfo getIndirectResult(QualType Ty, unsigned freeIntRegs) const;
2257 
2258   ABIArgInfo classifyReturnType(QualType RetTy) const;
2259 
2260   ABIArgInfo classifyArgumentType(QualType Ty, unsigned freeIntRegs,
2261                                   unsigned &neededInt, unsigned &neededSSE,
2262                                   bool isNamedArg) const;
2263 
2264   ABIArgInfo classifyRegCallStructType(QualType Ty, unsigned &NeededInt,
2265                                        unsigned &NeededSSE) const;
2266 
2267   ABIArgInfo classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
2268                                            unsigned &NeededSSE) const;
2269 
2270   bool IsIllegalVectorType(QualType Ty) const;
2271 
2272   /// The 0.98 ABI revision clarified a lot of ambiguities,
2273   /// unfortunately in ways that were not always consistent with
2274   /// certain previous compilers.  In particular, platforms which
2275   /// required strict binary compatibility with older versions of GCC
2276   /// may need to exempt themselves.
2277   bool honorsRevision0_98() const {
2278     return !getTarget().getTriple().isOSDarwin();
2279   }
2280 
2281   /// GCC classifies <1 x long long> as SSE but some platform ABIs choose to
2282   /// classify it as INTEGER (for compatibility with older clang compilers).
2283   bool classifyIntegerMMXAsSSE() const {
2284     // Clang <= 3.8 did not do this.
2285     if (getContext().getLangOpts().getClangABICompat() <=
2286         LangOptions::ClangABI::Ver3_8)
2287       return false;
2288 
2289     const llvm::Triple &Triple = getTarget().getTriple();
2290     if (Triple.isOSDarwin() || Triple.getOS() == llvm::Triple::PS4)
2291       return false;
2292     if (Triple.isOSFreeBSD() && Triple.getOSMajorVersion() >= 10)
2293       return false;
2294     return true;
2295   }
2296 
2297   // GCC classifies vectors of __int128 as memory.
2298   bool passInt128VectorsInMem() const {
2299     // Clang <= 9.0 did not do this.
2300     if (getContext().getLangOpts().getClangABICompat() <=
2301         LangOptions::ClangABI::Ver9)
2302       return false;
2303 
2304     const llvm::Triple &T = getTarget().getTriple();
2305     return T.isOSLinux() || T.isOSNetBSD();
2306   }
2307 
2308   X86AVXABILevel AVXLevel;
2309   // Some ABIs (e.g. X32 ABI and Native Client OS) use 32 bit pointers on
2310   // 64-bit hardware.
2311   bool Has64BitPointers;
2312 
2313 public:
2314   X86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel) :
2315       SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2316       Has64BitPointers(CGT.getDataLayout().getPointerSize(0) == 8) {
2317   }
2318 
2319   bool isPassedUsingAVXType(QualType type) const {
2320     unsigned neededInt, neededSSE;
2321     // The freeIntRegs argument doesn't matter here.
2322     ABIArgInfo info = classifyArgumentType(type, 0, neededInt, neededSSE,
2323                                            /*isNamedArg*/true);
2324     if (info.isDirect()) {
2325       llvm::Type *ty = info.getCoerceToType();
2326       if (llvm::VectorType *vectorTy = dyn_cast_or_null<llvm::VectorType>(ty))
2327         return vectorTy->getPrimitiveSizeInBits().getFixedSize() > 128;
2328     }
2329     return false;
2330   }
2331 
2332   void computeInfo(CGFunctionInfo &FI) const override;
2333 
2334   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2335                     QualType Ty) const override;
2336   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
2337                       QualType Ty) const override;
2338 
2339   bool has64BitPointers() const {
2340     return Has64BitPointers;
2341   }
2342 
2343   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
2344                                     bool asReturnValue) const override {
2345     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2346   }
2347   bool isSwiftErrorInRegister() const override {
2348     return true;
2349   }
2350 };
2351 
2352 /// WinX86_64ABIInfo - The Windows X86_64 ABI information.
2353 class WinX86_64ABIInfo : public SwiftABIInfo {
2354 public:
2355   WinX86_64ABIInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2356       : SwiftABIInfo(CGT), AVXLevel(AVXLevel),
2357         IsMingw64(getTarget().getTriple().isWindowsGNUEnvironment()) {}
2358 
2359   void computeInfo(CGFunctionInfo &FI) const override;
2360 
2361   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
2362                     QualType Ty) const override;
2363 
2364   bool isHomogeneousAggregateBaseType(QualType Ty) const override {
2365     // FIXME: Assumes vectorcall is in use.
2366     return isX86VectorTypeForVectorCall(getContext(), Ty);
2367   }
2368 
2369   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
2370                                          uint64_t NumMembers) const override {
2371     // FIXME: Assumes vectorcall is in use.
2372     return isX86VectorCallAggregateSmallEnough(NumMembers);
2373   }
2374 
2375   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type *> scalars,
2376                                     bool asReturnValue) const override {
2377     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
2378   }
2379 
2380   bool isSwiftErrorInRegister() const override {
2381     return true;
2382   }
2383 
2384 private:
2385   ABIArgInfo classify(QualType Ty, unsigned &FreeSSERegs, bool IsReturnType,
2386                       bool IsVectorCall, bool IsRegCall) const;
2387   ABIArgInfo reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
2388                                       const ABIArgInfo &current) const;
2389   void computeVectorCallArgs(CGFunctionInfo &FI, unsigned FreeSSERegs,
2390                              bool IsVectorCall, bool IsRegCall) const;
2391 
2392   X86AVXABILevel AVXLevel;
2393 
2394   bool IsMingw64;
2395 };
2396 
2397 class X86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2398 public:
2399   X86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, X86AVXABILevel AVXLevel)
2400       : TargetCodeGenInfo(std::make_unique<X86_64ABIInfo>(CGT, AVXLevel)) {}
2401 
2402   const X86_64ABIInfo &getABIInfo() const {
2403     return static_cast<const X86_64ABIInfo&>(TargetCodeGenInfo::getABIInfo());
2404   }
2405 
2406   /// Disable tail call on x86-64. The epilogue code before the tail jump blocks
2407   /// the autoreleaseRV/retainRV optimization.
2408   bool shouldSuppressTailCallsOfRetainAutoreleasedReturnValue() const override {
2409     return true;
2410   }
2411 
2412   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2413     return 7;
2414   }
2415 
2416   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2417                                llvm::Value *Address) const override {
2418     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2419 
2420     // 0-15 are the 16 integer registers.
2421     // 16 is %rip.
2422     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2423     return false;
2424   }
2425 
2426   llvm::Type* adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
2427                                   StringRef Constraint,
2428                                   llvm::Type* Ty) const override {
2429     return X86AdjustInlineAsmType(CGF, Constraint, Ty);
2430   }
2431 
2432   bool isNoProtoCallVariadic(const CallArgList &args,
2433                              const FunctionNoProtoType *fnType) const override {
2434     // The default CC on x86-64 sets %al to the number of SSA
2435     // registers used, and GCC sets this when calling an unprototyped
2436     // function, so we override the default behavior.  However, don't do
2437     // that when AVX types are involved: the ABI explicitly states it is
2438     // undefined, and it doesn't work in practice because of how the ABI
2439     // defines varargs anyway.
2440     if (fnType->getCallConv() == CC_C) {
2441       bool HasAVXType = false;
2442       for (CallArgList::const_iterator
2443              it = args.begin(), ie = args.end(); it != ie; ++it) {
2444         if (getABIInfo().isPassedUsingAVXType(it->Ty)) {
2445           HasAVXType = true;
2446           break;
2447         }
2448       }
2449 
2450       if (!HasAVXType)
2451         return true;
2452     }
2453 
2454     return TargetCodeGenInfo::isNoProtoCallVariadic(args, fnType);
2455   }
2456 
2457   llvm::Constant *
2458   getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const override {
2459     unsigned Sig = (0xeb << 0) | // jmp rel8
2460                    (0x06 << 8) | //           .+0x08
2461                    ('v' << 16) |
2462                    ('2' << 24);
2463     return llvm::ConstantInt::get(CGM.Int32Ty, Sig);
2464   }
2465 
2466   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2467                            CodeGen::CodeGenModule &CGM) const override {
2468     if (GV->isDeclaration())
2469       return;
2470     if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2471       if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2472         llvm::Function *Fn = cast<llvm::Function>(GV);
2473         Fn->addFnAttr("stackrealign");
2474       }
2475       if (FD->hasAttr<AnyX86InterruptAttr>()) {
2476         llvm::Function *Fn = cast<llvm::Function>(GV);
2477         Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2478       }
2479     }
2480   }
2481 
2482   void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
2483                             const FunctionDecl *Caller,
2484                             const FunctionDecl *Callee,
2485                             const CallArgList &Args) const override;
2486 };
2487 
2488 static void initFeatureMaps(const ASTContext &Ctx,
2489                             llvm::StringMap<bool> &CallerMap,
2490                             const FunctionDecl *Caller,
2491                             llvm::StringMap<bool> &CalleeMap,
2492                             const FunctionDecl *Callee) {
2493   if (CalleeMap.empty() && CallerMap.empty()) {
2494     // The caller is potentially nullptr in the case where the call isn't in a
2495     // function.  In this case, the getFunctionFeatureMap ensures we just get
2496     // the TU level setting (since it cannot be modified by 'target'..
2497     Ctx.getFunctionFeatureMap(CallerMap, Caller);
2498     Ctx.getFunctionFeatureMap(CalleeMap, Callee);
2499   }
2500 }
2501 
2502 static bool checkAVXParamFeature(DiagnosticsEngine &Diag,
2503                                  SourceLocation CallLoc,
2504                                  const llvm::StringMap<bool> &CallerMap,
2505                                  const llvm::StringMap<bool> &CalleeMap,
2506                                  QualType Ty, StringRef Feature,
2507                                  bool IsArgument) {
2508   bool CallerHasFeat = CallerMap.lookup(Feature);
2509   bool CalleeHasFeat = CalleeMap.lookup(Feature);
2510   if (!CallerHasFeat && !CalleeHasFeat)
2511     return Diag.Report(CallLoc, diag::warn_avx_calling_convention)
2512            << IsArgument << Ty << Feature;
2513 
2514   // Mixing calling conventions here is very clearly an error.
2515   if (!CallerHasFeat || !CalleeHasFeat)
2516     return Diag.Report(CallLoc, diag::err_avx_calling_convention)
2517            << IsArgument << Ty << Feature;
2518 
2519   // Else, both caller and callee have the required feature, so there is no need
2520   // to diagnose.
2521   return false;
2522 }
2523 
2524 static bool checkAVXParam(DiagnosticsEngine &Diag, ASTContext &Ctx,
2525                           SourceLocation CallLoc,
2526                           const llvm::StringMap<bool> &CallerMap,
2527                           const llvm::StringMap<bool> &CalleeMap, QualType Ty,
2528                           bool IsArgument) {
2529   uint64_t Size = Ctx.getTypeSize(Ty);
2530   if (Size > 256)
2531     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty,
2532                                 "avx512f", IsArgument);
2533 
2534   if (Size > 128)
2535     return checkAVXParamFeature(Diag, CallLoc, CallerMap, CalleeMap, Ty, "avx",
2536                                 IsArgument);
2537 
2538   return false;
2539 }
2540 
2541 void X86_64TargetCodeGenInfo::checkFunctionCallABI(
2542     CodeGenModule &CGM, SourceLocation CallLoc, const FunctionDecl *Caller,
2543     const FunctionDecl *Callee, const CallArgList &Args) const {
2544   llvm::StringMap<bool> CallerMap;
2545   llvm::StringMap<bool> CalleeMap;
2546   unsigned ArgIndex = 0;
2547 
2548   // We need to loop through the actual call arguments rather than the the
2549   // function's parameters, in case this variadic.
2550   for (const CallArg &Arg : Args) {
2551     // The "avx" feature changes how vectors >128 in size are passed. "avx512f"
2552     // additionally changes how vectors >256 in size are passed. Like GCC, we
2553     // warn when a function is called with an argument where this will change.
2554     // Unlike GCC, we also error when it is an obvious ABI mismatch, that is,
2555     // the caller and callee features are mismatched.
2556     // Unfortunately, we cannot do this diagnostic in SEMA, since the callee can
2557     // change its ABI with attribute-target after this call.
2558     if (Arg.getType()->isVectorType() &&
2559         CGM.getContext().getTypeSize(Arg.getType()) > 128) {
2560       initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2561       QualType Ty = Arg.getType();
2562       // The CallArg seems to have desugared the type already, so for clearer
2563       // diagnostics, replace it with the type in the FunctionDecl if possible.
2564       if (ArgIndex < Callee->getNumParams())
2565         Ty = Callee->getParamDecl(ArgIndex)->getType();
2566 
2567       if (checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2568                         CalleeMap, Ty, /*IsArgument*/ true))
2569         return;
2570     }
2571     ++ArgIndex;
2572   }
2573 
2574   // Check return always, as we don't have a good way of knowing in codegen
2575   // whether this value is used, tail-called, etc.
2576   if (Callee->getReturnType()->isVectorType() &&
2577       CGM.getContext().getTypeSize(Callee->getReturnType()) > 128) {
2578     initFeatureMaps(CGM.getContext(), CallerMap, Caller, CalleeMap, Callee);
2579     checkAVXParam(CGM.getDiags(), CGM.getContext(), CallLoc, CallerMap,
2580                   CalleeMap, Callee->getReturnType(),
2581                   /*IsArgument*/ false);
2582   }
2583 }
2584 
2585 static std::string qualifyWindowsLibrary(llvm::StringRef Lib) {
2586   // If the argument does not end in .lib, automatically add the suffix.
2587   // If the argument contains a space, enclose it in quotes.
2588   // This matches the behavior of MSVC.
2589   bool Quote = (Lib.find(" ") != StringRef::npos);
2590   std::string ArgStr = Quote ? "\"" : "";
2591   ArgStr += Lib;
2592   if (!Lib.endswith_lower(".lib") && !Lib.endswith_lower(".a"))
2593     ArgStr += ".lib";
2594   ArgStr += Quote ? "\"" : "";
2595   return ArgStr;
2596 }
2597 
2598 class WinX86_32TargetCodeGenInfo : public X86_32TargetCodeGenInfo {
2599 public:
2600   WinX86_32TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2601         bool DarwinVectorABI, bool RetSmallStructInRegABI, bool Win32StructABI,
2602         unsigned NumRegisterParameters)
2603     : X86_32TargetCodeGenInfo(CGT, DarwinVectorABI, RetSmallStructInRegABI,
2604         Win32StructABI, NumRegisterParameters, false) {}
2605 
2606   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2607                            CodeGen::CodeGenModule &CGM) const override;
2608 
2609   void getDependentLibraryOption(llvm::StringRef Lib,
2610                                  llvm::SmallString<24> &Opt) const override {
2611     Opt = "/DEFAULTLIB:";
2612     Opt += qualifyWindowsLibrary(Lib);
2613   }
2614 
2615   void getDetectMismatchOption(llvm::StringRef Name,
2616                                llvm::StringRef Value,
2617                                llvm::SmallString<32> &Opt) const override {
2618     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2619   }
2620 };
2621 
2622 static void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2623                                           CodeGen::CodeGenModule &CGM) {
2624   if (llvm::Function *Fn = dyn_cast_or_null<llvm::Function>(GV)) {
2625 
2626     if (CGM.getCodeGenOpts().StackProbeSize != 4096)
2627       Fn->addFnAttr("stack-probe-size",
2628                     llvm::utostr(CGM.getCodeGenOpts().StackProbeSize));
2629     if (CGM.getCodeGenOpts().NoStackArgProbe)
2630       Fn->addFnAttr("no-stack-arg-probe");
2631   }
2632 }
2633 
2634 void WinX86_32TargetCodeGenInfo::setTargetAttributes(
2635     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2636   X86_32TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2637   if (GV->isDeclaration())
2638     return;
2639   addStackProbeTargetAttributes(D, GV, CGM);
2640 }
2641 
2642 class WinX86_64TargetCodeGenInfo : public TargetCodeGenInfo {
2643 public:
2644   WinX86_64TargetCodeGenInfo(CodeGen::CodeGenTypes &CGT,
2645                              X86AVXABILevel AVXLevel)
2646       : TargetCodeGenInfo(std::make_unique<WinX86_64ABIInfo>(CGT, AVXLevel)) {}
2647 
2648   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
2649                            CodeGen::CodeGenModule &CGM) const override;
2650 
2651   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
2652     return 7;
2653   }
2654 
2655   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
2656                                llvm::Value *Address) const override {
2657     llvm::Value *Eight8 = llvm::ConstantInt::get(CGF.Int8Ty, 8);
2658 
2659     // 0-15 are the 16 integer registers.
2660     // 16 is %rip.
2661     AssignToArrayRange(CGF.Builder, Address, Eight8, 0, 16);
2662     return false;
2663   }
2664 
2665   void getDependentLibraryOption(llvm::StringRef Lib,
2666                                  llvm::SmallString<24> &Opt) const override {
2667     Opt = "/DEFAULTLIB:";
2668     Opt += qualifyWindowsLibrary(Lib);
2669   }
2670 
2671   void getDetectMismatchOption(llvm::StringRef Name,
2672                                llvm::StringRef Value,
2673                                llvm::SmallString<32> &Opt) const override {
2674     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
2675   }
2676 };
2677 
2678 void WinX86_64TargetCodeGenInfo::setTargetAttributes(
2679     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
2680   TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
2681   if (GV->isDeclaration())
2682     return;
2683   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
2684     if (FD->hasAttr<X86ForceAlignArgPointerAttr>()) {
2685       llvm::Function *Fn = cast<llvm::Function>(GV);
2686       Fn->addFnAttr("stackrealign");
2687     }
2688     if (FD->hasAttr<AnyX86InterruptAttr>()) {
2689       llvm::Function *Fn = cast<llvm::Function>(GV);
2690       Fn->setCallingConv(llvm::CallingConv::X86_INTR);
2691     }
2692   }
2693 
2694   addStackProbeTargetAttributes(D, GV, CGM);
2695 }
2696 }
2697 
2698 void X86_64ABIInfo::postMerge(unsigned AggregateSize, Class &Lo,
2699                               Class &Hi) const {
2700   // AMD64-ABI 3.2.3p2: Rule 5. Then a post merger cleanup is done:
2701   //
2702   // (a) If one of the classes is Memory, the whole argument is passed in
2703   //     memory.
2704   //
2705   // (b) If X87UP is not preceded by X87, the whole argument is passed in
2706   //     memory.
2707   //
2708   // (c) If the size of the aggregate exceeds two eightbytes and the first
2709   //     eightbyte isn't SSE or any other eightbyte isn't SSEUP, the whole
2710   //     argument is passed in memory. NOTE: This is necessary to keep the
2711   //     ABI working for processors that don't support the __m256 type.
2712   //
2713   // (d) If SSEUP is not preceded by SSE or SSEUP, it is converted to SSE.
2714   //
2715   // Some of these are enforced by the merging logic.  Others can arise
2716   // only with unions; for example:
2717   //   union { _Complex double; unsigned; }
2718   //
2719   // Note that clauses (b) and (c) were added in 0.98.
2720   //
2721   if (Hi == Memory)
2722     Lo = Memory;
2723   if (Hi == X87Up && Lo != X87 && honorsRevision0_98())
2724     Lo = Memory;
2725   if (AggregateSize > 128 && (Lo != SSE || Hi != SSEUp))
2726     Lo = Memory;
2727   if (Hi == SSEUp && Lo != SSE)
2728     Hi = SSE;
2729 }
2730 
2731 X86_64ABIInfo::Class X86_64ABIInfo::merge(Class Accum, Class Field) {
2732   // AMD64-ABI 3.2.3p2: Rule 4. Each field of an object is
2733   // classified recursively so that always two fields are
2734   // considered. The resulting class is calculated according to
2735   // the classes of the fields in the eightbyte:
2736   //
2737   // (a) If both classes are equal, this is the resulting class.
2738   //
2739   // (b) If one of the classes is NO_CLASS, the resulting class is
2740   // the other class.
2741   //
2742   // (c) If one of the classes is MEMORY, the result is the MEMORY
2743   // class.
2744   //
2745   // (d) If one of the classes is INTEGER, the result is the
2746   // INTEGER.
2747   //
2748   // (e) If one of the classes is X87, X87UP, COMPLEX_X87 class,
2749   // MEMORY is used as class.
2750   //
2751   // (f) Otherwise class SSE is used.
2752 
2753   // Accum should never be memory (we should have returned) or
2754   // ComplexX87 (because this cannot be passed in a structure).
2755   assert((Accum != Memory && Accum != ComplexX87) &&
2756          "Invalid accumulated classification during merge.");
2757   if (Accum == Field || Field == NoClass)
2758     return Accum;
2759   if (Field == Memory)
2760     return Memory;
2761   if (Accum == NoClass)
2762     return Field;
2763   if (Accum == Integer || Field == Integer)
2764     return Integer;
2765   if (Field == X87 || Field == X87Up || Field == ComplexX87 ||
2766       Accum == X87 || Accum == X87Up)
2767     return Memory;
2768   return SSE;
2769 }
2770 
2771 void X86_64ABIInfo::classify(QualType Ty, uint64_t OffsetBase,
2772                              Class &Lo, Class &Hi, bool isNamedArg) const {
2773   // FIXME: This code can be simplified by introducing a simple value class for
2774   // Class pairs with appropriate constructor methods for the various
2775   // situations.
2776 
2777   // FIXME: Some of the split computations are wrong; unaligned vectors
2778   // shouldn't be passed in registers for example, so there is no chance they
2779   // can straddle an eightbyte. Verify & simplify.
2780 
2781   Lo = Hi = NoClass;
2782 
2783   Class &Current = OffsetBase < 64 ? Lo : Hi;
2784   Current = Memory;
2785 
2786   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
2787     BuiltinType::Kind k = BT->getKind();
2788 
2789     if (k == BuiltinType::Void) {
2790       Current = NoClass;
2791     } else if (k == BuiltinType::Int128 || k == BuiltinType::UInt128) {
2792       Lo = Integer;
2793       Hi = Integer;
2794     } else if (k >= BuiltinType::Bool && k <= BuiltinType::LongLong) {
2795       Current = Integer;
2796     } else if (k == BuiltinType::Float || k == BuiltinType::Double) {
2797       Current = SSE;
2798     } else if (k == BuiltinType::LongDouble) {
2799       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2800       if (LDF == &llvm::APFloat::IEEEquad()) {
2801         Lo = SSE;
2802         Hi = SSEUp;
2803       } else if (LDF == &llvm::APFloat::x87DoubleExtended()) {
2804         Lo = X87;
2805         Hi = X87Up;
2806       } else if (LDF == &llvm::APFloat::IEEEdouble()) {
2807         Current = SSE;
2808       } else
2809         llvm_unreachable("unexpected long double representation!");
2810     }
2811     // FIXME: _Decimal32 and _Decimal64 are SSE.
2812     // FIXME: _float128 and _Decimal128 are (SSE, SSEUp).
2813     return;
2814   }
2815 
2816   if (const EnumType *ET = Ty->getAs<EnumType>()) {
2817     // Classify the underlying integer type.
2818     classify(ET->getDecl()->getIntegerType(), OffsetBase, Lo, Hi, isNamedArg);
2819     return;
2820   }
2821 
2822   if (Ty->hasPointerRepresentation()) {
2823     Current = Integer;
2824     return;
2825   }
2826 
2827   if (Ty->isMemberPointerType()) {
2828     if (Ty->isMemberFunctionPointerType()) {
2829       if (Has64BitPointers) {
2830         // If Has64BitPointers, this is an {i64, i64}, so classify both
2831         // Lo and Hi now.
2832         Lo = Hi = Integer;
2833       } else {
2834         // Otherwise, with 32-bit pointers, this is an {i32, i32}. If that
2835         // straddles an eightbyte boundary, Hi should be classified as well.
2836         uint64_t EB_FuncPtr = (OffsetBase) / 64;
2837         uint64_t EB_ThisAdj = (OffsetBase + 64 - 1) / 64;
2838         if (EB_FuncPtr != EB_ThisAdj) {
2839           Lo = Hi = Integer;
2840         } else {
2841           Current = Integer;
2842         }
2843       }
2844     } else {
2845       Current = Integer;
2846     }
2847     return;
2848   }
2849 
2850   if (const VectorType *VT = Ty->getAs<VectorType>()) {
2851     uint64_t Size = getContext().getTypeSize(VT);
2852     if (Size == 1 || Size == 8 || Size == 16 || Size == 32) {
2853       // gcc passes the following as integer:
2854       // 4 bytes - <4 x char>, <2 x short>, <1 x int>, <1 x float>
2855       // 2 bytes - <2 x char>, <1 x short>
2856       // 1 byte  - <1 x char>
2857       Current = Integer;
2858 
2859       // If this type crosses an eightbyte boundary, it should be
2860       // split.
2861       uint64_t EB_Lo = (OffsetBase) / 64;
2862       uint64_t EB_Hi = (OffsetBase + Size - 1) / 64;
2863       if (EB_Lo != EB_Hi)
2864         Hi = Lo;
2865     } else if (Size == 64) {
2866       QualType ElementType = VT->getElementType();
2867 
2868       // gcc passes <1 x double> in memory. :(
2869       if (ElementType->isSpecificBuiltinType(BuiltinType::Double))
2870         return;
2871 
2872       // gcc passes <1 x long long> as SSE but clang used to unconditionally
2873       // pass them as integer.  For platforms where clang is the de facto
2874       // platform compiler, we must continue to use integer.
2875       if (!classifyIntegerMMXAsSSE() &&
2876           (ElementType->isSpecificBuiltinType(BuiltinType::LongLong) ||
2877            ElementType->isSpecificBuiltinType(BuiltinType::ULongLong) ||
2878            ElementType->isSpecificBuiltinType(BuiltinType::Long) ||
2879            ElementType->isSpecificBuiltinType(BuiltinType::ULong)))
2880         Current = Integer;
2881       else
2882         Current = SSE;
2883 
2884       // If this type crosses an eightbyte boundary, it should be
2885       // split.
2886       if (OffsetBase && OffsetBase != 64)
2887         Hi = Lo;
2888     } else if (Size == 128 ||
2889                (isNamedArg && Size <= getNativeVectorSizeForAVXABI(AVXLevel))) {
2890       QualType ElementType = VT->getElementType();
2891 
2892       // gcc passes 256 and 512 bit <X x __int128> vectors in memory. :(
2893       if (passInt128VectorsInMem() && Size != 128 &&
2894           (ElementType->isSpecificBuiltinType(BuiltinType::Int128) ||
2895            ElementType->isSpecificBuiltinType(BuiltinType::UInt128)))
2896         return;
2897 
2898       // Arguments of 256-bits are split into four eightbyte chunks. The
2899       // least significant one belongs to class SSE and all the others to class
2900       // SSEUP. The original Lo and Hi design considers that types can't be
2901       // greater than 128-bits, so a 64-bit split in Hi and Lo makes sense.
2902       // This design isn't correct for 256-bits, but since there're no cases
2903       // where the upper parts would need to be inspected, avoid adding
2904       // complexity and just consider Hi to match the 64-256 part.
2905       //
2906       // Note that per 3.5.7 of AMD64-ABI, 256-bit args are only passed in
2907       // registers if they are "named", i.e. not part of the "..." of a
2908       // variadic function.
2909       //
2910       // Similarly, per 3.2.3. of the AVX512 draft, 512-bits ("named") args are
2911       // split into eight eightbyte chunks, one SSE and seven SSEUP.
2912       Lo = SSE;
2913       Hi = SSEUp;
2914     }
2915     return;
2916   }
2917 
2918   if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
2919     QualType ET = getContext().getCanonicalType(CT->getElementType());
2920 
2921     uint64_t Size = getContext().getTypeSize(Ty);
2922     if (ET->isIntegralOrEnumerationType()) {
2923       if (Size <= 64)
2924         Current = Integer;
2925       else if (Size <= 128)
2926         Lo = Hi = Integer;
2927     } else if (ET == getContext().FloatTy) {
2928       Current = SSE;
2929     } else if (ET == getContext().DoubleTy) {
2930       Lo = Hi = SSE;
2931     } else if (ET == getContext().LongDoubleTy) {
2932       const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
2933       if (LDF == &llvm::APFloat::IEEEquad())
2934         Current = Memory;
2935       else if (LDF == &llvm::APFloat::x87DoubleExtended())
2936         Current = ComplexX87;
2937       else if (LDF == &llvm::APFloat::IEEEdouble())
2938         Lo = Hi = SSE;
2939       else
2940         llvm_unreachable("unexpected long double representation!");
2941     }
2942 
2943     // If this complex type crosses an eightbyte boundary then it
2944     // should be split.
2945     uint64_t EB_Real = (OffsetBase) / 64;
2946     uint64_t EB_Imag = (OffsetBase + getContext().getTypeSize(ET)) / 64;
2947     if (Hi == NoClass && EB_Real != EB_Imag)
2948       Hi = Lo;
2949 
2950     return;
2951   }
2952 
2953   if (const auto *EITy = Ty->getAs<ExtIntType>()) {
2954     if (EITy->getNumBits() <= 64)
2955       Current = Integer;
2956     else if (EITy->getNumBits() <= 128)
2957       Lo = Hi = Integer;
2958     // Larger values need to get passed in memory.
2959     return;
2960   }
2961 
2962   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
2963     // Arrays are treated like structures.
2964 
2965     uint64_t Size = getContext().getTypeSize(Ty);
2966 
2967     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
2968     // than eight eightbytes, ..., it has class MEMORY.
2969     if (Size > 512)
2970       return;
2971 
2972     // AMD64-ABI 3.2.3p2: Rule 1. If ..., or it contains unaligned
2973     // fields, it has class MEMORY.
2974     //
2975     // Only need to check alignment of array base.
2976     if (OffsetBase % getContext().getTypeAlign(AT->getElementType()))
2977       return;
2978 
2979     // Otherwise implement simplified merge. We could be smarter about
2980     // this, but it isn't worth it and would be harder to verify.
2981     Current = NoClass;
2982     uint64_t EltSize = getContext().getTypeSize(AT->getElementType());
2983     uint64_t ArraySize = AT->getSize().getZExtValue();
2984 
2985     // The only case a 256-bit wide vector could be used is when the array
2986     // contains a single 256-bit element. Since Lo and Hi logic isn't extended
2987     // to work for sizes wider than 128, early check and fallback to memory.
2988     //
2989     if (Size > 128 &&
2990         (Size != EltSize || Size > getNativeVectorSizeForAVXABI(AVXLevel)))
2991       return;
2992 
2993     for (uint64_t i=0, Offset=OffsetBase; i<ArraySize; ++i, Offset += EltSize) {
2994       Class FieldLo, FieldHi;
2995       classify(AT->getElementType(), Offset, FieldLo, FieldHi, isNamedArg);
2996       Lo = merge(Lo, FieldLo);
2997       Hi = merge(Hi, FieldHi);
2998       if (Lo == Memory || Hi == Memory)
2999         break;
3000     }
3001 
3002     postMerge(Size, Lo, Hi);
3003     assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp array classification.");
3004     return;
3005   }
3006 
3007   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3008     uint64_t Size = getContext().getTypeSize(Ty);
3009 
3010     // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger
3011     // than eight eightbytes, ..., it has class MEMORY.
3012     if (Size > 512)
3013       return;
3014 
3015     // AMD64-ABI 3.2.3p2: Rule 2. If a C++ object has either a non-trivial
3016     // copy constructor or a non-trivial destructor, it is passed by invisible
3017     // reference.
3018     if (getRecordArgABI(RT, getCXXABI()))
3019       return;
3020 
3021     const RecordDecl *RD = RT->getDecl();
3022 
3023     // Assume variable sized types are passed in memory.
3024     if (RD->hasFlexibleArrayMember())
3025       return;
3026 
3027     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
3028 
3029     // Reset Lo class, this will be recomputed.
3030     Current = NoClass;
3031 
3032     // If this is a C++ record, classify the bases first.
3033     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3034       for (const auto &I : CXXRD->bases()) {
3035         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3036                "Unexpected base class!");
3037         const auto *Base =
3038             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3039 
3040         // Classify this field.
3041         //
3042         // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate exceeds a
3043         // single eightbyte, each is classified separately. Each eightbyte gets
3044         // initialized to class NO_CLASS.
3045         Class FieldLo, FieldHi;
3046         uint64_t Offset =
3047           OffsetBase + getContext().toBits(Layout.getBaseClassOffset(Base));
3048         classify(I.getType(), Offset, FieldLo, FieldHi, isNamedArg);
3049         Lo = merge(Lo, FieldLo);
3050         Hi = merge(Hi, FieldHi);
3051         if (Lo == Memory || Hi == Memory) {
3052           postMerge(Size, Lo, Hi);
3053           return;
3054         }
3055       }
3056     }
3057 
3058     // Classify the fields one at a time, merging the results.
3059     unsigned idx = 0;
3060     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3061            i != e; ++i, ++idx) {
3062       uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3063       bool BitField = i->isBitField();
3064 
3065       // Ignore padding bit-fields.
3066       if (BitField && i->isUnnamedBitfield())
3067         continue;
3068 
3069       // AMD64-ABI 3.2.3p2: Rule 1. If the size of an object is larger than
3070       // four eightbytes, or it contains unaligned fields, it has class MEMORY.
3071       //
3072       // The only case a 256-bit wide vector could be used is when the struct
3073       // contains a single 256-bit element. Since Lo and Hi logic isn't extended
3074       // to work for sizes wider than 128, early check and fallback to memory.
3075       //
3076       if (Size > 128 && (Size != getContext().getTypeSize(i->getType()) ||
3077                          Size > getNativeVectorSizeForAVXABI(AVXLevel))) {
3078         Lo = Memory;
3079         postMerge(Size, Lo, Hi);
3080         return;
3081       }
3082       // Note, skip this test for bit-fields, see below.
3083       if (!BitField && Offset % getContext().getTypeAlign(i->getType())) {
3084         Lo = Memory;
3085         postMerge(Size, Lo, Hi);
3086         return;
3087       }
3088 
3089       // Classify this field.
3090       //
3091       // AMD64-ABI 3.2.3p2: Rule 3. If the size of the aggregate
3092       // exceeds a single eightbyte, each is classified
3093       // separately. Each eightbyte gets initialized to class
3094       // NO_CLASS.
3095       Class FieldLo, FieldHi;
3096 
3097       // Bit-fields require special handling, they do not force the
3098       // structure to be passed in memory even if unaligned, and
3099       // therefore they can straddle an eightbyte.
3100       if (BitField) {
3101         assert(!i->isUnnamedBitfield());
3102         uint64_t Offset = OffsetBase + Layout.getFieldOffset(idx);
3103         uint64_t Size = i->getBitWidthValue(getContext());
3104 
3105         uint64_t EB_Lo = Offset / 64;
3106         uint64_t EB_Hi = (Offset + Size - 1) / 64;
3107 
3108         if (EB_Lo) {
3109           assert(EB_Hi == EB_Lo && "Invalid classification, type > 16 bytes.");
3110           FieldLo = NoClass;
3111           FieldHi = Integer;
3112         } else {
3113           FieldLo = Integer;
3114           FieldHi = EB_Hi ? Integer : NoClass;
3115         }
3116       } else
3117         classify(i->getType(), Offset, FieldLo, FieldHi, isNamedArg);
3118       Lo = merge(Lo, FieldLo);
3119       Hi = merge(Hi, FieldHi);
3120       if (Lo == Memory || Hi == Memory)
3121         break;
3122     }
3123 
3124     postMerge(Size, Lo, Hi);
3125   }
3126 }
3127 
3128 ABIArgInfo X86_64ABIInfo::getIndirectReturnResult(QualType Ty) const {
3129   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3130   // place naturally.
3131   if (!isAggregateTypeForABI(Ty)) {
3132     // Treat an enum type as its underlying type.
3133     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3134       Ty = EnumTy->getDecl()->getIntegerType();
3135 
3136     if (Ty->isExtIntType())
3137       return getNaturalAlignIndirect(Ty);
3138 
3139     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3140                                               : ABIArgInfo::getDirect());
3141   }
3142 
3143   return getNaturalAlignIndirect(Ty);
3144 }
3145 
3146 bool X86_64ABIInfo::IsIllegalVectorType(QualType Ty) const {
3147   if (const VectorType *VecTy = Ty->getAs<VectorType>()) {
3148     uint64_t Size = getContext().getTypeSize(VecTy);
3149     unsigned LargestVector = getNativeVectorSizeForAVXABI(AVXLevel);
3150     if (Size <= 64 || Size > LargestVector)
3151       return true;
3152     QualType EltTy = VecTy->getElementType();
3153     if (passInt128VectorsInMem() &&
3154         (EltTy->isSpecificBuiltinType(BuiltinType::Int128) ||
3155          EltTy->isSpecificBuiltinType(BuiltinType::UInt128)))
3156       return true;
3157   }
3158 
3159   return false;
3160 }
3161 
3162 ABIArgInfo X86_64ABIInfo::getIndirectResult(QualType Ty,
3163                                             unsigned freeIntRegs) const {
3164   // If this is a scalar LLVM value then assume LLVM will pass it in the right
3165   // place naturally.
3166   //
3167   // This assumption is optimistic, as there could be free registers available
3168   // when we need to pass this argument in memory, and LLVM could try to pass
3169   // the argument in the free register. This does not seem to happen currently,
3170   // but this code would be much safer if we could mark the argument with
3171   // 'onstack'. See PR12193.
3172   if (!isAggregateTypeForABI(Ty) && !IsIllegalVectorType(Ty) &&
3173       !Ty->isExtIntType()) {
3174     // Treat an enum type as its underlying type.
3175     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3176       Ty = EnumTy->getDecl()->getIntegerType();
3177 
3178     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
3179                                               : ABIArgInfo::getDirect());
3180   }
3181 
3182   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
3183     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
3184 
3185   // Compute the byval alignment. We specify the alignment of the byval in all
3186   // cases so that the mid-level optimizer knows the alignment of the byval.
3187   unsigned Align = std::max(getContext().getTypeAlign(Ty) / 8, 8U);
3188 
3189   // Attempt to avoid passing indirect results using byval when possible. This
3190   // is important for good codegen.
3191   //
3192   // We do this by coercing the value into a scalar type which the backend can
3193   // handle naturally (i.e., without using byval).
3194   //
3195   // For simplicity, we currently only do this when we have exhausted all of the
3196   // free integer registers. Doing this when there are free integer registers
3197   // would require more care, as we would have to ensure that the coerced value
3198   // did not claim the unused register. That would require either reording the
3199   // arguments to the function (so that any subsequent inreg values came first),
3200   // or only doing this optimization when there were no following arguments that
3201   // might be inreg.
3202   //
3203   // We currently expect it to be rare (particularly in well written code) for
3204   // arguments to be passed on the stack when there are still free integer
3205   // registers available (this would typically imply large structs being passed
3206   // by value), so this seems like a fair tradeoff for now.
3207   //
3208   // We can revisit this if the backend grows support for 'onstack' parameter
3209   // attributes. See PR12193.
3210   if (freeIntRegs == 0) {
3211     uint64_t Size = getContext().getTypeSize(Ty);
3212 
3213     // If this type fits in an eightbyte, coerce it into the matching integral
3214     // type, which will end up on the stack (with alignment 8).
3215     if (Align == 8 && Size <= 64)
3216       return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(),
3217                                                           Size));
3218   }
3219 
3220   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(Align));
3221 }
3222 
3223 /// The ABI specifies that a value should be passed in a full vector XMM/YMM
3224 /// register. Pick an LLVM IR type that will be passed as a vector register.
3225 llvm::Type *X86_64ABIInfo::GetByteVectorType(QualType Ty) const {
3226   // Wrapper structs/arrays that only contain vectors are passed just like
3227   // vectors; strip them off if present.
3228   if (const Type *InnerTy = isSingleElementStruct(Ty, getContext()))
3229     Ty = QualType(InnerTy, 0);
3230 
3231   llvm::Type *IRType = CGT.ConvertType(Ty);
3232   if (isa<llvm::VectorType>(IRType)) {
3233     // Don't pass vXi128 vectors in their native type, the backend can't
3234     // legalize them.
3235     if (passInt128VectorsInMem() &&
3236         cast<llvm::VectorType>(IRType)->getElementType()->isIntegerTy(128)) {
3237       // Use a vXi64 vector.
3238       uint64_t Size = getContext().getTypeSize(Ty);
3239       return llvm::FixedVectorType::get(llvm::Type::getInt64Ty(getVMContext()),
3240                                         Size / 64);
3241     }
3242 
3243     return IRType;
3244   }
3245 
3246   if (IRType->getTypeID() == llvm::Type::FP128TyID)
3247     return IRType;
3248 
3249   // We couldn't find the preferred IR vector type for 'Ty'.
3250   uint64_t Size = getContext().getTypeSize(Ty);
3251   assert((Size == 128 || Size == 256 || Size == 512) && "Invalid type found!");
3252 
3253 
3254   // Return a LLVM IR vector type based on the size of 'Ty'.
3255   return llvm::FixedVectorType::get(llvm::Type::getDoubleTy(getVMContext()),
3256                                     Size / 64);
3257 }
3258 
3259 /// BitsContainNoUserData - Return true if the specified [start,end) bit range
3260 /// is known to either be off the end of the specified type or being in
3261 /// alignment padding.  The user type specified is known to be at most 128 bits
3262 /// in size, and have passed through X86_64ABIInfo::classify with a successful
3263 /// classification that put one of the two halves in the INTEGER class.
3264 ///
3265 /// It is conservatively correct to return false.
3266 static bool BitsContainNoUserData(QualType Ty, unsigned StartBit,
3267                                   unsigned EndBit, ASTContext &Context) {
3268   // If the bytes being queried are off the end of the type, there is no user
3269   // data hiding here.  This handles analysis of builtins, vectors and other
3270   // types that don't contain interesting padding.
3271   unsigned TySize = (unsigned)Context.getTypeSize(Ty);
3272   if (TySize <= StartBit)
3273     return true;
3274 
3275   if (const ConstantArrayType *AT = Context.getAsConstantArrayType(Ty)) {
3276     unsigned EltSize = (unsigned)Context.getTypeSize(AT->getElementType());
3277     unsigned NumElts = (unsigned)AT->getSize().getZExtValue();
3278 
3279     // Check each element to see if the element overlaps with the queried range.
3280     for (unsigned i = 0; i != NumElts; ++i) {
3281       // If the element is after the span we care about, then we're done..
3282       unsigned EltOffset = i*EltSize;
3283       if (EltOffset >= EndBit) break;
3284 
3285       unsigned EltStart = EltOffset < StartBit ? StartBit-EltOffset :0;
3286       if (!BitsContainNoUserData(AT->getElementType(), EltStart,
3287                                  EndBit-EltOffset, Context))
3288         return false;
3289     }
3290     // If it overlaps no elements, then it is safe to process as padding.
3291     return true;
3292   }
3293 
3294   if (const RecordType *RT = Ty->getAs<RecordType>()) {
3295     const RecordDecl *RD = RT->getDecl();
3296     const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
3297 
3298     // If this is a C++ record, check the bases first.
3299     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
3300       for (const auto &I : CXXRD->bases()) {
3301         assert(!I.isVirtual() && !I.getType()->isDependentType() &&
3302                "Unexpected base class!");
3303         const auto *Base =
3304             cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl());
3305 
3306         // If the base is after the span we care about, ignore it.
3307         unsigned BaseOffset = Context.toBits(Layout.getBaseClassOffset(Base));
3308         if (BaseOffset >= EndBit) continue;
3309 
3310         unsigned BaseStart = BaseOffset < StartBit ? StartBit-BaseOffset :0;
3311         if (!BitsContainNoUserData(I.getType(), BaseStart,
3312                                    EndBit-BaseOffset, Context))
3313           return false;
3314       }
3315     }
3316 
3317     // Verify that no field has data that overlaps the region of interest.  Yes
3318     // this could be sped up a lot by being smarter about queried fields,
3319     // however we're only looking at structs up to 16 bytes, so we don't care
3320     // much.
3321     unsigned idx = 0;
3322     for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
3323          i != e; ++i, ++idx) {
3324       unsigned FieldOffset = (unsigned)Layout.getFieldOffset(idx);
3325 
3326       // If we found a field after the region we care about, then we're done.
3327       if (FieldOffset >= EndBit) break;
3328 
3329       unsigned FieldStart = FieldOffset < StartBit ? StartBit-FieldOffset :0;
3330       if (!BitsContainNoUserData(i->getType(), FieldStart, EndBit-FieldOffset,
3331                                  Context))
3332         return false;
3333     }
3334 
3335     // If nothing in this record overlapped the area of interest, then we're
3336     // clean.
3337     return true;
3338   }
3339 
3340   return false;
3341 }
3342 
3343 /// ContainsFloatAtOffset - Return true if the specified LLVM IR type has a
3344 /// float member at the specified offset.  For example, {int,{float}} has a
3345 /// float at offset 4.  It is conservatively correct for this routine to return
3346 /// false.
3347 static bool ContainsFloatAtOffset(llvm::Type *IRType, unsigned IROffset,
3348                                   const llvm::DataLayout &TD) {
3349   // Base case if we find a float.
3350   if (IROffset == 0 && IRType->isFloatTy())
3351     return true;
3352 
3353   // If this is a struct, recurse into the field at the specified offset.
3354   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3355     const llvm::StructLayout *SL = TD.getStructLayout(STy);
3356     unsigned Elt = SL->getElementContainingOffset(IROffset);
3357     IROffset -= SL->getElementOffset(Elt);
3358     return ContainsFloatAtOffset(STy->getElementType(Elt), IROffset, TD);
3359   }
3360 
3361   // If this is an array, recurse into the field at the specified offset.
3362   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3363     llvm::Type *EltTy = ATy->getElementType();
3364     unsigned EltSize = TD.getTypeAllocSize(EltTy);
3365     IROffset -= IROffset/EltSize*EltSize;
3366     return ContainsFloatAtOffset(EltTy, IROffset, TD);
3367   }
3368 
3369   return false;
3370 }
3371 
3372 
3373 /// GetSSETypeAtOffset - Return a type that will be passed by the backend in the
3374 /// low 8 bytes of an XMM register, corresponding to the SSE class.
3375 llvm::Type *X86_64ABIInfo::
3376 GetSSETypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3377                    QualType SourceTy, unsigned SourceOffset) const {
3378   // The only three choices we have are either double, <2 x float>, or float. We
3379   // pass as float if the last 4 bytes is just padding.  This happens for
3380   // structs that contain 3 floats.
3381   if (BitsContainNoUserData(SourceTy, SourceOffset*8+32,
3382                             SourceOffset*8+64, getContext()))
3383     return llvm::Type::getFloatTy(getVMContext());
3384 
3385   // We want to pass as <2 x float> if the LLVM IR type contains a float at
3386   // offset+0 and offset+4.  Walk the LLVM IR type to find out if this is the
3387   // case.
3388   if (ContainsFloatAtOffset(IRType, IROffset, getDataLayout()) &&
3389       ContainsFloatAtOffset(IRType, IROffset+4, getDataLayout()))
3390     return llvm::FixedVectorType::get(llvm::Type::getFloatTy(getVMContext()),
3391                                       2);
3392 
3393   return llvm::Type::getDoubleTy(getVMContext());
3394 }
3395 
3396 
3397 /// GetINTEGERTypeAtOffset - The ABI specifies that a value should be passed in
3398 /// an 8-byte GPR.  This means that we either have a scalar or we are talking
3399 /// about the high or low part of an up-to-16-byte struct.  This routine picks
3400 /// the best LLVM IR type to represent this, which may be i64 or may be anything
3401 /// else that the backend will pass in a GPR that works better (e.g. i8, %foo*,
3402 /// etc).
3403 ///
3404 /// PrefType is an LLVM IR type that corresponds to (part of) the IR type for
3405 /// the source type.  IROffset is an offset in bytes into the LLVM IR type that
3406 /// the 8-byte value references.  PrefType may be null.
3407 ///
3408 /// SourceTy is the source-level type for the entire argument.  SourceOffset is
3409 /// an offset into this that we're processing (which is always either 0 or 8).
3410 ///
3411 llvm::Type *X86_64ABIInfo::
3412 GetINTEGERTypeAtOffset(llvm::Type *IRType, unsigned IROffset,
3413                        QualType SourceTy, unsigned SourceOffset) const {
3414   // If we're dealing with an un-offset LLVM IR type, then it means that we're
3415   // returning an 8-byte unit starting with it.  See if we can safely use it.
3416   if (IROffset == 0) {
3417     // Pointers and int64's always fill the 8-byte unit.
3418     if ((isa<llvm::PointerType>(IRType) && Has64BitPointers) ||
3419         IRType->isIntegerTy(64))
3420       return IRType;
3421 
3422     // If we have a 1/2/4-byte integer, we can use it only if the rest of the
3423     // goodness in the source type is just tail padding.  This is allowed to
3424     // kick in for struct {double,int} on the int, but not on
3425     // struct{double,int,int} because we wouldn't return the second int.  We
3426     // have to do this analysis on the source type because we can't depend on
3427     // unions being lowered a specific way etc.
3428     if (IRType->isIntegerTy(8) || IRType->isIntegerTy(16) ||
3429         IRType->isIntegerTy(32) ||
3430         (isa<llvm::PointerType>(IRType) && !Has64BitPointers)) {
3431       unsigned BitWidth = isa<llvm::PointerType>(IRType) ? 32 :
3432           cast<llvm::IntegerType>(IRType)->getBitWidth();
3433 
3434       if (BitsContainNoUserData(SourceTy, SourceOffset*8+BitWidth,
3435                                 SourceOffset*8+64, getContext()))
3436         return IRType;
3437     }
3438   }
3439 
3440   if (llvm::StructType *STy = dyn_cast<llvm::StructType>(IRType)) {
3441     // If this is a struct, recurse into the field at the specified offset.
3442     const llvm::StructLayout *SL = getDataLayout().getStructLayout(STy);
3443     if (IROffset < SL->getSizeInBytes()) {
3444       unsigned FieldIdx = SL->getElementContainingOffset(IROffset);
3445       IROffset -= SL->getElementOffset(FieldIdx);
3446 
3447       return GetINTEGERTypeAtOffset(STy->getElementType(FieldIdx), IROffset,
3448                                     SourceTy, SourceOffset);
3449     }
3450   }
3451 
3452   if (llvm::ArrayType *ATy = dyn_cast<llvm::ArrayType>(IRType)) {
3453     llvm::Type *EltTy = ATy->getElementType();
3454     unsigned EltSize = getDataLayout().getTypeAllocSize(EltTy);
3455     unsigned EltOffset = IROffset/EltSize*EltSize;
3456     return GetINTEGERTypeAtOffset(EltTy, IROffset-EltOffset, SourceTy,
3457                                   SourceOffset);
3458   }
3459 
3460   // Okay, we don't have any better idea of what to pass, so we pass this in an
3461   // integer register that isn't too big to fit the rest of the struct.
3462   unsigned TySizeInBytes =
3463     (unsigned)getContext().getTypeSizeInChars(SourceTy).getQuantity();
3464 
3465   assert(TySizeInBytes != SourceOffset && "Empty field?");
3466 
3467   // It is always safe to classify this as an integer type up to i64 that
3468   // isn't larger than the structure.
3469   return llvm::IntegerType::get(getVMContext(),
3470                                 std::min(TySizeInBytes-SourceOffset, 8U)*8);
3471 }
3472 
3473 
3474 /// GetX86_64ByValArgumentPair - Given a high and low type that can ideally
3475 /// be used as elements of a two register pair to pass or return, return a
3476 /// first class aggregate to represent them.  For example, if the low part of
3477 /// a by-value argument should be passed as i32* and the high part as float,
3478 /// return {i32*, float}.
3479 static llvm::Type *
3480 GetX86_64ByValArgumentPair(llvm::Type *Lo, llvm::Type *Hi,
3481                            const llvm::DataLayout &TD) {
3482   // In order to correctly satisfy the ABI, we need to the high part to start
3483   // at offset 8.  If the high and low parts we inferred are both 4-byte types
3484   // (e.g. i32 and i32) then the resultant struct type ({i32,i32}) won't have
3485   // the second element at offset 8.  Check for this:
3486   unsigned LoSize = (unsigned)TD.getTypeAllocSize(Lo);
3487   unsigned HiAlign = TD.getABITypeAlignment(Hi);
3488   unsigned HiStart = llvm::alignTo(LoSize, HiAlign);
3489   assert(HiStart != 0 && HiStart <= 8 && "Invalid x86-64 argument pair!");
3490 
3491   // To handle this, we have to increase the size of the low part so that the
3492   // second element will start at an 8 byte offset.  We can't increase the size
3493   // of the second element because it might make us access off the end of the
3494   // struct.
3495   if (HiStart != 8) {
3496     // There are usually two sorts of types the ABI generation code can produce
3497     // for the low part of a pair that aren't 8 bytes in size: float or
3498     // i8/i16/i32.  This can also include pointers when they are 32-bit (X32 and
3499     // NaCl).
3500     // Promote these to a larger type.
3501     if (Lo->isFloatTy())
3502       Lo = llvm::Type::getDoubleTy(Lo->getContext());
3503     else {
3504       assert((Lo->isIntegerTy() || Lo->isPointerTy())
3505              && "Invalid/unknown lo type");
3506       Lo = llvm::Type::getInt64Ty(Lo->getContext());
3507     }
3508   }
3509 
3510   llvm::StructType *Result = llvm::StructType::get(Lo, Hi);
3511 
3512   // Verify that the second element is at an 8-byte offset.
3513   assert(TD.getStructLayout(Result)->getElementOffset(1) == 8 &&
3514          "Invalid x86-64 argument pair!");
3515   return Result;
3516 }
3517 
3518 ABIArgInfo X86_64ABIInfo::
3519 classifyReturnType(QualType RetTy) const {
3520   // AMD64-ABI 3.2.3p4: Rule 1. Classify the return type with the
3521   // classification algorithm.
3522   X86_64ABIInfo::Class Lo, Hi;
3523   classify(RetTy, 0, Lo, Hi, /*isNamedArg*/ true);
3524 
3525   // Check some invariants.
3526   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3527   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3528 
3529   llvm::Type *ResType = nullptr;
3530   switch (Lo) {
3531   case NoClass:
3532     if (Hi == NoClass)
3533       return ABIArgInfo::getIgnore();
3534     // If the low part is just padding, it takes no register, leave ResType
3535     // null.
3536     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3537            "Unknown missing lo part");
3538     break;
3539 
3540   case SSEUp:
3541   case X87Up:
3542     llvm_unreachable("Invalid classification for lo word.");
3543 
3544     // AMD64-ABI 3.2.3p4: Rule 2. Types of class memory are returned via
3545     // hidden argument.
3546   case Memory:
3547     return getIndirectReturnResult(RetTy);
3548 
3549     // AMD64-ABI 3.2.3p4: Rule 3. If the class is INTEGER, the next
3550     // available register of the sequence %rax, %rdx is used.
3551   case Integer:
3552     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3553 
3554     // If we have a sign or zero extended integer, make sure to return Extend
3555     // so that the parameter gets the right LLVM IR attributes.
3556     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3557       // Treat an enum type as its underlying type.
3558       if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
3559         RetTy = EnumTy->getDecl()->getIntegerType();
3560 
3561       if (RetTy->isIntegralOrEnumerationType() &&
3562           isPromotableIntegerTypeForABI(RetTy))
3563         return ABIArgInfo::getExtend(RetTy);
3564     }
3565     break;
3566 
3567     // AMD64-ABI 3.2.3p4: Rule 4. If the class is SSE, the next
3568     // available SSE register of the sequence %xmm0, %xmm1 is used.
3569   case SSE:
3570     ResType = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 0, RetTy, 0);
3571     break;
3572 
3573     // AMD64-ABI 3.2.3p4: Rule 6. If the class is X87, the value is
3574     // returned on the X87 stack in %st0 as 80-bit x87 number.
3575   case X87:
3576     ResType = llvm::Type::getX86_FP80Ty(getVMContext());
3577     break;
3578 
3579     // AMD64-ABI 3.2.3p4: Rule 8. If the class is COMPLEX_X87, the real
3580     // part of the value is returned in %st0 and the imaginary part in
3581     // %st1.
3582   case ComplexX87:
3583     assert(Hi == ComplexX87 && "Unexpected ComplexX87 classification.");
3584     ResType = llvm::StructType::get(llvm::Type::getX86_FP80Ty(getVMContext()),
3585                                     llvm::Type::getX86_FP80Ty(getVMContext()));
3586     break;
3587   }
3588 
3589   llvm::Type *HighPart = nullptr;
3590   switch (Hi) {
3591     // Memory was handled previously and X87 should
3592     // never occur as a hi class.
3593   case Memory:
3594   case X87:
3595     llvm_unreachable("Invalid classification for hi word.");
3596 
3597   case ComplexX87: // Previously handled.
3598   case NoClass:
3599     break;
3600 
3601   case Integer:
3602     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3603     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3604       return ABIArgInfo::getDirect(HighPart, 8);
3605     break;
3606   case SSE:
3607     HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3608     if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3609       return ABIArgInfo::getDirect(HighPart, 8);
3610     break;
3611 
3612     // AMD64-ABI 3.2.3p4: Rule 5. If the class is SSEUP, the eightbyte
3613     // is passed in the next available eightbyte chunk if the last used
3614     // vector register.
3615     //
3616     // SSEUP should always be preceded by SSE, just widen.
3617   case SSEUp:
3618     assert(Lo == SSE && "Unexpected SSEUp classification.");
3619     ResType = GetByteVectorType(RetTy);
3620     break;
3621 
3622     // AMD64-ABI 3.2.3p4: Rule 7. If the class is X87UP, the value is
3623     // returned together with the previous X87 value in %st0.
3624   case X87Up:
3625     // If X87Up is preceded by X87, we don't need to do
3626     // anything. However, in some cases with unions it may not be
3627     // preceded by X87. In such situations we follow gcc and pass the
3628     // extra bits in an SSE reg.
3629     if (Lo != X87) {
3630       HighPart = GetSSETypeAtOffset(CGT.ConvertType(RetTy), 8, RetTy, 8);
3631       if (Lo == NoClass)  // Return HighPart at offset 8 in memory.
3632         return ABIArgInfo::getDirect(HighPart, 8);
3633     }
3634     break;
3635   }
3636 
3637   // If a high part was specified, merge it together with the low part.  It is
3638   // known to pass in the high eightbyte of the result.  We do this by forming a
3639   // first class struct aggregate with the high and low part: {low, high}
3640   if (HighPart)
3641     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3642 
3643   return ABIArgInfo::getDirect(ResType);
3644 }
3645 
3646 ABIArgInfo X86_64ABIInfo::classifyArgumentType(
3647   QualType Ty, unsigned freeIntRegs, unsigned &neededInt, unsigned &neededSSE,
3648   bool isNamedArg)
3649   const
3650 {
3651   Ty = useFirstFieldIfTransparentUnion(Ty);
3652 
3653   X86_64ABIInfo::Class Lo, Hi;
3654   classify(Ty, 0, Lo, Hi, isNamedArg);
3655 
3656   // Check some invariants.
3657   // FIXME: Enforce these by construction.
3658   assert((Hi != Memory || Lo == Memory) && "Invalid memory classification.");
3659   assert((Hi != SSEUp || Lo == SSE) && "Invalid SSEUp classification.");
3660 
3661   neededInt = 0;
3662   neededSSE = 0;
3663   llvm::Type *ResType = nullptr;
3664   switch (Lo) {
3665   case NoClass:
3666     if (Hi == NoClass)
3667       return ABIArgInfo::getIgnore();
3668     // If the low part is just padding, it takes no register, leave ResType
3669     // null.
3670     assert((Hi == SSE || Hi == Integer || Hi == X87Up) &&
3671            "Unknown missing lo part");
3672     break;
3673 
3674     // AMD64-ABI 3.2.3p3: Rule 1. If the class is MEMORY, pass the argument
3675     // on the stack.
3676   case Memory:
3677 
3678     // AMD64-ABI 3.2.3p3: Rule 5. If the class is X87, X87UP or
3679     // COMPLEX_X87, it is passed in memory.
3680   case X87:
3681   case ComplexX87:
3682     if (getRecordArgABI(Ty, getCXXABI()) == CGCXXABI::RAA_Indirect)
3683       ++neededInt;
3684     return getIndirectResult(Ty, freeIntRegs);
3685 
3686   case SSEUp:
3687   case X87Up:
3688     llvm_unreachable("Invalid classification for lo word.");
3689 
3690     // AMD64-ABI 3.2.3p3: Rule 2. If the class is INTEGER, the next
3691     // available register of the sequence %rdi, %rsi, %rdx, %rcx, %r8
3692     // and %r9 is used.
3693   case Integer:
3694     ++neededInt;
3695 
3696     // Pick an 8-byte type based on the preferred type.
3697     ResType = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 0, Ty, 0);
3698 
3699     // If we have a sign or zero extended integer, make sure to return Extend
3700     // so that the parameter gets the right LLVM IR attributes.
3701     if (Hi == NoClass && isa<llvm::IntegerType>(ResType)) {
3702       // Treat an enum type as its underlying type.
3703       if (const EnumType *EnumTy = Ty->getAs<EnumType>())
3704         Ty = EnumTy->getDecl()->getIntegerType();
3705 
3706       if (Ty->isIntegralOrEnumerationType() &&
3707           isPromotableIntegerTypeForABI(Ty))
3708         return ABIArgInfo::getExtend(Ty);
3709     }
3710 
3711     break;
3712 
3713     // AMD64-ABI 3.2.3p3: Rule 3. If the class is SSE, the next
3714     // available SSE register is used, the registers are taken in the
3715     // order from %xmm0 to %xmm7.
3716   case SSE: {
3717     llvm::Type *IRType = CGT.ConvertType(Ty);
3718     ResType = GetSSETypeAtOffset(IRType, 0, Ty, 0);
3719     ++neededSSE;
3720     break;
3721   }
3722   }
3723 
3724   llvm::Type *HighPart = nullptr;
3725   switch (Hi) {
3726     // Memory was handled previously, ComplexX87 and X87 should
3727     // never occur as hi classes, and X87Up must be preceded by X87,
3728     // which is passed in memory.
3729   case Memory:
3730   case X87:
3731   case ComplexX87:
3732     llvm_unreachable("Invalid classification for hi word.");
3733 
3734   case NoClass: break;
3735 
3736   case Integer:
3737     ++neededInt;
3738     // Pick an 8-byte type based on the preferred type.
3739     HighPart = GetINTEGERTypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3740 
3741     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3742       return ABIArgInfo::getDirect(HighPart, 8);
3743     break;
3744 
3745     // X87Up generally doesn't occur here (long double is passed in
3746     // memory), except in situations involving unions.
3747   case X87Up:
3748   case SSE:
3749     HighPart = GetSSETypeAtOffset(CGT.ConvertType(Ty), 8, Ty, 8);
3750 
3751     if (Lo == NoClass)  // Pass HighPart at offset 8 in memory.
3752       return ABIArgInfo::getDirect(HighPart, 8);
3753 
3754     ++neededSSE;
3755     break;
3756 
3757     // AMD64-ABI 3.2.3p3: Rule 4. If the class is SSEUP, the
3758     // eightbyte is passed in the upper half of the last used SSE
3759     // register.  This only happens when 128-bit vectors are passed.
3760   case SSEUp:
3761     assert(Lo == SSE && "Unexpected SSEUp classification");
3762     ResType = GetByteVectorType(Ty);
3763     break;
3764   }
3765 
3766   // If a high part was specified, merge it together with the low part.  It is
3767   // known to pass in the high eightbyte of the result.  We do this by forming a
3768   // first class struct aggregate with the high and low part: {low, high}
3769   if (HighPart)
3770     ResType = GetX86_64ByValArgumentPair(ResType, HighPart, getDataLayout());
3771 
3772   return ABIArgInfo::getDirect(ResType);
3773 }
3774 
3775 ABIArgInfo
3776 X86_64ABIInfo::classifyRegCallStructTypeImpl(QualType Ty, unsigned &NeededInt,
3777                                              unsigned &NeededSSE) const {
3778   auto RT = Ty->getAs<RecordType>();
3779   assert(RT && "classifyRegCallStructType only valid with struct types");
3780 
3781   if (RT->getDecl()->hasFlexibleArrayMember())
3782     return getIndirectReturnResult(Ty);
3783 
3784   // Sum up bases
3785   if (auto CXXRD = dyn_cast<CXXRecordDecl>(RT->getDecl())) {
3786     if (CXXRD->isDynamicClass()) {
3787       NeededInt = NeededSSE = 0;
3788       return getIndirectReturnResult(Ty);
3789     }
3790 
3791     for (const auto &I : CXXRD->bases())
3792       if (classifyRegCallStructTypeImpl(I.getType(), NeededInt, NeededSSE)
3793               .isIndirect()) {
3794         NeededInt = NeededSSE = 0;
3795         return getIndirectReturnResult(Ty);
3796       }
3797   }
3798 
3799   // Sum up members
3800   for (const auto *FD : RT->getDecl()->fields()) {
3801     if (FD->getType()->isRecordType() && !FD->getType()->isUnionType()) {
3802       if (classifyRegCallStructTypeImpl(FD->getType(), NeededInt, NeededSSE)
3803               .isIndirect()) {
3804         NeededInt = NeededSSE = 0;
3805         return getIndirectReturnResult(Ty);
3806       }
3807     } else {
3808       unsigned LocalNeededInt, LocalNeededSSE;
3809       if (classifyArgumentType(FD->getType(), UINT_MAX, LocalNeededInt,
3810                                LocalNeededSSE, true)
3811               .isIndirect()) {
3812         NeededInt = NeededSSE = 0;
3813         return getIndirectReturnResult(Ty);
3814       }
3815       NeededInt += LocalNeededInt;
3816       NeededSSE += LocalNeededSSE;
3817     }
3818   }
3819 
3820   return ABIArgInfo::getDirect();
3821 }
3822 
3823 ABIArgInfo X86_64ABIInfo::classifyRegCallStructType(QualType Ty,
3824                                                     unsigned &NeededInt,
3825                                                     unsigned &NeededSSE) const {
3826 
3827   NeededInt = 0;
3828   NeededSSE = 0;
3829 
3830   return classifyRegCallStructTypeImpl(Ty, NeededInt, NeededSSE);
3831 }
3832 
3833 void X86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
3834 
3835   const unsigned CallingConv = FI.getCallingConvention();
3836   // It is possible to force Win64 calling convention on any x86_64 target by
3837   // using __attribute__((ms_abi)). In such case to correctly emit Win64
3838   // compatible code delegate this call to WinX86_64ABIInfo::computeInfo.
3839   if (CallingConv == llvm::CallingConv::Win64) {
3840     WinX86_64ABIInfo Win64ABIInfo(CGT, AVXLevel);
3841     Win64ABIInfo.computeInfo(FI);
3842     return;
3843   }
3844 
3845   bool IsRegCall = CallingConv == llvm::CallingConv::X86_RegCall;
3846 
3847   // Keep track of the number of assigned registers.
3848   unsigned FreeIntRegs = IsRegCall ? 11 : 6;
3849   unsigned FreeSSERegs = IsRegCall ? 16 : 8;
3850   unsigned NeededInt, NeededSSE;
3851 
3852   if (!::classifyReturnType(getCXXABI(), FI, *this)) {
3853     if (IsRegCall && FI.getReturnType()->getTypePtr()->isRecordType() &&
3854         !FI.getReturnType()->getTypePtr()->isUnionType()) {
3855       FI.getReturnInfo() =
3856           classifyRegCallStructType(FI.getReturnType(), NeededInt, NeededSSE);
3857       if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3858         FreeIntRegs -= NeededInt;
3859         FreeSSERegs -= NeededSSE;
3860       } else {
3861         FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3862       }
3863     } else if (IsRegCall && FI.getReturnType()->getAs<ComplexType>() &&
3864                getContext().getCanonicalType(FI.getReturnType()
3865                                                  ->getAs<ComplexType>()
3866                                                  ->getElementType()) ==
3867                    getContext().LongDoubleTy)
3868       // Complex Long Double Type is passed in Memory when Regcall
3869       // calling convention is used.
3870       FI.getReturnInfo() = getIndirectReturnResult(FI.getReturnType());
3871     else
3872       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
3873   }
3874 
3875   // If the return value is indirect, then the hidden argument is consuming one
3876   // integer register.
3877   if (FI.getReturnInfo().isIndirect())
3878     --FreeIntRegs;
3879 
3880   // The chain argument effectively gives us another free register.
3881   if (FI.isChainCall())
3882     ++FreeIntRegs;
3883 
3884   unsigned NumRequiredArgs = FI.getNumRequiredArgs();
3885   // AMD64-ABI 3.2.3p3: Once arguments are classified, the registers
3886   // get assigned (in left-to-right order) for passing as follows...
3887   unsigned ArgNo = 0;
3888   for (CGFunctionInfo::arg_iterator it = FI.arg_begin(), ie = FI.arg_end();
3889        it != ie; ++it, ++ArgNo) {
3890     bool IsNamedArg = ArgNo < NumRequiredArgs;
3891 
3892     if (IsRegCall && it->type->isStructureOrClassType())
3893       it->info = classifyRegCallStructType(it->type, NeededInt, NeededSSE);
3894     else
3895       it->info = classifyArgumentType(it->type, FreeIntRegs, NeededInt,
3896                                       NeededSSE, IsNamedArg);
3897 
3898     // AMD64-ABI 3.2.3p3: If there are no registers available for any
3899     // eightbyte of an argument, the whole argument is passed on the
3900     // stack. If registers have already been assigned for some
3901     // eightbytes of such an argument, the assignments get reverted.
3902     if (FreeIntRegs >= NeededInt && FreeSSERegs >= NeededSSE) {
3903       FreeIntRegs -= NeededInt;
3904       FreeSSERegs -= NeededSSE;
3905     } else {
3906       it->info = getIndirectResult(it->type, FreeIntRegs);
3907     }
3908   }
3909 }
3910 
3911 static Address EmitX86_64VAArgFromMemory(CodeGenFunction &CGF,
3912                                          Address VAListAddr, QualType Ty) {
3913   Address overflow_arg_area_p =
3914       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_p");
3915   llvm::Value *overflow_arg_area =
3916     CGF.Builder.CreateLoad(overflow_arg_area_p, "overflow_arg_area");
3917 
3918   // AMD64-ABI 3.5.7p5: Step 7. Align l->overflow_arg_area upwards to a 16
3919   // byte boundary if alignment needed by type exceeds 8 byte boundary.
3920   // It isn't stated explicitly in the standard, but in practice we use
3921   // alignment greater than 16 where necessary.
3922   CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
3923   if (Align > CharUnits::fromQuantity(8)) {
3924     overflow_arg_area = emitRoundPointerUpToAlignment(CGF, overflow_arg_area,
3925                                                       Align);
3926   }
3927 
3928   // AMD64-ABI 3.5.7p5: Step 8. Fetch type from l->overflow_arg_area.
3929   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
3930   llvm::Value *Res =
3931     CGF.Builder.CreateBitCast(overflow_arg_area,
3932                               llvm::PointerType::getUnqual(LTy));
3933 
3934   // AMD64-ABI 3.5.7p5: Step 9. Set l->overflow_arg_area to:
3935   // l->overflow_arg_area + sizeof(type).
3936   // AMD64-ABI 3.5.7p5: Step 10. Align l->overflow_arg_area upwards to
3937   // an 8 byte boundary.
3938 
3939   uint64_t SizeInBytes = (CGF.getContext().getTypeSize(Ty) + 7) / 8;
3940   llvm::Value *Offset =
3941       llvm::ConstantInt::get(CGF.Int32Ty, (SizeInBytes + 7)  & ~7);
3942   overflow_arg_area = CGF.Builder.CreateGEP(overflow_arg_area, Offset,
3943                                             "overflow_arg_area.next");
3944   CGF.Builder.CreateStore(overflow_arg_area, overflow_arg_area_p);
3945 
3946   // AMD64-ABI 3.5.7p5: Step 11. Return the fetched type.
3947   return Address(Res, Align);
3948 }
3949 
3950 Address X86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
3951                                  QualType Ty) const {
3952   // Assume that va_list type is correct; should be pointer to LLVM type:
3953   // struct {
3954   //   i32 gp_offset;
3955   //   i32 fp_offset;
3956   //   i8* overflow_arg_area;
3957   //   i8* reg_save_area;
3958   // };
3959   unsigned neededInt, neededSSE;
3960 
3961   Ty = getContext().getCanonicalType(Ty);
3962   ABIArgInfo AI = classifyArgumentType(Ty, 0, neededInt, neededSSE,
3963                                        /*isNamedArg*/false);
3964 
3965   // AMD64-ABI 3.5.7p5: Step 1. Determine whether type may be passed
3966   // in the registers. If not go to step 7.
3967   if (!neededInt && !neededSSE)
3968     return EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
3969 
3970   // AMD64-ABI 3.5.7p5: Step 2. Compute num_gp to hold the number of
3971   // general purpose registers needed to pass type and num_fp to hold
3972   // the number of floating point registers needed.
3973 
3974   // AMD64-ABI 3.5.7p5: Step 3. Verify whether arguments fit into
3975   // registers. In the case: l->gp_offset > 48 - num_gp * 8 or
3976   // l->fp_offset > 304 - num_fp * 16 go to step 7.
3977   //
3978   // NOTE: 304 is a typo, there are (6 * 8 + 8 * 16) = 176 bytes of
3979   // register save space).
3980 
3981   llvm::Value *InRegs = nullptr;
3982   Address gp_offset_p = Address::invalid(), fp_offset_p = Address::invalid();
3983   llvm::Value *gp_offset = nullptr, *fp_offset = nullptr;
3984   if (neededInt) {
3985     gp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "gp_offset_p");
3986     gp_offset = CGF.Builder.CreateLoad(gp_offset_p, "gp_offset");
3987     InRegs = llvm::ConstantInt::get(CGF.Int32Ty, 48 - neededInt * 8);
3988     InRegs = CGF.Builder.CreateICmpULE(gp_offset, InRegs, "fits_in_gp");
3989   }
3990 
3991   if (neededSSE) {
3992     fp_offset_p = CGF.Builder.CreateStructGEP(VAListAddr, 1, "fp_offset_p");
3993     fp_offset = CGF.Builder.CreateLoad(fp_offset_p, "fp_offset");
3994     llvm::Value *FitsInFP =
3995       llvm::ConstantInt::get(CGF.Int32Ty, 176 - neededSSE * 16);
3996     FitsInFP = CGF.Builder.CreateICmpULE(fp_offset, FitsInFP, "fits_in_fp");
3997     InRegs = InRegs ? CGF.Builder.CreateAnd(InRegs, FitsInFP) : FitsInFP;
3998   }
3999 
4000   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
4001   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
4002   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
4003   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
4004 
4005   // Emit code to load the value if it was passed in registers.
4006 
4007   CGF.EmitBlock(InRegBlock);
4008 
4009   // AMD64-ABI 3.5.7p5: Step 4. Fetch type from l->reg_save_area with
4010   // an offset of l->gp_offset and/or l->fp_offset. This may require
4011   // copying to a temporary location in case the parameter is passed
4012   // in different register classes or requires an alignment greater
4013   // than 8 for general purpose registers and 16 for XMM registers.
4014   //
4015   // FIXME: This really results in shameful code when we end up needing to
4016   // collect arguments from different places; often what should result in a
4017   // simple assembling of a structure from scattered addresses has many more
4018   // loads than necessary. Can we clean this up?
4019   llvm::Type *LTy = CGF.ConvertTypeForMem(Ty);
4020   llvm::Value *RegSaveArea = CGF.Builder.CreateLoad(
4021       CGF.Builder.CreateStructGEP(VAListAddr, 3), "reg_save_area");
4022 
4023   Address RegAddr = Address::invalid();
4024   if (neededInt && neededSSE) {
4025     // FIXME: Cleanup.
4026     assert(AI.isDirect() && "Unexpected ABI info for mixed regs");
4027     llvm::StructType *ST = cast<llvm::StructType>(AI.getCoerceToType());
4028     Address Tmp = CGF.CreateMemTemp(Ty);
4029     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4030     assert(ST->getNumElements() == 2 && "Unexpected ABI info for mixed regs");
4031     llvm::Type *TyLo = ST->getElementType(0);
4032     llvm::Type *TyHi = ST->getElementType(1);
4033     assert((TyLo->isFPOrFPVectorTy() ^ TyHi->isFPOrFPVectorTy()) &&
4034            "Unexpected ABI info for mixed regs");
4035     llvm::Type *PTyLo = llvm::PointerType::getUnqual(TyLo);
4036     llvm::Type *PTyHi = llvm::PointerType::getUnqual(TyHi);
4037     llvm::Value *GPAddr = CGF.Builder.CreateGEP(RegSaveArea, gp_offset);
4038     llvm::Value *FPAddr = CGF.Builder.CreateGEP(RegSaveArea, fp_offset);
4039     llvm::Value *RegLoAddr = TyLo->isFPOrFPVectorTy() ? FPAddr : GPAddr;
4040     llvm::Value *RegHiAddr = TyLo->isFPOrFPVectorTy() ? GPAddr : FPAddr;
4041 
4042     // Copy the first element.
4043     // FIXME: Our choice of alignment here and below is probably pessimistic.
4044     llvm::Value *V = CGF.Builder.CreateAlignedLoad(
4045         TyLo, CGF.Builder.CreateBitCast(RegLoAddr, PTyLo),
4046         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyLo)));
4047     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4048 
4049     // Copy the second element.
4050     V = CGF.Builder.CreateAlignedLoad(
4051         TyHi, CGF.Builder.CreateBitCast(RegHiAddr, PTyHi),
4052         CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(TyHi)));
4053     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4054 
4055     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4056   } else if (neededInt) {
4057     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, gp_offset),
4058                       CharUnits::fromQuantity(8));
4059     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4060 
4061     // Copy to a temporary if necessary to ensure the appropriate alignment.
4062     std::pair<CharUnits, CharUnits> SizeAlign =
4063         getContext().getTypeInfoInChars(Ty);
4064     uint64_t TySize = SizeAlign.first.getQuantity();
4065     CharUnits TyAlign = SizeAlign.second;
4066 
4067     // Copy into a temporary if the type is more aligned than the
4068     // register save area.
4069     if (TyAlign.getQuantity() > 8) {
4070       Address Tmp = CGF.CreateMemTemp(Ty);
4071       CGF.Builder.CreateMemCpy(Tmp, RegAddr, TySize, false);
4072       RegAddr = Tmp;
4073     }
4074 
4075   } else if (neededSSE == 1) {
4076     RegAddr = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4077                       CharUnits::fromQuantity(16));
4078     RegAddr = CGF.Builder.CreateElementBitCast(RegAddr, LTy);
4079   } else {
4080     assert(neededSSE == 2 && "Invalid number of needed registers!");
4081     // SSE registers are spaced 16 bytes apart in the register save
4082     // area, we need to collect the two eightbytes together.
4083     // The ABI isn't explicit about this, but it seems reasonable
4084     // to assume that the slots are 16-byte aligned, since the stack is
4085     // naturally 16-byte aligned and the prologue is expected to store
4086     // all the SSE registers to the RSA.
4087     Address RegAddrLo = Address(CGF.Builder.CreateGEP(RegSaveArea, fp_offset),
4088                                 CharUnits::fromQuantity(16));
4089     Address RegAddrHi =
4090       CGF.Builder.CreateConstInBoundsByteGEP(RegAddrLo,
4091                                              CharUnits::fromQuantity(16));
4092     llvm::Type *ST = AI.canHaveCoerceToType()
4093                          ? AI.getCoerceToType()
4094                          : llvm::StructType::get(CGF.DoubleTy, CGF.DoubleTy);
4095     llvm::Value *V;
4096     Address Tmp = CGF.CreateMemTemp(Ty);
4097     Tmp = CGF.Builder.CreateElementBitCast(Tmp, ST);
4098     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4099         RegAddrLo, ST->getStructElementType(0)));
4100     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 0));
4101     V = CGF.Builder.CreateLoad(CGF.Builder.CreateElementBitCast(
4102         RegAddrHi, ST->getStructElementType(1)));
4103     CGF.Builder.CreateStore(V, CGF.Builder.CreateStructGEP(Tmp, 1));
4104 
4105     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, LTy);
4106   }
4107 
4108   // AMD64-ABI 3.5.7p5: Step 5. Set:
4109   // l->gp_offset = l->gp_offset + num_gp * 8
4110   // l->fp_offset = l->fp_offset + num_fp * 16.
4111   if (neededInt) {
4112     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededInt * 8);
4113     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(gp_offset, Offset),
4114                             gp_offset_p);
4115   }
4116   if (neededSSE) {
4117     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int32Ty, neededSSE * 16);
4118     CGF.Builder.CreateStore(CGF.Builder.CreateAdd(fp_offset, Offset),
4119                             fp_offset_p);
4120   }
4121   CGF.EmitBranch(ContBlock);
4122 
4123   // Emit code to load the value if it was passed in memory.
4124 
4125   CGF.EmitBlock(InMemBlock);
4126   Address MemAddr = EmitX86_64VAArgFromMemory(CGF, VAListAddr, Ty);
4127 
4128   // Return the appropriate result.
4129 
4130   CGF.EmitBlock(ContBlock);
4131   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock, MemAddr, InMemBlock,
4132                                  "vaarg.addr");
4133   return ResAddr;
4134 }
4135 
4136 Address X86_64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
4137                                    QualType Ty) const {
4138   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
4139                           CGF.getContext().getTypeInfoInChars(Ty),
4140                           CharUnits::fromQuantity(8),
4141                           /*allowHigherAlign*/ false);
4142 }
4143 
4144 ABIArgInfo
4145 WinX86_64ABIInfo::reclassifyHvaArgType(QualType Ty, unsigned &FreeSSERegs,
4146                                     const ABIArgInfo &current) const {
4147   // Assumes vectorCall calling convention.
4148   const Type *Base = nullptr;
4149   uint64_t NumElts = 0;
4150 
4151   if (!Ty->isBuiltinType() && !Ty->isVectorType() &&
4152       isHomogeneousAggregate(Ty, Base, NumElts) && FreeSSERegs >= NumElts) {
4153     FreeSSERegs -= NumElts;
4154     return getDirectX86Hva();
4155   }
4156   return current;
4157 }
4158 
4159 ABIArgInfo WinX86_64ABIInfo::classify(QualType Ty, unsigned &FreeSSERegs,
4160                                       bool IsReturnType, bool IsVectorCall,
4161                                       bool IsRegCall) const {
4162 
4163   if (Ty->isVoidType())
4164     return ABIArgInfo::getIgnore();
4165 
4166   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4167     Ty = EnumTy->getDecl()->getIntegerType();
4168 
4169   TypeInfo Info = getContext().getTypeInfo(Ty);
4170   uint64_t Width = Info.Width;
4171   CharUnits Align = getContext().toCharUnitsFromBits(Info.Align);
4172 
4173   const RecordType *RT = Ty->getAs<RecordType>();
4174   if (RT) {
4175     if (!IsReturnType) {
4176       if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI()))
4177         return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4178     }
4179 
4180     if (RT->getDecl()->hasFlexibleArrayMember())
4181       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4182 
4183   }
4184 
4185   const Type *Base = nullptr;
4186   uint64_t NumElts = 0;
4187   // vectorcall adds the concept of a homogenous vector aggregate, similar to
4188   // other targets.
4189   if ((IsVectorCall || IsRegCall) &&
4190       isHomogeneousAggregate(Ty, Base, NumElts)) {
4191     if (IsRegCall) {
4192       if (FreeSSERegs >= NumElts) {
4193         FreeSSERegs -= NumElts;
4194         if (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())
4195           return ABIArgInfo::getDirect();
4196         return ABIArgInfo::getExpand();
4197       }
4198       return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4199     } else if (IsVectorCall) {
4200       if (FreeSSERegs >= NumElts &&
4201           (IsReturnType || Ty->isBuiltinType() || Ty->isVectorType())) {
4202         FreeSSERegs -= NumElts;
4203         return ABIArgInfo::getDirect();
4204       } else if (IsReturnType) {
4205         return ABIArgInfo::getExpand();
4206       } else if (!Ty->isBuiltinType() && !Ty->isVectorType()) {
4207         // HVAs are delayed and reclassified in the 2nd step.
4208         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4209       }
4210     }
4211   }
4212 
4213   if (Ty->isMemberPointerType()) {
4214     // If the member pointer is represented by an LLVM int or ptr, pass it
4215     // directly.
4216     llvm::Type *LLTy = CGT.ConvertType(Ty);
4217     if (LLTy->isPointerTy() || LLTy->isIntegerTy())
4218       return ABIArgInfo::getDirect();
4219   }
4220 
4221   if (RT || Ty->isAnyComplexType() || Ty->isMemberPointerType()) {
4222     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4223     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4224     if (Width > 64 || !llvm::isPowerOf2_64(Width))
4225       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
4226 
4227     // Otherwise, coerce it to a small integer.
4228     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Width));
4229   }
4230 
4231   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
4232     switch (BT->getKind()) {
4233     case BuiltinType::Bool:
4234       // Bool type is always extended to the ABI, other builtin types are not
4235       // extended.
4236       return ABIArgInfo::getExtend(Ty);
4237 
4238     case BuiltinType::LongDouble:
4239       // Mingw64 GCC uses the old 80 bit extended precision floating point
4240       // unit. It passes them indirectly through memory.
4241       if (IsMingw64) {
4242         const llvm::fltSemantics *LDF = &getTarget().getLongDoubleFormat();
4243         if (LDF == &llvm::APFloat::x87DoubleExtended())
4244           return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4245       }
4246       break;
4247 
4248     case BuiltinType::Int128:
4249     case BuiltinType::UInt128:
4250       // If it's a parameter type, the normal ABI rule is that arguments larger
4251       // than 8 bytes are passed indirectly. GCC follows it. We follow it too,
4252       // even though it isn't particularly efficient.
4253       if (!IsReturnType)
4254         return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4255 
4256       // Mingw64 GCC returns i128 in XMM0. Coerce to v2i64 to handle that.
4257       // Clang matches them for compatibility.
4258       return ABIArgInfo::getDirect(llvm::FixedVectorType::get(
4259           llvm::Type::getInt64Ty(getVMContext()), 2));
4260 
4261     default:
4262       break;
4263     }
4264   }
4265 
4266   if (Ty->isExtIntType()) {
4267     // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4268     // not 1, 2, 4, or 8 bytes, must be passed by reference."
4269     // However, non-power-of-two _ExtInts will be passed as 1,2,4 or 8 bytes
4270     // anyway as long is it fits in them, so we don't have to check the power of
4271     // 2.
4272     if (Width <= 64)
4273       return ABIArgInfo::getDirect();
4274     return ABIArgInfo::getIndirect(Align, /*ByVal=*/false);
4275   }
4276 
4277   return ABIArgInfo::getDirect();
4278 }
4279 
4280 void WinX86_64ABIInfo::computeVectorCallArgs(CGFunctionInfo &FI,
4281                                              unsigned FreeSSERegs,
4282                                              bool IsVectorCall,
4283                                              bool IsRegCall) const {
4284   unsigned Count = 0;
4285   for (auto &I : FI.arguments()) {
4286     // Vectorcall in x64 only permits the first 6 arguments to be passed
4287     // as XMM/YMM registers.
4288     if (Count < VectorcallMaxParamNumAsReg)
4289       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4290     else {
4291       // Since these cannot be passed in registers, pretend no registers
4292       // are left.
4293       unsigned ZeroSSERegsAvail = 0;
4294       I.info = classify(I.type, /*FreeSSERegs=*/ZeroSSERegsAvail, false,
4295                         IsVectorCall, IsRegCall);
4296     }
4297     ++Count;
4298   }
4299 
4300   for (auto &I : FI.arguments()) {
4301     I.info = reclassifyHvaArgType(I.type, FreeSSERegs, I.info);
4302   }
4303 }
4304 
4305 void WinX86_64ABIInfo::computeInfo(CGFunctionInfo &FI) const {
4306   const unsigned CC = FI.getCallingConvention();
4307   bool IsVectorCall = CC == llvm::CallingConv::X86_VectorCall;
4308   bool IsRegCall = CC == llvm::CallingConv::X86_RegCall;
4309 
4310   // If __attribute__((sysv_abi)) is in use, use the SysV argument
4311   // classification rules.
4312   if (CC == llvm::CallingConv::X86_64_SysV) {
4313     X86_64ABIInfo SysVABIInfo(CGT, AVXLevel);
4314     SysVABIInfo.computeInfo(FI);
4315     return;
4316   }
4317 
4318   unsigned FreeSSERegs = 0;
4319   if (IsVectorCall) {
4320     // We can use up to 4 SSE return registers with vectorcall.
4321     FreeSSERegs = 4;
4322   } else if (IsRegCall) {
4323     // RegCall gives us 16 SSE registers.
4324     FreeSSERegs = 16;
4325   }
4326 
4327   if (!getCXXABI().classifyReturnType(FI))
4328     FI.getReturnInfo() = classify(FI.getReturnType(), FreeSSERegs, true,
4329                                   IsVectorCall, IsRegCall);
4330 
4331   if (IsVectorCall) {
4332     // We can use up to 6 SSE register parameters with vectorcall.
4333     FreeSSERegs = 6;
4334   } else if (IsRegCall) {
4335     // RegCall gives us 16 SSE registers, we can reuse the return registers.
4336     FreeSSERegs = 16;
4337   }
4338 
4339   if (IsVectorCall) {
4340     computeVectorCallArgs(FI, FreeSSERegs, IsVectorCall, IsRegCall);
4341   } else {
4342     for (auto &I : FI.arguments())
4343       I.info = classify(I.type, FreeSSERegs, false, IsVectorCall, IsRegCall);
4344   }
4345 
4346 }
4347 
4348 Address WinX86_64ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4349                                     QualType Ty) const {
4350 
4351   bool IsIndirect = false;
4352 
4353   // MS x64 ABI requirement: "Any argument that doesn't fit in 8 bytes, or is
4354   // not 1, 2, 4, or 8 bytes, must be passed by reference."
4355   if (isAggregateTypeForABI(Ty) || Ty->isMemberPointerType()) {
4356     uint64_t Width = getContext().getTypeSize(Ty);
4357     IsIndirect = Width > 64 || !llvm::isPowerOf2_64(Width);
4358   }
4359 
4360   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
4361                           CGF.getContext().getTypeInfoInChars(Ty),
4362                           CharUnits::fromQuantity(8),
4363                           /*allowHigherAlign*/ false);
4364 }
4365 
4366 static bool PPC_initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4367                                         llvm::Value *Address, bool Is64Bit,
4368                                         bool IsAIX) {
4369   // This is calculated from the LLVM and GCC tables and verified
4370   // against gcc output.  AFAIK all PPC ABIs use the same encoding.
4371 
4372   CodeGen::CGBuilderTy &Builder = CGF.Builder;
4373 
4374   llvm::IntegerType *i8 = CGF.Int8Ty;
4375   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
4376   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
4377   llvm::Value *Sixteen8 = llvm::ConstantInt::get(i8, 16);
4378 
4379   // 0-31: r0-31, the 4-byte or 8-byte general-purpose registers
4380   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 0, 31);
4381 
4382   // 32-63: fp0-31, the 8-byte floating-point registers
4383   AssignToArrayRange(Builder, Address, Eight8, 32, 63);
4384 
4385   // 64-67 are various 4-byte or 8-byte special-purpose registers:
4386   // 64: mq
4387   // 65: lr
4388   // 66: ctr
4389   // 67: ap
4390   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 64, 67);
4391 
4392   // 68-76 are various 4-byte special-purpose registers:
4393   // 68-75 cr0-7
4394   // 76: xer
4395   AssignToArrayRange(Builder, Address, Four8, 68, 76);
4396 
4397   // 77-108: v0-31, the 16-byte vector registers
4398   AssignToArrayRange(Builder, Address, Sixteen8, 77, 108);
4399 
4400   // 109: vrsave
4401   // 110: vscr
4402   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 109, 110);
4403 
4404   // AIX does not utilize the rest of the registers.
4405   if (IsAIX)
4406     return false;
4407 
4408   // 111: spe_acc
4409   // 112: spefscr
4410   // 113: sfp
4411   AssignToArrayRange(Builder, Address, Is64Bit ? Eight8 : Four8, 111, 113);
4412 
4413   if (!Is64Bit)
4414     return false;
4415 
4416   // TODO: Need to verify if these registers are used on 64 bit AIX with Power8
4417   // or above CPU.
4418   // 64-bit only registers:
4419   // 114: tfhar
4420   // 115: tfiar
4421   // 116: texasr
4422   AssignToArrayRange(Builder, Address, Eight8, 114, 116);
4423 
4424   return false;
4425 }
4426 
4427 // AIX
4428 namespace {
4429 /// AIXABIInfo - The AIX XCOFF ABI information.
4430 class AIXABIInfo : public ABIInfo {
4431   const bool Is64Bit;
4432   const unsigned PtrByteSize;
4433   CharUnits getParamTypeAlignment(QualType Ty) const;
4434 
4435 public:
4436   AIXABIInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4437       : ABIInfo(CGT), Is64Bit(Is64Bit), PtrByteSize(Is64Bit ? 8 : 4) {}
4438 
4439   bool isPromotableTypeForABI(QualType Ty) const;
4440 
4441   ABIArgInfo classifyReturnType(QualType RetTy) const;
4442   ABIArgInfo classifyArgumentType(QualType Ty) const;
4443 
4444   void computeInfo(CGFunctionInfo &FI) const override {
4445     if (!getCXXABI().classifyReturnType(FI))
4446       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4447 
4448     for (auto &I : FI.arguments())
4449       I.info = classifyArgumentType(I.type);
4450   }
4451 
4452   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4453                     QualType Ty) const override;
4454 };
4455 
4456 class AIXTargetCodeGenInfo : public TargetCodeGenInfo {
4457   const bool Is64Bit;
4458 
4459 public:
4460   AIXTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, bool Is64Bit)
4461       : TargetCodeGenInfo(std::make_unique<AIXABIInfo>(CGT, Is64Bit)),
4462         Is64Bit(Is64Bit) {}
4463   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4464     return 1; // r1 is the dedicated stack pointer
4465   }
4466 
4467   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4468                                llvm::Value *Address) const override;
4469 };
4470 } // namespace
4471 
4472 // Return true if the ABI requires Ty to be passed sign- or zero-
4473 // extended to 32/64 bits.
4474 bool AIXABIInfo::isPromotableTypeForABI(QualType Ty) const {
4475   // Treat an enum type as its underlying type.
4476   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
4477     Ty = EnumTy->getDecl()->getIntegerType();
4478 
4479   // Promotable integer types are required to be promoted by the ABI.
4480   if (Ty->isPromotableIntegerType())
4481     return true;
4482 
4483   if (!Is64Bit)
4484     return false;
4485 
4486   // For 64 bit mode, in addition to the usual promotable integer types, we also
4487   // need to extend all 32-bit types, since the ABI requires promotion to 64
4488   // bits.
4489   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
4490     switch (BT->getKind()) {
4491     case BuiltinType::Int:
4492     case BuiltinType::UInt:
4493       return true;
4494     default:
4495       break;
4496     }
4497 
4498   return false;
4499 }
4500 
4501 ABIArgInfo AIXABIInfo::classifyReturnType(QualType RetTy) const {
4502   if (RetTy->isAnyComplexType())
4503     llvm::report_fatal_error("complex type is not supported on AIX yet");
4504 
4505   if (RetTy->isVectorType())
4506     llvm::report_fatal_error("vector type is not supported on AIX yet");
4507 
4508   if (RetTy->isVoidType())
4509     return ABIArgInfo::getIgnore();
4510 
4511   // TODO:  Evaluate if AIX power alignment rule would have an impact on the
4512   // alignment here.
4513   if (isAggregateTypeForABI(RetTy))
4514     return getNaturalAlignIndirect(RetTy);
4515 
4516   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
4517                                         : ABIArgInfo::getDirect());
4518 }
4519 
4520 ABIArgInfo AIXABIInfo::classifyArgumentType(QualType Ty) const {
4521   Ty = useFirstFieldIfTransparentUnion(Ty);
4522 
4523   if (Ty->isAnyComplexType())
4524     llvm::report_fatal_error("complex type is not supported on AIX yet");
4525 
4526   if (Ty->isVectorType())
4527     llvm::report_fatal_error("vector type is not supported on AIX yet");
4528 
4529   // TODO:  Evaluate if AIX power alignment rule would have an impact on the
4530   // alignment here.
4531   if (isAggregateTypeForABI(Ty)) {
4532     // Records with non-trivial destructors/copy-constructors should not be
4533     // passed by value.
4534     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
4535       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
4536 
4537     CharUnits CCAlign = getParamTypeAlignment(Ty);
4538     CharUnits TyAlign = getContext().getTypeAlignInChars(Ty);
4539 
4540     return ABIArgInfo::getIndirect(CCAlign, /*ByVal*/ true,
4541                                    /*Realign*/ TyAlign > CCAlign);
4542   }
4543 
4544   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
4545                                      : ABIArgInfo::getDirect());
4546 }
4547 
4548 CharUnits AIXABIInfo::getParamTypeAlignment(QualType Ty) const {
4549   if (Ty->isAnyComplexType())
4550     llvm::report_fatal_error("complex type is not supported on AIX yet");
4551 
4552   if (Ty->isVectorType())
4553     llvm::report_fatal_error("vector type is not supported on AIX yet");
4554 
4555   // If the structure contains a vector type, the alignment is 16.
4556   if (isRecordWithSIMDVectorType(getContext(), Ty))
4557     return CharUnits::fromQuantity(16);
4558 
4559   return CharUnits::fromQuantity(PtrByteSize);
4560 }
4561 
4562 Address AIXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4563                               QualType Ty) const {
4564   if (Ty->isAnyComplexType())
4565     llvm::report_fatal_error("complex type is not supported on AIX yet");
4566 
4567   if (Ty->isVectorType())
4568     llvm::report_fatal_error("vector type is not supported on AIX yet");
4569 
4570   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
4571   TypeInfo.second = getParamTypeAlignment(Ty);
4572 
4573   CharUnits SlotSize = CharUnits::fromQuantity(PtrByteSize);
4574 
4575   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false, TypeInfo,
4576                           SlotSize, /*AllowHigher*/ true);
4577 }
4578 
4579 bool AIXTargetCodeGenInfo::initDwarfEHRegSizeTable(
4580     CodeGen::CodeGenFunction &CGF, llvm::Value *Address) const {
4581   return PPC_initDwarfEHRegSizeTable(CGF, Address, Is64Bit, /*IsAIX*/ true);
4582 }
4583 
4584 // PowerPC-32
4585 namespace {
4586 /// PPC32_SVR4_ABIInfo - The 32-bit PowerPC ELF (SVR4) ABI information.
4587 class PPC32_SVR4_ABIInfo : public DefaultABIInfo {
4588   bool IsSoftFloatABI;
4589   bool IsRetSmallStructInRegABI;
4590 
4591   CharUnits getParamTypeAlignment(QualType Ty) const;
4592 
4593 public:
4594   PPC32_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, bool SoftFloatABI,
4595                      bool RetSmallStructInRegABI)
4596       : DefaultABIInfo(CGT), IsSoftFloatABI(SoftFloatABI),
4597         IsRetSmallStructInRegABI(RetSmallStructInRegABI) {}
4598 
4599   ABIArgInfo classifyReturnType(QualType RetTy) const;
4600 
4601   void computeInfo(CGFunctionInfo &FI) const override {
4602     if (!getCXXABI().classifyReturnType(FI))
4603       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4604     for (auto &I : FI.arguments())
4605       I.info = classifyArgumentType(I.type);
4606   }
4607 
4608   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4609                     QualType Ty) const override;
4610 };
4611 
4612 class PPC32TargetCodeGenInfo : public TargetCodeGenInfo {
4613 public:
4614   PPC32TargetCodeGenInfo(CodeGenTypes &CGT, bool SoftFloatABI,
4615                          bool RetSmallStructInRegABI)
4616       : TargetCodeGenInfo(std::make_unique<PPC32_SVR4_ABIInfo>(
4617             CGT, SoftFloatABI, RetSmallStructInRegABI)) {}
4618 
4619   static bool isStructReturnInRegABI(const llvm::Triple &Triple,
4620                                      const CodeGenOptions &Opts);
4621 
4622   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4623     // This is recovered from gcc output.
4624     return 1; // r1 is the dedicated stack pointer
4625   }
4626 
4627   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4628                                llvm::Value *Address) const override;
4629 };
4630 }
4631 
4632 CharUnits PPC32_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
4633   // Complex types are passed just like their elements.
4634   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
4635     Ty = CTy->getElementType();
4636 
4637   if (Ty->isVectorType())
4638     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16
4639                                                                        : 4);
4640 
4641   // For single-element float/vector structs, we consider the whole type
4642   // to have the same alignment requirements as its single element.
4643   const Type *AlignTy = nullptr;
4644   if (const Type *EltType = isSingleElementStruct(Ty, getContext())) {
4645     const BuiltinType *BT = EltType->getAs<BuiltinType>();
4646     if ((EltType->isVectorType() && getContext().getTypeSize(EltType) == 128) ||
4647         (BT && BT->isFloatingPoint()))
4648       AlignTy = EltType;
4649   }
4650 
4651   if (AlignTy)
4652     return CharUnits::fromQuantity(AlignTy->isVectorType() ? 16 : 4);
4653   return CharUnits::fromQuantity(4);
4654 }
4655 
4656 ABIArgInfo PPC32_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
4657   uint64_t Size;
4658 
4659   // -msvr4-struct-return puts small aggregates in GPR3 and GPR4.
4660   if (isAggregateTypeForABI(RetTy) && IsRetSmallStructInRegABI &&
4661       (Size = getContext().getTypeSize(RetTy)) <= 64) {
4662     // System V ABI (1995), page 3-22, specified:
4663     // > A structure or union whose size is less than or equal to 8 bytes
4664     // > shall be returned in r3 and r4, as if it were first stored in the
4665     // > 8-byte aligned memory area and then the low addressed word were
4666     // > loaded into r3 and the high-addressed word into r4.  Bits beyond
4667     // > the last member of the structure or union are not defined.
4668     //
4669     // GCC for big-endian PPC32 inserts the pad before the first member,
4670     // not "beyond the last member" of the struct.  To stay compatible
4671     // with GCC, we coerce the struct to an integer of the same size.
4672     // LLVM will extend it and return i32 in r3, or i64 in r3:r4.
4673     if (Size == 0)
4674       return ABIArgInfo::getIgnore();
4675     else {
4676       llvm::Type *CoerceTy = llvm::Type::getIntNTy(getVMContext(), Size);
4677       return ABIArgInfo::getDirect(CoerceTy);
4678     }
4679   }
4680 
4681   return DefaultABIInfo::classifyReturnType(RetTy);
4682 }
4683 
4684 // TODO: this implementation is now likely redundant with
4685 // DefaultABIInfo::EmitVAArg.
4686 Address PPC32_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAList,
4687                                       QualType Ty) const {
4688   if (getTarget().getTriple().isOSDarwin()) {
4689     auto TI = getContext().getTypeInfoInChars(Ty);
4690     TI.second = getParamTypeAlignment(Ty);
4691 
4692     CharUnits SlotSize = CharUnits::fromQuantity(4);
4693     return emitVoidPtrVAArg(CGF, VAList, Ty,
4694                             classifyArgumentType(Ty).isIndirect(), TI, SlotSize,
4695                             /*AllowHigherAlign=*/true);
4696   }
4697 
4698   const unsigned OverflowLimit = 8;
4699   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
4700     // TODO: Implement this. For now ignore.
4701     (void)CTy;
4702     return Address::invalid(); // FIXME?
4703   }
4704 
4705   // struct __va_list_tag {
4706   //   unsigned char gpr;
4707   //   unsigned char fpr;
4708   //   unsigned short reserved;
4709   //   void *overflow_arg_area;
4710   //   void *reg_save_area;
4711   // };
4712 
4713   bool isI64 = Ty->isIntegerType() && getContext().getTypeSize(Ty) == 64;
4714   bool isInt =
4715       Ty->isIntegerType() || Ty->isPointerType() || Ty->isAggregateType();
4716   bool isF64 = Ty->isFloatingType() && getContext().getTypeSize(Ty) == 64;
4717 
4718   // All aggregates are passed indirectly?  That doesn't seem consistent
4719   // with the argument-lowering code.
4720   bool isIndirect = Ty->isAggregateType();
4721 
4722   CGBuilderTy &Builder = CGF.Builder;
4723 
4724   // The calling convention either uses 1-2 GPRs or 1 FPR.
4725   Address NumRegsAddr = Address::invalid();
4726   if (isInt || IsSoftFloatABI) {
4727     NumRegsAddr = Builder.CreateStructGEP(VAList, 0, "gpr");
4728   } else {
4729     NumRegsAddr = Builder.CreateStructGEP(VAList, 1, "fpr");
4730   }
4731 
4732   llvm::Value *NumRegs = Builder.CreateLoad(NumRegsAddr, "numUsedRegs");
4733 
4734   // "Align" the register count when TY is i64.
4735   if (isI64 || (isF64 && IsSoftFloatABI)) {
4736     NumRegs = Builder.CreateAdd(NumRegs, Builder.getInt8(1));
4737     NumRegs = Builder.CreateAnd(NumRegs, Builder.getInt8((uint8_t) ~1U));
4738   }
4739 
4740   llvm::Value *CC =
4741       Builder.CreateICmpULT(NumRegs, Builder.getInt8(OverflowLimit), "cond");
4742 
4743   llvm::BasicBlock *UsingRegs = CGF.createBasicBlock("using_regs");
4744   llvm::BasicBlock *UsingOverflow = CGF.createBasicBlock("using_overflow");
4745   llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
4746 
4747   Builder.CreateCondBr(CC, UsingRegs, UsingOverflow);
4748 
4749   llvm::Type *DirectTy = CGF.ConvertType(Ty);
4750   if (isIndirect) DirectTy = DirectTy->getPointerTo(0);
4751 
4752   // Case 1: consume registers.
4753   Address RegAddr = Address::invalid();
4754   {
4755     CGF.EmitBlock(UsingRegs);
4756 
4757     Address RegSaveAreaPtr = Builder.CreateStructGEP(VAList, 4);
4758     RegAddr = Address(Builder.CreateLoad(RegSaveAreaPtr),
4759                       CharUnits::fromQuantity(8));
4760     assert(RegAddr.getElementType() == CGF.Int8Ty);
4761 
4762     // Floating-point registers start after the general-purpose registers.
4763     if (!(isInt || IsSoftFloatABI)) {
4764       RegAddr = Builder.CreateConstInBoundsByteGEP(RegAddr,
4765                                                    CharUnits::fromQuantity(32));
4766     }
4767 
4768     // Get the address of the saved value by scaling the number of
4769     // registers we've used by the number of
4770     CharUnits RegSize = CharUnits::fromQuantity((isInt || IsSoftFloatABI) ? 4 : 8);
4771     llvm::Value *RegOffset =
4772       Builder.CreateMul(NumRegs, Builder.getInt8(RegSize.getQuantity()));
4773     RegAddr = Address(Builder.CreateInBoundsGEP(CGF.Int8Ty,
4774                                             RegAddr.getPointer(), RegOffset),
4775                       RegAddr.getAlignment().alignmentOfArrayElement(RegSize));
4776     RegAddr = Builder.CreateElementBitCast(RegAddr, DirectTy);
4777 
4778     // Increase the used-register count.
4779     NumRegs =
4780       Builder.CreateAdd(NumRegs,
4781                         Builder.getInt8((isI64 || (isF64 && IsSoftFloatABI)) ? 2 : 1));
4782     Builder.CreateStore(NumRegs, NumRegsAddr);
4783 
4784     CGF.EmitBranch(Cont);
4785   }
4786 
4787   // Case 2: consume space in the overflow area.
4788   Address MemAddr = Address::invalid();
4789   {
4790     CGF.EmitBlock(UsingOverflow);
4791 
4792     Builder.CreateStore(Builder.getInt8(OverflowLimit), NumRegsAddr);
4793 
4794     // Everything in the overflow area is rounded up to a size of at least 4.
4795     CharUnits OverflowAreaAlign = CharUnits::fromQuantity(4);
4796 
4797     CharUnits Size;
4798     if (!isIndirect) {
4799       auto TypeInfo = CGF.getContext().getTypeInfoInChars(Ty);
4800       Size = TypeInfo.first.alignTo(OverflowAreaAlign);
4801     } else {
4802       Size = CGF.getPointerSize();
4803     }
4804 
4805     Address OverflowAreaAddr = Builder.CreateStructGEP(VAList, 3);
4806     Address OverflowArea(Builder.CreateLoad(OverflowAreaAddr, "argp.cur"),
4807                          OverflowAreaAlign);
4808     // Round up address of argument to alignment
4809     CharUnits Align = CGF.getContext().getTypeAlignInChars(Ty);
4810     if (Align > OverflowAreaAlign) {
4811       llvm::Value *Ptr = OverflowArea.getPointer();
4812       OverflowArea = Address(emitRoundPointerUpToAlignment(CGF, Ptr, Align),
4813                                                            Align);
4814     }
4815 
4816     MemAddr = Builder.CreateElementBitCast(OverflowArea, DirectTy);
4817 
4818     // Increase the overflow area.
4819     OverflowArea = Builder.CreateConstInBoundsByteGEP(OverflowArea, Size);
4820     Builder.CreateStore(OverflowArea.getPointer(), OverflowAreaAddr);
4821     CGF.EmitBranch(Cont);
4822   }
4823 
4824   CGF.EmitBlock(Cont);
4825 
4826   // Merge the cases with a phi.
4827   Address Result = emitMergePHI(CGF, RegAddr, UsingRegs, MemAddr, UsingOverflow,
4828                                 "vaarg.addr");
4829 
4830   // Load the pointer if the argument was passed indirectly.
4831   if (isIndirect) {
4832     Result = Address(Builder.CreateLoad(Result, "aggr"),
4833                      getContext().getTypeAlignInChars(Ty));
4834   }
4835 
4836   return Result;
4837 }
4838 
4839 bool PPC32TargetCodeGenInfo::isStructReturnInRegABI(
4840     const llvm::Triple &Triple, const CodeGenOptions &Opts) {
4841   assert(Triple.getArch() == llvm::Triple::ppc);
4842 
4843   switch (Opts.getStructReturnConvention()) {
4844   case CodeGenOptions::SRCK_Default:
4845     break;
4846   case CodeGenOptions::SRCK_OnStack: // -maix-struct-return
4847     return false;
4848   case CodeGenOptions::SRCK_InRegs: // -msvr4-struct-return
4849     return true;
4850   }
4851 
4852   if (Triple.isOSBinFormatELF() && !Triple.isOSLinux())
4853     return true;
4854 
4855   return false;
4856 }
4857 
4858 bool
4859 PPC32TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4860                                                 llvm::Value *Address) const {
4861   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ false,
4862                                      /*IsAIX*/ false);
4863 }
4864 
4865 // PowerPC-64
4866 
4867 namespace {
4868 /// PPC64_SVR4_ABIInfo - The 64-bit PowerPC ELF (SVR4) ABI information.
4869 class PPC64_SVR4_ABIInfo : public SwiftABIInfo {
4870 public:
4871   enum ABIKind {
4872     ELFv1 = 0,
4873     ELFv2
4874   };
4875 
4876 private:
4877   static const unsigned GPRBits = 64;
4878   ABIKind Kind;
4879   bool HasQPX;
4880   bool IsSoftFloatABI;
4881 
4882   // A vector of float or double will be promoted to <4 x f32> or <4 x f64> and
4883   // will be passed in a QPX register.
4884   bool IsQPXVectorTy(const Type *Ty) const {
4885     if (!HasQPX)
4886       return false;
4887 
4888     if (const VectorType *VT = Ty->getAs<VectorType>()) {
4889       unsigned NumElements = VT->getNumElements();
4890       if (NumElements == 1)
4891         return false;
4892 
4893       if (VT->getElementType()->isSpecificBuiltinType(BuiltinType::Double)) {
4894         if (getContext().getTypeSize(Ty) <= 256)
4895           return true;
4896       } else if (VT->getElementType()->
4897                    isSpecificBuiltinType(BuiltinType::Float)) {
4898         if (getContext().getTypeSize(Ty) <= 128)
4899           return true;
4900       }
4901     }
4902 
4903     return false;
4904   }
4905 
4906   bool IsQPXVectorTy(QualType Ty) const {
4907     return IsQPXVectorTy(Ty.getTypePtr());
4908   }
4909 
4910 public:
4911   PPC64_SVR4_ABIInfo(CodeGen::CodeGenTypes &CGT, ABIKind Kind, bool HasQPX,
4912                      bool SoftFloatABI)
4913       : SwiftABIInfo(CGT), Kind(Kind), HasQPX(HasQPX),
4914         IsSoftFloatABI(SoftFloatABI) {}
4915 
4916   bool isPromotableTypeForABI(QualType Ty) const;
4917   CharUnits getParamTypeAlignment(QualType Ty) const;
4918 
4919   ABIArgInfo classifyReturnType(QualType RetTy) const;
4920   ABIArgInfo classifyArgumentType(QualType Ty) const;
4921 
4922   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
4923   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
4924                                          uint64_t Members) const override;
4925 
4926   // TODO: We can add more logic to computeInfo to improve performance.
4927   // Example: For aggregate arguments that fit in a register, we could
4928   // use getDirectInReg (as is done below for structs containing a single
4929   // floating-point value) to avoid pushing them to memory on function
4930   // entry.  This would require changing the logic in PPCISelLowering
4931   // when lowering the parameters in the caller and args in the callee.
4932   void computeInfo(CGFunctionInfo &FI) const override {
4933     if (!getCXXABI().classifyReturnType(FI))
4934       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
4935     for (auto &I : FI.arguments()) {
4936       // We rely on the default argument classification for the most part.
4937       // One exception:  An aggregate containing a single floating-point
4938       // or vector item must be passed in a register if one is available.
4939       const Type *T = isSingleElementStruct(I.type, getContext());
4940       if (T) {
4941         const BuiltinType *BT = T->getAs<BuiltinType>();
4942         if (IsQPXVectorTy(T) ||
4943             (T->isVectorType() && getContext().getTypeSize(T) == 128) ||
4944             (BT && BT->isFloatingPoint())) {
4945           QualType QT(T, 0);
4946           I.info = ABIArgInfo::getDirectInReg(CGT.ConvertType(QT));
4947           continue;
4948         }
4949       }
4950       I.info = classifyArgumentType(I.type);
4951     }
4952   }
4953 
4954   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
4955                     QualType Ty) const override;
4956 
4957   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
4958                                     bool asReturnValue) const override {
4959     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
4960   }
4961 
4962   bool isSwiftErrorInRegister() const override {
4963     return false;
4964   }
4965 };
4966 
4967 class PPC64_SVR4_TargetCodeGenInfo : public TargetCodeGenInfo {
4968 
4969 public:
4970   PPC64_SVR4_TargetCodeGenInfo(CodeGenTypes &CGT,
4971                                PPC64_SVR4_ABIInfo::ABIKind Kind, bool HasQPX,
4972                                bool SoftFloatABI)
4973       : TargetCodeGenInfo(std::make_unique<PPC64_SVR4_ABIInfo>(
4974             CGT, Kind, HasQPX, SoftFloatABI)) {}
4975 
4976   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4977     // This is recovered from gcc output.
4978     return 1; // r1 is the dedicated stack pointer
4979   }
4980 
4981   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4982                                llvm::Value *Address) const override;
4983 };
4984 
4985 class PPC64TargetCodeGenInfo : public DefaultTargetCodeGenInfo {
4986 public:
4987   PPC64TargetCodeGenInfo(CodeGenTypes &CGT) : DefaultTargetCodeGenInfo(CGT) {}
4988 
4989   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
4990     // This is recovered from gcc output.
4991     return 1; // r1 is the dedicated stack pointer
4992   }
4993 
4994   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
4995                                llvm::Value *Address) const override;
4996 };
4997 
4998 }
4999 
5000 // Return true if the ABI requires Ty to be passed sign- or zero-
5001 // extended to 64 bits.
5002 bool
5003 PPC64_SVR4_ABIInfo::isPromotableTypeForABI(QualType Ty) const {
5004   // Treat an enum type as its underlying type.
5005   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5006     Ty = EnumTy->getDecl()->getIntegerType();
5007 
5008   // Promotable integer types are required to be promoted by the ABI.
5009   if (isPromotableIntegerTypeForABI(Ty))
5010     return true;
5011 
5012   // In addition to the usual promotable integer types, we also need to
5013   // extend all 32-bit types, since the ABI requires promotion to 64 bits.
5014   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
5015     switch (BT->getKind()) {
5016     case BuiltinType::Int:
5017     case BuiltinType::UInt:
5018       return true;
5019     default:
5020       break;
5021     }
5022 
5023   if (const auto *EIT = Ty->getAs<ExtIntType>())
5024     if (EIT->getNumBits() < 64)
5025       return true;
5026 
5027   return false;
5028 }
5029 
5030 /// isAlignedParamType - Determine whether a type requires 16-byte or
5031 /// higher alignment in the parameter area.  Always returns at least 8.
5032 CharUnits PPC64_SVR4_ABIInfo::getParamTypeAlignment(QualType Ty) const {
5033   // Complex types are passed just like their elements.
5034   if (const ComplexType *CTy = Ty->getAs<ComplexType>())
5035     Ty = CTy->getElementType();
5036 
5037   // Only vector types of size 16 bytes need alignment (larger types are
5038   // passed via reference, smaller types are not aligned).
5039   if (IsQPXVectorTy(Ty)) {
5040     if (getContext().getTypeSize(Ty) > 128)
5041       return CharUnits::fromQuantity(32);
5042 
5043     return CharUnits::fromQuantity(16);
5044   } else if (Ty->isVectorType()) {
5045     return CharUnits::fromQuantity(getContext().getTypeSize(Ty) == 128 ? 16 : 8);
5046   }
5047 
5048   // For single-element float/vector structs, we consider the whole type
5049   // to have the same alignment requirements as its single element.
5050   const Type *AlignAsType = nullptr;
5051   const Type *EltType = isSingleElementStruct(Ty, getContext());
5052   if (EltType) {
5053     const BuiltinType *BT = EltType->getAs<BuiltinType>();
5054     if (IsQPXVectorTy(EltType) || (EltType->isVectorType() &&
5055          getContext().getTypeSize(EltType) == 128) ||
5056         (BT && BT->isFloatingPoint()))
5057       AlignAsType = EltType;
5058   }
5059 
5060   // Likewise for ELFv2 homogeneous aggregates.
5061   const Type *Base = nullptr;
5062   uint64_t Members = 0;
5063   if (!AlignAsType && Kind == ELFv2 &&
5064       isAggregateTypeForABI(Ty) && isHomogeneousAggregate(Ty, Base, Members))
5065     AlignAsType = Base;
5066 
5067   // With special case aggregates, only vector base types need alignment.
5068   if (AlignAsType && IsQPXVectorTy(AlignAsType)) {
5069     if (getContext().getTypeSize(AlignAsType) > 128)
5070       return CharUnits::fromQuantity(32);
5071 
5072     return CharUnits::fromQuantity(16);
5073   } else if (AlignAsType) {
5074     return CharUnits::fromQuantity(AlignAsType->isVectorType() ? 16 : 8);
5075   }
5076 
5077   // Otherwise, we only need alignment for any aggregate type that
5078   // has an alignment requirement of >= 16 bytes.
5079   if (isAggregateTypeForABI(Ty) && getContext().getTypeAlign(Ty) >= 128) {
5080     if (HasQPX && getContext().getTypeAlign(Ty) >= 256)
5081       return CharUnits::fromQuantity(32);
5082     return CharUnits::fromQuantity(16);
5083   }
5084 
5085   return CharUnits::fromQuantity(8);
5086 }
5087 
5088 /// isHomogeneousAggregate - Return true if a type is an ELFv2 homogeneous
5089 /// aggregate.  Base is set to the base element type, and Members is set
5090 /// to the number of base elements.
5091 bool ABIInfo::isHomogeneousAggregate(QualType Ty, const Type *&Base,
5092                                      uint64_t &Members) const {
5093   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
5094     uint64_t NElements = AT->getSize().getZExtValue();
5095     if (NElements == 0)
5096       return false;
5097     if (!isHomogeneousAggregate(AT->getElementType(), Base, Members))
5098       return false;
5099     Members *= NElements;
5100   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
5101     const RecordDecl *RD = RT->getDecl();
5102     if (RD->hasFlexibleArrayMember())
5103       return false;
5104 
5105     Members = 0;
5106 
5107     // If this is a C++ record, check the bases first.
5108     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD)) {
5109       for (const auto &I : CXXRD->bases()) {
5110         // Ignore empty records.
5111         if (isEmptyRecord(getContext(), I.getType(), true))
5112           continue;
5113 
5114         uint64_t FldMembers;
5115         if (!isHomogeneousAggregate(I.getType(), Base, FldMembers))
5116           return false;
5117 
5118         Members += FldMembers;
5119       }
5120     }
5121 
5122     for (const auto *FD : RD->fields()) {
5123       // Ignore (non-zero arrays of) empty records.
5124       QualType FT = FD->getType();
5125       while (const ConstantArrayType *AT =
5126              getContext().getAsConstantArrayType(FT)) {
5127         if (AT->getSize().getZExtValue() == 0)
5128           return false;
5129         FT = AT->getElementType();
5130       }
5131       if (isEmptyRecord(getContext(), FT, true))
5132         continue;
5133 
5134       // For compatibility with GCC, ignore empty bitfields in C++ mode.
5135       if (getContext().getLangOpts().CPlusPlus &&
5136           FD->isZeroLengthBitField(getContext()))
5137         continue;
5138 
5139       uint64_t FldMembers;
5140       if (!isHomogeneousAggregate(FD->getType(), Base, FldMembers))
5141         return false;
5142 
5143       Members = (RD->isUnion() ?
5144                  std::max(Members, FldMembers) : Members + FldMembers);
5145     }
5146 
5147     if (!Base)
5148       return false;
5149 
5150     // Ensure there is no padding.
5151     if (getContext().getTypeSize(Base) * Members !=
5152         getContext().getTypeSize(Ty))
5153       return false;
5154   } else {
5155     Members = 1;
5156     if (const ComplexType *CT = Ty->getAs<ComplexType>()) {
5157       Members = 2;
5158       Ty = CT->getElementType();
5159     }
5160 
5161     // Most ABIs only support float, double, and some vector type widths.
5162     if (!isHomogeneousAggregateBaseType(Ty))
5163       return false;
5164 
5165     // The base type must be the same for all members.  Types that
5166     // agree in both total size and mode (float vs. vector) are
5167     // treated as being equivalent here.
5168     const Type *TyPtr = Ty.getTypePtr();
5169     if (!Base) {
5170       Base = TyPtr;
5171       // If it's a non-power-of-2 vector, its size is already a power-of-2,
5172       // so make sure to widen it explicitly.
5173       if (const VectorType *VT = Base->getAs<VectorType>()) {
5174         QualType EltTy = VT->getElementType();
5175         unsigned NumElements =
5176             getContext().getTypeSize(VT) / getContext().getTypeSize(EltTy);
5177         Base = getContext()
5178                    .getVectorType(EltTy, NumElements, VT->getVectorKind())
5179                    .getTypePtr();
5180       }
5181     }
5182 
5183     if (Base->isVectorType() != TyPtr->isVectorType() ||
5184         getContext().getTypeSize(Base) != getContext().getTypeSize(TyPtr))
5185       return false;
5186   }
5187   return Members > 0 && isHomogeneousAggregateSmallEnough(Base, Members);
5188 }
5189 
5190 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5191   // Homogeneous aggregates for ELFv2 must have base types of float,
5192   // double, long double, or 128-bit vectors.
5193   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5194     if (BT->getKind() == BuiltinType::Float ||
5195         BT->getKind() == BuiltinType::Double ||
5196         BT->getKind() == BuiltinType::LongDouble ||
5197         (getContext().getTargetInfo().hasFloat128Type() &&
5198           (BT->getKind() == BuiltinType::Float128))) {
5199       if (IsSoftFloatABI)
5200         return false;
5201       return true;
5202     }
5203   }
5204   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5205     if (getContext().getTypeSize(VT) == 128 || IsQPXVectorTy(Ty))
5206       return true;
5207   }
5208   return false;
5209 }
5210 
5211 bool PPC64_SVR4_ABIInfo::isHomogeneousAggregateSmallEnough(
5212     const Type *Base, uint64_t Members) const {
5213   // Vector and fp128 types require one register, other floating point types
5214   // require one or two registers depending on their size.
5215   uint32_t NumRegs =
5216       ((getContext().getTargetInfo().hasFloat128Type() &&
5217           Base->isFloat128Type()) ||
5218         Base->isVectorType()) ? 1
5219                               : (getContext().getTypeSize(Base) + 63) / 64;
5220 
5221   // Homogeneous Aggregates may occupy at most 8 registers.
5222   return Members * NumRegs <= 8;
5223 }
5224 
5225 ABIArgInfo
5226 PPC64_SVR4_ABIInfo::classifyArgumentType(QualType Ty) const {
5227   Ty = useFirstFieldIfTransparentUnion(Ty);
5228 
5229   if (Ty->isAnyComplexType())
5230     return ABIArgInfo::getDirect();
5231 
5232   // Non-Altivec vector types are passed in GPRs (smaller than 16 bytes)
5233   // or via reference (larger than 16 bytes).
5234   if (Ty->isVectorType() && !IsQPXVectorTy(Ty)) {
5235     uint64_t Size = getContext().getTypeSize(Ty);
5236     if (Size > 128)
5237       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5238     else if (Size < 128) {
5239       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5240       return ABIArgInfo::getDirect(CoerceTy);
5241     }
5242   }
5243 
5244   if (const auto *EIT = Ty->getAs<ExtIntType>())
5245     if (EIT->getNumBits() > 128)
5246       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
5247 
5248   if (isAggregateTypeForABI(Ty)) {
5249     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
5250       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
5251 
5252     uint64_t ABIAlign = getParamTypeAlignment(Ty).getQuantity();
5253     uint64_t TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
5254 
5255     // ELFv2 homogeneous aggregates are passed as array types.
5256     const Type *Base = nullptr;
5257     uint64_t Members = 0;
5258     if (Kind == ELFv2 &&
5259         isHomogeneousAggregate(Ty, Base, Members)) {
5260       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5261       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5262       return ABIArgInfo::getDirect(CoerceTy);
5263     }
5264 
5265     // If an aggregate may end up fully in registers, we do not
5266     // use the ByVal method, but pass the aggregate as array.
5267     // This is usually beneficial since we avoid forcing the
5268     // back-end to store the argument to memory.
5269     uint64_t Bits = getContext().getTypeSize(Ty);
5270     if (Bits > 0 && Bits <= 8 * GPRBits) {
5271       llvm::Type *CoerceTy;
5272 
5273       // Types up to 8 bytes are passed as integer type (which will be
5274       // properly aligned in the argument save area doubleword).
5275       if (Bits <= GPRBits)
5276         CoerceTy =
5277             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5278       // Larger types are passed as arrays, with the base type selected
5279       // according to the required alignment in the save area.
5280       else {
5281         uint64_t RegBits = ABIAlign * 8;
5282         uint64_t NumRegs = llvm::alignTo(Bits, RegBits) / RegBits;
5283         llvm::Type *RegTy = llvm::IntegerType::get(getVMContext(), RegBits);
5284         CoerceTy = llvm::ArrayType::get(RegTy, NumRegs);
5285       }
5286 
5287       return ABIArgInfo::getDirect(CoerceTy);
5288     }
5289 
5290     // All other aggregates are passed ByVal.
5291     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
5292                                    /*ByVal=*/true,
5293                                    /*Realign=*/TyAlign > ABIAlign);
5294   }
5295 
5296   return (isPromotableTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
5297                                      : ABIArgInfo::getDirect());
5298 }
5299 
5300 ABIArgInfo
5301 PPC64_SVR4_ABIInfo::classifyReturnType(QualType RetTy) const {
5302   if (RetTy->isVoidType())
5303     return ABIArgInfo::getIgnore();
5304 
5305   if (RetTy->isAnyComplexType())
5306     return ABIArgInfo::getDirect();
5307 
5308   // Non-Altivec vector types are returned in GPRs (smaller than 16 bytes)
5309   // or via reference (larger than 16 bytes).
5310   if (RetTy->isVectorType() && !IsQPXVectorTy(RetTy)) {
5311     uint64_t Size = getContext().getTypeSize(RetTy);
5312     if (Size > 128)
5313       return getNaturalAlignIndirect(RetTy);
5314     else if (Size < 128) {
5315       llvm::Type *CoerceTy = llvm::IntegerType::get(getVMContext(), Size);
5316       return ABIArgInfo::getDirect(CoerceTy);
5317     }
5318   }
5319 
5320   if (const auto *EIT = RetTy->getAs<ExtIntType>())
5321     if (EIT->getNumBits() > 128)
5322       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
5323 
5324   if (isAggregateTypeForABI(RetTy)) {
5325     // ELFv2 homogeneous aggregates are returned as array types.
5326     const Type *Base = nullptr;
5327     uint64_t Members = 0;
5328     if (Kind == ELFv2 &&
5329         isHomogeneousAggregate(RetTy, Base, Members)) {
5330       llvm::Type *BaseTy = CGT.ConvertType(QualType(Base, 0));
5331       llvm::Type *CoerceTy = llvm::ArrayType::get(BaseTy, Members);
5332       return ABIArgInfo::getDirect(CoerceTy);
5333     }
5334 
5335     // ELFv2 small aggregates are returned in up to two registers.
5336     uint64_t Bits = getContext().getTypeSize(RetTy);
5337     if (Kind == ELFv2 && Bits <= 2 * GPRBits) {
5338       if (Bits == 0)
5339         return ABIArgInfo::getIgnore();
5340 
5341       llvm::Type *CoerceTy;
5342       if (Bits > GPRBits) {
5343         CoerceTy = llvm::IntegerType::get(getVMContext(), GPRBits);
5344         CoerceTy = llvm::StructType::get(CoerceTy, CoerceTy);
5345       } else
5346         CoerceTy =
5347             llvm::IntegerType::get(getVMContext(), llvm::alignTo(Bits, 8));
5348       return ABIArgInfo::getDirect(CoerceTy);
5349     }
5350 
5351     // All other aggregates are returned indirectly.
5352     return getNaturalAlignIndirect(RetTy);
5353   }
5354 
5355   return (isPromotableTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
5356                                         : ABIArgInfo::getDirect());
5357 }
5358 
5359 // Based on ARMABIInfo::EmitVAArg, adjusted for 64-bit machine.
5360 Address PPC64_SVR4_ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5361                                       QualType Ty) const {
5362   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
5363   TypeInfo.second = getParamTypeAlignment(Ty);
5364 
5365   CharUnits SlotSize = CharUnits::fromQuantity(8);
5366 
5367   // If we have a complex type and the base type is smaller than 8 bytes,
5368   // the ABI calls for the real and imaginary parts to be right-adjusted
5369   // in separate doublewords.  However, Clang expects us to produce a
5370   // pointer to a structure with the two parts packed tightly.  So generate
5371   // loads of the real and imaginary parts relative to the va_list pointer,
5372   // and store them to a temporary structure.
5373   if (const ComplexType *CTy = Ty->getAs<ComplexType>()) {
5374     CharUnits EltSize = TypeInfo.first / 2;
5375     if (EltSize < SlotSize) {
5376       Address Addr = emitVoidPtrDirectVAArg(CGF, VAListAddr, CGF.Int8Ty,
5377                                             SlotSize * 2, SlotSize,
5378                                             SlotSize, /*AllowHigher*/ true);
5379 
5380       Address RealAddr = Addr;
5381       Address ImagAddr = RealAddr;
5382       if (CGF.CGM.getDataLayout().isBigEndian()) {
5383         RealAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr,
5384                                                           SlotSize - EltSize);
5385         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(ImagAddr,
5386                                                       2 * SlotSize - EltSize);
5387       } else {
5388         ImagAddr = CGF.Builder.CreateConstInBoundsByteGEP(RealAddr, SlotSize);
5389       }
5390 
5391       llvm::Type *EltTy = CGF.ConvertTypeForMem(CTy->getElementType());
5392       RealAddr = CGF.Builder.CreateElementBitCast(RealAddr, EltTy);
5393       ImagAddr = CGF.Builder.CreateElementBitCast(ImagAddr, EltTy);
5394       llvm::Value *Real = CGF.Builder.CreateLoad(RealAddr, ".vareal");
5395       llvm::Value *Imag = CGF.Builder.CreateLoad(ImagAddr, ".vaimag");
5396 
5397       Address Temp = CGF.CreateMemTemp(Ty, "vacplx");
5398       CGF.EmitStoreOfComplex({Real, Imag}, CGF.MakeAddrLValue(Temp, Ty),
5399                              /*init*/ true);
5400       return Temp;
5401     }
5402   }
5403 
5404   // Otherwise, just use the general rule.
5405   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*Indirect*/ false,
5406                           TypeInfo, SlotSize, /*AllowHigher*/ true);
5407 }
5408 
5409 bool
5410 PPC64_SVR4_TargetCodeGenInfo::initDwarfEHRegSizeTable(
5411   CodeGen::CodeGenFunction &CGF,
5412   llvm::Value *Address) const {
5413   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5414                                      /*IsAIX*/ false);
5415 }
5416 
5417 bool
5418 PPC64TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
5419                                                 llvm::Value *Address) const {
5420   return PPC_initDwarfEHRegSizeTable(CGF, Address, /*Is64Bit*/ true,
5421                                      /*IsAIX*/ false);
5422 }
5423 
5424 //===----------------------------------------------------------------------===//
5425 // AArch64 ABI Implementation
5426 //===----------------------------------------------------------------------===//
5427 
5428 namespace {
5429 
5430 class AArch64ABIInfo : public SwiftABIInfo {
5431 public:
5432   enum ABIKind {
5433     AAPCS = 0,
5434     DarwinPCS,
5435     Win64
5436   };
5437 
5438 private:
5439   ABIKind Kind;
5440 
5441 public:
5442   AArch64ABIInfo(CodeGenTypes &CGT, ABIKind Kind)
5443     : SwiftABIInfo(CGT), Kind(Kind) {}
5444 
5445 private:
5446   ABIKind getABIKind() const { return Kind; }
5447   bool isDarwinPCS() const { return Kind == DarwinPCS; }
5448 
5449   ABIArgInfo classifyReturnType(QualType RetTy, bool IsVariadic) const;
5450   ABIArgInfo classifyArgumentType(QualType RetTy) const;
5451   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
5452   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
5453                                          uint64_t Members) const override;
5454 
5455   bool isIllegalVectorType(QualType Ty) const;
5456 
5457   void computeInfo(CGFunctionInfo &FI) const override {
5458     if (!::classifyReturnType(getCXXABI(), FI, *this))
5459       FI.getReturnInfo() =
5460           classifyReturnType(FI.getReturnType(), FI.isVariadic());
5461 
5462     for (auto &it : FI.arguments())
5463       it.info = classifyArgumentType(it.type);
5464   }
5465 
5466   Address EmitDarwinVAArg(Address VAListAddr, QualType Ty,
5467                           CodeGenFunction &CGF) const;
5468 
5469   Address EmitAAPCSVAArg(Address VAListAddr, QualType Ty,
5470                          CodeGenFunction &CGF) const;
5471 
5472   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
5473                     QualType Ty) const override {
5474     llvm::Type *BaseTy = CGF.ConvertType(Ty);
5475     if (isa<llvm::ScalableVectorType>(BaseTy))
5476       llvm::report_fatal_error("Passing SVE types to variadic functions is "
5477                                "currently not supported");
5478 
5479     return Kind == Win64 ? EmitMSVAArg(CGF, VAListAddr, Ty)
5480                          : isDarwinPCS() ? EmitDarwinVAArg(VAListAddr, Ty, CGF)
5481                                          : EmitAAPCSVAArg(VAListAddr, Ty, CGF);
5482   }
5483 
5484   Address EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
5485                       QualType Ty) const override;
5486 
5487   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
5488                                     bool asReturnValue) const override {
5489     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
5490   }
5491   bool isSwiftErrorInRegister() const override {
5492     return true;
5493   }
5494 
5495   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
5496                                  unsigned elts) const override;
5497 
5498   bool allowBFloatArgsAndRet() const override {
5499     return getTarget().hasBFloat16Type();
5500   }
5501 };
5502 
5503 class AArch64TargetCodeGenInfo : public TargetCodeGenInfo {
5504 public:
5505   AArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind Kind)
5506       : TargetCodeGenInfo(std::make_unique<AArch64ABIInfo>(CGT, Kind)) {}
5507 
5508   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
5509     return "mov\tfp, fp\t\t// marker for objc_retainAutoreleaseReturnValue";
5510   }
5511 
5512   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
5513     return 31;
5514   }
5515 
5516   bool doesReturnSlotInterfereWithArgs() const override { return false; }
5517 
5518   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5519                            CodeGen::CodeGenModule &CGM) const override {
5520     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
5521     if (!FD)
5522       return;
5523 
5524     LangOptions::SignReturnAddressScopeKind Scope =
5525         CGM.getLangOpts().getSignReturnAddressScope();
5526     LangOptions::SignReturnAddressKeyKind Key =
5527         CGM.getLangOpts().getSignReturnAddressKey();
5528     bool BranchTargetEnforcement = CGM.getLangOpts().BranchTargetEnforcement;
5529     if (const auto *TA = FD->getAttr<TargetAttr>()) {
5530       ParsedTargetAttr Attr = TA->parse();
5531       if (!Attr.BranchProtection.empty()) {
5532         TargetInfo::BranchProtectionInfo BPI;
5533         StringRef Error;
5534         (void)CGM.getTarget().validateBranchProtection(Attr.BranchProtection,
5535                                                        BPI, Error);
5536         assert(Error.empty());
5537         Scope = BPI.SignReturnAddr;
5538         Key = BPI.SignKey;
5539         BranchTargetEnforcement = BPI.BranchTargetEnforcement;
5540       }
5541     }
5542 
5543     auto *Fn = cast<llvm::Function>(GV);
5544     if (Scope != LangOptions::SignReturnAddressScopeKind::None) {
5545       Fn->addFnAttr("sign-return-address",
5546                     Scope == LangOptions::SignReturnAddressScopeKind::All
5547                         ? "all"
5548                         : "non-leaf");
5549 
5550       Fn->addFnAttr("sign-return-address-key",
5551                     Key == LangOptions::SignReturnAddressKeyKind::AKey
5552                         ? "a_key"
5553                         : "b_key");
5554     }
5555 
5556     if (BranchTargetEnforcement)
5557       Fn->addFnAttr("branch-target-enforcement");
5558   }
5559 };
5560 
5561 class WindowsAArch64TargetCodeGenInfo : public AArch64TargetCodeGenInfo {
5562 public:
5563   WindowsAArch64TargetCodeGenInfo(CodeGenTypes &CGT, AArch64ABIInfo::ABIKind K)
5564       : AArch64TargetCodeGenInfo(CGT, K) {}
5565 
5566   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
5567                            CodeGen::CodeGenModule &CGM) const override;
5568 
5569   void getDependentLibraryOption(llvm::StringRef Lib,
5570                                  llvm::SmallString<24> &Opt) const override {
5571     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
5572   }
5573 
5574   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
5575                                llvm::SmallString<32> &Opt) const override {
5576     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
5577   }
5578 };
5579 
5580 void WindowsAArch64TargetCodeGenInfo::setTargetAttributes(
5581     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
5582   AArch64TargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
5583   if (GV->isDeclaration())
5584     return;
5585   addStackProbeTargetAttributes(D, GV, CGM);
5586 }
5587 }
5588 
5589 ABIArgInfo AArch64ABIInfo::classifyArgumentType(QualType Ty) const {
5590   Ty = useFirstFieldIfTransparentUnion(Ty);
5591 
5592   // Handle illegal vector types here.
5593   if (isIllegalVectorType(Ty)) {
5594     uint64_t Size = getContext().getTypeSize(Ty);
5595     // Android promotes <2 x i8> to i16, not i32
5596     if (isAndroid() && (Size <= 16)) {
5597       llvm::Type *ResType = llvm::Type::getInt16Ty(getVMContext());
5598       return ABIArgInfo::getDirect(ResType);
5599     }
5600     if (Size <= 32) {
5601       llvm::Type *ResType = llvm::Type::getInt32Ty(getVMContext());
5602       return ABIArgInfo::getDirect(ResType);
5603     }
5604     if (Size == 64) {
5605       auto *ResType =
5606           llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 2);
5607       return ABIArgInfo::getDirect(ResType);
5608     }
5609     if (Size == 128) {
5610       auto *ResType =
5611           llvm::FixedVectorType::get(llvm::Type::getInt32Ty(getVMContext()), 4);
5612       return ABIArgInfo::getDirect(ResType);
5613     }
5614     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5615   }
5616 
5617   if (!isAggregateTypeForABI(Ty)) {
5618     // Treat an enum type as its underlying type.
5619     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
5620       Ty = EnumTy->getDecl()->getIntegerType();
5621 
5622     if (const auto *EIT = Ty->getAs<ExtIntType>())
5623       if (EIT->getNumBits() > 128)
5624         return getNaturalAlignIndirect(Ty);
5625 
5626     return (isPromotableIntegerTypeForABI(Ty) && isDarwinPCS()
5627                 ? ABIArgInfo::getExtend(Ty)
5628                 : ABIArgInfo::getDirect());
5629   }
5630 
5631   // Structures with either a non-trivial destructor or a non-trivial
5632   // copy constructor are always indirect.
5633   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
5634     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
5635                                      CGCXXABI::RAA_DirectInMemory);
5636   }
5637 
5638   // Empty records are always ignored on Darwin, but actually passed in C++ mode
5639   // elsewhere for GNU compatibility.
5640   uint64_t Size = getContext().getTypeSize(Ty);
5641   bool IsEmpty = isEmptyRecord(getContext(), Ty, true);
5642   if (IsEmpty || Size == 0) {
5643     if (!getContext().getLangOpts().CPlusPlus || isDarwinPCS())
5644       return ABIArgInfo::getIgnore();
5645 
5646     // GNU C mode. The only argument that gets ignored is an empty one with size
5647     // 0.
5648     if (IsEmpty && Size == 0)
5649       return ABIArgInfo::getIgnore();
5650     return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
5651   }
5652 
5653   // Homogeneous Floating-point Aggregates (HFAs) need to be expanded.
5654   const Type *Base = nullptr;
5655   uint64_t Members = 0;
5656   if (isHomogeneousAggregate(Ty, Base, Members)) {
5657     return ABIArgInfo::getDirect(
5658         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members));
5659   }
5660 
5661   // Aggregates <= 16 bytes are passed directly in registers or on the stack.
5662   if (Size <= 128) {
5663     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5664     // same size and alignment.
5665     if (getTarget().isRenderScriptTarget()) {
5666       return coerceToIntArray(Ty, getContext(), getVMContext());
5667     }
5668     unsigned Alignment;
5669     if (Kind == AArch64ABIInfo::AAPCS) {
5670       Alignment = getContext().getTypeUnadjustedAlign(Ty);
5671       Alignment = Alignment < 128 ? 64 : 128;
5672     } else {
5673       Alignment = std::max(getContext().getTypeAlign(Ty),
5674                            (unsigned)getTarget().getPointerWidth(0));
5675     }
5676     Size = llvm::alignTo(Size, Alignment);
5677 
5678     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5679     // For aggregates with 16-byte alignment, we use i128.
5680     llvm::Type *BaseTy = llvm::Type::getIntNTy(getVMContext(), Alignment);
5681     return ABIArgInfo::getDirect(
5682         Size == Alignment ? BaseTy
5683                           : llvm::ArrayType::get(BaseTy, Size / Alignment));
5684   }
5685 
5686   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
5687 }
5688 
5689 ABIArgInfo AArch64ABIInfo::classifyReturnType(QualType RetTy,
5690                                               bool IsVariadic) const {
5691   if (RetTy->isVoidType())
5692     return ABIArgInfo::getIgnore();
5693 
5694   // Large vector types should be returned via memory.
5695   if (RetTy->isVectorType() && getContext().getTypeSize(RetTy) > 128)
5696     return getNaturalAlignIndirect(RetTy);
5697 
5698   if (!isAggregateTypeForABI(RetTy)) {
5699     // Treat an enum type as its underlying type.
5700     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
5701       RetTy = EnumTy->getDecl()->getIntegerType();
5702 
5703     if (const auto *EIT = RetTy->getAs<ExtIntType>())
5704       if (EIT->getNumBits() > 128)
5705         return getNaturalAlignIndirect(RetTy);
5706 
5707     return (isPromotableIntegerTypeForABI(RetTy) && isDarwinPCS()
5708                 ? ABIArgInfo::getExtend(RetTy)
5709                 : ABIArgInfo::getDirect());
5710   }
5711 
5712   uint64_t Size = getContext().getTypeSize(RetTy);
5713   if (isEmptyRecord(getContext(), RetTy, true) || Size == 0)
5714     return ABIArgInfo::getIgnore();
5715 
5716   const Type *Base = nullptr;
5717   uint64_t Members = 0;
5718   if (isHomogeneousAggregate(RetTy, Base, Members) &&
5719       !(getTarget().getTriple().getArch() == llvm::Triple::aarch64_32 &&
5720         IsVariadic))
5721     // Homogeneous Floating-point Aggregates (HFAs) are returned directly.
5722     return ABIArgInfo::getDirect();
5723 
5724   // Aggregates <= 16 bytes are returned directly in registers or on the stack.
5725   if (Size <= 128) {
5726     // On RenderScript, coerce Aggregates <= 16 bytes to an integer array of
5727     // same size and alignment.
5728     if (getTarget().isRenderScriptTarget()) {
5729       return coerceToIntArray(RetTy, getContext(), getVMContext());
5730     }
5731     unsigned Alignment = getContext().getTypeAlign(RetTy);
5732     Size = llvm::alignTo(Size, 64); // round up to multiple of 8 bytes
5733 
5734     // We use a pair of i64 for 16-byte aggregate with 8-byte alignment.
5735     // For aggregates with 16-byte alignment, we use i128.
5736     if (Alignment < 128 && Size == 128) {
5737       llvm::Type *BaseTy = llvm::Type::getInt64Ty(getVMContext());
5738       return ABIArgInfo::getDirect(llvm::ArrayType::get(BaseTy, Size / 64));
5739     }
5740     return ABIArgInfo::getDirect(llvm::IntegerType::get(getVMContext(), Size));
5741   }
5742 
5743   return getNaturalAlignIndirect(RetTy);
5744 }
5745 
5746 /// isIllegalVectorType - check whether the vector type is legal for AArch64.
5747 bool AArch64ABIInfo::isIllegalVectorType(QualType Ty) const {
5748   if (const VectorType *VT = Ty->getAs<VectorType>()) {
5749     // Check whether VT is legal.
5750     unsigned NumElements = VT->getNumElements();
5751     uint64_t Size = getContext().getTypeSize(VT);
5752     // NumElements should be power of 2.
5753     if (!llvm::isPowerOf2_32(NumElements))
5754       return true;
5755 
5756     // arm64_32 has to be compatible with the ARM logic here, which allows huge
5757     // vectors for some reason.
5758     llvm::Triple Triple = getTarget().getTriple();
5759     if (Triple.getArch() == llvm::Triple::aarch64_32 &&
5760         Triple.isOSBinFormatMachO())
5761       return Size <= 32;
5762 
5763     return Size != 64 && (Size != 128 || NumElements == 1);
5764   }
5765   return false;
5766 }
5767 
5768 bool AArch64ABIInfo::isLegalVectorTypeForSwift(CharUnits totalSize,
5769                                                llvm::Type *eltTy,
5770                                                unsigned elts) const {
5771   if (!llvm::isPowerOf2_32(elts))
5772     return false;
5773   if (totalSize.getQuantity() != 8 &&
5774       (totalSize.getQuantity() != 16 || elts == 1))
5775     return false;
5776   return true;
5777 }
5778 
5779 bool AArch64ABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
5780   // Homogeneous aggregates for AAPCS64 must have base types of a floating
5781   // point type or a short-vector type. This is the same as the 32-bit ABI,
5782   // but with the difference that any floating-point type is allowed,
5783   // including __fp16.
5784   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
5785     if (BT->isFloatingPoint())
5786       return true;
5787   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
5788     unsigned VecSize = getContext().getTypeSize(VT);
5789     if (VecSize == 64 || VecSize == 128)
5790       return true;
5791   }
5792   return false;
5793 }
5794 
5795 bool AArch64ABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
5796                                                        uint64_t Members) const {
5797   return Members <= 4;
5798 }
5799 
5800 Address AArch64ABIInfo::EmitAAPCSVAArg(Address VAListAddr,
5801                                             QualType Ty,
5802                                             CodeGenFunction &CGF) const {
5803   ABIArgInfo AI = classifyArgumentType(Ty);
5804   bool IsIndirect = AI.isIndirect();
5805 
5806   llvm::Type *BaseTy = CGF.ConvertType(Ty);
5807   if (IsIndirect)
5808     BaseTy = llvm::PointerType::getUnqual(BaseTy);
5809   else if (AI.getCoerceToType())
5810     BaseTy = AI.getCoerceToType();
5811 
5812   unsigned NumRegs = 1;
5813   if (llvm::ArrayType *ArrTy = dyn_cast<llvm::ArrayType>(BaseTy)) {
5814     BaseTy = ArrTy->getElementType();
5815     NumRegs = ArrTy->getNumElements();
5816   }
5817   bool IsFPR = BaseTy->isFloatingPointTy() || BaseTy->isVectorTy();
5818 
5819   // The AArch64 va_list type and handling is specified in the Procedure Call
5820   // Standard, section B.4:
5821   //
5822   // struct {
5823   //   void *__stack;
5824   //   void *__gr_top;
5825   //   void *__vr_top;
5826   //   int __gr_offs;
5827   //   int __vr_offs;
5828   // };
5829 
5830   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
5831   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
5832   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
5833   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
5834 
5835   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
5836   CharUnits TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty);
5837 
5838   Address reg_offs_p = Address::invalid();
5839   llvm::Value *reg_offs = nullptr;
5840   int reg_top_index;
5841   int RegSize = IsIndirect ? 8 : TySize.getQuantity();
5842   if (!IsFPR) {
5843     // 3 is the field number of __gr_offs
5844     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 3, "gr_offs_p");
5845     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "gr_offs");
5846     reg_top_index = 1; // field number for __gr_top
5847     RegSize = llvm::alignTo(RegSize, 8);
5848   } else {
5849     // 4 is the field number of __vr_offs.
5850     reg_offs_p = CGF.Builder.CreateStructGEP(VAListAddr, 4, "vr_offs_p");
5851     reg_offs = CGF.Builder.CreateLoad(reg_offs_p, "vr_offs");
5852     reg_top_index = 2; // field number for __vr_top
5853     RegSize = 16 * NumRegs;
5854   }
5855 
5856   //=======================================
5857   // Find out where argument was passed
5858   //=======================================
5859 
5860   // If reg_offs >= 0 we're already using the stack for this type of
5861   // argument. We don't want to keep updating reg_offs (in case it overflows,
5862   // though anyone passing 2GB of arguments, each at most 16 bytes, deserves
5863   // whatever they get).
5864   llvm::Value *UsingStack = nullptr;
5865   UsingStack = CGF.Builder.CreateICmpSGE(
5866       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, 0));
5867 
5868   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, MaybeRegBlock);
5869 
5870   // Otherwise, at least some kind of argument could go in these registers, the
5871   // question is whether this particular type is too big.
5872   CGF.EmitBlock(MaybeRegBlock);
5873 
5874   // Integer arguments may need to correct register alignment (for example a
5875   // "struct { __int128 a; };" gets passed in x_2N, x_{2N+1}). In this case we
5876   // align __gr_offs to calculate the potential address.
5877   if (!IsFPR && !IsIndirect && TyAlign.getQuantity() > 8) {
5878     int Align = TyAlign.getQuantity();
5879 
5880     reg_offs = CGF.Builder.CreateAdd(
5881         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, Align - 1),
5882         "align_regoffs");
5883     reg_offs = CGF.Builder.CreateAnd(
5884         reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, -Align),
5885         "aligned_regoffs");
5886   }
5887 
5888   // Update the gr_offs/vr_offs pointer for next call to va_arg on this va_list.
5889   // The fact that this is done unconditionally reflects the fact that
5890   // allocating an argument to the stack also uses up all the remaining
5891   // registers of the appropriate kind.
5892   llvm::Value *NewOffset = nullptr;
5893   NewOffset = CGF.Builder.CreateAdd(
5894       reg_offs, llvm::ConstantInt::get(CGF.Int32Ty, RegSize), "new_reg_offs");
5895   CGF.Builder.CreateStore(NewOffset, reg_offs_p);
5896 
5897   // Now we're in a position to decide whether this argument really was in
5898   // registers or not.
5899   llvm::Value *InRegs = nullptr;
5900   InRegs = CGF.Builder.CreateICmpSLE(
5901       NewOffset, llvm::ConstantInt::get(CGF.Int32Ty, 0), "inreg");
5902 
5903   CGF.Builder.CreateCondBr(InRegs, InRegBlock, OnStackBlock);
5904 
5905   //=======================================
5906   // Argument was in registers
5907   //=======================================
5908 
5909   // Now we emit the code for if the argument was originally passed in
5910   // registers. First start the appropriate block:
5911   CGF.EmitBlock(InRegBlock);
5912 
5913   llvm::Value *reg_top = nullptr;
5914   Address reg_top_p =
5915       CGF.Builder.CreateStructGEP(VAListAddr, reg_top_index, "reg_top_p");
5916   reg_top = CGF.Builder.CreateLoad(reg_top_p, "reg_top");
5917   Address BaseAddr(CGF.Builder.CreateInBoundsGEP(reg_top, reg_offs),
5918                    CharUnits::fromQuantity(IsFPR ? 16 : 8));
5919   Address RegAddr = Address::invalid();
5920   llvm::Type *MemTy = CGF.ConvertTypeForMem(Ty);
5921 
5922   if (IsIndirect) {
5923     // If it's been passed indirectly (actually a struct), whatever we find from
5924     // stored registers or on the stack will actually be a struct **.
5925     MemTy = llvm::PointerType::getUnqual(MemTy);
5926   }
5927 
5928   const Type *Base = nullptr;
5929   uint64_t NumMembers = 0;
5930   bool IsHFA = isHomogeneousAggregate(Ty, Base, NumMembers);
5931   if (IsHFA && NumMembers > 1) {
5932     // Homogeneous aggregates passed in registers will have their elements split
5933     // and stored 16-bytes apart regardless of size (they're notionally in qN,
5934     // qN+1, ...). We reload and store into a temporary local variable
5935     // contiguously.
5936     assert(!IsIndirect && "Homogeneous aggregates should be passed directly");
5937     auto BaseTyInfo = getContext().getTypeInfoInChars(QualType(Base, 0));
5938     llvm::Type *BaseTy = CGF.ConvertType(QualType(Base, 0));
5939     llvm::Type *HFATy = llvm::ArrayType::get(BaseTy, NumMembers);
5940     Address Tmp = CGF.CreateTempAlloca(HFATy,
5941                                        std::max(TyAlign, BaseTyInfo.second));
5942 
5943     // On big-endian platforms, the value will be right-aligned in its slot.
5944     int Offset = 0;
5945     if (CGF.CGM.getDataLayout().isBigEndian() &&
5946         BaseTyInfo.first.getQuantity() < 16)
5947       Offset = 16 - BaseTyInfo.first.getQuantity();
5948 
5949     for (unsigned i = 0; i < NumMembers; ++i) {
5950       CharUnits BaseOffset = CharUnits::fromQuantity(16 * i + Offset);
5951       Address LoadAddr =
5952         CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, BaseOffset);
5953       LoadAddr = CGF.Builder.CreateElementBitCast(LoadAddr, BaseTy);
5954 
5955       Address StoreAddr = CGF.Builder.CreateConstArrayGEP(Tmp, i);
5956 
5957       llvm::Value *Elem = CGF.Builder.CreateLoad(LoadAddr);
5958       CGF.Builder.CreateStore(Elem, StoreAddr);
5959     }
5960 
5961     RegAddr = CGF.Builder.CreateElementBitCast(Tmp, MemTy);
5962   } else {
5963     // Otherwise the object is contiguous in memory.
5964 
5965     // It might be right-aligned in its slot.
5966     CharUnits SlotSize = BaseAddr.getAlignment();
5967     if (CGF.CGM.getDataLayout().isBigEndian() && !IsIndirect &&
5968         (IsHFA || !isAggregateTypeForABI(Ty)) &&
5969         TySize < SlotSize) {
5970       CharUnits Offset = SlotSize - TySize;
5971       BaseAddr = CGF.Builder.CreateConstInBoundsByteGEP(BaseAddr, Offset);
5972     }
5973 
5974     RegAddr = CGF.Builder.CreateElementBitCast(BaseAddr, MemTy);
5975   }
5976 
5977   CGF.EmitBranch(ContBlock);
5978 
5979   //=======================================
5980   // Argument was on the stack
5981   //=======================================
5982   CGF.EmitBlock(OnStackBlock);
5983 
5984   Address stack_p = CGF.Builder.CreateStructGEP(VAListAddr, 0, "stack_p");
5985   llvm::Value *OnStackPtr = CGF.Builder.CreateLoad(stack_p, "stack");
5986 
5987   // Again, stack arguments may need realignment. In this case both integer and
5988   // floating-point ones might be affected.
5989   if (!IsIndirect && TyAlign.getQuantity() > 8) {
5990     int Align = TyAlign.getQuantity();
5991 
5992     OnStackPtr = CGF.Builder.CreatePtrToInt(OnStackPtr, CGF.Int64Ty);
5993 
5994     OnStackPtr = CGF.Builder.CreateAdd(
5995         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, Align - 1),
5996         "align_stack");
5997     OnStackPtr = CGF.Builder.CreateAnd(
5998         OnStackPtr, llvm::ConstantInt::get(CGF.Int64Ty, -Align),
5999         "align_stack");
6000 
6001     OnStackPtr = CGF.Builder.CreateIntToPtr(OnStackPtr, CGF.Int8PtrTy);
6002   }
6003   Address OnStackAddr(OnStackPtr,
6004                       std::max(CharUnits::fromQuantity(8), TyAlign));
6005 
6006   // All stack slots are multiples of 8 bytes.
6007   CharUnits StackSlotSize = CharUnits::fromQuantity(8);
6008   CharUnits StackSize;
6009   if (IsIndirect)
6010     StackSize = StackSlotSize;
6011   else
6012     StackSize = TySize.alignTo(StackSlotSize);
6013 
6014   llvm::Value *StackSizeC = CGF.Builder.getSize(StackSize);
6015   llvm::Value *NewStack =
6016       CGF.Builder.CreateInBoundsGEP(OnStackPtr, StackSizeC, "new_stack");
6017 
6018   // Write the new value of __stack for the next call to va_arg
6019   CGF.Builder.CreateStore(NewStack, stack_p);
6020 
6021   if (CGF.CGM.getDataLayout().isBigEndian() && !isAggregateTypeForABI(Ty) &&
6022       TySize < StackSlotSize) {
6023     CharUnits Offset = StackSlotSize - TySize;
6024     OnStackAddr = CGF.Builder.CreateConstInBoundsByteGEP(OnStackAddr, Offset);
6025   }
6026 
6027   OnStackAddr = CGF.Builder.CreateElementBitCast(OnStackAddr, MemTy);
6028 
6029   CGF.EmitBranch(ContBlock);
6030 
6031   //=======================================
6032   // Tidy up
6033   //=======================================
6034   CGF.EmitBlock(ContBlock);
6035 
6036   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
6037                                  OnStackAddr, OnStackBlock, "vaargs.addr");
6038 
6039   if (IsIndirect)
6040     return Address(CGF.Builder.CreateLoad(ResAddr, "vaarg.addr"),
6041                    TyAlign);
6042 
6043   return ResAddr;
6044 }
6045 
6046 Address AArch64ABIInfo::EmitDarwinVAArg(Address VAListAddr, QualType Ty,
6047                                         CodeGenFunction &CGF) const {
6048   // The backend's lowering doesn't support va_arg for aggregates or
6049   // illegal vector types.  Lower VAArg here for these cases and use
6050   // the LLVM va_arg instruction for everything else.
6051   if (!isAggregateTypeForABI(Ty) && !isIllegalVectorType(Ty))
6052     return EmitVAArgInstr(CGF, VAListAddr, Ty, ABIArgInfo::getDirect());
6053 
6054   uint64_t PointerSize = getTarget().getPointerWidth(0) / 8;
6055   CharUnits SlotSize = CharUnits::fromQuantity(PointerSize);
6056 
6057   // Empty records are ignored for parameter passing purposes.
6058   if (isEmptyRecord(getContext(), Ty, true)) {
6059     Address Addr(CGF.Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
6060     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6061     return Addr;
6062   }
6063 
6064   // The size of the actual thing passed, which might end up just
6065   // being a pointer for indirect types.
6066   auto TyInfo = getContext().getTypeInfoInChars(Ty);
6067 
6068   // Arguments bigger than 16 bytes which aren't homogeneous
6069   // aggregates should be passed indirectly.
6070   bool IsIndirect = false;
6071   if (TyInfo.first.getQuantity() > 16) {
6072     const Type *Base = nullptr;
6073     uint64_t Members = 0;
6074     IsIndirect = !isHomogeneousAggregate(Ty, Base, Members);
6075   }
6076 
6077   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect,
6078                           TyInfo, SlotSize, /*AllowHigherAlign*/ true);
6079 }
6080 
6081 Address AArch64ABIInfo::EmitMSVAArg(CodeGenFunction &CGF, Address VAListAddr,
6082                                     QualType Ty) const {
6083   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
6084                           CGF.getContext().getTypeInfoInChars(Ty),
6085                           CharUnits::fromQuantity(8),
6086                           /*allowHigherAlign*/ false);
6087 }
6088 
6089 //===----------------------------------------------------------------------===//
6090 // ARM ABI Implementation
6091 //===----------------------------------------------------------------------===//
6092 
6093 namespace {
6094 
6095 class ARMABIInfo : public SwiftABIInfo {
6096 public:
6097   enum ABIKind {
6098     APCS = 0,
6099     AAPCS = 1,
6100     AAPCS_VFP = 2,
6101     AAPCS16_VFP = 3,
6102   };
6103 
6104 private:
6105   ABIKind Kind;
6106   bool IsFloatABISoftFP;
6107 
6108 public:
6109   ARMABIInfo(CodeGenTypes &CGT, ABIKind _Kind)
6110       : SwiftABIInfo(CGT), Kind(_Kind) {
6111     setCCs();
6112     IsFloatABISoftFP = CGT.getCodeGenOpts().FloatABI == "softfp" ||
6113         CGT.getCodeGenOpts().FloatABI == ""; // default
6114   }
6115 
6116   bool isEABI() const {
6117     switch (getTarget().getTriple().getEnvironment()) {
6118     case llvm::Triple::Android:
6119     case llvm::Triple::EABI:
6120     case llvm::Triple::EABIHF:
6121     case llvm::Triple::GNUEABI:
6122     case llvm::Triple::GNUEABIHF:
6123     case llvm::Triple::MuslEABI:
6124     case llvm::Triple::MuslEABIHF:
6125       return true;
6126     default:
6127       return false;
6128     }
6129   }
6130 
6131   bool isEABIHF() const {
6132     switch (getTarget().getTriple().getEnvironment()) {
6133     case llvm::Triple::EABIHF:
6134     case llvm::Triple::GNUEABIHF:
6135     case llvm::Triple::MuslEABIHF:
6136       return true;
6137     default:
6138       return false;
6139     }
6140   }
6141 
6142   ABIKind getABIKind() const { return Kind; }
6143 
6144   bool allowBFloatArgsAndRet() const override {
6145     return !IsFloatABISoftFP && getTarget().hasBFloat16Type();
6146   }
6147 
6148 private:
6149   ABIArgInfo classifyReturnType(QualType RetTy, bool isVariadic,
6150                                 unsigned functionCallConv) const;
6151   ABIArgInfo classifyArgumentType(QualType RetTy, bool isVariadic,
6152                                   unsigned functionCallConv) const;
6153   ABIArgInfo classifyHomogeneousAggregate(QualType Ty, const Type *Base,
6154                                           uint64_t Members) const;
6155   ABIArgInfo coerceIllegalVector(QualType Ty) const;
6156   bool isIllegalVectorType(QualType Ty) const;
6157   bool containsAnyFP16Vectors(QualType Ty) const;
6158 
6159   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
6160   bool isHomogeneousAggregateSmallEnough(const Type *Ty,
6161                                          uint64_t Members) const override;
6162 
6163   bool isEffectivelyAAPCS_VFP(unsigned callConvention, bool acceptHalf) const;
6164 
6165   void computeInfo(CGFunctionInfo &FI) const override;
6166 
6167   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6168                     QualType Ty) const override;
6169 
6170   llvm::CallingConv::ID getLLVMDefaultCC() const;
6171   llvm::CallingConv::ID getABIDefaultCC() const;
6172   void setCCs();
6173 
6174   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
6175                                     bool asReturnValue) const override {
6176     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
6177   }
6178   bool isSwiftErrorInRegister() const override {
6179     return true;
6180   }
6181   bool isLegalVectorTypeForSwift(CharUnits totalSize, llvm::Type *eltTy,
6182                                  unsigned elts) const override;
6183 };
6184 
6185 class ARMTargetCodeGenInfo : public TargetCodeGenInfo {
6186 public:
6187   ARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6188       : TargetCodeGenInfo(std::make_unique<ARMABIInfo>(CGT, K)) {}
6189 
6190   const ARMABIInfo &getABIInfo() const {
6191     return static_cast<const ARMABIInfo&>(TargetCodeGenInfo::getABIInfo());
6192   }
6193 
6194   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
6195     return 13;
6196   }
6197 
6198   StringRef getARCRetainAutoreleasedReturnValueMarker() const override {
6199     return "mov\tr7, r7\t\t// marker for objc_retainAutoreleaseReturnValue";
6200   }
6201 
6202   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
6203                                llvm::Value *Address) const override {
6204     llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
6205 
6206     // 0-15 are the 16 integer registers.
6207     AssignToArrayRange(CGF.Builder, Address, Four8, 0, 15);
6208     return false;
6209   }
6210 
6211   unsigned getSizeOfUnwindException() const override {
6212     if (getABIInfo().isEABI()) return 88;
6213     return TargetCodeGenInfo::getSizeOfUnwindException();
6214   }
6215 
6216   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6217                            CodeGen::CodeGenModule &CGM) const override {
6218     if (GV->isDeclaration())
6219       return;
6220     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
6221     if (!FD)
6222       return;
6223 
6224     const ARMInterruptAttr *Attr = FD->getAttr<ARMInterruptAttr>();
6225     if (!Attr)
6226       return;
6227 
6228     const char *Kind;
6229     switch (Attr->getInterrupt()) {
6230     case ARMInterruptAttr::Generic: Kind = ""; break;
6231     case ARMInterruptAttr::IRQ:     Kind = "IRQ"; break;
6232     case ARMInterruptAttr::FIQ:     Kind = "FIQ"; break;
6233     case ARMInterruptAttr::SWI:     Kind = "SWI"; break;
6234     case ARMInterruptAttr::ABORT:   Kind = "ABORT"; break;
6235     case ARMInterruptAttr::UNDEF:   Kind = "UNDEF"; break;
6236     }
6237 
6238     llvm::Function *Fn = cast<llvm::Function>(GV);
6239 
6240     Fn->addFnAttr("interrupt", Kind);
6241 
6242     ARMABIInfo::ABIKind ABI = cast<ARMABIInfo>(getABIInfo()).getABIKind();
6243     if (ABI == ARMABIInfo::APCS)
6244       return;
6245 
6246     // AAPCS guarantees that sp will be 8-byte aligned on any public interface,
6247     // however this is not necessarily true on taking any interrupt. Instruct
6248     // the backend to perform a realignment as part of the function prologue.
6249     llvm::AttrBuilder B;
6250     B.addStackAlignmentAttr(8);
6251     Fn->addAttributes(llvm::AttributeList::FunctionIndex, B);
6252   }
6253 };
6254 
6255 class WindowsARMTargetCodeGenInfo : public ARMTargetCodeGenInfo {
6256 public:
6257   WindowsARMTargetCodeGenInfo(CodeGenTypes &CGT, ARMABIInfo::ABIKind K)
6258       : ARMTargetCodeGenInfo(CGT, K) {}
6259 
6260   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6261                            CodeGen::CodeGenModule &CGM) const override;
6262 
6263   void getDependentLibraryOption(llvm::StringRef Lib,
6264                                  llvm::SmallString<24> &Opt) const override {
6265     Opt = "/DEFAULTLIB:" + qualifyWindowsLibrary(Lib);
6266   }
6267 
6268   void getDetectMismatchOption(llvm::StringRef Name, llvm::StringRef Value,
6269                                llvm::SmallString<32> &Opt) const override {
6270     Opt = "/FAILIFMISMATCH:\"" + Name.str() + "=" + Value.str() + "\"";
6271   }
6272 };
6273 
6274 void WindowsARMTargetCodeGenInfo::setTargetAttributes(
6275     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &CGM) const {
6276   ARMTargetCodeGenInfo::setTargetAttributes(D, GV, CGM);
6277   if (GV->isDeclaration())
6278     return;
6279   addStackProbeTargetAttributes(D, GV, CGM);
6280 }
6281 }
6282 
6283 void ARMABIInfo::computeInfo(CGFunctionInfo &FI) const {
6284   if (!::classifyReturnType(getCXXABI(), FI, *this))
6285     FI.getReturnInfo() = classifyReturnType(FI.getReturnType(), FI.isVariadic(),
6286                                             FI.getCallingConvention());
6287 
6288   for (auto &I : FI.arguments())
6289     I.info = classifyArgumentType(I.type, FI.isVariadic(),
6290                                   FI.getCallingConvention());
6291 
6292 
6293   // Always honor user-specified calling convention.
6294   if (FI.getCallingConvention() != llvm::CallingConv::C)
6295     return;
6296 
6297   llvm::CallingConv::ID cc = getRuntimeCC();
6298   if (cc != llvm::CallingConv::C)
6299     FI.setEffectiveCallingConvention(cc);
6300 }
6301 
6302 /// Return the default calling convention that LLVM will use.
6303 llvm::CallingConv::ID ARMABIInfo::getLLVMDefaultCC() const {
6304   // The default calling convention that LLVM will infer.
6305   if (isEABIHF() || getTarget().getTriple().isWatchABI())
6306     return llvm::CallingConv::ARM_AAPCS_VFP;
6307   else if (isEABI())
6308     return llvm::CallingConv::ARM_AAPCS;
6309   else
6310     return llvm::CallingConv::ARM_APCS;
6311 }
6312 
6313 /// Return the calling convention that our ABI would like us to use
6314 /// as the C calling convention.
6315 llvm::CallingConv::ID ARMABIInfo::getABIDefaultCC() const {
6316   switch (getABIKind()) {
6317   case APCS: return llvm::CallingConv::ARM_APCS;
6318   case AAPCS: return llvm::CallingConv::ARM_AAPCS;
6319   case AAPCS_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6320   case AAPCS16_VFP: return llvm::CallingConv::ARM_AAPCS_VFP;
6321   }
6322   llvm_unreachable("bad ABI kind");
6323 }
6324 
6325 void ARMABIInfo::setCCs() {
6326   assert(getRuntimeCC() == llvm::CallingConv::C);
6327 
6328   // Don't muddy up the IR with a ton of explicit annotations if
6329   // they'd just match what LLVM will infer from the triple.
6330   llvm::CallingConv::ID abiCC = getABIDefaultCC();
6331   if (abiCC != getLLVMDefaultCC())
6332     RuntimeCC = abiCC;
6333 }
6334 
6335 ABIArgInfo ARMABIInfo::coerceIllegalVector(QualType Ty) const {
6336   uint64_t Size = getContext().getTypeSize(Ty);
6337   if (Size <= 32) {
6338     llvm::Type *ResType =
6339         llvm::Type::getInt32Ty(getVMContext());
6340     return ABIArgInfo::getDirect(ResType);
6341   }
6342   if (Size == 64 || Size == 128) {
6343     auto *ResType = llvm::FixedVectorType::get(
6344         llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6345     return ABIArgInfo::getDirect(ResType);
6346   }
6347   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
6348 }
6349 
6350 ABIArgInfo ARMABIInfo::classifyHomogeneousAggregate(QualType Ty,
6351                                                     const Type *Base,
6352                                                     uint64_t Members) const {
6353   assert(Base && "Base class should be set for homogeneous aggregate");
6354   // Base can be a floating-point or a vector.
6355   if (const VectorType *VT = Base->getAs<VectorType>()) {
6356     // FP16 vectors should be converted to integer vectors
6357     if (!getTarget().hasLegalHalfType() && containsAnyFP16Vectors(Ty)) {
6358       uint64_t Size = getContext().getTypeSize(VT);
6359       auto *NewVecTy = llvm::FixedVectorType::get(
6360           llvm::Type::getInt32Ty(getVMContext()), Size / 32);
6361       llvm::Type *Ty = llvm::ArrayType::get(NewVecTy, Members);
6362       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6363     }
6364   }
6365   return ABIArgInfo::getDirect(nullptr, 0, nullptr, false);
6366 }
6367 
6368 ABIArgInfo ARMABIInfo::classifyArgumentType(QualType Ty, bool isVariadic,
6369                                             unsigned functionCallConv) const {
6370   // 6.1.2.1 The following argument types are VFP CPRCs:
6371   //   A single-precision floating-point type (including promoted
6372   //   half-precision types); A double-precision floating-point type;
6373   //   A 64-bit or 128-bit containerized vector type; Homogeneous Aggregate
6374   //   with a Base Type of a single- or double-precision floating-point type,
6375   //   64-bit containerized vectors or 128-bit containerized vectors with one
6376   //   to four Elements.
6377   // Variadic functions should always marshal to the base standard.
6378   bool IsAAPCS_VFP =
6379       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ false);
6380 
6381   Ty = useFirstFieldIfTransparentUnion(Ty);
6382 
6383   // Handle illegal vector types here.
6384   if (isIllegalVectorType(Ty))
6385     return coerceIllegalVector(Ty);
6386 
6387   if (!isAggregateTypeForABI(Ty)) {
6388     // Treat an enum type as its underlying type.
6389     if (const EnumType *EnumTy = Ty->getAs<EnumType>()) {
6390       Ty = EnumTy->getDecl()->getIntegerType();
6391     }
6392 
6393     if (const auto *EIT = Ty->getAs<ExtIntType>())
6394       if (EIT->getNumBits() > 64)
6395         return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
6396 
6397     return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
6398                                               : ABIArgInfo::getDirect());
6399   }
6400 
6401   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
6402     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
6403   }
6404 
6405   // Ignore empty records.
6406   if (isEmptyRecord(getContext(), Ty, true))
6407     return ABIArgInfo::getIgnore();
6408 
6409   if (IsAAPCS_VFP) {
6410     // Homogeneous Aggregates need to be expanded when we can fit the aggregate
6411     // into VFP registers.
6412     const Type *Base = nullptr;
6413     uint64_t Members = 0;
6414     if (isHomogeneousAggregate(Ty, Base, Members))
6415       return classifyHomogeneousAggregate(Ty, Base, Members);
6416   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6417     // WatchOS does have homogeneous aggregates. Note that we intentionally use
6418     // this convention even for a variadic function: the backend will use GPRs
6419     // if needed.
6420     const Type *Base = nullptr;
6421     uint64_t Members = 0;
6422     if (isHomogeneousAggregate(Ty, Base, Members)) {
6423       assert(Base && Members <= 4 && "unexpected homogeneous aggregate");
6424       llvm::Type *Ty =
6425         llvm::ArrayType::get(CGT.ConvertType(QualType(Base, 0)), Members);
6426       return ABIArgInfo::getDirect(Ty, 0, nullptr, false);
6427     }
6428   }
6429 
6430   if (getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6431       getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(16)) {
6432     // WatchOS is adopting the 64-bit AAPCS rule on composite types: if they're
6433     // bigger than 128-bits, they get placed in space allocated by the caller,
6434     // and a pointer is passed.
6435     return ABIArgInfo::getIndirect(
6436         CharUnits::fromQuantity(getContext().getTypeAlign(Ty) / 8), false);
6437   }
6438 
6439   // Support byval for ARM.
6440   // The ABI alignment for APCS is 4-byte and for AAPCS at least 4-byte and at
6441   // most 8-byte. We realign the indirect argument if type alignment is bigger
6442   // than ABI alignment.
6443   uint64_t ABIAlign = 4;
6444   uint64_t TyAlign;
6445   if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6446       getABIKind() == ARMABIInfo::AAPCS) {
6447     TyAlign = getContext().getTypeUnadjustedAlignInChars(Ty).getQuantity();
6448     ABIAlign = std::min(std::max(TyAlign, (uint64_t)4), (uint64_t)8);
6449   } else {
6450     TyAlign = getContext().getTypeAlignInChars(Ty).getQuantity();
6451   }
6452   if (getContext().getTypeSizeInChars(Ty) > CharUnits::fromQuantity(64)) {
6453     assert(getABIKind() != ARMABIInfo::AAPCS16_VFP && "unexpected byval");
6454     return ABIArgInfo::getIndirect(CharUnits::fromQuantity(ABIAlign),
6455                                    /*ByVal=*/true,
6456                                    /*Realign=*/TyAlign > ABIAlign);
6457   }
6458 
6459   // On RenderScript, coerce Aggregates <= 64 bytes to an integer array of
6460   // same size and alignment.
6461   if (getTarget().isRenderScriptTarget()) {
6462     return coerceToIntArray(Ty, getContext(), getVMContext());
6463   }
6464 
6465   // Otherwise, pass by coercing to a structure of the appropriate size.
6466   llvm::Type* ElemTy;
6467   unsigned SizeRegs;
6468   // FIXME: Try to match the types of the arguments more accurately where
6469   // we can.
6470   if (TyAlign <= 4) {
6471     ElemTy = llvm::Type::getInt32Ty(getVMContext());
6472     SizeRegs = (getContext().getTypeSize(Ty) + 31) / 32;
6473   } else {
6474     ElemTy = llvm::Type::getInt64Ty(getVMContext());
6475     SizeRegs = (getContext().getTypeSize(Ty) + 63) / 64;
6476   }
6477 
6478   return ABIArgInfo::getDirect(llvm::ArrayType::get(ElemTy, SizeRegs));
6479 }
6480 
6481 static bool isIntegerLikeType(QualType Ty, ASTContext &Context,
6482                               llvm::LLVMContext &VMContext) {
6483   // APCS, C Language Calling Conventions, Non-Simple Return Values: A structure
6484   // is called integer-like if its size is less than or equal to one word, and
6485   // the offset of each of its addressable sub-fields is zero.
6486 
6487   uint64_t Size = Context.getTypeSize(Ty);
6488 
6489   // Check that the type fits in a word.
6490   if (Size > 32)
6491     return false;
6492 
6493   // FIXME: Handle vector types!
6494   if (Ty->isVectorType())
6495     return false;
6496 
6497   // Float types are never treated as "integer like".
6498   if (Ty->isRealFloatingType())
6499     return false;
6500 
6501   // If this is a builtin or pointer type then it is ok.
6502   if (Ty->getAs<BuiltinType>() || Ty->isPointerType())
6503     return true;
6504 
6505   // Small complex integer types are "integer like".
6506   if (const ComplexType *CT = Ty->getAs<ComplexType>())
6507     return isIntegerLikeType(CT->getElementType(), Context, VMContext);
6508 
6509   // Single element and zero sized arrays should be allowed, by the definition
6510   // above, but they are not.
6511 
6512   // Otherwise, it must be a record type.
6513   const RecordType *RT = Ty->getAs<RecordType>();
6514   if (!RT) return false;
6515 
6516   // Ignore records with flexible arrays.
6517   const RecordDecl *RD = RT->getDecl();
6518   if (RD->hasFlexibleArrayMember())
6519     return false;
6520 
6521   // Check that all sub-fields are at offset 0, and are themselves "integer
6522   // like".
6523   const ASTRecordLayout &Layout = Context.getASTRecordLayout(RD);
6524 
6525   bool HadField = false;
6526   unsigned idx = 0;
6527   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
6528        i != e; ++i, ++idx) {
6529     const FieldDecl *FD = *i;
6530 
6531     // Bit-fields are not addressable, we only need to verify they are "integer
6532     // like". We still have to disallow a subsequent non-bitfield, for example:
6533     //   struct { int : 0; int x }
6534     // is non-integer like according to gcc.
6535     if (FD->isBitField()) {
6536       if (!RD->isUnion())
6537         HadField = true;
6538 
6539       if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6540         return false;
6541 
6542       continue;
6543     }
6544 
6545     // Check if this field is at offset 0.
6546     if (Layout.getFieldOffset(idx) != 0)
6547       return false;
6548 
6549     if (!isIntegerLikeType(FD->getType(), Context, VMContext))
6550       return false;
6551 
6552     // Only allow at most one field in a structure. This doesn't match the
6553     // wording above, but follows gcc in situations with a field following an
6554     // empty structure.
6555     if (!RD->isUnion()) {
6556       if (HadField)
6557         return false;
6558 
6559       HadField = true;
6560     }
6561   }
6562 
6563   return true;
6564 }
6565 
6566 ABIArgInfo ARMABIInfo::classifyReturnType(QualType RetTy, bool isVariadic,
6567                                           unsigned functionCallConv) const {
6568 
6569   // Variadic functions should always marshal to the base standard.
6570   bool IsAAPCS_VFP =
6571       !isVariadic && isEffectivelyAAPCS_VFP(functionCallConv, /* AAPCS16 */ true);
6572 
6573   if (RetTy->isVoidType())
6574     return ABIArgInfo::getIgnore();
6575 
6576   if (const VectorType *VT = RetTy->getAs<VectorType>()) {
6577     // Large vector types should be returned via memory.
6578     if (getContext().getTypeSize(RetTy) > 128)
6579       return getNaturalAlignIndirect(RetTy);
6580     // TODO: FP16/BF16 vectors should be converted to integer vectors
6581     // This check is similar  to isIllegalVectorType - refactor?
6582     if ((!getTarget().hasLegalHalfType() &&
6583         (VT->getElementType()->isFloat16Type() ||
6584          VT->getElementType()->isHalfType())) ||
6585         (IsFloatABISoftFP &&
6586          VT->getElementType()->isBFloat16Type()))
6587       return coerceIllegalVector(RetTy);
6588   }
6589 
6590   if (!isAggregateTypeForABI(RetTy)) {
6591     // Treat an enum type as its underlying type.
6592     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6593       RetTy = EnumTy->getDecl()->getIntegerType();
6594 
6595     if (const auto *EIT = RetTy->getAs<ExtIntType>())
6596       if (EIT->getNumBits() > 64)
6597         return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
6598 
6599     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6600                                                 : ABIArgInfo::getDirect();
6601   }
6602 
6603   // Are we following APCS?
6604   if (getABIKind() == APCS) {
6605     if (isEmptyRecord(getContext(), RetTy, false))
6606       return ABIArgInfo::getIgnore();
6607 
6608     // Complex types are all returned as packed integers.
6609     //
6610     // FIXME: Consider using 2 x vector types if the back end handles them
6611     // correctly.
6612     if (RetTy->isAnyComplexType())
6613       return ABIArgInfo::getDirect(llvm::IntegerType::get(
6614           getVMContext(), getContext().getTypeSize(RetTy)));
6615 
6616     // Integer like structures are returned in r0.
6617     if (isIntegerLikeType(RetTy, getContext(), getVMContext())) {
6618       // Return in the smallest viable integer type.
6619       uint64_t Size = getContext().getTypeSize(RetTy);
6620       if (Size <= 8)
6621         return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6622       if (Size <= 16)
6623         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6624       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6625     }
6626 
6627     // Otherwise return in memory.
6628     return getNaturalAlignIndirect(RetTy);
6629   }
6630 
6631   // Otherwise this is an AAPCS variant.
6632 
6633   if (isEmptyRecord(getContext(), RetTy, true))
6634     return ABIArgInfo::getIgnore();
6635 
6636   // Check for homogeneous aggregates with AAPCS-VFP.
6637   if (IsAAPCS_VFP) {
6638     const Type *Base = nullptr;
6639     uint64_t Members = 0;
6640     if (isHomogeneousAggregate(RetTy, Base, Members))
6641       return classifyHomogeneousAggregate(RetTy, Base, Members);
6642   }
6643 
6644   // Aggregates <= 4 bytes are returned in r0; other aggregates
6645   // are returned indirectly.
6646   uint64_t Size = getContext().getTypeSize(RetTy);
6647   if (Size <= 32) {
6648     // On RenderScript, coerce Aggregates <= 4 bytes to an integer array of
6649     // same size and alignment.
6650     if (getTarget().isRenderScriptTarget()) {
6651       return coerceToIntArray(RetTy, getContext(), getVMContext());
6652     }
6653     if (getDataLayout().isBigEndian())
6654       // Return in 32 bit integer integer type (as if loaded by LDR, AAPCS 5.4)
6655       return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6656 
6657     // Return in the smallest viable integer type.
6658     if (Size <= 8)
6659       return ABIArgInfo::getDirect(llvm::Type::getInt8Ty(getVMContext()));
6660     if (Size <= 16)
6661       return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
6662     return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
6663   } else if (Size <= 128 && getABIKind() == AAPCS16_VFP) {
6664     llvm::Type *Int32Ty = llvm::Type::getInt32Ty(getVMContext());
6665     llvm::Type *CoerceTy =
6666         llvm::ArrayType::get(Int32Ty, llvm::alignTo(Size, 32) / 32);
6667     return ABIArgInfo::getDirect(CoerceTy);
6668   }
6669 
6670   return getNaturalAlignIndirect(RetTy);
6671 }
6672 
6673 /// isIllegalVector - check whether Ty is an illegal vector type.
6674 bool ARMABIInfo::isIllegalVectorType(QualType Ty) const {
6675   if (const VectorType *VT = Ty->getAs<VectorType> ()) {
6676     // On targets that don't support half, fp16 or bfloat, they are expanded
6677     // into float, and we don't want the ABI to depend on whether or not they
6678     // are supported in hardware. Thus return false to coerce vectors of these
6679     // types into integer vectors.
6680     // We do not depend on hasLegalHalfType for bfloat as it is a
6681     // separate IR type.
6682     if ((!getTarget().hasLegalHalfType() &&
6683         (VT->getElementType()->isFloat16Type() ||
6684          VT->getElementType()->isHalfType())) ||
6685         (IsFloatABISoftFP &&
6686          VT->getElementType()->isBFloat16Type()))
6687       return true;
6688     if (isAndroid()) {
6689       // Android shipped using Clang 3.1, which supported a slightly different
6690       // vector ABI. The primary differences were that 3-element vector types
6691       // were legal, and so were sub 32-bit vectors (i.e. <2 x i8>). This path
6692       // accepts that legacy behavior for Android only.
6693       // Check whether VT is legal.
6694       unsigned NumElements = VT->getNumElements();
6695       // NumElements should be power of 2 or equal to 3.
6696       if (!llvm::isPowerOf2_32(NumElements) && NumElements != 3)
6697         return true;
6698     } else {
6699       // Check whether VT is legal.
6700       unsigned NumElements = VT->getNumElements();
6701       uint64_t Size = getContext().getTypeSize(VT);
6702       // NumElements should be power of 2.
6703       if (!llvm::isPowerOf2_32(NumElements))
6704         return true;
6705       // Size should be greater than 32 bits.
6706       return Size <= 32;
6707     }
6708   }
6709   return false;
6710 }
6711 
6712 /// Return true if a type contains any 16-bit floating point vectors
6713 bool ARMABIInfo::containsAnyFP16Vectors(QualType Ty) const {
6714   if (const ConstantArrayType *AT = getContext().getAsConstantArrayType(Ty)) {
6715     uint64_t NElements = AT->getSize().getZExtValue();
6716     if (NElements == 0)
6717       return false;
6718     return containsAnyFP16Vectors(AT->getElementType());
6719   } else if (const RecordType *RT = Ty->getAs<RecordType>()) {
6720     const RecordDecl *RD = RT->getDecl();
6721 
6722     // If this is a C++ record, check the bases first.
6723     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6724       if (llvm::any_of(CXXRD->bases(), [this](const CXXBaseSpecifier &B) {
6725             return containsAnyFP16Vectors(B.getType());
6726           }))
6727         return true;
6728 
6729     if (llvm::any_of(RD->fields(), [this](FieldDecl *FD) {
6730           return FD && containsAnyFP16Vectors(FD->getType());
6731         }))
6732       return true;
6733 
6734     return false;
6735   } else {
6736     if (const VectorType *VT = Ty->getAs<VectorType>())
6737       return (VT->getElementType()->isFloat16Type() ||
6738               VT->getElementType()->isBFloat16Type() ||
6739               VT->getElementType()->isHalfType());
6740     return false;
6741   }
6742 }
6743 
6744 bool ARMABIInfo::isLegalVectorTypeForSwift(CharUnits vectorSize,
6745                                            llvm::Type *eltTy,
6746                                            unsigned numElts) const {
6747   if (!llvm::isPowerOf2_32(numElts))
6748     return false;
6749   unsigned size = getDataLayout().getTypeStoreSizeInBits(eltTy);
6750   if (size > 64)
6751     return false;
6752   if (vectorSize.getQuantity() != 8 &&
6753       (vectorSize.getQuantity() != 16 || numElts == 1))
6754     return false;
6755   return true;
6756 }
6757 
6758 bool ARMABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
6759   // Homogeneous aggregates for AAPCS-VFP must have base types of float,
6760   // double, or 64-bit or 128-bit vectors.
6761   if (const BuiltinType *BT = Ty->getAs<BuiltinType>()) {
6762     if (BT->getKind() == BuiltinType::Float ||
6763         BT->getKind() == BuiltinType::Double ||
6764         BT->getKind() == BuiltinType::LongDouble)
6765       return true;
6766   } else if (const VectorType *VT = Ty->getAs<VectorType>()) {
6767     unsigned VecSize = getContext().getTypeSize(VT);
6768     if (VecSize == 64 || VecSize == 128)
6769       return true;
6770   }
6771   return false;
6772 }
6773 
6774 bool ARMABIInfo::isHomogeneousAggregateSmallEnough(const Type *Base,
6775                                                    uint64_t Members) const {
6776   return Members <= 4;
6777 }
6778 
6779 bool ARMABIInfo::isEffectivelyAAPCS_VFP(unsigned callConvention,
6780                                         bool acceptHalf) const {
6781   // Give precedence to user-specified calling conventions.
6782   if (callConvention != llvm::CallingConv::C)
6783     return (callConvention == llvm::CallingConv::ARM_AAPCS_VFP);
6784   else
6785     return (getABIKind() == AAPCS_VFP) ||
6786            (acceptHalf && (getABIKind() == AAPCS16_VFP));
6787 }
6788 
6789 Address ARMABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6790                               QualType Ty) const {
6791   CharUnits SlotSize = CharUnits::fromQuantity(4);
6792 
6793   // Empty records are ignored for parameter passing purposes.
6794   if (isEmptyRecord(getContext(), Ty, true)) {
6795     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
6796     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
6797     return Addr;
6798   }
6799 
6800   CharUnits TySize = getContext().getTypeSizeInChars(Ty);
6801   CharUnits TyAlignForABI = getContext().getTypeUnadjustedAlignInChars(Ty);
6802 
6803   // Use indirect if size of the illegal vector is bigger than 16 bytes.
6804   bool IsIndirect = false;
6805   const Type *Base = nullptr;
6806   uint64_t Members = 0;
6807   if (TySize > CharUnits::fromQuantity(16) && isIllegalVectorType(Ty)) {
6808     IsIndirect = true;
6809 
6810   // ARMv7k passes structs bigger than 16 bytes indirectly, in space
6811   // allocated by the caller.
6812   } else if (TySize > CharUnits::fromQuantity(16) &&
6813              getABIKind() == ARMABIInfo::AAPCS16_VFP &&
6814              !isHomogeneousAggregate(Ty, Base, Members)) {
6815     IsIndirect = true;
6816 
6817   // Otherwise, bound the type's ABI alignment.
6818   // The ABI alignment for 64-bit or 128-bit vectors is 8 for AAPCS and 4 for
6819   // APCS. For AAPCS, the ABI alignment is at least 4-byte and at most 8-byte.
6820   // Our callers should be prepared to handle an under-aligned address.
6821   } else if (getABIKind() == ARMABIInfo::AAPCS_VFP ||
6822              getABIKind() == ARMABIInfo::AAPCS) {
6823     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6824     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(8));
6825   } else if (getABIKind() == ARMABIInfo::AAPCS16_VFP) {
6826     // ARMv7k allows type alignment up to 16 bytes.
6827     TyAlignForABI = std::max(TyAlignForABI, CharUnits::fromQuantity(4));
6828     TyAlignForABI = std::min(TyAlignForABI, CharUnits::fromQuantity(16));
6829   } else {
6830     TyAlignForABI = CharUnits::fromQuantity(4);
6831   }
6832 
6833   std::pair<CharUnits, CharUnits> TyInfo = { TySize, TyAlignForABI };
6834   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, TyInfo,
6835                           SlotSize, /*AllowHigherAlign*/ true);
6836 }
6837 
6838 //===----------------------------------------------------------------------===//
6839 // NVPTX ABI Implementation
6840 //===----------------------------------------------------------------------===//
6841 
6842 namespace {
6843 
6844 class NVPTXTargetCodeGenInfo;
6845 
6846 class NVPTXABIInfo : public ABIInfo {
6847   NVPTXTargetCodeGenInfo &CGInfo;
6848 
6849 public:
6850   NVPTXABIInfo(CodeGenTypes &CGT, NVPTXTargetCodeGenInfo &Info)
6851       : ABIInfo(CGT), CGInfo(Info) {}
6852 
6853   ABIArgInfo classifyReturnType(QualType RetTy) const;
6854   ABIArgInfo classifyArgumentType(QualType Ty) const;
6855 
6856   void computeInfo(CGFunctionInfo &FI) const override;
6857   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
6858                     QualType Ty) const override;
6859   bool isUnsupportedType(QualType T) const;
6860   ABIArgInfo coerceToIntArrayWithLimit(QualType Ty, unsigned MaxSize) const;
6861 };
6862 
6863 class NVPTXTargetCodeGenInfo : public TargetCodeGenInfo {
6864 public:
6865   NVPTXTargetCodeGenInfo(CodeGenTypes &CGT)
6866       : TargetCodeGenInfo(std::make_unique<NVPTXABIInfo>(CGT, *this)) {}
6867 
6868   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
6869                            CodeGen::CodeGenModule &M) const override;
6870   bool shouldEmitStaticExternCAliases() const override;
6871 
6872   llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const override {
6873     // On the device side, surface reference is represented as an object handle
6874     // in 64-bit integer.
6875     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6876   }
6877 
6878   llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const override {
6879     // On the device side, texture reference is represented as an object handle
6880     // in 64-bit integer.
6881     return llvm::Type::getInt64Ty(getABIInfo().getVMContext());
6882   }
6883 
6884   bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6885                                               LValue Src) const override {
6886     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6887     return true;
6888   }
6889 
6890   bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6891                                               LValue Src) const override {
6892     emitBuiltinSurfTexDeviceCopy(CGF, Dst, Src);
6893     return true;
6894   }
6895 
6896 private:
6897   // Adds a NamedMDNode with GV, Name, and Operand as operands, and adds the
6898   // resulting MDNode to the nvvm.annotations MDNode.
6899   static void addNVVMMetadata(llvm::GlobalValue *GV, StringRef Name,
6900                               int Operand);
6901 
6902   static void emitBuiltinSurfTexDeviceCopy(CodeGenFunction &CGF, LValue Dst,
6903                                            LValue Src) {
6904     llvm::Value *Handle = nullptr;
6905     llvm::Constant *C =
6906         llvm::dyn_cast<llvm::Constant>(Src.getAddress(CGF).getPointer());
6907     // Lookup `addrspacecast` through the constant pointer if any.
6908     if (auto *ASC = llvm::dyn_cast_or_null<llvm::AddrSpaceCastOperator>(C))
6909       C = llvm::cast<llvm::Constant>(ASC->getPointerOperand());
6910     if (auto *GV = llvm::dyn_cast_or_null<llvm::GlobalVariable>(C)) {
6911       // Load the handle from the specific global variable using
6912       // `nvvm.texsurf.handle.internal` intrinsic.
6913       Handle = CGF.EmitRuntimeCall(
6914           CGF.CGM.getIntrinsic(llvm::Intrinsic::nvvm_texsurf_handle_internal,
6915                                {GV->getType()}),
6916           {GV}, "texsurf_handle");
6917     } else
6918       Handle = CGF.EmitLoadOfScalar(Src, SourceLocation());
6919     CGF.EmitStoreOfScalar(Handle, Dst);
6920   }
6921 };
6922 
6923 /// Checks if the type is unsupported directly by the current target.
6924 bool NVPTXABIInfo::isUnsupportedType(QualType T) const {
6925   ASTContext &Context = getContext();
6926   if (!Context.getTargetInfo().hasFloat16Type() && T->isFloat16Type())
6927     return true;
6928   if (!Context.getTargetInfo().hasFloat128Type() &&
6929       (T->isFloat128Type() ||
6930        (T->isRealFloatingType() && Context.getTypeSize(T) == 128)))
6931     return true;
6932   if (const auto *EIT = T->getAs<ExtIntType>())
6933     return EIT->getNumBits() >
6934            (Context.getTargetInfo().hasInt128Type() ? 128U : 64U);
6935   if (!Context.getTargetInfo().hasInt128Type() && T->isIntegerType() &&
6936       Context.getTypeSize(T) > 64U)
6937     return true;
6938   if (const auto *AT = T->getAsArrayTypeUnsafe())
6939     return isUnsupportedType(AT->getElementType());
6940   const auto *RT = T->getAs<RecordType>();
6941   if (!RT)
6942     return false;
6943   const RecordDecl *RD = RT->getDecl();
6944 
6945   // If this is a C++ record, check the bases first.
6946   if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
6947     for (const CXXBaseSpecifier &I : CXXRD->bases())
6948       if (isUnsupportedType(I.getType()))
6949         return true;
6950 
6951   for (const FieldDecl *I : RD->fields())
6952     if (isUnsupportedType(I->getType()))
6953       return true;
6954   return false;
6955 }
6956 
6957 /// Coerce the given type into an array with maximum allowed size of elements.
6958 ABIArgInfo NVPTXABIInfo::coerceToIntArrayWithLimit(QualType Ty,
6959                                                    unsigned MaxSize) const {
6960   // Alignment and Size are measured in bits.
6961   const uint64_t Size = getContext().getTypeSize(Ty);
6962   const uint64_t Alignment = getContext().getTypeAlign(Ty);
6963   const unsigned Div = std::min<unsigned>(MaxSize, Alignment);
6964   llvm::Type *IntType = llvm::Type::getIntNTy(getVMContext(), Div);
6965   const uint64_t NumElements = (Size + Div - 1) / Div;
6966   return ABIArgInfo::getDirect(llvm::ArrayType::get(IntType, NumElements));
6967 }
6968 
6969 ABIArgInfo NVPTXABIInfo::classifyReturnType(QualType RetTy) const {
6970   if (RetTy->isVoidType())
6971     return ABIArgInfo::getIgnore();
6972 
6973   if (getContext().getLangOpts().OpenMP &&
6974       getContext().getLangOpts().OpenMPIsDevice && isUnsupportedType(RetTy))
6975     return coerceToIntArrayWithLimit(RetTy, 64);
6976 
6977   // note: this is different from default ABI
6978   if (!RetTy->isScalarType())
6979     return ABIArgInfo::getDirect();
6980 
6981   // Treat an enum type as its underlying type.
6982   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
6983     RetTy = EnumTy->getDecl()->getIntegerType();
6984 
6985   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
6986                                                : ABIArgInfo::getDirect());
6987 }
6988 
6989 ABIArgInfo NVPTXABIInfo::classifyArgumentType(QualType Ty) const {
6990   // Treat an enum type as its underlying type.
6991   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
6992     Ty = EnumTy->getDecl()->getIntegerType();
6993 
6994   // Return aggregates type as indirect by value
6995   if (isAggregateTypeForABI(Ty)) {
6996     // Under CUDA device compilation, tex/surf builtin types are replaced with
6997     // object types and passed directly.
6998     if (getContext().getLangOpts().CUDAIsDevice) {
6999       if (Ty->isCUDADeviceBuiltinSurfaceType())
7000         return ABIArgInfo::getDirect(
7001             CGInfo.getCUDADeviceBuiltinSurfaceDeviceType());
7002       if (Ty->isCUDADeviceBuiltinTextureType())
7003         return ABIArgInfo::getDirect(
7004             CGInfo.getCUDADeviceBuiltinTextureDeviceType());
7005     }
7006     return getNaturalAlignIndirect(Ty, /* byval */ true);
7007   }
7008 
7009   if (const auto *EIT = Ty->getAs<ExtIntType>()) {
7010     if ((EIT->getNumBits() > 128) ||
7011         (!getContext().getTargetInfo().hasInt128Type() &&
7012          EIT->getNumBits() > 64))
7013       return getNaturalAlignIndirect(Ty, /* byval */ true);
7014   }
7015 
7016   return (isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
7017                                             : ABIArgInfo::getDirect());
7018 }
7019 
7020 void NVPTXABIInfo::computeInfo(CGFunctionInfo &FI) const {
7021   if (!getCXXABI().classifyReturnType(FI))
7022     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7023   for (auto &I : FI.arguments())
7024     I.info = classifyArgumentType(I.type);
7025 
7026   // Always honor user-specified calling convention.
7027   if (FI.getCallingConvention() != llvm::CallingConv::C)
7028     return;
7029 
7030   FI.setEffectiveCallingConvention(getRuntimeCC());
7031 }
7032 
7033 Address NVPTXABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7034                                 QualType Ty) const {
7035   llvm_unreachable("NVPTX does not support varargs");
7036 }
7037 
7038 void NVPTXTargetCodeGenInfo::setTargetAttributes(
7039     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7040   if (GV->isDeclaration())
7041     return;
7042   const VarDecl *VD = dyn_cast_or_null<VarDecl>(D);
7043   if (VD) {
7044     if (M.getLangOpts().CUDA) {
7045       if (VD->getType()->isCUDADeviceBuiltinSurfaceType())
7046         addNVVMMetadata(GV, "surface", 1);
7047       else if (VD->getType()->isCUDADeviceBuiltinTextureType())
7048         addNVVMMetadata(GV, "texture", 1);
7049       return;
7050     }
7051   }
7052 
7053   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7054   if (!FD) return;
7055 
7056   llvm::Function *F = cast<llvm::Function>(GV);
7057 
7058   // Perform special handling in OpenCL mode
7059   if (M.getLangOpts().OpenCL) {
7060     // Use OpenCL function attributes to check for kernel functions
7061     // By default, all functions are device functions
7062     if (FD->hasAttr<OpenCLKernelAttr>()) {
7063       // OpenCL __kernel functions get kernel metadata
7064       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7065       addNVVMMetadata(F, "kernel", 1);
7066       // And kernel functions are not subject to inlining
7067       F->addFnAttr(llvm::Attribute::NoInline);
7068     }
7069   }
7070 
7071   // Perform special handling in CUDA mode.
7072   if (M.getLangOpts().CUDA) {
7073     // CUDA __global__ functions get a kernel metadata entry.  Since
7074     // __global__ functions cannot be called from the device, we do not
7075     // need to set the noinline attribute.
7076     if (FD->hasAttr<CUDAGlobalAttr>()) {
7077       // Create !{<func-ref>, metadata !"kernel", i32 1} node
7078       addNVVMMetadata(F, "kernel", 1);
7079     }
7080     if (CUDALaunchBoundsAttr *Attr = FD->getAttr<CUDALaunchBoundsAttr>()) {
7081       // Create !{<func-ref>, metadata !"maxntidx", i32 <val>} node
7082       llvm::APSInt MaxThreads(32);
7083       MaxThreads = Attr->getMaxThreads()->EvaluateKnownConstInt(M.getContext());
7084       if (MaxThreads > 0)
7085         addNVVMMetadata(F, "maxntidx", MaxThreads.getExtValue());
7086 
7087       // min blocks is an optional argument for CUDALaunchBoundsAttr. If it was
7088       // not specified in __launch_bounds__ or if the user specified a 0 value,
7089       // we don't have to add a PTX directive.
7090       if (Attr->getMinBlocks()) {
7091         llvm::APSInt MinBlocks(32);
7092         MinBlocks = Attr->getMinBlocks()->EvaluateKnownConstInt(M.getContext());
7093         if (MinBlocks > 0)
7094           // Create !{<func-ref>, metadata !"minctasm", i32 <val>} node
7095           addNVVMMetadata(F, "minctasm", MinBlocks.getExtValue());
7096       }
7097     }
7098   }
7099 }
7100 
7101 void NVPTXTargetCodeGenInfo::addNVVMMetadata(llvm::GlobalValue *GV,
7102                                              StringRef Name, int Operand) {
7103   llvm::Module *M = GV->getParent();
7104   llvm::LLVMContext &Ctx = M->getContext();
7105 
7106   // Get "nvvm.annotations" metadata node
7107   llvm::NamedMDNode *MD = M->getOrInsertNamedMetadata("nvvm.annotations");
7108 
7109   llvm::Metadata *MDVals[] = {
7110       llvm::ConstantAsMetadata::get(GV), llvm::MDString::get(Ctx, Name),
7111       llvm::ConstantAsMetadata::get(
7112           llvm::ConstantInt::get(llvm::Type::getInt32Ty(Ctx), Operand))};
7113   // Append metadata to nvvm.annotations
7114   MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
7115 }
7116 
7117 bool NVPTXTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
7118   return false;
7119 }
7120 }
7121 
7122 //===----------------------------------------------------------------------===//
7123 // SystemZ ABI Implementation
7124 //===----------------------------------------------------------------------===//
7125 
7126 namespace {
7127 
7128 class SystemZABIInfo : public SwiftABIInfo {
7129   bool HasVector;
7130   bool IsSoftFloatABI;
7131 
7132 public:
7133   SystemZABIInfo(CodeGenTypes &CGT, bool HV, bool SF)
7134     : SwiftABIInfo(CGT), HasVector(HV), IsSoftFloatABI(SF) {}
7135 
7136   bool isPromotableIntegerTypeForABI(QualType Ty) const;
7137   bool isCompoundType(QualType Ty) const;
7138   bool isVectorArgumentType(QualType Ty) const;
7139   bool isFPArgumentType(QualType Ty) const;
7140   QualType GetSingleElementType(QualType Ty) const;
7141 
7142   ABIArgInfo classifyReturnType(QualType RetTy) const;
7143   ABIArgInfo classifyArgumentType(QualType ArgTy) const;
7144 
7145   void computeInfo(CGFunctionInfo &FI) const override {
7146     if (!getCXXABI().classifyReturnType(FI))
7147       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7148     for (auto &I : FI.arguments())
7149       I.info = classifyArgumentType(I.type);
7150   }
7151 
7152   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7153                     QualType Ty) const override;
7154 
7155   bool shouldPassIndirectlyForSwift(ArrayRef<llvm::Type*> scalars,
7156                                     bool asReturnValue) const override {
7157     return occupiesMoreThan(CGT, scalars, /*total*/ 4);
7158   }
7159   bool isSwiftErrorInRegister() const override {
7160     return false;
7161   }
7162 };
7163 
7164 class SystemZTargetCodeGenInfo : public TargetCodeGenInfo {
7165 public:
7166   SystemZTargetCodeGenInfo(CodeGenTypes &CGT, bool HasVector, bool SoftFloatABI)
7167       : TargetCodeGenInfo(
7168             std::make_unique<SystemZABIInfo>(CGT, HasVector, SoftFloatABI)) {}
7169 };
7170 
7171 }
7172 
7173 bool SystemZABIInfo::isPromotableIntegerTypeForABI(QualType Ty) const {
7174   // Treat an enum type as its underlying type.
7175   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7176     Ty = EnumTy->getDecl()->getIntegerType();
7177 
7178   // Promotable integer types are required to be promoted by the ABI.
7179   if (ABIInfo::isPromotableIntegerTypeForABI(Ty))
7180     return true;
7181 
7182   if (const auto *EIT = Ty->getAs<ExtIntType>())
7183     if (EIT->getNumBits() < 64)
7184       return true;
7185 
7186   // 32-bit values must also be promoted.
7187   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7188     switch (BT->getKind()) {
7189     case BuiltinType::Int:
7190     case BuiltinType::UInt:
7191       return true;
7192     default:
7193       return false;
7194     }
7195   return false;
7196 }
7197 
7198 bool SystemZABIInfo::isCompoundType(QualType Ty) const {
7199   return (Ty->isAnyComplexType() ||
7200           Ty->isVectorType() ||
7201           isAggregateTypeForABI(Ty));
7202 }
7203 
7204 bool SystemZABIInfo::isVectorArgumentType(QualType Ty) const {
7205   return (HasVector &&
7206           Ty->isVectorType() &&
7207           getContext().getTypeSize(Ty) <= 128);
7208 }
7209 
7210 bool SystemZABIInfo::isFPArgumentType(QualType Ty) const {
7211   if (IsSoftFloatABI)
7212     return false;
7213 
7214   if (const BuiltinType *BT = Ty->getAs<BuiltinType>())
7215     switch (BT->getKind()) {
7216     case BuiltinType::Float:
7217     case BuiltinType::Double:
7218       return true;
7219     default:
7220       return false;
7221     }
7222 
7223   return false;
7224 }
7225 
7226 QualType SystemZABIInfo::GetSingleElementType(QualType Ty) const {
7227   const RecordType *RT = Ty->getAs<RecordType>();
7228 
7229   if (RT && RT->isStructureOrClassType()) {
7230     const RecordDecl *RD = RT->getDecl();
7231     QualType Found;
7232 
7233     // If this is a C++ record, check the bases first.
7234     if (const CXXRecordDecl *CXXRD = dyn_cast<CXXRecordDecl>(RD))
7235       for (const auto &I : CXXRD->bases()) {
7236         QualType Base = I.getType();
7237 
7238         // Empty bases don't affect things either way.
7239         if (isEmptyRecord(getContext(), Base, true))
7240           continue;
7241 
7242         if (!Found.isNull())
7243           return Ty;
7244         Found = GetSingleElementType(Base);
7245       }
7246 
7247     // Check the fields.
7248     for (const auto *FD : RD->fields()) {
7249       // For compatibility with GCC, ignore empty bitfields in C++ mode.
7250       // Unlike isSingleElementStruct(), empty structure and array fields
7251       // do count.  So do anonymous bitfields that aren't zero-sized.
7252       if (getContext().getLangOpts().CPlusPlus &&
7253           FD->isZeroLengthBitField(getContext()))
7254         continue;
7255       // Like isSingleElementStruct(), ignore C++20 empty data members.
7256       if (FD->hasAttr<NoUniqueAddressAttr>() &&
7257           isEmptyRecord(getContext(), FD->getType(), true))
7258         continue;
7259 
7260       // Unlike isSingleElementStruct(), arrays do not count.
7261       // Nested structures still do though.
7262       if (!Found.isNull())
7263         return Ty;
7264       Found = GetSingleElementType(FD->getType());
7265     }
7266 
7267     // Unlike isSingleElementStruct(), trailing padding is allowed.
7268     // An 8-byte aligned struct s { float f; } is passed as a double.
7269     if (!Found.isNull())
7270       return Found;
7271   }
7272 
7273   return Ty;
7274 }
7275 
7276 Address SystemZABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7277                                   QualType Ty) const {
7278   // Assume that va_list type is correct; should be pointer to LLVM type:
7279   // struct {
7280   //   i64 __gpr;
7281   //   i64 __fpr;
7282   //   i8 *__overflow_arg_area;
7283   //   i8 *__reg_save_area;
7284   // };
7285 
7286   // Every non-vector argument occupies 8 bytes and is passed by preference
7287   // in either GPRs or FPRs.  Vector arguments occupy 8 or 16 bytes and are
7288   // always passed on the stack.
7289   Ty = getContext().getCanonicalType(Ty);
7290   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7291   llvm::Type *ArgTy = CGF.ConvertTypeForMem(Ty);
7292   llvm::Type *DirectTy = ArgTy;
7293   ABIArgInfo AI = classifyArgumentType(Ty);
7294   bool IsIndirect = AI.isIndirect();
7295   bool InFPRs = false;
7296   bool IsVector = false;
7297   CharUnits UnpaddedSize;
7298   CharUnits DirectAlign;
7299   if (IsIndirect) {
7300     DirectTy = llvm::PointerType::getUnqual(DirectTy);
7301     UnpaddedSize = DirectAlign = CharUnits::fromQuantity(8);
7302   } else {
7303     if (AI.getCoerceToType())
7304       ArgTy = AI.getCoerceToType();
7305     InFPRs = (!IsSoftFloatABI && (ArgTy->isFloatTy() || ArgTy->isDoubleTy()));
7306     IsVector = ArgTy->isVectorTy();
7307     UnpaddedSize = TyInfo.first;
7308     DirectAlign = TyInfo.second;
7309   }
7310   CharUnits PaddedSize = CharUnits::fromQuantity(8);
7311   if (IsVector && UnpaddedSize > PaddedSize)
7312     PaddedSize = CharUnits::fromQuantity(16);
7313   assert((UnpaddedSize <= PaddedSize) && "Invalid argument size.");
7314 
7315   CharUnits Padding = (PaddedSize - UnpaddedSize);
7316 
7317   llvm::Type *IndexTy = CGF.Int64Ty;
7318   llvm::Value *PaddedSizeV =
7319     llvm::ConstantInt::get(IndexTy, PaddedSize.getQuantity());
7320 
7321   if (IsVector) {
7322     // Work out the address of a vector argument on the stack.
7323     // Vector arguments are always passed in the high bits of a
7324     // single (8 byte) or double (16 byte) stack slot.
7325     Address OverflowArgAreaPtr =
7326         CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7327     Address OverflowArgArea =
7328       Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7329               TyInfo.second);
7330     Address MemAddr =
7331       CGF.Builder.CreateElementBitCast(OverflowArgArea, DirectTy, "mem_addr");
7332 
7333     // Update overflow_arg_area_ptr pointer
7334     llvm::Value *NewOverflowArgArea =
7335       CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7336                             "overflow_arg_area");
7337     CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7338 
7339     return MemAddr;
7340   }
7341 
7342   assert(PaddedSize.getQuantity() == 8);
7343 
7344   unsigned MaxRegs, RegCountField, RegSaveIndex;
7345   CharUnits RegPadding;
7346   if (InFPRs) {
7347     MaxRegs = 4; // Maximum of 4 FPR arguments
7348     RegCountField = 1; // __fpr
7349     RegSaveIndex = 16; // save offset for f0
7350     RegPadding = CharUnits(); // floats are passed in the high bits of an FPR
7351   } else {
7352     MaxRegs = 5; // Maximum of 5 GPR arguments
7353     RegCountField = 0; // __gpr
7354     RegSaveIndex = 2; // save offset for r2
7355     RegPadding = Padding; // values are passed in the low bits of a GPR
7356   }
7357 
7358   Address RegCountPtr =
7359       CGF.Builder.CreateStructGEP(VAListAddr, RegCountField, "reg_count_ptr");
7360   llvm::Value *RegCount = CGF.Builder.CreateLoad(RegCountPtr, "reg_count");
7361   llvm::Value *MaxRegsV = llvm::ConstantInt::get(IndexTy, MaxRegs);
7362   llvm::Value *InRegs = CGF.Builder.CreateICmpULT(RegCount, MaxRegsV,
7363                                                  "fits_in_regs");
7364 
7365   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
7366   llvm::BasicBlock *InMemBlock = CGF.createBasicBlock("vaarg.in_mem");
7367   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
7368   CGF.Builder.CreateCondBr(InRegs, InRegBlock, InMemBlock);
7369 
7370   // Emit code to load the value if it was passed in registers.
7371   CGF.EmitBlock(InRegBlock);
7372 
7373   // Work out the address of an argument register.
7374   llvm::Value *ScaledRegCount =
7375     CGF.Builder.CreateMul(RegCount, PaddedSizeV, "scaled_reg_count");
7376   llvm::Value *RegBase =
7377     llvm::ConstantInt::get(IndexTy, RegSaveIndex * PaddedSize.getQuantity()
7378                                       + RegPadding.getQuantity());
7379   llvm::Value *RegOffset =
7380     CGF.Builder.CreateAdd(ScaledRegCount, RegBase, "reg_offset");
7381   Address RegSaveAreaPtr =
7382       CGF.Builder.CreateStructGEP(VAListAddr, 3, "reg_save_area_ptr");
7383   llvm::Value *RegSaveArea =
7384     CGF.Builder.CreateLoad(RegSaveAreaPtr, "reg_save_area");
7385   Address RawRegAddr(CGF.Builder.CreateGEP(RegSaveArea, RegOffset,
7386                                            "raw_reg_addr"),
7387                      PaddedSize);
7388   Address RegAddr =
7389     CGF.Builder.CreateElementBitCast(RawRegAddr, DirectTy, "reg_addr");
7390 
7391   // Update the register count
7392   llvm::Value *One = llvm::ConstantInt::get(IndexTy, 1);
7393   llvm::Value *NewRegCount =
7394     CGF.Builder.CreateAdd(RegCount, One, "reg_count");
7395   CGF.Builder.CreateStore(NewRegCount, RegCountPtr);
7396   CGF.EmitBranch(ContBlock);
7397 
7398   // Emit code to load the value if it was passed in memory.
7399   CGF.EmitBlock(InMemBlock);
7400 
7401   // Work out the address of a stack argument.
7402   Address OverflowArgAreaPtr =
7403       CGF.Builder.CreateStructGEP(VAListAddr, 2, "overflow_arg_area_ptr");
7404   Address OverflowArgArea =
7405     Address(CGF.Builder.CreateLoad(OverflowArgAreaPtr, "overflow_arg_area"),
7406             PaddedSize);
7407   Address RawMemAddr =
7408     CGF.Builder.CreateConstByteGEP(OverflowArgArea, Padding, "raw_mem_addr");
7409   Address MemAddr =
7410     CGF.Builder.CreateElementBitCast(RawMemAddr, DirectTy, "mem_addr");
7411 
7412   // Update overflow_arg_area_ptr pointer
7413   llvm::Value *NewOverflowArgArea =
7414     CGF.Builder.CreateGEP(OverflowArgArea.getPointer(), PaddedSizeV,
7415                           "overflow_arg_area");
7416   CGF.Builder.CreateStore(NewOverflowArgArea, OverflowArgAreaPtr);
7417   CGF.EmitBranch(ContBlock);
7418 
7419   // Return the appropriate result.
7420   CGF.EmitBlock(ContBlock);
7421   Address ResAddr = emitMergePHI(CGF, RegAddr, InRegBlock,
7422                                  MemAddr, InMemBlock, "va_arg.addr");
7423 
7424   if (IsIndirect)
7425     ResAddr = Address(CGF.Builder.CreateLoad(ResAddr, "indirect_arg"),
7426                       TyInfo.second);
7427 
7428   return ResAddr;
7429 }
7430 
7431 ABIArgInfo SystemZABIInfo::classifyReturnType(QualType RetTy) const {
7432   if (RetTy->isVoidType())
7433     return ABIArgInfo::getIgnore();
7434   if (isVectorArgumentType(RetTy))
7435     return ABIArgInfo::getDirect();
7436   if (isCompoundType(RetTy) || getContext().getTypeSize(RetTy) > 64)
7437     return getNaturalAlignIndirect(RetTy);
7438   return (isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
7439                                                : ABIArgInfo::getDirect());
7440 }
7441 
7442 ABIArgInfo SystemZABIInfo::classifyArgumentType(QualType Ty) const {
7443   // Handle the generic C++ ABI.
7444   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
7445     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7446 
7447   // Integers and enums are extended to full register width.
7448   if (isPromotableIntegerTypeForABI(Ty))
7449     return ABIArgInfo::getExtend(Ty);
7450 
7451   // Handle vector types and vector-like structure types.  Note that
7452   // as opposed to float-like structure types, we do not allow any
7453   // padding for vector-like structures, so verify the sizes match.
7454   uint64_t Size = getContext().getTypeSize(Ty);
7455   QualType SingleElementTy = GetSingleElementType(Ty);
7456   if (isVectorArgumentType(SingleElementTy) &&
7457       getContext().getTypeSize(SingleElementTy) == Size)
7458     return ABIArgInfo::getDirect(CGT.ConvertType(SingleElementTy));
7459 
7460   // Values that are not 1, 2, 4 or 8 bytes in size are passed indirectly.
7461   if (Size != 8 && Size != 16 && Size != 32 && Size != 64)
7462     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7463 
7464   // Handle small structures.
7465   if (const RecordType *RT = Ty->getAs<RecordType>()) {
7466     // Structures with flexible arrays have variable length, so really
7467     // fail the size test above.
7468     const RecordDecl *RD = RT->getDecl();
7469     if (RD->hasFlexibleArrayMember())
7470       return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7471 
7472     // The structure is passed as an unextended integer, a float, or a double.
7473     llvm::Type *PassTy;
7474     if (isFPArgumentType(SingleElementTy)) {
7475       assert(Size == 32 || Size == 64);
7476       if (Size == 32)
7477         PassTy = llvm::Type::getFloatTy(getVMContext());
7478       else
7479         PassTy = llvm::Type::getDoubleTy(getVMContext());
7480     } else
7481       PassTy = llvm::IntegerType::get(getVMContext(), Size);
7482     return ABIArgInfo::getDirect(PassTy);
7483   }
7484 
7485   // Non-structure compounds are passed indirectly.
7486   if (isCompoundType(Ty))
7487     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
7488 
7489   return ABIArgInfo::getDirect(nullptr);
7490 }
7491 
7492 //===----------------------------------------------------------------------===//
7493 // MSP430 ABI Implementation
7494 //===----------------------------------------------------------------------===//
7495 
7496 namespace {
7497 
7498 class MSP430ABIInfo : public DefaultABIInfo {
7499   static ABIArgInfo complexArgInfo() {
7500     ABIArgInfo Info = ABIArgInfo::getDirect();
7501     Info.setCanBeFlattened(false);
7502     return Info;
7503   }
7504 
7505 public:
7506   MSP430ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
7507 
7508   ABIArgInfo classifyReturnType(QualType RetTy) const {
7509     if (RetTy->isAnyComplexType())
7510       return complexArgInfo();
7511 
7512     return DefaultABIInfo::classifyReturnType(RetTy);
7513   }
7514 
7515   ABIArgInfo classifyArgumentType(QualType RetTy) const {
7516     if (RetTy->isAnyComplexType())
7517       return complexArgInfo();
7518 
7519     return DefaultABIInfo::classifyArgumentType(RetTy);
7520   }
7521 
7522   // Just copy the original implementations because
7523   // DefaultABIInfo::classify{Return,Argument}Type() are not virtual
7524   void computeInfo(CGFunctionInfo &FI) const override {
7525     if (!getCXXABI().classifyReturnType(FI))
7526       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
7527     for (auto &I : FI.arguments())
7528       I.info = classifyArgumentType(I.type);
7529   }
7530 
7531   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7532                     QualType Ty) const override {
7533     return EmitVAArgInstr(CGF, VAListAddr, Ty, classifyArgumentType(Ty));
7534   }
7535 };
7536 
7537 class MSP430TargetCodeGenInfo : public TargetCodeGenInfo {
7538 public:
7539   MSP430TargetCodeGenInfo(CodeGenTypes &CGT)
7540       : TargetCodeGenInfo(std::make_unique<MSP430ABIInfo>(CGT)) {}
7541   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7542                            CodeGen::CodeGenModule &M) const override;
7543 };
7544 
7545 }
7546 
7547 void MSP430TargetCodeGenInfo::setTargetAttributes(
7548     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
7549   if (GV->isDeclaration())
7550     return;
7551   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) {
7552     const auto *InterruptAttr = FD->getAttr<MSP430InterruptAttr>();
7553     if (!InterruptAttr)
7554       return;
7555 
7556     // Handle 'interrupt' attribute:
7557     llvm::Function *F = cast<llvm::Function>(GV);
7558 
7559     // Step 1: Set ISR calling convention.
7560     F->setCallingConv(llvm::CallingConv::MSP430_INTR);
7561 
7562     // Step 2: Add attributes goodness.
7563     F->addFnAttr(llvm::Attribute::NoInline);
7564     F->addFnAttr("interrupt", llvm::utostr(InterruptAttr->getNumber()));
7565   }
7566 }
7567 
7568 //===----------------------------------------------------------------------===//
7569 // MIPS ABI Implementation.  This works for both little-endian and
7570 // big-endian variants.
7571 //===----------------------------------------------------------------------===//
7572 
7573 namespace {
7574 class MipsABIInfo : public ABIInfo {
7575   bool IsO32;
7576   unsigned MinABIStackAlignInBytes, StackAlignInBytes;
7577   void CoerceToIntArgs(uint64_t TySize,
7578                        SmallVectorImpl<llvm::Type *> &ArgList) const;
7579   llvm::Type* HandleAggregates(QualType Ty, uint64_t TySize) const;
7580   llvm::Type* returnAggregateInRegs(QualType RetTy, uint64_t Size) const;
7581   llvm::Type* getPaddingType(uint64_t Align, uint64_t Offset) const;
7582 public:
7583   MipsABIInfo(CodeGenTypes &CGT, bool _IsO32) :
7584     ABIInfo(CGT), IsO32(_IsO32), MinABIStackAlignInBytes(IsO32 ? 4 : 8),
7585     StackAlignInBytes(IsO32 ? 8 : 16) {}
7586 
7587   ABIArgInfo classifyReturnType(QualType RetTy) const;
7588   ABIArgInfo classifyArgumentType(QualType RetTy, uint64_t &Offset) const;
7589   void computeInfo(CGFunctionInfo &FI) const override;
7590   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7591                     QualType Ty) const override;
7592   ABIArgInfo extendType(QualType Ty) const;
7593 };
7594 
7595 class MIPSTargetCodeGenInfo : public TargetCodeGenInfo {
7596   unsigned SizeOfUnwindException;
7597 public:
7598   MIPSTargetCodeGenInfo(CodeGenTypes &CGT, bool IsO32)
7599       : TargetCodeGenInfo(std::make_unique<MipsABIInfo>(CGT, IsO32)),
7600         SizeOfUnwindException(IsO32 ? 24 : 32) {}
7601 
7602   int getDwarfEHStackPointer(CodeGen::CodeGenModule &CGM) const override {
7603     return 29;
7604   }
7605 
7606   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
7607                            CodeGen::CodeGenModule &CGM) const override {
7608     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
7609     if (!FD) return;
7610     llvm::Function *Fn = cast<llvm::Function>(GV);
7611 
7612     if (FD->hasAttr<MipsLongCallAttr>())
7613       Fn->addFnAttr("long-call");
7614     else if (FD->hasAttr<MipsShortCallAttr>())
7615       Fn->addFnAttr("short-call");
7616 
7617     // Other attributes do not have a meaning for declarations.
7618     if (GV->isDeclaration())
7619       return;
7620 
7621     if (FD->hasAttr<Mips16Attr>()) {
7622       Fn->addFnAttr("mips16");
7623     }
7624     else if (FD->hasAttr<NoMips16Attr>()) {
7625       Fn->addFnAttr("nomips16");
7626     }
7627 
7628     if (FD->hasAttr<MicroMipsAttr>())
7629       Fn->addFnAttr("micromips");
7630     else if (FD->hasAttr<NoMicroMipsAttr>())
7631       Fn->addFnAttr("nomicromips");
7632 
7633     const MipsInterruptAttr *Attr = FD->getAttr<MipsInterruptAttr>();
7634     if (!Attr)
7635       return;
7636 
7637     const char *Kind;
7638     switch (Attr->getInterrupt()) {
7639     case MipsInterruptAttr::eic:     Kind = "eic"; break;
7640     case MipsInterruptAttr::sw0:     Kind = "sw0"; break;
7641     case MipsInterruptAttr::sw1:     Kind = "sw1"; break;
7642     case MipsInterruptAttr::hw0:     Kind = "hw0"; break;
7643     case MipsInterruptAttr::hw1:     Kind = "hw1"; break;
7644     case MipsInterruptAttr::hw2:     Kind = "hw2"; break;
7645     case MipsInterruptAttr::hw3:     Kind = "hw3"; break;
7646     case MipsInterruptAttr::hw4:     Kind = "hw4"; break;
7647     case MipsInterruptAttr::hw5:     Kind = "hw5"; break;
7648     }
7649 
7650     Fn->addFnAttr("interrupt", Kind);
7651 
7652   }
7653 
7654   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7655                                llvm::Value *Address) const override;
7656 
7657   unsigned getSizeOfUnwindException() const override {
7658     return SizeOfUnwindException;
7659   }
7660 };
7661 }
7662 
7663 void MipsABIInfo::CoerceToIntArgs(
7664     uint64_t TySize, SmallVectorImpl<llvm::Type *> &ArgList) const {
7665   llvm::IntegerType *IntTy =
7666     llvm::IntegerType::get(getVMContext(), MinABIStackAlignInBytes * 8);
7667 
7668   // Add (TySize / MinABIStackAlignInBytes) args of IntTy.
7669   for (unsigned N = TySize / (MinABIStackAlignInBytes * 8); N; --N)
7670     ArgList.push_back(IntTy);
7671 
7672   // If necessary, add one more integer type to ArgList.
7673   unsigned R = TySize % (MinABIStackAlignInBytes * 8);
7674 
7675   if (R)
7676     ArgList.push_back(llvm::IntegerType::get(getVMContext(), R));
7677 }
7678 
7679 // In N32/64, an aligned double precision floating point field is passed in
7680 // a register.
7681 llvm::Type* MipsABIInfo::HandleAggregates(QualType Ty, uint64_t TySize) const {
7682   SmallVector<llvm::Type*, 8> ArgList, IntArgList;
7683 
7684   if (IsO32) {
7685     CoerceToIntArgs(TySize, ArgList);
7686     return llvm::StructType::get(getVMContext(), ArgList);
7687   }
7688 
7689   if (Ty->isComplexType())
7690     return CGT.ConvertType(Ty);
7691 
7692   const RecordType *RT = Ty->getAs<RecordType>();
7693 
7694   // Unions/vectors are passed in integer registers.
7695   if (!RT || !RT->isStructureOrClassType()) {
7696     CoerceToIntArgs(TySize, ArgList);
7697     return llvm::StructType::get(getVMContext(), ArgList);
7698   }
7699 
7700   const RecordDecl *RD = RT->getDecl();
7701   const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7702   assert(!(TySize % 8) && "Size of structure must be multiple of 8.");
7703 
7704   uint64_t LastOffset = 0;
7705   unsigned idx = 0;
7706   llvm::IntegerType *I64 = llvm::IntegerType::get(getVMContext(), 64);
7707 
7708   // Iterate over fields in the struct/class and check if there are any aligned
7709   // double fields.
7710   for (RecordDecl::field_iterator i = RD->field_begin(), e = RD->field_end();
7711        i != e; ++i, ++idx) {
7712     const QualType Ty = i->getType();
7713     const BuiltinType *BT = Ty->getAs<BuiltinType>();
7714 
7715     if (!BT || BT->getKind() != BuiltinType::Double)
7716       continue;
7717 
7718     uint64_t Offset = Layout.getFieldOffset(idx);
7719     if (Offset % 64) // Ignore doubles that are not aligned.
7720       continue;
7721 
7722     // Add ((Offset - LastOffset) / 64) args of type i64.
7723     for (unsigned j = (Offset - LastOffset) / 64; j > 0; --j)
7724       ArgList.push_back(I64);
7725 
7726     // Add double type.
7727     ArgList.push_back(llvm::Type::getDoubleTy(getVMContext()));
7728     LastOffset = Offset + 64;
7729   }
7730 
7731   CoerceToIntArgs(TySize - LastOffset, IntArgList);
7732   ArgList.append(IntArgList.begin(), IntArgList.end());
7733 
7734   return llvm::StructType::get(getVMContext(), ArgList);
7735 }
7736 
7737 llvm::Type *MipsABIInfo::getPaddingType(uint64_t OrigOffset,
7738                                         uint64_t Offset) const {
7739   if (OrigOffset + MinABIStackAlignInBytes > Offset)
7740     return nullptr;
7741 
7742   return llvm::IntegerType::get(getVMContext(), (Offset - OrigOffset) * 8);
7743 }
7744 
7745 ABIArgInfo
7746 MipsABIInfo::classifyArgumentType(QualType Ty, uint64_t &Offset) const {
7747   Ty = useFirstFieldIfTransparentUnion(Ty);
7748 
7749   uint64_t OrigOffset = Offset;
7750   uint64_t TySize = getContext().getTypeSize(Ty);
7751   uint64_t Align = getContext().getTypeAlign(Ty) / 8;
7752 
7753   Align = std::min(std::max(Align, (uint64_t)MinABIStackAlignInBytes),
7754                    (uint64_t)StackAlignInBytes);
7755   unsigned CurrOffset = llvm::alignTo(Offset, Align);
7756   Offset = CurrOffset + llvm::alignTo(TySize, Align * 8) / 8;
7757 
7758   if (isAggregateTypeForABI(Ty) || Ty->isVectorType()) {
7759     // Ignore empty aggregates.
7760     if (TySize == 0)
7761       return ABIArgInfo::getIgnore();
7762 
7763     if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
7764       Offset = OrigOffset + MinABIStackAlignInBytes;
7765       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
7766     }
7767 
7768     // If we have reached here, aggregates are passed directly by coercing to
7769     // another structure type. Padding is inserted if the offset of the
7770     // aggregate is unaligned.
7771     ABIArgInfo ArgInfo =
7772         ABIArgInfo::getDirect(HandleAggregates(Ty, TySize), 0,
7773                               getPaddingType(OrigOffset, CurrOffset));
7774     ArgInfo.setInReg(true);
7775     return ArgInfo;
7776   }
7777 
7778   // Treat an enum type as its underlying type.
7779   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
7780     Ty = EnumTy->getDecl()->getIntegerType();
7781 
7782   // Make sure we pass indirectly things that are too large.
7783   if (const auto *EIT = Ty->getAs<ExtIntType>())
7784     if (EIT->getNumBits() > 128 ||
7785         (EIT->getNumBits() > 64 &&
7786          !getContext().getTargetInfo().hasInt128Type()))
7787       return getNaturalAlignIndirect(Ty);
7788 
7789   // All integral types are promoted to the GPR width.
7790   if (Ty->isIntegralOrEnumerationType())
7791     return extendType(Ty);
7792 
7793   return ABIArgInfo::getDirect(
7794       nullptr, 0, IsO32 ? nullptr : getPaddingType(OrigOffset, CurrOffset));
7795 }
7796 
7797 llvm::Type*
7798 MipsABIInfo::returnAggregateInRegs(QualType RetTy, uint64_t Size) const {
7799   const RecordType *RT = RetTy->getAs<RecordType>();
7800   SmallVector<llvm::Type*, 8> RTList;
7801 
7802   if (RT && RT->isStructureOrClassType()) {
7803     const RecordDecl *RD = RT->getDecl();
7804     const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
7805     unsigned FieldCnt = Layout.getFieldCount();
7806 
7807     // N32/64 returns struct/classes in floating point registers if the
7808     // following conditions are met:
7809     // 1. The size of the struct/class is no larger than 128-bit.
7810     // 2. The struct/class has one or two fields all of which are floating
7811     //    point types.
7812     // 3. The offset of the first field is zero (this follows what gcc does).
7813     //
7814     // Any other composite results are returned in integer registers.
7815     //
7816     if (FieldCnt && (FieldCnt <= 2) && !Layout.getFieldOffset(0)) {
7817       RecordDecl::field_iterator b = RD->field_begin(), e = RD->field_end();
7818       for (; b != e; ++b) {
7819         const BuiltinType *BT = b->getType()->getAs<BuiltinType>();
7820 
7821         if (!BT || !BT->isFloatingPoint())
7822           break;
7823 
7824         RTList.push_back(CGT.ConvertType(b->getType()));
7825       }
7826 
7827       if (b == e)
7828         return llvm::StructType::get(getVMContext(), RTList,
7829                                      RD->hasAttr<PackedAttr>());
7830 
7831       RTList.clear();
7832     }
7833   }
7834 
7835   CoerceToIntArgs(Size, RTList);
7836   return llvm::StructType::get(getVMContext(), RTList);
7837 }
7838 
7839 ABIArgInfo MipsABIInfo::classifyReturnType(QualType RetTy) const {
7840   uint64_t Size = getContext().getTypeSize(RetTy);
7841 
7842   if (RetTy->isVoidType())
7843     return ABIArgInfo::getIgnore();
7844 
7845   // O32 doesn't treat zero-sized structs differently from other structs.
7846   // However, N32/N64 ignores zero sized return values.
7847   if (!IsO32 && Size == 0)
7848     return ABIArgInfo::getIgnore();
7849 
7850   if (isAggregateTypeForABI(RetTy) || RetTy->isVectorType()) {
7851     if (Size <= 128) {
7852       if (RetTy->isAnyComplexType())
7853         return ABIArgInfo::getDirect();
7854 
7855       // O32 returns integer vectors in registers and N32/N64 returns all small
7856       // aggregates in registers.
7857       if (!IsO32 ||
7858           (RetTy->isVectorType() && !RetTy->hasFloatingRepresentation())) {
7859         ABIArgInfo ArgInfo =
7860             ABIArgInfo::getDirect(returnAggregateInRegs(RetTy, Size));
7861         ArgInfo.setInReg(true);
7862         return ArgInfo;
7863       }
7864     }
7865 
7866     return getNaturalAlignIndirect(RetTy);
7867   }
7868 
7869   // Treat an enum type as its underlying type.
7870   if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
7871     RetTy = EnumTy->getDecl()->getIntegerType();
7872 
7873   // Make sure we pass indirectly things that are too large.
7874   if (const auto *EIT = RetTy->getAs<ExtIntType>())
7875     if (EIT->getNumBits() > 128 ||
7876         (EIT->getNumBits() > 64 &&
7877          !getContext().getTargetInfo().hasInt128Type()))
7878       return getNaturalAlignIndirect(RetTy);
7879 
7880   if (isPromotableIntegerTypeForABI(RetTy))
7881     return ABIArgInfo::getExtend(RetTy);
7882 
7883   if ((RetTy->isUnsignedIntegerOrEnumerationType() ||
7884       RetTy->isSignedIntegerOrEnumerationType()) && Size == 32 && !IsO32)
7885     return ABIArgInfo::getSignExtend(RetTy);
7886 
7887   return ABIArgInfo::getDirect();
7888 }
7889 
7890 void MipsABIInfo::computeInfo(CGFunctionInfo &FI) const {
7891   ABIArgInfo &RetInfo = FI.getReturnInfo();
7892   if (!getCXXABI().classifyReturnType(FI))
7893     RetInfo = classifyReturnType(FI.getReturnType());
7894 
7895   // Check if a pointer to an aggregate is passed as a hidden argument.
7896   uint64_t Offset = RetInfo.isIndirect() ? MinABIStackAlignInBytes : 0;
7897 
7898   for (auto &I : FI.arguments())
7899     I.info = classifyArgumentType(I.type, Offset);
7900 }
7901 
7902 Address MipsABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
7903                                QualType OrigTy) const {
7904   QualType Ty = OrigTy;
7905 
7906   // Integer arguments are promoted to 32-bit on O32 and 64-bit on N32/N64.
7907   // Pointers are also promoted in the same way but this only matters for N32.
7908   unsigned SlotSizeInBits = IsO32 ? 32 : 64;
7909   unsigned PtrWidth = getTarget().getPointerWidth(0);
7910   bool DidPromote = false;
7911   if ((Ty->isIntegerType() &&
7912           getContext().getIntWidth(Ty) < SlotSizeInBits) ||
7913       (Ty->isPointerType() && PtrWidth < SlotSizeInBits)) {
7914     DidPromote = true;
7915     Ty = getContext().getIntTypeForBitwidth(SlotSizeInBits,
7916                                             Ty->isSignedIntegerType());
7917   }
7918 
7919   auto TyInfo = getContext().getTypeInfoInChars(Ty);
7920 
7921   // The alignment of things in the argument area is never larger than
7922   // StackAlignInBytes.
7923   TyInfo.second =
7924     std::min(TyInfo.second, CharUnits::fromQuantity(StackAlignInBytes));
7925 
7926   // MinABIStackAlignInBytes is the size of argument slots on the stack.
7927   CharUnits ArgSlotSize = CharUnits::fromQuantity(MinABIStackAlignInBytes);
7928 
7929   Address Addr = emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
7930                           TyInfo, ArgSlotSize, /*AllowHigherAlign*/ true);
7931 
7932 
7933   // If there was a promotion, "unpromote" into a temporary.
7934   // TODO: can we just use a pointer into a subset of the original slot?
7935   if (DidPromote) {
7936     Address Temp = CGF.CreateMemTemp(OrigTy, "vaarg.promotion-temp");
7937     llvm::Value *Promoted = CGF.Builder.CreateLoad(Addr);
7938 
7939     // Truncate down to the right width.
7940     llvm::Type *IntTy = (OrigTy->isIntegerType() ? Temp.getElementType()
7941                                                  : CGF.IntPtrTy);
7942     llvm::Value *V = CGF.Builder.CreateTrunc(Promoted, IntTy);
7943     if (OrigTy->isPointerType())
7944       V = CGF.Builder.CreateIntToPtr(V, Temp.getElementType());
7945 
7946     CGF.Builder.CreateStore(V, Temp);
7947     Addr = Temp;
7948   }
7949 
7950   return Addr;
7951 }
7952 
7953 ABIArgInfo MipsABIInfo::extendType(QualType Ty) const {
7954   int TySize = getContext().getTypeSize(Ty);
7955 
7956   // MIPS64 ABI requires unsigned 32 bit integers to be sign extended.
7957   if (Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
7958     return ABIArgInfo::getSignExtend(Ty);
7959 
7960   return ABIArgInfo::getExtend(Ty);
7961 }
7962 
7963 bool
7964 MIPSTargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
7965                                                llvm::Value *Address) const {
7966   // This information comes from gcc's implementation, which seems to
7967   // as canonical as it gets.
7968 
7969   // Everything on MIPS is 4 bytes.  Double-precision FP registers
7970   // are aliased to pairs of single-precision FP registers.
7971   llvm::Value *Four8 = llvm::ConstantInt::get(CGF.Int8Ty, 4);
7972 
7973   // 0-31 are the general purpose registers, $0 - $31.
7974   // 32-63 are the floating-point registers, $f0 - $f31.
7975   // 64 and 65 are the multiply/divide registers, $hi and $lo.
7976   // 66 is the (notional, I think) register for signal-handler return.
7977   AssignToArrayRange(CGF.Builder, Address, Four8, 0, 65);
7978 
7979   // 67-74 are the floating-point status registers, $fcc0 - $fcc7.
7980   // They are one bit wide and ignored here.
7981 
7982   // 80-111 are the coprocessor 0 registers, $c0r0 - $c0r31.
7983   // (coprocessor 1 is the FP unit)
7984   // 112-143 are the coprocessor 2 registers, $c2r0 - $c2r31.
7985   // 144-175 are the coprocessor 3 registers, $c3r0 - $c3r31.
7986   // 176-181 are the DSP accumulator registers.
7987   AssignToArrayRange(CGF.Builder, Address, Four8, 80, 181);
7988   return false;
7989 }
7990 
7991 //===----------------------------------------------------------------------===//
7992 // AVR ABI Implementation.
7993 //===----------------------------------------------------------------------===//
7994 
7995 namespace {
7996 class AVRTargetCodeGenInfo : public TargetCodeGenInfo {
7997 public:
7998   AVRTargetCodeGenInfo(CodeGenTypes &CGT)
7999       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
8000 
8001   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8002                            CodeGen::CodeGenModule &CGM) const override {
8003     if (GV->isDeclaration())
8004       return;
8005     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
8006     if (!FD) return;
8007     auto *Fn = cast<llvm::Function>(GV);
8008 
8009     if (FD->getAttr<AVRInterruptAttr>())
8010       Fn->addFnAttr("interrupt");
8011 
8012     if (FD->getAttr<AVRSignalAttr>())
8013       Fn->addFnAttr("signal");
8014   }
8015 };
8016 }
8017 
8018 //===----------------------------------------------------------------------===//
8019 // TCE ABI Implementation (see http://tce.cs.tut.fi). Uses mostly the defaults.
8020 // Currently subclassed only to implement custom OpenCL C function attribute
8021 // handling.
8022 //===----------------------------------------------------------------------===//
8023 
8024 namespace {
8025 
8026 class TCETargetCodeGenInfo : public DefaultTargetCodeGenInfo {
8027 public:
8028   TCETargetCodeGenInfo(CodeGenTypes &CGT)
8029     : DefaultTargetCodeGenInfo(CGT) {}
8030 
8031   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8032                            CodeGen::CodeGenModule &M) const override;
8033 };
8034 
8035 void TCETargetCodeGenInfo::setTargetAttributes(
8036     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8037   if (GV->isDeclaration())
8038     return;
8039   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8040   if (!FD) return;
8041 
8042   llvm::Function *F = cast<llvm::Function>(GV);
8043 
8044   if (M.getLangOpts().OpenCL) {
8045     if (FD->hasAttr<OpenCLKernelAttr>()) {
8046       // OpenCL C Kernel functions are not subject to inlining
8047       F->addFnAttr(llvm::Attribute::NoInline);
8048       const ReqdWorkGroupSizeAttr *Attr = FD->getAttr<ReqdWorkGroupSizeAttr>();
8049       if (Attr) {
8050         // Convert the reqd_work_group_size() attributes to metadata.
8051         llvm::LLVMContext &Context = F->getContext();
8052         llvm::NamedMDNode *OpenCLMetadata =
8053             M.getModule().getOrInsertNamedMetadata(
8054                 "opencl.kernel_wg_size_info");
8055 
8056         SmallVector<llvm::Metadata *, 5> Operands;
8057         Operands.push_back(llvm::ConstantAsMetadata::get(F));
8058 
8059         Operands.push_back(
8060             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8061                 M.Int32Ty, llvm::APInt(32, Attr->getXDim()))));
8062         Operands.push_back(
8063             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8064                 M.Int32Ty, llvm::APInt(32, Attr->getYDim()))));
8065         Operands.push_back(
8066             llvm::ConstantAsMetadata::get(llvm::Constant::getIntegerValue(
8067                 M.Int32Ty, llvm::APInt(32, Attr->getZDim()))));
8068 
8069         // Add a boolean constant operand for "required" (true) or "hint"
8070         // (false) for implementing the work_group_size_hint attr later.
8071         // Currently always true as the hint is not yet implemented.
8072         Operands.push_back(
8073             llvm::ConstantAsMetadata::get(llvm::ConstantInt::getTrue(Context)));
8074         OpenCLMetadata->addOperand(llvm::MDNode::get(Context, Operands));
8075       }
8076     }
8077   }
8078 }
8079 
8080 }
8081 
8082 //===----------------------------------------------------------------------===//
8083 // Hexagon ABI Implementation
8084 //===----------------------------------------------------------------------===//
8085 
8086 namespace {
8087 
8088 class HexagonABIInfo : public DefaultABIInfo {
8089 public:
8090   HexagonABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8091 
8092 private:
8093   ABIArgInfo classifyReturnType(QualType RetTy) const;
8094   ABIArgInfo classifyArgumentType(QualType RetTy) const;
8095   ABIArgInfo classifyArgumentType(QualType RetTy, unsigned *RegsLeft) const;
8096 
8097   void computeInfo(CGFunctionInfo &FI) const override;
8098 
8099   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8100                     QualType Ty) const override;
8101   Address EmitVAArgFromMemory(CodeGenFunction &CFG, Address VAListAddr,
8102                               QualType Ty) const;
8103   Address EmitVAArgForHexagon(CodeGenFunction &CFG, Address VAListAddr,
8104                               QualType Ty) const;
8105   Address EmitVAArgForHexagonLinux(CodeGenFunction &CFG, Address VAListAddr,
8106                                    QualType Ty) const;
8107 };
8108 
8109 class HexagonTargetCodeGenInfo : public TargetCodeGenInfo {
8110 public:
8111   HexagonTargetCodeGenInfo(CodeGenTypes &CGT)
8112       : TargetCodeGenInfo(std::make_unique<HexagonABIInfo>(CGT)) {}
8113 
8114   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
8115     return 29;
8116   }
8117 
8118   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8119                            CodeGen::CodeGenModule &GCM) const override {
8120     if (GV->isDeclaration())
8121       return;
8122     const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8123     if (!FD)
8124       return;
8125   }
8126 };
8127 
8128 } // namespace
8129 
8130 void HexagonABIInfo::computeInfo(CGFunctionInfo &FI) const {
8131   unsigned RegsLeft = 6;
8132   if (!getCXXABI().classifyReturnType(FI))
8133     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8134   for (auto &I : FI.arguments())
8135     I.info = classifyArgumentType(I.type, &RegsLeft);
8136 }
8137 
8138 static bool HexagonAdjustRegsLeft(uint64_t Size, unsigned *RegsLeft) {
8139   assert(Size <= 64 && "Not expecting to pass arguments larger than 64 bits"
8140                        " through registers");
8141 
8142   if (*RegsLeft == 0)
8143     return false;
8144 
8145   if (Size <= 32) {
8146     (*RegsLeft)--;
8147     return true;
8148   }
8149 
8150   if (2 <= (*RegsLeft & (~1U))) {
8151     *RegsLeft = (*RegsLeft & (~1U)) - 2;
8152     return true;
8153   }
8154 
8155   // Next available register was r5 but candidate was greater than 32-bits so it
8156   // has to go on the stack. However we still consume r5
8157   if (*RegsLeft == 1)
8158     *RegsLeft = 0;
8159 
8160   return false;
8161 }
8162 
8163 ABIArgInfo HexagonABIInfo::classifyArgumentType(QualType Ty,
8164                                                 unsigned *RegsLeft) const {
8165   if (!isAggregateTypeForABI(Ty)) {
8166     // Treat an enum type as its underlying type.
8167     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
8168       Ty = EnumTy->getDecl()->getIntegerType();
8169 
8170     uint64_t Size = getContext().getTypeSize(Ty);
8171     if (Size <= 64)
8172       HexagonAdjustRegsLeft(Size, RegsLeft);
8173 
8174     if (Size > 64 && Ty->isExtIntType())
8175       return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8176 
8177     return isPromotableIntegerTypeForABI(Ty) ? ABIArgInfo::getExtend(Ty)
8178                                              : ABIArgInfo::getDirect();
8179   }
8180 
8181   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
8182     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8183 
8184   // Ignore empty records.
8185   if (isEmptyRecord(getContext(), Ty, true))
8186     return ABIArgInfo::getIgnore();
8187 
8188   uint64_t Size = getContext().getTypeSize(Ty);
8189   unsigned Align = getContext().getTypeAlign(Ty);
8190 
8191   if (Size > 64)
8192     return getNaturalAlignIndirect(Ty, /*ByVal=*/true);
8193 
8194   if (HexagonAdjustRegsLeft(Size, RegsLeft))
8195     Align = Size <= 32 ? 32 : 64;
8196   if (Size <= Align) {
8197     // Pass in the smallest viable integer type.
8198     if (!llvm::isPowerOf2_64(Size))
8199       Size = llvm::NextPowerOf2(Size);
8200     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8201   }
8202   return DefaultABIInfo::classifyArgumentType(Ty);
8203 }
8204 
8205 ABIArgInfo HexagonABIInfo::classifyReturnType(QualType RetTy) const {
8206   if (RetTy->isVoidType())
8207     return ABIArgInfo::getIgnore();
8208 
8209   const TargetInfo &T = CGT.getTarget();
8210   uint64_t Size = getContext().getTypeSize(RetTy);
8211 
8212   if (RetTy->getAs<VectorType>()) {
8213     // HVX vectors are returned in vector registers or register pairs.
8214     if (T.hasFeature("hvx")) {
8215       assert(T.hasFeature("hvx-length64b") || T.hasFeature("hvx-length128b"));
8216       uint64_t VecSize = T.hasFeature("hvx-length64b") ? 64*8 : 128*8;
8217       if (Size == VecSize || Size == 2*VecSize)
8218         return ABIArgInfo::getDirectInReg();
8219     }
8220     // Large vector types should be returned via memory.
8221     if (Size > 64)
8222       return getNaturalAlignIndirect(RetTy);
8223   }
8224 
8225   if (!isAggregateTypeForABI(RetTy)) {
8226     // Treat an enum type as its underlying type.
8227     if (const EnumType *EnumTy = RetTy->getAs<EnumType>())
8228       RetTy = EnumTy->getDecl()->getIntegerType();
8229 
8230     if (Size > 64 && RetTy->isExtIntType())
8231       return getNaturalAlignIndirect(RetTy, /*ByVal=*/false);
8232 
8233     return isPromotableIntegerTypeForABI(RetTy) ? ABIArgInfo::getExtend(RetTy)
8234                                                 : ABIArgInfo::getDirect();
8235   }
8236 
8237   if (isEmptyRecord(getContext(), RetTy, true))
8238     return ABIArgInfo::getIgnore();
8239 
8240   // Aggregates <= 8 bytes are returned in registers, other aggregates
8241   // are returned indirectly.
8242   if (Size <= 64) {
8243     // Return in the smallest viable integer type.
8244     if (!llvm::isPowerOf2_64(Size))
8245       Size = llvm::NextPowerOf2(Size);
8246     return ABIArgInfo::getDirect(llvm::Type::getIntNTy(getVMContext(), Size));
8247   }
8248   return getNaturalAlignIndirect(RetTy, /*ByVal=*/true);
8249 }
8250 
8251 Address HexagonABIInfo::EmitVAArgFromMemory(CodeGenFunction &CGF,
8252                                             Address VAListAddr,
8253                                             QualType Ty) const {
8254   // Load the overflow area pointer.
8255   Address __overflow_area_pointer_p =
8256       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8257   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8258       __overflow_area_pointer_p, "__overflow_area_pointer");
8259 
8260   uint64_t Align = CGF.getContext().getTypeAlign(Ty) / 8;
8261   if (Align > 4) {
8262     // Alignment should be a power of 2.
8263     assert((Align & (Align - 1)) == 0 && "Alignment is not power of 2!");
8264 
8265     // overflow_arg_area = (overflow_arg_area + align - 1) & -align;
8266     llvm::Value *Offset = llvm::ConstantInt::get(CGF.Int64Ty, Align - 1);
8267 
8268     // Add offset to the current pointer to access the argument.
8269     __overflow_area_pointer =
8270         CGF.Builder.CreateGEP(__overflow_area_pointer, Offset);
8271     llvm::Value *AsInt =
8272         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8273 
8274     // Create a mask which should be "AND"ed
8275     // with (overflow_arg_area + align - 1)
8276     llvm::Value *Mask = llvm::ConstantInt::get(CGF.Int32Ty, -(int)Align);
8277     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8278         CGF.Builder.CreateAnd(AsInt, Mask), __overflow_area_pointer->getType(),
8279         "__overflow_area_pointer.align");
8280   }
8281 
8282   // Get the type of the argument from memory and bitcast
8283   // overflow area pointer to the argument type.
8284   llvm::Type *PTy = CGF.ConvertTypeForMem(Ty);
8285   Address AddrTyped = CGF.Builder.CreateBitCast(
8286       Address(__overflow_area_pointer, CharUnits::fromQuantity(Align)),
8287       llvm::PointerType::getUnqual(PTy));
8288 
8289   // Round up to the minimum stack alignment for varargs which is 4 bytes.
8290   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8291 
8292   __overflow_area_pointer = CGF.Builder.CreateGEP(
8293       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, Offset),
8294       "__overflow_area_pointer.next");
8295   CGF.Builder.CreateStore(__overflow_area_pointer, __overflow_area_pointer_p);
8296 
8297   return AddrTyped;
8298 }
8299 
8300 Address HexagonABIInfo::EmitVAArgForHexagon(CodeGenFunction &CGF,
8301                                             Address VAListAddr,
8302                                             QualType Ty) const {
8303   // FIXME: Need to handle alignment
8304   llvm::Type *BP = CGF.Int8PtrTy;
8305   llvm::Type *BPP = CGF.Int8PtrPtrTy;
8306   CGBuilderTy &Builder = CGF.Builder;
8307   Address VAListAddrAsBPP = Builder.CreateBitCast(VAListAddr, BPP, "ap");
8308   llvm::Value *Addr = Builder.CreateLoad(VAListAddrAsBPP, "ap.cur");
8309   // Handle address alignment for type alignment > 32 bits
8310   uint64_t TyAlign = CGF.getContext().getTypeAlign(Ty) / 8;
8311   if (TyAlign > 4) {
8312     assert((TyAlign & (TyAlign - 1)) == 0 && "Alignment is not power of 2!");
8313     llvm::Value *AddrAsInt = Builder.CreatePtrToInt(Addr, CGF.Int32Ty);
8314     AddrAsInt = Builder.CreateAdd(AddrAsInt, Builder.getInt32(TyAlign - 1));
8315     AddrAsInt = Builder.CreateAnd(AddrAsInt, Builder.getInt32(~(TyAlign - 1)));
8316     Addr = Builder.CreateIntToPtr(AddrAsInt, BP);
8317   }
8318   llvm::Type *PTy = llvm::PointerType::getUnqual(CGF.ConvertType(Ty));
8319   Address AddrTyped = Builder.CreateBitCast(
8320       Address(Addr, CharUnits::fromQuantity(TyAlign)), PTy);
8321 
8322   uint64_t Offset = llvm::alignTo(CGF.getContext().getTypeSize(Ty) / 8, 4);
8323   llvm::Value *NextAddr = Builder.CreateGEP(
8324       Addr, llvm::ConstantInt::get(CGF.Int32Ty, Offset), "ap.next");
8325   Builder.CreateStore(NextAddr, VAListAddrAsBPP);
8326 
8327   return AddrTyped;
8328 }
8329 
8330 Address HexagonABIInfo::EmitVAArgForHexagonLinux(CodeGenFunction &CGF,
8331                                                  Address VAListAddr,
8332                                                  QualType Ty) const {
8333   int ArgSize = CGF.getContext().getTypeSize(Ty) / 8;
8334 
8335   if (ArgSize > 8)
8336     return EmitVAArgFromMemory(CGF, VAListAddr, Ty);
8337 
8338   // Here we have check if the argument is in register area or
8339   // in overflow area.
8340   // If the saved register area pointer + argsize rounded up to alignment >
8341   // saved register area end pointer, argument is in overflow area.
8342   unsigned RegsLeft = 6;
8343   Ty = CGF.getContext().getCanonicalType(Ty);
8344   (void)classifyArgumentType(Ty, &RegsLeft);
8345 
8346   llvm::BasicBlock *MaybeRegBlock = CGF.createBasicBlock("vaarg.maybe_reg");
8347   llvm::BasicBlock *InRegBlock = CGF.createBasicBlock("vaarg.in_reg");
8348   llvm::BasicBlock *OnStackBlock = CGF.createBasicBlock("vaarg.on_stack");
8349   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("vaarg.end");
8350 
8351   // Get rounded size of the argument.GCC does not allow vararg of
8352   // size < 4 bytes. We follow the same logic here.
8353   ArgSize = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8354   int ArgAlign = (CGF.getContext().getTypeSize(Ty) <= 32) ? 4 : 8;
8355 
8356   // Argument may be in saved register area
8357   CGF.EmitBlock(MaybeRegBlock);
8358 
8359   // Load the current saved register area pointer.
8360   Address __current_saved_reg_area_pointer_p = CGF.Builder.CreateStructGEP(
8361       VAListAddr, 0, "__current_saved_reg_area_pointer_p");
8362   llvm::Value *__current_saved_reg_area_pointer = CGF.Builder.CreateLoad(
8363       __current_saved_reg_area_pointer_p, "__current_saved_reg_area_pointer");
8364 
8365   // Load the saved register area end pointer.
8366   Address __saved_reg_area_end_pointer_p = CGF.Builder.CreateStructGEP(
8367       VAListAddr, 1, "__saved_reg_area_end_pointer_p");
8368   llvm::Value *__saved_reg_area_end_pointer = CGF.Builder.CreateLoad(
8369       __saved_reg_area_end_pointer_p, "__saved_reg_area_end_pointer");
8370 
8371   // If the size of argument is > 4 bytes, check if the stack
8372   // location is aligned to 8 bytes
8373   if (ArgAlign > 4) {
8374 
8375     llvm::Value *__current_saved_reg_area_pointer_int =
8376         CGF.Builder.CreatePtrToInt(__current_saved_reg_area_pointer,
8377                                    CGF.Int32Ty);
8378 
8379     __current_saved_reg_area_pointer_int = CGF.Builder.CreateAdd(
8380         __current_saved_reg_area_pointer_int,
8381         llvm::ConstantInt::get(CGF.Int32Ty, (ArgAlign - 1)),
8382         "align_current_saved_reg_area_pointer");
8383 
8384     __current_saved_reg_area_pointer_int =
8385         CGF.Builder.CreateAnd(__current_saved_reg_area_pointer_int,
8386                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8387                               "align_current_saved_reg_area_pointer");
8388 
8389     __current_saved_reg_area_pointer =
8390         CGF.Builder.CreateIntToPtr(__current_saved_reg_area_pointer_int,
8391                                    __current_saved_reg_area_pointer->getType(),
8392                                    "align_current_saved_reg_area_pointer");
8393   }
8394 
8395   llvm::Value *__new_saved_reg_area_pointer =
8396       CGF.Builder.CreateGEP(__current_saved_reg_area_pointer,
8397                             llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8398                             "__new_saved_reg_area_pointer");
8399 
8400   llvm::Value *UsingStack = 0;
8401   UsingStack = CGF.Builder.CreateICmpSGT(__new_saved_reg_area_pointer,
8402                                          __saved_reg_area_end_pointer);
8403 
8404   CGF.Builder.CreateCondBr(UsingStack, OnStackBlock, InRegBlock);
8405 
8406   // Argument in saved register area
8407   // Implement the block where argument is in register saved area
8408   CGF.EmitBlock(InRegBlock);
8409 
8410   llvm::Type *PTy = CGF.ConvertType(Ty);
8411   llvm::Value *__saved_reg_area_p = CGF.Builder.CreateBitCast(
8412       __current_saved_reg_area_pointer, llvm::PointerType::getUnqual(PTy));
8413 
8414   CGF.Builder.CreateStore(__new_saved_reg_area_pointer,
8415                           __current_saved_reg_area_pointer_p);
8416 
8417   CGF.EmitBranch(ContBlock);
8418 
8419   // Argument in overflow area
8420   // Implement the block where the argument is in overflow area.
8421   CGF.EmitBlock(OnStackBlock);
8422 
8423   // Load the overflow area pointer
8424   Address __overflow_area_pointer_p =
8425       CGF.Builder.CreateStructGEP(VAListAddr, 2, "__overflow_area_pointer_p");
8426   llvm::Value *__overflow_area_pointer = CGF.Builder.CreateLoad(
8427       __overflow_area_pointer_p, "__overflow_area_pointer");
8428 
8429   // Align the overflow area pointer according to the alignment of the argument
8430   if (ArgAlign > 4) {
8431     llvm::Value *__overflow_area_pointer_int =
8432         CGF.Builder.CreatePtrToInt(__overflow_area_pointer, CGF.Int32Ty);
8433 
8434     __overflow_area_pointer_int =
8435         CGF.Builder.CreateAdd(__overflow_area_pointer_int,
8436                               llvm::ConstantInt::get(CGF.Int32Ty, ArgAlign - 1),
8437                               "align_overflow_area_pointer");
8438 
8439     __overflow_area_pointer_int =
8440         CGF.Builder.CreateAnd(__overflow_area_pointer_int,
8441                               llvm::ConstantInt::get(CGF.Int32Ty, -ArgAlign),
8442                               "align_overflow_area_pointer");
8443 
8444     __overflow_area_pointer = CGF.Builder.CreateIntToPtr(
8445         __overflow_area_pointer_int, __overflow_area_pointer->getType(),
8446         "align_overflow_area_pointer");
8447   }
8448 
8449   // Get the pointer for next argument in overflow area and store it
8450   // to overflow area pointer.
8451   llvm::Value *__new_overflow_area_pointer = CGF.Builder.CreateGEP(
8452       __overflow_area_pointer, llvm::ConstantInt::get(CGF.Int32Ty, ArgSize),
8453       "__overflow_area_pointer.next");
8454 
8455   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8456                           __overflow_area_pointer_p);
8457 
8458   CGF.Builder.CreateStore(__new_overflow_area_pointer,
8459                           __current_saved_reg_area_pointer_p);
8460 
8461   // Bitcast the overflow area pointer to the type of argument.
8462   llvm::Type *OverflowPTy = CGF.ConvertTypeForMem(Ty);
8463   llvm::Value *__overflow_area_p = CGF.Builder.CreateBitCast(
8464       __overflow_area_pointer, llvm::PointerType::getUnqual(OverflowPTy));
8465 
8466   CGF.EmitBranch(ContBlock);
8467 
8468   // Get the correct pointer to load the variable argument
8469   // Implement the ContBlock
8470   CGF.EmitBlock(ContBlock);
8471 
8472   llvm::Type *MemPTy = llvm::PointerType::getUnqual(CGF.ConvertTypeForMem(Ty));
8473   llvm::PHINode *ArgAddr = CGF.Builder.CreatePHI(MemPTy, 2, "vaarg.addr");
8474   ArgAddr->addIncoming(__saved_reg_area_p, InRegBlock);
8475   ArgAddr->addIncoming(__overflow_area_p, OnStackBlock);
8476 
8477   return Address(ArgAddr, CharUnits::fromQuantity(ArgAlign));
8478 }
8479 
8480 Address HexagonABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8481                                   QualType Ty) const {
8482 
8483   if (getTarget().getTriple().isMusl())
8484     return EmitVAArgForHexagonLinux(CGF, VAListAddr, Ty);
8485 
8486   return EmitVAArgForHexagon(CGF, VAListAddr, Ty);
8487 }
8488 
8489 //===----------------------------------------------------------------------===//
8490 // Lanai ABI Implementation
8491 //===----------------------------------------------------------------------===//
8492 
8493 namespace {
8494 class LanaiABIInfo : public DefaultABIInfo {
8495 public:
8496   LanaiABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
8497 
8498   bool shouldUseInReg(QualType Ty, CCState &State) const;
8499 
8500   void computeInfo(CGFunctionInfo &FI) const override {
8501     CCState State(FI);
8502     // Lanai uses 4 registers to pass arguments unless the function has the
8503     // regparm attribute set.
8504     if (FI.getHasRegParm()) {
8505       State.FreeRegs = FI.getRegParm();
8506     } else {
8507       State.FreeRegs = 4;
8508     }
8509 
8510     if (!getCXXABI().classifyReturnType(FI))
8511       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8512     for (auto &I : FI.arguments())
8513       I.info = classifyArgumentType(I.type, State);
8514   }
8515 
8516   ABIArgInfo getIndirectResult(QualType Ty, bool ByVal, CCState &State) const;
8517   ABIArgInfo classifyArgumentType(QualType RetTy, CCState &State) const;
8518 };
8519 } // end anonymous namespace
8520 
8521 bool LanaiABIInfo::shouldUseInReg(QualType Ty, CCState &State) const {
8522   unsigned Size = getContext().getTypeSize(Ty);
8523   unsigned SizeInRegs = llvm::alignTo(Size, 32U) / 32U;
8524 
8525   if (SizeInRegs == 0)
8526     return false;
8527 
8528   if (SizeInRegs > State.FreeRegs) {
8529     State.FreeRegs = 0;
8530     return false;
8531   }
8532 
8533   State.FreeRegs -= SizeInRegs;
8534 
8535   return true;
8536 }
8537 
8538 ABIArgInfo LanaiABIInfo::getIndirectResult(QualType Ty, bool ByVal,
8539                                            CCState &State) const {
8540   if (!ByVal) {
8541     if (State.FreeRegs) {
8542       --State.FreeRegs; // Non-byval indirects just use one pointer.
8543       return getNaturalAlignIndirectInReg(Ty);
8544     }
8545     return getNaturalAlignIndirect(Ty, false);
8546   }
8547 
8548   // Compute the byval alignment.
8549   const unsigned MinABIStackAlignInBytes = 4;
8550   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
8551   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
8552                                  /*Realign=*/TypeAlign >
8553                                      MinABIStackAlignInBytes);
8554 }
8555 
8556 ABIArgInfo LanaiABIInfo::classifyArgumentType(QualType Ty,
8557                                               CCState &State) const {
8558   // Check with the C++ ABI first.
8559   const RecordType *RT = Ty->getAs<RecordType>();
8560   if (RT) {
8561     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
8562     if (RAA == CGCXXABI::RAA_Indirect) {
8563       return getIndirectResult(Ty, /*ByVal=*/false, State);
8564     } else if (RAA == CGCXXABI::RAA_DirectInMemory) {
8565       return getNaturalAlignIndirect(Ty, /*ByRef=*/true);
8566     }
8567   }
8568 
8569   if (isAggregateTypeForABI(Ty)) {
8570     // Structures with flexible arrays are always indirect.
8571     if (RT && RT->getDecl()->hasFlexibleArrayMember())
8572       return getIndirectResult(Ty, /*ByVal=*/true, State);
8573 
8574     // Ignore empty structs/unions.
8575     if (isEmptyRecord(getContext(), Ty, true))
8576       return ABIArgInfo::getIgnore();
8577 
8578     llvm::LLVMContext &LLVMContext = getVMContext();
8579     unsigned SizeInRegs = (getContext().getTypeSize(Ty) + 31) / 32;
8580     if (SizeInRegs <= State.FreeRegs) {
8581       llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
8582       SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
8583       llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
8584       State.FreeRegs -= SizeInRegs;
8585       return ABIArgInfo::getDirectInReg(Result);
8586     } else {
8587       State.FreeRegs = 0;
8588     }
8589     return getIndirectResult(Ty, true, State);
8590   }
8591 
8592   // Treat an enum type as its underlying type.
8593   if (const auto *EnumTy = Ty->getAs<EnumType>())
8594     Ty = EnumTy->getDecl()->getIntegerType();
8595 
8596   bool InReg = shouldUseInReg(Ty, State);
8597 
8598   // Don't pass >64 bit integers in registers.
8599   if (const auto *EIT = Ty->getAs<ExtIntType>())
8600     if (EIT->getNumBits() > 64)
8601       return getIndirectResult(Ty, /*ByVal=*/true, State);
8602 
8603   if (isPromotableIntegerTypeForABI(Ty)) {
8604     if (InReg)
8605       return ABIArgInfo::getDirectInReg();
8606     return ABIArgInfo::getExtend(Ty);
8607   }
8608   if (InReg)
8609     return ABIArgInfo::getDirectInReg();
8610   return ABIArgInfo::getDirect();
8611 }
8612 
8613 namespace {
8614 class LanaiTargetCodeGenInfo : public TargetCodeGenInfo {
8615 public:
8616   LanaiTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
8617       : TargetCodeGenInfo(std::make_unique<LanaiABIInfo>(CGT)) {}
8618 };
8619 }
8620 
8621 //===----------------------------------------------------------------------===//
8622 // AMDGPU ABI Implementation
8623 //===----------------------------------------------------------------------===//
8624 
8625 namespace {
8626 
8627 class AMDGPUABIInfo final : public DefaultABIInfo {
8628 private:
8629   static const unsigned MaxNumRegsForArgsRet = 16;
8630 
8631   unsigned numRegsForType(QualType Ty) const;
8632 
8633   bool isHomogeneousAggregateBaseType(QualType Ty) const override;
8634   bool isHomogeneousAggregateSmallEnough(const Type *Base,
8635                                          uint64_t Members) const override;
8636 
8637   // Coerce HIP pointer arguments from generic pointers to global ones.
8638   llvm::Type *coerceKernelArgumentType(llvm::Type *Ty, unsigned FromAS,
8639                                        unsigned ToAS) const {
8640     // Structure types.
8641     if (auto STy = dyn_cast<llvm::StructType>(Ty)) {
8642       SmallVector<llvm::Type *, 8> EltTys;
8643       bool Changed = false;
8644       for (auto T : STy->elements()) {
8645         auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8646         EltTys.push_back(NT);
8647         Changed |= (NT != T);
8648       }
8649       // Skip if there is no change in element types.
8650       if (!Changed)
8651         return STy;
8652       if (STy->hasName())
8653         return llvm::StructType::create(
8654             EltTys, (STy->getName() + ".coerce").str(), STy->isPacked());
8655       return llvm::StructType::get(getVMContext(), EltTys, STy->isPacked());
8656     }
8657     // Array types.
8658     if (auto ATy = dyn_cast<llvm::ArrayType>(Ty)) {
8659       auto T = ATy->getElementType();
8660       auto NT = coerceKernelArgumentType(T, FromAS, ToAS);
8661       // Skip if there is no change in that element type.
8662       if (NT == T)
8663         return ATy;
8664       return llvm::ArrayType::get(NT, ATy->getNumElements());
8665     }
8666     // Single value types.
8667     if (Ty->isPointerTy() && Ty->getPointerAddressSpace() == FromAS)
8668       return llvm::PointerType::get(
8669           cast<llvm::PointerType>(Ty)->getElementType(), ToAS);
8670     return Ty;
8671   }
8672 
8673 public:
8674   explicit AMDGPUABIInfo(CodeGen::CodeGenTypes &CGT) :
8675     DefaultABIInfo(CGT) {}
8676 
8677   ABIArgInfo classifyReturnType(QualType RetTy) const;
8678   ABIArgInfo classifyKernelArgumentType(QualType Ty) const;
8679   ABIArgInfo classifyArgumentType(QualType Ty, unsigned &NumRegsLeft) const;
8680 
8681   void computeInfo(CGFunctionInfo &FI) const override;
8682   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8683                     QualType Ty) const override;
8684 };
8685 
8686 bool AMDGPUABIInfo::isHomogeneousAggregateBaseType(QualType Ty) const {
8687   return true;
8688 }
8689 
8690 bool AMDGPUABIInfo::isHomogeneousAggregateSmallEnough(
8691   const Type *Base, uint64_t Members) const {
8692   uint32_t NumRegs = (getContext().getTypeSize(Base) + 31) / 32;
8693 
8694   // Homogeneous Aggregates may occupy at most 16 registers.
8695   return Members * NumRegs <= MaxNumRegsForArgsRet;
8696 }
8697 
8698 /// Estimate number of registers the type will use when passed in registers.
8699 unsigned AMDGPUABIInfo::numRegsForType(QualType Ty) const {
8700   unsigned NumRegs = 0;
8701 
8702   if (const VectorType *VT = Ty->getAs<VectorType>()) {
8703     // Compute from the number of elements. The reported size is based on the
8704     // in-memory size, which includes the padding 4th element for 3-vectors.
8705     QualType EltTy = VT->getElementType();
8706     unsigned EltSize = getContext().getTypeSize(EltTy);
8707 
8708     // 16-bit element vectors should be passed as packed.
8709     if (EltSize == 16)
8710       return (VT->getNumElements() + 1) / 2;
8711 
8712     unsigned EltNumRegs = (EltSize + 31) / 32;
8713     return EltNumRegs * VT->getNumElements();
8714   }
8715 
8716   if (const RecordType *RT = Ty->getAs<RecordType>()) {
8717     const RecordDecl *RD = RT->getDecl();
8718     assert(!RD->hasFlexibleArrayMember());
8719 
8720     for (const FieldDecl *Field : RD->fields()) {
8721       QualType FieldTy = Field->getType();
8722       NumRegs += numRegsForType(FieldTy);
8723     }
8724 
8725     return NumRegs;
8726   }
8727 
8728   return (getContext().getTypeSize(Ty) + 31) / 32;
8729 }
8730 
8731 void AMDGPUABIInfo::computeInfo(CGFunctionInfo &FI) const {
8732   llvm::CallingConv::ID CC = FI.getCallingConvention();
8733 
8734   if (!getCXXABI().classifyReturnType(FI))
8735     FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
8736 
8737   unsigned NumRegsLeft = MaxNumRegsForArgsRet;
8738   for (auto &Arg : FI.arguments()) {
8739     if (CC == llvm::CallingConv::AMDGPU_KERNEL) {
8740       Arg.info = classifyKernelArgumentType(Arg.type);
8741     } else {
8742       Arg.info = classifyArgumentType(Arg.type, NumRegsLeft);
8743     }
8744   }
8745 }
8746 
8747 Address AMDGPUABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
8748                                  QualType Ty) const {
8749   llvm_unreachable("AMDGPU does not support varargs");
8750 }
8751 
8752 ABIArgInfo AMDGPUABIInfo::classifyReturnType(QualType RetTy) const {
8753   if (isAggregateTypeForABI(RetTy)) {
8754     // Records with non-trivial destructors/copy-constructors should not be
8755     // returned by value.
8756     if (!getRecordArgABI(RetTy, getCXXABI())) {
8757       // Ignore empty structs/unions.
8758       if (isEmptyRecord(getContext(), RetTy, true))
8759         return ABIArgInfo::getIgnore();
8760 
8761       // Lower single-element structs to just return a regular value.
8762       if (const Type *SeltTy = isSingleElementStruct(RetTy, getContext()))
8763         return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8764 
8765       if (const RecordType *RT = RetTy->getAs<RecordType>()) {
8766         const RecordDecl *RD = RT->getDecl();
8767         if (RD->hasFlexibleArrayMember())
8768           return DefaultABIInfo::classifyReturnType(RetTy);
8769       }
8770 
8771       // Pack aggregates <= 4 bytes into single VGPR or pair.
8772       uint64_t Size = getContext().getTypeSize(RetTy);
8773       if (Size <= 16)
8774         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8775 
8776       if (Size <= 32)
8777         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8778 
8779       if (Size <= 64) {
8780         llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8781         return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8782       }
8783 
8784       if (numRegsForType(RetTy) <= MaxNumRegsForArgsRet)
8785         return ABIArgInfo::getDirect();
8786     }
8787   }
8788 
8789   // Otherwise just do the default thing.
8790   return DefaultABIInfo::classifyReturnType(RetTy);
8791 }
8792 
8793 /// For kernels all parameters are really passed in a special buffer. It doesn't
8794 /// make sense to pass anything byval, so everything must be direct.
8795 ABIArgInfo AMDGPUABIInfo::classifyKernelArgumentType(QualType Ty) const {
8796   Ty = useFirstFieldIfTransparentUnion(Ty);
8797 
8798   // TODO: Can we omit empty structs?
8799 
8800   llvm::Type *LTy = nullptr;
8801   if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8802     LTy = CGT.ConvertType(QualType(SeltTy, 0));
8803 
8804   if (getContext().getLangOpts().HIP) {
8805     if (!LTy)
8806       LTy = CGT.ConvertType(Ty);
8807     LTy = coerceKernelArgumentType(
8808         LTy, /*FromAS=*/getContext().getTargetAddressSpace(LangAS::Default),
8809         /*ToAS=*/getContext().getTargetAddressSpace(LangAS::cuda_device));
8810   }
8811 
8812   // If we set CanBeFlattened to true, CodeGen will expand the struct to its
8813   // individual elements, which confuses the Clover OpenCL backend; therefore we
8814   // have to set it to false here. Other args of getDirect() are just defaults.
8815   return ABIArgInfo::getDirect(LTy, 0, nullptr, false);
8816 }
8817 
8818 ABIArgInfo AMDGPUABIInfo::classifyArgumentType(QualType Ty,
8819                                                unsigned &NumRegsLeft) const {
8820   assert(NumRegsLeft <= MaxNumRegsForArgsRet && "register estimate underflow");
8821 
8822   Ty = useFirstFieldIfTransparentUnion(Ty);
8823 
8824   if (isAggregateTypeForABI(Ty)) {
8825     // Records with non-trivial destructors/copy-constructors should not be
8826     // passed by value.
8827     if (auto RAA = getRecordArgABI(Ty, getCXXABI()))
8828       return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
8829 
8830     // Ignore empty structs/unions.
8831     if (isEmptyRecord(getContext(), Ty, true))
8832       return ABIArgInfo::getIgnore();
8833 
8834     // Lower single-element structs to just pass a regular value. TODO: We
8835     // could do reasonable-size multiple-element structs too, using getExpand(),
8836     // though watch out for things like bitfields.
8837     if (const Type *SeltTy = isSingleElementStruct(Ty, getContext()))
8838       return ABIArgInfo::getDirect(CGT.ConvertType(QualType(SeltTy, 0)));
8839 
8840     if (const RecordType *RT = Ty->getAs<RecordType>()) {
8841       const RecordDecl *RD = RT->getDecl();
8842       if (RD->hasFlexibleArrayMember())
8843         return DefaultABIInfo::classifyArgumentType(Ty);
8844     }
8845 
8846     // Pack aggregates <= 8 bytes into single VGPR or pair.
8847     uint64_t Size = getContext().getTypeSize(Ty);
8848     if (Size <= 64) {
8849       unsigned NumRegs = (Size + 31) / 32;
8850       NumRegsLeft -= std::min(NumRegsLeft, NumRegs);
8851 
8852       if (Size <= 16)
8853         return ABIArgInfo::getDirect(llvm::Type::getInt16Ty(getVMContext()));
8854 
8855       if (Size <= 32)
8856         return ABIArgInfo::getDirect(llvm::Type::getInt32Ty(getVMContext()));
8857 
8858       // XXX: Should this be i64 instead, and should the limit increase?
8859       llvm::Type *I32Ty = llvm::Type::getInt32Ty(getVMContext());
8860       return ABIArgInfo::getDirect(llvm::ArrayType::get(I32Ty, 2));
8861     }
8862 
8863     if (NumRegsLeft > 0) {
8864       unsigned NumRegs = numRegsForType(Ty);
8865       if (NumRegsLeft >= NumRegs) {
8866         NumRegsLeft -= NumRegs;
8867         return ABIArgInfo::getDirect();
8868       }
8869     }
8870   }
8871 
8872   // Otherwise just do the default thing.
8873   ABIArgInfo ArgInfo = DefaultABIInfo::classifyArgumentType(Ty);
8874   if (!ArgInfo.isIndirect()) {
8875     unsigned NumRegs = numRegsForType(Ty);
8876     NumRegsLeft -= std::min(NumRegs, NumRegsLeft);
8877   }
8878 
8879   return ArgInfo;
8880 }
8881 
8882 class AMDGPUTargetCodeGenInfo : public TargetCodeGenInfo {
8883 public:
8884   AMDGPUTargetCodeGenInfo(CodeGenTypes &CGT)
8885       : TargetCodeGenInfo(std::make_unique<AMDGPUABIInfo>(CGT)) {}
8886   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
8887                            CodeGen::CodeGenModule &M) const override;
8888   unsigned getOpenCLKernelCallingConv() const override;
8889 
8890   llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
8891       llvm::PointerType *T, QualType QT) const override;
8892 
8893   LangAS getASTAllocaAddressSpace() const override {
8894     return getLangASFromTargetAS(
8895         getABIInfo().getDataLayout().getAllocaAddrSpace());
8896   }
8897   LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
8898                                   const VarDecl *D) const override;
8899   llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
8900                                          SyncScope Scope,
8901                                          llvm::AtomicOrdering Ordering,
8902                                          llvm::LLVMContext &Ctx) const override;
8903   llvm::Function *
8904   createEnqueuedBlockKernel(CodeGenFunction &CGF,
8905                             llvm::Function *BlockInvokeFunc,
8906                             llvm::Value *BlockLiteral) const override;
8907   bool shouldEmitStaticExternCAliases() const override;
8908   void setCUDAKernelCallingConvention(const FunctionType *&FT) const override;
8909 };
8910 }
8911 
8912 static bool requiresAMDGPUProtectedVisibility(const Decl *D,
8913                                               llvm::GlobalValue *GV) {
8914   if (GV->getVisibility() != llvm::GlobalValue::HiddenVisibility)
8915     return false;
8916 
8917   return D->hasAttr<OpenCLKernelAttr>() ||
8918          (isa<FunctionDecl>(D) && D->hasAttr<CUDAGlobalAttr>()) ||
8919          (isa<VarDecl>(D) &&
8920           (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>() ||
8921            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinSurfaceType() ||
8922            cast<VarDecl>(D)->getType()->isCUDADeviceBuiltinTextureType()));
8923 }
8924 
8925 void AMDGPUTargetCodeGenInfo::setTargetAttributes(
8926     const Decl *D, llvm::GlobalValue *GV, CodeGen::CodeGenModule &M) const {
8927   if (requiresAMDGPUProtectedVisibility(D, GV)) {
8928     GV->setVisibility(llvm::GlobalValue::ProtectedVisibility);
8929     GV->setDSOLocal(true);
8930   }
8931 
8932   if (GV->isDeclaration())
8933     return;
8934   const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D);
8935   if (!FD)
8936     return;
8937 
8938   llvm::Function *F = cast<llvm::Function>(GV);
8939 
8940   const auto *ReqdWGS = M.getLangOpts().OpenCL ?
8941     FD->getAttr<ReqdWorkGroupSizeAttr>() : nullptr;
8942 
8943 
8944   const bool IsOpenCLKernel = M.getLangOpts().OpenCL &&
8945                               FD->hasAttr<OpenCLKernelAttr>();
8946   const bool IsHIPKernel = M.getLangOpts().HIP &&
8947                            FD->hasAttr<CUDAGlobalAttr>();
8948   if ((IsOpenCLKernel || IsHIPKernel) &&
8949       (M.getTriple().getOS() == llvm::Triple::AMDHSA))
8950     F->addFnAttr("amdgpu-implicitarg-num-bytes", "56");
8951 
8952   if (IsHIPKernel)
8953     F->addFnAttr("uniform-work-group-size", "true");
8954 
8955 
8956   const auto *FlatWGS = FD->getAttr<AMDGPUFlatWorkGroupSizeAttr>();
8957   if (ReqdWGS || FlatWGS) {
8958     unsigned Min = 0;
8959     unsigned Max = 0;
8960     if (FlatWGS) {
8961       Min = FlatWGS->getMin()
8962                 ->EvaluateKnownConstInt(M.getContext())
8963                 .getExtValue();
8964       Max = FlatWGS->getMax()
8965                 ->EvaluateKnownConstInt(M.getContext())
8966                 .getExtValue();
8967     }
8968     if (ReqdWGS && Min == 0 && Max == 0)
8969       Min = Max = ReqdWGS->getXDim() * ReqdWGS->getYDim() * ReqdWGS->getZDim();
8970 
8971     if (Min != 0) {
8972       assert(Min <= Max && "Min must be less than or equal Max");
8973 
8974       std::string AttrVal = llvm::utostr(Min) + "," + llvm::utostr(Max);
8975       F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8976     } else
8977       assert(Max == 0 && "Max must be zero");
8978   } else if (IsOpenCLKernel || IsHIPKernel) {
8979     // By default, restrict the maximum size to a value specified by
8980     // --gpu-max-threads-per-block=n or its default value for HIP.
8981     const unsigned OpenCLDefaultMaxWorkGroupSize = 256;
8982     const unsigned DefaultMaxWorkGroupSize =
8983         IsOpenCLKernel ? OpenCLDefaultMaxWorkGroupSize
8984                        : M.getLangOpts().GPUMaxThreadsPerBlock;
8985     std::string AttrVal =
8986         std::string("1,") + llvm::utostr(DefaultMaxWorkGroupSize);
8987     F->addFnAttr("amdgpu-flat-work-group-size", AttrVal);
8988   }
8989 
8990   if (const auto *Attr = FD->getAttr<AMDGPUWavesPerEUAttr>()) {
8991     unsigned Min =
8992         Attr->getMin()->EvaluateKnownConstInt(M.getContext()).getExtValue();
8993     unsigned Max = Attr->getMax() ? Attr->getMax()
8994                                         ->EvaluateKnownConstInt(M.getContext())
8995                                         .getExtValue()
8996                                   : 0;
8997 
8998     if (Min != 0) {
8999       assert((Max == 0 || Min <= Max) && "Min must be less than or equal Max");
9000 
9001       std::string AttrVal = llvm::utostr(Min);
9002       if (Max != 0)
9003         AttrVal = AttrVal + "," + llvm::utostr(Max);
9004       F->addFnAttr("amdgpu-waves-per-eu", AttrVal);
9005     } else
9006       assert(Max == 0 && "Max must be zero");
9007   }
9008 
9009   if (const auto *Attr = FD->getAttr<AMDGPUNumSGPRAttr>()) {
9010     unsigned NumSGPR = Attr->getNumSGPR();
9011 
9012     if (NumSGPR != 0)
9013       F->addFnAttr("amdgpu-num-sgpr", llvm::utostr(NumSGPR));
9014   }
9015 
9016   if (const auto *Attr = FD->getAttr<AMDGPUNumVGPRAttr>()) {
9017     uint32_t NumVGPR = Attr->getNumVGPR();
9018 
9019     if (NumVGPR != 0)
9020       F->addFnAttr("amdgpu-num-vgpr", llvm::utostr(NumVGPR));
9021   }
9022 }
9023 
9024 unsigned AMDGPUTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9025   return llvm::CallingConv::AMDGPU_KERNEL;
9026 }
9027 
9028 // Currently LLVM assumes null pointers always have value 0,
9029 // which results in incorrectly transformed IR. Therefore, instead of
9030 // emitting null pointers in private and local address spaces, a null
9031 // pointer in generic address space is emitted which is casted to a
9032 // pointer in local or private address space.
9033 llvm::Constant *AMDGPUTargetCodeGenInfo::getNullPointer(
9034     const CodeGen::CodeGenModule &CGM, llvm::PointerType *PT,
9035     QualType QT) const {
9036   if (CGM.getContext().getTargetNullPointerValue(QT) == 0)
9037     return llvm::ConstantPointerNull::get(PT);
9038 
9039   auto &Ctx = CGM.getContext();
9040   auto NPT = llvm::PointerType::get(PT->getElementType(),
9041       Ctx.getTargetAddressSpace(LangAS::opencl_generic));
9042   return llvm::ConstantExpr::getAddrSpaceCast(
9043       llvm::ConstantPointerNull::get(NPT), PT);
9044 }
9045 
9046 LangAS
9047 AMDGPUTargetCodeGenInfo::getGlobalVarAddressSpace(CodeGenModule &CGM,
9048                                                   const VarDecl *D) const {
9049   assert(!CGM.getLangOpts().OpenCL &&
9050          !(CGM.getLangOpts().CUDA && CGM.getLangOpts().CUDAIsDevice) &&
9051          "Address space agnostic languages only");
9052   LangAS DefaultGlobalAS = getLangASFromTargetAS(
9053       CGM.getContext().getTargetAddressSpace(LangAS::opencl_global));
9054   if (!D)
9055     return DefaultGlobalAS;
9056 
9057   LangAS AddrSpace = D->getType().getAddressSpace();
9058   assert(AddrSpace == LangAS::Default || isTargetAddressSpace(AddrSpace));
9059   if (AddrSpace != LangAS::Default)
9060     return AddrSpace;
9061 
9062   if (CGM.isTypeConstant(D->getType(), false)) {
9063     if (auto ConstAS = CGM.getTarget().getConstantAddressSpace())
9064       return ConstAS.getValue();
9065   }
9066   return DefaultGlobalAS;
9067 }
9068 
9069 llvm::SyncScope::ID
9070 AMDGPUTargetCodeGenInfo::getLLVMSyncScopeID(const LangOptions &LangOpts,
9071                                             SyncScope Scope,
9072                                             llvm::AtomicOrdering Ordering,
9073                                             llvm::LLVMContext &Ctx) const {
9074   std::string Name;
9075   switch (Scope) {
9076   case SyncScope::OpenCLWorkGroup:
9077     Name = "workgroup";
9078     break;
9079   case SyncScope::OpenCLDevice:
9080     Name = "agent";
9081     break;
9082   case SyncScope::OpenCLAllSVMDevices:
9083     Name = "";
9084     break;
9085   case SyncScope::OpenCLSubGroup:
9086     Name = "wavefront";
9087   }
9088 
9089   if (Ordering != llvm::AtomicOrdering::SequentiallyConsistent) {
9090     if (!Name.empty())
9091       Name = Twine(Twine(Name) + Twine("-")).str();
9092 
9093     Name = Twine(Twine(Name) + Twine("one-as")).str();
9094   }
9095 
9096   return Ctx.getOrInsertSyncScopeID(Name);
9097 }
9098 
9099 bool AMDGPUTargetCodeGenInfo::shouldEmitStaticExternCAliases() const {
9100   return false;
9101 }
9102 
9103 void AMDGPUTargetCodeGenInfo::setCUDAKernelCallingConvention(
9104     const FunctionType *&FT) const {
9105   FT = getABIInfo().getContext().adjustFunctionType(
9106       FT, FT->getExtInfo().withCallingConv(CC_OpenCLKernel));
9107 }
9108 
9109 //===----------------------------------------------------------------------===//
9110 // SPARC v8 ABI Implementation.
9111 // Based on the SPARC Compliance Definition version 2.4.1.
9112 //
9113 // Ensures that complex values are passed in registers.
9114 //
9115 namespace {
9116 class SparcV8ABIInfo : public DefaultABIInfo {
9117 public:
9118   SparcV8ABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9119 
9120 private:
9121   ABIArgInfo classifyReturnType(QualType RetTy) const;
9122   void computeInfo(CGFunctionInfo &FI) const override;
9123 };
9124 } // end anonymous namespace
9125 
9126 
9127 ABIArgInfo
9128 SparcV8ABIInfo::classifyReturnType(QualType Ty) const {
9129   if (Ty->isAnyComplexType()) {
9130     return ABIArgInfo::getDirect();
9131   }
9132   else {
9133     return DefaultABIInfo::classifyReturnType(Ty);
9134   }
9135 }
9136 
9137 void SparcV8ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9138 
9139   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9140   for (auto &Arg : FI.arguments())
9141     Arg.info = classifyArgumentType(Arg.type);
9142 }
9143 
9144 namespace {
9145 class SparcV8TargetCodeGenInfo : public TargetCodeGenInfo {
9146 public:
9147   SparcV8TargetCodeGenInfo(CodeGenTypes &CGT)
9148       : TargetCodeGenInfo(std::make_unique<SparcV8ABIInfo>(CGT)) {}
9149 };
9150 } // end anonymous namespace
9151 
9152 //===----------------------------------------------------------------------===//
9153 // SPARC v9 ABI Implementation.
9154 // Based on the SPARC Compliance Definition version 2.4.1.
9155 //
9156 // Function arguments a mapped to a nominal "parameter array" and promoted to
9157 // registers depending on their type. Each argument occupies 8 or 16 bytes in
9158 // the array, structs larger than 16 bytes are passed indirectly.
9159 //
9160 // One case requires special care:
9161 //
9162 //   struct mixed {
9163 //     int i;
9164 //     float f;
9165 //   };
9166 //
9167 // When a struct mixed is passed by value, it only occupies 8 bytes in the
9168 // parameter array, but the int is passed in an integer register, and the float
9169 // is passed in a floating point register. This is represented as two arguments
9170 // with the LLVM IR inreg attribute:
9171 //
9172 //   declare void f(i32 inreg %i, float inreg %f)
9173 //
9174 // The code generator will only allocate 4 bytes from the parameter array for
9175 // the inreg arguments. All other arguments are allocated a multiple of 8
9176 // bytes.
9177 //
9178 namespace {
9179 class SparcV9ABIInfo : public ABIInfo {
9180 public:
9181   SparcV9ABIInfo(CodeGenTypes &CGT) : ABIInfo(CGT) {}
9182 
9183 private:
9184   ABIArgInfo classifyType(QualType RetTy, unsigned SizeLimit) const;
9185   void computeInfo(CGFunctionInfo &FI) const override;
9186   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9187                     QualType Ty) const override;
9188 
9189   // Coercion type builder for structs passed in registers. The coercion type
9190   // serves two purposes:
9191   //
9192   // 1. Pad structs to a multiple of 64 bits, so they are passed 'left-aligned'
9193   //    in registers.
9194   // 2. Expose aligned floating point elements as first-level elements, so the
9195   //    code generator knows to pass them in floating point registers.
9196   //
9197   // We also compute the InReg flag which indicates that the struct contains
9198   // aligned 32-bit floats.
9199   //
9200   struct CoerceBuilder {
9201     llvm::LLVMContext &Context;
9202     const llvm::DataLayout &DL;
9203     SmallVector<llvm::Type*, 8> Elems;
9204     uint64_t Size;
9205     bool InReg;
9206 
9207     CoerceBuilder(llvm::LLVMContext &c, const llvm::DataLayout &dl)
9208       : Context(c), DL(dl), Size(0), InReg(false) {}
9209 
9210     // Pad Elems with integers until Size is ToSize.
9211     void pad(uint64_t ToSize) {
9212       assert(ToSize >= Size && "Cannot remove elements");
9213       if (ToSize == Size)
9214         return;
9215 
9216       // Finish the current 64-bit word.
9217       uint64_t Aligned = llvm::alignTo(Size, 64);
9218       if (Aligned > Size && Aligned <= ToSize) {
9219         Elems.push_back(llvm::IntegerType::get(Context, Aligned - Size));
9220         Size = Aligned;
9221       }
9222 
9223       // Add whole 64-bit words.
9224       while (Size + 64 <= ToSize) {
9225         Elems.push_back(llvm::Type::getInt64Ty(Context));
9226         Size += 64;
9227       }
9228 
9229       // Final in-word padding.
9230       if (Size < ToSize) {
9231         Elems.push_back(llvm::IntegerType::get(Context, ToSize - Size));
9232         Size = ToSize;
9233       }
9234     }
9235 
9236     // Add a floating point element at Offset.
9237     void addFloat(uint64_t Offset, llvm::Type *Ty, unsigned Bits) {
9238       // Unaligned floats are treated as integers.
9239       if (Offset % Bits)
9240         return;
9241       // The InReg flag is only required if there are any floats < 64 bits.
9242       if (Bits < 64)
9243         InReg = true;
9244       pad(Offset);
9245       Elems.push_back(Ty);
9246       Size = Offset + Bits;
9247     }
9248 
9249     // Add a struct type to the coercion type, starting at Offset (in bits).
9250     void addStruct(uint64_t Offset, llvm::StructType *StrTy) {
9251       const llvm::StructLayout *Layout = DL.getStructLayout(StrTy);
9252       for (unsigned i = 0, e = StrTy->getNumElements(); i != e; ++i) {
9253         llvm::Type *ElemTy = StrTy->getElementType(i);
9254         uint64_t ElemOffset = Offset + Layout->getElementOffsetInBits(i);
9255         switch (ElemTy->getTypeID()) {
9256         case llvm::Type::StructTyID:
9257           addStruct(ElemOffset, cast<llvm::StructType>(ElemTy));
9258           break;
9259         case llvm::Type::FloatTyID:
9260           addFloat(ElemOffset, ElemTy, 32);
9261           break;
9262         case llvm::Type::DoubleTyID:
9263           addFloat(ElemOffset, ElemTy, 64);
9264           break;
9265         case llvm::Type::FP128TyID:
9266           addFloat(ElemOffset, ElemTy, 128);
9267           break;
9268         case llvm::Type::PointerTyID:
9269           if (ElemOffset % 64 == 0) {
9270             pad(ElemOffset);
9271             Elems.push_back(ElemTy);
9272             Size += 64;
9273           }
9274           break;
9275         default:
9276           break;
9277         }
9278       }
9279     }
9280 
9281     // Check if Ty is a usable substitute for the coercion type.
9282     bool isUsableType(llvm::StructType *Ty) const {
9283       return llvm::makeArrayRef(Elems) == Ty->elements();
9284     }
9285 
9286     // Get the coercion type as a literal struct type.
9287     llvm::Type *getType() const {
9288       if (Elems.size() == 1)
9289         return Elems.front();
9290       else
9291         return llvm::StructType::get(Context, Elems);
9292     }
9293   };
9294 };
9295 } // end anonymous namespace
9296 
9297 ABIArgInfo
9298 SparcV9ABIInfo::classifyType(QualType Ty, unsigned SizeLimit) const {
9299   if (Ty->isVoidType())
9300     return ABIArgInfo::getIgnore();
9301 
9302   uint64_t Size = getContext().getTypeSize(Ty);
9303 
9304   // Anything too big to fit in registers is passed with an explicit indirect
9305   // pointer / sret pointer.
9306   if (Size > SizeLimit)
9307     return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
9308 
9309   // Treat an enum type as its underlying type.
9310   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9311     Ty = EnumTy->getDecl()->getIntegerType();
9312 
9313   // Integer types smaller than a register are extended.
9314   if (Size < 64 && Ty->isIntegerType())
9315     return ABIArgInfo::getExtend(Ty);
9316 
9317   if (const auto *EIT = Ty->getAs<ExtIntType>())
9318     if (EIT->getNumBits() < 64)
9319       return ABIArgInfo::getExtend(Ty);
9320 
9321   // Other non-aggregates go in registers.
9322   if (!isAggregateTypeForABI(Ty))
9323     return ABIArgInfo::getDirect();
9324 
9325   // If a C++ object has either a non-trivial copy constructor or a non-trivial
9326   // destructor, it is passed with an explicit indirect pointer / sret pointer.
9327   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI()))
9328     return getNaturalAlignIndirect(Ty, RAA == CGCXXABI::RAA_DirectInMemory);
9329 
9330   // This is a small aggregate type that should be passed in registers.
9331   // Build a coercion type from the LLVM struct type.
9332   llvm::StructType *StrTy = dyn_cast<llvm::StructType>(CGT.ConvertType(Ty));
9333   if (!StrTy)
9334     return ABIArgInfo::getDirect();
9335 
9336   CoerceBuilder CB(getVMContext(), getDataLayout());
9337   CB.addStruct(0, StrTy);
9338   CB.pad(llvm::alignTo(CB.DL.getTypeSizeInBits(StrTy), 64));
9339 
9340   // Try to use the original type for coercion.
9341   llvm::Type *CoerceTy = CB.isUsableType(StrTy) ? StrTy : CB.getType();
9342 
9343   if (CB.InReg)
9344     return ABIArgInfo::getDirectInReg(CoerceTy);
9345   else
9346     return ABIArgInfo::getDirect(CoerceTy);
9347 }
9348 
9349 Address SparcV9ABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9350                                   QualType Ty) const {
9351   ABIArgInfo AI = classifyType(Ty, 16 * 8);
9352   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9353   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9354     AI.setCoerceToType(ArgTy);
9355 
9356   CharUnits SlotSize = CharUnits::fromQuantity(8);
9357 
9358   CGBuilderTy &Builder = CGF.Builder;
9359   Address Addr(Builder.CreateLoad(VAListAddr, "ap.cur"), SlotSize);
9360   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9361 
9362   auto TypeInfo = getContext().getTypeInfoInChars(Ty);
9363 
9364   Address ArgAddr = Address::invalid();
9365   CharUnits Stride;
9366   switch (AI.getKind()) {
9367   case ABIArgInfo::Expand:
9368   case ABIArgInfo::CoerceAndExpand:
9369   case ABIArgInfo::InAlloca:
9370     llvm_unreachable("Unsupported ABI kind for va_arg");
9371 
9372   case ABIArgInfo::Extend: {
9373     Stride = SlotSize;
9374     CharUnits Offset = SlotSize - TypeInfo.first;
9375     ArgAddr = Builder.CreateConstInBoundsByteGEP(Addr, Offset, "extend");
9376     break;
9377   }
9378 
9379   case ABIArgInfo::Direct: {
9380     auto AllocSize = getDataLayout().getTypeAllocSize(AI.getCoerceToType());
9381     Stride = CharUnits::fromQuantity(AllocSize).alignTo(SlotSize);
9382     ArgAddr = Addr;
9383     break;
9384   }
9385 
9386   case ABIArgInfo::Indirect:
9387     Stride = SlotSize;
9388     ArgAddr = Builder.CreateElementBitCast(Addr, ArgPtrTy, "indirect");
9389     ArgAddr = Address(Builder.CreateLoad(ArgAddr, "indirect.arg"),
9390                       TypeInfo.second);
9391     break;
9392 
9393   case ABIArgInfo::Ignore:
9394     return Address(llvm::UndefValue::get(ArgPtrTy), TypeInfo.second);
9395   }
9396 
9397   // Update VAList.
9398   Address NextPtr = Builder.CreateConstInBoundsByteGEP(Addr, Stride, "ap.next");
9399   Builder.CreateStore(NextPtr.getPointer(), VAListAddr);
9400 
9401   return Builder.CreateBitCast(ArgAddr, ArgPtrTy, "arg.addr");
9402 }
9403 
9404 void SparcV9ABIInfo::computeInfo(CGFunctionInfo &FI) const {
9405   FI.getReturnInfo() = classifyType(FI.getReturnType(), 32 * 8);
9406   for (auto &I : FI.arguments())
9407     I.info = classifyType(I.type, 16 * 8);
9408 }
9409 
9410 namespace {
9411 class SparcV9TargetCodeGenInfo : public TargetCodeGenInfo {
9412 public:
9413   SparcV9TargetCodeGenInfo(CodeGenTypes &CGT)
9414       : TargetCodeGenInfo(std::make_unique<SparcV9ABIInfo>(CGT)) {}
9415 
9416   int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const override {
9417     return 14;
9418   }
9419 
9420   bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9421                                llvm::Value *Address) const override;
9422 };
9423 } // end anonymous namespace
9424 
9425 bool
9426 SparcV9TargetCodeGenInfo::initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
9427                                                 llvm::Value *Address) const {
9428   // This is calculated from the LLVM and GCC tables and verified
9429   // against gcc output.  AFAIK all ABIs use the same encoding.
9430 
9431   CodeGen::CGBuilderTy &Builder = CGF.Builder;
9432 
9433   llvm::IntegerType *i8 = CGF.Int8Ty;
9434   llvm::Value *Four8 = llvm::ConstantInt::get(i8, 4);
9435   llvm::Value *Eight8 = llvm::ConstantInt::get(i8, 8);
9436 
9437   // 0-31: the 8-byte general-purpose registers
9438   AssignToArrayRange(Builder, Address, Eight8, 0, 31);
9439 
9440   // 32-63: f0-31, the 4-byte floating-point registers
9441   AssignToArrayRange(Builder, Address, Four8, 32, 63);
9442 
9443   //   Y   = 64
9444   //   PSR = 65
9445   //   WIM = 66
9446   //   TBR = 67
9447   //   PC  = 68
9448   //   NPC = 69
9449   //   FSR = 70
9450   //   CSR = 71
9451   AssignToArrayRange(Builder, Address, Eight8, 64, 71);
9452 
9453   // 72-87: d0-15, the 8-byte floating-point registers
9454   AssignToArrayRange(Builder, Address, Eight8, 72, 87);
9455 
9456   return false;
9457 }
9458 
9459 // ARC ABI implementation.
9460 namespace {
9461 
9462 class ARCABIInfo : public DefaultABIInfo {
9463 public:
9464   using DefaultABIInfo::DefaultABIInfo;
9465 
9466 private:
9467   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9468                     QualType Ty) const override;
9469 
9470   void updateState(const ABIArgInfo &Info, QualType Ty, CCState &State) const {
9471     if (!State.FreeRegs)
9472       return;
9473     if (Info.isIndirect() && Info.getInReg())
9474       State.FreeRegs--;
9475     else if (Info.isDirect() && Info.getInReg()) {
9476       unsigned sz = (getContext().getTypeSize(Ty) + 31) / 32;
9477       if (sz < State.FreeRegs)
9478         State.FreeRegs -= sz;
9479       else
9480         State.FreeRegs = 0;
9481     }
9482   }
9483 
9484   void computeInfo(CGFunctionInfo &FI) const override {
9485     CCState State(FI);
9486     // ARC uses 8 registers to pass arguments.
9487     State.FreeRegs = 8;
9488 
9489     if (!getCXXABI().classifyReturnType(FI))
9490       FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
9491     updateState(FI.getReturnInfo(), FI.getReturnType(), State);
9492     for (auto &I : FI.arguments()) {
9493       I.info = classifyArgumentType(I.type, State.FreeRegs);
9494       updateState(I.info, I.type, State);
9495     }
9496   }
9497 
9498   ABIArgInfo getIndirectByRef(QualType Ty, bool HasFreeRegs) const;
9499   ABIArgInfo getIndirectByValue(QualType Ty) const;
9500   ABIArgInfo classifyArgumentType(QualType Ty, uint8_t FreeRegs) const;
9501   ABIArgInfo classifyReturnType(QualType RetTy) const;
9502 };
9503 
9504 class ARCTargetCodeGenInfo : public TargetCodeGenInfo {
9505 public:
9506   ARCTargetCodeGenInfo(CodeGenTypes &CGT)
9507       : TargetCodeGenInfo(std::make_unique<ARCABIInfo>(CGT)) {}
9508 };
9509 
9510 
9511 ABIArgInfo ARCABIInfo::getIndirectByRef(QualType Ty, bool HasFreeRegs) const {
9512   return HasFreeRegs ? getNaturalAlignIndirectInReg(Ty) :
9513                        getNaturalAlignIndirect(Ty, false);
9514 }
9515 
9516 ABIArgInfo ARCABIInfo::getIndirectByValue(QualType Ty) const {
9517   // Compute the byval alignment.
9518   const unsigned MinABIStackAlignInBytes = 4;
9519   unsigned TypeAlign = getContext().getTypeAlign(Ty) / 8;
9520   return ABIArgInfo::getIndirect(CharUnits::fromQuantity(4), /*ByVal=*/true,
9521                                  TypeAlign > MinABIStackAlignInBytes);
9522 }
9523 
9524 Address ARCABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9525                               QualType Ty) const {
9526   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, /*indirect*/ false,
9527                           getContext().getTypeInfoInChars(Ty),
9528                           CharUnits::fromQuantity(4), true);
9529 }
9530 
9531 ABIArgInfo ARCABIInfo::classifyArgumentType(QualType Ty,
9532                                             uint8_t FreeRegs) const {
9533   // Handle the generic C++ ABI.
9534   const RecordType *RT = Ty->getAs<RecordType>();
9535   if (RT) {
9536     CGCXXABI::RecordArgABI RAA = getRecordArgABI(RT, getCXXABI());
9537     if (RAA == CGCXXABI::RAA_Indirect)
9538       return getIndirectByRef(Ty, FreeRegs > 0);
9539 
9540     if (RAA == CGCXXABI::RAA_DirectInMemory)
9541       return getIndirectByValue(Ty);
9542   }
9543 
9544   // Treat an enum type as its underlying type.
9545   if (const EnumType *EnumTy = Ty->getAs<EnumType>())
9546     Ty = EnumTy->getDecl()->getIntegerType();
9547 
9548   auto SizeInRegs = llvm::alignTo(getContext().getTypeSize(Ty), 32) / 32;
9549 
9550   if (isAggregateTypeForABI(Ty)) {
9551     // Structures with flexible arrays are always indirect.
9552     if (RT && RT->getDecl()->hasFlexibleArrayMember())
9553       return getIndirectByValue(Ty);
9554 
9555     // Ignore empty structs/unions.
9556     if (isEmptyRecord(getContext(), Ty, true))
9557       return ABIArgInfo::getIgnore();
9558 
9559     llvm::LLVMContext &LLVMContext = getVMContext();
9560 
9561     llvm::IntegerType *Int32 = llvm::Type::getInt32Ty(LLVMContext);
9562     SmallVector<llvm::Type *, 3> Elements(SizeInRegs, Int32);
9563     llvm::Type *Result = llvm::StructType::get(LLVMContext, Elements);
9564 
9565     return FreeRegs >= SizeInRegs ?
9566         ABIArgInfo::getDirectInReg(Result) :
9567         ABIArgInfo::getDirect(Result, 0, nullptr, false);
9568   }
9569 
9570   if (const auto *EIT = Ty->getAs<ExtIntType>())
9571     if (EIT->getNumBits() > 64)
9572       return getIndirectByValue(Ty);
9573 
9574   return isPromotableIntegerTypeForABI(Ty)
9575              ? (FreeRegs >= SizeInRegs ? ABIArgInfo::getExtendInReg(Ty)
9576                                        : ABIArgInfo::getExtend(Ty))
9577              : (FreeRegs >= SizeInRegs ? ABIArgInfo::getDirectInReg()
9578                                        : ABIArgInfo::getDirect());
9579 }
9580 
9581 ABIArgInfo ARCABIInfo::classifyReturnType(QualType RetTy) const {
9582   if (RetTy->isAnyComplexType())
9583     return ABIArgInfo::getDirectInReg();
9584 
9585   // Arguments of size > 4 registers are indirect.
9586   auto RetSize = llvm::alignTo(getContext().getTypeSize(RetTy), 32) / 32;
9587   if (RetSize > 4)
9588     return getIndirectByRef(RetTy, /*HasFreeRegs*/ true);
9589 
9590   return DefaultABIInfo::classifyReturnType(RetTy);
9591 }
9592 
9593 } // End anonymous namespace.
9594 
9595 //===----------------------------------------------------------------------===//
9596 // XCore ABI Implementation
9597 //===----------------------------------------------------------------------===//
9598 
9599 namespace {
9600 
9601 /// A SmallStringEnc instance is used to build up the TypeString by passing
9602 /// it by reference between functions that append to it.
9603 typedef llvm::SmallString<128> SmallStringEnc;
9604 
9605 /// TypeStringCache caches the meta encodings of Types.
9606 ///
9607 /// The reason for caching TypeStrings is two fold:
9608 ///   1. To cache a type's encoding for later uses;
9609 ///   2. As a means to break recursive member type inclusion.
9610 ///
9611 /// A cache Entry can have a Status of:
9612 ///   NonRecursive:   The type encoding is not recursive;
9613 ///   Recursive:      The type encoding is recursive;
9614 ///   Incomplete:     An incomplete TypeString;
9615 ///   IncompleteUsed: An incomplete TypeString that has been used in a
9616 ///                   Recursive type encoding.
9617 ///
9618 /// A NonRecursive entry will have all of its sub-members expanded as fully
9619 /// as possible. Whilst it may contain types which are recursive, the type
9620 /// itself is not recursive and thus its encoding may be safely used whenever
9621 /// the type is encountered.
9622 ///
9623 /// A Recursive entry will have all of its sub-members expanded as fully as
9624 /// possible. The type itself is recursive and it may contain other types which
9625 /// are recursive. The Recursive encoding must not be used during the expansion
9626 /// of a recursive type's recursive branch. For simplicity the code uses
9627 /// IncompleteCount to reject all usage of Recursive encodings for member types.
9628 ///
9629 /// An Incomplete entry is always a RecordType and only encodes its
9630 /// identifier e.g. "s(S){}". Incomplete 'StubEnc' entries are ephemeral and
9631 /// are placed into the cache during type expansion as a means to identify and
9632 /// handle recursive inclusion of types as sub-members. If there is recursion
9633 /// the entry becomes IncompleteUsed.
9634 ///
9635 /// During the expansion of a RecordType's members:
9636 ///
9637 ///   If the cache contains a NonRecursive encoding for the member type, the
9638 ///   cached encoding is used;
9639 ///
9640 ///   If the cache contains a Recursive encoding for the member type, the
9641 ///   cached encoding is 'Swapped' out, as it may be incorrect, and...
9642 ///
9643 ///   If the member is a RecordType, an Incomplete encoding is placed into the
9644 ///   cache to break potential recursive inclusion of itself as a sub-member;
9645 ///
9646 ///   Once a member RecordType has been expanded, its temporary incomplete
9647 ///   entry is removed from the cache. If a Recursive encoding was swapped out
9648 ///   it is swapped back in;
9649 ///
9650 ///   If an incomplete entry is used to expand a sub-member, the incomplete
9651 ///   entry is marked as IncompleteUsed. The cache keeps count of how many
9652 ///   IncompleteUsed entries it currently contains in IncompleteUsedCount;
9653 ///
9654 ///   If a member's encoding is found to be a NonRecursive or Recursive viz:
9655 ///   IncompleteUsedCount==0, the member's encoding is added to the cache.
9656 ///   Else the member is part of a recursive type and thus the recursion has
9657 ///   been exited too soon for the encoding to be correct for the member.
9658 ///
9659 class TypeStringCache {
9660   enum Status {NonRecursive, Recursive, Incomplete, IncompleteUsed};
9661   struct Entry {
9662     std::string Str;     // The encoded TypeString for the type.
9663     enum Status State;   // Information about the encoding in 'Str'.
9664     std::string Swapped; // A temporary place holder for a Recursive encoding
9665                          // during the expansion of RecordType's members.
9666   };
9667   std::map<const IdentifierInfo *, struct Entry> Map;
9668   unsigned IncompleteCount;     // Number of Incomplete entries in the Map.
9669   unsigned IncompleteUsedCount; // Number of IncompleteUsed entries in the Map.
9670 public:
9671   TypeStringCache() : IncompleteCount(0), IncompleteUsedCount(0) {}
9672   void addIncomplete(const IdentifierInfo *ID, std::string StubEnc);
9673   bool removeIncomplete(const IdentifierInfo *ID);
9674   void addIfComplete(const IdentifierInfo *ID, StringRef Str,
9675                      bool IsRecursive);
9676   StringRef lookupStr(const IdentifierInfo *ID);
9677 };
9678 
9679 /// TypeString encodings for enum & union fields must be order.
9680 /// FieldEncoding is a helper for this ordering process.
9681 class FieldEncoding {
9682   bool HasName;
9683   std::string Enc;
9684 public:
9685   FieldEncoding(bool b, SmallStringEnc &e) : HasName(b), Enc(e.c_str()) {}
9686   StringRef str() { return Enc; }
9687   bool operator<(const FieldEncoding &rhs) const {
9688     if (HasName != rhs.HasName) return HasName;
9689     return Enc < rhs.Enc;
9690   }
9691 };
9692 
9693 class XCoreABIInfo : public DefaultABIInfo {
9694 public:
9695   XCoreABIInfo(CodeGen::CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
9696   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9697                     QualType Ty) const override;
9698 };
9699 
9700 class XCoreTargetCodeGenInfo : public TargetCodeGenInfo {
9701   mutable TypeStringCache TSC;
9702   void emitTargetMD(const Decl *D, llvm::GlobalValue *GV,
9703                     const CodeGen::CodeGenModule &M) const;
9704 
9705 public:
9706   XCoreTargetCodeGenInfo(CodeGenTypes &CGT)
9707       : TargetCodeGenInfo(std::make_unique<XCoreABIInfo>(CGT)) {}
9708   void emitTargetMetadata(CodeGen::CodeGenModule &CGM,
9709                           const llvm::MapVector<GlobalDecl, StringRef>
9710                               &MangledDeclNames) const override;
9711 };
9712 
9713 } // End anonymous namespace.
9714 
9715 // TODO: this implementation is likely now redundant with the default
9716 // EmitVAArg.
9717 Address XCoreABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
9718                                 QualType Ty) const {
9719   CGBuilderTy &Builder = CGF.Builder;
9720 
9721   // Get the VAList.
9722   CharUnits SlotSize = CharUnits::fromQuantity(4);
9723   Address AP(Builder.CreateLoad(VAListAddr), SlotSize);
9724 
9725   // Handle the argument.
9726   ABIArgInfo AI = classifyArgumentType(Ty);
9727   CharUnits TypeAlign = getContext().getTypeAlignInChars(Ty);
9728   llvm::Type *ArgTy = CGT.ConvertType(Ty);
9729   if (AI.canHaveCoerceToType() && !AI.getCoerceToType())
9730     AI.setCoerceToType(ArgTy);
9731   llvm::Type *ArgPtrTy = llvm::PointerType::getUnqual(ArgTy);
9732 
9733   Address Val = Address::invalid();
9734   CharUnits ArgSize = CharUnits::Zero();
9735   switch (AI.getKind()) {
9736   case ABIArgInfo::Expand:
9737   case ABIArgInfo::CoerceAndExpand:
9738   case ABIArgInfo::InAlloca:
9739     llvm_unreachable("Unsupported ABI kind for va_arg");
9740   case ABIArgInfo::Ignore:
9741     Val = Address(llvm::UndefValue::get(ArgPtrTy), TypeAlign);
9742     ArgSize = CharUnits::Zero();
9743     break;
9744   case ABIArgInfo::Extend:
9745   case ABIArgInfo::Direct:
9746     Val = Builder.CreateBitCast(AP, ArgPtrTy);
9747     ArgSize = CharUnits::fromQuantity(
9748                        getDataLayout().getTypeAllocSize(AI.getCoerceToType()));
9749     ArgSize = ArgSize.alignTo(SlotSize);
9750     break;
9751   case ABIArgInfo::Indirect:
9752     Val = Builder.CreateElementBitCast(AP, ArgPtrTy);
9753     Val = Address(Builder.CreateLoad(Val), TypeAlign);
9754     ArgSize = SlotSize;
9755     break;
9756   }
9757 
9758   // Increment the VAList.
9759   if (!ArgSize.isZero()) {
9760     Address APN = Builder.CreateConstInBoundsByteGEP(AP, ArgSize);
9761     Builder.CreateStore(APN.getPointer(), VAListAddr);
9762   }
9763 
9764   return Val;
9765 }
9766 
9767 /// During the expansion of a RecordType, an incomplete TypeString is placed
9768 /// into the cache as a means to identify and break recursion.
9769 /// If there is a Recursive encoding in the cache, it is swapped out and will
9770 /// be reinserted by removeIncomplete().
9771 /// All other types of encoding should have been used rather than arriving here.
9772 void TypeStringCache::addIncomplete(const IdentifierInfo *ID,
9773                                     std::string StubEnc) {
9774   if (!ID)
9775     return;
9776   Entry &E = Map[ID];
9777   assert( (E.Str.empty() || E.State == Recursive) &&
9778          "Incorrectly use of addIncomplete");
9779   assert(!StubEnc.empty() && "Passing an empty string to addIncomplete()");
9780   E.Swapped.swap(E.Str); // swap out the Recursive
9781   E.Str.swap(StubEnc);
9782   E.State = Incomplete;
9783   ++IncompleteCount;
9784 }
9785 
9786 /// Once the RecordType has been expanded, the temporary incomplete TypeString
9787 /// must be removed from the cache.
9788 /// If a Recursive was swapped out by addIncomplete(), it will be replaced.
9789 /// Returns true if the RecordType was defined recursively.
9790 bool TypeStringCache::removeIncomplete(const IdentifierInfo *ID) {
9791   if (!ID)
9792     return false;
9793   auto I = Map.find(ID);
9794   assert(I != Map.end() && "Entry not present");
9795   Entry &E = I->second;
9796   assert( (E.State == Incomplete ||
9797            E.State == IncompleteUsed) &&
9798          "Entry must be an incomplete type");
9799   bool IsRecursive = false;
9800   if (E.State == IncompleteUsed) {
9801     // We made use of our Incomplete encoding, thus we are recursive.
9802     IsRecursive = true;
9803     --IncompleteUsedCount;
9804   }
9805   if (E.Swapped.empty())
9806     Map.erase(I);
9807   else {
9808     // Swap the Recursive back.
9809     E.Swapped.swap(E.Str);
9810     E.Swapped.clear();
9811     E.State = Recursive;
9812   }
9813   --IncompleteCount;
9814   return IsRecursive;
9815 }
9816 
9817 /// Add the encoded TypeString to the cache only if it is NonRecursive or
9818 /// Recursive (viz: all sub-members were expanded as fully as possible).
9819 void TypeStringCache::addIfComplete(const IdentifierInfo *ID, StringRef Str,
9820                                     bool IsRecursive) {
9821   if (!ID || IncompleteUsedCount)
9822     return; // No key or it is is an incomplete sub-type so don't add.
9823   Entry &E = Map[ID];
9824   if (IsRecursive && !E.Str.empty()) {
9825     assert(E.State==Recursive && E.Str.size() == Str.size() &&
9826            "This is not the same Recursive entry");
9827     // The parent container was not recursive after all, so we could have used
9828     // this Recursive sub-member entry after all, but we assumed the worse when
9829     // we started viz: IncompleteCount!=0.
9830     return;
9831   }
9832   assert(E.Str.empty() && "Entry already present");
9833   E.Str = Str.str();
9834   E.State = IsRecursive? Recursive : NonRecursive;
9835 }
9836 
9837 /// Return a cached TypeString encoding for the ID. If there isn't one, or we
9838 /// are recursively expanding a type (IncompleteCount != 0) and the cached
9839 /// encoding is Recursive, return an empty StringRef.
9840 StringRef TypeStringCache::lookupStr(const IdentifierInfo *ID) {
9841   if (!ID)
9842     return StringRef();   // We have no key.
9843   auto I = Map.find(ID);
9844   if (I == Map.end())
9845     return StringRef();   // We have no encoding.
9846   Entry &E = I->second;
9847   if (E.State == Recursive && IncompleteCount)
9848     return StringRef();   // We don't use Recursive encodings for member types.
9849 
9850   if (E.State == Incomplete) {
9851     // The incomplete type is being used to break out of recursion.
9852     E.State = IncompleteUsed;
9853     ++IncompleteUsedCount;
9854   }
9855   return E.Str;
9856 }
9857 
9858 /// The XCore ABI includes a type information section that communicates symbol
9859 /// type information to the linker. The linker uses this information to verify
9860 /// safety/correctness of things such as array bound and pointers et al.
9861 /// The ABI only requires C (and XC) language modules to emit TypeStrings.
9862 /// This type information (TypeString) is emitted into meta data for all global
9863 /// symbols: definitions, declarations, functions & variables.
9864 ///
9865 /// The TypeString carries type, qualifier, name, size & value details.
9866 /// Please see 'Tools Development Guide' section 2.16.2 for format details:
9867 /// https://www.xmos.com/download/public/Tools-Development-Guide%28X9114A%29.pdf
9868 /// The output is tested by test/CodeGen/xcore-stringtype.c.
9869 ///
9870 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
9871                           const CodeGen::CodeGenModule &CGM,
9872                           TypeStringCache &TSC);
9873 
9874 /// XCore uses emitTargetMD to emit TypeString metadata for global symbols.
9875 void XCoreTargetCodeGenInfo::emitTargetMD(
9876     const Decl *D, llvm::GlobalValue *GV,
9877     const CodeGen::CodeGenModule &CGM) const {
9878   SmallStringEnc Enc;
9879   if (getTypeString(Enc, D, CGM, TSC)) {
9880     llvm::LLVMContext &Ctx = CGM.getModule().getContext();
9881     llvm::Metadata *MDVals[] = {llvm::ConstantAsMetadata::get(GV),
9882                                 llvm::MDString::get(Ctx, Enc.str())};
9883     llvm::NamedMDNode *MD =
9884       CGM.getModule().getOrInsertNamedMetadata("xcore.typestrings");
9885     MD->addOperand(llvm::MDNode::get(Ctx, MDVals));
9886   }
9887 }
9888 
9889 void XCoreTargetCodeGenInfo::emitTargetMetadata(
9890     CodeGen::CodeGenModule &CGM,
9891     const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {
9892   // Warning, new MangledDeclNames may be appended within this loop.
9893   // We rely on MapVector insertions adding new elements to the end
9894   // of the container.
9895   for (unsigned I = 0; I != MangledDeclNames.size(); ++I) {
9896     auto Val = *(MangledDeclNames.begin() + I);
9897     llvm::GlobalValue *GV = CGM.GetGlobalValue(Val.second);
9898     if (GV) {
9899       const Decl *D = Val.first.getDecl()->getMostRecentDecl();
9900       emitTargetMD(D, GV, CGM);
9901     }
9902   }
9903 }
9904 //===----------------------------------------------------------------------===//
9905 // SPIR ABI Implementation
9906 //===----------------------------------------------------------------------===//
9907 
9908 namespace {
9909 class SPIRTargetCodeGenInfo : public TargetCodeGenInfo {
9910 public:
9911   SPIRTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT)
9912       : TargetCodeGenInfo(std::make_unique<DefaultABIInfo>(CGT)) {}
9913   unsigned getOpenCLKernelCallingConv() const override;
9914 };
9915 
9916 } // End anonymous namespace.
9917 
9918 namespace clang {
9919 namespace CodeGen {
9920 void computeSPIRKernelABIInfo(CodeGenModule &CGM, CGFunctionInfo &FI) {
9921   DefaultABIInfo SPIRABI(CGM.getTypes());
9922   SPIRABI.computeInfo(FI);
9923 }
9924 }
9925 }
9926 
9927 unsigned SPIRTargetCodeGenInfo::getOpenCLKernelCallingConv() const {
9928   return llvm::CallingConv::SPIR_KERNEL;
9929 }
9930 
9931 static bool appendType(SmallStringEnc &Enc, QualType QType,
9932                        const CodeGen::CodeGenModule &CGM,
9933                        TypeStringCache &TSC);
9934 
9935 /// Helper function for appendRecordType().
9936 /// Builds a SmallVector containing the encoded field types in declaration
9937 /// order.
9938 static bool extractFieldType(SmallVectorImpl<FieldEncoding> &FE,
9939                              const RecordDecl *RD,
9940                              const CodeGen::CodeGenModule &CGM,
9941                              TypeStringCache &TSC) {
9942   for (const auto *Field : RD->fields()) {
9943     SmallStringEnc Enc;
9944     Enc += "m(";
9945     Enc += Field->getName();
9946     Enc += "){";
9947     if (Field->isBitField()) {
9948       Enc += "b(";
9949       llvm::raw_svector_ostream OS(Enc);
9950       OS << Field->getBitWidthValue(CGM.getContext());
9951       Enc += ':';
9952     }
9953     if (!appendType(Enc, Field->getType(), CGM, TSC))
9954       return false;
9955     if (Field->isBitField())
9956       Enc += ')';
9957     Enc += '}';
9958     FE.emplace_back(!Field->getName().empty(), Enc);
9959   }
9960   return true;
9961 }
9962 
9963 /// Appends structure and union types to Enc and adds encoding to cache.
9964 /// Recursively calls appendType (via extractFieldType) for each field.
9965 /// Union types have their fields ordered according to the ABI.
9966 static bool appendRecordType(SmallStringEnc &Enc, const RecordType *RT,
9967                              const CodeGen::CodeGenModule &CGM,
9968                              TypeStringCache &TSC, const IdentifierInfo *ID) {
9969   // Append the cached TypeString if we have one.
9970   StringRef TypeString = TSC.lookupStr(ID);
9971   if (!TypeString.empty()) {
9972     Enc += TypeString;
9973     return true;
9974   }
9975 
9976   // Start to emit an incomplete TypeString.
9977   size_t Start = Enc.size();
9978   Enc += (RT->isUnionType()? 'u' : 's');
9979   Enc += '(';
9980   if (ID)
9981     Enc += ID->getName();
9982   Enc += "){";
9983 
9984   // We collect all encoded fields and order as necessary.
9985   bool IsRecursive = false;
9986   const RecordDecl *RD = RT->getDecl()->getDefinition();
9987   if (RD && !RD->field_empty()) {
9988     // An incomplete TypeString stub is placed in the cache for this RecordType
9989     // so that recursive calls to this RecordType will use it whilst building a
9990     // complete TypeString for this RecordType.
9991     SmallVector<FieldEncoding, 16> FE;
9992     std::string StubEnc(Enc.substr(Start).str());
9993     StubEnc += '}';  // StubEnc now holds a valid incomplete TypeString.
9994     TSC.addIncomplete(ID, std::move(StubEnc));
9995     if (!extractFieldType(FE, RD, CGM, TSC)) {
9996       (void) TSC.removeIncomplete(ID);
9997       return false;
9998     }
9999     IsRecursive = TSC.removeIncomplete(ID);
10000     // The ABI requires unions to be sorted but not structures.
10001     // See FieldEncoding::operator< for sort algorithm.
10002     if (RT->isUnionType())
10003       llvm::sort(FE);
10004     // We can now complete the TypeString.
10005     unsigned E = FE.size();
10006     for (unsigned I = 0; I != E; ++I) {
10007       if (I)
10008         Enc += ',';
10009       Enc += FE[I].str();
10010     }
10011   }
10012   Enc += '}';
10013   TSC.addIfComplete(ID, Enc.substr(Start), IsRecursive);
10014   return true;
10015 }
10016 
10017 /// Appends enum types to Enc and adds the encoding to the cache.
10018 static bool appendEnumType(SmallStringEnc &Enc, const EnumType *ET,
10019                            TypeStringCache &TSC,
10020                            const IdentifierInfo *ID) {
10021   // Append the cached TypeString if we have one.
10022   StringRef TypeString = TSC.lookupStr(ID);
10023   if (!TypeString.empty()) {
10024     Enc += TypeString;
10025     return true;
10026   }
10027 
10028   size_t Start = Enc.size();
10029   Enc += "e(";
10030   if (ID)
10031     Enc += ID->getName();
10032   Enc += "){";
10033 
10034   // We collect all encoded enumerations and order them alphanumerically.
10035   if (const EnumDecl *ED = ET->getDecl()->getDefinition()) {
10036     SmallVector<FieldEncoding, 16> FE;
10037     for (auto I = ED->enumerator_begin(), E = ED->enumerator_end(); I != E;
10038          ++I) {
10039       SmallStringEnc EnumEnc;
10040       EnumEnc += "m(";
10041       EnumEnc += I->getName();
10042       EnumEnc += "){";
10043       I->getInitVal().toString(EnumEnc);
10044       EnumEnc += '}';
10045       FE.push_back(FieldEncoding(!I->getName().empty(), EnumEnc));
10046     }
10047     llvm::sort(FE);
10048     unsigned E = FE.size();
10049     for (unsigned I = 0; I != E; ++I) {
10050       if (I)
10051         Enc += ',';
10052       Enc += FE[I].str();
10053     }
10054   }
10055   Enc += '}';
10056   TSC.addIfComplete(ID, Enc.substr(Start), false);
10057   return true;
10058 }
10059 
10060 /// Appends type's qualifier to Enc.
10061 /// This is done prior to appending the type's encoding.
10062 static void appendQualifier(SmallStringEnc &Enc, QualType QT) {
10063   // Qualifiers are emitted in alphabetical order.
10064   static const char *const Table[]={"","c:","r:","cr:","v:","cv:","rv:","crv:"};
10065   int Lookup = 0;
10066   if (QT.isConstQualified())
10067     Lookup += 1<<0;
10068   if (QT.isRestrictQualified())
10069     Lookup += 1<<1;
10070   if (QT.isVolatileQualified())
10071     Lookup += 1<<2;
10072   Enc += Table[Lookup];
10073 }
10074 
10075 /// Appends built-in types to Enc.
10076 static bool appendBuiltinType(SmallStringEnc &Enc, const BuiltinType *BT) {
10077   const char *EncType;
10078   switch (BT->getKind()) {
10079     case BuiltinType::Void:
10080       EncType = "0";
10081       break;
10082     case BuiltinType::Bool:
10083       EncType = "b";
10084       break;
10085     case BuiltinType::Char_U:
10086       EncType = "uc";
10087       break;
10088     case BuiltinType::UChar:
10089       EncType = "uc";
10090       break;
10091     case BuiltinType::SChar:
10092       EncType = "sc";
10093       break;
10094     case BuiltinType::UShort:
10095       EncType = "us";
10096       break;
10097     case BuiltinType::Short:
10098       EncType = "ss";
10099       break;
10100     case BuiltinType::UInt:
10101       EncType = "ui";
10102       break;
10103     case BuiltinType::Int:
10104       EncType = "si";
10105       break;
10106     case BuiltinType::ULong:
10107       EncType = "ul";
10108       break;
10109     case BuiltinType::Long:
10110       EncType = "sl";
10111       break;
10112     case BuiltinType::ULongLong:
10113       EncType = "ull";
10114       break;
10115     case BuiltinType::LongLong:
10116       EncType = "sll";
10117       break;
10118     case BuiltinType::Float:
10119       EncType = "ft";
10120       break;
10121     case BuiltinType::Double:
10122       EncType = "d";
10123       break;
10124     case BuiltinType::LongDouble:
10125       EncType = "ld";
10126       break;
10127     default:
10128       return false;
10129   }
10130   Enc += EncType;
10131   return true;
10132 }
10133 
10134 /// Appends a pointer encoding to Enc before calling appendType for the pointee.
10135 static bool appendPointerType(SmallStringEnc &Enc, const PointerType *PT,
10136                               const CodeGen::CodeGenModule &CGM,
10137                               TypeStringCache &TSC) {
10138   Enc += "p(";
10139   if (!appendType(Enc, PT->getPointeeType(), CGM, TSC))
10140     return false;
10141   Enc += ')';
10142   return true;
10143 }
10144 
10145 /// Appends array encoding to Enc before calling appendType for the element.
10146 static bool appendArrayType(SmallStringEnc &Enc, QualType QT,
10147                             const ArrayType *AT,
10148                             const CodeGen::CodeGenModule &CGM,
10149                             TypeStringCache &TSC, StringRef NoSizeEnc) {
10150   if (AT->getSizeModifier() != ArrayType::Normal)
10151     return false;
10152   Enc += "a(";
10153   if (const ConstantArrayType *CAT = dyn_cast<ConstantArrayType>(AT))
10154     CAT->getSize().toStringUnsigned(Enc);
10155   else
10156     Enc += NoSizeEnc; // Global arrays use "*", otherwise it is "".
10157   Enc += ':';
10158   // The Qualifiers should be attached to the type rather than the array.
10159   appendQualifier(Enc, QT);
10160   if (!appendType(Enc, AT->getElementType(), CGM, TSC))
10161     return false;
10162   Enc += ')';
10163   return true;
10164 }
10165 
10166 /// Appends a function encoding to Enc, calling appendType for the return type
10167 /// and the arguments.
10168 static bool appendFunctionType(SmallStringEnc &Enc, const FunctionType *FT,
10169                              const CodeGen::CodeGenModule &CGM,
10170                              TypeStringCache &TSC) {
10171   Enc += "f{";
10172   if (!appendType(Enc, FT->getReturnType(), CGM, TSC))
10173     return false;
10174   Enc += "}(";
10175   if (const FunctionProtoType *FPT = FT->getAs<FunctionProtoType>()) {
10176     // N.B. we are only interested in the adjusted param types.
10177     auto I = FPT->param_type_begin();
10178     auto E = FPT->param_type_end();
10179     if (I != E) {
10180       do {
10181         if (!appendType(Enc, *I, CGM, TSC))
10182           return false;
10183         ++I;
10184         if (I != E)
10185           Enc += ',';
10186       } while (I != E);
10187       if (FPT->isVariadic())
10188         Enc += ",va";
10189     } else {
10190       if (FPT->isVariadic())
10191         Enc += "va";
10192       else
10193         Enc += '0';
10194     }
10195   }
10196   Enc += ')';
10197   return true;
10198 }
10199 
10200 /// Handles the type's qualifier before dispatching a call to handle specific
10201 /// type encodings.
10202 static bool appendType(SmallStringEnc &Enc, QualType QType,
10203                        const CodeGen::CodeGenModule &CGM,
10204                        TypeStringCache &TSC) {
10205 
10206   QualType QT = QType.getCanonicalType();
10207 
10208   if (const ArrayType *AT = QT->getAsArrayTypeUnsafe())
10209     // The Qualifiers should be attached to the type rather than the array.
10210     // Thus we don't call appendQualifier() here.
10211     return appendArrayType(Enc, QT, AT, CGM, TSC, "");
10212 
10213   appendQualifier(Enc, QT);
10214 
10215   if (const BuiltinType *BT = QT->getAs<BuiltinType>())
10216     return appendBuiltinType(Enc, BT);
10217 
10218   if (const PointerType *PT = QT->getAs<PointerType>())
10219     return appendPointerType(Enc, PT, CGM, TSC);
10220 
10221   if (const EnumType *ET = QT->getAs<EnumType>())
10222     return appendEnumType(Enc, ET, TSC, QT.getBaseTypeIdentifier());
10223 
10224   if (const RecordType *RT = QT->getAsStructureType())
10225     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10226 
10227   if (const RecordType *RT = QT->getAsUnionType())
10228     return appendRecordType(Enc, RT, CGM, TSC, QT.getBaseTypeIdentifier());
10229 
10230   if (const FunctionType *FT = QT->getAs<FunctionType>())
10231     return appendFunctionType(Enc, FT, CGM, TSC);
10232 
10233   return false;
10234 }
10235 
10236 static bool getTypeString(SmallStringEnc &Enc, const Decl *D,
10237                           const CodeGen::CodeGenModule &CGM,
10238                           TypeStringCache &TSC) {
10239   if (!D)
10240     return false;
10241 
10242   if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
10243     if (FD->getLanguageLinkage() != CLanguageLinkage)
10244       return false;
10245     return appendType(Enc, FD->getType(), CGM, TSC);
10246   }
10247 
10248   if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
10249     if (VD->getLanguageLinkage() != CLanguageLinkage)
10250       return false;
10251     QualType QT = VD->getType().getCanonicalType();
10252     if (const ArrayType *AT = QT->getAsArrayTypeUnsafe()) {
10253       // Global ArrayTypes are given a size of '*' if the size is unknown.
10254       // The Qualifiers should be attached to the type rather than the array.
10255       // Thus we don't call appendQualifier() here.
10256       return appendArrayType(Enc, QT, AT, CGM, TSC, "*");
10257     }
10258     return appendType(Enc, QT, CGM, TSC);
10259   }
10260   return false;
10261 }
10262 
10263 //===----------------------------------------------------------------------===//
10264 // RISCV ABI Implementation
10265 //===----------------------------------------------------------------------===//
10266 
10267 namespace {
10268 class RISCVABIInfo : public DefaultABIInfo {
10269 private:
10270   // Size of the integer ('x') registers in bits.
10271   unsigned XLen;
10272   // Size of the floating point ('f') registers in bits. Note that the target
10273   // ISA might have a wider FLen than the selected ABI (e.g. an RV32IF target
10274   // with soft float ABI has FLen==0).
10275   unsigned FLen;
10276   static const int NumArgGPRs = 8;
10277   static const int NumArgFPRs = 8;
10278   bool detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10279                                       llvm::Type *&Field1Ty,
10280                                       CharUnits &Field1Off,
10281                                       llvm::Type *&Field2Ty,
10282                                       CharUnits &Field2Off) const;
10283 
10284 public:
10285   RISCVABIInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen, unsigned FLen)
10286       : DefaultABIInfo(CGT), XLen(XLen), FLen(FLen) {}
10287 
10288   // DefaultABIInfo's classifyReturnType and classifyArgumentType are
10289   // non-virtual, but computeInfo is virtual, so we overload it.
10290   void computeInfo(CGFunctionInfo &FI) const override;
10291 
10292   ABIArgInfo classifyArgumentType(QualType Ty, bool IsFixed, int &ArgGPRsLeft,
10293                                   int &ArgFPRsLeft) const;
10294   ABIArgInfo classifyReturnType(QualType RetTy) const;
10295 
10296   Address EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10297                     QualType Ty) const override;
10298 
10299   ABIArgInfo extendType(QualType Ty) const;
10300 
10301   bool detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10302                                 CharUnits &Field1Off, llvm::Type *&Field2Ty,
10303                                 CharUnits &Field2Off, int &NeededArgGPRs,
10304                                 int &NeededArgFPRs) const;
10305   ABIArgInfo coerceAndExpandFPCCEligibleStruct(llvm::Type *Field1Ty,
10306                                                CharUnits Field1Off,
10307                                                llvm::Type *Field2Ty,
10308                                                CharUnits Field2Off) const;
10309 };
10310 } // end anonymous namespace
10311 
10312 void RISCVABIInfo::computeInfo(CGFunctionInfo &FI) const {
10313   QualType RetTy = FI.getReturnType();
10314   if (!getCXXABI().classifyReturnType(FI))
10315     FI.getReturnInfo() = classifyReturnType(RetTy);
10316 
10317   // IsRetIndirect is true if classifyArgumentType indicated the value should
10318   // be passed indirect, or if the type size is a scalar greater than 2*XLen
10319   // and not a complex type with elements <= FLen. e.g. fp128 is passed direct
10320   // in LLVM IR, relying on the backend lowering code to rewrite the argument
10321   // list and pass indirectly on RV32.
10322   bool IsRetIndirect = FI.getReturnInfo().getKind() == ABIArgInfo::Indirect;
10323   if (!IsRetIndirect && RetTy->isScalarType() &&
10324       getContext().getTypeSize(RetTy) > (2 * XLen)) {
10325     if (RetTy->isComplexType() && FLen) {
10326       QualType EltTy = RetTy->getAs<ComplexType>()->getElementType();
10327       IsRetIndirect = getContext().getTypeSize(EltTy) > FLen;
10328     } else {
10329       // This is a normal scalar > 2*XLen, such as fp128 on RV32.
10330       IsRetIndirect = true;
10331     }
10332   }
10333 
10334   // We must track the number of GPRs used in order to conform to the RISC-V
10335   // ABI, as integer scalars passed in registers should have signext/zeroext
10336   // when promoted, but are anyext if passed on the stack. As GPR usage is
10337   // different for variadic arguments, we must also track whether we are
10338   // examining a vararg or not.
10339   int ArgGPRsLeft = IsRetIndirect ? NumArgGPRs - 1 : NumArgGPRs;
10340   int ArgFPRsLeft = FLen ? NumArgFPRs : 0;
10341   int NumFixedArgs = FI.getNumRequiredArgs();
10342 
10343   int ArgNum = 0;
10344   for (auto &ArgInfo : FI.arguments()) {
10345     bool IsFixed = ArgNum < NumFixedArgs;
10346     ArgInfo.info =
10347         classifyArgumentType(ArgInfo.type, IsFixed, ArgGPRsLeft, ArgFPRsLeft);
10348     ArgNum++;
10349   }
10350 }
10351 
10352 // Returns true if the struct is a potential candidate for the floating point
10353 // calling convention. If this function returns true, the caller is
10354 // responsible for checking that if there is only a single field then that
10355 // field is a float.
10356 bool RISCVABIInfo::detectFPCCEligibleStructHelper(QualType Ty, CharUnits CurOff,
10357                                                   llvm::Type *&Field1Ty,
10358                                                   CharUnits &Field1Off,
10359                                                   llvm::Type *&Field2Ty,
10360                                                   CharUnits &Field2Off) const {
10361   bool IsInt = Ty->isIntegralOrEnumerationType();
10362   bool IsFloat = Ty->isRealFloatingType();
10363 
10364   if (IsInt || IsFloat) {
10365     uint64_t Size = getContext().getTypeSize(Ty);
10366     if (IsInt && Size > XLen)
10367       return false;
10368     // Can't be eligible if larger than the FP registers. Half precision isn't
10369     // currently supported on RISC-V and the ABI hasn't been confirmed, so
10370     // default to the integer ABI in that case.
10371     if (IsFloat && (Size > FLen || Size < 32))
10372       return false;
10373     // Can't be eligible if an integer type was already found (int+int pairs
10374     // are not eligible).
10375     if (IsInt && Field1Ty && Field1Ty->isIntegerTy())
10376       return false;
10377     if (!Field1Ty) {
10378       Field1Ty = CGT.ConvertType(Ty);
10379       Field1Off = CurOff;
10380       return true;
10381     }
10382     if (!Field2Ty) {
10383       Field2Ty = CGT.ConvertType(Ty);
10384       Field2Off = CurOff;
10385       return true;
10386     }
10387     return false;
10388   }
10389 
10390   if (auto CTy = Ty->getAs<ComplexType>()) {
10391     if (Field1Ty)
10392       return false;
10393     QualType EltTy = CTy->getElementType();
10394     if (getContext().getTypeSize(EltTy) > FLen)
10395       return false;
10396     Field1Ty = CGT.ConvertType(EltTy);
10397     Field1Off = CurOff;
10398     Field2Ty = Field1Ty;
10399     Field2Off = Field1Off + getContext().getTypeSizeInChars(EltTy);
10400     return true;
10401   }
10402 
10403   if (const ConstantArrayType *ATy = getContext().getAsConstantArrayType(Ty)) {
10404     uint64_t ArraySize = ATy->getSize().getZExtValue();
10405     QualType EltTy = ATy->getElementType();
10406     CharUnits EltSize = getContext().getTypeSizeInChars(EltTy);
10407     for (uint64_t i = 0; i < ArraySize; ++i) {
10408       bool Ret = detectFPCCEligibleStructHelper(EltTy, CurOff, Field1Ty,
10409                                                 Field1Off, Field2Ty, Field2Off);
10410       if (!Ret)
10411         return false;
10412       CurOff += EltSize;
10413     }
10414     return true;
10415   }
10416 
10417   if (const auto *RTy = Ty->getAs<RecordType>()) {
10418     // Structures with either a non-trivial destructor or a non-trivial
10419     // copy constructor are not eligible for the FP calling convention.
10420     if (getRecordArgABI(Ty, CGT.getCXXABI()))
10421       return false;
10422     if (isEmptyRecord(getContext(), Ty, true))
10423       return true;
10424     const RecordDecl *RD = RTy->getDecl();
10425     // Unions aren't eligible unless they're empty (which is caught above).
10426     if (RD->isUnion())
10427       return false;
10428     int ZeroWidthBitFieldCount = 0;
10429     for (const FieldDecl *FD : RD->fields()) {
10430       const ASTRecordLayout &Layout = getContext().getASTRecordLayout(RD);
10431       uint64_t FieldOffInBits = Layout.getFieldOffset(FD->getFieldIndex());
10432       QualType QTy = FD->getType();
10433       if (FD->isBitField()) {
10434         unsigned BitWidth = FD->getBitWidthValue(getContext());
10435         // Allow a bitfield with a type greater than XLen as long as the
10436         // bitwidth is XLen or less.
10437         if (getContext().getTypeSize(QTy) > XLen && BitWidth <= XLen)
10438           QTy = getContext().getIntTypeForBitwidth(XLen, false);
10439         if (BitWidth == 0) {
10440           ZeroWidthBitFieldCount++;
10441           continue;
10442         }
10443       }
10444 
10445       bool Ret = detectFPCCEligibleStructHelper(
10446           QTy, CurOff + getContext().toCharUnitsFromBits(FieldOffInBits),
10447           Field1Ty, Field1Off, Field2Ty, Field2Off);
10448       if (!Ret)
10449         return false;
10450 
10451       // As a quirk of the ABI, zero-width bitfields aren't ignored for fp+fp
10452       // or int+fp structs, but are ignored for a struct with an fp field and
10453       // any number of zero-width bitfields.
10454       if (Field2Ty && ZeroWidthBitFieldCount > 0)
10455         return false;
10456     }
10457     return Field1Ty != nullptr;
10458   }
10459 
10460   return false;
10461 }
10462 
10463 // Determine if a struct is eligible for passing according to the floating
10464 // point calling convention (i.e., when flattened it contains a single fp
10465 // value, fp+fp, or int+fp of appropriate size). If so, NeededArgFPRs and
10466 // NeededArgGPRs are incremented appropriately.
10467 bool RISCVABIInfo::detectFPCCEligibleStruct(QualType Ty, llvm::Type *&Field1Ty,
10468                                             CharUnits &Field1Off,
10469                                             llvm::Type *&Field2Ty,
10470                                             CharUnits &Field2Off,
10471                                             int &NeededArgGPRs,
10472                                             int &NeededArgFPRs) const {
10473   Field1Ty = nullptr;
10474   Field2Ty = nullptr;
10475   NeededArgGPRs = 0;
10476   NeededArgFPRs = 0;
10477   bool IsCandidate = detectFPCCEligibleStructHelper(
10478       Ty, CharUnits::Zero(), Field1Ty, Field1Off, Field2Ty, Field2Off);
10479   // Not really a candidate if we have a single int but no float.
10480   if (Field1Ty && !Field2Ty && !Field1Ty->isFloatingPointTy())
10481     return false;
10482   if (!IsCandidate)
10483     return false;
10484   if (Field1Ty && Field1Ty->isFloatingPointTy())
10485     NeededArgFPRs++;
10486   else if (Field1Ty)
10487     NeededArgGPRs++;
10488   if (Field2Ty && Field2Ty->isFloatingPointTy())
10489     NeededArgFPRs++;
10490   else if (Field2Ty)
10491     NeededArgGPRs++;
10492   return true;
10493 }
10494 
10495 // Call getCoerceAndExpand for the two-element flattened struct described by
10496 // Field1Ty, Field1Off, Field2Ty, Field2Off. This method will create an
10497 // appropriate coerceToType and unpaddedCoerceToType.
10498 ABIArgInfo RISCVABIInfo::coerceAndExpandFPCCEligibleStruct(
10499     llvm::Type *Field1Ty, CharUnits Field1Off, llvm::Type *Field2Ty,
10500     CharUnits Field2Off) const {
10501   SmallVector<llvm::Type *, 3> CoerceElts;
10502   SmallVector<llvm::Type *, 2> UnpaddedCoerceElts;
10503   if (!Field1Off.isZero())
10504     CoerceElts.push_back(llvm::ArrayType::get(
10505         llvm::Type::getInt8Ty(getVMContext()), Field1Off.getQuantity()));
10506 
10507   CoerceElts.push_back(Field1Ty);
10508   UnpaddedCoerceElts.push_back(Field1Ty);
10509 
10510   if (!Field2Ty) {
10511     return ABIArgInfo::getCoerceAndExpand(
10512         llvm::StructType::get(getVMContext(), CoerceElts, !Field1Off.isZero()),
10513         UnpaddedCoerceElts[0]);
10514   }
10515 
10516   CharUnits Field2Align =
10517       CharUnits::fromQuantity(getDataLayout().getABITypeAlignment(Field2Ty));
10518   CharUnits Field1End = Field1Off +
10519       CharUnits::fromQuantity(getDataLayout().getTypeStoreSize(Field1Ty));
10520   CharUnits Field2OffNoPadNoPack = Field1End.alignTo(Field2Align);
10521 
10522   CharUnits Padding = CharUnits::Zero();
10523   if (Field2Off > Field2OffNoPadNoPack)
10524     Padding = Field2Off - Field2OffNoPadNoPack;
10525   else if (Field2Off != Field2Align && Field2Off > Field1End)
10526     Padding = Field2Off - Field1End;
10527 
10528   bool IsPacked = !Field2Off.isMultipleOf(Field2Align);
10529 
10530   if (!Padding.isZero())
10531     CoerceElts.push_back(llvm::ArrayType::get(
10532         llvm::Type::getInt8Ty(getVMContext()), Padding.getQuantity()));
10533 
10534   CoerceElts.push_back(Field2Ty);
10535   UnpaddedCoerceElts.push_back(Field2Ty);
10536 
10537   auto CoerceToType =
10538       llvm::StructType::get(getVMContext(), CoerceElts, IsPacked);
10539   auto UnpaddedCoerceToType =
10540       llvm::StructType::get(getVMContext(), UnpaddedCoerceElts, IsPacked);
10541 
10542   return ABIArgInfo::getCoerceAndExpand(CoerceToType, UnpaddedCoerceToType);
10543 }
10544 
10545 ABIArgInfo RISCVABIInfo::classifyArgumentType(QualType Ty, bool IsFixed,
10546                                               int &ArgGPRsLeft,
10547                                               int &ArgFPRsLeft) const {
10548   assert(ArgGPRsLeft <= NumArgGPRs && "Arg GPR tracking underflow");
10549   Ty = useFirstFieldIfTransparentUnion(Ty);
10550 
10551   // Structures with either a non-trivial destructor or a non-trivial
10552   // copy constructor are always passed indirectly.
10553   if (CGCXXABI::RecordArgABI RAA = getRecordArgABI(Ty, getCXXABI())) {
10554     if (ArgGPRsLeft)
10555       ArgGPRsLeft -= 1;
10556     return getNaturalAlignIndirect(Ty, /*ByVal=*/RAA ==
10557                                            CGCXXABI::RAA_DirectInMemory);
10558   }
10559 
10560   // Ignore empty structs/unions.
10561   if (isEmptyRecord(getContext(), Ty, true))
10562     return ABIArgInfo::getIgnore();
10563 
10564   uint64_t Size = getContext().getTypeSize(Ty);
10565 
10566   // Pass floating point values via FPRs if possible.
10567   if (IsFixed && Ty->isFloatingType() && !Ty->isComplexType() &&
10568       FLen >= Size && ArgFPRsLeft) {
10569     ArgFPRsLeft--;
10570     return ABIArgInfo::getDirect();
10571   }
10572 
10573   // Complex types for the hard float ABI must be passed direct rather than
10574   // using CoerceAndExpand.
10575   if (IsFixed && Ty->isComplexType() && FLen && ArgFPRsLeft >= 2) {
10576     QualType EltTy = Ty->castAs<ComplexType>()->getElementType();
10577     if (getContext().getTypeSize(EltTy) <= FLen) {
10578       ArgFPRsLeft -= 2;
10579       return ABIArgInfo::getDirect();
10580     }
10581   }
10582 
10583   if (IsFixed && FLen && Ty->isStructureOrClassType()) {
10584     llvm::Type *Field1Ty = nullptr;
10585     llvm::Type *Field2Ty = nullptr;
10586     CharUnits Field1Off = CharUnits::Zero();
10587     CharUnits Field2Off = CharUnits::Zero();
10588     int NeededArgGPRs;
10589     int NeededArgFPRs;
10590     bool IsCandidate =
10591         detectFPCCEligibleStruct(Ty, Field1Ty, Field1Off, Field2Ty, Field2Off,
10592                                  NeededArgGPRs, NeededArgFPRs);
10593     if (IsCandidate && NeededArgGPRs <= ArgGPRsLeft &&
10594         NeededArgFPRs <= ArgFPRsLeft) {
10595       ArgGPRsLeft -= NeededArgGPRs;
10596       ArgFPRsLeft -= NeededArgFPRs;
10597       return coerceAndExpandFPCCEligibleStruct(Field1Ty, Field1Off, Field2Ty,
10598                                                Field2Off);
10599     }
10600   }
10601 
10602   uint64_t NeededAlign = getContext().getTypeAlign(Ty);
10603   bool MustUseStack = false;
10604   // Determine the number of GPRs needed to pass the current argument
10605   // according to the ABI. 2*XLen-aligned varargs are passed in "aligned"
10606   // register pairs, so may consume 3 registers.
10607   int NeededArgGPRs = 1;
10608   if (!IsFixed && NeededAlign == 2 * XLen)
10609     NeededArgGPRs = 2 + (ArgGPRsLeft % 2);
10610   else if (Size > XLen && Size <= 2 * XLen)
10611     NeededArgGPRs = 2;
10612 
10613   if (NeededArgGPRs > ArgGPRsLeft) {
10614     MustUseStack = true;
10615     NeededArgGPRs = ArgGPRsLeft;
10616   }
10617 
10618   ArgGPRsLeft -= NeededArgGPRs;
10619 
10620   if (!isAggregateTypeForABI(Ty) && !Ty->isVectorType()) {
10621     // Treat an enum type as its underlying type.
10622     if (const EnumType *EnumTy = Ty->getAs<EnumType>())
10623       Ty = EnumTy->getDecl()->getIntegerType();
10624 
10625     // All integral types are promoted to XLen width, unless passed on the
10626     // stack.
10627     if (Size < XLen && Ty->isIntegralOrEnumerationType() && !MustUseStack) {
10628       return extendType(Ty);
10629     }
10630 
10631     if (const auto *EIT = Ty->getAs<ExtIntType>()) {
10632       if (EIT->getNumBits() < XLen && !MustUseStack)
10633         return extendType(Ty);
10634       if (EIT->getNumBits() > 128 ||
10635           (!getContext().getTargetInfo().hasInt128Type() &&
10636            EIT->getNumBits() > 64))
10637         return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10638     }
10639 
10640     return ABIArgInfo::getDirect();
10641   }
10642 
10643   // Aggregates which are <= 2*XLen will be passed in registers if possible,
10644   // so coerce to integers.
10645   if (Size <= 2 * XLen) {
10646     unsigned Alignment = getContext().getTypeAlign(Ty);
10647 
10648     // Use a single XLen int if possible, 2*XLen if 2*XLen alignment is
10649     // required, and a 2-element XLen array if only XLen alignment is required.
10650     if (Size <= XLen) {
10651       return ABIArgInfo::getDirect(
10652           llvm::IntegerType::get(getVMContext(), XLen));
10653     } else if (Alignment == 2 * XLen) {
10654       return ABIArgInfo::getDirect(
10655           llvm::IntegerType::get(getVMContext(), 2 * XLen));
10656     } else {
10657       return ABIArgInfo::getDirect(llvm::ArrayType::get(
10658           llvm::IntegerType::get(getVMContext(), XLen), 2));
10659     }
10660   }
10661   return getNaturalAlignIndirect(Ty, /*ByVal=*/false);
10662 }
10663 
10664 ABIArgInfo RISCVABIInfo::classifyReturnType(QualType RetTy) const {
10665   if (RetTy->isVoidType())
10666     return ABIArgInfo::getIgnore();
10667 
10668   int ArgGPRsLeft = 2;
10669   int ArgFPRsLeft = FLen ? 2 : 0;
10670 
10671   // The rules for return and argument types are the same, so defer to
10672   // classifyArgumentType.
10673   return classifyArgumentType(RetTy, /*IsFixed=*/true, ArgGPRsLeft,
10674                               ArgFPRsLeft);
10675 }
10676 
10677 Address RISCVABIInfo::EmitVAArg(CodeGenFunction &CGF, Address VAListAddr,
10678                                 QualType Ty) const {
10679   CharUnits SlotSize = CharUnits::fromQuantity(XLen / 8);
10680 
10681   // Empty records are ignored for parameter passing purposes.
10682   if (isEmptyRecord(getContext(), Ty, true)) {
10683     Address Addr(CGF.Builder.CreateLoad(VAListAddr), SlotSize);
10684     Addr = CGF.Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(Ty));
10685     return Addr;
10686   }
10687 
10688   std::pair<CharUnits, CharUnits> SizeAndAlign =
10689       getContext().getTypeInfoInChars(Ty);
10690 
10691   // Arguments bigger than 2*Xlen bytes are passed indirectly.
10692   bool IsIndirect = SizeAndAlign.first > 2 * SlotSize;
10693 
10694   return emitVoidPtrVAArg(CGF, VAListAddr, Ty, IsIndirect, SizeAndAlign,
10695                           SlotSize, /*AllowHigherAlign=*/true);
10696 }
10697 
10698 ABIArgInfo RISCVABIInfo::extendType(QualType Ty) const {
10699   int TySize = getContext().getTypeSize(Ty);
10700   // RV64 ABI requires unsigned 32 bit integers to be sign extended.
10701   if (XLen == 64 && Ty->isUnsignedIntegerOrEnumerationType() && TySize == 32)
10702     return ABIArgInfo::getSignExtend(Ty);
10703   return ABIArgInfo::getExtend(Ty);
10704 }
10705 
10706 namespace {
10707 class RISCVTargetCodeGenInfo : public TargetCodeGenInfo {
10708 public:
10709   RISCVTargetCodeGenInfo(CodeGen::CodeGenTypes &CGT, unsigned XLen,
10710                          unsigned FLen)
10711       : TargetCodeGenInfo(std::make_unique<RISCVABIInfo>(CGT, XLen, FLen)) {}
10712 
10713   void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
10714                            CodeGen::CodeGenModule &CGM) const override {
10715     const auto *FD = dyn_cast_or_null<FunctionDecl>(D);
10716     if (!FD) return;
10717 
10718     const auto *Attr = FD->getAttr<RISCVInterruptAttr>();
10719     if (!Attr)
10720       return;
10721 
10722     const char *Kind;
10723     switch (Attr->getInterrupt()) {
10724     case RISCVInterruptAttr::user: Kind = "user"; break;
10725     case RISCVInterruptAttr::supervisor: Kind = "supervisor"; break;
10726     case RISCVInterruptAttr::machine: Kind = "machine"; break;
10727     }
10728 
10729     auto *Fn = cast<llvm::Function>(GV);
10730 
10731     Fn->addFnAttr("interrupt", Kind);
10732   }
10733 };
10734 } // namespace
10735 
10736 //===----------------------------------------------------------------------===//
10737 // VE ABI Implementation.
10738 //
10739 namespace {
10740 class VEABIInfo : public DefaultABIInfo {
10741 public:
10742   VEABIInfo(CodeGenTypes &CGT) : DefaultABIInfo(CGT) {}
10743 
10744 private:
10745   ABIArgInfo classifyReturnType(QualType RetTy) const;
10746   ABIArgInfo classifyArgumentType(QualType RetTy) const;
10747   void computeInfo(CGFunctionInfo &FI) const override;
10748 };
10749 } // end anonymous namespace
10750 
10751 ABIArgInfo VEABIInfo::classifyReturnType(QualType Ty) const {
10752   if (Ty->isAnyComplexType()) {
10753     return ABIArgInfo::getDirect();
10754   }
10755   return DefaultABIInfo::classifyReturnType(Ty);
10756 }
10757 
10758 ABIArgInfo VEABIInfo::classifyArgumentType(QualType Ty) const {
10759   if (Ty->isAnyComplexType()) {
10760     return ABIArgInfo::getDirect();
10761   }
10762   return DefaultABIInfo::classifyArgumentType(Ty);
10763 }
10764 
10765 void VEABIInfo::computeInfo(CGFunctionInfo &FI) const {
10766 
10767   FI.getReturnInfo() = classifyReturnType(FI.getReturnType());
10768   for (auto &Arg : FI.arguments())
10769     Arg.info = classifyArgumentType(Arg.type);
10770 }
10771 
10772 namespace {
10773 class VETargetCodeGenInfo : public TargetCodeGenInfo {
10774 public:
10775   VETargetCodeGenInfo(CodeGenTypes &CGT)
10776       : TargetCodeGenInfo(std::make_unique<VEABIInfo>(CGT)) {}
10777   // VE ABI requires the arguments of variadic and prototype-less functions
10778   // are passed in both registers and memory.
10779   bool isNoProtoCallVariadic(const CallArgList &args,
10780                              const FunctionNoProtoType *fnType) const override {
10781     return true;
10782   }
10783 };
10784 } // end anonymous namespace
10785 
10786 //===----------------------------------------------------------------------===//
10787 // Driver code
10788 //===----------------------------------------------------------------------===//
10789 
10790 bool CodeGenModule::supportsCOMDAT() const {
10791   return getTriple().supportsCOMDAT();
10792 }
10793 
10794 const TargetCodeGenInfo &CodeGenModule::getTargetCodeGenInfo() {
10795   if (TheTargetCodeGenInfo)
10796     return *TheTargetCodeGenInfo;
10797 
10798   // Helper to set the unique_ptr while still keeping the return value.
10799   auto SetCGInfo = [&](TargetCodeGenInfo *P) -> const TargetCodeGenInfo & {
10800     this->TheTargetCodeGenInfo.reset(P);
10801     return *P;
10802   };
10803 
10804   const llvm::Triple &Triple = getTarget().getTriple();
10805   switch (Triple.getArch()) {
10806   default:
10807     return SetCGInfo(new DefaultTargetCodeGenInfo(Types));
10808 
10809   case llvm::Triple::le32:
10810     return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10811   case llvm::Triple::mips:
10812   case llvm::Triple::mipsel:
10813     if (Triple.getOS() == llvm::Triple::NaCl)
10814       return SetCGInfo(new PNaClTargetCodeGenInfo(Types));
10815     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, true));
10816 
10817   case llvm::Triple::mips64:
10818   case llvm::Triple::mips64el:
10819     return SetCGInfo(new MIPSTargetCodeGenInfo(Types, false));
10820 
10821   case llvm::Triple::avr:
10822     return SetCGInfo(new AVRTargetCodeGenInfo(Types));
10823 
10824   case llvm::Triple::aarch64:
10825   case llvm::Triple::aarch64_32:
10826   case llvm::Triple::aarch64_be: {
10827     AArch64ABIInfo::ABIKind Kind = AArch64ABIInfo::AAPCS;
10828     if (getTarget().getABI() == "darwinpcs")
10829       Kind = AArch64ABIInfo::DarwinPCS;
10830     else if (Triple.isOSWindows())
10831       return SetCGInfo(
10832           new WindowsAArch64TargetCodeGenInfo(Types, AArch64ABIInfo::Win64));
10833 
10834     return SetCGInfo(new AArch64TargetCodeGenInfo(Types, Kind));
10835   }
10836 
10837   case llvm::Triple::wasm32:
10838   case llvm::Triple::wasm64: {
10839     WebAssemblyABIInfo::ABIKind Kind = WebAssemblyABIInfo::MVP;
10840     if (getTarget().getABI() == "experimental-mv")
10841       Kind = WebAssemblyABIInfo::ExperimentalMV;
10842     return SetCGInfo(new WebAssemblyTargetCodeGenInfo(Types, Kind));
10843   }
10844 
10845   case llvm::Triple::arm:
10846   case llvm::Triple::armeb:
10847   case llvm::Triple::thumb:
10848   case llvm::Triple::thumbeb: {
10849     if (Triple.getOS() == llvm::Triple::Win32) {
10850       return SetCGInfo(
10851           new WindowsARMTargetCodeGenInfo(Types, ARMABIInfo::AAPCS_VFP));
10852     }
10853 
10854     ARMABIInfo::ABIKind Kind = ARMABIInfo::AAPCS;
10855     StringRef ABIStr = getTarget().getABI();
10856     if (ABIStr == "apcs-gnu")
10857       Kind = ARMABIInfo::APCS;
10858     else if (ABIStr == "aapcs16")
10859       Kind = ARMABIInfo::AAPCS16_VFP;
10860     else if (CodeGenOpts.FloatABI == "hard" ||
10861              (CodeGenOpts.FloatABI != "soft" &&
10862               (Triple.getEnvironment() == llvm::Triple::GNUEABIHF ||
10863                Triple.getEnvironment() == llvm::Triple::MuslEABIHF ||
10864                Triple.getEnvironment() == llvm::Triple::EABIHF)))
10865       Kind = ARMABIInfo::AAPCS_VFP;
10866 
10867     return SetCGInfo(new ARMTargetCodeGenInfo(Types, Kind));
10868   }
10869 
10870   case llvm::Triple::ppc: {
10871     if (Triple.isOSAIX())
10872       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ false));
10873 
10874     bool IsSoftFloat =
10875         CodeGenOpts.FloatABI == "soft" || getTarget().hasFeature("spe");
10876     bool RetSmallStructInRegABI =
10877         PPC32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10878     return SetCGInfo(
10879         new PPC32TargetCodeGenInfo(Types, IsSoftFloat, RetSmallStructInRegABI));
10880   }
10881   case llvm::Triple::ppc64:
10882     if (Triple.isOSAIX())
10883       return SetCGInfo(new AIXTargetCodeGenInfo(Types, /*Is64Bit*/ true));
10884 
10885     if (Triple.isOSBinFormatELF()) {
10886       PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv1;
10887       if (getTarget().getABI() == "elfv2")
10888         Kind = PPC64_SVR4_ABIInfo::ELFv2;
10889       bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10890       bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10891 
10892       return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10893                                                         IsSoftFloat));
10894     }
10895     return SetCGInfo(new PPC64TargetCodeGenInfo(Types));
10896   case llvm::Triple::ppc64le: {
10897     assert(Triple.isOSBinFormatELF() && "PPC64 LE non-ELF not supported!");
10898     PPC64_SVR4_ABIInfo::ABIKind Kind = PPC64_SVR4_ABIInfo::ELFv2;
10899     if (getTarget().getABI() == "elfv1" || getTarget().getABI() == "elfv1-qpx")
10900       Kind = PPC64_SVR4_ABIInfo::ELFv1;
10901     bool HasQPX = getTarget().getABI() == "elfv1-qpx";
10902     bool IsSoftFloat = CodeGenOpts.FloatABI == "soft";
10903 
10904     return SetCGInfo(new PPC64_SVR4_TargetCodeGenInfo(Types, Kind, HasQPX,
10905                                                       IsSoftFloat));
10906   }
10907 
10908   case llvm::Triple::nvptx:
10909   case llvm::Triple::nvptx64:
10910     return SetCGInfo(new NVPTXTargetCodeGenInfo(Types));
10911 
10912   case llvm::Triple::msp430:
10913     return SetCGInfo(new MSP430TargetCodeGenInfo(Types));
10914 
10915   case llvm::Triple::riscv32:
10916   case llvm::Triple::riscv64: {
10917     StringRef ABIStr = getTarget().getABI();
10918     unsigned XLen = getTarget().getPointerWidth(0);
10919     unsigned ABIFLen = 0;
10920     if (ABIStr.endswith("f"))
10921       ABIFLen = 32;
10922     else if (ABIStr.endswith("d"))
10923       ABIFLen = 64;
10924     return SetCGInfo(new RISCVTargetCodeGenInfo(Types, XLen, ABIFLen));
10925   }
10926 
10927   case llvm::Triple::systemz: {
10928     bool SoftFloat = CodeGenOpts.FloatABI == "soft";
10929     bool HasVector = !SoftFloat && getTarget().getABI() == "vector";
10930     return SetCGInfo(new SystemZTargetCodeGenInfo(Types, HasVector, SoftFloat));
10931   }
10932 
10933   case llvm::Triple::tce:
10934   case llvm::Triple::tcele:
10935     return SetCGInfo(new TCETargetCodeGenInfo(Types));
10936 
10937   case llvm::Triple::x86: {
10938     bool IsDarwinVectorABI = Triple.isOSDarwin();
10939     bool RetSmallStructInRegABI =
10940         X86_32TargetCodeGenInfo::isStructReturnInRegABI(Triple, CodeGenOpts);
10941     bool IsWin32FloatStructABI = Triple.isOSWindows() && !Triple.isOSCygMing();
10942 
10943     if (Triple.getOS() == llvm::Triple::Win32) {
10944       return SetCGInfo(new WinX86_32TargetCodeGenInfo(
10945           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10946           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters));
10947     } else {
10948       return SetCGInfo(new X86_32TargetCodeGenInfo(
10949           Types, IsDarwinVectorABI, RetSmallStructInRegABI,
10950           IsWin32FloatStructABI, CodeGenOpts.NumRegisterParameters,
10951           CodeGenOpts.FloatABI == "soft"));
10952     }
10953   }
10954 
10955   case llvm::Triple::x86_64: {
10956     StringRef ABI = getTarget().getABI();
10957     X86AVXABILevel AVXLevel =
10958         (ABI == "avx512"
10959              ? X86AVXABILevel::AVX512
10960              : ABI == "avx" ? X86AVXABILevel::AVX : X86AVXABILevel::None);
10961 
10962     switch (Triple.getOS()) {
10963     case llvm::Triple::Win32:
10964       return SetCGInfo(new WinX86_64TargetCodeGenInfo(Types, AVXLevel));
10965     default:
10966       return SetCGInfo(new X86_64TargetCodeGenInfo(Types, AVXLevel));
10967     }
10968   }
10969   case llvm::Triple::hexagon:
10970     return SetCGInfo(new HexagonTargetCodeGenInfo(Types));
10971   case llvm::Triple::lanai:
10972     return SetCGInfo(new LanaiTargetCodeGenInfo(Types));
10973   case llvm::Triple::r600:
10974     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10975   case llvm::Triple::amdgcn:
10976     return SetCGInfo(new AMDGPUTargetCodeGenInfo(Types));
10977   case llvm::Triple::sparc:
10978     return SetCGInfo(new SparcV8TargetCodeGenInfo(Types));
10979   case llvm::Triple::sparcv9:
10980     return SetCGInfo(new SparcV9TargetCodeGenInfo(Types));
10981   case llvm::Triple::xcore:
10982     return SetCGInfo(new XCoreTargetCodeGenInfo(Types));
10983   case llvm::Triple::arc:
10984     return SetCGInfo(new ARCTargetCodeGenInfo(Types));
10985   case llvm::Triple::spir:
10986   case llvm::Triple::spir64:
10987     return SetCGInfo(new SPIRTargetCodeGenInfo(Types));
10988   case llvm::Triple::ve:
10989     return SetCGInfo(new VETargetCodeGenInfo(Types));
10990   }
10991 }
10992 
10993 /// Create an OpenCL kernel for an enqueued block.
10994 ///
10995 /// The kernel has the same function type as the block invoke function. Its
10996 /// name is the name of the block invoke function postfixed with "_kernel".
10997 /// It simply calls the block invoke function then returns.
10998 llvm::Function *
10999 TargetCodeGenInfo::createEnqueuedBlockKernel(CodeGenFunction &CGF,
11000                                              llvm::Function *Invoke,
11001                                              llvm::Value *BlockLiteral) const {
11002   auto *InvokeFT = Invoke->getFunctionType();
11003   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11004   for (auto &P : InvokeFT->params())
11005     ArgTys.push_back(P);
11006   auto &C = CGF.getLLVMContext();
11007   std::string Name = Invoke->getName().str() + "_kernel";
11008   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11009   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11010                                    &CGF.CGM.getModule());
11011   auto IP = CGF.Builder.saveIP();
11012   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11013   auto &Builder = CGF.Builder;
11014   Builder.SetInsertPoint(BB);
11015   llvm::SmallVector<llvm::Value *, 2> Args;
11016   for (auto &A : F->args())
11017     Args.push_back(&A);
11018   Builder.CreateCall(Invoke, Args);
11019   Builder.CreateRetVoid();
11020   Builder.restoreIP(IP);
11021   return F;
11022 }
11023 
11024 /// Create an OpenCL kernel for an enqueued block.
11025 ///
11026 /// The type of the first argument (the block literal) is the struct type
11027 /// of the block literal instead of a pointer type. The first argument
11028 /// (block literal) is passed directly by value to the kernel. The kernel
11029 /// allocates the same type of struct on stack and stores the block literal
11030 /// to it and passes its pointer to the block invoke function. The kernel
11031 /// has "enqueued-block" function attribute and kernel argument metadata.
11032 llvm::Function *AMDGPUTargetCodeGenInfo::createEnqueuedBlockKernel(
11033     CodeGenFunction &CGF, llvm::Function *Invoke,
11034     llvm::Value *BlockLiteral) const {
11035   auto &Builder = CGF.Builder;
11036   auto &C = CGF.getLLVMContext();
11037 
11038   auto *BlockTy = BlockLiteral->getType()->getPointerElementType();
11039   auto *InvokeFT = Invoke->getFunctionType();
11040   llvm::SmallVector<llvm::Type *, 2> ArgTys;
11041   llvm::SmallVector<llvm::Metadata *, 8> AddressQuals;
11042   llvm::SmallVector<llvm::Metadata *, 8> AccessQuals;
11043   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeNames;
11044   llvm::SmallVector<llvm::Metadata *, 8> ArgBaseTypeNames;
11045   llvm::SmallVector<llvm::Metadata *, 8> ArgTypeQuals;
11046   llvm::SmallVector<llvm::Metadata *, 8> ArgNames;
11047 
11048   ArgTys.push_back(BlockTy);
11049   ArgTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11050   AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(0)));
11051   ArgBaseTypeNames.push_back(llvm::MDString::get(C, "__block_literal"));
11052   ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11053   AccessQuals.push_back(llvm::MDString::get(C, "none"));
11054   ArgNames.push_back(llvm::MDString::get(C, "block_literal"));
11055   for (unsigned I = 1, E = InvokeFT->getNumParams(); I < E; ++I) {
11056     ArgTys.push_back(InvokeFT->getParamType(I));
11057     ArgTypeNames.push_back(llvm::MDString::get(C, "void*"));
11058     AddressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32(3)));
11059     AccessQuals.push_back(llvm::MDString::get(C, "none"));
11060     ArgBaseTypeNames.push_back(llvm::MDString::get(C, "void*"));
11061     ArgTypeQuals.push_back(llvm::MDString::get(C, ""));
11062     ArgNames.push_back(
11063         llvm::MDString::get(C, (Twine("local_arg") + Twine(I)).str()));
11064   }
11065   std::string Name = Invoke->getName().str() + "_kernel";
11066   auto *FT = llvm::FunctionType::get(llvm::Type::getVoidTy(C), ArgTys, false);
11067   auto *F = llvm::Function::Create(FT, llvm::GlobalValue::InternalLinkage, Name,
11068                                    &CGF.CGM.getModule());
11069   F->addFnAttr("enqueued-block");
11070   auto IP = CGF.Builder.saveIP();
11071   auto *BB = llvm::BasicBlock::Create(C, "entry", F);
11072   Builder.SetInsertPoint(BB);
11073   const auto BlockAlign = CGF.CGM.getDataLayout().getPrefTypeAlign(BlockTy);
11074   auto *BlockPtr = Builder.CreateAlloca(BlockTy, nullptr);
11075   BlockPtr->setAlignment(BlockAlign);
11076   Builder.CreateAlignedStore(F->arg_begin(), BlockPtr, BlockAlign);
11077   auto *Cast = Builder.CreatePointerCast(BlockPtr, InvokeFT->getParamType(0));
11078   llvm::SmallVector<llvm::Value *, 2> Args;
11079   Args.push_back(Cast);
11080   for (auto I = F->arg_begin() + 1, E = F->arg_end(); I != E; ++I)
11081     Args.push_back(I);
11082   Builder.CreateCall(Invoke, Args);
11083   Builder.CreateRetVoid();
11084   Builder.restoreIP(IP);
11085 
11086   F->setMetadata("kernel_arg_addr_space", llvm::MDNode::get(C, AddressQuals));
11087   F->setMetadata("kernel_arg_access_qual", llvm::MDNode::get(C, AccessQuals));
11088   F->setMetadata("kernel_arg_type", llvm::MDNode::get(C, ArgTypeNames));
11089   F->setMetadata("kernel_arg_base_type",
11090                  llvm::MDNode::get(C, ArgBaseTypeNames));
11091   F->setMetadata("kernel_arg_type_qual", llvm::MDNode::get(C, ArgTypeQuals));
11092   if (CGF.CGM.getCodeGenOpts().EmitOpenCLArgMetadata)
11093     F->setMetadata("kernel_arg_name", llvm::MDNode::get(C, ArgNames));
11094 
11095   return F;
11096 }
11097